WO2012035976A1 - ポリフェニレンエーテル系樹脂組成物及びその成形品 - Google Patents
ポリフェニレンエーテル系樹脂組成物及びその成形品 Download PDFInfo
- Publication number
- WO2012035976A1 WO2012035976A1 PCT/JP2011/069679 JP2011069679W WO2012035976A1 WO 2012035976 A1 WO2012035976 A1 WO 2012035976A1 JP 2011069679 W JP2011069679 W JP 2011069679W WO 2012035976 A1 WO2012035976 A1 WO 2012035976A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- polyphenylene ether
- weight
- resin composition
- parts
- resin
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/02—Elements
- C08K3/04—Carbon
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/24—Acids; Salts thereof
- C08K3/26—Carbonates; Bicarbonates
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/30—Sulfur-, selenium- or tellurium-containing compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/0008—Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
- C08K5/0066—Flame-proofing or flame-retarding additives
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/49—Phosphorus-containing compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/49—Phosphorus-containing compounds
- C08K5/51—Phosphorus bound to oxygen
- C08K5/52—Phosphorus bound to oxygen only
- C08K5/521—Esters of phosphoric acids, e.g. of H3PO4
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/16—Elastomeric ethene-propene or ethene-propene-diene copolymers, e.g. EPR and EPDM rubbers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L25/00—Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
- C08L25/02—Homopolymers or copolymers of hydrocarbons
- C08L25/04—Homopolymers or copolymers of styrene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L71/00—Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
- C08L71/08—Polyethers derived from hydroxy compounds or from their metallic derivatives
- C08L71/10—Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
- C08L71/12—Polyphenylene oxides
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/24—Acids; Salts thereof
- C08K3/26—Carbonates; Bicarbonates
- C08K2003/265—Calcium, strontium or barium carbonate
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/24—Acids; Salts thereof
- C08K3/26—Carbonates; Bicarbonates
- C08K2003/267—Magnesium carbonate
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/30—Sulfur-, selenium- or tellurium-containing compounds
- C08K2003/3045—Sulfates
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2201/00—Properties
- C08L2201/02—Flame or fire retardant/resistant
Definitions
- the present invention relates to a polyphenylene ether resin composition and a molded product thereof. More specifically, the present invention relates to a polyphenylene ether-based resin composition in which tracking resistance is improved in a polyphenylene ether-based resin composition in which black is colored and carbon black is blended for improving weather resistance, and a molded product thereof.
- connection structure such as a junction box or a connector for connecting a cable between the modules is provided for each module.
- This connection structure for a photovoltaic power generation module is required to have the following characteristics as well as mechanical strength as a structure.
- junction boxes are sometimes installed outdoors such as on roofs as accessory parts of photovoltaic modules, so they are required to have impact resistance against flying objects, especially at low temperatures. Is required. As with the junction box, the photovoltaic module connector is also required to have impact resistance.
- polyphenylene ether resin is a resin having excellent properties such as heat resistance, electrical properties, acid resistance, alkali resistance, etc., and having low specific gravity and low water absorption, it is a molding material for various structures.
- a composite resin composition with a styrene resin is used for the purpose of improving the molding processability and impact resistance of a polyphenylene ether resin.
- a composition in which a phosphate ester flame retardant is blended with a polyphenylene ether resin / styrene resin composite composition is also provided (for example, Patent Document 1).
- the present invention provides a polyphenylene ether-based resin composition having excellent mechanical properties such as heat resistance and impact resistance, high blackness, excellent weather resistance, and excellent tracking resistance, and a molded product thereof. This is the issue.
- the present inventor by blending a carbonate and / or sulfate of an alkaline earth metal in a predetermined ratio to a polyphenylene ether-based resin composition containing carbon black, It has been found that the tracking resistance and also the impact resistance can be improved.
- the present invention has been achieved on the basis of such knowledge, and the gist thereof is as follows.
- the polyphenylene ether-based resin composition according to the first aspect comprises 0.01 to 5 parts by weight of carbon black (B) and 100% by weight of resin component (A) mainly composed of polyphenylene ether resin (a1). It is characterized by containing 0.1 to 20 parts by weight of an earth metal carbonate and / or sulfate (C).
- the polyphenylene ether-based resin composition of the second aspect is characterized in that it has the following properties in the polyphenylene ether-based resin composition of the first aspect.
- CTI comparative tracking index
- Notched Charpy impact strength at 23 ° C. measured according to the ISO 179 standard is 7 kJ / m 2 or more.
- C The flame retardancy at a thickness of 0.75 mm, measured according to the UL94 standard, is V-0.
- D The L value measured according to JIS Z-8722 standard is 10 or less.
- the polyphenylene ether-based resin composition according to the third aspect is the polyphenylene ether-based resin composition according to the second aspect or the third aspect, wherein the alkaline earth metal carbonate and / or sulfate (C) is calcium carbonate and / or Or it is barium sulfate.
- the polyphenylene ether-based resin composition according to the fourth aspect is the polyphenylene ether-based resin composition according to any one of the first to third aspects, wherein the resin component (A) is a polyphenylene ether resin (a1) and a styrene-based resin (a2). ).
- the polyphenylene ether-based resin composition according to the fifth aspect is the polyphenylene ether-based resin composition according to any one of the first to fourth aspects, wherein the resin component (A) is 85 to 100% by weight of the polyphenylene ether resin (a1). And 0 to 15% by weight of a styrene resin (a2).
- the polyphenylene ether-based resin composition according to the sixth aspect is the polyphenylene ether-based resin composition according to any one of the first to fifth aspects, further comprising a phosphorus-based flame retardant (D) and 100 parts by weight of the resin component (A). 1 to 30 parts by weight with respect to parts.
- D phosphorus-based flame retardant
- the polyphenylene ether-based resin composition according to the seventh aspect is the polyphenylene ether-based resin composition according to any one of the first to sixth aspects, further comprising a flame retardant aid (E) and 100 parts by weight of the resin component (A). It is characterized by containing 0.01 to 3 parts by weight with respect to parts.
- the polyphenylene ether-based resin composition according to the eighth aspect is the polyphenylene ether-based resin composition according to any one of the first to seventh aspects, further comprising an elastomer (F) based on 100 parts by weight of the resin component (A). And 1 to 20 parts by weight.
- the polyphenylene ether resin composition of the ninth aspect is the polyphenylene ether resin composition of any one of the first to eighth aspects, wherein the polyphenylene ether resin (a1) is a polyphenylene ether having a weight average molecular weight of 500,000 or more. It contains 0.1 to 5% by weight of resin.
- the polyphenylene ether-based resin composition according to the tenth aspect is the polyphenylene ether-based resin composition according to any one of the first to ninth aspects, wherein the carbon black (B) has an average primary particle diameter of 5 to 30 nm, a DBP oil absorption amount. and characterized in that it is of 20 ⁇ 60cm 3 / 100g.
- the polyphenylene ether-based resin composition according to the eleventh aspect is characterized by being used in the connection structure for a photovoltaic power generation module in the polyphenylene ether-based resin composition according to any one of the first to tenth aspects.
- the molded product of the twelfth aspect is characterized by being formed by molding the polyphenylene ether resin composition of any of the first to eleventh aspects.
- junction box of the thirteenth aspect is characterized by being formed by molding the polyphenylene ether-based resin composition of any one of the first to eleventh aspects.
- a polyphenylene ether-based resin composition having excellent mechanical properties such as heat resistance and impact resistance, high blackness, excellent weather resistance, and excellent tracking resistance, and a molded product thereof.
- the polyphenylene ether-based resin composition of the present invention is particularly suitable for connecting solar power generation modules such as junction boxes and connectors because of its excellent heat resistance, blackness, weather resistance, impact resistance, and other mechanical properties and tracking resistance. It can be effectively used as a molding material for solar cell components such as structures.
- the polyphenylene ether-based resin composition of the present invention is not limited to solar cell parts, but other parts for automobiles, parts for electric / electronic / OA equipment, parts for construction, etc.
- the resin composition can be applied to various uses in a wide range of fields.
- the polyphenylene ether-based resin composition of the present invention comprises 0.01 to 5 parts by weight of carbon black (B), 100 parts by weight of resin component (A) containing polyphenylene ether resin (a1) as a main component, and alkaline earth. It is characterized by containing 0.1 to 20 parts by weight of a carbonate of a similar metal and / or a sulfate (C).
- the resin component (A) according to the present invention is mainly composed of the polyphenylene ether resin (a1), and includes only the polyphenylene ether resin (a1) or the fluidity and moldability of the polyphenylene ether resin (a1). For the purpose of improvement, other blended resins are blended. As this compounding resin, a styrene resin (a2) is preferable.
- main component refers to a component occupying 50% by weight or more of all components.
- the polyphenylene ether resin (a1) used in the present invention is a polymer having a structural unit represented by the following general formula (1) in the main chain, and may be either a homopolymer or a copolymer.
- two R a s each independently represent a hydrogen atom, a halogen atom, a primary or secondary alkyl group, an aryl group, an aminoalkyl group, a haloalkyl group, a hydrocarbonoxy group, or a halohydrocarbonoxy group.
- Each of the two R b s independently represents a hydrogen atom, a halogen atom, a primary or secondary alkyl group, an aryl group, a haloalkyl group, a hydrocarbonoxy group, or a halohydrocarbonoxy group.
- both R a are not hydrogen atoms.
- R a and R b are preferably a hydrogen atom, a primary or secondary alkyl group, or an aryl group.
- the primary alkyl group include methyl group, ethyl group, n-propyl group, n-butyl group, n-amyl group, isoamyl group, 2-methylbutyl group, 2,3-dimethylbutyl group, 2 -, 3- or 4-methylpentyl group or heptyl group may be mentioned.
- Preferable examples of the secondary alkyl group include isopropyl group, sec-butyl group, and 1-ethylpropyl group.
- R a is preferably a primary or secondary alkyl group having 1 to 4 carbon atoms or a phenyl group.
- R b is preferably a hydrogen atom.
- Suitable homopolymers of polyphenylene ether resins include, for example, poly (2,6-dimethyl-1,4-phenylene ether), poly (2,6-diethyl-1,4-phenylene ether), poly (2, 2 such as 6-dipropyl-1,4-phenylene ether), poly (2-ethyl-6-methyl-1,4-phenylene ether), poly (2-methyl-6-propyl-1,4-phenylene ether), etc. , 6-dialkylphenylene ether polymer.
- copolymer examples include 2,6-dimethylphenol / 2,3,6-trimethylphenol copolymer, 2,6-dimethylphenol / 2,3,6-triethylphenol copolymer, and 2,6-diethylphenol.
- 2,6-dialkylphenol / 2,3,6-trialkylphenol copolymer such as 2,3,6-trimethylphenol copolymer, 2,6-dipropylphenol / 2,3,6-trimethylphenol copolymer
- Polymer graft copolymer obtained by graft polymerization of styrene to poly (2,6-dimethyl-1,4-phenylene ether), styrene to 2,6-dimethylphenol / 2,3,6-trimethylphenol copolymer And a graft copolymer obtained by graft polymerization.
- polyphenylene ether resin (a1) in the present invention examples include poly (2,6-dimethyl-1,4-phenylene ether) and 2,6-dimethylphenol / 2,3,6-trimethylphenol random copolymer. preferable.
- polyphenylene ether resins that define the number of terminal groups and the copper content as described in JP-A-2005-344065 can be suitably used.
- the molecular weight of the polyphenylene ether resin (a1) is preferably such that the intrinsic viscosity at 30 ° C. measured in chloroform is 0.2 to 0.8 dl / g, more preferably 0.3 to 0.6 dl / g.
- the intrinsic viscosity is 0.2 dl / g or more, the mechanical strength of the resin composition tends to be improved, and when it is 0.8 dl / g or less, the fluidity is improved and the molding process is easy.
- Two or more kinds of polyphenylene ether resins having different intrinsic viscosities may be used in combination to achieve this intrinsic viscosity range.
- the polyphenylene ether resin (a1) used in the present invention contains 0.1 to 5% by weight of a high molecular weight polyphenylene ether resin having a molecular weight of 500,000 or more, for example, a molecular weight of about 500,000 to 800,000. It is preferable in terms of securing moldability and weather resistance. If the content of the high molecular weight polyphenylene ether resin is less than 0.1% by weight, the effect of improving the weather resistance is small, and if it exceeds 5% by weight, the moldability deteriorates.
