WO2012037163A1 - System and method for connecting an application server with a clustered database - Google Patents
System and method for connecting an application server with a clustered database Download PDFInfo
- Publication number
- WO2012037163A1 WO2012037163A1 PCT/US2011/051459 US2011051459W WO2012037163A1 WO 2012037163 A1 WO2012037163 A1 WO 2012037163A1 US 2011051459 W US2011051459 W US 2011051459W WO 2012037163 A1 WO2012037163 A1 WO 2012037163A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- database
- data source
- clustered
- clustered database
- application server
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/20—Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F15/00—Digital computers in general; Data processing equipment in general
- G06F15/16—Combinations of two or more digital computers each having at least an arithmetic unit, a program unit and a register, e.g. for a simultaneous processing of several programs
- G06F15/163—Interprocessor communication
- G06F15/173—Interprocessor communication using an interconnection network, e.g. matrix, shuffle, pyramid, star, snowflake
- G06F15/17306—Intercommunication techniques
- G06F15/17318—Parallel communications techniques, e.g. gather, scatter, reduce, roadcast, multicast, all to all
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/20—Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
- G06F16/23—Updating
- G06F16/2358—Change logging, detection, and notification
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/20—Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
- G06F16/25—Integrating or interfacing systems involving database management systems
- G06F16/252—Integrating or interfacing systems involving database management systems between a Database Management System and a front-end application
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/20—Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
- G06F16/27—Replication, distribution or synchronisation of data between databases or within a distributed database system; Distributed database system architectures therefor
- G06F16/278—Data partitioning, e.g. horizontal or vertical partitioning
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
- H04L41/04—Network management architectures or arrangements
- H04L41/042—Network management architectures or arrangements comprising distributed management centres cooperatively managing the network
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
- H04L41/06—Management of faults, events, alarms or notifications
- H04L41/0686—Additional information in the notification, e.g. enhancement of specific meta-data
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L49/00—Packet switching elements
- H04L49/35—Switches specially adapted for specific applications
- H04L49/356—Switches specially adapted for specific applications for storage area networks
- H04L49/358—Infiniband Switches
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network arrangements or protocols for supporting network services or applications
- H04L67/01—Protocols
- H04L67/02—Protocols based on web technology, e.g. hypertext transfer protocol [HTTP]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network arrangements or protocols for supporting network services or applications
- H04L67/01—Protocols
- H04L67/10—Protocols in which an application is distributed across nodes in the network
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network arrangements or protocols for supporting network services or applications
- H04L67/01—Protocols
- H04L67/10—Protocols in which an application is distributed across nodes in the network
- H04L67/1001—Protocols in which an application is distributed across nodes in the network for accessing one among a plurality of replicated servers
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network arrangements or protocols for supporting network services or applications
- H04L67/01—Protocols
- H04L67/10—Protocols in which an application is distributed across nodes in the network
- H04L67/1001—Protocols in which an application is distributed across nodes in the network for accessing one among a plurality of replicated servers
- H04L67/1034—Reaction to server failures by a load balancer
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network arrangements or protocols for supporting network services or applications
- H04L67/01—Protocols
- H04L67/10—Protocols in which an application is distributed across nodes in the network
- H04L67/1095—Replication or mirroring of data, e.g. scheduling or transport for data synchronisation between network nodes
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network arrangements or protocols for supporting network services or applications
- H04L67/14—Session management
- H04L67/142—Managing session states for stateless protocols; Signalling session states; State transitions; Keeping-state mechanisms
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network arrangements or protocols for supporting network services or applications
- H04L67/14—Session management
- H04L67/146—Markers for unambiguous identification of a particular session, e.g. session cookie or URL-encoding
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L69/00—Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
- H04L69/14—Multichannel or multilink protocols
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for program control, e.g. control units
- G06F9/06—Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
- G06F9/44—Arrangements for executing specific programs
- G06F9/455—Emulation; Interpretation; Software simulation, e.g. virtualisation or emulation of application or operating system execution engines
- G06F9/45504—Abstract machines for programme code execution, e.g. Java virtual machine [JVM], interpreters, emulators
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network arrangements or protocols for supporting network services or applications
- H04L67/01—Protocols
- H04L67/10—Protocols in which an application is distributed across nodes in the network
- H04L67/1001—Protocols in which an application is distributed across nodes in the network for accessing one among a plurality of replicated servers
- H04L67/1004—Server selection for load balancing
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network arrangements or protocols for supporting network services or applications
- H04L67/01—Protocols
- H04L67/10—Protocols in which an application is distributed across nodes in the network
- H04L67/1001—Protocols in which an application is distributed across nodes in the network for accessing one among a plurality of replicated servers
- H04L67/1027—Persistence of sessions during load balancing
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network arrangements or protocols for supporting network services or applications
- H04L67/14—Session management
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T409/00—Gear cutting, milling, or planing
- Y10T409/30—Milling
- Y10T409/30868—Work support
- Y10T409/308792—Indexable
- Y10T409/308848—Indexable including dividing head
- Y10T409/308904—Multiple row dividing head
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T409/00—Gear cutting, milling, or planing
- Y10T409/30—Milling
- Y10T409/30868—Work support
- Y10T409/309016—Work support with work holder or guide
- Y10T409/309072—Work support with work holder or guide including cutter limited to rotary motion
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T409/00—Gear cutting, milling, or planing
- Y10T409/30—Milling
- Y10T409/30868—Work support
- Y10T409/309128—Work support with means to adjust work support vertically
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T409/00—Gear cutting, milling, or planing
- Y10T409/30—Milling
- Y10T409/309352—Cutter spindle or spindle support
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T409/00—Gear cutting, milling, or planing
- Y10T409/30—Milling
- Y10T409/309352—Cutter spindle or spindle support
- Y10T409/309408—Cutter spindle or spindle support with cutter holder
Definitions
- the present invention is generally related to computer systems and software such as middleware, and is particularly related to a system for managing connections to a clustered database.
- an application server such as the Oracle Weblogic Server
- users can configure database connectivity in the application server by configuring data sources.
- An application on the application server can look up a particular data source using a directory service, such as the standard Java Naming and Directory Interface (JNDI), and then request a database connection. When finished with the connection, the application can disconnect the database connection through the application server.
- JNDI Java Naming and Directory Interface
- Both application server administrators and software developers/programmers can create data sources. These are the generally areas that embodiments of the invention are intended to address.
- a system and method is provided to support using a data source to connect an application server with a clustered database.
- the clustered database includes a plurality of database instances and is associated with a notification service component.
- the notification service component can be used by the clustered database to broadcast notifications that describe a state change in the plurality of database instances.
- the data source includes a connection pool, which manages a set of connections to the plurality of database instances in the clustered database.
- the data source operates to register with the notification service component to receive notifications regarding the change of the clustered database, wherein the application server operates to configure and manage connections to the clustered database, adaptively according to any state changes of the clustered database at run time.
- a database system to support connecting an application server with database system, said database system being a clustered database, comprising: a plurality of database instances; and a notification service component associated with the plurality of database instances, wherein the notification service component is used by the clustered database to broadcast notifications that describe a state change in the clustered database; wherein the notification service component receives registration from a data source associated with the application server for receiving notifications on the change of the clustered database and for configuring and managing connection to the clustered database, adaptively according to the state change of the clustered database at run time by the data source.
- the state change of the clustered database includes one of: one or more database instances have been stopped or taken out by an unplanned outage, and a database instance is added in or restarted after an outage.
- an application server to support connecting the application server with a clustered database, comprising: a connection pool, which manages a set of connections to the plurality of database instances in the clustered database; and a single data source, which is associated with the connection pool; wherein the data source operates to register with a notification service component of the clustered database to receive notifications on the change of the clustered database, wherein the application server operates to configure and manage connection to the clustered database, adaptively according to the state change of the clustered database at run time.
- the data source provides database fast connection failover capabilities and responds to database service events to ensure each said connection to a database instance is valid.
- the data source operates to use metrics to monitor actions taken by the application server.
- the data source operates to poll the set of connections to the plurality of database instances in the clustered database as an alternative to the notification service component.
- the data source operates to receive notifications from the notification service component that contain load balancing advisory events.
- the data source ensures that all database operations within the context of a global transaction are directed to a same database instance.
- the data source supports a graceful shut down operation of a targeted database instance in the clustered database.
- the data source allows any in progress transactions to complete before closing and recreating one or more physical connections.
- the data source cleans up idle connections so that new requests for connections are not sent to the targeted database instance in the clustered database.
- Figure 1 shows an illustration of a multi data source system for connecting an application server to a clustered database in accordance with an embodiment.
- Figure 2 shows an illustration of a Gridlink data source system for connecting an application server to a clustered database in accordance with an embodiment.
