[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2012038261A1 - Verfahren zum austausch von batteriezellen während des betriebes - Google Patents

Verfahren zum austausch von batteriezellen während des betriebes Download PDF

Info

Publication number
WO2012038261A1
WO2012038261A1 PCT/EP2011/065520 EP2011065520W WO2012038261A1 WO 2012038261 A1 WO2012038261 A1 WO 2012038261A1 EP 2011065520 W EP2011065520 W EP 2011065520W WO 2012038261 A1 WO2012038261 A1 WO 2012038261A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
battery cell
defective
coupling unit
battery module
Prior art date
Application number
PCT/EP2011/065520
Other languages
English (en)
French (fr)
Inventor
Stefan Butzmann
Holger Fink
Original Assignee
Sb Limotive Company Ltd.
Sb Limotive Germany Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sb Limotive Company Ltd., Sb Limotive Germany Gmbh filed Critical Sb Limotive Company Ltd.
Priority to CN2011800449477A priority Critical patent/CN103155224A/zh
Priority to EP11767193.3A priority patent/EP2619825A1/de
Publication of WO2012038261A1 publication Critical patent/WO2012038261A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0092Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption with use of redundant elements for safety purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/04Cutting off the power supply under fault conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/51Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by AC-motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/16Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to battery ageing, e.g. to the number of charging cycles or the state of health [SoH]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/19Switching between serial connection and parallel connection of battery modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/21Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having the same nominal voltage
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/574Devices or arrangements for the interruption of current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/396Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a method for exchanging battery cells during operation
  • Battery systems will be used. In order to meet the voltage and available power requirements of a particular application, a large number of battery cells are connected in series. Since the power provided by such a battery must flow through all the battery cells and a battery cell can only conduct a limited current, battery cells are often additionally connected in parallel in order to increase the maximum current. This can be done either by providing multiple cell wraps within a battery cell housing or by externally interconnecting battery cells.
  • FIG. 1 The block diagram of a conventional electric drive system, as used for example in electric and hybrid vehicles or in stationary applications such as in the rotor blade adjustment of wind turbines is shown in Figure 1.
  • a battery 110 is connected to a
  • Capacitor 11 1 is buffered.
  • a pulse-controlled inverter 1 12 which via two switchable semiconductor valves and two diodes at three outputs against each other phase-shifted sinusoidal voltages for the operation of an electrical
  • the capacity of the capacitor 1 11 must be large be enough to stabilize the voltage in the DC link for a period of time in which one of the switchable semiconductor valves is turned on. In a practical application such as an electric vehicle results in a high capacity in the range of mF.
  • FIG. 2 shows the battery 110 of FIG. 1 in a more detailed block diagram.
  • a large number of battery cells are connected in series as well as optionally additionally in parallel, in order to achieve a high output voltage and battery capacity desired for a particular application.
  • a charging and disconnecting device 116 is connected between the positive pole of the battery cells and a positive battery terminal 1 14, a charging and disconnecting device 116 is connected.
  • a negative battery terminal 1 15 a is optionally, in addition between the negative terminal of the battery cells and a negative battery terminal 1 15 a
  • Separator 117 are switched.
  • the separating and charging device 16 and the separating device 117 each comprise a contactor 118 or 119, which are provided for disconnecting the battery cells from the battery terminals in order to disconnect the battery terminals from the voltage. Due to the high DC voltage of the series-connected battery cells is otherwise significant risk potential for maintenance personnel or the like.
  • the charging and separating device 116 is also a charging contactor
  • the charging resistor 121 limits a charging current for the capacitor 11 1 when the battery is connected to the DC link. For this purpose, first the contactor 118 is left open and only the charging contactor 120 is closed. If the voltage at the positive battery terminal 114 reaches the voltage of the battery cells, the contactor 1 19 can be closed and, if necessary, the charging contactor 120 can be opened.
  • Reliability is the ability of one System to work correctly for a given time.
  • Availability is the likelihood of finding a repairable system in a working state at a given time. Disclosure of the invention
  • the invention therefore provides a method of operating a battery having a plurality of battery modules connected in series, each one
  • Battery module comprises a coupling unit and at least one connected between a first input and a second input of the coupling unit battery cell introduced.
  • the method comprises at least the following steps: detecting a defective battery cell and that battery module containing the defective battery cell;
  • the invention has the advantage that a defective battery cell can be detected and disconnected from the series connection of the battery cells of the battery, so that the remaining functional battery cells continue as
  • Battery can provide an output voltage. Subsequently, a functional battery cell can be coupled to the battery module with the defective battery cell and the decoupling of the battery module can be terminated.
  • the invention thus enables the battery and a device supplied or supported by the battery, in spite of the actual or
  • the method may include an additional step of removing the
  • the inventive method has the advantage that defective battery cells can be replaced as often as desired without increasing the volume of the battery.
  • the step of detecting the defective battery cell preferably includes a step of determining an aging condition of the battery cells and a step of comparing the determined aging condition with a predetermined maximum aging condition. A battery cell is considered to be defective if its aging state is greater than the predetermined maximum aging state.
  • the advantage of the method is that battery cells threatened by a failure can be detected early and the measures for uninterrupted further operation of the method can be taken even before the failure.
  • the term "defective battery cell” in the context of the invention also refers to a battery cell that has already aged beyond a specific aging.
  • the step of determining the state of aging of the battery cells may include steps of determining a battery current, a
  • Battery cell voltage and a battery cell temperature include. These characteristic parameters of battery cells give an estimate of the
  • the coupling unit of the detected battery module leads in preferred
  • Embodiments of the method according to the invention the step of the output-side bridging of the detected battery module. Because the
  • Coupling also the step of Uncoupling the defective battery cell In this way, it can be ensured in a particularly simple manner that the two steps are carried out simultaneously and by the control signal.
  • To protect maintenance personnel is particularly preferred in the step of
  • a device connected to the battery may be operated from the step of decoupling the defective battery cell to the step of terminating the output-side bypassing with a reduced input voltage. Operation at reduced capacity takes into account the fact that during the said period only a reduced