- the weight average molecular weight of the polyphenylene ether resin including such a high molecular weight polyphenylene ether resin is preferably 40,000 to 100,000. When the weight average molecular weight of the polyphenylene ether resin is less than 40,000, physical properties such as chemical resistance are lowered, and when it exceeds 100,000, the fluidity is lowered.
- the molecular weight and the weight average molecular weight of the polyphenylene ether resin (a1) can be determined by the method described in the section of Examples below.
- the production method of the polyphenylene ether resin (a1) used in the present invention is not particularly limited.
- a monomer such as 2,6-dimethylphenol is oxidized in the presence of an amine copper catalyst according to a known method. It can manufacture by superposing
- a method of mixing a predetermined amount of a polyphenylene ether resin previously produced to a predetermined high molecular weight, or a melt kneading process of a polyphenylene ether resin For example, a method of increasing the molecular weight by bonding parts of polyphenylene ether resins can be employed.
- the high molecular weight polyphenylene ether resin may be a polyphenylene ether resin, a polystyrene-based resin described later, and a copolymer.
- Such a high molecular weight polyphenylene ether resin can be produced in a kneaded material by, for example, melt-kneading a polyphenylene ether resin and a styrene resin.
- the polyphenylene ether resin may be used alone or in combination of two or more.
- styrene resin (a2) examples include a styrene monomer polymer, a copolymer of a styrene monomer and another copolymerizable monomer, and a styrene graft copolymer. Is mentioned.
- the styrenic resin (a2) used in the present invention is polystyrene (PS), impact-resistant polystyrene (HIPS), acrylonitrile / styrene copolymer (AS resin), acrylonitrile / butadiene / styrene.
- ABS resin methyl methacrylate / acrylonitrile / butadiene / styrene copolymer (MABS resin), acrylonitrile / acrylic rubber / styrene copolymer (AAS resin), acrylonitrile / ethylene propylene rubber / styrene copolymer (ABS resin)
- AES resin acrylonitrile / ethylene propylene rubber / styrene copolymer
- AES resin a resin such as styrene / IPN type rubber copolymer, or a mixture thereof. Further, it may have stereoregularity such as syndiotactic polystyrene.
- PS polystyrene
- HIPS impact-resistant polystyrene
- the weight average molecular weight of the styrenic resin (a2) is usually 50,000 or more, preferably 100,000 or more, more preferably 150,000 or more, and the upper limit is usually 500,000. Or less, preferably 400,000 or less, more preferably 300,000 or less.
- Examples of the method for producing such a styrene resin (a2) include known methods such as an emulsion polymerization method, a solution polymerization method, a suspension polymerization method, and a bulk polymerization method.
- one styrene resin may be used alone, or two or more styrene resins may be mixed and used.
- the resin component (A) according to the present invention preferably comprises 50 to 100% by weight of the polyphenylene ether resin (a1) and 50 to 0% by weight of the styrene resin (a2), and the polyphenylene ether resin (a1) 85 to 100%. More preferably, it comprises 15% by weight and 15 to 0% by weight of the styrene resin (a2).
- the polyphenylene ether resin (a1) is 50% by weight or more, flame retardancy, load deflection temperature and mechanical strength are improved.
- the polyphenylene ether resin (a1) is preferably 85% by weight or more.
- the polyphenylene ether-based resin composition of the present invention uses a resin other than the polyphenylene ether resin (a1) and the styrene-based resin (a2) as a part of the resin component as long as the effects of the present invention are not impaired. May be.
- Other resins include, for example, thermoplastic resins such as polyamide resins, polyester resins, polyphenylene sulfide resins, liquid crystal polyester resins, polycarbonate resins, polyacetal resins, polyacrylonitrile resins, acrylic resins, polyethylene resins, and polypropylene resins.
- thermosetting resins such as epoxy resins, melamine resins, and silicone resins. These thermoplastic resins and thermosetting resins can be used in combination of two or more.
- the blending amount of these other resins is preferably 50% by weight or less, more preferably 30% by weight or less, and particularly preferably 10% by weight in the resin component (A).
- Carbon black (B) Carbon black (B) is blended as a component for imparting black coloration to the polyphenylene ether-based resin composition of the present invention and enhancing weather resistance.
- the carbon black (B) an average primary particle diameter of 5 ⁇ 30 nm, more 10 ⁇ 25 nm, in particular at 10 ⁇ 20 nm, DBP oil absorption of 20 ⁇ 90cm 3 / 100g, more 20 ⁇ 60cm 3 / 100g, particularly preferably from 40 ⁇ 60cm 3 / 100g.
- the particle size of the carbon black is not more than the above upper limit, the L value described later is small and the blackness is good, the moldability and the mechanical properties are good, and the tracking resistance tends to be easily suppressed.
- the particle diameter is equal to or more than the above lower limit, the tracking resistance tends to be improved, and the discharge property during melt-kneading tends to be good.
- the DBP oil absorption amount of the carbon black is not more than the above upper limit, the tracking resistance is good, and when it is not less than the above lower limit, the L value is small and the blackness tends to be good.
- the L value and tracking resistance of the resulting polyphenylene ether-based resin composition can be made well balanced. .
- the average primary particle size of carbon black was determined by obtaining an enlarged aggregate image according to the procedure described in the ASTM D3849 standard (standard test method for carbon black-morphological characterization by electron microscopy). It is a value obtained by measuring 3,000 particle diameters as constituent particles and arithmetically averaging them, and the DBP oil absorption is a value measured according to JIS K6217 standard.
- Carbon black (B) may be used alone or in combination of two or more types having different average primary particle sizes and DBP oil absorption.
- the content of carbon black (B) in the polyphenylene ether-based resin composition of the present invention is 0.01 to 5 parts by weight, preferably 0.1 to 3 parts by weight with respect to 100 parts by weight of the resin component (A). Part, more preferably 0.2 to 1 part by weight.
- the content of carbon black (B) is not less than the above lower limit, blackness and weather resistance due to carbon black blending can be improved, and by being not more than the above upper limit, a decrease in tracking resistance can be suppressed, Decrease in moldability and mechanical properties can be prevented.
- Alkaline earth metal carbonate and / or sulfate (C) Alkaline earth metal carbonates and / or sulfates (hereinafter, alkaline earth metal carbonates and / or sulfates may be referred to as “component (C)”) are used to improve tracking resistance. It is a component to be blended. In the present invention, the blending of the component (C) improves the tracking resistance, and further does not significantly reduce the impact resistance, so that a resin composition having an excellent balance between the tracking resistance and the impact resistance can be obtained. .
- the alkaline earth metal (C) is at least one element included in Group IIa of the periodic table, preferably calcium, barium, strontium, and magnesium, and more preferably calcium and barium.
- component (C) As the alkaline earth metal carbonate and / or sulfate of component (C), calcium carbonate and barium sulfate are particularly preferable from the viewpoint of improving tracking resistance and impact resistance, maintaining blackness, and the like.
- the average particle size of the component (C) is not particularly limited, and commercially available products having an average particle size of about 0.05 to 3 ⁇ m can be used. A preferable average particle diameter is 0.05 to 1 ⁇ m.
- the particle diameter of calcium carbonate is preferably 0.5 ⁇ m or less, for example, 0.05 to 0.5 ⁇ m as an average particle diameter.
- the average particle diameter of (C) component says the arithmetic average particle diameter calculated
- a component may be used individually by 1 type, and 2 or more types may be mixed and used for it.
- the content of the component (C) in the polyphenylene ether resin composition of the present invention is 0.1 to 20 parts by weight, preferably 0.5 to 15 parts by weight, based on 100 parts by weight of the resin component (A). More preferably, it is 1 to 12 parts by weight.
- the content of the component (C) is not less than the above lower limit, the tracking resistance and further the impact resistance improvement effect can be sufficiently obtained, and by being not more than the above upper limit, the decrease in blackness is suppressed. can do.
- a flame retardant can be blended with the polyphenylene ether resin composition of the present invention in order to impart flame retardancy.
- the flame retardant is not particularly limited as long as it improves the flame retardancy of the composition, but is a silicone compound such as polyorganosiloxane having a linear or branched structure; perfluorobutane-sodium sulfonate, perfluorobutane -Potassium sulfonate, sodium perfluoromethylbutane-sulfonate, potassium perfluoromethylbutane-sulfonate, perfluorooctane-sodium sulfonate, potassium perfluorooctane-sulfonate, and tetraethylammonium salt of perfluorobutane-sulfonate 3,4-dichlorobenzenesulfonic acid sodium salt, 2,4,5-trichlorobenzenesulf
- Examples of the phosphate ester compound used in the present invention include those represented by the following formula (2).
- R 1 , R 2 , R 3 and R 4 are each independently an aryl group which may be substituted, and X is a divalent aromatic which may have another substituent. And n represents a number from 0 to 5.
- examples of the aryl group represented by R 1 to R 4 include a phenyl group and a naphthyl group.
- examples of the divalent aromatic group represented by X include a phenylene group, a naphthylene group, and a group derived from, for example, bisphenol. Examples of these substituents include an alkyl group, an alkoxy group, and a hydroxy group. When n is 0, it is a phosphate ester, and when n is greater than 0, it is a condensed phosphate ester (may be a mixture).
- phosphoric acid ester compounds include bisphenol A bisphosphate, hydroquinone bisphosphate, resorcinol bisphosphate, and substituted and condensates thereof.
- condensed phosphate compounds that can be suitably used as such components include, for example, “CR733S” (resorcinol bis (diphenyl phosphate)), “CR741” (bisphenol A bis ( Diphenyl phosphate)) and ADEKA Co., Ltd. under the trade name “FP500” (resorcinol bis (dixylenyl phosphate)) and are readily available.
- CR733S is preferable because of lowquey.
- a flame retardant such as a phosphorus flame retardant (D)
- the content thereof is 1 to 30 parts by weight with respect to 100 parts by weight of the resin component (A). Further, it is preferably 3 to 20 parts by weight, particularly 9 to 20 parts by weight.
- the content of the flame retardant such as the phosphorus flame retardant (D) is not less than the above lower limit, a sufficient flame retardant improvement effect can be obtained. A decrease in heat resistance due to the blending of the flame retardant can be suppressed.
- flame retardant aids (E) may be blended with the polyphenylene ether resin composition of the present invention.
- the flame retardant aid (E) is preferably a fluororesin, particularly polyfluoroethylene, and has a fibril-forming ability among polyfluoroethylene, and is easily dispersed in the resin component and bonded to each other to form fibers. Those exhibiting a tendency to make a shaped material are preferred.
- a coated polyfluoroethylene coated with an organic polymer has a polyfluoroethylene content in the coated polyfluoroethylene of 40 to 95% by weight, particularly 43 to 80% by weight, more preferably 45 to 70% by weight, and particularly 47 to 60% by weight. Some are preferred.
- the polyfluoroethylene coated with the organic polymer is preferably polytetrafluoroethylene (PTFE), and among them, it tends to disperse easily in the polymer and bond the polymers together to form a fibrous material. Therefore, those having fibril forming ability are preferred.
- PTFE polytetrafluoroethylene
- Such a coated polyfluoroethylene can be produced by various known methods. For example, (1) a polyfluoroethylene particle aqueous dispersion and an organic polymer particle aqueous dispersion are mixed and coagulated or sprayed. (2) A method in which an organic polymer is polymerized in the presence of an aqueous dispersion of polyfluoroethylene particles, and then polymerized and then powdered by coagulation or spray drying. (3) After emulsion polymerization of a monomer having an ethylenically unsaturated bond in a dispersion obtained by mixing an aqueous dispersion of polyfluoroethylene particles and an aqueous dispersion of organic polymer particles, solidification or spray drying And the like, and the like.
- the organic polymer covering polyfluoroethylene is not particularly limited, but is preferably one having high affinity with the polyphenylene ether resin (a1) from the viewpoint of dispersibility when blended with the resin.
- monomers for producing this organic polymer include styrene, ⁇ -methylstyrene, p-methylstyrene, o-methylstyrene, t-butylstyrene, o-ethylstyrene, p-chlorostyrene.