- FIG. 3 shows an illustration of a Gridlink data source system for connecting application servers to different services provided by a clustered database in accordance with an embodiment.
- Figure 4 illustrates an exemplary flow chart for using a Gridlink data source for connecting an application server to a clustered database in accordance with an embodiment.
- Figure 5 shows an illustration of a Gridlink data source system that supports database load balancing advisory events in accordance with an embodiment.
- Figure 6 shows an illustration of a Gridlink data source system that supports database state change event in the clustered database in accordance with an embodiment.
- FIG. 7 shows an illustration of a Gridlink data source system that supports distributed transaction (XA) in accordance with an embodiment.
- Figure 8 shows an illustration of a Gridlink data source system that supports database graceful shutdown in accordance with an embodiment.
- Figure 9 shows an illustration of a Gridlink data source system using a database connection module in accordance with an embodiment.
- Figure 10 shows an illustration of a wizard page for configuring multiple listeners associated with a Gridlink data source in accordance with an embodiment.
- Figure 11 shows an illustration of a wizard page for configuring a notification service client associated with a Gridlink data source in accordance with an embodiment.
- a clustered database or a database cluster can comprise multiple interconnected computers or servers that appear as if they are one server to end users and applications. Unlike a single-instance database, which has a one-to-one relationship between the database and the instance, a clustered database has a one-to-many relationship between the database and instances.
- an Oracle RAC database system enables a user to cluster Oracle databases, using Oracle Clusterware infrastructure to bind multiple servers together, so that they operate as a single system.
- the Oracle RAC database system can have many instances, all of which access one database.
- the combined processing power of the multiple servers can provide greater throughput and scalability than what is available from a single server.
- FIG. 1 shows an illustration of a multi data source system for connecting an application server with a clustered database in accordance with an embodiment.
- a multi data source 103 is a data source abstraction over one or more individual data sources 131 , 132, and 133.
- the multi data source serves Java DataBase Connectivity (JDBC) connections 121 , 122, and 123 from each of the member data sources according to a specified policy, such as load balancing policy and failover policy.
- JDBC Java DataBase Connectivity
- the multi data source configuration requires that each member data source obtain connections to a particular database instance.
- a system and method is provided to support using a data source, referenced to herein as a "Gridlink data source", to connect an application server with a clustered database.
- the clustered database includes a plurality of database instances and is associated with a notification service component.
- the notification service component can be used by the clustered database to broadcast notifications that describe a state change in the plurality of database instances.
- the data source includes a connection pool, which manages a set of connections to the plurality of database instances in the clustered database.
- the data source operates to register with the notification service component to receive notifications regarding the change of the clustered database, wherein the application server operates to configure and manage connections to the clustered database, adaptively according to any state changes of the clustered database at run time.
- the gridlink data source can use a single data source configuration that represents a service targeted to a database cluster.
- the gridlink data source can respond to notification events to provide fast connection failover, runtime connection load balancing and database instance graceful shutdown.
- distributed transaction (XA) affinity can be supported at the global transaction Id level.
- the Oracle RAC database system can support client notification to disseminate information about the state of the database cluster.
- a JDBC data source configuration allows for the specification of service URLs to provide RAC connectivity.
- the JDBC data source configuration also includes monitoring support that provides statistics and manageability of JDBC connections to the RAC cluster.
- the Gridlink data source addresses the shortcomings of the multi data source solution, by leveraging the capabilities of database cluster notifications to provide better overall connectivity in the form of simpler configuration, faster response to a database node failure, better utilization of database cluster resources, and improved runtime monitoring and management.
- mixed configurations of the Gridlink data sources and multi data sources can be supported.
- FIG. 2 shows an illustration of a Gridlink data source system for connecting an application server with a clustered database in accordance with an embodiment.
- a Gridlink data source 203 is a single data source associated with an application server 201 .
- the Gridlink data source simplifies the use of a clustered database 202 with application server through the single data source approach, which reduces the configuration and management complexity required to use clustered database.
- the Gridlink data source includes a connection pool 205, which in turn contains a set of heterogeneous connections 221 , 222, and 223 to different database instances 21 1 , 212, and 213 in the database cluster. Also as shown in Figure 2, the different database instances connect to a shared storage 204.
- the management of the connections in the connection pool is based on static settings 214 configured on the connection pool, such as min/max capacity, timeouts, etc., and real time information about the connection pool in event messages 210 received from the notification service component 206 that advises the data source of any state changes within the database cluster.
- static settings 214 configured on the connection pool, such as min/max capacity, timeouts, etc.
- real time information about the connection pool in event messages 210 received from the notification service component 206 that advises the data source of any state changes within the database cluster.
- an application 207, 208, or 209 requests a connection from the data source, a suitable connection is selected from the connection pool and supplied to the application based on the load balancing information the connection pool has received and the current distributions of connections in use from the pool.
- the application server can register with the notification service component to receive notifications, such as database event messages, and therefore quickly become aware of any state changes in a clustered database. Using these state change notification events, the application server can intelligently adapt its connection pools so that the system can provide continuous, reliable and efficient access to the clustered database.
- connection polling can be applied as an alternative to the notification service, when the notification service is not configured or it is not operating correctly.
- connection polling the system can determine the viability of individual JDBC connections and detect changes in the clustered cluster topology, by performing SQL operations on individual connections.
- the connection polling approach comes at the expense of additional runtime overhead, and potentially delayed detection of database instance node failures. Also, the connection polling approach potentially suffers false positives that can result in the unnecessary disablement of the data source pool and termination of valid connections that may be in use by applications.
- FIG. 3 shows an illustration of a Gridlink data source system for connecting application servers to different services provided by a clustered database in accordance with an embodiment.
- a clustered database 302 can provide different services 31 1 , 312, and 313, each of which can be a database workload abstraction that is assignable across different database instances to provide a specific quality of service.
- an application server environment 301 can includes multiple application server instances 303 and 304. Each application server instance can include a single data source 305 and 306 with a single connection pool 307 and 308.
- the Gridlink data source system provides connections 321 , 322, 323, 324 and 325 to the clustered database and supports the consumption of database services in an unrestricted manner in order to provide deeper integration with the clustered database.
- Oracle Database services can be logical abstractions for managing workloads in Oracle Database.
- the database services can provide a single system image for workloads, prioritization for workloads, performance measures for real transactions, and alerts and actions when performance goals are violated.
- the database services can enable database administrators to configure a workload, administer workloads, enable/disable workloads, and measure workloads as a single entity.
- the database services can further divide workloads into logically disjoint groupings. Each service represents a workload with common attributes, service- level thresholds, and priorities.
- FIG. 4 illustrates an exemplary flow chart for using a Gridlink data source for connecting an application server to a clustered database in accordance with an embodiment.
- a notification service component can be associated with a plurality of database instances in the clustered database.
- a data source can be associated with a connection pool that contains a set of connections to the plurality of database instances in the clustered database.
- the data source can registerwith the notification service component to receive notifications on changes of the clustered database.
- the data source receives from the notification service notifications that describe a state change in the clustered database at run time.
- the data source configures and manages connection to the clustered database adaptively, according to the state change of the clustered database.
- the configuration of a Gridlink data source can leverage JDBC descriptor beans that are persisted.
- the JDBC descriptor beans can identify a Gridlink data source and specify database notification service client configuration information.
- the JDBC descriptor beans can use an XML file to enable Gridlink data source functionalities.
- the following is an exemplary XML file for configuring a Gridlink data source that is connected to an Oracle RAC database system.
- the clustered database can provide a runtime load balancing service to distribute connections across the database instance based on performance goals set by a database administrator (DBA), in order to provide better throughput and more efficient use of resources.
- the load balancing advisory service issues events that advise clients on the current state of the cluster including advice on where to direct connections.
- FIG. 5 shows an illustration of a Gridlink data source system that supports database load balancing advisory events in accordance with an embodiment.
- an application server 501 can receive load balancing advisory event messages 510 issued by a clustered database 502 and adjust database connections 521 , 522, and 523 to the database nodes or instances 51 1 , 512, and 513 accordingly.
- the system can perform load balancing configuration option at runtime on the data source, enabling the application server to dispatch database connections based on the load balancing advisory messages received from the database. So that, the database connections are directed to a specific database node to satisfy a performance goal set by the database administrator.
- the use of the runtime load balancing advisory service component 506 in conjunction with the single data source 503 can simplify initial configuration and ongoing maintenance of the data source.
- database topology information is not needed for the application server to support load balancing, since the database directs the load balancing activities.
- the Gridlink data source system helps the initial construction of a data source by reducing the amount of information required to correctly configure the middle tier. Additionally, as the database tier may change over time and services may be relocated onto new or different database instances, the Gridlink data source system requires no configuration change to reflect the changed database topology.