  • a second aspect of the invention relates to a battery having a control unit and a plurality of battery modules connected in series, each one
  • Battery module comprises a coupling unit and at least one connected between a first input and a second input of the coupling unit battery cell.
  • the control unit is designed to carry out the method according to the first aspect of the invention.
  • Another aspect of the invention leads a motor vehicle with an electric drive motor for driving the motor vehicle and one with the
  • the battery cells are particularly preferably lithium-ion battery cells.
  • Lithium-ion battery cells have the advantages of high cell voltage and high energy content in a given volume.
  • FIG. 2 shows a block diagram of a battery according to the prior art
  • FIG. 3 shows a first embodiment of a coupling unit for use in a battery, with which the method according to the invention can be carried out
  • Figure 4 shows a possible circuit implementation of the first
  • FIGS. 5A and 5B show two embodiments of a battery module with the first embodiment of the coupling unit
  • FIG. 6 shows a second embodiment of a coupling unit for use in a battery, with which the method according to the invention can be carried out
  • Figure 7 shows a possible circuit implementation of the second
  • Figure 8 shows an embodiment of a battery module with the second
  • FIG. 10 shows a flow chart of an embodiment variant of the method according to the invention.
  • FIG. 3 shows a first embodiment of a coupling unit 30 for use in a battery with which the method according to the invention can be carried out.
  • the coupling unit 30 has two inputs 31 and 32 and an output 33 and designed to connect one of the inputs 31 or 32 to the output 33 and to decouple the other.
  • FIG. 4 shows a possible circuit implementation of the first embodiment of the coupling unit 30, in which a first and a second switch 35 or 36 are provided. Each of the switches is connected between one of the inputs 31 and 32 and the output 33.
  • This embodiment has the advantage that both inputs 31, 32 can be decoupled from the output 33, so that the output 33 becomes high-impedance, which may be useful, for example, in the case of repair or maintenance.
  • the switches 35, 36 simply as
  • Semiconductor switches such as MOSFETs or IGBTs can be realized.
  • Semiconductor switches have the advantage of a low price and a high switching speed, so that the coupling unit 30 can respond within a short time to a control signal or a change in the control signal.
  • FIGS. 5A and 5B show two embodiments of a battery module 40 with the first embodiment of the coupling unit 30.
  • a plurality of battery cells 11 are connected in series between the inputs of the coupling unit 30.
  • the invention is not limited to such a series connection of battery cells 11, it can also be provided only a single battery cell 1 1 or a parallel connection or mixed-serial-parallel circuit of battery cells 1 1.
  • the output of Coupling unit 30 with a first terminal 41 and the negative pole of the battery cells 1 1 connected to a second terminal 42 is connected to a second terminal 42.
  • an almost mirror-image arrangement as in FIG. 5B is possible, in which the positive pole of the battery cells 11 is connected to the first terminal 41 and the output of the coupling unit 30 to the second terminal 42.
  • FIG. 6 shows a second embodiment of a coupling unit 50 for use in a battery with which the method according to the invention can be carried out.
  • the coupling unit 50 has two inputs 51 and 52 and two outputs 53 and 54. It is designed to connect either the first input 51 to the first output 53 and the second input 52 to the second output 54 (and the first output 53 from the second Output 54) or to connect the first output 53 to the second output 54 (thereby decoupling the inputs 51 and 52).
  • Embodiments of the coupling unit may also be designed to separate both inputs 51, 52 from the outputs 53, 54 and also to decouple the first output 53 from the second output 54. However, it is not intended to connect both the first input 51 to the second input 52.
  • Figure 7 shows a possible circuit implementation of the second
  • Embodiment of the coupling unit 50 in which a first, a second and a third switch 55, 56 and 57 are provided.
  • the first switch 55 is connected between the first input 51 and the first output 53
  • the second switch 56 is connected between the second input 52 and the second one
  • Time can respond to a control signal or a change of the control signal.
  • FIG. 8 shows an embodiment of a battery module 60 with the second embodiment of the coupling unit 50.
  • a plurality of battery cells 1 1 are connected in series between the inputs of a coupling unit 50.
  • This embodiment of the battery module 60 is not limited to such a series connection of battery cells 1 1, it may again be provided only a single battery cell 1 1 or a parallel connection or mixed serial-parallel circuit of battery cells 1 1.
  • Coupling unit 50 is connected to a first terminal 61 and the second output of Coupling unit 40 connected to a second terminal 62.
  • the battery module 60 has the advantage that the battery cells 1 1 can be uncoupled from the remaining battery on both sides by the coupling unit 50, which enables a safe replacement during operation, since at no pole of the battery cells 1 1 the dangerous high sum voltage of the remaining battery modules of the battery is applied.
  • FIG. 9 shows an embodiment of a battery with which the method according to the invention can be carried out.
  • the battery has a battery module string 70 with a plurality of battery modules 40 or 60, wherein preferably each battery module 40 or 60 contains the same number of battery cells 11 connected in an identical manner.
  • the battery module string 70 may include any number of battery modules 40 or 60 greater than one. Also, at the poles of the battery module string 70 additional charging and
  • FIG. 10 shows a flow chart of a variant of the embodiment
  • step SO a battery current and a battery cell voltage and optionally a battery cell temperature are determined.
  • step S2 from these characteristic parameters, an aging state of the measured battery cell is calculated, which in the subsequent step S3 with a predetermined maximum
  • step S4 it is determined whether the
  • step S5 Aging condition of the measured battery cell is greater than the predetermined maximum aging state. If this is not the case, a branch is made to step S5, in which it is checked whether there are any further battery cells which still have to be tested. If there are further such battery cells, a branch is made back to step S1 and the next battery cell is checked.
  • step S10 If it has been determined in step S4 that the aging state of the measured battery cell is greater than the predetermined maximum aging state, the battery cell is considered defective and proceeds to step S6, in which the defective battery cell by outputting a corresponding control signal to the coupling unit of the battery module contains the defective battery cell, from the other series-connected battery cells or
  • step S6 the
  • Battery module which contains the defective battery cell, the output bridged, so that the battery module electrically inactive and the remaining
  • Battery modules are connected in series to a single strand.
  • step S7 the disconnected defective battery cell is removed and coupled in the following step S8 a functional battery cell to the battery module with the defective battery cell.
  • step S9 the output-side bridging of the battery module is terminated by stopping the outputting of the corresponding control signal to its coupling unit and so the functioning battery cell is included again in the series connection of all battery cells of the battery.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Transportation (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