- Aromatic vinyl monomers such as o-chlorostyrene, 2,4-dichlorostyrene, p-methoxystyrene, o-methoxystyrene, 2,4-dimethylstyrene; methyl acrylate, methyl methacrylate, ethyl acrylate , Ethyl methacrylate, butyl acrylate, butyl methacrylate, 2-ethylhexyl acrylate, 2-ethylhexyl methacrylate, dodecyl acrylate, dodecyl methacrylate, tridecyl acrylate, tridecyl methacrylate, octadecyl acrylate, octadecyl methacrylate , Cyclohexacrylic acid (Meth) acrylic acid ester monomers such as cyclohexyl methacrylate; vinyl cyanide monomers such as acrylonitrile and methacrylonit
- an aromatic vinyl monomer from the viewpoint of affinity with the polyphenylene ether resin (a1), an aromatic vinyl monomer, a (meth) acrylic acid ester monomer, and a vinyl cyanide monomer are selected.
- One or more monomers are preferred, (meth) acrylic acid ester monomers are particularly preferred, and monomers containing 10% by weight or more of these monomers are preferred.
- coated polyfluoroethylene examples include Metabrene A-3800 and KA-5503 manufactured by Mitsubishi Rayon Co., Ltd., and Poly TS AD001 manufactured by PIC.
- the polyphenylene ether-based resin composition of the present invention contains a flame retardant aid (E), the content thereof is 0.01 to 3 parts by weight with respect to 100 parts by weight of the resin component (A) described above, The amount is preferably 0.05 to 1 part by weight, particularly 0.1 to 0.7 part by weight.
- the content of the flame retardant auxiliary (E) is not less than the above lower limit, the effect of improving the flame retardancy can be sufficiently obtained, and when it is not more than the above upper limit, the appearance of the molded product tends to be prevented from being deteriorated. .
- the blending ratio of the flame retardant such as phosphorus flame retardant (D) and the flame retardant aid (E) in the polyphenylene ether resin composition of the present invention flame retardant such as phosphorus flame retardant (D) / flame retardant
- the weight ratio of the auxiliary agent (E) is usually from 0.1 to 1000, more preferably from 1 to 100, particularly from 2 to 60 from the viewpoint of obtaining a resin composition having a well-balanced performance.
- elastomer (F) In the present invention, one or more of elastomers (F) may be blended mainly for the purpose of improving the impact resistance of the resin composition.
- the elastomer (F) examples include olefin polymers, olefin-vinyl copolymers, block copolymers of vinyl aromatic compound polymer block a and conjugated diene compound polymer block b, and hydrogenated products thereof. At least one elastomer selected from the group consisting of can be used. These elastomers can be manufactured by a conventionally known manufacturing method.
- the elastomer preferably has a glass transition temperature of 0 ° C. or lower, more preferably ⁇ 5 ° C. or lower. By setting the glass transition temperature of the elastomer to 0 ° C. or less, impact resistance at low temperatures can be improved.
- the olefin polymer used as the elastomer is preferably a homopolymer or copolymer obtained by polymerizing an olefin monomer having 2 to 20 carbon atoms.
- the olefin monomer include ethylene, propylene, 1-butene, 1-hexene, 1-octene, 1-decene, 3-methylbutene-1, 4-methylpentene-1, and the like. Two or more species may be used in combination. Among these, 2 to 10 linear olefinic monomers are more preferable, and ethylene, propylene, and 1-butene are more preferable.
- olefin copolymer examples include ethylene-propylene copolymer (EPR) and ethylene-butene copolymer (EBR).
- EPR ethylene-propylene copolymer
- EBR ethylene-butene copolymer
- olefin polymers may be used alone or in combination of two or more.
- the olefin-vinyl copolymer used as an elastomer is a copolymer obtained by polymerizing an olefin monomer and a vinyl monomer.
- the olefin monomer for example, the same monomer as that used in the above ⁇ olefin polymer> can be used.
- vinyl monomers include unsaturated glycidyl group-containing compounds such as glycidyl acrylate, glycidyl methacrylate, monoglycidyl itaconate, acrylic acid, methacrylic acid, fumaric acid, maleic anhydride, itaconic acid, itaconic anhydride.
- Acids unsaturated carboxylic acids such as bicyclo (2,2,1) -5-heptene-2,3-dicarboxylic acid and their metal salts, methyl acrylate, ethyl acrylate, n-butyl acrylate, isobutyl acrylate Alkyl esters of (meth) acrylic acid having 1 to 20 carbon atoms such as tert-butyl acrylate, 2-ethylhexyl acrylate, methyl methacrylate, ethyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, etc.
- vinyl acetate, vinyl propionate vinyl ester compounds such as vinyl caproate, vinyl caprylate, vinyl laurate, vinyl stearate, vinyl trialkyl acetate, styrene, methylstyrene, dimethylstyrene, ethylstyrene, isopropylstyrene, chlorostyrene, ⁇ -methylstyrene, ⁇ - And vinyl aromatic compounds such as ethylstyrene.
- an unsaturated glycidyl group-containing compound and an unsaturated carboxylic acid are preferable. Two or more of the above olefin monomers and vinyl monomers may be used in combination.
- olefin-vinyl copolymer examples include, for example, ethylene-glycidyl methacrylate copolymer, ethylene-propylene-glycidyl methacrylate copolymer, ethylene-vinyl acetate-glycidyl methacrylate copolymer, ethylene-acrylic.
- olefin-vinyl copolymers can be used in combination of two or more.
- Block copolymer of vinyl aromatic compound polymer block a and conjugated diene compound polymer block b and hydrogenated product thereof (hereinafter, abbreviated as “block copolymer and hydrogenated product thereof”). )>
- the block copolymer used as an elastomer is an elastomer other than the styrene resin, and is a block copolymer of a vinyl aromatic compound polymer block a and a conjugated diene compound polymer block b.
- the hydrogenated block copolymer means a block copolymer in which the aliphatic unsaturated groups of the block b are reduced by hydrogenating the block copolymer.
- the arrangement structure of the block a and the block b may be any structure such as a linear structure or a branched structure. Moreover, among these structures, a random chain derived from a random copolymer portion of a vinyl aromatic compound and a conjugated diene compound may be included in part. Among these structures, a linear structure is preferable, and an aba type triblock structure is more preferable.
- the abb type block copolymer may contain an abb type diblock structure. Two or more of these block copolymers and their hydrogenated products may be used in combination.
- Preferred examples of the vinyl aromatic compound constituting the vinyl aromatic compound polymer block a include styrene, ⁇ -methylstyrene, vinyl toluene, vinyl xylene, and the like, and more preferred is styrene.
- Preferred examples of the conjugated diene compound constituting the conjugated diene compound block b include 1,3-butadiene and 2-methyl-1,3-butadiene.
- the proportion of the repeating unit derived from the vinyl aromatic compound in the block copolymer and its hydrogenated product is preferably in the range of 10 to 70% by weight, more preferably in the range of 10 to 40% by weight, and 15 to 25% by weight.
- the range of is more preferable.
- it is less than 10% by weight, the thermal stability is lowered, and therefore, the resin composition is susceptible to oxidative degradation during the production and molding of the resin composition.
- it exceeds 70% by weight the impact resistance tends to decrease.
- the proportion of unsaturated bonds derived from the conjugated diene compound and remaining without being hydrogenated in the aliphatic chain portion in the hydrogenated block copolymer is preferably 20% by weight or less. More preferably, it is less than wt%.
- the aromatic unsaturated bond derived from the vinyl aromatic compound may be hydrogenated, but the ratio of the hydrogenated aromatic unsaturated bond is preferably 25% by weight or less.
- the monomer that constitutes the vinyl aromatic compound polymer block a is styrene
- the conjugated diene series that is the monomer that constitutes the conjugated diene compound polymer block b
- the compounds are 1,3-butadiene styrene-butadiene-styrene copolymer (SBS), SBS hydrogenated styrene-ethylene-butylene-styrene copolymer (SEBS), and conjugated diene compounds 2 -Various aba type triblock structures such as styrene-ethylene-propylene-styrene copolymer (SEPS), which is methyl-1,3-butadiene, are commercially available and easily available .
- SEPS styrene-ethylene-propylene-styrene copolymer
- the number average molecular weights of these block copolymers and their hydrogenated products are preferably in the range of 50,000 to 300,000.
- the number average molecular weight 50,000 or more By making the number average molecular weight 50,000 or more, the impact resistance and dimensional stability of the finally obtained resin composition are excellent, and further, the appearance of the molded product obtained from the resin composition is good. Can do.
- the number average molecular weight is 300,000 or less because the fluidity of the finally obtained resin composition is maintained and the molding process becomes easy.
- a more preferable range of the number average molecular weight is 55,000 to 250,000, and particularly preferable is 55,000 to 220,000.
- the elastomer may be modified with a modifier, and a radical generator may be blended with the modifier to be modified.
- Examples of unsaturated carboxylic acids, unsaturated carboxylic acid anhydrides or derivatives thereof used as modifiers include (anhydrous) maleic acid, (anhydrous) itaconic acid, chloro (anhydrous) maleic acid, (anhydrous) citraconic acid, butenyl (anhydrous) ) Succinic acid, tetrahydro (anhydride) phthalic acid, and acid halides, amides, imides thereof, alkyl esters having 1 to 20 carbon atoms or glycol esters, specifically maleimide, monomethyl maleate, maleic acid Examples include dimethyl.
- (anhydrous)” indicates anhydrous unsaturated carboxylic acid or unsaturated carboxylic acid.
- unsaturated dicarboxylic acids or acid anhydrides thereof are preferred, and (anhydrous) maleic acid or (anhydrous) itaconic acid is more preferred.
- two or more of these unsaturated carboxylic acids, unsaturated carboxylic acid anhydrides or derivatives thereof may be used in combination.
- radical generator examples include organic peroxides and azo compounds.
- organic peroxides include, for example, t-butyl hydroperoxide, cumene hydroperoxide, 2,5-dimethylhexane-2,5-dihydroperoxide, 1,1,3,3-tetramethyl Hydroperoxides such as butyl hydroperoxide, p-menthane hydroperoxide, diisopropylbenzene hydroperoxide, 2,5-dimethyl-2,5-di (t-butylperoxy) hexyne-3, di-t- Dialkyl peroxides such as butyl peroxide, t-butylcumyl peroxide, 2,5-dimethyl-2,5-di (t-butylperoxy) hexane, dicumyl peroxide, 2,2-bis-t- Butyl peroxybutane, 2,2-bis-t-butyl peroxyoctane, 1, -Peroxyket
- azo compound examples include 2,2′-azobisisobutyronitrile, 2,2′-azobis (2-methylbutyronitrile), 1,1′-azobis (cyclohexane-1-carbonitrile), 1-[(1-cyano-1-methylethyl) azo] formamide, 2-phenylazo-4-methoxy-2,4-dimethylvaleronitrile, 2,2′-azobis (2,4,4-trimethylpentane), 2,2′-azobis (2-methylpropane) and the like.
- radical generators particularly preferred are radical generators having a half-life temperature of 120 ° C. or more in 10 hours in terms of dimensional stability and impact resistance.
- MBS methyl methacrylate / butadiene / styrene copolymer
- MBS is a diene rubber such as polybutadiene or a butadiene polymer such as a butadiene-styrene copolymer, a methacrylic acid ester component and an aromatic vinyl component, and optionally a vinyl cyanide component, for example, bulk polymerization.
- the amount of the butadiene polymer used is usually 10 to 85% by weight, preferably 30 to 70% by weight, and the proportion of the butadiene component in the butadiene polymer is preferably 50% by weight or more.
- the amount of the butadiene-based polymer used is less than 10% by weight, the impact resistance of the molded product from the resulting resin composition is low, and when it exceeds 85% by weight, the moldability of the resin composition is undesirably lowered.
- Examples of the methacrylic acid ester constituting MBS include alkyl esters having 1 to 4 carbon atoms, and methyl methacrylate is particularly preferable.
- Examples of the aromatic vinyl include styrene, halogenated styrene, vinyl toluene, ⁇ -methyl styrene, vinyl naphthalene, and styrene is particularly preferable.
- Examples of the vinyl cyanide compound include acrylonitrile, methacrylonitrile, ⁇ -halogenated acrylonitrile and the like, and acrylonitrile is particularly preferable.
- MBS is a phenol-based heat stabilizer and a thioether-based heat stabilizer
- a total amount of the phenol-based heat stabilizer and the thioether-based heat stabilizer is 0.1 to 4 parts by weight, preferably 100 parts by weight of MBS. It is contained in an amount of 0.5 to 3 parts by weight and a weight ratio of 1/0 to 1/1.
- the blending ratio of the thioether heat stabilizer is higher than the blending ratio of the phenol-based heat stabilizer in MBS, the heat-resistant coloring property and the heat-resistant deterioration are lowered.