- the Gridlink data source system can readjust the connections in the connection pool by assigning new connections to database instance C to achieve a load balancing target set by the DBA for better distribution of load with higher throughput.
- connection pool based on the load-balancing information in addition to readjusting connections in the connection pool based on the load-balancing information, existing connections can be given out to application components according to the load-balancing percentages/weights when there are idle connections available.
- Figure 6 shows an illustration of a Gridlink data source system that supports database state change events in accordance with an embodiment.
- an application server 601 can receive database state change event messages 610 issued by a notification service component 606 from the clustered database 602.
- the database state change events can include an unexpected outage of a database instance, or an addition of a new database instance.
- the Gridlink data source system allows the application server to adaptively respond to state changes in the database cluster, such as handling outages by immediately retracting, closing and discarding connections to database instances that have been stopped or taken out by an unplanned outage.
- state changes in the database cluster such as handling outages by immediately retracting, closing and discarding connections to database instances that have been stopped or taken out by an unplanned outage.
- a database state change event message received at the application server can indicate an outage of database instance B 612.
- the Gridlink data source 603 can direct the connection pool 605 to disconnect the database connection 622, so that an application 607, 608, or 609 associated with the Gridlink data source can reconnect to the database through another database instance, such as database instance A 61 1 or database instance C 613, to avoid an interruption in database services.
- the Gridlink data source system does not need to periodically poll the connections to ensure they are valid, or affecting uninvolved connections to surviving nodes. This can lessen the reliance on testing of connections to ensure that applications are not given invalid connections and the application server are given the information to quickly free applications from connections that become invalid because of database node failures without unnecessary delays.
- the Gridlink data source allows an application server to proactively reapportion its set of connections to support scenarios where new database instances are added or are restarted after an outage. This allows the application server to make full use of the resources within the clustered database.
- the system allows database administrators to make changes to the database service/instance allocations, which are then seamlessly applied through the affected application server connection pools without a need to make configuration changes to the connection pool configuration. It also removes the need to create complex arrangements of multiple data sources to represent a dedicated instance of the clustered database.
- the Gridlink data source can provide fast connection failover capabilities and responds to clustered database service and node events, such as ⁇ UP, DOWN ⁇ events, to ensure that the reserve of physical connections in the pool are always pointing to a valid database node. Furthermore, the Gridlink data source ensures that the reserve of physical connections is well distributed across the available database nodes.
- the Fast Connection Failover behavior can be enabled as a configuration setting on the data source. Metrics can be made available to allow administrators to monitor and review what action an application server has taken on its data sources upon receipt of database notification events.
- distributed transaction (XA) affinity is used to ensure that all database operations performed on a database cluster within the context of a global transaction are directed to the same database instance.
- Affinity can be established based on the global transaction id, instead of by individual data source, to ensure that connections obtained from different data sources that are configured for the same database cluster are all associated with the same database instance.
- the two-phase commit optimization can be supported by the Gridlink data source and can also participate in XA affinity.
- FIG. 7 shows an illustration of a Gridlink data source system that supports distributed transaction (XA) in accordance with an embodiment.
- the application server environment 701 using Gridlink data sources can support global transactions by ensuring all the data base operations for a global transaction performed on a clustered database 702 are directed to the same database instance 71 1 .
- a first connection request 721 for an XA transaction is load balanced and is assigned with an affinity context 720. All subsequent connection requests 722, 723, and 724 are routed to the same database instance using the affinity context of the first connection.
- a graceful planned shutdown occurs when a database node/service is targeted for a shutdown operation, with the corresponding issuance of a database event indicating the shutdown has been requested.
- Figure 8 shows an illustration of a Gridlink data source system that supports database graceful shutdown in accordance with an embodiment.
- an application server 801 can receive database shutdown event messages 810 issued by a notification service component 806 from the clustered database 802. And, the database shutdown event messages indicate that the database instance A 81 1 is planned to be shutdown.
- the application server may not immediately abort connections 821 that are in use when it detects that the database shutdown target is no longer accepting new connections. Instead, the Gridlink data source 803 allows any in progress transactions to complete before closing and recreating the physical connections, while cleaning up idle connections so that new requests for connections are not sent the database target in active shutdown mode.
- the data source can detect the active connections that are connected to the database shutdown target, and mark them so that they are closed and recreated when the associated transaction is complete and the connection is returned to the connection pool 805. An exception may not be created immediately on the receipt of the shutdown event or detection of disallowed connection request, in order to allow any in progress transactions to complete. Additionally, any idle connections in the pool that are connected to the database shutdown target can be preemptively closed.
- the system also allows the data source to route new requests around the database shutdown target, while allowing in progress transactions to complete to fulfillment, enabling the database shutdown operation to be transparent to running applications.
- UCP Universal Connection Pool
- a database connection module such as a Universal Connection Pool (UCP) library
- UCP Universal Connection Pool
- the UCP library is a client-side library from the perspective of the database server that is logically an extension of the JDBC driver.
- the database connection module can support high availability and performance capabilities for a clustered database, in addition to providing a generic JDBC connection pooling implementation.
- Figure 9 shows an illustration of a Gridlink data source system using a database connection module in accordance with an embodiment.
- the application server 901 can leverage the cluster database integration support of a UCP library 910 to connect with a clustered database 902 through a Gridlink data source 903.
- the Gridlink data source can connect to the database cluster and take advantage of other capabilities supported by the UCP library, such as fast connection failover, runtime connection load balancing and XA connection affinity.
- connection module can utilize an application server timer and work managers for better utilization and management of resources such as Java Virtual machines (JVMs).
- JVMs Java Virtual machines
- an API can allow an application server to obtain clustered database advisories to more efficiently allocate connections across database instances and to better respond to changes in the database cluster topology.
- the RAC capabilities of UCP can be refactored and exposed to the application server in the form of a RAC module API.
- This API can provide callback notifications in response to changes in the RAC cluster topology and advisories for runtime connection load balancing and connection affinity.
- the API also provides notification event callbacks that an application server can use for logging and other diagnostic purposes.
- the API can surface statistics counts and status information about RAC cluster nodes that can be used for RAC data source runtime monitoring.
- UCP can be designed as a standalone Java library that provides connection pooling and database integration features.
- the UCP library can manage its own threads and timers.
- UCP can provide a timer and work manager SPI that allows the application server to plug in instances of application server timers and work managers for UCP's internal use when the UCP APIs are accessed within an application server process. This allows for increased control and runtime visibility of the threads and timers used by the UCP library.
- the affinity capabilities provided by UCP can be leveraged to assign connections based on a global transaction Id even when different data sources are accessed on the same, and separate, application server instances.
- a data source creation wizard can support creating a Gridlink data source that is configured to connect with a clustered database, such as an Oracle RAC database.
- the creation of a Gridlink data source includes setting up database listener address information and notification service client configuration information that are needed for connecting to a database service.
- the data source creation wizard can provide two ways to specify the connection target.
- the second approach is a wizard driven approach that allows each of the listener entries to be specified individually, from which the final JDBC URL can ultimately be constructed.
- the wizard driven approach enables a user to specify and test multiple listeners and notification service clients for creating and updating Gridlink data sources.
- FIG 10 shows an illustration of a wizard page 1000 for configuring multiple listeners associated with a Gridlink data source in accordance with an embodiment.
- the Gridlink data source can connect to a database service with a name of "Inrac.”
- This Gridlink data source is associated with three listeners, that are configured to use a host and port tuple: leftp:1521 , rightp: 1521 , or centerp:1521 respectively.
- Each listener can be tested separately in order to verify that the connection is valid and to report back to the user if there is any problems for a particular listener.
- FIG 11 shows an illustration of a wizard page 1 100 for configuring a notification service client associated with a Gridlink data source in accordance with an embodiment.
- the Gridlink data source is further associated with a notification service client, which is configured to use a host and port tuple: leftp:1526.
- the notification service client can also be tested separately.
- the Gridlink data source can be associated with additional notification service clients if it is necessary.
- the present invention may be conveniently implemented using one or more conventional general purpose or specialized digital computer, computing device, machine, or microprocessor, including one or more processors, memory and/or computer readable storage media programmed according to the teachings of the present disclosure.
- Appropriate software coding can readily be prepared by skilled programmers based on the teachings of the present disclosure, as will be apparent to those skilled in the software art.
- the present invention includes a computer program product which is a storage medium or computer readable medium (media) having instructions stored thereon/in which can be used to program a computer to perform any of the processes of the present invention.