Es wird ein Verfahren zum Betreiben einer Batterie mit einer Mehrzahl von in Serie geschalteten Batteriemodulen (40, 60) eingeführt. Jedes Batteriemodul (40, 60) besitzt eine Koppeleinheit (30, 50) und wenigstens eine, zwischen Eingänge (31, 51; 32, 52) der Koppeleinheit (30, 50) geschaltete Batteriezelle (11) umfasst. In einem ersten Schritt werden eine defekte Batteriezelle (11) und das die defekte Batteriezelle (11) enthaltende Batteriemodul (40, 60) detektiert. Daraufhin wird die defekte Batteriezelle (11) durch Ausgeben eines entsprechenden Steuersignales an die Koppeleinheit (30, 50) des detektierten Batteriemoduls (40, 60) deaktiviert und das detektierte Batteriemodul (40, 60) ausgangsseitig überbrückt. Nach dem Ankoppeln einer funktionsfähigen Batteriezelle (11) an das detektierte Batteriemodul (40, 60) wird das ausgangsseitige Überbrücken des detektierten Batteriemoduls (40, 60) beendet. Die Erfindung betrifft außerdem eine Batterie, welche ausgebildet ist, das Verfahren auszuführen, und ein Kraftfahrzeug mit einer solchen Batterie.

Description

Beschreibung
Titel
Verfahren zum Austausch von Batteriezellen während des Betriebes Die vorliegende Erfindung betrifft ein Verfahren zum Austausch von
Batteriezellen einer Batterie während des Betriebes.
Stand der Technik Es zeichnet sich ab, dass in Zukunft sowohl bei stationären Anwendungen, als auch bei Fahrzeugen wie Hybrid- und Elektrofahrzeugen vermehrt
Batteriesysteme zum Einsatz kommen werden. Um die für eine jeweilige Anwendung gegebenen Anforderungen an Spannung und zur Verfügung stellbarer Leistung erfüllen zu können, werden eine hohe Zahl von Batteriezellen in Serie geschaltet. Da der von einer solchen Batterie bereitgestellte Strom durch alle Batteriezellen fließen muss und eine Batteriezelle nur einen begrenzten Strom leiten kann, werden oft zusätzlich Batteriezellen parallel geschaltet, um den maximalen Strom zu erhöhen. Dies kann entweder durch Vorsehen von mehreren Zellwickeln innerhalb eines Batteriezellengehäuses oder durch externes Verschalten von Batteriezellen geschehen.
Das Prinzipschaltbild eines üblichen elektrischen Antriebssystems, wie es beispielsweise in Elektro- und Hybrid-Fahrzeugen oder auch in stationären Anwendungen wie bei der Rotorblattverstellung von Windkraftanlagen zum Einsatz kommt, ist in Figur 1 dargestellt. Eine Batterie 110 ist an einen
Gleichspannungszwischenkreis angeschlossen, welcher durch einen
Kondensator 11 1 gepuffert wird. An den Gleichspannungszwischenkreis angeschlossen ist ein Pulswechselrichter 1 12, der über jeweils zwei schaltbare Halbleiterventile und zwei Dioden an drei Ausgängen gegeneinander phasenversetzte Sinusspannungen für den Betrieb eines elektrischen
Antriebsmotors 1 13 bereitstellt. Die Kapazität des Kondensators 1 11 muss groß genug sein, um die Spannung im Gleichspannungszwischenkreis für eine Zeitdauer, in der eines der schaltbaren Halbleiterventile durchgeschaltet wird, zu stabilisieren. In einer praktischen Anwendung wie einem Elektrofahrzeug ergibt sich eine hohe Kapazität im Bereich von mF.
Figur 2 zeigt die Batterie 110 der Figur 1 in einem detaillierteren Blockschaltbild. Eine Vielzahl von Batteriezellen sind in Serie sowie optional zusätzlich parallelgeschaltet, um eine für eine jeweilige Anwendung gewünschte hohe Ausgangsspannung und Batteriekapazität zu erreichen. Zwischen den Pluspol der Batteriezellen und ein positives Batterieterminal 1 14 ist eine Lade- und Trenneinrichtung 116 geschaltet. Optional kann zusätzlich zwischen den Minuspol der Batteriezellen und ein negatives Batterieterminal 1 15 eine
Trenneinrichtung 117 geschaltet werden. Die Trenn- und Ladeeinrichtung 1 16 und die Trenneinrichtung 117 umfassen jeweils ein Schütz 118 beziehungsweise 119, welche dafür vorgesehen sind, die Batteriezellen von den Batterieterminals abzutrennen, um die Batterieterminals spannungsfrei zu schalten. Aufgrund der hohen Gleichspannung der seriengeschalteten Batteriezellen ist andernfalls erhebliches Gefährdungspotential für Wartungspersonal oder dergleichen gegeben. In der Lade- und Trenneinrichtung 116 ist zusätzlich ein Ladeschütz
120 mit einem zu dem Ladeschütz 120 in Serie geschalteten Ladewiderstand
121 vorgesehen. Der Ladewiderstand 121 begrenzt einen Aufladestrom für den Kondensator 11 1 , wenn die Batterie an den Gleichspannungszwischenkreis angeschlossen wird. Hierzu wird zunächst das Schütz 118 offen gelassen und nur der Ladeschütz 120 geschlossen. Erreicht die Spannung am positiven Batterieterminal 114 die Spannung der Batteriezellen, kann das Schütz 1 19 geschlossen und gegebenenfalls das Ladeschütz 120 geöffnet werden.
Problematisch ist, dass in realen Anwendungen eine hohe Batteriespannung gefordert wird, weshalb eine hohe Anzahl von Batteriezellen in Serie geschaltet werden muss, gleichzeitig jedoch die Gefahr eines Ausfalles der
Gesamtanordnung mit der Anzahl der seriengeschalteten Batteriezellen steigt, weil bereits eine einzige defekte Batteriezelle den Stromfluss aufgrund der Serienschaltung unterbinden kann. Da Batteriesysteme, wie oben erwähnt, in sicherheitsrelevanten Anwendungen eingesetzt werden, werden entsprechend hohe Anforderungen an die Zuverlässigkeit und die Verfügbarkeit des
Batteriesystems gestellt. Unter Zuverlässigkeit versteht man die Fähigkeit eines Systems, für eine vorgegebene Zeit korrekt zu arbeiten. Die Verfügbarkeit ist die Wahrscheinlichkeit, ein reparierbares System zu einem vorgegebenen Zeitpunkt in einem funktionsfähigen Zustand vorzufinden. Offenbarung der Erfindung
Erfindungsgemäß wird daher ein Verfahren zum Betreiben einer Batterie mit einer Mehrzahl von in Serie geschalteten Batteriemodulen, wobei jedes
Batteriemodul eine Koppeleinheit und wenigstens eine zwischen einen ersten Eingang und einen zweiten Eingang der Koppeleinheit geschaltete Batteriezelle umfasst, eingeführt. Das Verfahren weist wenigstens die folgenden Schritte auf: Detektieren einer defekten Batteriezelle und desjenigen Batteriemoduls, welches die defekte Batteriezelle enthält;
Abkoppeln der defekten Batteriezelle durch Ausgeben eines entsprechenden Steuersignales an die Koppeleinheit des detektierten Batteriemoduls;
ausgangsseitiges Überbrücken des detektierten Batteriemoduls;
Ankoppeln einer funktionsfähigen Batteriezelle an das detektierte Batteriemodul; und
Beenden des ausgangsseitigen Überbrückens des detektierten Batteriemoduls durch Beenden des Ausgebens des entsprechenden Steuersignals an die
Koppeleinheit des detektierten Batteriemoduls.
Die Erfindung besitzt den Vorteil, dass eine defekte Batteriezelle detektiert und von der Serienschaltung der Batteriezellen der Batterie abgekoppelt werden kann, so dass die verbleibenden funktionsfähigen Batteriezellen weiter als
Batterie eine Ausgangsspannung zur Verfügung stellen können. Anschließend können eine funktionsfähige Batteriezelle an das Batteriemodul mit der defekten Batteriezelle angekoppelt und die Abkopplung des Batteriemoduls beendet werden. Die Erfindung ermöglicht es so, die Batterie und eine von der Batterie versorgte oder unterstützte Vorrichtung trotz des tatsächlichen oder
bevorstehenden Defektes einer Batteriezelle weiterzubetreiben und die Batterie im Betrieb zu reparieren, wodurch Zuverlässigkeit und Verfügbarkeit stark gesteigert werden. Das Verfahren kann einen zusätzlichen Schritt des Entfernens der
abgekoppelten defekten Batteriezelle aufweisen. Diese Variante des erfindungsgemäßen Verfahrens bietet den Vorteil, dass defekte Batteriezellen beliebig oft ausgewechselt werden können, ohne das Volumen der Batterie zu erhöhen. Der Schritt des Detektierens der defekten Batteriezelle beinhaltet bevorzugt einen Schritt des Bestimmens eines Alterungszustandes der Batteriezellen und einen Schritt des Vergleichens des bestimmten Alterungszustandes mit einem vorbestimmten maximalen Alterungszustand. Eine Batteriezelle wird hierbei als defekt angesehen, wenn ihr Alterungszustand größer als der vorbestimmte maximale Alterungszustand ist. Diese Variante des erfindungsgemäßen
Verfahrens bietet den Vorteil, dass von einem Ausfall bedrohte Batteriezellen frühzeitig erkannt und bereits vor dem Ausfall die Maßnahmen für den unterbrechungsfreien Weiterbetrieb des Verfahrens ergriffen werden können. Generell ist im Rahmen der Erfindung unter einer„defekten Batteriezelle" auch eine bereits über eine bestimmte Alterung hinaus gealterte Batteriezelle gemeint.
Der Schritt des Bestimmens des Alterungszustandes der Batteriezellen kann insbesondere Schritte des Bestimmens eines Batteriestroms, einer
Batteriezellspannung und einer Batteriezelltemperatur umfassen. Diese charakteristischen Parameter von Batteriezellen lassen eine Schätzung des
Alterungszustandes von Batteriezellen zu, wofür im Stand der Technik zahlreiche Verfahren bekannt sind, welche sich im Rahmen des Verfahrens der Erfindung einsetzen lassen. Besonders bevorzugt werden die Schritte des Abkoppeins der defekten
Batteriezelle und des ausgangsseitigen Überbrückens des detektierten
Batteriemoduls gleichzeitig ausgeführt. Wird der Schritt des Abkoppeins vor dem Schritt des Überbrückens ausgeführt, wird der Stromfluss in der Batterie für diese Zeitspanne unterbrochen. Im umgekehrten Fall würde die defekte Batteriezelle kurzzeitig kurzgeschlossen, was eine weitere Beschädigung der Batteriezelle oder weiterer Batteriezellen desselben Batteriemoduls zur Folge haben kann.
Die Koppeleinheit des detektierten Batteriemoduls führt bei bevorzugten
Ausführungsformen des erfindungsgemäßen Verfahrens den Schritt des ausgangsseitigen Überbrückens des detektierten Batteriemoduls aus. Da die
Koppeleinheit auch den Schritt des Abkoppeins der defekten Batteriezelle durchführt, kann auf diese Weise besonders einfach sichergestellt werden, dass die beiden Schritte gleichzeitig, und durch das Steuersignal veranlasst, ausgeführt werden. Zum Schutz von Wartungspersonal wird besonders bevorzugt im Schritt des
Abkoppeins der defekten Batteriezelle die defekte Batteriezelle zweipolig abgekoppelt, so dass an keinem der beiden Pole der defekten Batteriezelle oder der Batteriezellen des betroffenen Batteriemoduls eine hohe Spannung der verbleibenden Batteriezellen anliegt.
Eine an die Batterie angeschlossene Vorrichtung kann von dem Schritt des Abkoppeins der defekten Batteriezelle bis zum Schritt des Beendens des ausgangsseitigen Überbrückens mit einer reduzierten Eingangsspannung betrieben werden. Der Betrieb mit reduzierter Leistung trägt dem Umstand Rechnung, dass während der genannten Zeitspanne nur eine reduzierte
Ausgangsspannung der Batterie und somit auch nur eine entsprechend reduzierte maximale Ausgangsleistung zur Verfügung stehen.
Ein zweiter Aspekt der Erfindung betrifft eine Batterie mit einer Steuereinheit und einer Mehrzahl von in Serie geschalteten Batteriemodulen, wobei jedes
Batteriemodul eine Koppeleinheit und wenigstens eine zwischen einen ersten Eingang und einen zweiten Eingang der Koppeleinheit geschaltete Batteriezelle umfasst. Erfindungsgemäß ist die Steuereinheit ausgebildet, das Verfahren gemäß dem ersten Erfindungsaspekt durchzuführen.
Ein weiterer Aspekt der Erfindung führt ein Kraftfahrzeug mit einem elektrischen Antriebsmotor zum Antreiben des Kraftfahrzeuges und einer mit dem
elektrischen Antriebsmotor verbundenen Batterie gemäß dem zweiten
Erfindungsaspekt ein.
Besonders bevorzugt sind dabei die Batteriezellen Lithium-Ionen-Batteriezellen. Lithium-Ionen-Batteriezellen besitzen die Vorteile einer hohen Zellspannung und eines hohen Energiegehaltes in einem gegebenen Volumen.
Zeichnungen Ausführungsbeispiele der Erfindung werden anhand der Zeichnungen und der nachfolgenden Beschreibung näher erläutert, wobei gleiche Bezugszeichen gleiche oder funktional gleichartige Komponenten bezeichnen. Es zeigen:
Figur 1 ein elektrisches Antriebssystem gemäß dem Stand der Technik,
Figur 2 ein Blockschaltbild einer Batterie gemäß dem Stand der Technik, Figur 3 eine erste Ausführung einer Koppeleinheit zum Einsatz in einer Batterie, mit der das erfindungsgemäße Verfahren ausgeführt werden kann,
Figur 4 eine mögliche schaltungstechnische Umsetzung der ersten
Ausführungsform der Koppeleinheit,
Figuren 5A und 5B zwei Ausführungsformen eines Batteriemoduls mit der ersten Ausführungsform der Koppeleinheit,
Figur 6 eine zweite Ausführungsform einer Koppeleinheit zum Einsatz in einer Batterie, mit der das erfindungsgemäße Verfahren ausgeführt werden kann,
Figur 7 eine mögliche schaltungstechnische Umsetzung der zweiten
Ausführungsform der Koppeleinheit, Figur 8 eine Ausführungsform eines Batteriemoduls mit der zweiten
Ausführungsform der Koppeleinheit,
Figur 9 eine Batterie, mit der das erfindungsgemäße Verfahren ausgeführt werden kann, und
Figur 10 ein Flussdiagramm einer Ausführungsvariante des erfindungsgemäßen Verfahrens. Ausführungsformen der Erfindung
Figur 3 zeigt eine erste Ausführung einer Koppeleinheit 30 zum Einsatz in einer Batterie, mit der das erfindungsgemäße Verfahren ausgeführt werden kann. Die Koppeleinheit 30 besitzt zwei Eingänge 31 und 32 sowie einen Ausgang 33 und ausgebildet, einen der Eingänge 31 oder 32 mit dem Ausgang 33 zu verbinden und den anderen abzukoppeln.
Figur 4 zeigt eine mögliche schaltungstechnische Umsetzung der ersten Ausführungsform der Koppeleinheit 30, bei der ein erster und ein zweiter Schalter 35 beziehungsweise 36 vorgesehen sind. Jeder der Schalter ist zwischen einen der Eingänge 31 beziehungsweise 32 und den Ausgang 33 geschaltet. Diese Ausführungsform bietet den Vorteil, dass auch beide Eingänge 31 , 32 vom Ausgang 33 abgekoppelt werden können, so dass der Ausgang 33 hochohmig wird, was beispielsweise im Fall einer Reparatur oder Wartung nützlich sein kann. Zudem können die Schalter 35, 36 einfach als
Halbleiterschalter wie zum Beispiel MOSFETs oder IGBTs verwirklicht werden. Halbleiterschalter haben den Vorteil eines günstigen Preises und einer hohen Schaltgeschwindigkeit, so dass die Koppeleinheit 30 innerhalb einer geringen Zeit auf ein Steuersignal beziehungsweise eine Änderung des Steuersignales reagieren kann.
Die Figuren 5A und 5B zeigen zwei Ausführungsformen eines Batteriemoduls 40 mit der ersten Ausführungsform der Koppeleinheit 30. Eine Mehrzahl von Batteriezellen 11 ist zwischen die Eingänge der Koppeleinheit 30 in Serie geschaltet. Die Erfindung ist jedoch nicht auf eine solche Serienschaltung von Batteriezellen 11 beschränkt, es kann auch nur eine einzelne Batteriezelle 1 1 vorgesehen sein oder aber eine Parallelschaltung oder gemischt-seriell-parallele Schaltung von Batteriezellen 1 1. Im Beispiel der Figur 5A sind der Ausgang der Koppeleinheit 30 mit einem ersten Terminal 41 und der negative Pol der Batteriezellen 1 1 mit einem zweiten Terminal 42 verbunden. Es ist jedoch eine beinahe spiegelbildliche Anordnung wie in Figur 5B möglich, bei der der positive Pol der Batteriezellen 1 1 mit dem ersten Terminal 41 und der Ausgang der Koppeleinheit 30 mit dem zweiten Terminal 42 verbunden sind. Figur 6 zeigt eine zweite Ausführungsform einer Koppeleinheit 50 zum Einsatz in einer Batterie, mit der das erfindungsgemäße Verfahren ausgeführt werden kann. Die Koppeleinheit 50 besitzt zwei Eingänge 51 und 52 sowie zwei Ausgänge 53 und 54. Sie ist ausgebildet, entweder den ersten Eingang 51 mit dem ersten Ausgang 53 sowie den zweiten Eingang 52 mit dem zweiten Ausgang 54 zu verbinden (und den ersten Ausgang 53 vom zweiten Ausgang 54 abzukoppeln) oder aber den ersten Ausgang 53 mit dem zweiten Ausgang 54 zu verbinden (und dabei die Eingänge 51 und 52 abzukoppeln). Bei bestimmten
Ausführungsformen der Koppeleinheit kann diese außerdem ausgebildet sein, beide Eingänge 51 , 52 von den Ausgängen 53, 54 abzutrennen und auch den ersten Ausgang 53 vom zweiten Ausgang 54 abzukoppeln. Nicht vorgesehen ist jedoch, sowohl den ersten Eingang 51 mit dem zweiten Eingang 52 zu verbinden. Figur 7 zeigt eine mögliche schaltungstechnische Umsetzung der zweiten
Ausführungsform der Koppeleinheit 50, bei der ein erster, ein zweiter und ein dritter Schalter 55, 56 und 57 vorgesehen sind. Der erste Schalter 55 ist zwischen den ersten Eingang 51 und den ersten Ausgang 53 geschaltet, der zweite Schalter 56 ist zwischen den zweiten Eingang 52 und den zweiten
Ausgang 54 und der dritte Schalter 57 zwischen den ersten Ausgang 53 und den zweiten Ausgang 54 geschaltet. Diese Ausführungsform bietet ebenfalls den Vorteil, dass die Schalter 55, 56 und 57 einfach als Halbleiterschalter wie zum Beispiel MOSFETs oder IGBTs verwirklicht werden können. Halbleiterschalter haben den Vorteil eines günstigen Preises und einer hohen
Schaltgeschwindigkeit, so dass die Koppeleinheit 50 innerhalb einer geringen
Zeit auf ein Steuersignal beziehungsweise eine Änderung des Steuersignales reagieren kann.
Die Figur 8 zeigt eine Ausführungsform eines Batteriemoduls 60 mit der zweiten Ausführungsform der Koppeleinheit 50. Eine Mehrzahl von Batteriezellen 1 1 ist zwischen die Eingänge einer Koppeleinheit 50 in Serie geschaltet. Auch diese Ausführungsform des Batteriemoduls 60 ist nicht auf eine solche Serienschaltung von Batteriezellen 1 1 beschränkt, es kann wiederum auch nur eine einzelne Batteriezelle 1 1 vorgesehen sein oder aber eine Parallelschaltung oder gemischt- seriell-parallele Schaltung von Batteriezellen 1 1. Der erste Ausgang der
Koppeleinheit 50 ist mit einem ersten Terminal 61 und der zweite Ausgang der Koppeleinheit 40 mit einem zweiten Terminal 62 verbunden. Das Batteriemodul 60 bietet gegenüber dem Batteriemodul 40 der Figuren 5A und 5B den Vorteil, dass die Batteriezellen 1 1 durch die Koppeleinheit 50 von der restlichen Batterie beidseitig abgekoppelt werden können, was einen gefahrlosen Austausch im laufenden Betrieb ermöglicht, da an keinem Pol der Batteriezellen 1 1 die gefährliche hohe Summenspannung der restlichen Batteriemodule der Batterie anliegt.
Figur 9 zeigt eine Ausführungsform einer Batterie, mit der das erfindungsgemäße Verfahren ausgeführt werden kann. Die Batterie weist einen Batteriemodulstrang 70 mit einer Mehrzahl von Batteriemodulen 40 oder 60 auf, wobei vorzugsweise jedes Batteriemodul 40 oder 60 dieselbe Anzahl von Batteriezellen 11 in identischer Weise verschaltet enthält. Generell kann der Batteriemodulstrang 70 jede Zahl von Batteriemodulen 40 oder 60 größer 1 enthalten. Auch können an den Polen des Batteriemodulstranges 70 zusätzlich Lade- und
Trenneinrichtungen und Trenneinrichtungen wie bei Figur 2 vorgesehen sein, wenn Sicherheitsbestimmungen dies erfordern. Allerdings sind solche
Trenneinrichtungen erfindungsgemäß nicht notwendig, weil eine Abkopplung der Batteriezellen 11 von den Batterieanschlüssen durch die in den Batteriemodulen 40 oder 60 enthaltenen Koppeleinheiten 30 oder 50 erfolgen kann.
Figur 10 zeigt ein Flussdiagramm einer Ausführungsvariante des
erfindungsgemäßen Verfahrens. Das Verfahren startet im Schritt SO. Im Schritt S1 werden ein Batteriestrom und eine Batteriezellspannung sowie optional eine Batteriezelltemperatur bestimmt. Im Schritt S2 wird aus diesen charakteristischen Parametern ein Alterungszustand der gemessenen Batteriezelle berechnet, der im darauffolgenden Schritt S3 mit einem vorbestimmten maximalen
Alterungszustand verglichen wird. Im Schritt S4 wird festgestellt, ob der
Alterungszustand der gemessenen Batteriezelle größer als der vorbestimmte maximale Alterungszustand ist. Ist dies nicht der Fall, wird zum Schritt S5 verzweigt, in dem geprüft wird, ob weitere Batteriezellen vorhanden sind, die noch geprüft werden müssen. Sind weitere solche Batteriezellen vorhanden, wird zum Schritt S1 zurück verzweigt und die nächste Batteriezelle geprüft.
Andernfalls wird das Verfahren mit dem Schritt S10 beendet. Wurde im Schritt S4 festgestellt, dass der Alterungszustand der gemessenen Batteriezelle größer als der vorbestimmte maximale Alterungszustand ist, wird die Batteriezelle als defekt angesehen und mit dem Schritt S6 fortgesetzt, in dem die defekte Batteriezelle durch Ausgeben eines entsprechenden Steuersignales an die Koppeleinheit des Batteriemoduls, das die defekte Batteriezelle enthält, von den übrigen seriengeschalteten Batteriezellen beziehungsweise
Batteriemodulen abgekoppelt wird. Gleichzeitig wird im Schritt S6 das
Batteriemodul, das die defekte Batteriezelle enthält, ausgangsseitig überbrückt, so dass das Batteriemodul elektrisch inaktiv und die verbleibenden
Batteriemodule zu einem einzigen Strang seriengeschaltet werden. Im Schritt S7 wird die abgekoppelte defekte Batteriezelle entfernt und im folgenden Schritt S8 eine funktionsfähige Batteriezelle an das Batteriemodul mit der defekten Batteriezelle angekoppelt. Im Schritt S9 wird das ausgangsseitige Überbrücken des Batteriemoduls durch Beenden des Ausgebens des entsprechenden Steuersignals an seine Koppeleinheit beendet und so die funktionsfähige Batteriezelle wieder in die Serienschaltung aller Batteriezellen der Batterie einbezogen.

Claims

Ansprüche
1. Ein Verfahren zum Betreiben einer Batterie mit einer Mehrzahl von in Serie geschalteten Batteriemodulen (40, 60), wobei jedes Batteriemodul (40, 60) eine Koppeleinheit (30, 50) und wenigstens eine zwischen einen ersten
Eingang (31 , 51) und einen zweiten Eingang (32, 52) der Koppeleinheit (30, 50) geschaltete Batteriezelle (11) umfasst, das Verfahren wenigstens die folgenden Schritte aufweisend:
Detektieren einer defekten Batteriezelle (1 1) und desjenigen Batteriemoduls (40, 60), welches die defekte Batteriezelle (1 1) enthält;
Abkoppeln der defekten Batteriezelle (11) durch Ausgeben eines
entsprechenden Steuersignales an die Koppeleinheit (30, 50) des detektierten Batteriemoduls (40, 60);
ausgangsseitiges Überbrücken des detektierten Batteriemoduls (40, 60); Ankoppeln einer funktionsfähigen Batteriezelle (1 1) an das detektierte
Batteriemodul (40, 60); und
Beenden des ausgangsseitigen Überbrückens des detektierten
Batteriemoduls (40, 60) durch Beenden des Ausgebens des entsprechenden Steuersignals an die Koppeleinheit (30, 50) des detektierten Batteriemoduls (40, 60).
2. Das Verfahren gemäß Anspruch 1 , mit einem zusätzlichen Schritt des
Entfernens der abgekoppelten defekten Batteriezelle (11).
3. Das Verfahren gemäß einem der Ansprüche 1 oder 2, bei dem der Schritt des Detektierens der defekten Batteriezelle (11) einen Schritt des
Bestimmens eines Alterungszustandes der Batteriezellen (11) und einen Schritt des Vergleichens des bestimmten Alterungszustandes mit einem vorbestimmten maximalen Alterungszustand beinhaltet, wobei eine
Batteriezelle defekt ist, wenn ihr Alterungszustand größer als der vorbestimmte maximale Alterungszustand ist. Das Verfahren gemäß Anspruch 3, bei dem der Schritt des Bestimmens des Alterungszustandes der Batteriezellen (11) Schritte des Bestimmens eines Batteriestroms, einer Batteriezellspannung und einer Batteriezelltemperatur umfasst.
Das Verfahren gemäß einem der vorhergehenden Ansprüche, bei dem die Schritte des Abkoppeins der defekten Batteriezelle (11) und des
ausgangsseitigen Überbrückens des detektierten Batteriemoduls (40, 60) gleichzeitig ausgeführt werden.
Das Verfahren gemäß einem der vorhergehenden Ansprüche, bei dem die Koppeleinheit (30, 50) des detektierten Batteriemoduls (40, 60) den Schritt des ausgangsseitigen Überbrückens des detektierten Batteriemoduls (40, 60) ausführt.
Das Verfahren gemäß einem der vorhergehenden Ansprüche, bei dem im Schritt des Abkoppeins der defekten Batteriezelle (11) die defekte
Batteriezelle (1 1) zweipolig abgekoppelt wird.
Das Verfahren gemäß einem der vorhergehenden Ansprüche, bei dem eine an die Batterie angeschlossene Vorrichtung von dem Schritt des Abkoppeins der defekten Batteriezelle (1 1) bis zum Schritt des Beendens des ausgangsseitigen Überbrückens mit einer reduzierten Eingangsspannung betrieben wird.
Eine Batterie mit einer Steuereinheit und einer Mehrzahl von in Serie geschalteten Batteriemodulen (40, 60), wobei jedes Batteriemodul (40, 60) eine Koppeleinheit (30, 50) und wenigstens eine zwischen einen ersten Eingang (31 , 51) und einen zweiten Eingang (32, 52) der Koppeleinheit (30, 50) geschaltete Batteriezelle (11) umfasst, dadurch gekennzeichnet, dass die Steuereinheit ausgebildet ist, das Verfahren gemäß einem der vorhergehenden Ansprüche durchzuführen. Ein Kraftfahrzeug mit einem elektrischen Antriebsmotor zum Antreiben des Kraftfahrzeuges und einer mit dem elektrischen Antriebsmotor verbundenen Batterie gemäß Anspruch 9.
PCT/EP2011/065520 2010-09-20 2011-09-08 Verfahren zum austausch von batteriezellen während des betriebes WO2012038261A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2011800449477A CN103155224A (zh) 2010-09-20 2011-09-08 一种用于在运行期间更换蓄电池单元的方法
EP11767193.3A EP2619825A1 (de) 2010-09-20 2011-09-08 Verfahren zum austausch von batteriezellen während des betriebes

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010041024A DE102010041024A1 (de) 2010-09-20 2010-09-20 Verfahren zum Austausch von Batteriezellen während des Betriebes
DE102010041024.1 2010-09-20

Publications (1)

Publication Number Publication Date
WO2012038261A1 true WO2012038261A1 (de) 2012-03-29

Family

ID=44773046

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/065520 WO2012038261A1 (de) 2010-09-20 2011-09-08 Verfahren zum austausch von batteriezellen während des betriebes

Country Status (4)

Country Link
EP (1) EP2619825A1 (de)
CN (1) CN103155224A (de)
DE (1) DE102010041024A1 (de)
WO (1) WO2012038261A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10132874B2 (en) 2014-06-19 2018-11-20 Lufthansa Technik Ag System and method for monitoring a nickel cadmium battery in a passenger aircraft

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9539963B2 (en) 2012-03-23 2017-01-10 Kabushiki Kaisha Toshiba Battery system and method of operating the battery system
US9466992B2 (en) * 2012-05-19 2016-10-11 Tesla Motors, Inc. Method and system for servicing high voltage battery packs
DE102014200267A1 (de) * 2014-01-10 2015-07-16 Robert Bosch Gmbh Verfahren zum Betreiben einer Batterie und Vorrichtung
DE102015221807A1 (de) * 2015-11-06 2017-05-11 Robert Bosch Gmbh Verfahren zum Betrieb einer Batterie und Batterie
CN109212425A (zh) * 2017-06-29 2019-01-15 青岛恒金源电子科技有限公司 一种检测老化锂离子电池的方法
DE102018204000A1 (de) 2018-03-15 2019-09-19 Audi Ag Dynamisch abschaltbares Batteriesystem für ein Kraftfahrzeug und Verfahren zum Betreiben eines dynamisch abschaltbaren Batteriesystems
CN110838752B (zh) * 2019-10-26 2021-05-14 国网福建省电力有限公司邵武市供电公司 一种变电站蓄电池组的不停电排除损坏蓄电池方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999005766A1 (en) * 1997-07-25 1999-02-04 Minnesota Mining And Manufacturing Company Fault-tolerant battery system employing intra-battery network architecture
US20090078481A1 (en) * 2007-09-24 2009-03-26 Harris Scott C Hybrid Vehicle with Modular battery system
DE102008010971A1 (de) * 2008-02-25 2009-08-27 Robert Bosch Gmbh Schutzsystem für Batteriemodule
DE102010027869A1 (de) * 2010-04-16 2011-10-20 Sb Limotive Company Ltd. Batterie mit Cell-Balancing

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999005766A1 (en) * 1997-07-25 1999-02-04 Minnesota Mining And Manufacturing Company Fault-tolerant battery system employing intra-battery network architecture
US20090078481A1 (en) * 2007-09-24 2009-03-26 Harris Scott C Hybrid Vehicle with Modular battery system
DE102008010971A1 (de) * 2008-02-25 2009-08-27 Robert Bosch Gmbh Schutzsystem für Batteriemodule
DE102010027869A1 (de) * 2010-04-16 2011-10-20 Sb Limotive Company Ltd. Batterie mit Cell-Balancing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10132874B2 (en) 2014-06-19 2018-11-20 Lufthansa Technik Ag System and method for monitoring a nickel cadmium battery in a passenger aircraft

Also Published As

Publication number Publication date
EP2619825A1 (de) 2013-07-31
DE102010041024A1 (de) 2012-03-22
CN103155224A (zh) 2013-06-12

Similar Documents

Publication Publication Date Title
EP2619027B1 (de) Batteriesystem mit variabel einstellbarer zwischenkreisspannung
EP2559132B1 (de) Koppeleinheit und batteriemodul mit integriertem pulswechselrichter und erhöhter zuverlässigkeit
EP2559137B1 (de) Koppeleinheit und batteriemodul mit integriertem pulswechselrichter und im betrieb austauschbaren zellmodulen
DE102008022776B4 (de) Vereinfachte automatische Entladefunktion für Fahrzeuge
EP2619825A1 (de) Verfahren zum austausch von batteriezellen während des betriebes
EP2559094B1 (de) Batterie mit cell-balancing
EP2559136A1 (de) Batterie mit variabler ausgangsspannung
EP3952053A1 (de) Verfahren zum betreiben eines batteriesystems
DE102017123458A1 (de) Autonomes Verschalten einer Antriebsbatterie
EP2619841B1 (de) Verfahren zur inbetriebnahme eines batteriesystems mit einem gleichspannungszwischenkreis
EP2794335A2 (de) Batteriesystem und verfahren
DE102010038880A1 (de) Energiewandler zum Ausgeben elektrischer Energie
WO2012069388A2 (de) Verfahren zum laden einer batterie
EP2619840B1 (de) Verfahren zur inbetriebnahme eines batteriesystems mit einem gleichspannungszwischenkreis
EP2558328A2 (de) Batterie mit integriertem pulswechselrichter
DE102011011798A1 (de) Verfahren zum Betreiben eines Energiespeichers für ein Fahrzeug sowie entsprechender Energiespeicher, Spannungsversorgung und Fahrzeug
DE102022210343A1 (de) Verfahren und Vorrichtung zur Unterbrechung eines Aufladevorgangs einer Energiequelle eines elektrischen Antriebs
WO2012038150A2 (de) Verfahren zum einstellen einer gleichspannungszwischenkreisspannung
DE102022120005A1 (de) Verfahren und System zu einem Notfallbetrieb für einen modularen Multilevelkonverter
WO2012079822A1 (de) Koppeleinheit und batteriemodul mit einer solchen koppeleinheit
DE102022209130A1 (de) Verfahren zum Betreiben eines elektrochemischen Energiespeichersystems mit einer Mehrzahl von elektrochemischen Energiespeichern
DE102010038866A1 (de) Energiewandler zum Ausgeben elektrischer Energie
DE102018200173A1 (de) Batteriesystem für ein Elektrofahrzeug, Verfahren zum Betrieb eines Batteriesystems und Elektrofahrzeug

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180044947.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11767193

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011767193

Country of ref document: EP