- a hindered phenol compound having a molecular weight of 500 or more that conceals the properties of the OH group of the phenol compound is preferable.
- Examples of the thioether-based heat stabilizer blended in MBS include dialkyl-3,3′-thiodipropionate, tetrakis [methylene-3 (alkylthio) propionate] methane, and bis [2-methyl-4 (3 -Alkyl-thiopropionyloxy) -5-tertiarybutylphenyl] sulfide is preferred.
- MBS containing a specific amount and a specific ratio of a phenol-based heat stabilizer and a thioether-based heat stabilizer is produced by an emulsion polymerization method
- these heat stabilizers are emulsified and dispersed simultaneously or separately, It may be added at the end of the polymerization, or may be blended during the coagulation, dehydration or drying process.
- the content thereof is preferably 1 to 20 parts by weight with respect to 100 parts by weight of the resin component (A), The amount is more preferably 1 to 15 parts by weight, further preferably 1.5 to 10 parts by weight, and particularly preferably 2 to 7 parts by weight.
- the polyphenylene ether-based resin composition of the present invention can contain other various resin additives in addition to the above components.
- the polyphenylene ether-based resin composition of the present invention preferably contains a release agent for the purpose of improving release properties.
- the release agent include polyolefin wax, aliphatic carboxylic acid, aliphatic carboxylic acid ester, silicone oil and the like. Among these, polyolefin wax is preferable.
- the aliphatic carboxylic acid examples include saturated or unsaturated aliphatic monocarboxylic acid, dicarboxylic acid, and tricarboxylic acid.
- the aliphatic carboxylic acid also includes an alicyclic carboxylic acid.
- preferred aliphatic carboxylic acids are mono- or dicarboxylic acids having 6 to 36 carbon atoms, and aliphatic saturated monocarboxylic acids having 6 to 36 carbon atoms are more preferred.
- aliphatic carboxylic acids include palmitic acid, stearic acid, valeric acid, caproic acid, capric acid, lauric acid, arachidic acid, behenic acid, lignoceric acid, serotic acid, melicic acid, tetratriacontanoic acid. , Montanic acid, glutaric acid, adipic acid, azelaic acid and the like.
- the same aliphatic carboxylic acid as that described above can be used.
- the alcohol component constituting the aliphatic carboxylic acid ester examples include saturated or unsaturated monohydric alcohols and saturated or unsaturated polyhydric alcohols. These alcohols may have a substituent such as a fluorine atom or an aryl group. Among these alcohols, monovalent or polyvalent saturated alcohols having 30 or less carbon atoms are preferable, and aliphatic saturated monohydric alcohols or polyhydric alcohols having 30 or less carbon atoms are more preferable.
- the aliphatic alcohol also includes an alicyclic alcohol.
- these alcohols include octanol, decanol, dodecanol, stearyl alcohol, behenyl alcohol, ethylene glycol, diethylene glycol, glycerin, pentaerythritol, 2,2-dihydroxyperfluoropropanol, neopentylene glycol, ditrimethylolpropane, dipentaerythritol.
- Etc. These aliphatic carboxylic acid esters may contain an aliphatic carboxylic acid and / or alcohol as impurities, and may be a mixture of a plurality of compounds.
- aliphatic carboxylic acid ester examples include beeswax (mixture based on myristyl palmitate), stearyl stearate, behenyl behenate, octyldodecyl behenate, glycerin monopalmitate, glycerin monostearate, glycerin diester
- examples thereof include stearate, glycerin tristearate, pentaerythritol monopalmitate, pentaerythritol monostearate, pentaerythritol distearate, pentaerythritol tristearate, pentaerythritol tetrastearate and the like.
- polyolefin waxes include olefin homopolymers and copolymers.
- examples of the olefin homopolymer include polyethylene wax, polypropylene wax and the like, partial oxides thereof, and mixtures thereof.
- examples of olefin copolymers include ethylene, propylene, 1-butene, 1-hexene, 1-decene, 2-methylbutene-1, 3-methylbutene-1, 3-methylpentene-1, 4-methylpentene-1, etc.
- Copolymers such as ⁇ -olefins, monomers copolymerizable with these olefins, such as unsaturated carboxylic acids or acid anhydrides thereof (maleic anhydride, (meth) acrylic acid, etc.), (meth) acrylic acid esters Examples thereof include copolymers with polymerizable monomers such as (methyl (meth) acrylate, alkyl ester having 1 to 6 carbon atoms of (meth) acrylic acid such as ethyl (meth) acrylate), and the like. Further, these copolymers include random copolymers, block copolymers, or graft copolymers.
- the olefin copolymer is usually a copolymer of ethylene and at least one monomer selected from other olefins and polymerizable monomers. Of these polyolefin waxes, polyethylene wax is most preferred.
- the polyolefin wax may have a linear or branched structure.
- release agents may be used alone or in combination of two or more.
- the polyphenylene ether resin composition of the present invention contains a release agent
- its content is 0.1 to 3 parts by weight, more preferably 0.15 to 100 parts by weight with respect to 100 parts by weight of the resin component (A).
- the amount is preferably 2.5 parts by weight, particularly 0.2 to 2 parts by weight.
- the polyphenylene ether resin composition of the present invention includes a hindered phenol compound, a phosphite compound, and a phosphonite compound for the purpose of improving the thermal stability during melt kneading and use in the production and molding processes of the composition.
- at least one heat stabilizer selected from zinc oxide may be blended.
- hindered phenol compounds include n-octadecyl-3- (3 ′, 5′-di-t-butyl-4′-hydroxyphenyl) propionate, 1,6-hexanediol-bis [3- (3 ', 5'-di-t-butyl-4'-hydroxyphenyl) propionate], pentaerythritol-tetrakis [3- (3', 5'-di-t-butyl-4'-hydroxyphenyl) propionate], 2 , 6-Di-tert-butyl-4-methylphenol, 3,9-bis [1,1-dimethyl-2- ⁇ - (3-tert-butyl-4-hydroxy-5-methylphenyl) propionyloxy ⁇ Ethyl] -2,4,8,10-tetraoxaspiro [5,5] undecane, triethyleneglycol-bis [3- (3-tert-butyl-5-methyl-4-hydro Cyphenyl) propionate
- n-octadecyl-3- (3 ′, 5′-di-t-butyl-4′-hydroxyphenyl) propionate
- 1,6-hexanediol-bis [3- (3 ′, 5′- t-butyl-4′-hydroxyphenyl) propionate]
- 2,6-di-t-butyl-4-methylphenol 3,9-bis [1,1-dimethyl-2- ⁇ - (3-t- Butyl-4-hydroxy-5-methylphenyl) propionyloxy ⁇ ethyl] -2,4,8,10-tetraoxaspiro [5,5] undecane is preferred.
- These may be used alone or in combination of two or more.
- phosphite compounds include tris (2,4-di-t-butylphenyl) phosphite, bis (2,4-di-t-butylphenyl) pentaerythritol-di-phosphite, bis (2 , 6-Di-tert-butyl-4-methylphenyl) pentaerythritol di-phosphite, 2,2-methylenebis (4,6-di-tert-butylphenyl) octyl phosphite, 4,4′-butylidene- Bis- (3-methyl-6-tert-butylphenyl-di-tridecyl) phosphite, 1,1,3-tris (2-methyl-4-di-tridecyl phosphite-5-tert-butyl-phenyl) Butane, tris (mixed mono and di-nonylphenyl) phosphite
- the phosphonite compound include, for example, tetrakis (2,4-di-t-butylphenyl) -4,4′-biphenylenediphosphonite, tetrakis (2,5-di-t-butylphenyl) -4 , 4'-biphenylenediphosphonite, tetrakis (2,3,4-trimethylphenyl) -4,4'-biphenylenediphosphonite, tetrakis (2,3-dimethyl-5-ethylphenyl) -4,4'- Biphenylene diphosphonite, tetrakis (2,6-di-t-butyl-5-ethylphenyl) -4,4'-biphenylene diphosphonite, tetrakis (2,3,4-tributylphenyl) -4,4'- Biphenylene diphosphonite, tetrakis (2,4,6-tri-t-butylphenyl
- zinc oxide for example, those having an average particle diameter of 0.02 to 1 ⁇ m are preferable, and those having an average particle diameter of 0.08 to 0.8 ⁇ m are more preferable.
- the content thereof is usually 0.01 to 5 parts by weight, preferably 0, per 100 parts by weight of the resin component (A). 0.03 to 3 parts by weight, more preferably 0.05 to 2 parts by weight.
- the blending amount of the heat stabilizer is not less than the above lower limit, the effect of improving the heat stability can be sufficiently obtained, and when it is not more than the above upper limit, the occurrence of mold contamination, reduction of mechanical strength, etc. can be prevented. can do.
- one or more fillers may be blended mainly for the purpose of reinforcing the resin composition and improving rigidity, heat resistance, dimensional accuracy, and the like.
- An organic filler or an inorganic filler may be sufficient. Specific examples thereof include, for example, glass fiber, glass flake, glass bead, milled fiber, alumina fiber, carbon fiber, aramid fiber, titanium oxide, magnesium oxide, calcium carbonate, barium sulfate, boron nitride, potassium titanate, silica. , Mica, talc, wollastonite and the like are mentioned, and among these, glass fiber is a preferred example.
- the glass fibers preferably used in the present invention preferably have an average diameter of 20 ⁇ m or less, and those having a diameter of 1 to 15 ⁇ m further improve the balance of physical properties (heat resistance rigidity, impact strength) and further reduce the molding warp. This is preferable in terms of reduction.
- the length of the glass fiber is not specified and can be selected from a long fiber type (roving) or a short fiber type (chopped strand). In this case, the number of focusing is preferably about 100 to 5,000. If the average length of the glass fiber in the resin composition after kneading the resin composition is 0.1 mm or more, so-called milled fiber or a pulverized product of strands called glass powder may be used. A fiber sliver may also be used.
- the composition of the raw material glass is preferably non-alkali, and examples thereof include E glass, C glass, and S glass. In the present invention, E glass is preferably used.
- the blending amount is preferably 1 to 80 parts by weight, more preferably 5 parts per 100 parts by weight of the resin component (A). ⁇ 60 parts by weight.
- the polyphenylene ether-based resin composition of the present invention includes UV absorbers, antioxidants, weather resistance improvers other than carbon black, nucleating agents, foaming agents, lubricants, plasticizers, fluidity improvers, and dispersants.
- Various additives such as a conductive agent and an antistatic agent can be blended.
- the production method of the polyphenylene ether-based resin composition of the present invention is not limited to a specific method, but is preferably by melt-kneading, and a kneading method generally put to practical use for thermoplastic resins can be applied.
- a kneading method generally put to practical use for thermoplastic resins can be applied.
- polyphenylene ether resin, styrenic resin, carbon black, alkaline earth metal carbonate and / or sulfate, and other components used as necessary using a Henschel mixer, ribbon blender, V-type blender, etc.
- each component may be fed all at once to the kneader, or may be fed sequentially, or a mixture of two or more components selected from each component may be used. Moreover, especially about carbon black, you may use what was previously masterbatched with resin components, such as a styrene resin.
- the kneading temperature and kneading time can be arbitrarily selected according to the conditions such as the desired resin composition and the type of kneading machine.
- the kneading temperature is 200 to 350 ° C., preferably 220 to 320 ° C., and the kneading time is 20 minutes or less is preferable.
- this temperature is too high, thermal deterioration of the polyphenylene ether resin or styrene resin becomes a problem, and the physical properties of the molded product may be deteriorated or the appearance may be deteriorated.
- the polyphenylene ether-based resin composition of the present invention is a molding method generally used for thermoplastic resins, that is, injection molding, injection compression molding, hollow molding, extrusion molding, sheet molding, thermoforming, rotational molding, laminate molding, press It can be molded by various molding methods such as molding.
- the polyphenylene ether-based resin composition of the present invention preferably has the following properties.
- CTI comparative tracking index
- B Notched Charpy impact strength at 23 ° C. measured according to the ISO 179 standard is 7 kJ / m 2 or more.
- C The flame retardancy at a thickness of 0.75 mm, measured according to the UL94 standard, is V-0.
- D The L value measured according to JIS Z-8722 standard is 10 or less.
- the outstanding impact resistance is acquired by satisfy
- the Charpy impact strength of (b) is preferably 12 kJ / m 2 or more.
- the L value in the above (d) is particularly preferably 9.5 or less.