- the storage medium can include, but is not limited to, any type of disk including floppy disks, optical discs, DVD, CD-ROMs, microdrive, and magneto-optical disks, ROMs, RAMs, EPROMs, EEPROMs, DRAMs, VRAMs, flash memory devices, magnetic or optical cards, nanosystems (including molecular memory ICs), or any type of media or device suitable for storing instructions and/or data.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Theoretical Computer Science (AREA)
- Databases & Information Systems (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Data Mining & Analysis (AREA)
- Computer Hardware Design (AREA)
- Computer Security & Cryptography (AREA)
- Software Systems (AREA)
- Mathematical Physics (AREA)
- Computing Systems (AREA)
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
- Multi Processors (AREA)
- Computer And Data Communications (AREA)
- Memory System Of A Hierarchy Structure (AREA)
Abstract
Description
Claims
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP11764385.8A EP2616966B1 (en) | 2010-09-15 | 2011-09-13 | System and method for connecting an application server with a clustered database |
CN201180039809.XA CN103124967B (en) | 2010-09-15 | 2011-09-13 | For the system and method for the database that application server is connected to cluster |
JP2013529274A JP2013541764A (en) | 2010-09-15 | 2011-09-13 | System and method for connecting an application server to a clustered database |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US38328510P | 2010-09-15 | 2010-09-15 | |
US61/383,285 | 2010-09-15 | ||
US38422710P | 2010-09-17 | 2010-09-17 | |
US61/384,227 | 2010-09-17 | ||
US13/168,506 | 2011-06-24 | ||
US13/168,506 US9092460B2 (en) | 2010-09-15 | 2011-06-24 | System and method for using a gridlink data source to connect an application server with a clustered database |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012037163A1 true WO2012037163A1 (en) | 2012-03-22 |
Family
ID=46933441
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2011/051459 WO2012037163A1 (en) | 2010-09-15 | 2011-09-13 | System and method for connecting an application server with a clustered database |
Country Status (5)
Country | Link |
---|---|
US (7) | US8756329B2 (en) |
EP (1) | EP2616966B1 (en) |
JP (2) | JP2013541764A (en) |
CN (1) | CN103124967B (en) |
WO (1) | WO2012037163A1 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102882864A (en) * | 2012-09-21 | 2013-01-16 | 南京斯坦德通信股份有限公司 | Virtualization system based on InfiniBand cloud computing network |
WO2014176363A1 (en) * | 2013-04-26 | 2014-10-30 | Oracle International Corporation | Support for cloud-based multi-tenant environments using connection labeling |
US9569472B2 (en) | 2013-06-06 | 2017-02-14 | Oracle International Corporation | System and method for providing a second level connection cache for use with a database environment |
US9600546B2 (en) | 2013-06-06 | 2017-03-21 | Oracle International Corporation | System and method for marshaling massive database data from native layer to java using linear array |
US9720970B2 (en) | 2013-06-06 | 2017-08-01 | Oracle International Corporation | Efficient storage and retrieval of fragmented data using pseudo linear dynamic byte array |
US9747341B2 (en) | 2013-06-06 | 2017-08-29 | Oracle International Corporation | System and method for providing a shareable global cache for use with a database environment |
US9785687B2 (en) | 2013-06-06 | 2017-10-10 | Oracle International Corporation | System and method for transparent multi key-value weighted attributed connection using uni-tag connection pools |
CN115344366A (en) * | 2022-08-10 | 2022-11-15 | 中电金信软件有限公司 | Connection pool object switching method and device, electronic equipment and readable storage medium |
Families Citing this family (109)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101449256B (en) | 2006-04-12 | 2013-12-25 | 索夫特机械公司 | Apparatus and method for processing instruction matrix specifying parallel and dependent operations |
US8677105B2 (en) | 2006-11-14 | 2014-03-18 | Soft Machines, Inc. | Parallel processing of a sequential program using hardware generated threads and their instruction groups executing on plural execution units and accessing register file segments using dependency inheritance vectors across multiple engines |
US8499298B2 (en) * | 2010-01-28 | 2013-07-30 | International Business Machines Corporation | Multiprocessing transaction recovery manager |
US11030598B2 (en) | 2010-03-02 | 2021-06-08 | Lightspeed Commerce Usa Inc. | System and method for remote management of sale transaction data |
US9317844B2 (en) * | 2010-03-02 | 2016-04-19 | Shopkeep.Com, Inc. | System and method for remote management of sale transaction data |
US10699261B2 (en) | 2010-03-02 | 2020-06-30 | Shopkeep Inc. | System and method for remote management of sale transaction data |
US10735304B2 (en) | 2011-02-28 | 2020-08-04 | Shopkeep Inc. | System and method for remote management of sale transaction data |
US9965755B2 (en) | 2011-02-28 | 2018-05-08 | Shopkeep.Com, Inc. | System and method for remote management of sale transaction data |
US9185054B2 (en) | 2010-09-15 | 2015-11-10 | Oracle International Corporation | System and method for providing zero buffer copying in a middleware machine environment |
US8756329B2 (en) | 2010-09-15 | 2014-06-17 | Oracle International Corporation | System and method for parallel multiplexing between servers in a cluster |
EP3156896B1 (en) | 2010-09-17 | 2020-04-08 | Soft Machines, Inc. | Single cycle multi-branch prediction including shadow cache for early far branch prediction |
CN103547993B (en) | 2011-03-25 | 2018-06-26 | 英特尔公司 | By using the virtual core by divisible engine instance come execute instruction sequence code block |
KR101620676B1 (en) | 2011-03-25 | 2016-05-23 | 소프트 머신즈, 인크. | Register file segments for supporting code block execution by using virtual cores instantiated by partitionable engines |
TWI520070B (en) | 2011-03-25 | 2016-02-01 | 軟體機器公司 | Memory fragments for supporting code block execution by using virtual cores instantiated by partitionable engines |
US9086909B2 (en) * | 2011-05-17 | 2015-07-21 | Oracle International Corporation | System and method for supporting work sharing muxing in a cluster |
CN107729267B (en) | 2011-05-20 | 2022-01-25 | 英特尔公司 | Distributed allocation of resources and interconnect structure for supporting execution of instruction sequences by multiple engines |
US9442772B2 (en) | 2011-05-20 | 2016-09-13 | Soft Machines Inc. | Global and local interconnect structure comprising routing matrix to support the execution of instruction sequences by a plurality of engines |
US10095562B2 (en) | 2013-02-28 | 2018-10-09 | Oracle International Corporation | System and method for transforming a queue from non-blocking to blocking |
US9110715B2 (en) | 2013-02-28 | 2015-08-18 | Oracle International Corporation | System and method for using a sequencer in a concurrent priority queue |
US8689237B2 (en) | 2011-09-22 | 2014-04-01 | Oracle International Corporation | Multi-lane concurrent bag for facilitating inter-thread communication |
US9378045B2 (en) | 2013-02-28 | 2016-06-28 | Oracle International Corporation | System and method for supporting cooperative concurrency in a middleware machine environment |
US9606844B2 (en) * | 2011-09-28 | 2017-03-28 | Microsoft Technology Licensing, Llc | Remotely-hosted interactive client-server session |
CN108427574B (en) | 2011-11-22 | 2022-06-07 | 英特尔公司 | Microprocessor accelerated code optimizer |
IN2014CN03678A (en) | 2011-11-22 | 2015-09-25 | Soft Machines Inc | |
US20130339927A1 (en) * | 2011-12-02 | 2013-12-19 | Digium, Inc. | Communications Platform Supporting Stateless Application Development |
USD746851S1 (en) | 2012-03-29 | 2016-01-05 | Shopkeep.Com, Inc. | Point of sale device display screen or portion thereof with graphical user interface |
CN102695049B (en) * | 2012-05-09 | 2015-06-10 | 浙江宇视科技有限公司 | Transmission method and apparatus of code stream |
US8965921B2 (en) * | 2012-06-06 | 2015-02-24 | Rackspace Us, Inc. | Data management and indexing across a distributed database |
US9953317B2 (en) | 2013-03-13 | 2018-04-24 | Shopkeep.Com, Inc. | Method and system for secure key rotation |
WO2014150971A1 (en) | 2013-03-15 | 2014-09-25 | Soft Machines, Inc. | A method for dependency broadcasting through a block organized source view data structure |
WO2014151043A1 (en) | 2013-03-15 | 2014-09-25 | Soft Machines, Inc. | A method for emulating a guest centralized flag architecture by using a native distributed flag architecture |
US10275255B2 (en) | 2013-03-15 | 2019-04-30 | Intel Corporation | Method for dependency broadcasting through a source organized source view data structure |
US9891924B2 (en) | 2013-03-15 | 2018-02-13 | Intel Corporation | Method for implementing a reduced size register view data structure in a microprocessor |
US10140138B2 (en) | 2013-03-15 | 2018-11-27 | Intel Corporation | Methods, systems and apparatus for supporting wide and efficient front-end operation with guest-architecture emulation |
US9904625B2 (en) | 2013-03-15 | 2018-02-27 | Intel Corporation | Methods, systems and apparatus for predicting the way of a set associative cache |
WO2014150806A1 (en) | 2013-03-15 | 2014-09-25 | Soft Machines, Inc. | A method for populating register view data structure by using register template snapshots |
US9569216B2 (en) | 2013-03-15 | 2017-02-14 | Soft Machines, Inc. | Method for populating a source view data structure by using register template snapshots |
WO2014150991A1 (en) | 2013-03-15 | 2014-09-25 | Soft Machines, Inc. | A method for implementing a reduced size register view data structure in a microprocessor |
US9811342B2 (en) | 2013-03-15 | 2017-11-07 | Intel Corporation | Method for performing dual dispatch of blocks and half blocks |
KR101708591B1 (en) | 2013-03-15 | 2017-02-20 | 소프트 머신즈, 인크. | A method for executing multithreaded instructions grouped onto blocks |
US9886279B2 (en) | 2013-03-15 | 2018-02-06 | Intel Corporation | Method for populating and instruction view data structure by using register template snapshots |
JP6256904B2 (en) * | 2013-04-18 | 2018-01-10 | インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation | Apparatus and method for distributing processing requests |
US9338193B2 (en) * | 2013-05-31 | 2016-05-10 | International Business Machines Corporation | Remote procedure call with call-by-reference semantics using remote direct memory access |
US10049022B2 (en) * | 2013-06-24 | 2018-08-14 | Oracle International Corporation | Systems and methods to retain and reclaim resource locks and client states after server failures |
US20150006478A1 (en) * | 2013-06-28 | 2015-01-01 | Silicon Graphics International Corp. | Replicated database using one sided rdma |
US9774652B2 (en) * | 2013-12-13 | 2017-09-26 | Sap Se | Systems to provide database updates |
CN104331406A (en) * | 2013-12-20 | 2015-02-04 | 乐视网信息技术(北京)股份有限公司 | Database capacity control method and database capacity control device |
CN105900059B (en) | 2014-01-21 | 2019-06-07 | 甲骨文国际公司 | System and method for supporting multi-tenant in application server, cloud or other environment |
US9774739B2 (en) | 2014-03-20 | 2017-09-26 | Genesys Telecommunications Laboratories, Inc. | Resource sharing in a peer-to-peer network of contact center nodes |
US9588830B2 (en) * | 2014-03-20 | 2017-03-07 | Genesys Telecommunications Laboratories, Inc. | Local survivability in a distributed contact center environment |
US9569224B2 (en) * | 2014-05-06 | 2017-02-14 | Oracle International Corporation | System and method for adaptively integrating a database state notification service with a distributed transactional middleware machine |
CN105335378A (en) * | 2014-06-25 | 2016-02-17 | 富士通株式会社 | Multi-data source information processing device and method, and server |
CN104092758B (en) * | 2014-07-14 | 2018-01-12 | 南京斯坦德云科技股份有限公司 | A kind of read method of distributed type high speed cloud storage service device group system |
CN105373420B (en) * | 2014-08-28 | 2019-12-06 | 北京奇虎科技有限公司 | Data transmission method and device |
US9804802B2 (en) | 2014-09-08 | 2017-10-31 | Microsoft Technology Licensing, Llc | Application transparent continuous availability using synchronous replication across data stores in a failover cluster |
US9632887B2 (en) * | 2014-09-19 | 2017-04-25 | International Business Machines Corporation | Automatic client side seamless failover |
JP6748638B2 (en) * | 2014-09-24 | 2020-09-02 | オラクル・インターナショナル・コーポレイション | System and method for supporting patching in a multi-tenant application server environment |
US10318280B2 (en) | 2014-09-24 | 2019-06-11 | Oracle International Corporation | System and method for supporting patching in a multitenant application server environment |
CN104503751B (en) * | 2014-12-16 | 2018-07-10 | 深圳中兴网信科技有限公司 | Data source switch method based on SOA and the data source switching system based on SOA |
CN104468274A (en) * | 2014-12-16 | 2015-03-25 | 深圳大学 | Cluster monitor and management method and system |
CN104539713B (en) * | 2014-12-31 | 2018-10-09 | 北京奇虎科技有限公司 | service request processing method and device |
CN104794026B (en) * | 2015-04-29 | 2017-09-15 | 上海新炬网络信息技术有限公司 | A kind of failover method of cluster instance multi-data source binding |
US10346367B1 (en) * | 2015-04-30 | 2019-07-09 | Amazon Technologies, Inc. | Load shedding techniques for distributed services with persistent client connections to ensure quality of service |
US10193867B2 (en) * | 2015-05-27 | 2019-01-29 | Ping Identity Corporation | Methods and systems for API proxy based adaptive security |
US10140121B2 (en) | 2015-07-21 | 2018-11-27 | Oracle International Corporation | Sending a command with client information to allow any remote server to communicate directly with client |
US9846759B2 (en) * | 2015-07-30 | 2017-12-19 | Taiwan Semiconductor Manufacturing Company, Ltd. | Global connection routing method and system for performing the same |
CN105677693B (en) * | 2015-09-18 | 2020-02-18 | 联动优势科技有限公司 | Method and device for accessing database |
IL242353B (en) * | 2015-10-29 | 2021-01-31 | Verint Systems Ltd | System and method for soft failovers for proxy servers |
US10284621B2 (en) | 2015-11-09 | 2019-05-07 | International Business Machines Corporation | Session management |
CN105302565A (en) * | 2015-11-10 | 2016-02-03 | 河海大学 | Java-based data persistence assembly with built-in connection pool management function |
CN105279279B (en) * | 2015-11-16 | 2019-01-25 | 天津南大通用数据技术股份有限公司 | From the method and device of low speed data source load compression data file |
CN105577797A (en) * | 2015-12-25 | 2016-05-11 | 北京像素软件科技股份有限公司 | Cross-server data intercommunication system and method |
US10015086B2 (en) * | 2016-04-29 | 2018-07-03 | Intuit Inc. | Multi GTM based routing to avoid latencies |
CN105812393A (en) * | 2016-05-24 | 2016-07-27 | 浪潮电子信息产业股份有限公司 | Website protection device and method |
CN106095571B (en) * | 2016-06-07 | 2019-06-04 | 中国建设银行股份有限公司 | More RAC group systems, data access method and device |
US11169982B2 (en) | 2016-06-30 | 2021-11-09 | Microsoft Technology Licensing, Llc | Dynamic deactivation of cold database in database service |
CN106254421A (en) * | 2016-07-19 | 2016-12-21 | 北京中科同向信息技术有限公司 | A kind of technology based on virtual cloud |
US10909211B2 (en) | 2016-08-12 | 2021-02-02 | Oracle International Corporation | System and method for control of maximum connections in a connection pool environment |
US10742748B2 (en) | 2016-08-12 | 2020-08-11 | Oracle International Corporation | System and method for supporting live addition of a tenant in a connection pool environment |
US11290540B2 (en) | 2016-08-12 | 2022-03-29 | Oracle International Corporation | System and method for use of server-side connection pool tagging in a multi-tenant environment |
US10824750B2 (en) | 2016-08-12 | 2020-11-03 | Oracle International Corporation | System and method for performing connection validation in a multi-tenant environment |
US9612927B1 (en) * | 2016-09-14 | 2017-04-04 | International Business Machines Corporation | Managing server processes with proxy files |
US10310841B2 (en) | 2016-09-16 | 2019-06-04 | Oracle International Corporation | System and method for handling lazy deserialization exceptions in an application server environment |
US10681012B2 (en) | 2016-10-26 | 2020-06-09 | Ping Identity Corporation | Methods and systems for deep learning based API traffic security |
US11093838B2 (en) * | 2017-05-10 | 2021-08-17 | Microsoft Technology Licensing, Llc | Adaptive selection of user to database mapping |
CN107302499B (en) * | 2017-06-26 | 2020-12-18 | 北京赛特斯信息科技股份有限公司 | NFV protocol message transmitting and receiving method without copying message buffer |
CN107391686A (en) * | 2017-07-24 | 2017-11-24 | 威创软件南京有限公司 | A kind of visual configuration data collecting system implementation method |
US11237814B2 (en) | 2017-08-17 | 2022-02-01 | Oracle International Corporation | System and method for supporting custom hooks during patching in an application server environment |
US11100058B2 (en) | 2017-09-06 | 2021-08-24 | Oracle International Corporation | System and method for connection concentration in a database environment |
EP4020282A1 (en) | 2017-10-13 | 2022-06-29 | Ping Identity Corporation | Methods and apparatus for analyzing sequences of application programming interface traffic to identify potential malicious actions |
CN108111578B (en) * | 2017-11-28 | 2021-06-04 | 国电南瑞科技股份有限公司 | Method for accessing power distribution terminal data acquisition platform into terminal equipment based on NIO |
US10860239B2 (en) * | 2018-05-04 | 2020-12-08 | EMC IP Holding Company LLC | Fan-out asynchronous replication caching |
US10705753B2 (en) | 2018-05-04 | 2020-07-07 | EMC IP Holding Company LLC | Fan-out asynchronous replication logical level caching |
US11477197B2 (en) * | 2018-09-18 | 2022-10-18 | Cyral Inc. | Sidecar architecture for stateless proxying to databases |
US11470084B2 (en) | 2018-09-18 | 2022-10-11 | Cyral Inc. | Query analysis using a protective layer at the data source |
US11477217B2 (en) | 2018-09-18 | 2022-10-18 | Cyral Inc. | Intruder detection for a network |
EP3678348A1 (en) | 2019-01-04 | 2020-07-08 | Ping Identity Corporation | Methods and systems for data traffic based adpative security |
US11275765B2 (en) * | 2019-01-28 | 2022-03-15 | EMC IP Holding Company LLC | Storage systems configured for storage volume addition in synchronous replication using active-active configuration |
US10938933B2 (en) | 2019-05-14 | 2021-03-02 | International Business Machines Corporation | Managing dynamic configuration-based database connections using a proxy datasource |
CN112835866B (en) * | 2019-11-25 | 2024-07-26 | 深圳云天励飞技术有限公司 | Database implementation method and device, electronic equipment and storage medium |
CN111708560A (en) * | 2020-06-17 | 2020-09-25 | 云和恩墨(北京)信息技术有限公司 | Automatic deployment method and device of database high-availability management system |
US11611540B2 (en) * | 2020-07-01 | 2023-03-21 | Vmware, Inc. | Protection of authentication data of a server cluster |
CN115917525A (en) * | 2020-07-08 | 2023-04-04 | 阿里巴巴集团控股有限公司 | Routing instructions for partitioned databases |
US11070621B1 (en) * | 2020-07-21 | 2021-07-20 | Cisco Technology, Inc. | Reuse of execution environments while guaranteeing isolation in serverless computing |
CN113297173B (en) * | 2021-05-24 | 2023-10-31 | 阿里巴巴新加坡控股有限公司 | Distributed database cluster management method and device and electronic equipment |
CN114157658B (en) * | 2021-12-06 | 2024-03-01 | 京东科技信息技术有限公司 | Mirror warehouse deployment method, apparatus, electronic device and computer readable medium |
US20230224361A1 (en) * | 2022-01-12 | 2023-07-13 | Vmware, Inc. | Service-aware global server load balancing |
US11809839B2 (en) | 2022-01-18 | 2023-11-07 | Robert Lyden | Computer language and code for application development and electronic and optical communication |
US12113696B2 (en) | 2022-02-01 | 2024-10-08 | Bank Of America Corporation | System and method for monitoring network processing optimization |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070198684A1 (en) * | 2006-02-22 | 2007-08-23 | Kazunori Mizushima | Method and system for data processing with connection pool for the same |
US20070203944A1 (en) * | 2006-02-28 | 2007-08-30 | International Business Machines Corporation | Web services database cluster architecture |
Family Cites Families (108)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5109384A (en) | 1988-11-02 | 1992-04-28 | Tseung Lawrence C N | Guaranteed reliable broadcast network |
US5333274A (en) | 1991-10-15 | 1994-07-26 | International Business Machines Corp. | Error detection and recovery in a DMA controller |
US6424992B2 (en) | 1996-12-23 | 2002-07-23 | International Business Machines Corporation | Affinity-based router and routing method |
US6192389B1 (en) | 1997-03-28 | 2001-02-20 | International Business Machines Corporation | Method and apparatus for transferring file descriptors in a multiprocess, multithreaded client/server system |
US6427161B1 (en) | 1998-06-12 | 2002-07-30 | International Business Machines Corporation | Thread scheduling techniques for multithreaded servers |
US6571274B1 (en) | 1998-11-05 | 2003-05-27 | Beas Systems, Inc. | Clustered enterprise Java™ in a secure distributed processing system |
GB2348985A (en) | 1999-04-15 | 2000-10-18 | Ibm | Centralized affinity maintenance in a workload managed client/server system |
US6701367B1 (en) | 1999-09-24 | 2004-03-02 | Sun Microsystems, Inc. | Mechanism for enabling customized session managers to interact with a network server |
AU2001249402A1 (en) * | 2000-03-29 | 2001-10-08 | Nextset Software Inc. | System and method of generating and using proxy beans |
US20030120822A1 (en) | 2001-04-19 | 2003-06-26 | Langrind Nicholas A. | Isolated control plane addressing |
US7209921B2 (en) | 2000-09-01 | 2007-04-24 | Op40, Inc. | Method and system for deploying an asset over a multi-tiered network |
US20020174136A1 (en) | 2000-12-14 | 2002-11-21 | Ducan Cameron | Method and system for high performance transaction processing using a relational database management system |
JP2002218577A (en) | 2001-01-24 | 2002-08-02 | Nec Corp | Communication network, wavelength multiplexer, optical switch device and optical link attribute/state management method used for them |
JP2002259948A (en) | 2001-03-02 | 2002-09-13 | Tdk Corp | Next process determining method, inspection method and inspection device |
US7831731B2 (en) | 2001-06-12 | 2010-11-09 | Hewlett-Packard Development Company, L.P. | Method and system for a modular transmission control protocol (TCP) rare-handoff design in a streams based transmission control protocol/internet protocol (TCP/IP) implementation |
US7409420B2 (en) | 2001-07-16 | 2008-08-05 | Bea Systems, Inc. | Method and apparatus for session replication and failover |
US6895590B2 (en) | 2001-09-26 | 2005-05-17 | Intel Corporation | Method and system enabling both legacy and new applications to access an InfiniBand fabric via a socket API |
US7143227B2 (en) | 2003-02-18 | 2006-11-28 | Dot Hill Systems Corporation | Broadcast bridge apparatus for transferring data to redundant memory subsystems in a storage controller |
US6886041B2 (en) | 2001-10-05 | 2005-04-26 | Bea Systems, Inc. | System for application server messaging with multiple dispatch pools |
US6983465B2 (en) | 2001-10-11 | 2006-01-03 | Sun Microsystems, Inc. | Method and apparatus for managing data caching in a distributed computer system |
US7376953B2 (en) | 2001-10-29 | 2008-05-20 | Hewlett-Packard Development Company, L.P. | Apparatus and method for routing a transaction to a server |
US20030110232A1 (en) | 2001-12-11 | 2003-06-12 | International Business Machines Corporation | Distributing messages between local queues representative of a common shared queue |
JP2003196229A (en) | 2001-12-28 | 2003-07-11 | Sony Corp | Data transfer method in bus interface and bus interface |
US7392302B2 (en) | 2002-02-21 | 2008-06-24 | Bea Systems, Inc. | Systems and methods for automated service migration |
CA2415043A1 (en) | 2002-12-23 | 2004-06-23 | Ibm Canada Limited - Ibm Canada Limitee | A communication multiplexor for use with a database system implemented on a data processing system |
US7554993B2 (en) | 2003-03-27 | 2009-06-30 | Hewlett-Packard Development Company, L.P. | Method and apparatus for performing connection management with multiple stacks |
US8108534B2 (en) | 2003-05-08 | 2012-01-31 | Jda Software Group, Inc. | Data integration system with programmatic source and target interfaces |
US7536673B2 (en) * | 2003-07-22 | 2009-05-19 | Sap Ag | Application business object processing |
US7043518B2 (en) | 2003-07-31 | 2006-05-09 | Cradle Technologies, Inc. | Method and system for performing parallel integer multiply accumulate operations on packed data |
EP1503548A1 (en) | 2003-08-01 | 2005-02-02 | fg microtec GmbH | Distributed Quality of Service Management System |
US7483374B2 (en) | 2003-08-05 | 2009-01-27 | Scalent Systems, Inc. | Method and apparatus for achieving dynamic capacity and high availability in multi-stage data networks using adaptive flow-based routing |
US7953860B2 (en) | 2003-08-14 | 2011-05-31 | Oracle International Corporation | Fast reorganization of connections in response to an event in a clustered computing system |
US7937493B2 (en) | 2003-08-14 | 2011-05-03 | Oracle International Corporation | Connection pool use of runtime load balancing service performance advisories |
US20050223109A1 (en) | 2003-08-27 | 2005-10-06 | Ascential Software Corporation | Data integration through a services oriented architecture |
US7366109B2 (en) | 2003-10-29 | 2008-04-29 | Nortel Networks Limited | Virtual private networks within a packet network having a mesh topology |
US20050102412A1 (en) | 2003-11-10 | 2005-05-12 | Jan Hirsimaki | Transmission performance of a transport layer protocol connection |
US20050234986A1 (en) * | 2004-04-09 | 2005-10-20 | Microsoft Corporation | Systems and methods for fragment-based serialization |
US7640357B2 (en) | 2004-04-30 | 2009-12-29 | Sap Ag | Transmitting enterprise messages based on buffer sizes |
US7649854B2 (en) | 2004-05-19 | 2010-01-19 | Bea Systems, Inc. | System and method for providing channels in application servers and transaction-based systems |
US7930422B2 (en) | 2004-07-14 | 2011-04-19 | International Business Machines Corporation | Apparatus and method for supporting memory management in an offload of network protocol processing |
WO2007014186A2 (en) | 2005-07-22 | 2007-02-01 | The Thomson Corporation | Systems, methods, and software for online courses |
US7394288B1 (en) | 2004-12-13 | 2008-07-01 | Massachusetts Institute Of Technology | Transferring data in a parallel processing environment |
US8984140B2 (en) | 2004-12-14 | 2015-03-17 | Hewlett-Packard Development Company, L.P. | Managing connections through an aggregation of network resources providing offloaded connections between applications over a network |
US7562138B2 (en) | 2004-12-28 | 2009-07-14 | Sap | Shared memory based monitoring for application servers |
US20060176884A1 (en) | 2005-02-04 | 2006-08-10 | Sytex, Inc. | Sytems, Methods And Devices For Remotely Administering A Target Device |
US7409709B2 (en) | 2005-02-14 | 2008-08-05 | Etsec, Inc. | Systems and methods for automatically reconfiguring a network device |
US7941556B2 (en) * | 2005-02-23 | 2011-05-10 | At&T Intellectual Property I, Lp | Monitoring for replica placement and request distribution |
ATE373399T1 (en) * | 2005-03-04 | 2007-09-15 | Alcatel Lucent | INTERMEDIATION FOR INTEGRATED TELECOMMUNICATIONS NETWORKS |
EP1860568A1 (en) | 2005-03-14 | 2007-11-28 | Matsushita Electric Industrial Co., Ltd. | Bus controller |
US8762547B2 (en) * | 2005-04-29 | 2014-06-24 | Sap Ag | Shared memory implementations for session data within a multi-tiered enterprise network |
CN101233786B (en) | 2005-06-05 | 2013-05-29 | 斯达克实验室公司 | Communication system for wireless audio devices |
US7480823B2 (en) | 2005-06-24 | 2009-01-20 | Sun Microsystems, Inc. | In-memory replication of timing logic for use in failover within application server node clusters |
US8473934B2 (en) | 2005-07-15 | 2013-06-25 | Imec | Method for mapping applications on a multiprocessor platform/system |
GB0517303D0 (en) | 2005-08-23 | 2005-10-05 | Netronome Systems Inc | System and method for processing secure transmissions |
US8166547B2 (en) | 2005-09-06 | 2012-04-24 | Fortinet, Inc. | Method, apparatus, signals, and medium for managing a transfer of data in a data network |
US7702947B2 (en) * | 2005-11-29 | 2010-04-20 | Bea Systems, Inc. | System and method for enabling site failover in an application server environment |
US8707323B2 (en) | 2005-12-30 | 2014-04-22 | Sap Ag | Load balancing algorithm for servicing client requests |
US20070157212A1 (en) | 2006-01-04 | 2007-07-05 | Berg Douglas C | Context key routing for parallel processing in an application serving environment |
US7895329B2 (en) | 2006-01-12 | 2011-02-22 | Hewlett-Packard Development Company, L.P. | Protocol flow control |
US7765307B1 (en) | 2006-02-28 | 2010-07-27 | Symantec Operating Corporation | Bulk network transmissions using multiple connections primed to optimize transfer parameters |
US8131860B1 (en) | 2006-03-30 | 2012-03-06 | Emc Corporation | Serialization and deserialization |
EP2002335A1 (en) | 2006-03-31 | 2008-12-17 | British Telecommunications Public Limited Company | Interactive development tool and debugger for web services |
US20070245005A1 (en) | 2006-04-18 | 2007-10-18 | Banerjee Dwip N | Method and data processing system for managing a plurality of interfaces |
US8924524B2 (en) | 2009-07-27 | 2014-12-30 | Vmware, Inc. | Automated network configuration of virtual machines in a virtual lab data environment |
US8112525B2 (en) * | 2006-05-16 | 2012-02-07 | Oracle International Corporation | Engine near cache for reducing latency in a telecommunications environment |
US7371014B2 (en) | 2006-08-21 | 2008-05-13 | Intel Corporation | Monolithic active optical cable assembly for data device applications and various connector types |
US8166460B2 (en) * | 2006-10-10 | 2012-04-24 | Convergys Cmg Utah, Inc. | System and method for analyzing HTTP sessions |
US8631041B2 (en) * | 2006-10-20 | 2014-01-14 | Adobe Systems Incorporated | Secondary lazy-accessible serialization of electronic content |
WO2008072093A2 (en) | 2006-12-13 | 2008-06-19 | Quickplay Media Inc. | Mobile media platform |
US8640086B2 (en) * | 2006-12-29 | 2014-01-28 | Sap Ag | Graphical user interface system and method for presenting objects |
US8358591B2 (en) | 2007-06-06 | 2013-01-22 | Hewlett-Packard Development Company, L.P. | Network traffic monitoring in a server network environment |
US8576807B2 (en) | 2007-06-25 | 2013-11-05 | Qualcomm Incorporated | Channel interleaving structure for a wireless communication system |
BRPI0721658A2 (en) | 2007-06-26 | 2013-01-22 | Thomson Licensing | real-time protocol flow migration |
US7991904B2 (en) | 2007-07-10 | 2011-08-02 | Bytemobile, Inc. | Adaptive bitrate management for streaming media over packet networks |
US20090024764A1 (en) | 2007-07-18 | 2009-01-22 | International Business Machines Corporation | Tracking The Physical Location Of A Server In A Data Center |
US9141435B2 (en) | 2007-07-30 | 2015-09-22 | Sybase, Inc. | System and methodology providing workload management in database cluster |
US8391295B2 (en) | 2007-07-31 | 2013-03-05 | Oracle International Corporation | Temporal affinity-based routing of workloads |
JP4893581B2 (en) | 2007-10-23 | 2012-03-07 | 日本電気株式会社 | Multiplex communication system, transmission processing device, reception processing device, multiplexing communication method, transmission processing method, and reception processing method |
CN100586058C (en) | 2007-11-20 | 2010-01-27 | 中国人民解放军信息工程大学 | J2EE middleware criterion based tolerant inbreak application server and tolerant inbreak method |
US7809925B2 (en) | 2007-12-07 | 2010-10-05 | International Business Machines Corporation | Processing unit incorporating vectorizable execution unit |
US20090182642A1 (en) | 2008-01-14 | 2009-07-16 | Neelakantan Sundaresan | Methods and systems to recommend an item |
US8306951B2 (en) | 2009-09-18 | 2012-11-06 | Oracle International Corporation | Automated integrated high availability of the in-memory database cache and the backend enterprise database |
US8972978B2 (en) | 2008-05-02 | 2015-03-03 | Skytap | Multitenant hosted virtual machine infrastructure |
CN101325504A (en) | 2008-07-11 | 2008-12-17 | 中兴通讯股份有限公司 | Method and device for controlling multimedia conference by application server |
CN101408899B (en) | 2008-11-21 | 2010-09-29 | 北京中企开源信息技术有限公司 | Method and apparatus for switching website multiple data sources |
JP5352848B2 (en) | 2008-11-28 | 2013-11-27 | 株式会社日立製作所 | Virtual computer control method and computer apparatus |
US9230002B2 (en) | 2009-01-30 | 2016-01-05 | Oracle International Corporation | High performant information sharing and replication for single-publisher and multiple-subscriber configuration |
US8612930B2 (en) | 2009-01-30 | 2013-12-17 | Oracle America, Inc. | Methods and apparatus for dynamic class reloading and versioning |
US9454444B1 (en) * | 2009-03-19 | 2016-09-27 | Veritas Technologies Llc | Using location tracking of cluster nodes to avoid single points of failure |
CN101661499A (en) | 2009-03-25 | 2010-03-03 | 福建省电力有限公司 | Electric power application support system and distributed real-time data center thereof |
US8880524B2 (en) | 2009-07-17 | 2014-11-04 | Apple Inc. | Scalable real time event stream processing |
US8055933B2 (en) * | 2009-07-21 | 2011-11-08 | International Business Machines Corporation | Dynamic updating of failover policies for increased application availability |
CN101989922B (en) | 2009-07-31 | 2014-05-28 | 国际商业机器公司 | Method and system for recovering session initial protocol affairs |
US20110047413A1 (en) * | 2009-08-20 | 2011-02-24 | Mcgill Robert E | Methods and devices for detecting service failures and maintaining computing services using a resilient intelligent client computer |
US8566509B2 (en) * | 2009-08-25 | 2013-10-22 | International Business Machines Corporation | Efficiently implementing a plurality of finite state machines |
US8130776B1 (en) | 2009-08-28 | 2012-03-06 | Massachusetts Institute Of Technology | Method and apparatus providing network coding based flow control |
EP2293524A1 (en) | 2009-09-07 | 2011-03-09 | Nxp B.V. | Set-up of media stream transmission and server and client for media stream transmission |
US20110082832A1 (en) * | 2009-10-05 | 2011-04-07 | Ramkumar Vadali | Parallelized backup and restore process and system |
US8811417B2 (en) * | 2009-11-15 | 2014-08-19 | Mellanox Technologies Ltd. | Cross-channel network operation offloading for collective operations |
IT1397440B1 (en) | 2009-12-30 | 2013-01-10 | St Microelectronics Srl | PROCEDURE AND SYSTEMS FOR THE DISTRIBUTION OF MEDIAL CONTENT AND ITS COMPUTER PRODUCT |
US8874961B2 (en) | 2010-03-22 | 2014-10-28 | Infosys Limited | Method and system for automatic failover of distributed query processing using distributed shared memory |
US8543722B2 (en) | 2010-03-30 | 2013-09-24 | International Business Machines Corporation | Message passing with queues and channels |
US8260757B1 (en) | 2010-04-22 | 2012-09-04 | Wal-Mart Stores, Inc. | Data access layer |
US9185054B2 (en) | 2010-09-15 | 2015-11-10 | Oracle International Corporation | System and method for providing zero buffer copying in a middleware machine environment |
US8756329B2 (en) | 2010-09-15 | 2014-06-17 | Oracle International Corporation | System and method for parallel multiplexing between servers in a cluster |
WO2012109677A2 (en) | 2011-02-11 | 2012-08-16 | Fusion-Io, Inc. | Apparatus, system, and method for managing operations for data storage media |
US8938598B2 (en) | 2011-07-06 | 2015-01-20 | Nvidia Corporation | Facilitating simultaneous submission to a multi-producer queue by multiple threads with inner and outer pointers |
US9563480B2 (en) | 2012-08-21 | 2017-02-07 | Rackspace Us, Inc. | Multi-level cloud computing system |
-
2011
- 2011-05-17 US US13/109,871 patent/US8756329B2/en active Active
- 2011-05-17 US US13/109,849 patent/US8856460B2/en active Active
- 2011-06-23 US US13/167,636 patent/US9811541B2/en active Active
- 2011-06-24 US US13/168,506 patent/US9092460B2/en active Active
- 2011-06-28 US US13/170,490 patent/US9864759B2/en active Active
- 2011-09-13 WO PCT/US2011/051459 patent/WO2012037163A1/en active Application Filing
- 2011-09-13 EP EP11764385.8A patent/EP2616966B1/en active Active
- 2011-09-13 JP JP2013529274A patent/JP2013541764A/en active Pending
- 2011-09-13 CN CN201180039809.XA patent/CN103124967B/en active Active
- 2011-09-15 US US13/234,004 patent/US8856352B2/en active Active
-
2014
- 2014-05-28 US US14/288,722 patent/US9495392B2/en active Active
-
2016
- 2016-07-20 JP JP2016142298A patent/JP6195958B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070198684A1 (en) * | 2006-02-22 | 2007-08-23 | Kazunori Mizushima | Method and system for data processing with connection pool for the same |
US20070203944A1 (en) * | 2006-02-28 | 2007-08-30 | International Business Machines Corporation | Web services database cluster architecture |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102882864A (en) * | 2012-09-21 | 2013-01-16 | 南京斯坦德通信股份有限公司 | Virtualization system based on InfiniBand cloud computing network |
CN102882864B (en) * | 2012-09-21 | 2015-10-28 | 南京斯坦德云科技股份有限公司 | A kind of virtualization system based on InfiniBand system for cloud computing |
WO2014176363A1 (en) * | 2013-04-26 | 2014-10-30 | Oracle International Corporation | Support for cloud-based multi-tenant environments using connection labeling |
US9251178B2 (en) | 2013-04-26 | 2016-02-02 | Oracle International Corporation | System and method for connection labeling for use with connection pools |
US9268798B2 (en) | 2013-04-26 | 2016-02-23 | Oracle International Corporation | Support for cloud-based multi-tenant environments using connection labeling |
US9600546B2 (en) | 2013-06-06 | 2017-03-21 | Oracle International Corporation | System and method for marshaling massive database data from native layer to java using linear array |
US9569472B2 (en) | 2013-06-06 | 2017-02-14 | Oracle International Corporation | System and method for providing a second level connection cache for use with a database environment |
US9678995B2 (en) | 2013-06-06 | 2017-06-13 | Oracle International Corporation | System and method for planned migration of service connections |
US9720970B2 (en) | 2013-06-06 | 2017-08-01 | Oracle International Corporation | Efficient storage and retrieval of fragmented data using pseudo linear dynamic byte array |
US9747341B2 (en) | 2013-06-06 | 2017-08-29 | Oracle International Corporation | System and method for providing a shareable global cache for use with a database environment |
US9785687B2 (en) | 2013-06-06 | 2017-10-10 | Oracle International Corporation | System and method for transparent multi key-value weighted attributed connection using uni-tag connection pools |
CN115344366A (en) * | 2022-08-10 | 2022-11-15 | 中电金信软件有限公司 | Connection pool object switching method and device, electronic equipment and readable storage medium |
CN115344366B (en) * | 2022-08-10 | 2023-10-31 | 中电金信软件有限公司 | Connection pool object switching method and device, electronic equipment and readable storage medium |
Also Published As
Publication number | Publication date |
---|---|
JP6195958B2 (en) | 2017-09-13 |
US20120066394A1 (en) | 2012-03-15 |
JP2013541764A (en) | 2013-11-14 |
US20120144045A1 (en) | 2012-06-07 |
EP2616966B1 (en) | 2019-10-30 |
US8856460B2 (en) | 2014-10-07 |
US20120066400A1 (en) | 2012-03-15 |
US9864759B2 (en) | 2018-01-09 |
US8856352B2 (en) | 2014-10-07 |
CN103124967B (en) | 2017-09-22 |
US8756329B2 (en) | 2014-06-17 |
US20120066363A1 (en) | 2012-03-15 |
US9811541B2 (en) | 2017-11-07 |
US20120066459A1 (en) | 2012-03-15 |
US20140280988A1 (en) | 2014-09-18 |
US9495392B2 (en) | 2016-11-15 |
EP2616966A1 (en) | 2013-07-24 |
CN103124967A (en) | 2013-05-29 |
US20120066460A1 (en) | 2012-03-15 |
JP2016181304A (en) | 2016-10-13 |
US9092460B2 (en) | 2015-07-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2616966B1 (en) | System and method for connecting an application server with a clustered database | |
US8914502B2 (en) | System and method for dynamic discovery of origin servers in a traffic director environment | |
US10506033B2 (en) | Distributed global load-balancing system for software-defined data centers | |
EP2186012B1 (en) | Executing programs based on user-specified constraints | |
US8635185B2 (en) | System and method for providing session affinity in a clustered database environment | |
CN104769919B (en) | Load balancing access to replicated databases | |
JP4637842B2 (en) | Fast application notification in clustered computing systems | |
US10255148B2 (en) | Primary role reporting service for resource groups | |
US20140108645A1 (en) | System and method for supporting a selection service in a server environment | |
US8984328B2 (en) | Fault tolerance in a parallel database system | |
US20160226788A1 (en) | Managing use of lease resources allocated on fallover in a high availability computing environment | |
WO2016022405A1 (en) | Providing higher workload resiliency in clustered systems based on health heuristics | |
US9569224B2 (en) | System and method for adaptively integrating a database state notification service with a distributed transactional middleware machine | |
US8230086B2 (en) | Hidden group membership in clustered computer system | |
US9841929B1 (en) | Distributed system software infrastructure | |
US9270530B1 (en) | Managing imaging of multiple computing devices |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201180039809.X Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11764385 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011764385 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2013529274 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |