[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2012036111A1 - Primer, probe, and method for multi-specimen analysis - Google Patents

Primer, probe, and method for multi-specimen analysis Download PDF

Info

Publication number
WO2012036111A1
WO2012036111A1 PCT/JP2011/070699 JP2011070699W WO2012036111A1 WO 2012036111 A1 WO2012036111 A1 WO 2012036111A1 JP 2011070699 W JP2011070699 W JP 2011070699W WO 2012036111 A1 WO2012036111 A1 WO 2012036111A1
Authority
WO
WIPO (PCT)
Prior art keywords
primer
sequence
nucleic acid
end side
tag
Prior art date
Application number
PCT/JP2011/070699
Other languages
French (fr)
Japanese (ja)
Inventor
奈緒子 中村
橋本 みちえ
桂子 伊藤
橋本 幸二
源間 信弘
二階堂 勝
Original Assignee
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝 filed Critical 株式会社 東芝
Priority to JP2012533987A priority Critical patent/JPWO2012036111A1/en
Publication of WO2012036111A1 publication Critical patent/WO2012036111A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/6858Allele-specific amplification
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/70Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving virus or bacteriophage
    • C12Q1/701Specific hybridization probes

Definitions

  • Embodiments of the present invention relate to primers, probes, and analysis methods for analyzing nucleic acids.
  • sequence introduction primer and a nucleic acid probe The scheme figure which shows an amplification process.
  • the figure which shows a LAMP primer The figure which shows the intermediate product of LAMP amplification.
  • the graph which shows the influence on amplification of a tag The graph which shows the influence on amplification of a tag.
  • the graph which shows the influence on amplification of a tag. A graph showing the impact on tag detection.
  • a graph showing the impact on tag detection. A graph showing the impact on tag detection.
  • the graph which shows the influence of the unreacted residual primer. The schematic diagram shown about the influence of the unreacted residual primer.
  • a graph showing the impact on tag detection. A graph showing the impact on tag detection.
  • a graph showing the impact on tag detection. The graph which shows a result when detecting two or more objects simultaneously.
  • a template sequence is amplified by using different types of primer sets for each specimen.
  • the primer set includes a first primer and a second primer.
  • the first primer includes a tag sequence having a different sequence for each specimen.
  • the second primer is used in pairs with the first primer.
  • the tag sequence is inserted from the 6th base to the 12th base from the 3 'end side of the first primer, and the tag sequence has 3 to 7 bases.
  • the tag sequence is designed to loop out when the first primer hybridizes to the template sequence of the partial nucleic acid sequence.
  • the amplification products obtained for each specimen are mixed, and the obtained amplification product mixture is reacted with the nucleic acid probe.
  • the nucleic acid probe is immobilized on a substrate.
  • a sequence detected using hybridization with a nucleic acid probe as an index is a target sequence.
  • the target sequence includes a tag sequence and a sequence derived from the template sequence for each partial nucleic acid sequence of the template sequence.
  • the presence and / or amount of the target nucleic acid is detected and / or measured by detecting the amount of hybridization.
  • Such an embodiment provides a method for analyzing a plurality of detection targets quickly and easily.
  • nucleic acid is a generic term for substances that can be partially represented by their nucleotide sequences, such as DNA, RNA, PNA, LNA, S-oligo, and methylphosphonate oligo. It is shown.
  • the “specimen” is a target to be subjected to the analysis method according to the present embodiment, and may be any sample that may contain a nucleic acid.
  • the specimen is preferably in a state that does not interfere with the amplification reaction and / or the hybridization reaction.
  • pretreatment may be performed by any means known per se.
  • the specimen may be a liquid, in which case it may be referred to as a “test liquid”. Therefore, the “test solution” may be understood as a solution in which a nucleic acid or a template nucleic acid may be present.
  • multiple samples and “plural samples” indicate two or more samples and can be used interchangeably.
  • sample nucleic acid The nucleic acid contained in the sample is referred to as “sample nucleic acid”.
  • sample nucleic acid the sequence to be amplified by the primer of this embodiment is referred to as “template sequence”.
  • a nucleic acid containing a template sequence is referred to as a “template nucleic acid” or “template”.
  • a partial sequence contained in the template nucleic acid is referred to as a “partial nucleic acid sequence”.
  • a partial nucleic acid sequence is the sequence or base to be analyzed.
  • the primer according to this embodiment is designed to amplify a region containing a partial nucleic acid sequence.
  • the partial nucleic acid sequence may be equal to or included in the template sequence.
  • a nucleic acid derived from the virus may be a template nucleic acid.
  • the partial nucleic acid sequence may be, for example, a sequence specific to the virus.
  • Target nucleic acid refers to an amplification product obtained by amplifying a template nucleic acid or a template sequence using a forward primer and a reverse primer according to the present embodiment.
  • the target nucleic acid includes a target sequence in a part thereof.
  • Target sequence consists of a tag sequence and a partial sequence of a template sequence. The target sequence is used to detect a target nucleic acid using a nucleic acid probe.
  • Nucleic acid probe is a nucleic acid containing a sequence complementary to a target sequence.
  • the nucleic acid probe is used by being immobilized on a solid phase such as a substrate and forms a hybrid with an amplification product containing a region derived from the template sequence.
  • the “region derived from the template sequence” means a region other than the region to which the primer binds among the regions amplified by the primer, and the sequence is reflected in the sequence of the amplification product.
  • the region is a partial nucleic acid sequence to be analyzed.
  • the partial nucleic acid sequence is designed so as to be within the region derived from the template sequence.
  • a “DNA chip” is an apparatus for analyzing a nucleic acid using a hybridization reaction between a nucleic acid probe having a sequence complementary to the nucleic acid to be detected and the nucleic acid to be detected.
  • the term DNA chip is synonymous with commonly used terms such as “nucleic acid chip”, “microarray” and “DNA array”, and is used interchangeably.
  • “Analyzing multiple samples” means analyzing a plurality of samples simultaneously. “Analyzing a plurality of nucleic acid sequences in a specimen” refers to simultaneously analyzing a plurality of partial nucleic acid sequences contained in one specimen. A plurality of partial nucleic acid sequences to be analyzed simultaneously may be included in one template nucleic acid, or may be included in different types of sample nucleic acids included in the sample.
  • the analyzed items include, for example, detection of specific nucleic acids such as genes derived from viruses and / or bacteria, measurement of gene expression levels, identification of genotypes for polymorphisms and / or detection of the presence or absence of mutations. And so on.
  • the present invention is not limited to this.
  • “Amplification” refers to amplifying a target nucleic acid using a primer set, and includes, for example, a PCR method and a LAMP method.
  • “LAMP method” includes LAMP method and RT-LAMP method.
  • the “RT-LAMP method” is one type of LAMP method that is an isothermal gene amplification method.
  • the RT-LAMP method is a method of performing LAMP amplification using RNA as a template by simultaneously performing a reverse transcription reaction and a LAMP reaction.
  • LAMP method when it is simply described as “LAMP method”, it may be understood that both “LAMP method” and “RT-LAMP method” are referred to unless otherwise specified.
  • the same primers can be used for the LAMP method and the RT-LAMP method.
  • reaction field refers to the place where the reaction takes place.
  • the reaction field may be formed in, for example, a well provided in a tube, a well, a chamber, a channel, a cup, a dish, and a plate including a plurality of them, for example, a multiwell plate.
  • FIG. 1 shows a tag sequence introduction primer and a nucleic acid probe.
  • the primer includes a first priming sequence and a second priming sequence that bind to a primer binding site of a template nucleic acid, and a first priming sequence and a second priming sequence. And a tag sequence introduced in between. Tag sequences are used to analyze multiple specimens.
  • the tag sequence has a different sequence so as to correspond to each of a plurality of samples.
  • the base length of the tag sequence is 3 to 7 bases.
  • tag sequence combinations introduced for each of a plurality of primers brought into the same reaction field in order to analyze a plurality of specimens are “CTG”, “GGA”, “CCT”, “TCC”, “ATC”, “GCG”, “CGC”, “CCTCT”, “GTGCA”, “GACGT” and “ACGTC”.
  • Examples of preferred combinations of tag sequences brought into the same reaction field are “CTG”, “GGA”, “CCT”, “TCC”, “CGC” and “GTGCA”.
  • CTG preferred combinations of tag sequences brought into the same reaction field
  • GGA preferred combinations of tag sequences brought into the same reaction field
  • CGC preferred combinations of tag sequences brought into the same reaction field
  • GTGCA preferred combinations of tag sequences brought into the same reaction field
  • the length of the primer may be 13 to 40 bases, for example, 15 to 30 bases.
  • the length may be 16 to 47 bases, for example, 18 to 37 bases.
  • the tag sequence is inserted into the primer. That is, when the primer binds to the template, the tag sequence portion needs to loop out without binding to the template. Further, when detecting a polymorphism such as a mutation or a single nucleotide polymorphism as shown in FIG. 1, the nucleic acid probe needs to include both a tag sequence and a sequence derived from the template sequence. Therefore, in the case of PCR amplification, the tag sequence may be inserted at any position from the 6th base to the 12th base from the 3 ′ end side of the Forward primer (F primer) and / or the Reverse primer (R primer). .
  • F primer Forward primer
  • R primer Reverse primer
  • LAMP amplification it may be inserted at any site from the 6th base to the 12th base from the 3 'end of the F2 region and / or B2 region. Specifically, it may be inserted at any position from the 6th base to the 12th base from the 3 'end of the F2 sequence of the FIP primer and / or from the 6th base to the 12th base of the B2 sequence of the BIP primer. . This provides good amplification and detection characteristics.
  • the type of nucleic acid constituting the tag sequence is not particularly limited as long as it is a substance capable of expressing a partial structure by a base sequence, such as DNA, RNA, PNA, LNA, S-oligo, and methylphosphonate oligo.
  • a group of nucleic acid probes contained in one reaction field can be used to simultaneously obtain sequence information about the sample nucleic acid contained in each of a plurality of samples. It can also be used to simultaneously obtain sequence information for a plurality of types of sample nucleic acids contained in one sample. Furthermore, it can also be used to simultaneously obtain sequence information for a plurality of samples and a plurality of types of sample nucleic acids.
  • the nucleic acid probe can detect the target nucleic acid and identify which sample nucleic acid the target nucleic acid is derived from.
  • the nucleic acid probe is designed to include a sequence that is complementary to the tag sequence.
  • the sequence complementary to the tag sequence is a sequence for tag sequence detection.
  • the nucleic acid probe is designed to include a sequence complementary to a region derived from the template sequence as desired as shown in FIG.
  • the gene mutation and / or gene polymorphism site is included in the region derived from the template sequence near the primer binding site on the amplification product.
  • Prepare the primer prepare the primer.
  • Nucleic acid probes are also designed to include sequences corresponding to genetic mutation and / or gene polymorphic sites. Thereby, the base information of the mutation and / or polymorphic site on the sample nucleic acid is obtained using the presence / absence and / or amount of hybridization between the nucleic acid probe and the amplification product as an index.
  • a corresponding nucleic acid probe is used, and the amount of hybridization with the target nucleic acid is compared, whereby the genotype of the sample is compared. Can be determined.
  • a nucleic acid probe for wild type detection and a nucleic acid probe for mutation type detection are used as the nucleic acid probe.
  • These nucleic acid probes include a sequence for detecting a tag sequence and a sequence for detecting gene mutation and / or polymorphism. Whether the sample nucleic acid is wild-type or mutant is determined by comparing the amount of hybridization between the wild-type detection nucleic acid probe, the mutant-type detection nucleic acid probe, and the target nucleic acid. It may be determined.
  • nucleic acids in one or more specimens it may be used to identify multiple species that are classified in the same genus of bacteria.
  • the tag introduction primers that are amplified in common by the same genus are prepared for each sample and amplified.
  • the primers are designed so that a region that is characteristic for each species and has a specificity that can be distinguished from other species is included in the region derived from the template sequence near the primer binding site on the amplification product.
  • the Nucleic acid probes are also designed to include sequences that correspond to sites for identifying such species.
  • nucleic acid probe includes a sequence for tag sequence detection and a nucleic acid probe for species identification having a sequence characteristic to each species. Further, a negative control nucleic acid probe containing a sequence indicating that it is unrelated to the species may be prepared and used together with the nucleic acid probe for species identification.
  • the species is identified by comparing the hybridization amount between the nucleic acid probe for species identification and the target nucleic acid, and the amount of hybridization between the negative control nucleic acid probe containing a sequence unrelated to the species and the target nucleic acid.
  • the chain length of the nucleic acid probe according to this embodiment is not particularly limited, but is preferably in the range of 5 to 50 bases, more preferably in the range of 10 to 40 bases, and still more preferably in the range of 15 to 35 bases.
  • the nucleic acid probe may be modified with a reactive functional group such as an amino group, a carboxyl group, a hydrosyl group, a thiol group, or a sulfone group, or a substance such as avidin or biotin in order to be immobilized on the substrate.
  • a spacer may be introduced between such a functional group and a nucleotide.
  • the spacer for example, an alkane skeleton, an ethylene glycol skeleton or the like may be used.
  • the modification with the functional group of the nucleic acid probe is not limited to this, but is preferably at the end of the nucleic acid probe.
  • the solid phase for immobilizing the nucleic acid probe may be any substrate generally used as a solid phase for a DNA chip.
  • a substrate may be composed of glass, silicon, nitrocellulose membrane, nylon membrane, microtiter plate, electrode, magnet, bead, plastic, latex, synthetic resin, natural resin, or optical fiber, but is not limited thereto. Not.
  • a plurality of types of nucleic acid probes are immobilized on these substrates to form a DNA chip.
  • a plurality of tag sequences having different sequences from each other that is, a tag sequence 1, a tag sequence 2, and a plurality of samples, that is, a sample 1, a sample 2, and a sample 3, respectively.
  • a tag array 3 is designed.
  • a plurality of tag introduction primers into which these tag sequence 1, tag sequence 2, and tag sequence 3 are introduced that is, a sample 1 tag introduction primer, a sample 2 tag introduction primer, and a sample 3 tag introduction primer are prepared.
  • a plurality of specimens are amplified using these tag introduction primers. This amplification is performed in a reaction field that is independent of each other for each type of the plurality of specimens.
  • the reaction fields that are independent from each other for each type of sample may be any reaction field that does not mix different samples. For example, amplification may be performed in a separate tube, well, or flow path for each specimen.
  • amplification products with partially different sequences for each specimen are obtained.
  • the template nucleic acid does not exist, that is, in the case of the sample 2, amplification does not occur and an amplification product is not obtained.
  • the amplification products obtained in the respective reaction fields include different tag sequences for each specimen and a region derived from the template nucleic acid. Therefore, by identifying the tag sequence contained in the amplification product, it is possible to determine which specimen is the amplification product.
  • This amplification product is mixed, reacted with a nucleic acid probe immobilized on a substrate as shown in FIG. 3, and hybridized.
  • the nucleic acid probe includes a sequence that is complementary to the respective tag sequence. Thereafter, the presence / absence and / or amount of hybridization produced by the reaction is detected using any detection method known per se.
  • the sample is identified by the tag sequence and included in the sample. Mutation and / or polymorphism detection or identification can be analyzed simultaneously.
  • the nucleic acid probe may include a tag sequence and a sequence derived from the template sequence, or a sequence complementary thereto. The sequence derived from the template sequence or its complementary strand has a sequence for detecting or identifying mutations and / or polymorphisms. As described above, when analyzing a plurality of samples at the same time, tag sequences having different sequences may be used for each sample, that is, corresponding to each sample.
  • the template sequence may be a plurality of template sequences present in different regions included in one template nucleic acid included in the specimen, and a plurality of sequences included in each of the plurality of template nucleic acids included in the specimen may be used. It may be a template sequence.
  • the tag sequence corresponds to each of a plurality of template sequences to be amplified or partial nucleic acid sequences to be analyzed, that is, has a different sequence from each other for each template sequence or each partial nucleic acid sequence. Should be designed to.
  • a DNA chip is detected for the amplification product of the specimen, it is possible to analyze a plurality of specimens for a plurality of template sequences. Detection is performed using hybridization of the nucleic acid probe immobilized on the substrate and the amplification product as an indicator.
  • the nucleic acid probe includes a sequence complementary to each tag sequence. After an amplification reaction is performed to obtain an amplification product, hybridization between the amplification product and the nucleic acid probe may be detected using any known detection method.
  • FIG. 4 shows an example of three template sequences, it is clear that the number of template nucleic acids is not limited to this.
  • the primer may be designed so that the region derived from the template sequence of the amplification product includes a mutation detection sequence and / or a species identification sequence.
  • the sequence for mutation detection may be a sequence corresponding to the site of the mutation and / or polymorphism to be detected or identified.
  • the species identification sequence may be a sequence corresponding to a site that is characteristic of the species to be identified and that can exhibit specificity for other species.
  • the sequence for mutation detection and / or the sequence for species identification is a sequence to be analyzed and is interpreted as a partial nucleic acid sequence.
  • the nucleic acid probe may be further designed to include a tag sequence and a mutation detection sequence and / or a species identification sequence. It is possible to analyze mutations, polymorphisms, biological species, etc. by using such a nucleic acid probe after a plurality of different template nucleic acids are multi-amplified.
  • the amplification for the specimens 1 to 3 described in FIG. 2 as described above and the multi-amplification as described in FIG. 4 may be performed in parallel.
  • a product and a plurality of amplified products amplified for each specimen may be mixed, and the mixture may be detected with a nucleic acid probe.
  • a total of nine different tags may be used.
  • the detection target in this embodiment includes, for example, an individual's genomic DNA, genomic RNA, mRNA, and the like.
  • Individuals include, but are not limited to, humans, non-human animals, plants, and microorganisms such as viruses, bacteria, bacteria, yeasts and mycoplasmas.
  • nucleic acids are extracted from samples collected from individuals, such as blood, serum, leukocytes, urine, stool, semen, saliva, tissue, biopsy, oral mucosa, cultured cells, sputum and the like. Alternatively, it is extracted directly from the microorganism. Nucleic acid extraction can be performed using, but not limited to, commercially available nucleic acid extraction kits such as QIAamp (manufactured by QIAGEN), Sumitest (manufactured by Sumitomo Metals), and the like. A solution containing nucleic acid extracted from an individual sample or a microorganism is used as a test solution.
  • QIAamp manufactured by QIAGEN
  • Sumitest manufactured by Sumitomo Metals
  • the specimen is amplified by the amplification method according to the method of the present embodiment.
  • the detection target is RNA
  • it can be converted into complementary strand DNA by, for example, reverse transcriptase before amplification. Both reverse transcriptase and DNA polymerase may be added in the same tube, and reverse transcription and DNA amplification may be performed simultaneously.
  • amplification method for example, Polymerase chain reaction method (PCR method), Loop mediated isometric amplification method (LAMP method), Isothermal and chimeric acidified IC (Non-Chemical Optimized Amplification method). Method), Strand displacement amplification (SDA method), Ligase chain reaction (LCR method), Rolling Circle Amplification method (RCA method), etc. It can be used.
  • the obtained amplification product is fragmented or single-stranded as necessary. Examples of means for forming a single strand include heat denaturation, a method using beads, an enzyme, and the like, and a method of performing a transcription reaction using T7 RNA polymerase.
  • LAMP method or ICAN method When amplified by the LAMP method or ICAN method and a single-stranded region is present in the product and this single-stranded region is used as a target sequence, it can be directly subjected to the hybridization step.
  • the target nucleic acid obtained by amplification preferably has a stem-loop structure.
  • the amplification product having a stem-loop structure can conveniently use the sequence of the single-stranded loop portion for the reaction with the probe.
  • the LAMP method for amplification of the target nucleic acid, the LAMP method (for example, see Japanese Patent No. 3313358) is preferably used.
  • the LAMP method is a rapid and simple gene amplification method, and the amplification product has a stem-loop structure.
  • FIG. 5 is a diagram showing an example of basic primer design used in the LAMP method.
  • the principle of the LAMP method will be briefly described with reference to the schematic diagram of FIG.
  • six types of primers that recognize a maximum of eight regions of a template nucleic acid and a strand displacement type DNA synthase are used.
  • the template nucleic acid is amplified under isothermal (60-65 ° C.) conditions.
  • the eight regions are defined as F3 region, F2 region, LF region, F1 region, B3c region, B2c region, LBc region, and B1c region in this order from the 5 'end side of the template nucleic acid.
  • the F1c, F2c, F3c, B1, B2, and B3 regions represent regions in the complementary strand of the F1, F2, F3, B1c, B2c, and B3c regions, respectively.
  • the eight kinds of primers shown in FIG. 5 have a FIP inner primer having a sequence complementary to F1 on the 5 ′ end side and the same sequence as F2 on the 3 ′ end side, and the same sequence as B1c on the 5 ′ end side.
  • 'BIP inner primer having a sequence complementary to B2c on the terminal side
  • F3 primer having the same sequence as F3 region
  • B3 primer having a sequence complementary to B3c region
  • LFc primer having a sequence complementary to LF region
  • LBc primer having the same sequence as the LBc region.
  • Indispensable for the amplification reaction are the FIP inner primer and the BIP inner primer, and the F3 primer, B3 primer, LF primer and LB primer are added to increase the amplification efficiency.
  • a loop structure as shown in FIG. 6 is formed in the amplified product by the LAMP method, between the F2 region and the F1 region, between the F2c region and the F1c region, between the B2 region and the B1 region, and between the B2c region and the B1c region. Is a single-stranded region. Therefore, if a target sequence is designed in this region, the target nucleic acid can be detected easily and with high sensitivity (see, for example, JP-A-2005-143492). When the LF primer and / or LB primer and the target sequence overlap, it is preferable not to add the LF primer and / or LB primer.
  • FIG. 7 is used to explain a method for analyzing multiple samples using a primer for introducing a tag sequence and a DNA chip when the LAMP method is used.
  • a primer having the tag sequence introduced into the F2 region and / or B2 region is prepared for each sample.
  • amplification is performed for each sample in a reaction field independent for each sample using the primer. For example, amplification may be performed in a separate tube for each specimen. After amplification, amplification products having partial sequences that differ depending on the specimen are obtained in the single-stranded loop portion. If no template nucleic acid is present, amplification does not occur and no amplification product is obtained. This amplified product is mixed and hybridized with a nucleic acid probe containing a sequence complementary to each tag sequence immobilized on a substrate as shown in FIG. Thereafter, hybridization between the amplification product and the nucleic acid probe is detected by an appropriate detection method.
  • regions derived from the template sequence detected by the nucleic acid probe that is, between the F2 region and the F1 region, between the F2c region and the F1c region, between the B2 region and the B1 region, and between the B2c region and the B1c region. If primers are designed so that mutations and polymorphic sites are located between them, detection can be performed by using a nucleic acid probe that detects these mutations and polymorphisms.
  • FIG. 10 it is possible to multi-amplify a plurality of types of template sequences consisting of different sequences within one reaction field.
  • a DNA chip is detected for the amplification product of the specimen, it is possible to analyze a plurality of specimens for a plurality of target sequences. Detection is performed by hybridization with a nucleic acid probe containing a sequence complementary to each tag sequence immobilized on the substrate. Thereafter, hybridization between the amplification product and the nucleic acid probe is detected by an appropriate detection method.
  • FIG. 10 shows an example of three template nucleic acids, it is clear that the number of template nucleic acids is not limited to this.
  • the primer should be designed so that the region derived from the template sequence of the amplification product is located at the site of mutation or polymorphism, and / or a site that is characteristic for the species to be identified and that is specific for other species.
  • a nucleic acid probe containing sequences complementary to the bases of these sites that is, a mutation detection sequence and / or species identification sequence and a tag sequence is used, and mutations, polymorphisms, and / or biological species are used.
  • the sample nucleic acid that is, the sample can be analyzed.
  • the DNA chip used in this embodiment may be provided with a substrate and a nucleic acid probe immobilized on the substrate.
  • the substrate of the DNA chip may be any conventionally known microarray substrate such as an electrochemical detection type represented by a current detection type, a fluorescence detection type, a chemical color development type, and a radioactivity detection type.
  • any type of microarray can be produced by a method known per se.
  • the negative control probe immobilization region and the detection probe immobilization region may be arranged on different electrodes.
  • FIG. 11 An example of a DNA chip is shown in FIG. 11 as a schematic diagram, but is not limited thereto.
  • the DNA chip has an immobilization region 2 on a substrate 1.
  • the nucleic acid probe is immobilized on the immobilization region 2.
  • Such a DNA chip can be manufactured by a method well known in the art. A person skilled in the art can appropriately change the design of the number and the arrangement of the immobilization regions 2 arranged on the substrate 1 as necessary.
  • Such a DNA chip may be suitably used for a detection method using fluorescence.
  • the DNA chip in FIG. 12 includes an electrode 12 on a base 11.
  • the nucleic acid probe is immobilized on the electrode 12.
  • the electrode 12 is connected to the pad 13. Electrical information from the electrode 12 is acquired via the pad 13.
  • Such a DNA chip can be manufactured by a method well known in the art.
  • the number of electrodes 12 arranged on the substrate 11 and the arrangement thereof can be appropriately changed by those skilled in the art as needed.
  • the DNA chip of this example may include a reference electrode and a counter electrode as necessary.
  • the electrode is composed of a simple metal such as gold, gold alloy, silver, platinum, mercury, nickel, palladium, silicon, germanium, gallium or tungsten, or an alloy thereof, or carbon such as graphite or glassy carbon, or a material thereof. Although an oxide or a compound can be used, it is not limited to these.
  • the DNA chip as in this example may be suitably used for an electrochemical detection method.
  • Hybridization may be performed under appropriate conditions that allow sufficient hybridization. Appropriate conditions vary depending on the type and structure of the target nucleic acid, the type of base contained in the target sequence, and the type of nucleic acid probe.
  • hybridization may be performed in a buffer solution having an ionic strength in the range of 0.01 to 5 and a pH in the range of 5 to 9.
  • the reaction temperature may range from 10 ° C to 90 ° C.
  • the reaction efficiency may be increased by stirring or shaking.
  • hybridization accelerators such as dextran sulfate, salmon sperm DNA, and bovine thymus DNA, EDTA, or a surfactant may be added.
  • a washing solution for washing the DNA chip after hybridization has an ionic strength in the range of 0.01 to 5, and a buffer in the range of pH 5 to 9 is preferably used.
  • the cleaning liquid preferably contains a salt and a surfactant.
  • an SSC solution prepared using sodium chloride or sodium citrate, a Tris-HCl solution, a Tween 20 solution, or an SDS solution is preferably used.
  • the washing temperature is, for example, in the range of 10 ° C to 70 ° C.
  • the washing solution passes or stays on the surface of the probe-immobilized substrate or the region where the nucleic acid probe is immobilized.
  • the DNA chip may be immersed in a cleaning solution.
  • the cleaning liquid is preferably stored in a temperature-controllable container.
  • the detection of the hybrid produced by the hybridization process can utilize a fluorescence detection method and an electrochemical detection method.
  • Primers used in the nucleic acid amplification step may be labeled with a fluorescently active substance such as a fluorescent dye such as FITC, Cy3, Cy5, or rhodamine.
  • a second probe labeled with these substances may be used.
  • a plurality of labeling substances may be used simultaneously.
  • the label in the labeled sequence or the secondary probe is detected by the detection device.
  • Electrochemical detection method A double-stranded recognition substance well known in the art is used.
  • the double-stranded recognizing substance may be selected from Hoechst 33258, acridine orange, quinacrine, dounomycin, metallointercalator, bisintercalator such as bisacridine, trisintercalator and polyintercalator. Further, these double strand recognition substances may be modified with an electrochemically active metal complex such as ferrocene or viologen.
  • the double strand recognition substance varies depending on the type, but is generally used at a concentration in the range of 1 ng / mL to 1 mg / mL.
  • a buffer solution having an ionic strength in the range of 0.001 to 5 and a pH in the range of 5 to 10 can be used.
  • a potential equal to or higher than the potential at which the double strand recognition substance reacts electrochemically is applied, and the reaction current value derived from the double strand recognition substance is measured.
  • the potential may be applied at a constant speed, may be applied in pulses, or a constant potential may be applied.
  • the current and voltage may be controlled using devices such as a potentiostat, a digital multimeter, and a function generator. Electrochemical detection can be performed by methods well known in the art. For example, the method described in JP-A-10-146183 can be used.
  • the present embodiment also provides an assay kit for use in the nucleic acid analysis method described above.
  • Such an assay kit is A tag sequence having a different sequence for each specimen, wherein the tag sequence is designed to loop out when hybridized to a template sequence in a template nucleic acid for each specimen; A primer set comprising a second primer and a second primer used in pairs; and a substrate comprising a substrate, enzyme, buffer, etc. for carrying out an amplification reaction, and a target comprising the tag sequence immobilized on the substrate A DNA chip comprising a nucleic acid probe complementary to the sequence; What is necessary is just to comprise.
  • the nucleic acid probe may be a nucleic acid probe complementary to a target sequence including a tag sequence and at least a part of a sequence derived from a template sequence in a specimen.
  • the assay kit is A primer set, a substrate for performing an amplification reaction, a reagent such as an enzyme or a buffer, and a DNA chip may be included.
  • the primer set may include a first primer and a second primer used as a pair with the first primer.
  • the first primer includes a tag sequence having different types of sequences corresponding to the plurality of partial nucleic acid sequences.
  • the tag sequence is designed to loop out when the first primer hybridizes to the template nucleic acid.
  • the DNA chip includes a substrate and a nucleic acid probe immobilized on the substrate.
  • the nucleic acid probe includes a sequence that is complementary to the target sequence.
  • the target sequence includes a tag sequence and at least a part of the sequence derived from the template sequence.
  • a plurality of primers and nucleic acid probes may be provided to correspond to a plurality of partial nucleic acid sequences corresponding to different samples in order to simultaneously amplify and detect a plurality of samples.
  • the first primer included in the assay kit contains at least one kind and amount of primer necessary for use in one analysis.
  • n types of first primers are used.
  • the sequences may be identical except for the tag sequence.
  • the second primer included in the assay kit contains an amount of primer necessary for use in at least one analysis.
  • the second primer may include a tag sequence.
  • the second primer may comprise the type and amount of primer necessary for use in at least one analysis.
  • n types of second primers are used.
  • the sequences may be the same except for the tag sequence.
  • the first primer includes, for example, a tag sequence associated with at least n analytes that can contain at least a template nucleic acid, and a partial sequence of the template nucleic acid.
  • the second primer contains the amount of primer necessary for use in at least one analysis.
  • Such a second primer may be at least one reverse primer or forward primer used in pairs with the first primer. If the first primer is a forward primer, the second primer is a reverse primer, and if the first primer is a reverse primer, the second primer may be a forward primer.
  • An assay kit for analytical methods utilizing the LAMP method is also provided.
  • the F3 region, F2 region, LF region, and F1 region are designed from the 5 ′ end side of the template sequence, and the B3c region, B2c region, LBc region, and B1c region are designed from the 3 ′ end side, the following 1 to 9
  • a primer set selected from at least one selected from the group consisting of: 1.
  • FIP primer having a sequence complementary to F1 on the 5 ′ end side, the same sequence as F2 on the 3 ′ end side, and a tag sequence different from each other corresponding to a plurality of specimens inserted into the F2 sequence (ie, A first primer), and a BIP primer having the same sequence as B1c on the 5 ′ end side and a sequence complementary to B2c on the 3 ′ end side (ie, the second primer); 2.
  • FIP primer having a sequence complementary to F1 on the 5 ′ end side and having the same sequence as F2 on the 3 ′ end side (ie, second primer), and 3 ′ end having the same sequence as B1c on the 5 ′ end side
  • a BIP primer having a sequence complementary to B2c on the side and having a different tag sequence inserted into the B2c sequence corresponding to a plurality of specimens (ie, a first primer); 3.
  • FIP primer having a sequence complementary to F1 on the 5 ′ end side, the same sequence as F2 on the 3 ′ end side, and a tag sequence different from each other corresponding to a plurality of specimens inserted into the F2 sequence (ie, The first primer), and a tag sequence that has the same sequence as B1c on the 5 ′ end side and a complementary sequence to B2c on the 3 ′ end side, and that is different from each other corresponding to a plurality of specimens, is inserted into the B2c sequence.
  • a modified BIP primer ie, a second primer
  • FIP primer having a sequence complementary to F1 on the 5 ′ end side, the same sequence as F2 on the 3 ′ end side, and a tag sequence different from each other corresponding to a plurality of specimens inserted into the F2 sequence (ie, First primer)
  • BIP primer having the same sequence as B1c on the 5 ′ end side and a sequence complementary to B2c on the 3 ′ end side (ie, the second primer), F3 primer having the same sequence as the F3 region (Third primer), and B3 primer (fourth primer) having a sequence complementary to the B3c region; 5.
  • FIP primer having a sequence complementary to F1 on the 5 ′ end side and the same sequence as F2 on the 3 ′ end side (that is, the second primer), 3 ′ end side having the same sequence as B1c on the 5 ′ end side
  • a BIP primer having a sequence complementary to B2c and a tag sequence different from each other corresponding to a plurality of specimens inserted in the B2c sequence (ie, the first primer), and an F3 primer having the same sequence as the F3 region (Ie, a third primer), and a B3 primer having a sequence complementary to the B3c region (ie, a fourth primer); 6).
  • FIP primer having a sequence complementary to F1 on the 5 ′ end side, the same sequence as F2 on the 3 ′ end side, and a tag sequence different from each other corresponding to a plurality of specimens inserted into the F2 sequence (ie, First primer)
  • a tag sequence having the same sequence as B1c on the 5 ′ end side and a sequence complementary to B2c on the 3 ′ end side and different from each other corresponding to a plurality of samples is inserted into the B2c sequence.
  • BIP primer ie, second primer
  • F3 primer having the same sequence as F3 region
  • B3 primer having sequence complementary to B3c region
  • FIP primer having a sequence complementary to F1 on the 5 ′ end side, the same sequence as F2 on the 3 ′ end side, and a tag sequence different from each other corresponding to a plurality of specimens inserted into the F2 sequence (ie, First primer)
  • BIP primer having the same sequence as B1c on the 5 ′ end side and a sequence complementary to B2c on the 3 ′ end side (ie, the second primer), F3 primer having the same sequence as the F3 region (Ie, the third primer), a B3 primer having a sequence complementary to the B3c region (ie, the fourth primer), an LFc primer having a sequence complementary to the LF region (ie, the fifth primer), and An LBc primer having the same sequence as the LBc region (ie, a sixth primer); 8).
  • FIP primer having a sequence complementary to F1 on the 5 ′ end side and the same sequence as F2 on the 3 ′ end side (that is, the second primer), 3 ′ end side having the same sequence as B1c on the 5 ′ end side
  • a BIP primer having a sequence complementary to B2c and a tag sequence different from each other corresponding to a plurality of specimens inserted in the B2c sequence (ie, the first primer), and an F3 primer having the same sequence as the F3 region (Ie, the third primer), a B3 primer having a sequence complementary to the B3c region (ie, the fourth primer), an LFc primer having a sequence complementary to the LF region (ie, the fifth primer), and An LBc primer having the same sequence as the LBc region (ie, a sixth primer); 9.
  • FIP primer having a sequence complementary to F1 on the 5 ′ end side, the same sequence as F2 on the 3 ′ end side, and a tag sequence different from each other corresponding to a plurality of specimens inserted into the F2 sequence (ie, First primer)
  • a tag sequence having the same sequence as B1c on the 5 ′ end side and a sequence complementary to B2c on the 3 ′ end side and different from each other corresponding to a plurality of samples is inserted into the B2c sequence.
  • BIP primer (ie second primer), F3 primer having the same sequence as F3 region (ie third primer), B3 primer having sequence complementary to B3c region (ie fourth primer), LFc primer having a sequence complementary to the LF region (ie, the fifth primer) and / or LBc primer having the same sequence as the LBc region (ie, the sixth primer).
  • the assay kit may include an enzyme and / or container for performing an amplification reaction, a washing solution, a buffer solution, salts for preparing a buffer solution, and the like.
  • the DNA chip may be included in a state where the nucleic acid probe and the substrate are not integrated.
  • Such an assay kit makes it possible to analyze nucleic acids more easily.
  • Primers for LAMP amplification were designed based on the respective template nucleic acids from distemper virus and parvovirus.
  • the F1 region, F2 region, F3 region, B1 region, B2 region and B3 region were determined for distemper virus and parvovirus, respectively. These regions are shown in Table 3-1, Table 3-2 and Table 3-3. Sequence numbers 1 to 15 in the table are sequences for distemper virus, and sequence numbers 16 to 46 are sequences for parvovirus.
  • sequences of “F1 region”, “F2 region”, “F3 region”, “B1 region”, “B2 region” and “B3 region” are “F1 sequence”, “F2 sequence”, “F3 sequence”, “ These are referred to as “B1 sequence”, “B2 sequence” and “B3 sequence”.
  • Primers for specifically LAMP amplification of the distemper virus were designed based on the F1, F2, F3, B1, B2, and B3 regions for the distemper virus. Examples of primers are shown in Table 4-1 and Table 4-2.
  • a primer containing a tag sequence is shown at the bottom of Table 4-2. This sequence is an example in which the tag sequence CTG is inserted at the 9th base from the 3 'end of the primer name Di FIP-2-3 of SEQ ID NO: 58 in Table 4-1. The tag sequence is underlined. In the case of producing a tagging primer, a desired tag sequence may be included at a desired position in the same manner.
  • Table 5 shows examples of preferable combinations when these primers are used as a primer set.
  • the primer for distemper virus it may be a sequence containing each polynucleotide represented by SEQ ID NO: 47 to SEQ ID NO: 75, or a sequence consisting of each polynucleotide. Further, it may be a sequence containing each polynucleotide represented by a complementary sequence of SEQ ID NO: 47 to SEQ ID NO: 75, or a sequence consisting of each polynucleotide. Each polynucleotide represented by SEQ ID NO: 47 to SEQ ID NO: 75 or a complementary sequence thereof has 1 to 5, preferably 1 to several nucleotides at any position thereof substituted, deleted and / or inserted. You may have.
  • nucleotides at any position of each polynucleotide represented by SEQ ID NO: 47 to SEQ ID NO: 75 or its complementary sequence are mixed nucleotides or universal nucleotides. Also good.
  • the primer for parvovirus it may be a sequence containing each polynucleotide represented by SEQ ID NO: 77 to 115 or a sequence consisting of each polynucleotide. Further, it may be a sequence including each polynucleotide represented by a complementary sequence of SEQ ID NO: 77 to SEQ ID NO: 115 or a sequence comprising each polynucleotide.
  • Each of the polynucleotides represented by SEQ ID NO: 77 to SEQ ID NO: 115 or its complementary sequence has 1 to 5, preferably 1 to several nucleotides at any position substituted, deleted and / or inserted. You may have.
  • nucleotides at any position of each polynucleotide represented by SEQ ID NO: 47 to SEQ ID NO: 75 or its complementary sequence are mixed nucleotides or universal nucleotides. Also good.
  • examples of universal nucleotides include, but are not limited to, deoxyinosine (dI), 3-nitropyrrole (Nitropyrole), 5-nitroindole (Nitroindole), and deoxyribol from Gren Research.
  • Lanosyl deoxyribofuranosyl; dP
  • deoxy-5′-dimethoxytrityl-D-ribofuranosyl deoxy-5′-dimethyloxytrityl-D-ribofuranosyl
  • dK deoxy-5′-dimethyloxytrityl-D-ribofuranosyl
  • Mated base refers to a nucleic acid probe set that uses a mixture of two or more of the primers designed as “adenine”, “thymine”, “cytosine”, and “guanine” for the base at the desired location to be the mixed base. Say. Moreover, you may design so that it may substitute with the modified base which can be paired with respect to multiple types of bases.
  • a sequence of 1 to 100 nucleotides, preferably about 2 to 30 nucleotides (for example, a sequence used as a spacer) is included as a further sequence between the respective sequences of the primer or at the end thereof. Also good. However, these additional sequences are preferably not included at the 3 ′ end of the primer containing the tag sequence.
  • Primer set> Examples of primer sets for distemper virus are shown in Table 5. Preferred examples are primer sets 8, 9, 11, 12 and 14, more preferred examples are primer sets 9, 12 and 14, and a more preferred example is primer set 9.
  • Table 7 shows examples of primer sets for parvovirus.
  • Preferred examples are primer sets 1, 3, 4, 6, 7, 9, 10, 12, 13, 14, 15, 16, 19, 20, 25, 26, 27, 28, and more preferred examples are primer sets.
  • Set 1, 4, 6, 7, 9, 10, 13, 15, 16, 19, 25, 26, 27, 28, more preferable examples are primer sets 19, 25, and 26, and more preferable examples are primers.
  • Set 19 it is shown that the FIP primers of primer sets 2 and 5 in Table 5 and the LPb primer of primer set 14 are mixed bases.
  • the probe sequence may be a sequence derived from an amplification product including a tag sequence for hybridization and detection.
  • An example of a probe set for simultaneously detecting canine distemper virus and canine parvovirus is shown in Table 8, but is not limited thereto.
  • Example 1 Primer screening of canine distemper virus and canine parvovirus LAMP primers that specifically amplify canine distemper virus and canine parvovirus were designed and amplified.
  • Table 4-1 and Table 4-2 are LAMP primer sequences of canine distemper virus
  • Table 5 is a primer set
  • Table 6-1, Table 6-2 and Table 6-3 are Tables 7 are dogs Parvovirus LAMP primer sequences and primer sets are shown.
  • plasmids obtained by artificial synthesis of the NP (Nucleocapsid) gene sequence of canine distemper virus shown in Table 1 and the VP2 gene sequence of canine parvovirus shown in Table 2 were used, and the concentration was 1000 copies / reaction solution. went.
  • LAMP amplification was performed with the composition shown in Table 9, and the nucleic acid was amplified at 63 ° C. for 90 minutes. In the template negative control, sterilized water was used instead of the template nucleic acid.
  • the rise time of amplification was determined by detecting the white turbidity of pyrophosphoric acid produced in the amplification reaction and magnesium in the solution using a Loopamp real-time turbidity measuring device. Each experiment was performed twice.
  • FIG. 13 shows the results of amplification of canine distemper virus.
  • primer set 9 the turbidity rise time was the fastest.
  • the next fastest turbidity rise time was primer sets 12 and 14, followed by primer sets 8 and 11.
  • Primer set 9 was used in the following experiment. It was considered that the primer set 9 is preferable from the viewpoint that there are few mutations in the primer region. In the negative control, no rise in turbidity was observed in any primer set.
  • FIG. 14 shows the results of amplification of canine parvovirus.
  • primer set 19 the turbidity rise time was the fastest.
  • Primer sets 25 and 26 were also very close to primer set 19 in turbidity rise time.
  • the turbidity rise time is the fastest for primer sets 1, 4, 6, 7, 9, 10, 13, 15, 16, 27, 28, followed by primer sets 3, 12, 14, 20 .
  • Primer set 19 was used in the following experiment. It was considered that the primer set 19 is preferable from the viewpoint that there are few mutations in the primer region. In the negative control, no rise in turbidity was observed in any primer set.
  • Example 2 Examination of tag insertion position and tag base number Using the canine distemper virus primer set 9 and canine parvovirus primer set 19 determined in Example 1, the tag insertion position and tag base number were examined. As shown in FIG. 15, the tag insertion position is examined at the 3rd, 6th, 9th, 12th and 15th bases from the 3 ′ end of the FIP primer. Was performed with 3 bases, 5 bases, 7 bases and 9 bases, and 2 types of tag bases were designed.
  • the template concentrations were 1000 copy / reaction solution, 100 copy / reaction solution, and 10 copy / reaction solution.
  • the amplification rise time was measured with a Loopamp real-time turbidity measuring apparatus in the same manner as in Example 1.
  • the tag insertion position is superior to the 6 'base from the 3' end to the 5 'end, and the number of tag bases is 3 to 7 bases.
  • Example 3 Chip detection of 12 kinds of tag-introduced amplification products Twelve kinds of primers having a 3-base tag inserted at the 9th base from the 3 ′ end side of the FIP primer were designed and amplified.
  • the 12 types of tags are: GAC, 2. CTG, 3. GGA, 4. CCT, 5. AGG, 6. TCC, 7. ATC, 8. TAG, 9. ACA, 10. TGT, 11. CAA, 12.
  • GTT was used so that the sequences differed by 2 or more bases.
  • the number attached to the front of the tag sequence is a tag recognition number for convenience.
  • probes for detecting each tag were immobilized on a substrate and chip detection was performed.
  • the probe sequences used are shown in Table 8.
  • the underlined part in the sequence of Table 8 is the tag sequence.
  • the probe sequence is a sequence opposite to the tag sequence introduced into the primer. Chip detection was performed by an electrochemical method.
  • FIG. 18A, FIG. 18B and FIG. 18C show the results of chip detection of distemper virus.
  • Products that introduced GAC are 6.
  • a non-specific signal was seen from the TCC detection probe.
  • the product which introduced CTG is 5.
  • a non-specific signal was seen from the AGG detection probe.
  • the product which introduced AGG is 2.
  • a non-specific signal was seen from the CTG detection probe. 8).
  • TGT 11. CAA, 12.
  • FIG. 19 shows the result of detection on one chip using these five tags. As a result, it was confirmed that good characteristics were exhibited.
  • Example 4 1. Inhibition of hybridization by residual primer present in negative amplification product Good tag combination obtained in Example 3 at the 12th and 15th bases from the 3 ′ end side CTG, 3. GGA, 4. CCT, 6. TCC, 7. Primers with ATC inserted were designed and chip detection was performed in the same manner. As a result, as shown in FIG. 20, in the case of the 15th base from the 3 ′ end side, a sufficient signal was obtained when each positive amplification product was detected alone. In contrast, when four negative amplification products were mixed with one positive amplification product, a decrease in specific signal and an increase in non-specific signal were observed. As shown in FIG.
  • the signal did not change even when negative amplification products were mixed. From this, it was shown that it is preferable to design the tag insertion position on the 3 'end side from the 12th base from the 3' end in order to avoid the adverse effect of the remaining primer.
  • Example 2 Combined with the results of the amplification characteristics of Example 2, it was considered that the tag insertion position was better at the 6th to 12th bases from the 3 'end.
  • Example 5 Further examination of good tag combinations In Example 3, a good tag combination was found, but in order to further increase the number of simultaneously detectable samples, 13. GCG, 14. CGC (sequences different from each other by 5 bases or more from the 5 tags extracted in Example 3), 8 kinds of tag sequences as 5 base tags, and 15. CCTCT, 16. CTCTG, 17. AGTGG, 18. TGACC, 19. GTGCA, 20. GACGT, 21. GCAAG, 22. ACGTC (different from each other by 4 bases or more) was designed and chip detection was performed. These tags were introduced at the 9th base from the 3 ′ end of the FIP primer in the same manner as in Example 3.
  • FIG. 22A and FIG. 22B 2. 16. When a CTG amplification product is detected CTCTG, 17. AGTGG, 21. The GCAAG detection probe showed a high nonspecific signal. In addition, 6. 18. When a TCC amplification product is detected The TGACC detection probe showed a high non-specific signal. Other newly studied GCG, 14. CGC, 15. CCTCT, 19. GTGCA, 20. GACGT, 22. As for ACGTC, as shown in FIG. 22 and FIG. As a result, 2. CTG, 3. GGA, 4. CCT, 6. TCC, 7. ATC, 13. GCG, 14. CGC, 15. CCTCT, 19. GTGCA, 20. GACGT, 22. It was demonstrated that 11 specimens can be detected simultaneously by using 11 kinds of tags of ACGTC.
  • Example 6 1. Detection of canine distemper virus and canine parvovirus multi-amplified products Among the 11 tags selected in Examples 3 and 5, they showed particularly good properties. CTG, 3. GGA, 4. CCT, 14. CGC, 19. GTGCA was used for detecting the distemper bar. Parvo was similarly examined. As a result, CTG, 3. GGA, 4. CCT, 6. TCC, 14. CGC, 19. GTGCA was better.
  • sample 1 was placed in tube 1, sample 2 was placed in tube 2, sample 3 was placed in tube 3, sample 4 was placed in tube 4, sample 5 was placed in tube 5, and amplification was performed.
  • the results of chip detection are as follows: real sample 1 is distemper negative, parvo positive, real sample 2, 3 is distemper negative, parvo negative, real sample 4 is distemper positive, parvo negative, real sample 5 is distemper positive Was positive for parvo.
  • composition of amplification reaction solution The composition shown in Table 9 can be used for LAMP amplification.
  • This composition is an example of a composition for use in amplification of, for example, a synthesized plasmid.
  • the composition shown in Table 10 may be used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Immunology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Genetics & Genomics (AREA)
  • Biophysics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Virology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

The present invention relates to a method for analyzing a partial nucleic acid sequence on each specimen nucleic acid contained in a plurality of specimens. This method comprises (a) through (e). (a) A plurality of primer sets comprising a first primer and a second primer are prepared. A plurality of first primers are prepared and contain mutually different tag sequences corresponding to the plurality of specimens. The second primer is the opposite of the first primer. A tag sequence is inserted into any site from the 6th to the 12th base from the 3' terminal side of the first primer and the tag sequence is three to seven bases in length. When the first primer is hybridized with a template, the tag sequence loops out. (b) Each of the plurality of specimens is amplified by the corresponding primer set at a unique reaction place. (c) The amplification products obtained by (b) are mixed. (d) The mixture of amplification products of (c) is reacted with a nucleic acid probe fixed on a substrate. (e) The partial nucleic acid sequences on a plurality of specimen nucleic acids are analyzed from hybridization results produced in (d).

Description

多検体解析のためのプライマー、プローブおよび方法Primers, probes and methods for multi-analyte analysis
 本発明の実施形態は、核酸を解析するためのプライマー、プローブおよび解析方法に関する。 Embodiments of the present invention relate to primers, probes, and analysis methods for analyzing nucleic acids.
 ペット産業において、取引される動物の健康が良好であることが重要である。例えば、消費者が購入した動物が、購入から短時間で疾患を発症する、また不幸にして死に至ることは、消費者に不必要な経済的損失や精神的ダメージを与える。それと共に、その動物を提供した販売元やブリーダーは、営業停止となることも少なくはなく、信用を失墜する原因になる。 In the pet industry, it is important that the animal being traded has good health. For example, if an animal purchased by a consumer develops a disease in a short time after purchase or unfortunately dies, it causes unnecessary economic loss and mental damage to the consumer. At the same time, the vendors and breeders who provide the animals often cease to operate, causing loss of trust.
 イヌ、特に、未成犬において、ジステンバーウイルスまたはパルボウイルスへの感染は致死率が約100%といわれている。現在、このようなウイルスの検出は抗原抗体反応を利用した方法が用いられている。抗原抗体反応により正確な判定を行うためには、感染から一定時間経る必要がある上に検出感度が低い。感染の早期に、且つ迅速に診断するためにはそれらの方法は十分ではない。更に、抗原抗体反応の場合、ウイルスの種類毎に検出操作を行う必要がある。 In dogs, especially underage dogs, infection with distemper virus or parvovirus is said to have a fatality rate of about 100%. At present, a method using an antigen-antibody reaction is used to detect such viruses. In order to make an accurate determination by an antigen-antibody reaction, it is necessary to pass a certain period of time from infection, and detection sensitivity is low. These methods are not sufficient for early and rapid diagnosis of infection. Furthermore, in the case of an antigen-antibody reaction, it is necessary to perform a detection operation for each type of virus.
タグ配列導入プライマーと核酸プローブを示す図。The figure which shows a tag arrangement | sequence introduction primer and a nucleic acid probe. 増幅工程を示すスキーム図。The scheme figure which shows an amplification process. 検出工程を示す図。The figure which shows a detection process. 増幅工程を示すスキーム図。The scheme figure which shows an amplification process. LAMPプライマーを示す図。The figure which shows a LAMP primer. LAMP増幅の中間産物を示す図。The figure which shows the intermediate product of LAMP amplification. 増幅工程を示すスキーム図。The scheme figure which shows an amplification process. 検出工程を示す図。The figure which shows a detection process. LAMP法におけるタグ配列導入プライマーと核酸プローブを示す図。The figure which shows the tag arrangement | sequence introduction primer and nucleic acid probe in a LAMP method. 増幅工程を示すスキーム図。The scheme figure which shows an amplification process. DNAチップの平面図。The top view of a DNA chip. DNAチップの平面図。The top view of a DNA chip. プライマーのスクリーニング結果を示すグラフ。The graph which shows the screening result of a primer. プライマーのスクリーニング結果を示すグラフ。The graph which shows the screening result of a primer. タグ挿入位置とタグ塩基数について示す概要図。The schematic diagram shown about a tag insertion position and the number of tag bases. タグの増幅への影響を示すグラフ。The graph which shows the influence on amplification of a tag. タグの増幅への影響を示すグラフ。The graph which shows the influence on amplification of a tag. タグの検出への影響を示すグラフ。A graph showing the impact on tag detection. タグの検出への影響を示すグラフ。A graph showing the impact on tag detection. タグの検出への影響を示すグラフ。A graph showing the impact on tag detection. タグの検出への影響を示すグラフ。A graph showing the impact on tag detection. 未反応の残存プライマーの影響を示すグラフ。The graph which shows the influence of the unreacted residual primer. 未反応の残存プライマーの影響について示す概要図。The schematic diagram shown about the influence of the unreacted residual primer. タグの検出への影響を示すグラフ。A graph showing the impact on tag detection. タグの検出への影響を示すグラフ。A graph showing the impact on tag detection. タグの検出への影響を示すグラフ。A graph showing the impact on tag detection. 複数対象を同時に検出したときの結果を示すグラフ。The graph which shows a result when detecting two or more objects simultaneously.
 1つの実施形態に従うと、検体核酸中の核酸配列を複数検体について解析する方法が提供される。当該方法においては、検体毎に異なる種類のプライマーセットが使用されて、鋳型配列が増幅される。プライマーセットは、第1のプライマーと第2のプライマーを含む。第1のプライマーは、検体毎に互いに異なる配列を有するタグ配列を含む。第2のプライマーは、第1のプライマーと対で使用される。それにより目的の配列の増幅が達成される。タグ配列は、第1プライマーの3’末端側から6塩基目から12塩基目に挿入され、タグ配列の塩基数は3塩基~7塩基である。タグ配列は、第1のプライマーが、部分核酸配列の鋳型配列にハイブリダイズしたときにループアウトするように設計される。次いで、検体毎に得られた増幅産物を混合して、得られた増幅産物混合物を核酸プローブと反応させる。核酸プローブは、基体上に固定化されている。核酸プローブとのハイブリダイズを指標に検出される配列は標的配列である。標的配列は、タグ配列と鋳型配列の部分核酸配列毎の鋳型配列に由来する配列とを含む。次に、ハイブリダイゼーションの量を検出することにより、標的核酸の有無および/または量が検出および/または測定される。 According to one embodiment, there is provided a method for analyzing a plurality of samples of a nucleic acid sequence in a sample nucleic acid. In the method, a template sequence is amplified by using different types of primer sets for each specimen. The primer set includes a first primer and a second primer. The first primer includes a tag sequence having a different sequence for each specimen. The second primer is used in pairs with the first primer. Thereby, amplification of the target sequence is achieved. The tag sequence is inserted from the 6th base to the 12th base from the 3 'end side of the first primer, and the tag sequence has 3 to 7 bases. The tag sequence is designed to loop out when the first primer hybridizes to the template sequence of the partial nucleic acid sequence. Next, the amplification products obtained for each specimen are mixed, and the obtained amplification product mixture is reacted with the nucleic acid probe. The nucleic acid probe is immobilized on a substrate. A sequence detected using hybridization with a nucleic acid probe as an index is a target sequence. The target sequence includes a tag sequence and a sequence derived from the template sequence for each partial nucleic acid sequence of the template sequence. Next, the presence and / or amount of the target nucleic acid is detected and / or measured by detecting the amount of hybridization.
 このような実施形態により、迅速且つ簡便に複数の検出対象を解析する方法が提供される。 Such an embodiment provides a method for analyzing a plurality of detection targets quickly and easily.
 [定義]
 本明細書で使用される「核酸」という用語は、DNA、RNA、PNA、LNA、S-オリゴ、メチルホスホネートオリゴなど、その一部の構造を塩基配列によって表すことが可能な物質を総括的に示すものである。
[Definition]
As used herein, the term “nucleic acid” is a generic term for substances that can be partially represented by their nucleotide sequences, such as DNA, RNA, PNA, LNA, S-oligo, and methylphosphonate oligo. It is shown.
 「検体」とは、本実施形態に従い解析方法を行なうべき対象であり、核酸を含む可能性のある試料であればよい。検体は、増幅反応および/またはハイブリダイゼーション反応を妨害しない状態であることが好ましい。例えば、生体などから得られた材料を、本実施形態に従う検体として使用するために、それ自身公知の何れかの手段により前処理を行ってもよい。例えば、検体は液体であってもよく、その場合、「被検液」と称してもよい。従って、「被検液」は、核酸または鋳型核酸が存在する可能性のある溶液と解されてよい。 The “specimen” is a target to be subjected to the analysis method according to the present embodiment, and may be any sample that may contain a nucleic acid. The specimen is preferably in a state that does not interfere with the amplification reaction and / or the hybridization reaction. For example, in order to use a material obtained from a living body as a specimen according to this embodiment, pretreatment may be performed by any means known per se. For example, the specimen may be a liquid, in which case it may be referred to as a “test liquid”. Therefore, the “test solution” may be understood as a solution in which a nucleic acid or a template nucleic acid may be present.
 「多検体(multiple samples)」および「複数検体(plural samples)」の語は、2または2以上の検体を示し、交換可能に使用することが可能である。 The terms “multiple samples” and “plural samples” indicate two or more samples and can be used interchangeably.
 検体に含まれる核酸を「検体核酸」と称する。検体核酸のうち、本実施形態のプライマーにより増幅されるべき配列を「鋳型配列」と称す。鋳型配列を含む核酸を「鋳型核酸」または「鋳型」と称す。鋳型核酸に含まれる一部分の配列を「部分核酸配列」と称する。部分核酸配列は、解析されるべき配列または塩基である。本実施形態に従うプライマーは、部分核酸配列を含む領域を増幅するように設計される。部分核酸配列は、鋳型配列に等しくてもよく、鋳型配列に含まれてもよい。 The nucleic acid contained in the sample is referred to as “sample nucleic acid”. Among the sample nucleic acids, the sequence to be amplified by the primer of this embodiment is referred to as “template sequence”. A nucleic acid containing a template sequence is referred to as a “template nucleic acid” or “template”. A partial sequence contained in the template nucleic acid is referred to as a “partial nucleic acid sequence”. A partial nucleic acid sequence is the sequence or base to be analyzed. The primer according to this embodiment is designed to amplify a region containing a partial nucleic acid sequence. The partial nucleic acid sequence may be equal to or included in the template sequence.
 本実施形態により、例えば、特定のウイルスを検出する場合には、当該ウイルス由来の核酸が鋳型核酸となればよい。その場合、部分核酸配列を、例えば、当該ウイルスに特異的な配列としてよい。 According to this embodiment, for example, when a specific virus is detected, a nucleic acid derived from the virus may be a template nucleic acid. In that case, the partial nucleic acid sequence may be, for example, a sequence specific to the virus.
 「標的核酸」とは、鋳型核酸または鋳型配列を、本実施形態に従うフォワードプライマーとリバースプライマーを用いて増幅して得られた増幅産物をいう。標的核酸は、その一部に標的配列を含む。 “Target nucleic acid” refers to an amplification product obtained by amplifying a template nucleic acid or a template sequence using a forward primer and a reverse primer according to the present embodiment. The target nucleic acid includes a target sequence in a part thereof.
 「標的配列」とは、タグ配列と鋳型配列の一部の配列とからなる。当該標的配列は、核酸プローブを用いて標的核酸を検出するために利用される。 “Target sequence” consists of a tag sequence and a partial sequence of a template sequence. The target sequence is used to detect a target nucleic acid using a nucleic acid probe.
 「核酸プローブ」とは、標的配列と相補的な配列を含む核酸である。核酸プローブは基体などの固相上に固定化されて使用され、鋳型配列に由来の領域を含む増幅産物とハイブリッドを形成する。 “Nucleic acid probe” is a nucleic acid containing a sequence complementary to a target sequence. The nucleic acid probe is used by being immobilized on a solid phase such as a substrate and forms a hybrid with an amplification product containing a region derived from the template sequence.
 「鋳型配列由来の領域」とは、プライマーによって増幅される領域のうち、プライマーが結合する領域以外の領域であり、その配列が増幅産物の配列に反映される領域を意味する。例えば、遺伝子多型または遺伝子変異を検出する場合には、その領域が解析されるべき部分核酸配列である。そして部分核酸配列が、鋳型配列由来の領域内に収まるように設計される。 The “region derived from the template sequence” means a region other than the region to which the primer binds among the regions amplified by the primer, and the sequence is reflected in the sequence of the amplification product. For example, when detecting a gene polymorphism or gene mutation, the region is a partial nucleic acid sequence to be analyzed. The partial nucleic acid sequence is designed so as to be within the region derived from the template sequence.
 「DNAチップ」とは、検出しようとする核酸に相補的な配列を有する核酸プローブと、検出対象の核酸との間のハイブリダイゼーション反応を利用して、核酸を解析する装置である。DNAチップの語は、一般的に使用される「核酸チップ」、「マイクロアレイ」および「DNAアレイ」などの用語と同義であり、互いに交換可能に使用される。 A “DNA chip” is an apparatus for analyzing a nucleic acid using a hybridization reaction between a nucleic acid probe having a sequence complementary to the nucleic acid to be detected and the nucleic acid to be detected. The term DNA chip is synonymous with commonly used terms such as “nucleic acid chip”, “microarray” and “DNA array”, and is used interchangeably.
 「多検体を解析する」とは、複数の検体を同時に解析することをいう。「検体中の複数の核酸配列を解析する」とは、1検体中に含まれる複数の部分核酸配列を同時に解析することを言う。同時に解析される複数の部分核酸配列は、1本の鋳型核酸に含まれていてもよく、検体に含まれる異なる種類の検体核酸にそれぞれ含まれてもよい。 “Analyzing multiple samples” means analyzing a plurality of samples simultaneously. “Analyzing a plurality of nucleic acid sequences in a specimen” refers to simultaneously analyzing a plurality of partial nucleic acid sequences contained in one specimen. A plurality of partial nucleic acid sequences to be analyzed simultaneously may be included in one template nucleic acid, or may be included in different types of sample nucleic acids included in the sample.
 また、解析される項目は、例えば、ウイルスおよび/または細菌などに由来する遺伝子などの特定の核酸の検出、遺伝子発現量の測定、多型についての遺伝子型の同定および/または変異の有無の検出などであってよい。これに限定するものではない。 The analyzed items include, for example, detection of specific nucleic acids such as genes derived from viruses and / or bacteria, measurement of gene expression levels, identification of genotypes for polymorphisms and / or detection of the presence or absence of mutations. And so on. However, the present invention is not limited to this.
 「増幅」とは、プライマーセットを用いて目的とする核酸を増幅することをいい、例えば、PCR法およびLAMP法を含む。「LAMP法」は、LAMP法およびRT-LAMP法を含む。「RT-LAMP法」は、等温遺伝子増幅法であるLAMP法の1種である。RT-LAMP法は、逆転写反応とLAMP反応を同時に行うことによりRNAを鋳型として、LAMP増幅を行う方法である。ここおいて単に「LAMP法」と記載した場合、特に記載のない限り「LAMP法」と「RT-LAMP法」の両方について言及すると解されてよい。LAMP法とRT-LAMP法のプライマーは互いに同じプライマーを用いることが可能である。 “Amplification” refers to amplifying a target nucleic acid using a primer set, and includes, for example, a PCR method and a LAMP method. “LAMP method” includes LAMP method and RT-LAMP method. The “RT-LAMP method” is one type of LAMP method that is an isothermal gene amplification method. The RT-LAMP method is a method of performing LAMP amplification using RNA as a template by simultaneously performing a reverse transcription reaction and a LAMP reaction. Here, when it is simply described as “LAMP method”, it may be understood that both “LAMP method” and “RT-LAMP method” are referred to unless otherwise specified. The same primers can be used for the LAMP method and the RT-LAMP method.
 「反応場」とは、そこにおいて反応が行われる場をいう。反応場は、例えば、チューブ、ウェル、チャンバー、流路、カップおよびディッシュ並びにそれらを複数個備えたプレート、例えば、マルチウェルプレートに具備されるウェルの内部に形成されてよい。 “Reaction field” refers to the place where the reaction takes place. The reaction field may be formed in, for example, a well provided in a tube, a well, a chamber, a channel, a cup, a dish, and a plate including a plurality of them, for example, a multiwell plate.
 [実施形態]
 以下、本実施形態について説明する。
[Embodiment]
Hereinafter, this embodiment will be described.
 図1は、タグ配列導入プライマーと核酸プローブを示す図である。 FIG. 1 shows a tag sequence introduction primer and a nucleic acid probe.
<プライマー>
 図1のタグ導入Fプライマーに例示されるように、プライマーは、鋳型核酸のプライマー結合部位に結合する第1のプライミング配列および第2のプライミング配列と、第1のプライミング配列と第2のプライミング配列との間に導入されたタグ配列とを含む。タグ配列は、多検体を解析するために利用される。
<Primer>
As exemplified by the tag-introduced F primer of FIG. 1, the primer includes a first priming sequence and a second priming sequence that bind to a primer binding site of a template nucleic acid, and a first priming sequence and a second priming sequence. And a tag sequence introduced in between. Tag sequences are used to analyze multiple specimens.
 タグ配列は、複数の検体のそれぞれに対応させるように互いに異なる配列を有する。タグ配列の塩基長は3塩基~7塩基である。タグ配列を含むプライマーが鋳型核酸に結合したとき、一方、第1のプライミング配列と第2のプライミング配列が鋳型核酸に結合し、他方、タグ配列の部分は鋳型核酸には結合せず、ループアウトする。 The tag sequence has a different sequence so as to correspond to each of a plurality of samples. The base length of the tag sequence is 3 to 7 bases. When the primer containing the tag sequence is bound to the template nucleic acid, on the other hand, the first priming sequence and the second priming sequence are bound to the template nucleic acid, while the tag sequence portion does not bind to the template nucleic acid and loops out. To do.
 複数の検体を解析するために、同じ反応場に持ち込まれる複数のプライマーにそれぞれに対して導入されるタグ配列の組み合わせの例は、「CTG」、「GGA」、「CCT」、「TCC」、「ATC」、「GCG」、「CGC」、「CCTCT」、「GTGCA」、「GACGT」および「ACGTC」である。2以上の検体について検出を行う場合、それぞれの検体のために「CTG」、「GGA」、「CCT」、「TCC」、「ATC」、「GCG」、「CGC」、「CCTCT」、「GTGCA」、「GACGT」および「ACGTC」からなる群より少なくとも1選択されるタグ配列が使用されてよい。同じ反応場に持ち込まれるタグ配列の好ましい組み合わせの例は、「CTG」、「GGA」、「CCT」、「TCC」、「CGC」および「GTGCA」である。また2以上の検体について検出を行う場合、「CTG」、「GGA」、「CCT」、「TCC」、「CGC」および「GTGCA」からなる群より少なくとも1選択されるタグ配列をそれぞれの検体のために用いてもよい。 Examples of tag sequence combinations introduced for each of a plurality of primers brought into the same reaction field in order to analyze a plurality of specimens are “CTG”, “GGA”, “CCT”, “TCC”, “ATC”, “GCG”, “CGC”, “CCTCT”, “GTGCA”, “GACGT” and “ACGTC”. When detecting two or more specimens, for each specimen, “CTG”, “GGA”, “CCT”, “TCC”, “ATC”, “GCG”, “CGC”, “CCTCT”, “GTGCA” A tag sequence selected from at least one selected from the group consisting of “,” “GACGT” and “ACGTC” may be used. Examples of preferred combinations of tag sequences brought into the same reaction field are “CTG”, “GGA”, “CCT”, “TCC”, “CGC” and “GTGCA”. When two or more specimens are detected, at least one tag sequence selected from the group consisting of “CTG”, “GGA”, “CCT”, “TCC”, “CGC”, and “GTGCA” is used for each specimen. May be used for
 プライマーの長さは、13~40塩基、例えば、15~30塩基であってよい。タグを含むプライマー(ここでは「タグ含有プライマー」とも称する)の場合では、長さは16~47塩基、例えば、18~37塩基であってよい。 The length of the primer may be 13 to 40 bases, for example, 15 to 30 bases. In the case of a primer including a tag (herein also referred to as “tag-containing primer”), the length may be 16 to 47 bases, for example, 18 to 37 bases.
 前記タグ配列のプライマーへの挿入場所については、次のことが重要である。即ち、プライマーが鋳型に結合した場合、タグ配列部分は鋳型に結合せずにループアウトする必要がある。更に、図1にあるように変異や一塩基多型などの多型を検出する場合、核酸プローブは、タグ配列と鋳型配列由来の配列との両方を含む必要がある。従って、タグ配列は、PCR増幅の場合、Forwardプライマー(Fプライマー)および/またはReverseプライマー(Rプライマー)の3’末端側から6塩基目から12塩基目の何れかの部位に挿入されればよい。LAMP増幅の場合、F2領域および/またはB2領域の3’末端から6塩基目から12塩基目の何れかの部位に挿入されればよい。具体的には、FIPプライマーのF2配列の3’末端から6塩基目から12塩基目、および/またはBIPプライマーのB2配列の6塩基目から12塩基目の何れかの部位に挿入されればよい。これにより良好な増幅と検出特性が得られる。 The following is important for the place where the tag sequence is inserted into the primer. That is, when the primer binds to the template, the tag sequence portion needs to loop out without binding to the template. Further, when detecting a polymorphism such as a mutation or a single nucleotide polymorphism as shown in FIG. 1, the nucleic acid probe needs to include both a tag sequence and a sequence derived from the template sequence. Therefore, in the case of PCR amplification, the tag sequence may be inserted at any position from the 6th base to the 12th base from the 3 ′ end side of the Forward primer (F primer) and / or the Reverse primer (R primer). . In the case of LAMP amplification, it may be inserted at any site from the 6th base to the 12th base from the 3 'end of the F2 region and / or B2 region. Specifically, it may be inserted at any position from the 6th base to the 12th base from the 3 'end of the F2 sequence of the FIP primer and / or from the 6th base to the 12th base of the B2 sequence of the BIP primer. . This provides good amplification and detection characteristics.
 タグ配列を構成する核酸の種類は、DNA、RNA、PNA、LNA、S-オリゴ、メチルホスホネートオリゴなど、その一部の構造を塩基配列によって表すことが可能な物質であれば特に限定されない。 The type of nucleic acid constituting the tag sequence is not particularly limited as long as it is a substance capable of expressing a partial structure by a base sequence, such as DNA, RNA, PNA, LNA, S-oligo, and methylphosphonate oligo.
 <核酸プローブ>
 1つの反応場に含まれる核酸プローブ群は、複数の検体についてそれぞれに含まれる検体核酸についての配列情報を同時に得るために使用できる。また、1つの検体に含まれる複数種類の検体核酸についてそれぞれの配列情報を同時に得るためにも使用できる。更に、複数の検体および複数種類の検体核酸についてそれぞれの配列情報を同時に得るためにも使用できる。
<Nucleic acid probe>
A group of nucleic acid probes contained in one reaction field can be used to simultaneously obtain sequence information about the sample nucleic acid contained in each of a plurality of samples. It can also be used to simultaneously obtain sequence information for a plurality of types of sample nucleic acids contained in one sample. Furthermore, it can also be used to simultaneously obtain sequence information for a plurality of samples and a plurality of types of sample nucleic acids.
 核酸プローブは、標的核酸を検出し、且つ標的核酸が何れの検体核酸に由来するものであるかを識別し得る。従って、核酸プローブは、タグ配列に相補的な配列を含むように設計される。タグ配列に相補的な配列は、タグ配列検出用の配列である。更に、核酸プローブは、図1に示すように所望に応じて鋳型配列由来の領域と相補的な配列を含むように設計される。 The nucleic acid probe can detect the target nucleic acid and identify which sample nucleic acid the target nucleic acid is derived from. Thus, the nucleic acid probe is designed to include a sequence that is complementary to the tag sequence. The sequence complementary to the tag sequence is a sequence for tag sequence detection. Furthermore, the nucleic acid probe is designed to include a sequence complementary to a region derived from the template sequence as desired as shown in FIG.
 たとえば検体中の核酸の遺伝子変異および/または多型を検出する場合には、遺伝子変異および/または遺伝子多型部位が、増幅産物上のプライマー結合部位近傍の鋳型配列由来の領域に含まれるように、プライマーを準備する。また核酸プローブは、遺伝子変異および/または遺伝子多型部位に対応する配列を含むように設計される。それにより、検体核酸上の変異および/または多型部位の塩基情報は、核酸プローブと増幅産物とのハイブリダイゼーションの有無および/または量を指標にして得られる。例えば、検体核酸が、野生型であるか、変異型であるかを検出ためには、それぞれに対応する核酸プローブを使用し、標的核酸とのハイブリダイゼーション量を比較することにより、検体の遺伝子型を判定することができる。その場合、核酸プローブは、野生型検出用の核酸プローブと、変異型検出用の核酸プローブとが使用される。これらの核酸プローブは、タグ配列検出用の配列と、遺伝子変異および/または多型検出用の配列とを含む。検体核酸が野生型であるか、変異型であるかの判定は、野生型検出用の核酸プローブと変異型検出用の核酸プローブと、標的核酸とのハイブリダイゼーション量を比較することにより遺伝子型を決定して行われてもよい。 For example, when detecting gene mutation and / or polymorphism of nucleic acid in a sample, the gene mutation and / or gene polymorphism site is included in the region derived from the template sequence near the primer binding site on the amplification product. Prepare the primer. Nucleic acid probes are also designed to include sequences corresponding to genetic mutation and / or gene polymorphic sites. Thereby, the base information of the mutation and / or polymorphic site on the sample nucleic acid is obtained using the presence / absence and / or amount of hybridization between the nucleic acid probe and the amplification product as an index. For example, in order to detect whether a sample nucleic acid is a wild type or a mutant type, a corresponding nucleic acid probe is used, and the amount of hybridization with the target nucleic acid is compared, whereby the genotype of the sample is compared. Can be determined. In that case, a nucleic acid probe for wild type detection and a nucleic acid probe for mutation type detection are used as the nucleic acid probe. These nucleic acid probes include a sequence for detecting a tag sequence and a sequence for detecting gene mutation and / or polymorphism. Whether the sample nucleic acid is wild-type or mutant is determined by comparing the amount of hybridization between the wild-type detection nucleic acid probe, the mutant-type detection nucleic acid probe, and the target nucleic acid. It may be determined.
 また、1つまたは複数の検体中の核酸について、細菌の同じ属に分類されている複数の種を同定するために使用されてもよい。この場合には、例えば同じ属が共通して増幅される前記タグ導入プライマーを検体毎にそれぞれ準備して増幅を行う。このとき、各々の種に特徴的であり、他の種と区別可能な特異性の出せる領域が、増幅産物上のプライマー結合部位近傍の鋳型配列由来の領域に含まれるように、プライマーが設計される。また、核酸プローブは、そのような種を同定するための部位に対応する配列を含むように設計される。それにより、同じ属に分類されている複数の種についての塩基情報は、核酸プローブと増幅産物とのハイブリダイゼーションの有無および/または量を指標にして得られる。そのような核酸プローブは、タグ配列検出用の配列と、各々の種に特徴的な配列を有する種同定用の核酸プローブと含む。更に、種と無関係であることを示す配列を含むネガティブコントロール核酸プローブを用意し、種同定用の核酸プローブと共に使用してもよい。例えば、このような種同定用の核酸プローブと標的核酸とのハイブリダイゼーション、種と無関係な配列を含むネガティブコントロール用核酸プローブと標的核酸とのハイブリダイゼーション量を比較することにより、種の同定を行うこともできる。 Also, for nucleic acids in one or more specimens, it may be used to identify multiple species that are classified in the same genus of bacteria. In this case, for example, the tag introduction primers that are amplified in common by the same genus are prepared for each sample and amplified. At this time, the primers are designed so that a region that is characteristic for each species and has a specificity that can be distinguished from other species is included in the region derived from the template sequence near the primer binding site on the amplification product. The Nucleic acid probes are also designed to include sequences that correspond to sites for identifying such species. Thereby, base information on a plurality of species classified into the same genus is obtained using the presence / absence and / or amount of hybridization between the nucleic acid probe and the amplification product as an index. Such a nucleic acid probe includes a sequence for tag sequence detection and a nucleic acid probe for species identification having a sequence characteristic to each species. Further, a negative control nucleic acid probe containing a sequence indicating that it is unrelated to the species may be prepared and used together with the nucleic acid probe for species identification. For example, the species is identified by comparing the hybridization amount between the nucleic acid probe for species identification and the target nucleic acid, and the amount of hybridization between the negative control nucleic acid probe containing a sequence unrelated to the species and the target nucleic acid. You can also
 解析のための指標として、検体中の核酸の増幅の有無を検出する場合には必ずしも鋳型配列由来の領域と相補的な配列を含む必要はない。 As an index for analysis, when detecting the presence or absence of nucleic acid amplification in a specimen, it is not always necessary to include a sequence complementary to the region derived from the template sequence.
 本実施形態に従う核酸プローブの鎖長は、特に限定されるものではないが、5~50塩基の範囲が好ましく、10~40塩基の範囲がより好ましく、15~35塩基の範囲がさらに好ましい。 The chain length of the nucleic acid probe according to this embodiment is not particularly limited, but is preferably in the range of 5 to 50 bases, more preferably in the range of 10 to 40 bases, and still more preferably in the range of 15 to 35 bases.
 また、核酸プローブは、基体に固定化させるためにアミノ基、カルボキシル基、ヒドロシル基、チオール基、スルホン基などの反応性官能基、アビジン、ビオチン等の物質で修飾されてもよい。また、そのような官能基とヌクレオチドとの間にスペーサーを導入してもよい。スペーサーには、例えばアルカン骨格、エチレングリコール骨格などを用いてよい。核酸プローブの官能基による修飾は、これに限定するものではないが、核酸プローブの末端であることが好ましい。 The nucleic acid probe may be modified with a reactive functional group such as an amino group, a carboxyl group, a hydrosyl group, a thiol group, or a sulfone group, or a substance such as avidin or biotin in order to be immobilized on the substrate. In addition, a spacer may be introduced between such a functional group and a nucleotide. As the spacer, for example, an alkane skeleton, an ethylene glycol skeleton or the like may be used. The modification with the functional group of the nucleic acid probe is not limited to this, but is preferably at the end of the nucleic acid probe.
 核酸プローブを固定化するための固相は、一般的にDNAチップのための固相として使用される何れかの基体であればよい。そのような基体は、ガラス、シリコン、ニトロセルロース膜、ナイロン膜、マイクロタイタープレート、電極、磁石、ビーズ、プラスチック、ラテックス、合成樹脂、天然樹脂、または光ファイバーなどによって構成されてよいが、これらに限定されない。これらの基体上に複数種の核酸プローブを固定化し、DNAチップが構成される。 The solid phase for immobilizing the nucleic acid probe may be any substrate generally used as a solid phase for a DNA chip. Such a substrate may be composed of glass, silicon, nitrocellulose membrane, nylon membrane, microtiter plate, electrode, magnet, bead, plastic, latex, synthetic resin, natural resin, or optical fiber, but is not limited thereto. Not. A plurality of types of nucleic acid probes are immobilized on these substrates to form a DNA chip.
<方法>
 次にタグ配列を導入したプライマーとDNAチップを用いた多検体の解析方法について説明する。
<Method>
Next, a method for analyzing multiple samples using a primer into which a tag sequence has been introduced and a DNA chip will be described.
 図2に示すように、まず、複数の検体、即ち、検体1、検体2、検体3のそれぞれに対応するように、互いに異なる配列の複数のタグ配列、即ち、タグ配列1、タグ配列2、タグ配列3を設計する。これらのタグ配列1、タグ配列2、タグ配列3が導入された複数のタグ導入プライマー、即ち、検体1用タグ導入プライマー、検体2用タグ導入プライマー、検体3用タグ導入プライマーを準備する。これらのタグ導入プライマーを用いて複数の検体を増幅する。この増幅は、複数の検体の種類毎に互いに独立した反応場において行われる。検体の種類毎に互いに独立した反応場とは、異なる検体同士が混じり合わない反応場であればよい。例えば、検体毎に別々のチューブ内、ウェル内または流路内などで増幅が行われてよい。 As shown in FIG. 2, first, a plurality of tag sequences having different sequences from each other, that is, a tag sequence 1, a tag sequence 2, and a plurality of samples, that is, a sample 1, a sample 2, and a sample 3, respectively. A tag array 3 is designed. A plurality of tag introduction primers into which these tag sequence 1, tag sequence 2, and tag sequence 3 are introduced, that is, a sample 1 tag introduction primer, a sample 2 tag introduction primer, and a sample 3 tag introduction primer are prepared. A plurality of specimens are amplified using these tag introduction primers. This amplification is performed in a reaction field that is independent of each other for each type of the plurality of specimens. The reaction fields that are independent from each other for each type of sample may be any reaction field that does not mix different samples. For example, amplification may be performed in a separate tube, well, or flow path for each specimen.
 増幅後には、検体毎に一部配列が異なる増幅産物が得られる。鋳型核酸が存在しない場合、即ち、検体2の場合には増幅は起こらず、増幅産物は得られない。検体1、検体3の場合、それぞれの反応場において得られた増幅産物は、検体毎に互いに異なるタグ配列と、更に鋳型核酸由来の領域を含む。従って、増幅産物に含まれるタグ配列を同定することによって、何れの検体に由来する増幅産物であるかを判定することが可能である。 After amplification, amplification products with partially different sequences for each specimen are obtained. When the template nucleic acid does not exist, that is, in the case of the sample 2, amplification does not occur and an amplification product is not obtained. In the case of the specimen 1 and the specimen 3, the amplification products obtained in the respective reaction fields include different tag sequences for each specimen and a region derived from the template nucleic acid. Therefore, by identifying the tag sequence contained in the amplification product, it is possible to determine which specimen is the amplification product.
 この増幅産物を混合し、図3に示すように基体上に固定化した核酸プローブと反応させて、ハイブリダイゼーションさせる。核酸プローブは、それぞれのタグ配列に相補的な配列を含む。その後、反応により生じたハイブリダイゼーションの有無および/または量をそれ自身公知の何れかの検出法を利用して検出する。 This amplification product is mixed, reacted with a nucleic acid probe immobilized on a substrate as shown in FIG. 3, and hybridized. The nucleic acid probe includes a sequence that is complementary to the respective tag sequence. Thereafter, the presence / absence and / or amount of hybridization produced by the reaction is detected using any detection method known per se.
 図2および図3では3検体での例を示したが、検体数については、これに限定されないことは明らかである。また、図1で示すように、上述したような増幅産物の鋳型配列由来の領域に変異や多型部位が含まれるようにプライマーを設計すれば、タグ配列による検体の識別と、検体に含まれる変異および/または多型の検出または同定を同時に解析することが可能である。この場合、核酸プローブは、タグ配列と鋳型配列に由来する配列とを含むか、それらに相補的な配列を含めばよい。鋳型配列に由来する配列またはその相補鎖は、変異および/または多型を検出または同定するための配列を有する。このように、複数の検体を同時に解析する場合には、検体毎に、即ち、検体に対応させて互いに異なる配列のタグ配列を使用すればよい。 2 and 3 show examples of three samples, but it is clear that the number of samples is not limited to this. In addition, as shown in FIG. 1, if a primer is designed so that the region derived from the template sequence of the amplification product as described above includes a mutation or a polymorphic site, the sample is identified by the tag sequence and included in the sample. Mutation and / or polymorphism detection or identification can be analyzed simultaneously. In this case, the nucleic acid probe may include a tag sequence and a sequence derived from the template sequence, or a sequence complementary thereto. The sequence derived from the template sequence or its complementary strand has a sequence for detecting or identifying mutations and / or polymorphisms. As described above, when analyzing a plurality of samples at the same time, tag sequences having different sequences may be used for each sample, that is, corresponding to each sample.
 さらに、図4に示すように、1つの反応場内で配列の異なる複数の鋳型配列をマルチ増幅して、配列情報を解析することも可能である。この場合、鋳型配列は、検体に含まれる1本の鋳型核酸に含まれる異なる領域に存在する複数の鋳型配列であってもよく、検体に含まれる複数の鋳型核酸にそれぞれ含まれる複数の配列を鋳型配列であってもよい。また、タグ配列は、複数で選択される、増幅されるべき鋳型配列または解析されるべき部分核酸配列のそれぞれに対応して、即ち、鋳型配列毎または部分核酸配列毎に互いに異なる配列を有するように設計されればよい。 Furthermore, as shown in FIG. 4, it is also possible to analyze the sequence information by multi-amplifying a plurality of template sequences having different sequences in one reaction field. In this case, the template sequence may be a plurality of template sequences present in different regions included in one template nucleic acid included in the specimen, and a plurality of sequences included in each of the plurality of template nucleic acids included in the specimen may be used. It may be a template sequence. The tag sequence corresponds to each of a plurality of template sequences to be amplified or partial nucleic acid sequences to be analyzed, that is, has a different sequence from each other for each template sequence or each partial nucleic acid sequence. Should be designed to.
 上記の増幅後、検体の増幅産物に対しDNAチップ検出を行えば、複数の鋳型配列について、複数検体を解析することが可能となる。検出は、基体上に固定化した核酸プローブと増幅産物とのハイブリダイゼーションを指標に行われる。この核酸プローブは、それぞれのタグ配列に相補的な配列を含む。増幅反応を行って増幅産物を得た後に、その増幅産物と核酸プローブとのハイブリダイゼーションをそれ自身公知の何れかの検出法を利用して検出すればよい。図4では3つの鋳型配列の例を示したが、鋳型核酸の数は、これに限定されないことは明らかである。 After the above amplification, if a DNA chip is detected for the amplification product of the specimen, it is possible to analyze a plurality of specimens for a plurality of template sequences. Detection is performed using hybridization of the nucleic acid probe immobilized on the substrate and the amplification product as an indicator. The nucleic acid probe includes a sequence complementary to each tag sequence. After an amplification reaction is performed to obtain an amplification product, hybridization between the amplification product and the nucleic acid probe may be detected using any known detection method. Although FIG. 4 shows an example of three template sequences, it is clear that the number of template nucleic acids is not limited to this.
 また、増幅産物の鋳型配列由来の領域に変異検出用配列および/または種同定用配列を含ませるようにプライマーを設計してもよい。変異検出用配列は、検出または同定しようとする変異および/または多型の部位に対応する配列であればよい。種同定用配列は、同定したい生物種に特徴的で他の生物種に対する特異性が出せる部位に対応する配列であればよい。この場合、変異検出用配列および/または種同定用配列が、解析されるべき配列であり、部分核酸配列と解される。複数の部分核酸配列を同時に解析する場合には、複数の部分核酸配列のそれぞれに対応して、即ち、部分核酸配列毎に互いに異なるタグ配列が使用される。このときに、更に核酸プローブは、タグ配列と変異検出用配列および/または種同定用配列とを含むように設計されてよい。このような互いに異なる複数の鋳型核酸がマルチ増幅された上に、更にそのような核酸プローブを使用することにより、変異、多型、生物種などの解析を行うことが可能である。 In addition, the primer may be designed so that the region derived from the template sequence of the amplification product includes a mutation detection sequence and / or a species identification sequence. The sequence for mutation detection may be a sequence corresponding to the site of the mutation and / or polymorphism to be detected or identified. The species identification sequence may be a sequence corresponding to a site that is characteristic of the species to be identified and that can exhibit specificity for other species. In this case, the sequence for mutation detection and / or the sequence for species identification is a sequence to be analyzed and is interpreted as a partial nucleic acid sequence. When analyzing a plurality of partial nucleic acid sequences at the same time, different tag sequences are used corresponding to each of the plurality of partial nucleic acid sequences, that is, for each partial nucleic acid sequence. At this time, the nucleic acid probe may be further designed to include a tag sequence and a mutation detection sequence and / or a species identification sequence. It is possible to analyze mutations, polymorphisms, biological species, etc. by using such a nucleic acid probe after a plurality of different template nucleic acids are multi-amplified.
 また、複数の検体について、複数の部分核酸配列を解析することを行うことも可能である。その場合、上述したような図2に記載する1~3の検体についての増幅と、それぞれ図4に記載するようなマルチ増幅とを並行して行ってもよく、その場合、得られたマルチ増幅産物と検体毎に増幅された複数の増幅産物とを混合して、その混合物を核酸プローブで検出してもよい。図2に示す増幅と図4に示すマルチ増幅とを、並行して3種類の検体と3種類の部分核酸配列について行う場合、計9種類の互いに異なるタグが使用されてもよい。 It is also possible to analyze a plurality of partial nucleic acid sequences for a plurality of specimens. In that case, the amplification for the specimens 1 to 3 described in FIG. 2 as described above and the multi-amplification as described in FIG. 4 may be performed in parallel. A product and a plurality of amplified products amplified for each specimen may be mixed, and the mixture may be detected with a nucleic acid probe. When the amplification shown in FIG. 2 and the multi-amplification shown in FIG. 4 are performed in parallel on three types of specimens and three types of partial nucleic acid sequences, a total of nine different tags may be used.
 本実施形態における検出対象は、例えば個体のゲノムDNA、ゲノムRNA、mRNAなどが含まれる。個体は、これらに限定されるものでないが、ヒト、ヒト以外の動物、植物、並びにウイルス、細菌、バクテリア、酵母およびマイコプラズマなどの微生物が含まれる。 The detection target in this embodiment includes, for example, an individual's genomic DNA, genomic RNA, mRNA, and the like. Individuals include, but are not limited to, humans, non-human animals, plants, and microorganisms such as viruses, bacteria, bacteria, yeasts and mycoplasmas.
 これらの核酸は、個体から採取した試料、例えば、血液、血清、白血球、尿、便、精液、唾液、組織、バイオプシー、口腔内粘膜、培養細胞、喀痰等から抽出される。或いは、微生物から直接抽出される。核酸の抽出は、これらに限定されないが、市販の核酸抽出キットであるQIAamp(QIAGEN社製)、スマイテスト(住友金属社製)等を利用して実行することができる。個体試料や微生物から抽出された核酸を含む溶液を被検液とする。 These nucleic acids are extracted from samples collected from individuals, such as blood, serum, leukocytes, urine, stool, semen, saliva, tissue, biopsy, oral mucosa, cultured cells, sputum and the like. Alternatively, it is extracted directly from the microorganism. Nucleic acid extraction can be performed using, but not limited to, commercially available nucleic acid extraction kits such as QIAamp (manufactured by QIAGEN), Sumitest (manufactured by Sumitomo Metals), and the like. A solution containing nucleic acid extracted from an individual sample or a microorganism is used as a test solution.
 検体は、本実施形態の方法に係る増幅法により増幅される。検出対象がRNAの場合には、増幅前に例えば逆転写酵素によって相補鎖DNAに変換することができる。逆転写酵素とDNAポリメラーゼの両方を同一チューブ内に添加し、逆転写とDNA増幅を同時に行ってもよい。 The specimen is amplified by the amplification method according to the method of the present embodiment. When the detection target is RNA, it can be converted into complementary strand DNA by, for example, reverse transcriptase before amplification. Both reverse transcriptase and DNA polymerase may be added in the same tube, and reverse transcription and DNA amplification may be performed simultaneously.
 増幅法については、例えば、Polymerase chain reaction法(PCR法)、Loop mediated isothermal amplification法(LAMP法)、Isothermal and chimeric primer-initiated amplification of nucleic acids (ICAN法)、Nucleic acid sequence-based amplification法(NASBA法)、Strand displacement amplification (SDA法)、Ligase chain reaction(LCR法)、Rolling Circle Amplification法(RCA法)などの方法を用いることができる。得られた増幅産物は、必要に応じて断片化されるか、1本鎖化される。1本鎖化する手段としては、例えば、熱変性、ビーズや酵素等を用いる方法、T7 RNAポリメラーゼを用いて転写反応を行う方法がある。LAMP法やICAN法などによって増幅され、産物中に1本鎖領域が存在し、この1本鎖領域を標的配列とする場合には、そのままハイブリダイゼーション工程に供することができる。 As for the amplification method, for example, Polymerase chain reaction method (PCR method), Loop mediated isometric amplification method (LAMP method), Isothermal and chimeric acidified IC (Non-Chemical Optimized Amplification method). Method), Strand displacement amplification (SDA method), Ligase chain reaction (LCR method), Rolling Circle Amplification method (RCA method), etc. It can be used. The obtained amplification product is fragmented or single-stranded as necessary. Examples of means for forming a single strand include heat denaturation, a method using beads, an enzyme, and the like, and a method of performing a transcription reaction using T7 RNA polymerase. When amplified by the LAMP method or ICAN method and a single-stranded region is present in the product and this single-stranded region is used as a target sequence, it can be directly subjected to the hybridization step.
 この1本鎖化工程が不要となるため、増幅により得られた標的核酸はステム・ループ構造を有することも好ましい。ステム・ループ構造を有する増幅産物は、1本鎖であるループ部分の配列をプローブとの反応に都合よく用いることができる。 Since the single-stranded process is not necessary, the target nucleic acid obtained by amplification preferably has a stem-loop structure. The amplification product having a stem-loop structure can conveniently use the sequence of the single-stranded loop portion for the reaction with the probe.
 標的核酸の増幅には、LAMP法(例えば、特許第3313358号を参照されたい)が好適に用いられる。LAMP法は、迅速かつ簡便な遺伝子増幅法であり、増幅産物中にステム・ループ構造を有している。 For amplification of the target nucleic acid, the LAMP method (for example, see Japanese Patent No. 3313358) is preferably used. The LAMP method is a rapid and simple gene amplification method, and the amplification product has a stem-loop structure.
 図5はLAMP法で使用される基本的なプライマーの設計例を示す図である。図5の模式図を用いて、LAMP法の原理を簡単に説明する。LAMP法では、鋳型核酸の最大8つの領域を認識する6種類のプライマーと鎖置換型DNA合成酵素を用いる。鋳型核酸は、等温(60~65℃)条件下で増幅される。上記8つの領域は、鋳型核酸の5’末端側から順にF3領域、F2領域、LF領域、F1領域、3’末端側から順にB3c領域、B2c領域、LBc領域、及びB1c領域と定義される。なお、F1c、F2c、F3c、B1、B2、及びB3領域はそれぞれ、F1、F2、F3、B1c、B2c、及びB3c領域の相補鎖における領域を示している。図5に示す8種のプライマーは、5’末端側にF1と相補的な配列をもち3’末端側にF2と同じ配列を有するFIPインナープライマー、5’末端側にB1cと同じ配列をもち3’末端側にB2cと相補的な配列を有するBIPインナープライマー、F3領域と同じ配列を有するF3プライマー、B3c領域と相補的な配列を有するB3プライマー、LF領域と相補的な配列を有するLFcプライマー、LBc領域と同じ配列を有するLBcプライマーである。増幅反応に必須なのはFIPインナープライマー、BIPインナープライマーであり、F3プライマー、B3プライマー、LFプライマーおよびLBプライマーは、増幅効率を高めるために添加される。 FIG. 5 is a diagram showing an example of basic primer design used in the LAMP method. The principle of the LAMP method will be briefly described with reference to the schematic diagram of FIG. In the LAMP method, six types of primers that recognize a maximum of eight regions of a template nucleic acid and a strand displacement type DNA synthase are used. The template nucleic acid is amplified under isothermal (60-65 ° C.) conditions. The eight regions are defined as F3 region, F2 region, LF region, F1 region, B3c region, B2c region, LBc region, and B1c region in this order from the 5 'end side of the template nucleic acid. The F1c, F2c, F3c, B1, B2, and B3 regions represent regions in the complementary strand of the F1, F2, F3, B1c, B2c, and B3c regions, respectively. The eight kinds of primers shown in FIG. 5 have a FIP inner primer having a sequence complementary to F1 on the 5 ′ end side and the same sequence as F2 on the 3 ′ end side, and the same sequence as B1c on the 5 ′ end side. 'BIP inner primer having a sequence complementary to B2c on the terminal side, F3 primer having the same sequence as F3 region, B3 primer having a sequence complementary to B3c region, LFc primer having a sequence complementary to LF region, LBc primer having the same sequence as the LBc region. Indispensable for the amplification reaction are the FIP inner primer and the BIP inner primer, and the F3 primer, B3 primer, LF primer and LB primer are added to increase the amplification efficiency.
 LAMP法による増幅産物中には図6に示すようなループ構造が形成され、F2領域からF1領域の間、F2c領域からF1c領域の間、B2領域からB1領域間、およびB2c領域からB1c領域間が1本鎖の領域となる。このため、この領域に標的配列を設計すれば、簡便かつ高感度に標的核酸を検出できる(例えば、特開2005-143492号公報を参照されたい)。LFプライマーおよび/またはLBプライマーと標的配列が重なる場合には、LFプライマーおよび/またはLBプライマーは添加しない方が好ましい。 A loop structure as shown in FIG. 6 is formed in the amplified product by the LAMP method, between the F2 region and the F1 region, between the F2c region and the F1c region, between the B2 region and the B1 region, and between the B2c region and the B1c region. Is a single-stranded region. Therefore, if a target sequence is designed in this region, the target nucleic acid can be detected easily and with high sensitivity (see, for example, JP-A-2005-143492). When the LF primer and / or LB primer and the target sequence overlap, it is preferable not to add the LF primer and / or LB primer.
 図7を用いてLAMP法を用いた場合のタグ配列導入プライマーとDNAチップを用いた多検体の解析方法について説明する。 FIG. 7 is used to explain a method for analyzing multiple samples using a primer for introducing a tag sequence and a DNA chip when the LAMP method is used.
 まず、F2領域および/またはB2領域に前記タグ配列を導入したプライマーを検体毎に準備する。 First, a primer having the tag sequence introduced into the F2 region and / or B2 region is prepared for each sample.
 次に、該プライマーを用いて検体ごとに検体毎に独立した反応場において増幅を行なう。例えば、検体毎に別チューブで増幅を行えばよい。増幅後、1本鎖ループ部分に検体によって一部配列が異なる増幅産物が得られる。鋳型核酸が存在しない場合には増幅は起こらず、増幅産物は得られない。この増幅産物を混合し、図8に示すように基体上に固定化した各タグ配列に相補的な配列を含む核酸プローブとハイブリダイゼーションさせる。その後、増幅産物と核酸プローブのハイブリダイゼーションを適宜の検出法により検出する。 Next, amplification is performed for each sample in a reaction field independent for each sample using the primer. For example, amplification may be performed in a separate tube for each specimen. After amplification, amplification products having partial sequences that differ depending on the specimen are obtained in the single-stranded loop portion. If no template nucleic acid is present, amplification does not occur and no amplification product is obtained. This amplified product is mixed and hybridized with a nucleic acid probe containing a sequence complementary to each tag sequence immobilized on a substrate as shown in FIG. Thereafter, hybridization between the amplification product and the nucleic acid probe is detected by an appropriate detection method.
 図7および図8では3検体での例を示したが、検体数については、これに限定されないことは明らかである。 7 and 8 show an example with three samples, but it is clear that the number of samples is not limited to this.
 また、図9で示すように核酸プローブで検出される鋳型配列由来の領域、即ちF2領域からF1領域の間、F2c領域からF1c領域の間、B2領域からB1領域間、およびB2c領域からB1c領域間に変異や多型部位を位置させるようにプライマーを設計すれば、これらの変異や多型を検出する核酸プローブを用いることにより検出することができる。 Further, as shown in FIG. 9, regions derived from the template sequence detected by the nucleic acid probe, that is, between the F2 region and the F1 region, between the F2c region and the F1c region, between the B2 region and the B1 region, and between the B2c region and the B1c region. If primers are designed so that mutations and polymorphic sites are located between them, detection can be performed by using a nucleic acid probe that detects these mutations and polymorphisms.
 さらに、図10に示すように、1つの反応場内で異なる配列からなる複数種類の鋳型配列をマルチ増幅することも可能である。増幅後、検体の増幅産物に対し、DNAチップ検出を行えば、複数の標的配列について、複数検体を解析することが可能となる。検出は、基体上に固定化した各タグ配列に相補的な配列を含む核酸プローブとハイブリダイゼーションさせる。その後、増幅産物と核酸プローブのハイブリダイゼーションを適宜の検出法により検出する。図10では3つの鋳型核酸の例を示したが、鋳型核酸数は、これに限定されないことは明らかである。また、増幅産物の鋳型配列由来の領域に変異や多型部位、および/または同定したい生物種に特徴的であり、他の生物種に対して特異性が出せる部位が位置するようプライマーを設計すれば、これらの部位の塩基にそれぞれ相補的な配列、即ち、変異検出用配列および/または種同定用配列と、更にタグ配列とを含む核酸プローブ使用し、変異、多型および/または生物種などについて、検体核酸、即ち、検体を解析することができる。 Furthermore, as shown in FIG. 10, it is possible to multi-amplify a plurality of types of template sequences consisting of different sequences within one reaction field. After amplification, if a DNA chip is detected for the amplification product of the specimen, it is possible to analyze a plurality of specimens for a plurality of target sequences. Detection is performed by hybridization with a nucleic acid probe containing a sequence complementary to each tag sequence immobilized on the substrate. Thereafter, hybridization between the amplification product and the nucleic acid probe is detected by an appropriate detection method. Although FIG. 10 shows an example of three template nucleic acids, it is clear that the number of template nucleic acids is not limited to this. In addition, the primer should be designed so that the region derived from the template sequence of the amplification product is located at the site of mutation or polymorphism, and / or a site that is characteristic for the species to be identified and that is specific for other species. For example, a nucleic acid probe containing sequences complementary to the bases of these sites, that is, a mutation detection sequence and / or species identification sequence and a tag sequence is used, and mutations, polymorphisms, and / or biological species are used. The sample nucleic acid, that is, the sample can be analyzed.
 <DNAチップ>
 本実施形態において使用されるDNAチップは、基体と基体上に固定化された核酸プローブとを具備すればよい。DNAチップの基体は、電流検出型を代表とする電気化学的検出型、蛍光検出型、化学発色型および放射能検出型など、従来公知の何れの種類のマイクロアレイ用の基体であってよい。
<DNA chip>
The DNA chip used in this embodiment may be provided with a substrate and a nucleic acid probe immobilized on the substrate. The substrate of the DNA chip may be any conventionally known microarray substrate such as an electrochemical detection type represented by a current detection type, a fluorescence detection type, a chemical color development type, and a radioactivity detection type.
 何れの種類のマイクロアレイも、それ自身公知の方法により製造することが可能である。例えば、電流検出型マイクロアレイの場合、ネガティブコントロールプローブ固定化領域および検出用プローブ固定化領域は、それぞれ異なる電極上に配置されればよい。 Any type of microarray can be produced by a method known per se. For example, in the case of a current detection type microarray, the negative control probe immobilization region and the detection probe immobilization region may be arranged on different electrodes.
 DNAチップの例を模式図として図11に示すが、これに限定するものではない。DNAチップは、基体1に固定化領域2を具備する。核酸プローブは該固定化領域2に固定化される。このようなDNAチップは、当該分野で周知の方法によって製造することができる。基体1に配置される固定化領域2の数及びその配置は、当業者が必要に応じて適宜設計変更することが可能である。このようなDNAチップは、蛍光を用いた検出方法のために好適に用いられてよい。 An example of a DNA chip is shown in FIG. 11 as a schematic diagram, but is not limited thereto. The DNA chip has an immobilization region 2 on a substrate 1. The nucleic acid probe is immobilized on the immobilization region 2. Such a DNA chip can be manufactured by a method well known in the art. A person skilled in the art can appropriately change the design of the number and the arrangement of the immobilization regions 2 arranged on the substrate 1 as necessary. Such a DNA chip may be suitably used for a detection method using fluorescence.
 DNAチップの他の例を図12に示す。図12のDNAチップは、基体11に電極12を具備する。核酸プローブは該電極12に固定化される。電極12は、パット13に接続される。電極12からの電気的情報はパット13を介して取得される。このようなDNAチップは、当該分野で周知の方法によって製造することができる。基体11に配置される電極12の数及びその配置は、当業者が必要に応じて適宜設計変更することが可能である。さらに、本例のDNAチップは、必要に応じて、参照電極及び対極を具備してもよい。 Another example of the DNA chip is shown in FIG. The DNA chip in FIG. 12 includes an electrode 12 on a base 11. The nucleic acid probe is immobilized on the electrode 12. The electrode 12 is connected to the pad 13. Electrical information from the electrode 12 is acquired via the pad 13. Such a DNA chip can be manufactured by a method well known in the art. The number of electrodes 12 arranged on the substrate 11 and the arrangement thereof can be appropriately changed by those skilled in the art as needed. Furthermore, the DNA chip of this example may include a reference electrode and a counter electrode as necessary.
 電極は、金、金の合金、銀、プラチナ、水銀、ニッケル、パラジウム、シリコン、ゲルマニウム、ガリウムまたはタングステンのような金属単体およびそれらの合金、或いは、グラファイト、グラシーカーボンのような炭素またはそれらの酸化物または化合物を用いることができるが、これらに限定されない。 The electrode is composed of a simple metal such as gold, gold alloy, silver, platinum, mercury, nickel, palladium, silicon, germanium, gallium or tungsten, or an alloy thereof, or carbon such as graphite or glassy carbon, or a material thereof. Although an oxide or a compound can be used, it is not limited to these.
 本例のようなDNAチップは、電気化学的な検出方法のために好適に用いられてよい。 The DNA chip as in this example may be suitably used for an electrochemical detection method.
 <ハイブリダイゼーション条件>
 ハイブリダイゼーションは、ハイブリッドが十分に形成される適切な条件下で行えばよい。適切な条件は、標的核酸の種類及び構造、標的配列に含まれる塩基の種類、核酸プローブの種類によって異なる。例えば、イオン強度が0.01~5の範囲であり、pH5~9の範囲の緩衝液中でハイブリダイゼーションを行えばよい。反応温度は10℃~90℃の範囲であってよい。攪拌や振盪などにより、反応効率を高めても良い。反応溶液中には、硫酸デキストラン、サケ精子DNA、及び牛胸腺DNAのようなハイブリダーゼション促進剤、EDTA、又は界面活性剤などを添加しても良い。
<Hybridization conditions>
Hybridization may be performed under appropriate conditions that allow sufficient hybridization. Appropriate conditions vary depending on the type and structure of the target nucleic acid, the type of base contained in the target sequence, and the type of nucleic acid probe. For example, hybridization may be performed in a buffer solution having an ionic strength in the range of 0.01 to 5 and a pH in the range of 5 to 9. The reaction temperature may range from 10 ° C to 90 ° C. The reaction efficiency may be increased by stirring or shaking. In the reaction solution, hybridization accelerators such as dextran sulfate, salmon sperm DNA, and bovine thymus DNA, EDTA, or a surfactant may be added.
 <洗浄条件>
 ハイブリダイゼーション後、DNAチップを洗浄するための洗浄液は、イオン強度が0.01~5の範囲であり、pH5~9の範囲の緩衝液が好適に用いられる。洗浄液は塩及び界面活性剤などを含むことが好ましい。例えば、塩化ナトリウム又はクエン酸ナトリウムを用いて調製したSSC溶液、Tris-HCl溶液、Tween20溶液、又はSDS溶液などが好適に用いられる。洗浄温度は、例えば10℃~70℃の範囲で行う。洗浄液は、プローブ固定化基体の表面又は核酸プローブを固定化した領域に通過又は滞留させる。或いは、洗浄液中にDNAチップを浸漬させてもよい。この場合、洗浄液は温度制御可能な容器中に収容されることが好ましい。
<Cleaning conditions>
A washing solution for washing the DNA chip after hybridization has an ionic strength in the range of 0.01 to 5, and a buffer in the range of pH 5 to 9 is preferably used. The cleaning liquid preferably contains a salt and a surfactant. For example, an SSC solution prepared using sodium chloride or sodium citrate, a Tris-HCl solution, a Tween 20 solution, or an SDS solution is preferably used. The washing temperature is, for example, in the range of 10 ° C to 70 ° C. The washing solution passes or stays on the surface of the probe-immobilized substrate or the region where the nucleic acid probe is immobilized. Alternatively, the DNA chip may be immersed in a cleaning solution. In this case, the cleaning liquid is preferably stored in a temperature-controllable container.
 <検出方法>
 ハイブリダイゼーション工程により生じたハイブリッドの検出は、蛍光検出方式及び電気化学的検出方式を利用することができる。
<Detection method>
The detection of the hybrid produced by the hybridization process can utilize a fluorescence detection method and an electrochemical detection method.
 (a)蛍光検出方式
 蛍光標識物質を用いて検出する。核酸の増幅工程で用いるプライマーをFITC、Cy3、Cy5、又はローダミンなどの蛍光色素のような、蛍光学的に活性な物質で標識してもよい。或いは、それらの物質で標識したセカンドプローブを用いてもよい。複数の標識物質を同時に使用してもよい。検出装置により、標識された配列または2次プローブ中の標識を検出する。使用する標識に応じて適切な検出装置を用いる。例えば、蛍光物質を標識として用いた場合、蛍光検出器を用いて検出する。
(A) Fluorescence detection method Detection is performed using a fluorescent labeling substance. Primers used in the nucleic acid amplification step may be labeled with a fluorescently active substance such as a fluorescent dye such as FITC, Cy3, Cy5, or rhodamine. Alternatively, a second probe labeled with these substances may be used. A plurality of labeling substances may be used simultaneously. The label in the labeled sequence or the secondary probe is detected by the detection device. Use an appropriate detection device depending on the label used. For example, when a fluorescent substance is used as a label, it is detected using a fluorescence detector.
 (b)電気化学的検出方式
 当該分野で周知の2本鎖認識物質を用いる。2本鎖認識物質は、ヘキスト33258、アクリジンオレンジ、キナクリン、ドウノマイシン、メタロインターカレーター、ビスアクリジン等のビスインターカレーター、トリスインターカレーター及びポリインターカレーターから選択してよい。更に、これらの2本鎖認識物質を電気化学的に活性な金属錯体、例えばフェロセン、ビオロゲンなどで修飾してもよい。
(B) Electrochemical detection method A double-stranded recognition substance well known in the art is used. The double-stranded recognizing substance may be selected from Hoechst 33258, acridine orange, quinacrine, dounomycin, metallointercalator, bisintercalator such as bisacridine, trisintercalator and polyintercalator. Further, these double strand recognition substances may be modified with an electrochemically active metal complex such as ferrocene or viologen.
 2本鎖認識物質は、種類によって異なるが、一般的には1ng/mL~1mg/mLの範囲の濃度で使用する。この際には、イオン強度が0.001~5の範囲であり、pH5~10の範囲の緩衝液を用いることができる。 The double strand recognition substance varies depending on the type, but is generally used at a concentration in the range of 1 ng / mL to 1 mg / mL. In this case, a buffer solution having an ionic strength in the range of 0.001 to 5 and a pH in the range of 5 to 10 can be used.
 測定は、例えば2本鎖認識物質が電気化学的に反応する電位以上の電位を印加し、2本鎖認識物質に由来する反応電流値を測定する。この際、電位は定速で印加するか、或いは、パルスで印加するか、或いは、定電位を印加してもよい。ポテンショスタット、デジタルマルチメーター、及びファンクションジェネレーターのような装置を用いて電流、電圧を制御してもよい。電気化学的検出は、当該分野で周知の方法によって実施することができる。例えば、特開平10-146183号公報に記載の方法を用いることができる。 For the measurement, for example, a potential equal to or higher than the potential at which the double strand recognition substance reacts electrochemically is applied, and the reaction current value derived from the double strand recognition substance is measured. At this time, the potential may be applied at a constant speed, may be applied in pulses, or a constant potential may be applied. The current and voltage may be controlled using devices such as a potentiostat, a digital multimeter, and a function generator. Electrochemical detection can be performed by methods well known in the art. For example, the method described in JP-A-10-146183 can be used.
 <アッセイキット>
 また本実施形態は、上述した核酸の解析方法において使用するためのアッセイキットも提供する。そのようなアッセイキットは、
検体毎に異なる配列を有するタグ配列を含み、前記タグ配列は、前記検体毎の鋳型核酸中の鋳型配列にハイブリダイズしたときにループアウトするように設計された第1のプライマーと、前記第1のプライマーと対で使用される第2のプライマーとを含むプライマーセット;および増幅反応を行うための基質、酵素、バッファーなどを含み
基体と、前記基体上に固定化された前記タグ配列を含む標的配列に相補的な核酸プローブとを具備するDNAチップ;
を具備すればよい。
<Assay kit>
The present embodiment also provides an assay kit for use in the nucleic acid analysis method described above. Such an assay kit is
A tag sequence having a different sequence for each specimen, wherein the tag sequence is designed to loop out when hybridized to a template sequence in a template nucleic acid for each specimen; A primer set comprising a second primer and a second primer used in pairs; and a substrate comprising a substrate, enzyme, buffer, etc. for carrying out an amplification reaction, and a target comprising the tag sequence immobilized on the substrate A DNA chip comprising a nucleic acid probe complementary to the sequence;
What is necessary is just to comprise.
 このとき核酸プローブは、タグ配列と検体中の鋳型配列に由来する配列の少なくとも一部分とを含む標的配列に相補的な核酸プローブであってよい。 At this time, the nucleic acid probe may be a nucleic acid probe complementary to a target sequence including a tag sequence and at least a part of a sequence derived from a template sequence in a specimen.
 また、アッセイキットは、
プライマーセットと、増幅反応を行うための基質、酵素、バッファーなどのような試薬と、DNAチップを含めばよい。
The assay kit is
A primer set, a substrate for performing an amplification reaction, a reagent such as an enzyme or a buffer, and a DNA chip may be included.
 プライマーセットは、第1のプライマーと、第1のプライマーと対で使用される第2のプライマーとを含んでよい。第1のプライマーは、複数の部分核酸配列に対応して互いに異なる種類の配列を有するタグ配列を含む。タグ配列は、第1のプライマーが鋳型核酸にハイブリダイズしたときにループアウトするように設計されている。 The primer set may include a first primer and a second primer used as a pair with the first primer. The first primer includes a tag sequence having different types of sequences corresponding to the plurality of partial nucleic acid sequences. The tag sequence is designed to loop out when the first primer hybridizes to the template nucleic acid.
 DNAチップは、基体と、基体上に固定化された核酸プローブを具備する。核酸プローブは、標的配列に相補的な配列を含む。標的配列は、タグ配列と、更に鋳型配列に由来する配列の少なくとも一部分とを含む。 The DNA chip includes a substrate and a nucleic acid probe immobilized on the substrate. The nucleic acid probe includes a sequence that is complementary to the target sequence. The target sequence includes a tag sequence and at least a part of the sequence derived from the template sequence.
 具備されるプライマーおよび核酸プローブは、複数の検体を同時に増幅および検出するめに、異なる検体に対応する複数の部分核酸配列に対応するように複数具備されてよい。 A plurality of primers and nucleic acid probes may be provided to correspond to a plurality of partial nucleic acid sequences corresponding to different samples in order to simultaneously amplify and detect a plurality of samples.
 また、アッセイキットに含まれる第1のプライマーは、少なくとも1回の解析で使用するのに必要な種類および量のプライマーを含む。n個の検体を同時に解析する場合には、n種類の第1のプライマーが使用される。異なる種類の第1のプライマーを配列について比較すると、タグ配列以外は等しい配列であってよい。 Also, the first primer included in the assay kit contains at least one kind and amount of primer necessary for use in one analysis. When n samples are analyzed simultaneously, n types of first primers are used. When different types of first primers are compared in terms of sequence, the sequences may be identical except for the tag sequence.
 アッセイキットに含まれる第2のプライマーは、少なくとも1回の解析で使用するのに必要な量のプライマーを含む。また、第1のプライマーに加えて、第2のプライマーがタグ配列を含んでもよい。その場合、第2のプライマーは、少なくとも1回の解析で使用するのに必要な種類および量のプライマーを含んでよい。n個の検体を同時に解析する場合には、n種類の第2のプライマーが使用される。異なる種類の第2のプライマーを配列について比較すると、タグ配列以外は等しい配列であってもよい。 The second primer included in the assay kit contains an amount of primer necessary for use in at least one analysis. In addition to the first primer, the second primer may include a tag sequence. In that case, the second primer may comprise the type and amount of primer necessary for use in at least one analysis. When n samples are analyzed simultaneously, n types of second primers are used. When different types of second primers are compared in terms of sequence, the sequences may be the same except for the tag sequence.
 アッセイキットが、PCR法を利用するものである場合、第1のプライマーは、例えば、少なくとも鋳型核酸を含み得るn個の検体に対応づけられたタグ配列と、当該鋳型核酸の一部の配列の相補配列とを含むn種類のフォワードプライマーまたはリバースプライマーであればよい(ここで、nは2以上の整数である)。第2のプライマーは、少なくとも1回の解析で使用するのに必要な量のプライマーを含む。そのような第2のプライマーは、第1のプライマーと対で使用される少なくとも1種類のリバースプライマーまたはフォワードプライマーであればよい。第1のプライマーがフォワードプライマーであれば、第2のプライマーはリバースプライマーであり、第1のプライマーがリバースプライマーであれば、第2のプライマーはフォワードプライマーであればよい。 When the assay kit uses the PCR method, the first primer includes, for example, a tag sequence associated with at least n analytes that can contain at least a template nucleic acid, and a partial sequence of the template nucleic acid. There may be n kinds of forward primers or reverse primers including a complementary sequence (where n is an integer of 2 or more). The second primer contains the amount of primer necessary for use in at least one analysis. Such a second primer may be at least one reverse primer or forward primer used in pairs with the first primer. If the first primer is a forward primer, the second primer is a reverse primer, and if the first primer is a reverse primer, the second primer may be a forward primer.
 LAMP法を利用する解析方法のためのアッセイキットも提供される。鋳型配列の5’末端側よりF3領域、F2領域、LF領域、F1領域が設計され、3’末端側よりB3c領域、B2c領域、LBc領域、B1c領域が設計される場合、以下の1~9からなる群より少なくとも1選択されるプライマーセットが含まれる;
  1. 5’末端側にF1と相補的な配列をもち3’末端側にF2と同じ配列をもち、且つ複数の検体に対応して互いに異なるタグ配列をF2配列内に挿入されたFIPプライマー(即ち、第1のプライマー)、および5’末端側にB1cと同じ配列をもち3’末端側にB2cと相補的な配列を有するBIPプライマー(即ち、第2のプライマー);
  2. 5’末端側にF1と相補的な配列をもち3’末端側にF2と同じ配列を有するFIPプライマー(即ち、第2のプライマー)、および5’末端側にB1cと同じ配列をもち3’末端側にB2cと相補的な配列をもち、且つ複数の検体に対応して互いに異なるタグ配列をB2c配列内に挿入したBIPプライマー(即ち、第1のプライマー);
  3. 5’末端側にF1と相補的な配列をもち3’末端側にF2と同じ配列をもち、且つ複数の検体に対応して互いに異なるタグ配列をF2配列内に挿入されたFIPプライマー(即ち、第1のプライマー)、および5’末端側にB1cと同じ配列をもち3’末端側にB2cと相補的な配列をもち、且つ複数の検体に対応して互いに異なるタグ配列をB2c配列内に挿入されたBIPプライマー(即ち、第2のプライマー);
  4. 5’末端側にF1と相補的な配列をもち3’末端側にF2と同じ配列をもち、且つ複数の検体に対応して互いに異なるタグ配列をF2配列内に挿入されたFIPプライマー(即ち、第1のプライマー)、5’末端側にB1cと同じ配列をもち3’末端側にB2cと相補的な配列を有するBIPプライマー(即ち、第2のプライマー)、F3領域と同じ配列を有するF3プライマー(第3のプライマー)、およびB3c領域と相補的な配列を有するB3プライマー(第4のプライマー);
  5. 5’末端側にF1と相補的な配列をもち3’末端側にF2と同じ配列を有するFIPプライマー(即ち、第2のプライマー)、5’末端側にB1cと同じ配列をもち3’末端側にB2cと相補的な配列をもち、且つ複数の検体に対応して互いに異なるタグ配列をB2c配列内に挿入されたBIPプライマー(即ち、第1のプライマー)、F3領域と同じ配列を有するF3プライマー(即ち、第3のプライマー)、およびB3c領域と相補的な配列を有するB3プライマー(即ち、第4のプライマー);
  6. 5’末端側にF1と相補的な配列をもち3’末端側にF2と同じ配列をもち、且つ複数の検体に対応して互いに異なるタグ配列をF2配列内に挿入されたFIPプライマー(即ち、第1のプライマー)、5’末端側にB1cと同じ配列をもち3’末端側にB2cと相補的な配列をもち、且つ複数の検体に対応して互いに異なるタグ配列をB2c配列内に挿入されたBIPプライマー(即ち、第2のプライマー)、F3領域と同じ配列を有するF3プライマー(即ち、第3のプライマー)、およびB3c領域と相補的な配列を有するB3プライマー(即ち、第4のプライマー);
  7. 5’末端側にF1と相補的な配列をもち3’末端側にF2と同じ配列をもち、且つ複数の検体に対応して互いに異なるタグ配列をF2配列内に挿入されたFIPプライマー(即ち、第1のプライマー)、5’末端側にB1cと同じ配列をもち3’末端側にB2cと相補的な配列を有するBIPプライマー(即ち、第2のプライマー)、F3領域と同じ配列を有するF3プライマー(即ち、第3のプライマー)、B3c領域と相補的な配列を有するB3プライマー(即ち、第4のプライマー)、LF領域と相補的な配列を有するLFcプライマー(即ち、第5のプライマー)、および/またはLBc領域と同じ配列を有するLBcプライマー(即ち、第6のプライマー);
  8. 5’末端側にF1と相補的な配列をもち3’末端側にF2と同じ配列を有するFIPプライマー(即ち、第2のプライマー)、5’末端側にB1cと同じ配列をもち3’末端側にB2cと相補的な配列をもち、且つ複数の検体に対応して互いに異なるタグ配列をB2c配列内に挿入されたBIPプライマー(即ち、第1のプライマー)、F3領域と同じ配列を有するF3プライマー(即ち、第3のプライマー)、B3c領域と相補的な配列を有するB3プライマー(即ち、第4のプライマー)、LF領域と相補的な配列を有するLFcプライマー(即ち、第5のプライマー)、および/またはLBc領域と同じ配列を有するLBcプライマー(即ち、第6のプライマー);
  9. 5’末端側にF1と相補的な配列をもち3’末端側にF2と同じ配列をもち、且つ複数の検体に対応して互いに異なるタグ配列をF2配列内に挿入されたFIPプライマー(即ち、第1のプライマー)、5’末端側にB1cと同じ配列をもち3’末端側にB2cと相補的な配列をもち、且つ複数の検体に対応して互いに異なるタグ配列をB2c配列内に挿入されたBIPプライマー(即ち、第2のプライマー)、F3領域と同じ配列を有するF3プライマー(即ち、第3のプライマー)、B3c領域と相補的な配列を有するB3プライマー(即ち、第4のプライマー)、LF領域と相補的な配列を有するLFcプライマー(即ち、第5のプライマー)、および/またはLBc領域と同じ配列を有するLBcプライマー(即ち、第6のプライマー)。
An assay kit for analytical methods utilizing the LAMP method is also provided. When the F3 region, F2 region, LF region, and F1 region are designed from the 5 ′ end side of the template sequence, and the B3c region, B2c region, LBc region, and B1c region are designed from the 3 ′ end side, the following 1 to 9 A primer set selected from at least one selected from the group consisting of:
1. FIP primer having a sequence complementary to F1 on the 5 ′ end side, the same sequence as F2 on the 3 ′ end side, and a tag sequence different from each other corresponding to a plurality of specimens inserted into the F2 sequence (ie, A first primer), and a BIP primer having the same sequence as B1c on the 5 ′ end side and a sequence complementary to B2c on the 3 ′ end side (ie, the second primer);
2. FIP primer having a sequence complementary to F1 on the 5 ′ end side and having the same sequence as F2 on the 3 ′ end side (ie, second primer), and 3 ′ end having the same sequence as B1c on the 5 ′ end side A BIP primer having a sequence complementary to B2c on the side and having a different tag sequence inserted into the B2c sequence corresponding to a plurality of specimens (ie, a first primer);
3. FIP primer having a sequence complementary to F1 on the 5 ′ end side, the same sequence as F2 on the 3 ′ end side, and a tag sequence different from each other corresponding to a plurality of specimens inserted into the F2 sequence (ie, The first primer), and a tag sequence that has the same sequence as B1c on the 5 ′ end side and a complementary sequence to B2c on the 3 ′ end side, and that is different from each other corresponding to a plurality of specimens, is inserted into the B2c sequence. A modified BIP primer (ie, a second primer);
4). FIP primer having a sequence complementary to F1 on the 5 ′ end side, the same sequence as F2 on the 3 ′ end side, and a tag sequence different from each other corresponding to a plurality of specimens inserted into the F2 sequence (ie, First primer) BIP primer having the same sequence as B1c on the 5 ′ end side and a sequence complementary to B2c on the 3 ′ end side (ie, the second primer), F3 primer having the same sequence as the F3 region (Third primer), and B3 primer (fourth primer) having a sequence complementary to the B3c region;
5. FIP primer having a sequence complementary to F1 on the 5 ′ end side and the same sequence as F2 on the 3 ′ end side (that is, the second primer), 3 ′ end side having the same sequence as B1c on the 5 ′ end side A BIP primer having a sequence complementary to B2c and a tag sequence different from each other corresponding to a plurality of specimens inserted in the B2c sequence (ie, the first primer), and an F3 primer having the same sequence as the F3 region (Ie, a third primer), and a B3 primer having a sequence complementary to the B3c region (ie, a fourth primer);
6). FIP primer having a sequence complementary to F1 on the 5 ′ end side, the same sequence as F2 on the 3 ′ end side, and a tag sequence different from each other corresponding to a plurality of specimens inserted into the F2 sequence (ie, First primer) A tag sequence having the same sequence as B1c on the 5 ′ end side and a sequence complementary to B2c on the 3 ′ end side and different from each other corresponding to a plurality of samples is inserted into the B2c sequence. BIP primer (ie, second primer), F3 primer having the same sequence as F3 region (ie, third primer), and B3 primer having sequence complementary to B3c region (ie, fourth primer) ;
7. FIP primer having a sequence complementary to F1 on the 5 ′ end side, the same sequence as F2 on the 3 ′ end side, and a tag sequence different from each other corresponding to a plurality of specimens inserted into the F2 sequence (ie, First primer) BIP primer having the same sequence as B1c on the 5 ′ end side and a sequence complementary to B2c on the 3 ′ end side (ie, the second primer), F3 primer having the same sequence as the F3 region (Ie, the third primer), a B3 primer having a sequence complementary to the B3c region (ie, the fourth primer), an LFc primer having a sequence complementary to the LF region (ie, the fifth primer), and An LBc primer having the same sequence as the LBc region (ie, a sixth primer);
8). FIP primer having a sequence complementary to F1 on the 5 ′ end side and the same sequence as F2 on the 3 ′ end side (that is, the second primer), 3 ′ end side having the same sequence as B1c on the 5 ′ end side A BIP primer having a sequence complementary to B2c and a tag sequence different from each other corresponding to a plurality of specimens inserted in the B2c sequence (ie, the first primer), and an F3 primer having the same sequence as the F3 region (Ie, the third primer), a B3 primer having a sequence complementary to the B3c region (ie, the fourth primer), an LFc primer having a sequence complementary to the LF region (ie, the fifth primer), and An LBc primer having the same sequence as the LBc region (ie, a sixth primer);
9. FIP primer having a sequence complementary to F1 on the 5 ′ end side, the same sequence as F2 on the 3 ′ end side, and a tag sequence different from each other corresponding to a plurality of specimens inserted into the F2 sequence (ie, First primer) A tag sequence having the same sequence as B1c on the 5 ′ end side and a sequence complementary to B2c on the 3 ′ end side and different from each other corresponding to a plurality of samples is inserted into the B2c sequence. BIP primer (ie second primer), F3 primer having the same sequence as F3 region (ie third primer), B3 primer having sequence complementary to B3c region (ie fourth primer), LFc primer having a sequence complementary to the LF region (ie, the fifth primer) and / or LBc primer having the same sequence as the LBc region (ie, the sixth primer).
 更に、当該アッセイキットは、増幅反応を行なうための酵素および/または容器、洗浄液、緩衝液、緩衝液を調製するための塩類などを含んでもよい。また、DNAチップは、核酸プローブと基体が一体化されていない状態で含まれてもよい。 Furthermore, the assay kit may include an enzyme and / or container for performing an amplification reaction, a washing solution, a buffer solution, salts for preparing a buffer solution, and the like. Further, the DNA chip may be included in a state where the nucleic acid probe and the substrate are not integrated.
 このようなアッセイキットによって、より簡便に核酸の解析を行うことが可能になる。 Such an assay kit makes it possible to analyze nucleic acids more easily.
 <ジステンバーウイルスとパルボウイルス>
 当該多検体のための検出方法を用いて、ジステンバーウイルスとパルボウイルスを同時に検出することが可能である。検出のために選択した鋳型核酸をジステンバーウイルスについては表1に、パルボウイルスについては表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
<Distemper virus and parvovirus>
Using this detection method for multiple specimens, it is possible to detect distemper virus and parvovirus simultaneously. Template nucleic acids selected for detection are shown in Table 1 for distemper virus and Table 2 for parvovirus.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 <プライマーの設計>
 ジステンバーウイルスとパルボウイルスからのそれぞれの鋳型核酸を基にLAMP増幅用のプライマーを設計した。ジステンバーウイルスとパルボウイルスについてそれぞれF1領域、F2領域、F3領域、B1領域、B2領域およびB3領域を決定した。これらの領域を表3-1、表3-2および表3-3に示す。表中の配列番号1~15がジステンバーウイルスのための配列であり、配列番号16~46がパルボウイルスのための配列である。「F1領域」、「F2領域」、「F3領域」、「B1領域」、「B2領域」および「B3領域」の配列は、それぞれ「F1配列」、「F2配列」、「F3配列」、「B1配列」、「B2配列」および「B3配列」と称す。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
<Primer design>
Primers for LAMP amplification were designed based on the respective template nucleic acids from distemper virus and parvovirus. The F1 region, F2 region, F3 region, B1 region, B2 region and B3 region were determined for distemper virus and parvovirus, respectively. These regions are shown in Table 3-1, Table 3-2 and Table 3-3. Sequence numbers 1 to 15 in the table are sequences for distemper virus, and sequence numbers 16 to 46 are sequences for parvovirus. The sequences of “F1 region”, “F2 region”, “F3 region”, “B1 region”, “B2 region” and “B3 region” are “F1 sequence”, “F2 sequence”, “F3 sequence”, “ These are referred to as “B1 sequence”, “B2 sequence” and “B3 sequence”.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 <ジステンバーウイルスのためのプライマー配列>
 ジステンバーウイルスのためのF1領域、F2領域、F3領域、B1領域、B2領域およびB3領域を基にジステンバーウイルスを特異的にLAMP増幅するためのプライマーを設計した。プライマーの例を表4-1および表4-2に示す。
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
<Primer sequence for distemper virus>
Primers for specifically LAMP amplification of the distemper virus were designed based on the F1, F2, F3, B1, B2, and B3 regions for the distemper virus. Examples of primers are shown in Table 4-1 and Table 4-2.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 表4-2の最下段には、タグ配列を含むプライマーの例を示した。この配列は、表4-1の配列番号58のプライマー名Di FIP-2-3の3’末端から9塩基目にタグ配列CTGを挿入した例である。タグ配列に下線を付した。タグ付与プライマーを作製する場合には、同様に所望の位置に所望のタグ配列を含ませればよい。 An example of a primer containing a tag sequence is shown at the bottom of Table 4-2. This sequence is an example in which the tag sequence CTG is inserted at the 9th base from the 3 'end of the primer name Di FIP-2-3 of SEQ ID NO: 58 in Table 4-1. The tag sequence is underlined. In the case of producing a tagging primer, a desired tag sequence may be included at a desired position in the same manner.
 これらのプライマーをプライマーセットして用いる場合の好ましい組み合わせの例を表5に示す。
Figure JPOXMLDOC01-appb-T000008
Table 5 shows examples of preferable combinations when these primers are used as a primer set.
Figure JPOXMLDOC01-appb-T000008
 <パルボウイルスのためのプライマー配列>
 パルボウイルスのためのF1領域、F2領域、F3領域、B1領域、B2領域およびB3領域を基にパルボウイルスを特異的にLAMP増幅用のプライマーを設計した。決定した。これらの領域を表6-1、表6-2および表6-3に示す。
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
<Primer sequence for parvovirus>
Primers for parvovirus specific LAMP amplification were designed based on the F1, F2, F3, B1, B2, and B3 regions for parvovirus. Were determined. These regions are shown in Table 6-1, Table 6-2, and Table 6-3.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
 これらのプライマーをプライマーセットとして用いる場合には、例えば、表7に記載の組み合わせで用いてよい。
Figure JPOXMLDOC01-appb-T000012
When these primers are used as a primer set, for example, the combinations shown in Table 7 may be used.
Figure JPOXMLDOC01-appb-T000012
 <プライマー>
 ジステンバーウイルスのためのプライマーの例において、配列番号47~配列番号75で表されるそれぞれのポリヌクレオチドを含む配列であっても、それぞれのポリヌクレオチドからなる配列であってもよい。また、配列番号47~配列番号75の相補配列で表されるそれぞれのポリヌクレオチドを含む配列であっても、それぞれのポリヌクレオチドからなる配列であってもよい。配列番号47~配列番号75またはその相補配列で表されるそれぞれのポリヌクレオチドは、その何れかの位置の1~5個、好ましくは1~数個のヌクレオチドが置換、欠失および/または挿入を有していてもよい。また、配列番号47~配列番号75またはその相補配列で表されるそれぞれのポリヌクレオチドの何れかの位置の1~5個、好ましくは1~数個のヌクレオチドが混合ヌクレオチドまたはユニバーサルなヌクレオチドであってもよい。
<Primer>
In the example of the primer for distemper virus, it may be a sequence containing each polynucleotide represented by SEQ ID NO: 47 to SEQ ID NO: 75, or a sequence consisting of each polynucleotide. Further, it may be a sequence containing each polynucleotide represented by a complementary sequence of SEQ ID NO: 47 to SEQ ID NO: 75, or a sequence consisting of each polynucleotide. Each polynucleotide represented by SEQ ID NO: 47 to SEQ ID NO: 75 or a complementary sequence thereof has 1 to 5, preferably 1 to several nucleotides at any position thereof substituted, deleted and / or inserted. You may have. In addition, 1 to 5, preferably 1 to several nucleotides at any position of each polynucleotide represented by SEQ ID NO: 47 to SEQ ID NO: 75 or its complementary sequence are mixed nucleotides or universal nucleotides. Also good.
 パルボウイルスのためのプライマーの例において、配列番号77~配列番号115で表されるそれぞれのポリヌクレオチドを含む配列であっても、それぞれのポリヌクレオチドからなる配列であってもよい。また、配列番号77~配列番号115の相補配列で表されるそれぞれのポリヌクレオチドを含む配列であっても、それぞれのポリヌクレオチドからなる配列であってもよい。配列番号77~配列番号115またはその相補配列で表されるそれぞれのポリヌクレオチドは、その何れかの位置の1~5個、好ましくは1~数個のヌクレオチドが置換、欠失および/または挿入を有していてもよい。また、配列番号47~配列番号75またはその相補配列で表されるそれぞれのポリヌクレオチドの何れかの位置の1~5個、好ましくは1~数個のヌクレオチドが混合ヌクレオチドまたはユニバーサルなヌクレオチドであってもよい。 In the example of the primer for parvovirus, it may be a sequence containing each polynucleotide represented by SEQ ID NO: 77 to 115 or a sequence consisting of each polynucleotide. Further, it may be a sequence including each polynucleotide represented by a complementary sequence of SEQ ID NO: 77 to SEQ ID NO: 115 or a sequence comprising each polynucleotide. Each of the polynucleotides represented by SEQ ID NO: 77 to SEQ ID NO: 115 or its complementary sequence has 1 to 5, preferably 1 to several nucleotides at any position substituted, deleted and / or inserted. You may have. In addition, 1 to 5, preferably 1 to several nucleotides at any position of each polynucleotide represented by SEQ ID NO: 47 to SEQ ID NO: 75 or its complementary sequence are mixed nucleotides or universal nucleotides. Also good.
 ここで、ユニバーサルなヌクレオチドの例は、これらに限定するものではないが、デオキシイノシン(deoxyinosine;dI)や、Gren Research社の3-ニトロピロール(Nitropyrrole)、5-ニトロインドール(Nitroindole)、デオキシリボルラノシル(deoxyribofuranosyl;dP)、デオキシ-5’-ジメトキシトリチル-D-リボフラノシル(deoxy-5’-dimethoxytrityl-D-ribofuranosyl;dK)が含まれる。 Here, examples of universal nucleotides include, but are not limited to, deoxyinosine (dI), 3-nitropyrrole (Nitropyrole), 5-nitroindole (Nitroindole), and deoxyribol from Gren Research. Lanosyl (deoxyribofuranosyl; dP), deoxy-5′-dimethoxytrityl-D-ribofuranosyl (deoxy-5′-dimethyloxytrityl-D-ribofuranosyl; dK).
 「ミックス塩基」とは、ミックス塩基としたい所望の箇所の塩基を「アデニン」、「チミン」、「シトシン」および「グアニン」に設計したプライマーを2以上または全て混合して使用する核酸プローブセットをいう。また、複数種類の塩基に対して対合可能な修飾塩基で置換するように設計されてもよい。 “Mixed base” refers to a nucleic acid probe set that uses a mixture of two or more of the primers designed as “adenine”, “thymine”, “cytosine”, and “guanine” for the base at the desired location to be the mixed base. Say. Moreover, you may design so that it may substitute with the modified base which can be paired with respect to multiple types of bases.
 またここで、プライマーの各配列間またはその末端側には、更なる配列として、1~100ヌクレオチド、好ましくは2~30ヌクレオチド程度の配列(例えば、スペーサーとして使用される配列)が含まれていてもよい。しかしながら、これらの更なる配列は、タグ配列を含むプライマーの3'末端には含まれないことが望ましい。 Further, here, a sequence of 1 to 100 nucleotides, preferably about 2 to 30 nucleotides (for example, a sequence used as a spacer) is included as a further sequence between the respective sequences of the primer or at the end thereof. Also good. However, these additional sequences are preferably not included at the 3 ′ end of the primer containing the tag sequence.
 <プライマーセット>
 ジステンバーウイルスのためのプライマーセットの例を表5に示す。好ましい例は、プライマーセット8、9、11、12および14であり、より好ましい例は、プライマーセット9、12および14であり、更に好ましい例はプライマーセット9である。
<Primer set>
Examples of primer sets for distemper virus are shown in Table 5. Preferred examples are primer sets 8, 9, 11, 12 and 14, more preferred examples are primer sets 9, 12 and 14, and a more preferred example is primer set 9.
 パルボウイルスのためのプライマーセットの例を表7に示す。好ましい例は、プライマーセット1、3、4、6、7、9、10、12、13、14、15、16、19、20、25、26、27、28であり、より好ましい例は、プライマーセット1、4、6、7、9、10、13、15、16、19、25、26、27、28であり、更に好ましい例はプライマーセット19、25および26であり、更に好ましい例はプライマーセット19である。ここで、表5のプライマーセット2および5のFIPプライマー、プライマーセット14のLPbプライマーはミックス塩基であることを示す。 Table 7 shows examples of primer sets for parvovirus. Preferred examples are primer sets 1, 3, 4, 6, 7, 9, 10, 12, 13, 14, 15, 16, 19, 20, 25, 26, 27, 28, and more preferred examples are primer sets. Set 1, 4, 6, 7, 9, 10, 13, 15, 16, 19, 25, 26, 27, 28, more preferable examples are primer sets 19, 25, and 26, and more preferable examples are primers. Set 19. Here, it is shown that the FIP primers of primer sets 2 and 5 in Table 5 and the LPb primer of primer set 14 are mixed bases.
 <プローブ>
 プローブの配列は、ハイブリダイズして検出を行うためのタグ配列を含む増幅産物由来の配列であればよい。イヌジステンバーウイルスとイヌパルボウイルスを同時に検出するためのプローブセットの1例を表8に示すが、これに限定されるものではない。
<Probe>
The probe sequence may be a sequence derived from an amplification product including a tag sequence for hybridization and detection. An example of a probe set for simultaneously detecting canine distemper virus and canine parvovirus is shown in Table 8, but is not limited thereto.
 [例1]
 1.イヌジステンバーウイルス、イヌパルボウイルスのプライマースクリーニング
 イヌジステンバーウイルス、イヌパルボウイルスを特異的に増幅するLAMPプライマーを設計し、LAMP増幅を行った。使用したプライマーについては、表4-1および表4-2にイヌジステンバーウイルスのLAMPプライマー配列、表5にプライマーセット、表6-1、表6-2および表6-3に、表7にイヌパルボウイルスのLAMPプライマー配列、プライマーセットを示した。
[Example 1]
1. Primer screening of canine distemper virus and canine parvovirus LAMP primers that specifically amplify canine distemper virus and canine parvovirus were designed and amplified. Regarding the primers used, Table 4-1 and Table 4-2 are LAMP primer sequences of canine distemper virus, Table 5 is a primer set, Table 6-1, Table 6-2 and Table 6-3 are Tables 7 are dogs Parvovirus LAMP primer sequences and primer sets are shown.
 鋳型核酸については、表1に示すイヌジステンバーウイルスのNP(Nucleocapsid)gene配列、表2に示すイヌパルボウイルスのVP2 gene 配列をそれぞれ人工合成して得たプラスミドを用い、濃度は1000copy/反応液で行った。 For the template nucleic acid, plasmids obtained by artificial synthesis of the NP (Nucleocapsid) gene sequence of canine distemper virus shown in Table 1 and the VP2 gene sequence of canine parvovirus shown in Table 2 were used, and the concentration was 1000 copies / reaction solution. went.
 LAMP増幅は、表9に示す組成で行い、63℃で90分、核酸を増幅させた。鋳型ネガティブコントロールでは、鋳型核酸の代わりに滅菌水を用いた。 LAMP amplification was performed with the composition shown in Table 9, and the nucleic acid was amplified at 63 ° C. for 90 minutes. In the template negative control, sterilized water was used instead of the template nucleic acid.
 増幅の立ち上がり時間はLoopampリアルタイム濁度測定装置を用い、増幅反応に伴い生成されるピロリン酸と溶液中のマグネシウムの白濁を検出することで行った。実験は各2回行った。 The rise time of amplification was determined by detecting the white turbidity of pyrophosphoric acid produced in the amplification reaction and magnesium in the solution using a Loopamp real-time turbidity measuring device. Each experiment was performed twice.
 図13にイヌジステンバーウイルスを増幅した結果を示した。プライマーセット9において、濁度立ち上がり時間が最も早かった。次に濁度立ち上がり時間が早いのは、プライマーセット12および14であり、プライマーセット8および11がそれに続いた。以下の実験には、プライマーセット9を用いた。プライマーセット9は、プライマー領域の変異が少ない点からも好ましいことが考えられた。ネガティブコントロールでは、どのプライマーセットにおいても濁度の立ち上がりは見られなかった。 FIG. 13 shows the results of amplification of canine distemper virus. In primer set 9, the turbidity rise time was the fastest. The next fastest turbidity rise time was primer sets 12 and 14, followed by primer sets 8 and 11. Primer set 9 was used in the following experiment. It was considered that the primer set 9 is preferable from the viewpoint that there are few mutations in the primer region. In the negative control, no rise in turbidity was observed in any primer set.
 図14にイヌパルボウイルスを増幅した結果を示した。プライマーセット19において、濁度立ち上がり時間が最も早かった。プライマーセット25および26も濁度立ち上がり時間がプライマーセット19に非常に近いものであった。次に濁度立ち上がり時間が早いのは、プライマーセット1、4、6、7、9、10、13、15、16、27、28であり、プライマーセット3、12、14、20がそれに続いた。以下の実験には、プライマーセット19を用いた。プライマーセット19は、プライマー領域の変異が少ない点からも好ましいことが考えられた。ネガティブコントロールでは、どのプライマーセットにおいても濁度の立ち上がりは見られなかった。 FIG. 14 shows the results of amplification of canine parvovirus. In primer set 19, the turbidity rise time was the fastest. Primer sets 25 and 26 were also very close to primer set 19 in turbidity rise time. Next, the turbidity rise time is the fastest for primer sets 1, 4, 6, 7, 9, 10, 13, 15, 16, 27, 28, followed by primer sets 3, 12, 14, 20 . Primer set 19 was used in the following experiment. It was considered that the primer set 19 is preferable from the viewpoint that there are few mutations in the primer region. In the negative control, no rise in turbidity was observed in any primer set.
 [例2]
 タグ挿入位置、タグ塩基数の検討
 例1で決定したイヌジステンバーウイルスのプライマーセット9、イヌパルボウイルスのプライマーセット19を用いてタグの挿入位置、タグの塩基数の検討を行った。図15に示すようにタグの挿入位置についての検討は、FIPプライマーの3’末端側から3塩基目、6塩基目、9塩基目、12塩基目、15塩基目で行い、タグの塩基数については、3塩基、5塩基、7塩基、9塩基で行い、タグの塩基については2種類設計した。
[Example 2]
Examination of tag insertion position and tag base number Using the canine distemper virus primer set 9 and canine parvovirus primer set 19 determined in Example 1, the tag insertion position and tag base number were examined. As shown in FIG. 15, the tag insertion position is examined at the 3rd, 6th, 9th, 12th and 15th bases from the 3 ′ end of the FIP primer. Was performed with 3 bases, 5 bases, 7 bases and 9 bases, and 2 types of tag bases were designed.
 各鋳型濃度は1000copy/反応液、100copy/反応液、10copy/反応液であった。増幅の立ち上がり時間は例1と同様にLoopampリアルタイム濁度測定装置で測定した。 The template concentrations were 1000 copy / reaction solution, 100 copy / reaction solution, and 10 copy / reaction solution. The amplification rise time was measured with a Loopamp real-time turbidity measuring apparatus in the same manner as in Example 1.
 イヌジステンバーウイルスの結果を図16に示す。3’末端から3塩基目の場合には、タグ塩基数が全ての場合において増幅は見られなかった。3’末端から6塩基目の場合には、タグ塩基数3塩基、5塩基の場合では増幅が見られた。3’末端から9塩基目、12塩基目、15塩基目の場合には、タグ塩基数3塩基、5塩基、7塩基の場合で増幅が見られた。一方、9塩基の場合には、増幅立ち上がり時間が遅いか、増幅が見られなかった。 The results of canine distemper virus are shown in FIG. In the case of the third base from the 3 'end, amplification was not observed in all cases of the tag base number. In the case of the sixth base from the 3 'end, amplification was observed in the case of the tag base number of 3 bases and 5 bases. In the case of the 9th base, the 12th base, and the 15th base from the 3 'end, amplification was observed when the number of tag bases was 3, 5 and 7 bases. On the other hand, in the case of 9 bases, the amplification rise time was slow or no amplification was observed.
 同様に、イヌパルボウイルスの結果を図17に示す。3’末端から3塩基目の場合には、タグ塩基数が全ての場合において増幅は見られなかった。3’末端から6塩基目の場合には、タグ塩基数3塩基、5塩基の場合では増幅が見られた。3’末端から9塩基目、12塩基目、15塩基目の場合には、タグ塩基数3塩基、5塩基、7塩基の場合で増幅が見られた。一方、9塩基の場合には、増幅立ち上がり時間が遅いか、増幅が見られなかった。 Similarly, the results of canine parvovirus are shown in FIG. In the case of the third base from the 3 'end, amplification was not observed in all cases of the tag base number. In the case of the sixth base from the 3 'end, amplification was observed in the case of the tag base number of 3 bases and 5 bases. In the case of the 9th base, the 12th base, and the 15th base from the 3 'end, amplification was observed when the number of tag bases was 3, 5 and 7 bases. On the other hand, in the case of 9 bases, the amplification rise time was slow or no amplification was observed.
 以上のことから、タグ挿入位置は3’末端から6塩基目より5’末端側、タグ塩基数は3塩基~7塩基がより優れていることが示唆された。 From the above, it was suggested that the tag insertion position is superior to the 6 'base from the 3' end to the 5 'end, and the number of tag bases is 3 to 7 bases.
 [例3]
 12種のタグ導入増幅産物のチップ検出
 FIPプライマーの3’末端側から9塩基目に3塩基のタグを挿入したプライマーを12種設計し、増幅を行った。12種類のタグは、1.GAC、2.CTG、3.GGA、4.CCT、5.AGG、6.TCC、7.ATC、8.TAG、9.ACA、10.TGT、11.CAA、12.GTTを用い、互いに2塩基以上配列が異なるように設計した。ここにおいてタグ配列の前に付した数字は便宜上のタグの認識番号である。
[Example 3]
Chip detection of 12 kinds of tag-introduced amplification products Twelve kinds of primers having a 3-base tag inserted at the 9th base from the 3 ′ end side of the FIP primer were designed and amplified. The 12 types of tags are: GAC, 2. CTG, 3. GGA, 4. CCT, 5. AGG, 6. TCC, 7. ATC, 8. TAG, 9. ACA, 10. TGT, 11. CAA, 12. GTT was used so that the sequences differed by 2 or more bases. Here, the number attached to the front of the tag sequence is a tag recognition number for convenience.
 12種類の増幅産物について、各々のタグを検出するプローブを基体上に固定化し、チップ検出を行った。使用したプローブ配列を表8に示す。表8の配列において下線を付した部分がタグ配列である。プローブ配列はプライマーに導入したタグ配列と逆鎖の配列となる。チップ検出は電気化学的な手法により行った。
Figure JPOXMLDOC01-appb-T000013
For 12 types of amplification products, probes for detecting each tag were immobilized on a substrate and chip detection was performed. The probe sequences used are shown in Table 8. The underlined part in the sequence of Table 8 is the tag sequence. The probe sequence is a sequence opposite to the tag sequence introduced into the primer. Chip detection was performed by an electrochemical method.
Figure JPOXMLDOC01-appb-T000013
 図18A、図18Bおよび図18Cにジステンバーウイルスをチップ検出した結果を示した。1.GACを導入した産物は6.TCC検出プローブから非特異的な信号が見られた。2.CTGを導入した産物は5.AGG検出プローブから非特異的な信号が見られた。逆に5.AGGを導入した産物は2.CTG検出プローブから非特異的な信号が見られた。8.TAG、9.ACA、10.TGT、11.CAA、12.GTTについては、各々を特異的に検出するプローブの信号が低かった。このことから、2.CTG、3.GGA、4.CCT、6.TCC、7.ATCの組み合わせがより好ましいと示唆された。図19にこれら5つのタグ用いて1チップ上で検出した結果を示す。結果、良好な特性を示すことが確認された。 FIG. 18A, FIG. 18B and FIG. 18C show the results of chip detection of distemper virus. 1. Products that introduced GAC are 6. A non-specific signal was seen from the TCC detection probe. 2. The product which introduced CTG is 5. A non-specific signal was seen from the AGG detection probe. Conversely, 5. The product which introduced AGG is 2. A non-specific signal was seen from the CTG detection probe. 8). TAG, 9. ACA, 10. TGT, 11. CAA, 12. For GTT, the signal of the probe specifically detecting each was low. From this, 2. CTG, 3. GGA, 4. CCT, 6. TCC, 7. A combination of ATCs was suggested to be more preferred. FIG. 19 shows the result of detection on one chip using these five tags. As a result, it was confirmed that good characteristics were exhibited.
 パルボウイルスについても同様の傾向が見られ、2.CTG、3.GGA、4.CCT、6.TCC、7.ATCの組み合わせにおいて非特異信号は見られず、且つ特異信号も高く良好な結果であった。 The same trend is seen for parvovirus. CTG, 3. GGA, 4. CCT, 6. TCC, 7. In the combination of ATC, no non-specific signal was observed, and the specific signal was also high and good results.
 [例4]
 陰性増幅産物中に存在する残存プライマーによるハイブリダイゼーションの阻害
 3’末端側から12塩基目、15塩基目に実施例3で得られた良好なタグの組み合わせ2.CTG、3.GGA、4.CCT、6.TCC、7.ATCを挿入したプライマーを設計し、同様にチップ検出を行った。その結果、図20に示すように、3’末端側から15塩基目の場合、各々の陽性増幅産物を単独で検出した場合には十分な信号が得られた。これに対して、1つの陽性増幅産物に4つの陰性増幅産物を混合した場合には特異信号の低下および非特異信号の増大が見られた。図21に示すように、この特異信号の低下は、陰性増幅産物中に存在する増幅に使われなかった未反応の残存プライマーが2.CTG増幅産物と2.CTG検出プローブのハイブリを阻害していることが原因であると考えられた。非特異信号の増大は同じく未反応の残存プライマーが各々プローブに反応してしまっていることが原因であると考えられた。
[Example 4]
1. Inhibition of hybridization by residual primer present in negative amplification product Good tag combination obtained in Example 3 at the 12th and 15th bases from the 3 ′ end side CTG, 3. GGA, 4. CCT, 6. TCC, 7. Primers with ATC inserted were designed and chip detection was performed in the same manner. As a result, as shown in FIG. 20, in the case of the 15th base from the 3 ′ end side, a sufficient signal was obtained when each positive amplification product was detected alone. In contrast, when four negative amplification products were mixed with one positive amplification product, a decrease in specific signal and an increase in non-specific signal were observed. As shown in FIG. 21, this decrease in the specific signal is due to the fact that the unreacted residual primer not used for amplification present in the negative amplification product is 2. 1. CTG amplification product and It was thought that this was caused by inhibition of hybridization of the CTG detection probe. The increase in the non-specific signal was also considered to be caused by the fact that each of the unreacted remaining primers had reacted with the probe.
 3’末端側から12塩基目、9塩基目については、陰性増幅産物を混合しても信号に変化はなかった。このことから、残存プライマーの悪影響を回避するためはタグ挿入位置を3’末端から12塩基目より3’末端側に設計することが好ましいことが示された。 For the 12th and 9th bases from the 3 'end, the signal did not change even when negative amplification products were mixed. From this, it was shown that it is preferable to design the tag insertion position on the 3 'end side from the 12th base from the 3' end in order to avoid the adverse effect of the remaining primer.
 例2の増幅特性の結果と合わせると、タグの挿入位置は3’末端から6塩基目から12塩基目がより良好あると考えられた。 Combined with the results of the amplification characteristics of Example 2, it was considered that the tag insertion position was better at the 6th to 12th bases from the 3 'end.
 [例5]
 良好なタグの組み合わせについて、追加検討
 例3にて、良好なタグの組み合わせが見出されたが、さらに同時検出可能な検体数を増やすため、13.GCG、14.CGC(実施例3で抽出された5タグとは2塩基以上互いに異なる配列)、さらに5塩基のタグとして8種類のタグ配列、15. CCTCT、16. CTCTG、17. AGTGG、18.TGACC、19.GTGCA、20. GACGT、21.GCAAG、22.ACGTC(互いに4塩基以上異なる)を設計し、チップ検出を行った。これらのタグは例3と同様にFIPプライマーの3’末端側から9塩基目に導入した。
[Example 5]
Further examination of good tag combinations In Example 3, a good tag combination was found, but in order to further increase the number of simultaneously detectable samples, 13. GCG, 14. CGC (sequences different from each other by 5 bases or more from the 5 tags extracted in Example 3), 8 kinds of tag sequences as 5 base tags, and 15. CCTCT, 16. CTCTG, 17. AGTGG, 18. TGACC, 19. GTGCA, 20. GACGT, 21. GCAAG, 22. ACGTC (different from each other by 4 bases or more) was designed and chip detection was performed. These tags were introduced at the 9th base from the 3 ′ end of the FIP primer in the same manner as in Example 3.
 結果、図22Aおよび図22Bに示すように2.CTG増幅産物を検出した時の16. CTCTG、17. AGTGG、21.GCAAG検出プローブで非特異信号が高いことが示された。また、6.TCC増幅産物を検出した時の18.TGACC検出プローブで非特異信号が高いことが示された。その他、新たに検討した13.GCG、14.CGC、15.CCTCT、19.GTGCA、20. GACGT、22.ACGTCについては図22、図23に示すように良好な結果を示すことが明らかとなった。これにより、2.CTG、3.GGA、4.CCT、6.TCC、7.ATC 、13.GCG、14.CGC、15.CCTCT、19.GTGCA、20. GACGT、22.ACGTCの11種のタグを用いることにより11検体の同時検出が可能であることが実証された。 As a result, as shown in FIG. 22A and FIG. 22B, 2. 16. When a CTG amplification product is detected CTCTG, 17. AGTGG, 21. The GCAAG detection probe showed a high nonspecific signal. In addition, 6. 18. When a TCC amplification product is detected The TGACC detection probe showed a high non-specific signal. Other newly studied GCG, 14. CGC, 15. CCTCT, 19. GTGCA, 20. GACGT, 22. As for ACGTC, as shown in FIG. 22 and FIG. As a result, 2. CTG, 3. GGA, 4. CCT, 6. TCC, 7. ATC, 13. GCG, 14. CGC, 15. CCTCT, 19. GTGCA, 20. GACGT, 22. It was demonstrated that 11 specimens can be detected simultaneously by using 11 kinds of tags of ACGTC.
 [例6]
 イヌジステンバーウイルスおよびイヌパルボウイルスのマルチ増幅させた産物の検出
 例3および5で選ばれた11種のタグの中で特に良好な特性を示した2.CTG、3.GGA、4.CCT、14.CGC、19.GTGCAについて、ジステンバー検出用とした。パルボについても同様に検討した。その結果、2.CTG、3.GGA、4.CCT、6.TCC、14.CGC、19.GTGCAがより良好であった。
[Example 6]
1. Detection of canine distemper virus and canine parvovirus multi-amplified products Among the 11 tags selected in Examples 3 and 5, they showed particularly good properties. CTG, 3. GGA, 4. CCT, 14. CGC, 19. GTGCA was used for detecting the distemper bar. Parvo was similarly examined. As a result, CTG, 3. GGA, 4. CCT, 6. TCC, 14. CGC, 19. GTGCA was better.
 そこで、チューブ1の増幅試薬にジステンバーの2.CTG挿入FIPプライマー、パルボの2.CTG挿入FIPプライマー、チューブ2の増幅試薬にジステンバーの3.GGA挿入FIPプライマー、パルボの3.GGA挿入FIPプライマー、チューブ3の増幅試薬にジステンバーの4.CCT挿入FIPプライマー、パルボの4.CCT挿入FIPプライマー、チューブ4の増幅試薬にジステンバーの14.CGC挿入FIPプライマー、パルボの6.TCC挿入FIPプライマー、チューブ5の増幅試薬にジステンバーの22.ACGTC挿入FIPプライマー、パルボの19.GTGCA挿入FIPプライマー を各々混合した。子犬の糞便検体から抽出した核酸を検体とし、表10に示す組成の反応液中でRT-LAMPをかけた。 Therefore, distemper 2. CTG-inserted FIP primer, Parvo 2. 2. Dispense the CTG-inserted FIP primer and tube 2 amplification reagent. 2. GGA-inserted FIP primer, parvo 3. Dispense the GGA-inserted FIP primer and tube 3 amplification reagent. CCT-inserted FIP primer, parvo 4. CCT inserted FIP primer, tube 4 amplification reagent and distempered 14. CGC-inserted FIP primer, parvo 6. TCC inserted FIP primer, tube 5 amplification reagent, distempered 22. ACGTC-inserted FIP primer, parvo 19. Each of the GTGCA-inserted FIP primers was mixed. A nucleic acid extracted from a pup fecal sample was used as a sample, and RT-LAMP was applied in a reaction solution having the composition shown in Table 10.
 検体1はチューブ1、検体2はチューブ2、検体3はチューブ3、検体4はチューブ4、検体5はチューブ5に入れて、増幅を行った。チップ検出の結果を図24に示すように、実検体1はジステンバー陰性、パルボ陽性、実検体2、3はジステンバー陰性、パルボ陰性、実検体4はジステンバー陽性、パルボ陰性、実検体5はジステンバー陽性、パルボ陽性であった。これらの結果は、抗原抗体反応の結果と一致した。 Sample 1 was placed in tube 1, sample 2 was placed in tube 2, sample 3 was placed in tube 3, sample 4 was placed in tube 4, sample 5 was placed in tube 5, and amplification was performed. As shown in FIG. 24, the results of chip detection are as follows: real sample 1 is distemper negative, parvo positive, real sample 2, 3 is distemper negative, parvo negative, real sample 4 is distemper positive, parvo negative, real sample 5 is distemper positive Was positive for parvo. These results were consistent with the results of the antigen-antibody reaction.
 [増幅用反応液の組成]
 LAMP増幅は表9に示した組成を用いることが可能である。この組成は、例えば、合成されたプラスミドなどの増幅において使用するための組成の1例である。ウイルスについて増幅を行う場合には、例えば、表10に示す組成を用いればよい。
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
[Composition of amplification reaction solution]
The composition shown in Table 9 can be used for LAMP amplification. This composition is an example of a composition for use in amplification of, for example, a synthesized plasmid. When amplification is performed on a virus, for example, the composition shown in Table 10 may be used.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
 1…基体、2…固定化領域、11…基体、12…電極、13…パット 1 ... Substrate, 2 ... Fixed area, 11 ... Substrate, 12 ... Electrode, 13 ... Pat

Claims (15)

  1.  複数の検体にそれぞれ含まれる検体核酸上の部分核酸配列について解析する方法であって、
    (a)前記複数の検体のそれぞれに対応して互いに異なる配列を有するタグ配列をそれぞれ含む複数の第1のプライマーと、前記第1のプライマーと対で使用される第2のプライマーとをそれぞれに含む複数のプライマーセットを準備することと、
     ここで、
      前記複数のプライマーセットにそれぞれに含まれる前記第1のプライマーは互いに異なるタグ配列を有し、
      前記タグ配列は第1プライマーの3’末端側から6塩基目から12塩基目の何れかの部位に挿入されており、且つタグ塩基長は3塩基~7塩基であり、前記第1のプライマーが鋳型にハイブリダイズしたときに、前記タグ配列がループアウトするように設計されている;
    (b)互いに独立した反応場において、前記複数の検体を前記対応するプライマーセットを用いてそれぞれ増幅して、前記タグ配列をそれぞれに含む増幅産物を得ることと;
    (c)(b)で得られた複数の検体からのそれぞれの増幅産物を混合することと;
    (d)基体上に固定化された複数種類の核酸プローブに対して、(c)で得られた前記増幅産物の混合物を反応させることと
      ここで、前記複数種類の核酸プローブのそれぞれは、前記タグ配列と、前記部分核酸配列を含む鋳型配列に由来する配列とからなる標的配列またはその相補配列を含む;
    (e)(d)で生じたハイブリダイゼーションの有無および/または量を決定して、得られた結果から、前記複数の検体核酸上の前記部分核酸配列について解析することと;
    を具備する方法。
    A method for analyzing a partial nucleic acid sequence on a sample nucleic acid contained in each of a plurality of samples,
    (A) A plurality of first primers each including a tag sequence having a different sequence corresponding to each of the plurality of specimens, and a second primer used in a pair with the first primer, Preparing a plurality of primer sets including:
    here,
    The first primer included in each of the plurality of primer sets has a tag sequence different from each other;
    The tag sequence is inserted at any position from the 6th base to the 12th base from the 3 ′ end side of the first primer, the tag base length is 3 to 7 bases, and the first primer is Designed to loop out the tag sequence when hybridized to a template;
    (B) amplifying each of the plurality of specimens using the corresponding primer set in a reaction field independent from each other to obtain an amplification product each containing the tag sequence;
    (C) mixing each amplification product from a plurality of specimens obtained in (b);
    (D) reacting a mixture of the amplification products obtained in (c) with a plurality of types of nucleic acid probes immobilized on a substrate, wherein each of the plurality of types of nucleic acid probes includes A target sequence consisting of a tag sequence and a sequence derived from a template sequence containing the partial nucleic acid sequence or a complementary sequence thereof;
    (E) determining the presence / absence and / or amount of hybridization produced in (d), and analyzing the partial nucleic acid sequences on the plurality of sample nucleic acids from the obtained results;
    A method comprising:
  2.  検体中の1または複数の検体核酸上に含まれる複数の部分核酸配列について解析する方法であって、
    (a)前記複数の部分核酸配列のそれぞれに対応して互いに異なる配列を有するタグ配列をそれぞれ含む第1のプライマーと、前記第1のプライマーと対で使用される第2のプライマーとをそれぞれに含む複数のプライマーセットを準備することと、
     ここで、
      前記複数のプライマーセットにそれぞれに含まれる前記第1のプライマーは互いに異なるタグ配列を有し、
      前記タグ配列は第1プライマーの3’末端側から6塩基目から12塩基目の何れかの部位に挿入されており、且つタグ塩基長は3塩基~7塩基であり、前記第1のプライマーが鋳型にハイブリダイズしたときに、前記タグ配列がループアウトするように設計されている;
    (b)1つの反応場において、前記検体中の前記1または複数の検体核酸を前記複数のプライマーセットを用いてマルチ増幅して、前記タグ配列をそれぞれに含む増幅産物を得ることと;
    (c)基体上に固定化された複数種類の核酸プローブに対して、(b)で得られた前記増幅産物を反応させることと、
      ここで、前記前記複数種類の核酸プローブのそれぞれは、前記タグ配列と、前記複数の部分核酸配列から選択された1種類の配列を含む鋳型配列に由来する配列とからなる標的配列またはその相補配列を含む;
    (d)(c)において生じたハイブリダイゼーションの有無および/または量を決定して、得られた結果から、前記複数の部分核酸配列について解析することと;
    を具備する方法。
    A method for analyzing a plurality of partial nucleic acid sequences contained on one or more sample nucleic acids in a sample,
    (A) a first primer including tag sequences each having a different sequence corresponding to each of the plurality of partial nucleic acid sequences, and a second primer used in pairs with the first primer, Preparing a plurality of primer sets including:
    here,
    The first primer included in each of the plurality of primer sets has a tag sequence different from each other;
    The tag sequence is inserted at any position from the 6th base to the 12th base from the 3 ′ end side of the first primer, the tag base length is 3 to 7 bases, and the first primer is Designed to loop out the tag sequence when hybridized to a template;
    (B) multi-amplifying the one or more sample nucleic acids in the sample using the plurality of primer sets in one reaction field to obtain amplification products each containing the tag sequence;
    (C) reacting the amplification product obtained in (b) with a plurality of types of nucleic acid probes immobilized on a substrate;
    Here, each of the plurality of types of nucleic acid probes is a target sequence consisting of the tag sequence and a sequence derived from a template sequence including one type of sequence selected from the plurality of partial nucleic acid sequences, or a complementary sequence thereof including;
    (D) determining the presence and / or amount of hybridization occurring in (c), and analyzing the plurality of partial nucleic acid sequences from the obtained results;
    A method comprising:
  3.  請求項1または2の何れか1項に記載の方法であって、
     ここで、前記鋳型配列の5’末端側よりF3領域、F2領域、LF領域、F1領域、3’末端側よりB3c領域、B2c領域、LBc領域、B1c領域を設定したときに、(a)の前記プライマーセットが、以下の(1)~(9)からなる群より少なくとも1選択され;
     (1)5’末端側にF1と相補的な配列を有し、3’末端側にF2と同じ配列を有し、前記F2と同じ配列内に前記複数の検体または前記複数の部分核酸配列のそれぞれの検体に対応して互いに異なるタグ配列が挿入されたFIPプライマー、および
        5’末端側にB1cと同じ配列を有し、3’末端側にB2cと相補的な配列を有するBIPプライマー;
     (2)5’末端側にF1と相補的な配列を有し、且つ3’末端側にF2と同じ配列を有するFIPプライマー、および
        5’末端側にB1cと同じ配列を有し、且つ3’末端側にB2cと相補的な配列を有し、前記B2cと相補的な配列内に前記複数の検体または前記複数の部分核酸配列のそれぞれの検体に対応して互いに異なるタグ配列が挿入されたBIPプライマー;
     (3)5’末端側にF1と相補的な配列を有し、3’末端側にF2と同じ配列を有し、且つ前記F2と同じ配列を有する配列内に前記複数の検体または前記複数の部分核酸配列のそれぞれの検体に対応して互いに異なるタグ配列が挿入されたFIPプライマー、および
        5’末端側にB1cと同じ配列を有し、3’末端側にB2cと相補的な配列を有し、且つ前記B2cと相補的な配列内に前記複数の検体または前記複数の部分核酸配列のそれぞれの検体に対応して互いに異なるタグ配列が挿入されたBIPプライマー;
     (4)5’末端側にF1と相補的な配列を有し3’末端側にF2と同じ配列を有し、且つ前記F2と同じ配列内に前記複数の検体または前記複数の部分核酸配列のそれぞれの検体に対応して互いに異なるタグ配列が挿入されたFIPプライマー、および
        5’末端側にB1cと同じ配列を有し、3’末端側にB2cと相補的な配列を有するBIPプライマー、
        F3領域と同じ配列を有するF3プライマー、および
        B3c領域と相補的な配列を有するB3プライマー;
     (5)5’末端側にF1と相補的な配列を有し、3’末端側にF2と同じ配列を有するFIPプライマー、
        5’末端側にB1cと同じ配列を有し、3’末端側にB2cと相補的な配列を有し、且つ前記B2cと相補的な配列内に前記複数の検体または前記複数の部分核酸配列のそれぞれの検体に対応して互いに異なるタグ配列が挿入されたBIPプライマー、
        F3領域と同じ配列を有するF3プライマー、および
        B3c領域と相補的な配列を有するB3プライマー;
     (6)5’末端側にF1と相補的な配列を有し、3’末端側にF2と同じ配列を有し、且つ前記F2と同じ配列内に前記複数の検体または前記複数の部分核酸配列のそれぞれの検体に対応して互いに異なるタグ配列が挿入されたFIPプライマー、
        5’末端側にB1cと同じ配列を有し、3’末端側にB2cと相補的な配列を有し、且つ前記B2cと相補的な配列内に前記複数の検体または前記複数の部分核酸配列のそれぞれの検体に対応して互いに異なるタグ配列が挿入されたBIPプライマー、
        F3領域と同じ配列を有するF3プライマー、および
        B3c領域と相補的な配列を有するB3プライマー;
     (7)5’末端側にF1と相補的な配列を有し、3’末端側にF2と同じ配列を有し、且つ前記F2と同じ配列内に前記複数の検体または前記複数の部分核酸配列のそれぞれの検体に対応して互いに異なるタグ配列が挿入されたFIPプライマー、
        5’末端側にB1cと同じ配列を有し、3’末端側にB2cと相補的な配列を有するBIPプライマー、
        F3領域と同じ配列を有するF3プライマー、および
        B3c領域と相補的な配列を有するB3プライマー、並びに
        LF領域と相補的な配列を有するLFcプライマー、および/またはLBc領域と同じ配列を有するLBcプライマー;
     (8)5’末端側にF1と相補的な配列を有し、3’末端側にF2と同じ配列を有するFIPプライマー、
        5’末端側にB1cと同じ配列を有し、3’末端側にB2cと相補的な配列を有し、且つ前記B2cと相補的な配列内に前記複数の検体または前記複数の部分核酸配列のそれぞれの検体に対応して互いに異なるタグ配列が挿入されたBIPプライマー、
        F3領域と同じ配列を有するF3プライマー、および
        B3c領域と相補的な配列を有するB3プライマー、並びに
        LF領域と相補的な配列を有するLFcプライマー、および/またはLBc領域と同じ配列を有するLBcプライマー;
     (9)5’末端側にF1と相補的な配列を有し、3’末端側にF2と同じ配列を有し、且つ前記F2と同じ配列内に前記複数の検体または前記複数の部分核酸配列のそれぞれの検体に対応して互いに異なるタグ配列を挿入したFIPプライマー、
        5’末端側にB1cと同じ配列を有し、3’末端側にB2cと相補的な配列を有し、且つ前記B2cと相補的な配列内に前記複数の検体または前記複数の部分核酸配列のそれぞれの検体に対応して互いに異なるタグ配列を挿入したBIPプライマー、
        F3領域と同じ配列を有するF3プライマー、および
        B3c領域と相補的な配列を有するB3プライマー、並びに
        LF領域と相補的な配列を有するLFcプライマー、および/またはLBc領域と同じ配列を有するLBcプライマー;
     並びに、ここで、(b)の増幅がLAMP法またはRT-LAMP法である方法。
    The method according to claim 1 or 2, comprising:
    Here, when the F3 region, F2 region, LF region, F1 region is set from the 5 ′ end side of the template sequence, and the B3c region, B2c region, LBc region, B1c region is set from the 3 ′ end side, the (a) At least one primer set selected from the group consisting of the following (1) to (9);
    (1) A sequence complementary to F1 on the 5 ′ end side, the same sequence as F2 on the 3 ′ end side, and the plurality of analytes or the plurality of partial nucleic acid sequences in the same sequence as F2 A FIP primer in which a tag sequence different from each other is inserted corresponding to each specimen, and a BIP primer having the same sequence as B1c on the 5 ′ end side and a sequence complementary to B2c on the 3 ′ end side;
    (2) FIP primer having a sequence complementary to F1 on the 5 ′ end side and having the same sequence as F2 on the 3 ′ end side, and having the same sequence as B1c on the 5 ′ end side, and 3 ′ BIP having a sequence complementary to B2c on the terminal side, and a tag sequence different from each other corresponding to each sample of the plurality of samples or the plurality of partial nucleic acid sequences is inserted into the sequence complementary to B2c Primer;
    (3) A sequence complementary to F1 on the 5 ′ end side, the same sequence as F2 on the 3 ′ end side, and the plurality of specimens or the plurality of sequences in the sequence having the same sequence as F2 FIP primer in which a different tag sequence is inserted corresponding to each sample of the partial nucleic acid sequence, and the same sequence as B1c on the 5 ′ end side, and a sequence complementary to B2c on the 3 ′ end side And a BIP primer in which different tag sequences are inserted corresponding to the respective samples of the plurality of samples or the plurality of partial nucleic acid sequences in a sequence complementary to the B2c;
    (4) A sequence complementary to F1 on the 5 ′ end side, the same sequence as F2 on the 3 ′ end side, and the plurality of specimens or the plurality of partial nucleic acid sequences in the same sequence as F2 FIP primers in which different tag sequences are inserted corresponding to the respective specimens, and BIP primers having the same sequence as B1c on the 5 ′ end side and a sequence complementary to B2c on the 3 ′ end side,
    An F3 primer having the same sequence as the F3 region, and a B3 primer having a sequence complementary to the B3c region;
    (5) FIP primer having a sequence complementary to F1 on the 5 ′ end side and having the same sequence as F2 on the 3 ′ end side,
    It has the same sequence as B1c on the 5 ′ end side, a sequence complementary to B2c on the 3 ′ end side, and the plurality of specimens or the plurality of partial nucleic acid sequences in the sequence complementary to B2c. BIP primers in which different tag sequences are inserted corresponding to each specimen,
    An F3 primer having the same sequence as the F3 region, and a B3 primer having a sequence complementary to the B3c region;
    (6) A sequence complementary to F1 on the 5 ′ end side, the same sequence as F2 on the 3 ′ end side, and the plurality of specimens or the plurality of partial nucleic acid sequences in the same sequence as F2 FIP primers in which different tag sequences are inserted corresponding to the respective samples,
    It has the same sequence as B1c on the 5 ′ end side, a sequence complementary to B2c on the 3 ′ end side, and the plurality of specimens or the plurality of partial nucleic acid sequences in the sequence complementary to B2c. BIP primers in which different tag sequences are inserted corresponding to each specimen,
    An F3 primer having the same sequence as the F3 region, and a B3 primer having a sequence complementary to the B3c region;
    (7) A sequence complementary to F1 on the 5 ′ end side, the same sequence as F2 on the 3 ′ end side, and the plurality of specimens or the plurality of partial nucleic acid sequences in the same sequence as F2 FIP primers in which different tag sequences are inserted corresponding to the respective samples,
    A BIP primer having the same sequence as B1c on the 5 ′ end side and a sequence complementary to B2c on the 3 ′ end side,
    An F3 primer having the same sequence as the F3 region, and a B3 primer having a sequence complementary to the B3c region, and an LFc primer having a sequence complementary to the LF region, and / or an LBc primer having the same sequence as the LBc region;
    (8) FIP primer having a sequence complementary to F1 on the 5 ′ end side and the same sequence as F2 on the 3 ′ end side,
    It has the same sequence as B1c on the 5 ′ end side, a sequence complementary to B2c on the 3 ′ end side, and the plurality of specimens or the plurality of partial nucleic acid sequences in the sequence complementary to B2c. BIP primers in which different tag sequences are inserted corresponding to each specimen,
    An F3 primer having the same sequence as the F3 region, and a B3 primer having a sequence complementary to the B3c region, and an LFc primer having a sequence complementary to the LF region, and / or an LBc primer having the same sequence as the LBc region;
    (9) A sequence complementary to F1 on the 5 ′ end side, the same sequence as F2 on the 3 ′ end side, and the plurality of specimens or the plurality of partial nucleic acid sequences in the same sequence as F2 FIP primers inserted with different tag sequences corresponding to the respective specimens of
    It has the same sequence as B1c on the 5 ′ end side, a sequence complementary to B2c on the 3 ′ end side, and the plurality of specimens or the plurality of partial nucleic acid sequences in the sequence complementary to B2c. BIP primers with different tag sequences inserted corresponding to each specimen,
    An F3 primer having the same sequence as the F3 region, and a B3 primer having a sequence complementary to the B3c region, and an LFc primer having a sequence complementary to the LF region, and / or an LBc primer having the same sequence as the LBc region;
    Also, here, the method in which the amplification in (b) is the LAMP method or the RT-LAMP method.
  4.  前記タグ配列がCTG、GGA、CCT、TCC、ATC、GCG、CGC、CCTCT、GTGCA、GACGT、ACGTCおよびこれらの相補配列からなる群より2以上で選択される請求項1~3の何れか1項に記載の方法。 4. The tag sequence according to claim 1, wherein the tag sequence is selected from two or more groups selected from the group consisting of CTG, GGA, CCT, TCC, ATC, GCG, CGC, CCTCT, GTGCA, GACGT, ACGTC and their complementary sequences. The method described in 1.
  5.  前記部分核酸配列または前記複数の部分核酸配列の1つが、イヌジステンバーウイルスに由来する配列であり、前記プライマーセットにおいてFIPプライマーがCAGAGTTGATGCTTGGGATTAC-TGATCCAGAGGATCATAGACGACであり、BIPプライマーがACATTTGCATCCAGAGGAGCAAG-GAGCTTTCGACCCTTCGTCTACであり、F3プライマーがGTGGAATCCCCTGGACAGであり、B3プライマーがCAATATCCTTATTCTCCAACCAであり、LBcプライマーがTGGATTCTGAGGCAGATGAGTである請求項3または4に記載の方法。 The partial nucleic acid sequence or one of the plurality of partial nucleic acid sequences is a sequence derived from canine distemper virus. 5. The method according to claim 3, wherein the method is GTGGAATCCCCCTGGACAG, the B3 primer is CAATATCCTTATTTCCCAACCA, and the LBc primer is TGGATTCTGAGGCAGATGAGGT.
  6.  前記タグ配列がCTG、GGA、CCT、CGCおよびGTGCAであり、前記核酸プローブの配列が、
    CATCAGGGTCGTCTATCAGGAT、
    CATCAGGGTCGTCTATTCCGAT、
    CATCAGGGTCGTCTATAGGGATC、
    TCAGGGTCGTCTATGCGGおよび
    CATCAGGGTCGTCTATTGCACG
    である請求項5に記載の方法。
    The tag sequence is CTG, GGA, CCT, CGC and GTGCA, and the sequence of the nucleic acid probe is
    CATCAGGGTCGTCTCATCAGGAT,
    CATCAGGGTCGTCCTATTCCGAT,
    CATCAGGGTCGTCTATAGGGATC,
    TCAGGGTCTCTCTGGCGG and CATCAGGGTCGTCTTTGCACG
    The method of claim 5, wherein
  7.  前記部分核酸配列または前記複数の部分核酸配列の1つが、イヌパルボウイルスに由来する配列であり、前記プライマーセットにおいて、FIPプライマーがGAACATCATCTGGATCTGTACCA-ACCATCTCATACTGGAACTAGTGGCであり、BIPプライマーがCTGTGCCAGTACACTTACTAAGA-GTGTTAGTCTACATGGTTTACAATCであり、F3プライマーがGAGATATTATTTTCAATGGGATAGAACであり、B3プライマーがCAATGCTCTATTTGTTTGCCATGであり、およびLBcプライマーがACAGGTGATGAATTTGCTACAGGである請求項3または4に記載の方法。 The partial nucleic acid sequence or one of the plurality of partial nucleic acid sequences is a sequence derived from a canine parvovirus. 5. The method according to claim 3, wherein is GAGAATTATTTTTCAATGGGATAGAAC, the B3 primer is CAATGCTCTATTTTGTTCCATGG, and the LBc primer is ACAGGTGATGAATTTGCTACAGG.
  8.  前記タグ配列がCTG、GGA、CCT、TCCおよびGTGCAであり、前記核酸プローブが、
    GGTGTGCCACTAGTCAGTCC、
    GGTGTGCCACTAGTTCCTCC、
    GGTGTGCCACTAGTAGGTCC、
    GGTGTGCCACTAGTGGATCC、および
    GGTGTGCCACTAGTTGCACTCC
    である請求項7に記載の方法。
    The tag sequence is CTG, GGA, CCT, TCC and GTGCA, and the nucleic acid probe is
    GGTGTGCCACTAGTCAGTC,
    GGTGTGCCACTAGTTCCTC,
    GGTGTGCCACTAGTAGGTCC,
    GGTGTGCCACTAGTGGATCC and GGTGTGCCACTAGTGGCACTCC
    The method of claim 7, wherein
  9.  前記複数の部分核酸配列の1つが、イヌジステンバーウイルスに由来する配列であり、前記プライマーセットにおいてFIPプライマーがCAGAGTTGATGCTTGGGATTAC-TGATCCAGAGGATCATAGACGACであり、BIPプライマーがACATTTGCATCCAGAGGAGCAAG-GAGCTTTCGACCCTTCGTCTACであり、F3プライマーがGTGGAATCCCCTGGACAGであり、B3プライマーがCAATATCCTTATTCTCCAACCAであり、およびLBcプライマーがTGGATTCTGAGGCAGATGAGTであり、
     前記複数の部分核酸配列のさらなる1つが、イヌパルボウイルスに由来する配列であり、前記プライマーセットにおいて、FIPプライマーがGAACATCATCTGGATCTGTACCA-ACCATCTCATACTGGAACTAGTGGCであり、BIPプライマーがCTGTGCCAGTACACTTACTAAGA-GTGTTAGTCTACATGGTTTACAATCであり、F3プライマーがGAGATATTATTTTCAATGGGATAGAACであり、B3プライマーがCAATGCTCTATTTGTTTGCCATGであり、LBcプライマーがACAGGTGATGAATTTGCTACAGGであり、
     前記イヌジステンバーウイルスのためのプライマーセットと、前記イヌパルボウイルスのためのプライマーセットが同一のチューブで混合され、前記両方のウイルスに由来する核酸が同時に増幅される請求項2~4の何れか1項に記載の方法。
    One of the plurality of partial nucleic acid sequences is a sequence derived from canine distemper virus. The primer is CAATATCCTTTATTCCCAACCA, and the LBc primer is TGGATTCTGAGGCAGATGAGGT;
    A further one of the plurality of partial nucleic acid sequences is a sequence derived from a canine parvovirus. , The B3 primer is CAATGCTCTATTTTGTGCCATG, the LBc primer is ACAGGTGATGAATTTGCTACAGGG,
    The primer set for the canine distemper virus and the primer set for the canine parvovirus are mixed in the same tube, and nucleic acids derived from both viruses are amplified simultaneously. The method according to item.
  10.  イヌジステンバーウイルスを特異的に増幅するためのプライマーセットであり、前記プライマーセットがFIPプライマーとBIPプライマーとF3プライマーとB3プライマーとを含み、当該FIPプライマーがCAGAGTTGATGCTTGGGATTAC-TGATCCAGAGGATCATAGACGACを含み、当該BIPプライマーがACATTTGCATCCAGAGGAGCAAG-GAGCTTTCGACCCTTCGTCTACを含み、当該F3プライマーがGTGGAATCCCCTGGACAGを含み、当該B3プライマーがCAATATCCTTATTCTCCAACCAを含むプライマーセット。 A primer set for specifically amplifying canine distemper virus, wherein the primer set includes an FIP primer, a BIP primer, an F3 primer, and a B3 primer, the FIP primer includes CAGAGTGTGATGCTTGGGATTAC-TGATCCAGAGGATCATAGACGAC, and the BIP primer includes ACATTTGCCATCAGGAG A primer set comprising GAGCTTTCGACCCTTCGTCTAC, wherein the F3 primer comprises GTGGAATCCCCCTGGACAG, and the B3 primer comprises CAATATCCTTATTCTCCAACCA.
  11.  更に、ループプライマーとしてTGGATTCTGAGGCAGATGAGTを含むLBcプライマーを含む請求項10に記載のプライマーセット。 The primer set according to claim 10, further comprising an LBc primer containing TGGATTCTGAGGCAGATGAGGT as a loop primer.
  12.  イヌパルボウイルスを特異的に増幅するためのプライマーセットであり、前記プライマーセットがFIPプライマーとBIPプライマーとF3プライマーとB3プライマーとを含み、当該FIPプライマーがGAACATCATCTGGATCTGTACCA-ACCATCTCATACTGGAACTAGTGGCを含み、当該BIPプライマーがCTGTGCCAGTACACTTACTAAGA-GTGTTAGTCTACATGGTTTACAATCを含み、当該F3プライマーがGAGATATTATTTTCAATGGGATAGAACを含み、当該B3プライマーがCAATGCTCTATTTGTTTGCCATGを含むプライマーセット。 A primer set for specifically amplifying canine parvovirus, wherein the primer set includes an FIP primer, a BIP primer, an F3 primer, and a B3 primer, the FIP primer includes GAACATCATCTGGATCTGTACTCA-ACCCATCTCATACTGAGAACTAGTGGC, and the BIP primer includes CTGTGCCAGTACACTACTATAG -Primer set containing GTGTTAGTCTACCATGGTTTACAATC, the F3 primer containing GAGATATTATTTTCAATGGGATAGAAC, and the B3 primer containing CAATGCTCTCTTTGTTGCCATG.
  13.  更に、ループプライマーとしてACAGGTGATGAATTTGCTACAGGを含むLBcプライマーを含む請求項12に記載のプライマーセット。 The primer set according to claim 12, further comprising an LBc primer containing ACAGGTGATGAATTTGCTACAGG as a loop primer.
  14.  イヌジステンバーを特異的に増幅するためのプライマーセットであり、前記プライマーセットがFIPプライマーとBIPプライマーとF3プライマーとB3プライマーとを含み、当該FIPプライマーがCAGAGTTGATGCTTGGGATTAC-TGATCCAGAGGATCATAGACGACを含み、当該BIPプライマーがACATTTGCATCCAGAGGAGCAAG-GAGCTTTCGACCCTTCGTCTACを含み、当該F3プライマーがGTGGAATCCCCTGGACAGを含み、当該B3プライマーがCAATATCCTTATTCTCCAACCAを含み、前記FIPプライマーの3’末端側から6塩基目から12塩基目にCTG、GGA、CCT、TCC、ATC、GCG、CGC、CCTCT、GTGCA、GACGT、ACGTCおよびこれらの相補配列からなる群より選択されるタグ配列を含む第1のプライマーセットと、
     イヌパルボウイルスを特異的に増幅するためのプライマーセットであり、前記プライマーセットがFIPプライマーとBIPプライマーとF3プライマーとB3プライマーとを含み、当該FIPプライマーがGAACATCATCTGGATCTGTACCA-ACCATCTCATACTGGAACTAGTGGCを含み、当該BIPプライマーがCTGTGCCAGTACACTTACTAAGA-GTGTTAGTCTACATGGTTTACAATCを含み、当該F3プライマーがGAGATATTATTTTCAATGGGATAGAACを含み、当該B3プライマーがCAATGCTCTATTTGTTTGCCATGを含み、前記FIPプライマーの3’末端側から6塩基目から12塩基目にCTG、GGA、CCT、TCC、ATC、GCG、CGC、CCTCT、GTGCA、GACGT、ACGTCおよびこれらの相補配列からなる群より選択されるタグ配列を含む第2のプライマーセットと、
    を含むイヌジステンバーとイヌパルボウイルスとを同時に検出するためのアッセイキット。
    A primer set for specifically amplifying canine distemper, wherein the primer set includes an FIP primer, a BIP primer, an F3 primer, and a B3 primer, the FIP primer includes CAGAGTGTGATGCTTGGGATTAC-GATCCCAGGAGTCATAGACGAC, and the BIP primer includes ACATTTGCATGCAGAGAGCA GAGCTTTCCGACCCTTCGTCTAC, the F3 primer includes GTGGAATCCCCCTGGACAG, the B3 primer includes CAATATCCTTTATTCTCCAACCA, and CTG, GGA, CCT, TCC, ATC, GCG, CTC from the 6th base to the 12th base from the 3 ′ end side of the FIP primer. , CCTCT A first primer set comprising a tag sequence selected from the group consisting of GTGCA, GACGT, ACGTC and their complementary sequences;
    A primer set for specifically amplifying canine parvovirus, wherein the primer set includes an FIP primer, a BIP primer, an F3 primer, and a B3 primer, the FIP primer includes GAACATCATCTGGATCTGTACTCA-ACCCATCTCATACTGAGAACTAGTGGC, and the BIP primer includes CTGTGCCAGTACACTACTATAG -GTGTTAGTCACATGGTTTACAATC, the F3 primer contains GAGATATTATTTTCAATGGGATAGAAC, the B3 primer contains CAATGCTCCTATTTTGTTCCATCAT, CTG, GGA, CCT, 6th to 12th bases from the 3 'end of the FIP primer, A second primer set comprising a tag sequence selected from the group consisting of ATC, GCG, CGC, CCTCT, GTGCA, GACGT, ACGTC and their complementary sequences;
    An assay kit for simultaneously detecting canine distemper and canine parvovirus.
  15.  前記第1のプライマーセットが、更にイヌジステンバーのためのループプライマーとしてTGGATTCTGAGGCAGATGAGTを含むLBcプライマーを含み、第2のプライマーセットが、更にイヌパルボウイルスのためのループプライマーとしてACAGGTGATGAATTTGCTACAGGを含むLBcプライマーとを含む請求項14に記載のアッセイキット。 The first primer set further comprises an LBc primer containing TGGATTCTGAGGCAGATGAGGT as a loop primer for canine distemper, and the second primer set further comprises an LBc primer containing ACAGGTGATGATGATCTGCATAGGG as a loop primer for canine parvovirus The assay kit according to claim 14.
PCT/JP2011/070699 2010-09-16 2011-09-12 Primer, probe, and method for multi-specimen analysis WO2012036111A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012533987A JPWO2012036111A1 (en) 2010-09-16 2011-09-12 Primers, probes and methods for multi-analyte analysis

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010208634 2010-09-16
JP2010-208634 2010-09-16

Publications (1)

Publication Number Publication Date
WO2012036111A1 true WO2012036111A1 (en) 2012-03-22

Family

ID=45831571

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/070699 WO2012036111A1 (en) 2010-09-16 2011-09-12 Primer, probe, and method for multi-specimen analysis

Country Status (3)

Country Link
JP (1) JPWO2012036111A1 (en)
TW (1) TW201231672A (en)
WO (1) WO2012036111A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014023434A (en) * 2012-07-24 2014-02-06 Lotte Co Ltd Analysis method for bacterial flora in dental plaque
WO2017043114A1 (en) * 2015-09-07 2017-03-16 株式会社ファスマック Simultaneous multiple item detection method for isothermal amplification product
EP2850205B1 (en) * 2012-05-14 2019-09-18 W. Health L.P. Technique combining pcr and loop-mediated isothermal amplification for the detection of nucleic acids
CN114901817A (en) * 2019-12-27 2022-08-12 株式会社钟化 Primer set and method for detecting target nucleic acid using same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4528885B1 (en) * 2009-06-29 2010-08-25 株式会社東芝 Sample analysis method and assay kit used therefor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4528885B1 (en) * 2009-06-29 2010-08-25 株式会社東芝 Sample analysis method and assay kit used therefor

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHO, H. S. ET AL.: "Detection of canine distemper virus in blood samples by reverse transcription loop-mediated isothermal amplification.", JOURNAL OF VETERINARY MEDICINE., vol. 52, no. 9, 2005, pages 410 - 413 *
CHO, HO-SEONG ET AL.: "Detection of canine parvovirus in fecal samples using loop-mediated isothermal amplification.", JOURNAL OF VETERINARY DIAGNOSTIC INVESTIGATION, vol. 18, no. 1, 2006, pages 81 - 84 *
ISEKI HIROSHI ET AL.: "Development of a multiplex loop-mediated isothermal amplification (mLAMP) method for the simultaneous detection of bovine Babesia parasites.", JOURNAL OF MICROBIOLOGICAL METHODS, vol. 71, no. 3, 2007, pages 281 - 287 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2850205B1 (en) * 2012-05-14 2019-09-18 W. Health L.P. Technique combining pcr and loop-mediated isothermal amplification for the detection of nucleic acids
JP2014023434A (en) * 2012-07-24 2014-02-06 Lotte Co Ltd Analysis method for bacterial flora in dental plaque
WO2017043114A1 (en) * 2015-09-07 2017-03-16 株式会社ファスマック Simultaneous multiple item detection method for isothermal amplification product
JPWO2017043114A1 (en) * 2015-09-07 2018-09-27 株式会社ファスマック Multi-item simultaneous detection method for isothermal amplification reaction products
CN114901817A (en) * 2019-12-27 2022-08-12 株式会社钟化 Primer set and method for detecting target nucleic acid using same

Also Published As

Publication number Publication date
JPWO2012036111A1 (en) 2014-02-03
TW201231672A (en) 2012-08-01

Similar Documents

Publication Publication Date Title
JP4528885B1 (en) Sample analysis method and assay kit used therefor
JP5740112B2 (en) Nucleic acid primer set for LAMP amplification for coronavirus
JP2005502346A (en) Method for blocking non-specific hybridization of nucleic acid sequences
JP5663491B2 (en) Target nucleic acid detection method
JP5787503B2 (en) Primer set for mycoplasma, assay kit and method using the same
US8741565B2 (en) Oligonucleotide microarray for identification of pathogens
WO2012036111A1 (en) Primer, probe, and method for multi-specimen analysis
EP1426448A1 (en) Method for lowering the effects of sequence variations in a diagnostic hybridization assay, probe for use in the assay and assay
EP2543737B1 (en) Method for detecting nucleic acids by promoting branched dna complex formation
US20090275028A1 (en) Method of detecting target nucleic acid
JP2011004733A (en) Microarray for detecting target nucleic acid in a plurality of specimens
JP2014180278A (en) Nucleic acid analyzing method and assay kit used thereby
KR101845043B1 (en) Method of Solving Nucleic Acid Detection Problem Based on Threshold Cycle(Ct) of Polymerase Chain Reaction Using Peptide Nucleic Acid Probe
US20120196765A1 (en) Method for detection or analysis of target sequence in genomic dna
JP5710190B2 (en) Primer set, probe, assay kit and detection method for β-actin gene
WO2014156513A1 (en) Method for detecting mutation
JP5676846B2 (en) Primer set for specifically amplifying nucleic acids derived from Helicobacter microorganisms, and method for detecting and / or classifying said microorganisms
US7700279B2 (en) Assay for bcr/abl gene rearrangement
JP4528889B1 (en) Sample analysis method and assay kit used therein
JP2012200223A (en) Method for quantitatively determining nucleic acid
JP5738551B2 (en) Nucleic acid primer set for LAMP amplification for Arteri virus, and method for amplifying and / or detecting said virus using the same
JP2021164429A (en) Detection of target sequence by isothermal amplification product

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11825113

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012533987

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11825113

Country of ref document: EP

Kind code of ref document: A1