- Styrenic resin high impact polystyrene (HIPS), “HT478” manufactured by PS Japan, molecular weight (Mw) 200,000, MFR 3.0 g / 10 min (test conditions: 200 ° C., 5 kgf)
- Carbon black masterbatch “BLACK SBF-M8800” manufactured by Resino Color Industry Co., Ltd. Polystyrene base masterbatch with 45% by weight of carbon black (“MCF88” manufactured by Mitsubishi Chemical Corporation) Carbon Black-1: manufactured by Mitsubishi Chemical Corporation "MCF88", average primary particle diameter 18 nm, DBP oil absorption of 55cm 3/100 g Carbon black -2: Mitsubishi Chemical Co., Ltd. "# 1000", average primary particle diameter 18 nm, DBP oil absorption of 56cm 3/100 g Carbon black -3: Mitsubishi Chemical Co., Ltd. "# 900", average primary particle diameter 16 nm, DBP oil absorption of 56cm 3/100 g Carbon black -4: Mitsubishi Chemical Co., Ltd.
- Diest TA an average primary particle diameter of 122nm, DBP oil absorption of 42cm 3 / 100g Carbon black -9: Cabot Japan KK “REGAL 400”, an average primary particle diameter of 25nm, DBP oil absorption of 69cm 3 / 100g Carbon black -10: Cabot Japan KK “BLACK PEARLS 1000", an average primary particle diameter of 16nm, DBP oil absorption of 105cm 3 / 100g
- Flame retardant-1 Triphenyl phosphate, “TPP” manufactured by Daihachi Chemical Industry Co., Ltd.
- Flame retardant-2 Resorcinol bis (diphenyl phosphate), “CR-733S” manufactured by Daihachi Chemical Industry Co., Ltd.
- Flame retardant aid Polytetrafluoroethylene, “Maybrene A3800” manufactured by Mitsubishi Rayon Co., Ltd. Release agent: Oxidized polyethylene wax, “Sun Wax 151P” manufactured by Sanyo Kasei Co., Ltd. Heat stabilizer: Zinc oxide, "Zinc oxide 2 types” manufactured by Honjo Chemical Co., Ltd. Elastomer: SEBS, “Septon 8006” manufactured by Kuraray Plastics
- Examples 1 to 30, Comparative Examples 1 to 10, Reference Example 1 The ingredients shown in Tables 1 to 4 were uniformly mixed with a tumbler mixer in the proportions shown in Tables 1 to 4, and the resulting mixture was subjected to barrel temperature with a twin screw extruder “PCM-30” manufactured by Ikegai Co., Ltd. The mixture was melt-kneaded under the conditions of 280 ° C. and a rotational speed of 150 rpm, extruded into a strand shape, cooled, and cut to produce pellets.
- the amount of additives other than polyphenylene ether resin and styrene resin is the amount based on 100 parts by weight of the total of polyphenylene ether resin and styrene resin.
- the polyphenylene ether resin compositions of Examples 1 to 30 containing carbon black and an alkaline earth metal carbonate or sulfate have excellent tracking resistance, impact resistance, heat resistance, and mechanical strength. Low value and excellent blackness and weather resistance.
- the polyphenylene ether-based resin compositions of Examples 6 and 23 to 30 containing calcium carbonate and Examples 1 to 3 containing barium sulfate as an alkaline earth metal carbonate or sulfate contain an inorganic substance. Nevertheless, it has a surprising effect that the impact resistance at 23 ° C. and ⁇ 30 ° C. is improved as compared with the resin composition of Comparative Example 1 having the same composition except that these are not contained.
- Example 1 containing a high molecular weight polyphenylene ether resin With Example 7 not containing a high molecular weight polyphenylene ether resin, it can be seen that those containing a high molecular weight polyphenylene ether resin are superior in weather resistance.
- Comparative Examples 1 to 10 which contain carbon black but do not contain alkaline earth metal carbonate or sulfate may have poor tracking resistance and impact resistance.
- Reference Example 1 containing no carbon black has good tracking resistance, but has a high L value and poor weather resistance even if it contains a high molecular weight polyphenylene ether resin.
- Examples 13 to 22 shown in Table 3 compare the difference in the effects due to the average primary particle diameter of carbon black and the DBP oil absorption.
- Examples 13 and 21 using carbon blacks 7 and 8 having a large average primary particle size the L value is high and there is a tendency to be inferior in blackness and weather resistance. Accordingly, the L value has a smaller average primary particle size. It turns out that is preferable.
- the tracking resistance tends to be lower than that of Example 15 in which the DBP oil absorption is similar, it can be seen that the average primary particle size has a considerable influence on the tracking resistance.
- Examples 19, 20, 22, and 14 using carbon blacks 5, 6, 9, and 10 having a large DBP oil absorption amount tracking resistance tends to be inferior, although depending on the average primary particle diameter. It can be seen that the smaller the DBP oil absorption, the better.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
ジャンクションボックス内には、バイパスダイオード等が配置され、太陽光発電モジュールの表面に部分的な影がかかったり、電池セルが故障してモジュールの出力が低下したりする場合でも、その影響を最小限に抑える工夫がなされているが、その際、バイパスダイオードが発熱するため、ジャンクションボックス全体が耐熱性を有することが求められる。
ジャンクションボックスは、太陽光発電モジュールの付属部品として、屋根上等の屋外に設置されることもあるため、飛来物に対する耐衝撃性を有することが求められ、特に低温時においても耐衝撃性を有することが求められる。太陽光発電モジュール用コネクタについてもジャンクションボックスと同様に耐衝撃性が求められている。
ジャンクションボックス等の太陽光発電モジュール部品は、屋外に設けられる場合が多く、紫外線や風雨、外気温の変化に対する耐候性、耐久性が求められる。
ジャンクションボックス内の配線のショート等を防止するために耐トラッキング性(絶縁性)に優れることが求められる。
ポリフェニレンエーテル系樹脂組成物にカーボンブラックを配合すると黒色に着色することができ、また、着色の付与で耐紫外線性等の耐候性も高められることが知られているが、カーボンブラックを配合した場合には耐トラッキング性が低下する傾向にある。
(a)IEC60112規格に準拠して測定される、厚み3mmにおける比較トラッキング指数(CTI)が250V以上である。
(b)ISO179規格に準拠して測定される、23℃におけるノッチ付きシャルピー衝撃強度が7kJ/m2以上である。
(c)UL94規格に準拠して測定される、厚み0.75mmにおける難燃性がV-0である。
(d)JIS Z-8722規格に準拠して測定されるL値が10以下である。
本発明のポリフェニレンエーテル系樹脂組成物は、その優れた耐熱性、黒色性、耐候性、耐衝撃性等の機械的特性、耐トラッキング性から、特にジャンクションボックスやコネクタ等の太陽光発電モジュール用接続構造体といった太陽電池用部品の成形材料として有効に用いることができる。ただし、本発明のポリフェニレンエーテル系樹脂組成物は、何ら太陽電池用部品に限定されることなく、その他自動車用部品、電気・電子・OA機器用部品、建築用部品等、本発明のポリフェニレンエーテル系樹脂組成物は幅広い分野において各種用途に適用可能である。
本発明のポリフェニレンエーテル系樹脂組成物は、ポリフェニレンエーテル樹脂(a1)を主成分とする樹脂成分(A)100重量部に対して、カーボンブラック(B)0.01~5重量部と、アルカリ土類金属の炭酸塩及び/又は硫酸塩(C)0.1~20重量部とを含有してなることを特徴とする。
本発明に係る樹脂成分(A)は、ポリフェニレンエーテル樹脂(a1)を主成分とするものであり、ポリフェニレンエーテル樹脂(a1)のみ、或いは、ポリフェニレンエーテル樹脂(a1)の流動性、成形性等の改善を目的としてその他の配合樹脂を配合してなるものである。この配合樹脂としてはスチレン系樹脂(a2)が好ましい。
なお、ここで「主成分」とは、全成分中の50重量%以上を占める成分をさす。
本発明で用いるポリフェニレンエーテル樹脂(a1)は、下記一般式(1)で表される構造単位を主鎖に有する重合体であって、単独重合体又は共重合体の何れであっても良い。
本発明で用いるスチレン系樹脂(a2)としては、スチレン系単量体の重合体、スチレン系単量体と他の共重合可能な単量体との共重合体及びスチレン系グラフト共重合体等が挙げられる。
本発明に係る樹脂成分(A)は、ポリフェニレンエーテル樹脂(a1)50~100重量%と、スチレン系樹脂(a2)50~0重量%からなることが好ましく、ポリフェニレンエーテル樹脂(a1)85~100重量%と、スチレン系樹脂(a2)15~0重量%からなることがより好ましい。ポリフェニレンエーテル樹脂(a1)が50重量%以上であることにより、難燃性、荷重撓み温度及び機械的強度が良好なものとなる。特に、薄肉成形品で高い難燃性が求められる場合は、ポリフェニレンエーテル樹脂(a1)が85重量%以上であることが好ましい。
カーボンブラック(B)は、本発明のポリフェニレンエーテル系樹脂組成物に黒色の着色を付与すると共に、耐候性を高めるための成分として配合される。
カーボンブラックの粒子径が上記上限以下であることにより、後述のL値が小さく黒色性が良好となり、成形性、機械的特性が良好なものとなり、耐トラッキング性の低下を抑制しやすい傾向にある。一方、粒子径が上記下限以上であることにより、耐トラッキング性が改善され、また溶融混練時の吐出性が良好となる傾向にある。
また、カーボンブラックのDBP吸油量が上記上限以下であることにより、耐トラッキング性が良好となり、上記下限以上であることにより、L値が小さく黒色性が良好となる傾向にある。
このように、適切な平均一次粒子径、DBP吸油量を有するカーボンブラックを選択することにより、得られるポリフェニレンエーテル系樹脂組成物のL値と耐トラッキング性をバランスよく良好なものとすることができる。
アルカリ土類金属の炭酸塩及び/又は硫酸塩(以下、アルカリ土類金属の炭酸塩及び/又は硫酸塩を「(C)成分」と称す場合がある。)は、耐トラッキング性改善のために配合される成分である。本発明においては、(C)成分の配合で、耐トラッキング性が向上し、更に耐衝撃性が大きく低下することがなく、耐トラッキング性と耐衝撃性のバランスに優れた樹脂組成物が得られる。
本発明のポリフェニレンエーテル系樹脂組成物には、難燃性を付与するために難燃剤を配合することができる。難燃剤としては、組成物の難燃性を向上させるものであれば特に限定されないが、直鎖状あるいは分岐構造を有するポリオルガノシロキサンなどのシリコーン化合物;パーフルオロブタン-スルホン酸ナトリウム、パーフルオロブタン-スルホン酸カリウム、パーフルオロメチルブタン-スルホン酸ナトリウム、パーフルオロメチルブタン-スルホン酸カリウム、パーフルオロオクタン-スルホン酸ナトリウム、パーフルオロオクタン-スルホン酸カリウム、及びパーフルオロブタン-スルホン酸のテトラエチルアンモニウム塩、3,4-ジクロロベンゼンスルホン酸ナトリウム塩、2,4,5-トリクロロベンゼンスルホン酸ナトリウム塩、ベンゼンスルホン酸ナトリウム塩、ジフェニルスルホン-3-スルホン酸のナトリウム塩、ジフェニルスルホン-3-スルホン酸のカリウム塩、4,4’-ジブロモジフェニル-スルホン-3-スルホン酸のナトリウム塩、4,4’-ジブロモジフェニル-スルホン-3-スルホン酸のカリウム塩、4-クロロ-4’-ニトロジフェニルスルホン-3-スルホン酸のカルシウム塩、ジフェニルスルホン-3,3’-ジスルホン酸のジナトリウム塩、ジフェニルスルホン-3,3’-ジスルホン酸のジカリウム塩などの有機スルホン酸金属塩;リン系難燃剤(D)が挙げられ、なかでも、リン系難燃剤(D)が好ましい。
リン系難燃剤(D)としては、組成物の難燃性を向上させるものであれば特に限定されないが、リン酸エステル化合物が好適である。
かかる成分として好適に用いることができる市販の縮合リン酸エステル化合物としては、例えば、大八化学工業(株)より、「CR733S」(レゾルシノールビス(ジフェニルホスフェート))、「CR741」(ビスフェノールAビス(ジフェニルホスフェート))、(株)ADEKAより「FP500」(レゾルシノールビス(ジキシレニルホスフェート))といった商品名で販売されており、容易に入手可能である。特に、CR733Sは、低ガス性で好ましい。
本発明のポリフェニレンエーテル系樹脂組成物には、難燃性をさらに向上させるために、難燃助剤(E)の1種又は2種以上を配合しても良い。難燃助剤(E)としては、フッ素樹脂、特にポリフルオロエチレンが好ましく、ポリフルオロエチレンの中でもフィブリル形成能を有するもので、樹脂成分中に容易に分散し、且つ樹脂同士を結合して繊維状材料を作る傾向を示すものが好ましい。
本発明においては、主に樹脂組成物の耐衝撃性を向上させる目的で、エラストマー(F)の1種又は2種以上を配合してもよい。
これらのエラストマーは、従来から知られている製造方法によって製造することができる。該エラストマーは、ガラス転移温度が0℃以下であるものが好ましく、-5℃以下がより好ましい。エラストマーのガラス転移温度を0℃以下とすることにより、低温時の耐衝撃性を良好とすることができる。
エラストマーとして用いられるオレフィン系重合体とは、好ましくは炭素数2~20のオレフィン系単量体を重合して得られる単独重合体又は共重合体である。
オレフィン系単量体としては、例えば、エチレン、プロピレン、1-ブテン、1-ヘキセン、1-オクテン、1-デセン、3-メチルブテン-1、4-メチルペンテン-1等が挙げられ、これらを2種以上併用してもよい。これらの中でもより好ましくは2~10の直鎖状のオレフィン系単量体であり、さらに好ましいのはエチレン、プロピレン、1-ブテンである。
エラストマーとして用いられるオレフィン-ビニル系共重合体とは、オレフィン単量体とビニル系単量体を重合してなる共重合体である。
オレフィン系単量体としては、例えば、上記<オレフィン系重合体>で使用されるものと同様の単量体を使用することができる。
上記のオレフィン系単量体及びビニル系単量体は、2種以上を併用してもよい。
エラストマーとして用いられるブロック共重合体とは、前記スチレン系樹脂以外のエラストマーであって、ビニル芳香族化合物重合体ブロックaと共役ジエン系化合物重合体ブロックbとのブロック共重合体である。また、ブロック共重合体の水素添加物とは、ブロック共重合体に水素添加することによりブロックbの脂肪族不飽和基が減少したブロック共重合体を意味する。ブロックa及びブロックbの配列構造は、線状構造、分岐構造等いずれの構造であってもよい。また、これらの構造のうちで、一部にビニル芳香族化合物と共役ジエン系化合物とのランダム共重合部分に由来するランダム鎖を含んでいてもよい。これら構造の中では、線状構造のものが好ましく、a-b-a型のトリブロック構造のものがより好ましい。上記a-b-a型のブロック共重合体中には、a-b型のジブロック構造のものを含んでいてもよい。これらのブロック共重合体及びその水素添加物は2種以上併用してもよい。
有機過酸化物の具体例としては、例えば、t-ブチルハイドロパーオキサイド、キュメンハイドロパーオキサイド、2,5-ジメチルヘキサン-2,5-ジハイドロパーオキサイド、1,1,3,3-テトラメチルブチルハイドロパーオキサイド、p-メンタンハイドロパーオキサイド、ジイソプロピルベンゼンハイドロパーオキサイド等のハイドロパーオキサイド類、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキシン-3、ジ-t-ブチルパーオキサイド、t-ブチルクミルパーオキサイド、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン、ジクミルパーオキサイド等のジアルキルパーオキサイド類、2,2-ビス-t-ブチルパーオキシブタン、2,2-ビス-t-ブチルパーオキシオクタン、1,1-ビス-t-ブチルパーオキシシクロヘキサン、1,1-ビス-t-ブチルパーオキシ-3,3,5-トリメチルシクロヘキサン等のパーオキシケタール類、ジ-t-ブチルパーオキシイソフタレート、t-ブチルパーオキシベンゾエート、t-ブチルパーオキシアセテート、2,5-ジメチル-2,5-ジベンゾイルパーオキシヘキサン、t-ブチルパーオキシイソプロピルカーボネート、t-ブチルパーオキシイソブチレート等のパーオキシエステル類、ベンゾイルパーオキサイド、m-トルオイルパーオキサイド、アセチルパーオキサイド、ラウロイルパーオキサイド等のジアシルパーオキサイド類が挙げられる。
本発明のポリフェニレンエーテル系樹脂組成物には、上記の成分以外に他の各種樹脂添加剤を含有させることができる。
本発明のポリフェニレンエーテル系樹脂組成物は、離型性を向上させる目的で、離型剤を含有することが好ましい。離型剤としては、例えば、ポリオレフィン系ワックス、脂肪族カルボン酸、脂肪族カルボン酸エステル、シリコーンオイル等が挙げられる。これらの中でも、ポリオレフィン系ワックスが好ましい。
本発明のポリフェニレンエーテル系樹脂組成物には、組成物の製造及び成形工程における溶融混練時や使用時の熱安定性を向上させる目的で、ヒンダードフェノール系化合物、ホスファイト系化合物、ホスホナイト系化合物、酸化亜鉛から選ばれる少なくとも1種の熱安定剤を配合してもよい。
本発明においては、主に、樹脂組成物を補強し、剛性、耐熱性、寸法精度等を向上させる目的で充填材の1種又は2種以上を配合してもよい。充填材の形状等に特に制限はなく、有機充填材でも無機充填材でもよい。その具体例としては、例えば、ガラス繊維、ガラスフレーク、ガラスビーズ、ミルドファイバー、アルミナ繊維、炭素繊維、アラミド繊維、酸化チタン、酸化マグネシウム、炭酸カルシウム、硫酸バリウム、窒化硼素、チタン酸カリウィスカー、シリカ、マイカ、タルク、ワラストナイト等が挙げられるが、これらの中でも、ガラス繊維が好ましい例として挙げられる。
その他、本発明のポリフェニレンエーテル系樹脂組成物には、紫外線吸収剤、酸化防止剤、カーボンブラック以外の耐侯性改良剤、造核剤、発泡剤、滑剤、可塑剤、流動性改良剤、分散剤、導電剤、帯電防止剤等の各種の添加剤を配合することができる。
本発明のポリフェニレンエーテル系樹脂組成物の製造方法は、特定の方法に限定されるものではないが、好ましくは溶融混練によるものであり、熱可塑性樹脂について一般に実用化されている混練方法が適用できる。例えば、ポリフェニレンエーテル樹脂、スチレン系樹脂、カーボンブラック、アルカリ土類金属の炭酸塩及び/又は硫酸塩、並びに必要に応じて用いられるその他の成分等を、ヘンシェルミキサー、リボンブレンダー、V型ブレンダー等により均一に混合した後、一軸又は多軸混練押出機、ロール、バンバリーミキサー、ラボプラストミル(ブラベンダー)等で混練することができる。各成分は混練機に一括でフィードしても、順次フィードしてもよく、各成分から選ばれた2種以上の成分を予め混合したものを用いてもよい。また、特にカーボンブラックについては、予め、スチレン系樹脂等の樹脂成分とマスターバッチ化されたものを用いてもよい。
本発明のポリフェニレンエーテル系樹脂組成物は、熱可塑性樹脂について一般に用いられている成形法、すなわち射出成形、射出圧縮成形、中空成形、押出成形、シート成形、熱成形、回転成形、積層成形、プレス成形等の各種成形法によって成形することができる。
本発明のポリフェニレンエーテル系樹脂組成物は、次の諸性質を備えることが好ましい。
(a)IEC60112規格に準拠して測定される、厚み3mmにおける比較トラッキング指数(CTI)が250V以上である。
(b)ISO179規格に準拠して測定される、23℃におけるノッチ付きシャルピー衝撃強度が7kJ/m2以上である。
(c)UL94規格に準拠して測定される、厚み0.75mmにおける難燃性がV-0である。
(d)JIS Z-8722規格に準拠して測定されるL値が10以下である。
本発明のポリフェニレンエーテル系樹脂組成物を成形してなる成形品の形状には特に制限はなく、フィルム状、シート状ないしは箱状等、各種の成形品を提供することができる。
また、その適用分野についても特に制限はなく、前述の太陽光発電モジュール用接続構造体等の太陽光発電モジュール部品、その他自動車用部品、電気・電子・OA機器用部品、建築用部品等、本発明の成形品は幅広い分野において各種用途に適用可能であるが、上記(a)~(d)の特性をバランスよく満足することから、太陽光発電モジュール部品に特に有用である。
<ポリフェニレンエーテル樹脂>
PPE-1:ポリ(2,6-ジメチル-1,4-フェニレン)エーテル、ポリキシレノールシンガポール社製「PX100F」、クロロホルム中で測定した30℃の固有粘度0.37dl/g
PPE-2:ポリ(2,6-ジメチル-1,4-フェニレン)エーテル、ポリキシレノールシンガポール社製「PX100L」、クロロホルム中で測定した30℃の固有粘度0.47dl/g
スチレン系樹脂:ハイインパクトポリスチレン(HIPS)、PSジャパン社製「HT478」、分子量(Mw)200,000、MFR3.0g/10分(試験条件:200℃,5kgf)
カーボンブラックマスターバッチ:レジノカラー工業社製「BLACK SBF-M8800」、カーボンブラック(三菱化学(株)製「MCF88」)含有量45重量%のポリスチレンベースマスターバッチ
カーボンブラック-1:三菱化学(株)製「MCF88」、平均一次粒子径18nm、DBP吸油量55cm3/100g
カーボンブラック-2:三菱化学(株)製「#1000」、平均一次粒子径18nm、DBP吸油量56cm3/100g
カーボンブラック-3:三菱化学(株)製「#900」、平均一次粒子径16nm、DBP吸油量56cm3/100g
カーボンブラック-4:三菱化学(株)製「#2700B」、平均一次粒子径13nm、DBP吸油量57cm3/100g
カーボンブラック-5:三菱化学(株)製「#750B」、平均一次粒子径22nm、DBP吸油量116cm3/100g
カーボンブラック-6:三菱化学(株)製、絶縁性カーボンブラック「TML41」、平均一次粒子径24nm、DBP吸油量83cm3/100g
カーボンブラック-7:東洋カーボン社製「ジーストSP」、平均一次粒子径95nm、DBP吸油量51cm3/100g
カーボンブラック-8:東洋カーボン社製「ジーストTA」、平均一次粒子径122nm、DBP吸油量42cm3/100g
カーボンブラック-9:キャボットジャパン社製「REGAL 400」、平均一次粒子径25nm、DBP吸油量69cm3/100g
カーボンブラック-10:キャボットジャパン社製「BLACK PEARLS 1000」、平均一次粒子径16nm、DBP吸油量105cm3/100g
硫酸バリウム:堺化学工業社製「B-55」、平均粒子径0.8μm
炭酸バリウム:和光純薬工業社製「炭酸バリウム」、平均粒子径1.0μm
炭酸ストロンチウム:堺化学工業社製「SW-P」、平均粒子径1.0μm
膠質炭酸カルシウム-1:白石工業社製「Vigot-15」、平均粒子径0.15μm
膠質炭酸カルシウム-2:白石工業社製「白艶華CC-R」、平均粒子径0.08μm
重質炭酸カルシウム-3:甘糟化成産業社製「NS♯100」、平均粒子径2.1μm
重質炭酸カルシウム-4:甘糟化成産業社製「NS♯2500」、平均粒子径0.9μm
塩化カルシウム:和光純薬工業社製「塩化カルシウム」、平均粒子径350μm
酢酸バリウム:和光純薬工業社製「酢酸バリウム」、平均粒子径100μm
アルミナ:昭和電工社製「AL-43KT」、平均粒子径4.6μm
水酸化マグネシウム:協和化学工業社製「キスマ5A」、平均粒子径0.8μm
ステアリン酸マグネシウム:日東化成工業社製「Mg-St」、平均粒子径10μm
タルク:微粉タルク、林化成社製「ミセルトン」、平均粒子径1.4μm
窒化ホウ素:六方晶窒化ホウ素、電気化学工業社製「SP-2」、平均粒子径4.0μm
難燃剤-1:トリフェニルホスフェート、大八化学工業社製「TPP」
難燃剤-2:レゾルシノールビス(ジフェニルホスフェート)、大八化学工業社製「CR-733S」
難燃助剤:ポリテトラフルオロエチレン、三菱レイヨン社製「メタブレンA3800」
離型剤:酸化型ポリエチレンワックス、三洋化成社製「サンワックス151P」
熱安定剤:酸化亜鉛、本荘ケミカル社製「酸化亜鉛2種」
エラストマー:SEBS、クラレプラスチックス社製「セプトン8006」
(1)GPCによる高分子量ポリフェニレンエーテル樹脂の含有量
下記記載の方法で得られた樹脂組成物ペレット10gを200mlのトルエンに溶解させた。この溶液を冷却後(-10℃)、濾過し、溶液を攪拌しながら、約1Lのメタノール中に投入して沈殿を得た。濾過した沈殿物をメタノールでよく洗浄した後、乾燥した(減圧、140℃×1時間)。乾燥後の沈殿物をクロロホルム溶液として以下の条件でGPC(ゲルパーミエーションクロマトグラフィー)に供した。
GPC:東洋曹達(株)製「HPLC8020」
カラム:東洋曹達(株)製「TSK G5000HHR+G3000HHR」
温度:40℃
溶媒:クロロホルム
流量:1.0ml/min
検出:UV 283nm
計算:ポリスチレン標準サンプル(分子量264、364、466、568、2,800、16,700、186,000、1,260,000のもの。UV検出波長は254nm)
GPCの結果から、全ポリフェニレンエーテル樹脂中の分子量500,000以上の高分子量ポリフェニレンエーテル樹脂の含有量を算出した。
下記記載の方法で得られた樹脂組成物ペレットを80℃で2時間乾燥した後、射出成形機(東芝機械社製「EC160NII」)にて、シリンダー温度280℃、金型温度80℃の条件で、大きさが100mm×100mmで、厚みが3mmの試験片を作製し、IEC60112規格に準拠して比較トラッキング指数(CTI)を測定した。なお、印加電圧は25V単位で行った。
下記記載の方法で得られた樹脂組成物ペレットを80℃で2時間乾燥した後、射出成形機(東芝機械社製「EC160NII」)にて、シリンダー温度280℃、金型温度80℃の条件で、大きさが100mm×100mmで、厚みが3mmの試験片を作製し、IEC60112規格に準拠し、印加電圧250Vおよび275Vにおいて、絶縁破壊が起こるまでの塩化アンモニウム水溶液の滴下数を測定した。滴下数が多いほど、耐トラッキング性に優れているといえる。
下記記載の方法で得られた樹脂組成物ペレットを80℃で2時間乾燥した後、射出成形機(東芝機械社製「EC160NII」)にて、シリンダー温度280℃、金型温度80℃の条件でISO試験片を作製し、ISO75規格に準じて、荷重1.8MPaにおける荷重たわみ温度を測定し、耐熱性の指標とした。
下記記載の方法で得られた樹脂組成物ペレットを80℃で2時間乾燥した後、射出成形機(東芝機械社製「EC160NII」)にて、シリンダー温度280℃、金型温度80℃の条件でISO試験片を作製し、ノッチ加工を施し、ISO179規格に準じて、23℃及び-30℃でのシャルピー衝撃強度を測定した。
下記記載の方法で得られた樹脂組成物ペレットを80℃で2時間乾燥した後、射出成形機(東芝機械社製「EC160NII」)にて、シリンダー温度280℃、金型温度80℃の条件でISO試験片を作製し、ISO527規格に準じて、引張降伏応力を測定した。
下記記載の方法で得られた樹脂組成物ペレットを80℃で2時間乾燥した後、射出成形機(東芝機械社製「EC160NII」)にて、シリンダー温度280℃、金型温度80℃の条件で100mm×100mmで、厚みが3mmの試験片を作製し、JIS Z-8722規格に準拠し、多光源分光測色計(スガ試験機(株)製「MSC-5N-GV5」を用いて、光源系はd/8条件、光束はφ15mmの条件にて、L値を測定した。L値が低いほど黒色度が高く好ましい。
下記記載の方法で得られた樹脂組成物ペレットを80℃で2時間乾燥した後、射出成形機(日本製鋼所社製「J50EP」)にて、シリンダー温度280℃、金型温度80℃の条件で127mm×12.7mmで、厚が0.75mmの試験片を作製し、UL94規格に準拠して測定を行った。
下記記載の方法で得られた樹脂組成物ペレットを80℃で2時間乾燥した後、射出成形機(東芝機械社製「EC160NII」)にて、シリンダー温度280℃、金型温度80℃の条件にて、ISO試験片を作製した。この試験片について、83℃サンシャインフェード試験(雨なし)を行った。照射時間0、100、300、1000時間後の試験片について、ISO527規格に準じて引張破壊呼び歪みを測定し、未照射(照射時間0時間)の試験片に対する引張破壊呼び歪み保持率を求め、耐候性の指標とした。引張破壊呼び歪み保持率が高いほど、耐候性に優れているといえる。
表1~4に示す配合成分を、表1~4に示す割合でタンブラーミキサーにて均一に混合し、得られた混合物を、池貝社製二軸押出機「PCM-30」にて、バレル温度280℃、回転数150rpmの条件で溶融混練し、ストランド状に押出して冷却し、切断してペレットを作製した。なお、表1~4において、ポリフェニレンエーテル樹脂及びスチレン系樹脂以外の添加剤の配合量は、ポリフェニレンエーテル樹脂及びスチレン系樹脂の合計100重量部に対する配合量である。
評価結果を表1~4に示す。
表1~4より次のことが明らかである。
カーボンブラックとアルカリ土類金属の炭酸塩又は硫酸塩を含む実施例1~30のポリフェニレンエーテル系樹脂組成物は、耐トラッキング性に優れ、耐衝撃性、耐熱性、機械的強度も良好で、L値も低く、黒色性、耐候性に優れる。特に、アルカリ土類金属の炭酸塩又は硫酸塩として、炭酸カルシウムを含む実施例6,23~30及び硫酸バリウムを含む実施例1~3のポリフェニレンエーテル系樹脂組成物は、無機物を配合しているにも関わらず、これらを含まない以外は同組成の比較例1の樹脂組成物に比べ、23℃及び-30℃における耐衝撃性が向上するという驚くべき効果を有する。
また、高分子量ポリフェニレンエーテル樹脂を含む実施例1と、高分子量ポリフェニレンエーテル樹脂を含まない実施例7とを対比することにより、高分子量ポリフェニレンエーテル樹脂を含むものの方が耐候性に優れることが分かる。
なお、本出願は、2010年9月16日付で出願された日本特許出願(特願2010-208126)に基づいており、その全体が引用により援用される。
Claims (13)
- ポリフェニレンエーテル樹脂(a1)を主成分とする樹脂成分(A)100重量部に対して、カーボンブラック(B)0.01~5重量部と、アルカリ土類金属の炭酸塩及び/又は硫酸塩(C)0.1~20重量部とを含有してなることを特徴とするポリフェニレンエーテル系樹脂組成物。
- 次の諸性質を備えることを特徴とする、請求項1に記載のポリフェニレンエーテル系樹脂組成物。
(a)IEC60112規格に準拠して測定される、厚み3mmにおける比較トラッキング指数(CTI)が250V以上である。
(b)ISO179規格に準拠して測定される、23℃におけるノッチ付きシャルピー衝撃強度が7kJ/m2以上である。
(c)UL94規格に準拠して測定される、厚み0.75mmにおける難燃性がV-0である。
(d)JIS Z-8722規格に準拠して測定されるL値が10以下である。 - 前記アルカリ土類金属の炭酸塩及び/又は硫酸塩(C)が、炭酸カルシウム及び/又は硫酸バリウムであることを特徴とする、請求項1又は2に記載のポリフェニレンエーテル系樹脂組成物。
- 前記樹脂成分(A)がポリフェニレンエーテル樹脂(a1)とスチレン系樹脂(a2)とを含むことを特徴とする、請求項1ないし3のいずれか1項に記載のポリフェニレンエーテル系樹脂組成物。
- 前記樹脂成分(A)が、ポリフェニレンエーテル樹脂(a1)85~100重量%と、スチレン系樹脂(a2)0~15重量%とを含むことを特徴とする、請求項1ないし4のいずれか1項に記載のポリフェニレンエーテル系樹脂組成物。
- さらに、リン系難燃剤(D)を、前記樹脂成分(A)100重量部に対して1~30重量部含有してなることを特徴とする、請求項1ないし5のいずれか1項に記載のポリフェニレンエーテル系樹脂組成物。
- さらに、難燃助剤(E)を、前記樹脂成分(A)100重量部に対して0.01~3重量部含有してなることを特徴とする、請求項1ないし6のいずれか1項に記載のポリフェニレンエーテル系樹脂組成物。
- さらに、エラストマー(F)を、前記樹脂成分(A)100重量部に対して1~20重量部含有してなることを特徴とする、請求項1ないし7のいずれか1項に記載のポリフェニレンエーテル系樹脂組成物。
- 前記ポリフェニレンエーテル樹脂(a1)が、重量平均分子量500,000以上のポリフェニレンエーテル樹脂を0.1~5重量%含有することを特徴とする、請求項1ないし8のいずれか1項に記載のポリフェニレンエーテル系樹脂組成物。
- 前記カーボンブラック(B)が、平均一次粒子径5~30nm、DBP吸油量20~60cm3/100gのものであることを特徴とする、請求項1ないし9のいずれか1項に記載のポリフェニレンエーテル系樹脂組成物。
- 太陽光発電モジュール用接続構造体に用いられることを特徴とする、請求項1ないし10のいずれか1項に記載のポリフェニレンエーテル系樹脂組成物。
- 請求項1ないし11のいずれか1項に記載のポリフェニレンエーテル系樹脂組成物を成形してなることを特徴とする成形品。
- 請求項1ないし11のいずれか1項に記載のポリフェニレンエーテル系樹脂組成物を成形してなることを特徴とするジャンクションボックス。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020137006632A KR101818903B1 (ko) | 2010-09-16 | 2011-08-31 | 폴리페닐렌에테르계 수지 조성물 및 그 성형품 |
JP2012533937A JP5761645B2 (ja) | 2010-09-16 | 2011-08-31 | ポリフェニレンエーテル系樹脂組成物及びその成形品 |
CN201180044290.4A CN103108917B (zh) | 2010-09-16 | 2011-08-31 | 聚苯醚系树脂组合物及其成型品 |
EP11824982.0A EP2617772B1 (en) | 2010-09-16 | 2011-08-31 | Polyphenylene ether resin composition and molded article of same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010208126 | 2010-09-16 | ||
JP2010-208126 | 2010-09-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012035976A1 true WO2012035976A1 (ja) | 2012-03-22 |
Family
ID=45831445
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/069679 WO2012035976A1 (ja) | 2010-09-16 | 2011-08-31 | ポリフェニレンエーテル系樹脂組成物及びその成形品 |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP2617772B1 (ja) |
JP (1) | JP5761645B2 (ja) |
KR (1) | KR101818903B1 (ja) |
CN (1) | CN103108917B (ja) |
WO (1) | WO2012035976A1 (ja) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014117813A (ja) * | 2012-12-13 | 2014-06-30 | Jsp Corp | 熱可塑性樹脂発泡ブロー成形体の製造方法及び熱可塑性樹脂発泡ブロー成形体 |
JP2014177504A (ja) * | 2013-03-13 | 2014-09-25 | Mitsubishi Engineering Plastics Corp | ポリフェニレンエーテル系樹脂組成物、成形品および太陽光発電モジュール用接続構造体 |
WO2015002145A1 (ja) * | 2013-07-05 | 2015-01-08 | 旭化成ケミカルズ株式会社 | 絶縁樹脂成形体を具備する電気部品、及び難燃性の安定化方法 |
CN105143327A (zh) * | 2013-04-26 | 2015-12-09 | 帝斯曼知识产权资产管理有限公司 | 智能接线盒和用于智能接线盒的聚合物组合物 |
JP2017014321A (ja) * | 2015-06-26 | 2017-01-19 | 旭化成株式会社 | 熱可塑性樹脂組成物、太陽光発電モジュール用接続構造体、太陽光発電モジュール用ジャンクションボックス、及び太陽光発電モジュール用コネクタ |
CN108117738A (zh) * | 2016-11-30 | 2018-06-05 | 旭化成株式会社 | 树脂组合物 |
JP2018193471A (ja) * | 2017-05-17 | 2018-12-06 | 三菱エンジニアリングプラスチックス株式会社 | 樹脂組成物および成形品 |
JP2019073600A (ja) * | 2017-10-13 | 2019-05-16 | 旭化成株式会社 | 熱可塑性樹脂組成物、太陽光発電モジュール用接続構造体 |
JP2020128477A (ja) * | 2019-02-08 | 2020-08-27 | 旭化成株式会社 | 黒色ポリフェニレンエーテル系樹脂組成物 |
CN111909502A (zh) * | 2020-06-30 | 2020-11-10 | 会通新材料股份有限公司 | 一种PPO-sPS组合物及其制备方法 |
WO2024048546A1 (ja) * | 2022-09-01 | 2024-03-07 | グローバルポリアセタール株式会社 | ポリフェニレンエーテル系樹脂組成物および成形品 |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6328664B2 (ja) * | 2013-12-27 | 2018-05-23 | 旭化成株式会社 | 難燃性樹脂組成物、及び太陽光発電モジュール用接続構造体 |
CN103937204A (zh) * | 2014-04-18 | 2014-07-23 | 芜湖凯奥尔环保科技有限公司 | 一种汽车塑料件用碳酸钙改性聚苯醚材料 |
CN106987121B (zh) * | 2017-05-02 | 2020-05-19 | 广州市聚赛龙工程塑料股份有限公司 | 一种聚苯醚复合材料及其制备方法 |
KR101981755B1 (ko) * | 2017-08-29 | 2019-05-27 | 주식회사 휴비스 | 폴리페닐렌설파이드 복합 섬유가 포함된 절연지 |
CN111406086B (zh) * | 2017-12-06 | 2023-04-28 | 旭化成株式会社 | 车载锂离子电池用部件 |
JP2023010586A (ja) * | 2021-07-08 | 2023-01-20 | 旭化成株式会社 | ポリフェニレンエーテル系樹脂組成物 |
EP4141057A1 (en) * | 2021-08-24 | 2023-03-01 | SHPP Global Technologies B.V. | Thermoplastic compositions including low dielectric carbon black as a signal transmission component |
EP4148089A1 (en) * | 2021-09-13 | 2023-03-15 | SHPP Global Technologies B.V. | Poly(phenylene ether)-based composition and article |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5996142A (ja) * | 1982-11-24 | 1984-06-02 | Mitsubishi Petrochem Co Ltd | 導電性樹脂組成物 |
JP2002309102A (ja) * | 2001-04-13 | 2002-10-23 | Sumitomo Chem Co Ltd | 熱可塑性樹脂組成物の製造方法及び組成物 |
JP2003147200A (ja) * | 2001-11-14 | 2003-05-21 | Toray Ind Inc | ポリアリーレンサルファイド樹脂組成物 |
JP2004155928A (ja) * | 2002-11-07 | 2004-06-03 | Idemitsu Petrochem Co Ltd | 熱可塑性樹脂組成物及びその成形体 |
JP2005344065A (ja) | 2004-06-04 | 2005-12-15 | Mitsubishi Engineering Plastics Corp | ポリフェニレンエーテル系樹脂組成物 |
JP2006143958A (ja) | 2004-11-24 | 2006-06-08 | Mitsubishi Engineering Plastics Corp | 難燃性熱可塑性樹脂組成物 |
WO2010047122A1 (ja) * | 2008-10-24 | 2010-04-29 | 旭化成ケミカルズ株式会社 | 太陽光発電モジュール用接続構造体 |
JP2010208126A (ja) | 2009-03-10 | 2010-09-24 | Ricoh Co Ltd | ラベル印字方法およびラベル |
JP2011108802A (ja) * | 2009-11-17 | 2011-06-02 | Sumitomo Chemical Co Ltd | 太陽電池用封止剤 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090029138A1 (en) * | 2005-11-15 | 2009-01-29 | Takaaki Miyoshi | Resin Composition Having Excellent Heat Resistance |
US7750067B2 (en) * | 2007-04-05 | 2010-07-06 | Sabic Innovative Plastics Ip B.V. | Black-colored poly(arylene ether)polystyrene compositions, articles, and methods |
EP2196500B1 (en) * | 2008-12-12 | 2013-04-10 | Cheil Industries Inc. | Thermoplastic elastomer composition |
-
2011
- 2011-08-31 KR KR1020137006632A patent/KR101818903B1/ko active IP Right Grant
- 2011-08-31 CN CN201180044290.4A patent/CN103108917B/zh active Active
- 2011-08-31 JP JP2012533937A patent/JP5761645B2/ja active Active
- 2011-08-31 EP EP11824982.0A patent/EP2617772B1/en active Active
- 2011-08-31 WO PCT/JP2011/069679 patent/WO2012035976A1/ja active Application Filing
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5996142A (ja) * | 1982-11-24 | 1984-06-02 | Mitsubishi Petrochem Co Ltd | 導電性樹脂組成物 |
JP2002309102A (ja) * | 2001-04-13 | 2002-10-23 | Sumitomo Chem Co Ltd | 熱可塑性樹脂組成物の製造方法及び組成物 |
JP2003147200A (ja) * | 2001-11-14 | 2003-05-21 | Toray Ind Inc | ポリアリーレンサルファイド樹脂組成物 |
JP2004155928A (ja) * | 2002-11-07 | 2004-06-03 | Idemitsu Petrochem Co Ltd | 熱可塑性樹脂組成物及びその成形体 |
JP2005344065A (ja) | 2004-06-04 | 2005-12-15 | Mitsubishi Engineering Plastics Corp | ポリフェニレンエーテル系樹脂組成物 |
JP2006143958A (ja) | 2004-11-24 | 2006-06-08 | Mitsubishi Engineering Plastics Corp | 難燃性熱可塑性樹脂組成物 |
WO2010047122A1 (ja) * | 2008-10-24 | 2010-04-29 | 旭化成ケミカルズ株式会社 | 太陽光発電モジュール用接続構造体 |
JP2010208126A (ja) | 2009-03-10 | 2010-09-24 | Ricoh Co Ltd | ラベル印字方法およびラベル |
JP2011108802A (ja) * | 2009-11-17 | 2011-06-02 | Sumitomo Chemical Co Ltd | 太陽電池用封止剤 |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014117813A (ja) * | 2012-12-13 | 2014-06-30 | Jsp Corp | 熱可塑性樹脂発泡ブロー成形体の製造方法及び熱可塑性樹脂発泡ブロー成形体 |
JP2014177504A (ja) * | 2013-03-13 | 2014-09-25 | Mitsubishi Engineering Plastics Corp | ポリフェニレンエーテル系樹脂組成物、成形品および太陽光発電モジュール用接続構造体 |
CN105143327A (zh) * | 2013-04-26 | 2015-12-09 | 帝斯曼知识产权资产管理有限公司 | 智能接线盒和用于智能接线盒的聚合物组合物 |
WO2015002145A1 (ja) * | 2013-07-05 | 2015-01-08 | 旭化成ケミカルズ株式会社 | 絶縁樹脂成形体を具備する電気部品、及び難燃性の安定化方法 |
JPWO2015002145A1 (ja) * | 2013-07-05 | 2017-02-23 | 旭化成株式会社 | 絶縁樹脂成形体を具備する電気部品、及び難燃性の安定化方法 |
US9991622B2 (en) | 2013-07-05 | 2018-06-05 | Asahi Kasei Chemicals Corporation | Electrical component comprising insulating resin molded article, and method for stabilizing flame retardance |
DE112014003158B4 (de) | 2013-07-05 | 2022-12-15 | Asahi Kasei Chemicals Corporation | Elektrisches Bauteil, umfassend ein Isolierharz-Formteil, sowie Verfahren zur Stabilisierung der Flammhemmung |
JP2017014321A (ja) * | 2015-06-26 | 2017-01-19 | 旭化成株式会社 | 熱可塑性樹脂組成物、太陽光発電モジュール用接続構造体、太陽光発電モジュール用ジャンクションボックス、及び太陽光発電モジュール用コネクタ |
CN108117738B (zh) * | 2016-11-30 | 2020-04-21 | 旭化成株式会社 | 树脂组合物 |
CN108117738A (zh) * | 2016-11-30 | 2018-06-05 | 旭化成株式会社 | 树脂组合物 |
JP2018193471A (ja) * | 2017-05-17 | 2018-12-06 | 三菱エンジニアリングプラスチックス株式会社 | 樹脂組成物および成形品 |
JP7097167B2 (ja) | 2017-10-13 | 2022-07-07 | 旭化成株式会社 | 熱可塑性樹脂組成物、太陽光発電モジュール用接続構造体 |
JP2019073600A (ja) * | 2017-10-13 | 2019-05-16 | 旭化成株式会社 | 熱可塑性樹脂組成物、太陽光発電モジュール用接続構造体 |
JP2020128477A (ja) * | 2019-02-08 | 2020-08-27 | 旭化成株式会社 | 黒色ポリフェニレンエーテル系樹脂組成物 |
JP7364340B2 (ja) | 2019-02-08 | 2023-10-18 | 旭化成株式会社 | 黒色ポリフェニレンエーテル系樹脂組成物 |
CN111909502A (zh) * | 2020-06-30 | 2020-11-10 | 会通新材料股份有限公司 | 一种PPO-sPS组合物及其制备方法 |
CN111909502B (zh) * | 2020-06-30 | 2022-05-17 | 会通新材料股份有限公司 | 一种PPO-sPS组合物及其制备方法 |
WO2024048546A1 (ja) * | 2022-09-01 | 2024-03-07 | グローバルポリアセタール株式会社 | ポリフェニレンエーテル系樹脂組成物および成形品 |
Also Published As
Publication number | Publication date |
---|---|
CN103108917B (zh) | 2015-05-20 |
KR101818903B1 (ko) | 2018-01-16 |
CN103108917A (zh) | 2013-05-15 |
EP2617772A1 (en) | 2013-07-24 |
EP2617772B1 (en) | 2020-02-12 |
KR20130102561A (ko) | 2013-09-17 |
JP5761645B2 (ja) | 2015-08-12 |
EP2617772A4 (en) | 2017-05-03 |
JPWO2012035976A1 (ja) | 2014-02-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5761645B2 (ja) | ポリフェニレンエーテル系樹脂組成物及びその成形品 | |
JP6039432B2 (ja) | 電力計外装用ポリエステル樹脂組成物 | |
JP5196630B2 (ja) | ポリフェニレンエーテル系樹脂組成物の製造方法 | |
JP7097167B2 (ja) | 熱可塑性樹脂組成物、太陽光発電モジュール用接続構造体 | |
JPH0249023A (ja) | 樹脂組成物 | |
JPWO2014125992A1 (ja) | 高誘電率材料用樹脂組成物、それを含む成形品、および着色用マスターバッチ | |
JP5875225B2 (ja) | 太陽光発電モジュール用接続構造体 | |
WO2017208945A1 (ja) | 樹脂組成物、樹脂組成物の製造方法及び成形体 | |
JP6020703B2 (ja) | 太陽光発電モジュール用接続構造体 | |
JP5447362B2 (ja) | ポリフェニレンエーテル系樹脂組成物及びその成形品 | |
JP6155058B2 (ja) | ポリフェニレンエーテル系樹脂組成物、成形品および太陽光発電モジュール用接続構造体 | |
JP2017110072A (ja) | 熱可塑性樹脂組成物、及び太陽光発電モジュール用接続構造体 | |
JP6769991B2 (ja) | 樹脂組成物及びその製造方法、熱可塑性樹脂組成物、並びに成形体及びその製造方法 | |
JP2000017120A (ja) | 熱可塑性樹脂組成物 | |
JP5707778B2 (ja) | ポリフェニレンエーテル/スチレン系樹脂組成物及びその成形品 | |
JP3555257B2 (ja) | 樹脂組成物 | |
JP5556064B2 (ja) | 難燃性ポリフェニレンエーテル系樹脂組成物及びその成形品 | |
JP2005179547A (ja) | 自動車外装部品製造用樹脂組成物 | |
WO2022255015A1 (ja) | ポリフェニレンエーテル系樹脂組成物および成形品 | |
JPH01213360A (ja) | 樹脂組成物 | |
JPH03185058A (ja) | 熱可塑性樹脂組成物 | |
JP2017082044A (ja) | 熱可塑性樹脂組成物及びそれを用いる太陽光発電モジュール用接続構造体 | |
JP3358334B2 (ja) | 熱可塑性樹脂組成物 | |
JP2015028112A (ja) | ポリアリーレンスルフィド系組成物 | |
JP2003277555A (ja) | 樹脂組成物及びその製法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201180044290.4 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11824982 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012533937 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011824982 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20137006632 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |