WO2012034957A1 - Dérivés de n-oxyde de pyrroline pesticides - Google Patents
Dérivés de n-oxyde de pyrroline pesticides Download PDFInfo
- Publication number
- WO2012034957A1 WO2012034957A1 PCT/EP2011/065704 EP2011065704W WO2012034957A1 WO 2012034957 A1 WO2012034957 A1 WO 2012034957A1 EP 2011065704 W EP2011065704 W EP 2011065704W WO 2012034957 A1 WO2012034957 A1 WO 2012034957A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- alkyl
- carbonyl
- spp
- alkoxy
- haloalkyl
- Prior art date
Links
- 0 CC1(*)C=C(C(*)(C2)C*(O)=C2c(cc2)cc(C)c2N)C=C*=C1 Chemical compound CC1(*)C=C(C(*)(C2)C*(O)=C2c(cc2)cc(C)c2N)C=C*=C1 0.000 description 2
- YWIUJKHPIHCRRH-UHFFFAOYSA-N N#Cc(cc(cc1)C(CC(C2)(C(F)(F)F)c(cc3Cl)cc(Cl)c3Cl)=[N+]2[O-])c1-[n]1ncnc1 Chemical compound N#Cc(cc(cc1)C(CC(C2)(C(F)(F)F)c(cc3Cl)cc(Cl)c3Cl)=[N+]2[O-])c1-[n]1ncnc1 YWIUJKHPIHCRRH-UHFFFAOYSA-N 0.000 description 1
- JJRRAYHXXWZQJS-UHFFFAOYSA-N O[N+](CC(C1)(C(F)(F)F)c(cc2Cl)cc(Cl)c2Cl)=C1c(cc1)cc(Br)c1-[n]1ncnc1 Chemical compound O[N+](CC(C1)(C(F)(F)F)c(cc2Cl)cc(Cl)c2Cl)=C1c(cc1)cc(Br)c1-[n]1ncnc1 JJRRAYHXXWZQJS-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D207/00—Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom
- C07D207/46—Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with hetero atoms directly attached to the ring nitrogen atom
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D401/00—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
- C07D401/02—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
- C07D401/04—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D401/00—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
- C07D401/14—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D403/00—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
- C07D403/02—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
- C07D403/10—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a carbon chain containing aromatic rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D409/00—Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
- C07D409/02—Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
- C07D409/12—Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings linked by a chain containing hetero atoms as chain links
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D409/00—Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
- C07D409/14—Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing three or more hetero rings
Definitions
- the present invention relates to novel pyrroline N-oxide derivatives, and pesticides and an animal parasite-controlling agent that contain the pyrroline N-oxide derivative as an active ingredient.
- novel pyrroline N-oxide derivatives represented by the following Formula (I) have a high activity, a broad spectrum of use and safety, and also are effective against pests that are resistant to an organic phosphorous agent or a carbamate agent.
- T is one of followin groups (Tl) to (T4) or a group (T5)
- a 1 , A 2 and A 3 are C-Y or nitrogen;
- G is halogen (fluorine chlorine, bromine, or iodine), or a saturated or unsaturated 5- or 6-membered heterocyclic group which may be substituted; by halogen, d-12 alkyl, cyano, Ci_i 2 alkoxy-carbonyl or carbox preferably G is selected among the following 5- membered heterocycles Gl to G9,
- R 2 is hydrogen, cyano, carbonyl, thiocarbonyl, C M2 alkyl-carbonyl, C M2 alkyl -thiocarbonyl, C M2 haloalkyl-carbonyl, d-12 haloalkyl-thiocarbonyl, d-12 alkyl-aminocarbonyl, d-12
- R 1 and R 2 may form, together with the nitrogen atom to which they are bonded, a 3- to 6-membered heterocycle, and the heterocycle may be substituted with X as defined below, oxo, thioxo, or nitroimino;
- R 3 is hydrogen, cyano, Ci_i 2 alkyl which is optionally substituted or d_i 2 haloalkyl which is optionally substituted;
- R 4 is hydrogen, d- 12 alkyl, d- 12 alkyl-carbonyl, or d- 12 alkoxy-carbonyl;
- R 6 is phenyl which is optionally substituted or a 5- to 6-membered heterocyclic group which is optionally substituted;
- B is C-X, C-H or N;
- j 1 or 2;
- n 0 to 4.
- n 0 to 2;
- X is halogen, nitro, cyano, Ci_i 2 alkyl, d- 12 alkoxy, Ci_i 2 haloalkyl, d- 12 haloalkoxy, Ci_i 2 alkylthio, Ci_ i 2 alkylsulfinyl, d- 12 alkylsulfonyl, d- 12 haloalkylthio, Ci_i 2 haloalkylsulfinyl, d- 12 haloalkylsulfonyl, acylamino, Ci_i 2 alkoxy-carbonylamino, C M2 haloalkoxy-carbonylamino, Ci_i 2 alkoxyimino, Ci_i 2 haloalkoxyimino, Ci_i 2 alkyl sulfonylamino, sulfur pentafluoride, hydroxy, mercapto or amino, and among the definitions of X, each group from d- 12 alkyl to
- Y is hydrogen, halogen, nitro, hydroxy, mercapto, cyano, amino, C M2 alkyl, d- 12 haloalkyl, C 3 _ 8 cycloalkyl, C 3 _ 8 cyclohaloalkyl, d- 12 alkoxy, C M2 haloalkoxy, Ci_i 2 alkylthio, Ci_i 2 alkylsulfinyl, Ci_i 2 alkylsulfonyl, d- 12 haloalkylthio, C M2 haloalkylsulfinyl, d- 12 haloalkylsulfonyl, d- 12 alkyl sulfonyloxy, Ci_i 2 haloalkylsulfonyloxy, Ci_i 2 alkylaminosulfonyl, d- 12 haloalkylaminosulfonyl, C 2 _ 24 dialkylaminosulfonyl
- R 7 and R 8 each independently represent hydrogen, halogen, d- 12 alkyl which may be substituted or d- 12 haloalkyl which may be substituted;
- R 9 is hydrogen, cyano, nitro, C M2 alkyl, d- 12 haloalkyl, C 3 _ 8 cycloalkyl-Ci_ 6 alkyl, d- 12 alkyl-carbonyl, Ci- 12 haloalkyl-carbonyl, Ci_i 2 alkoxy-carbonyl, Ci_i 2 haloalkoxy-carbonyl, Ci_i 2 alkylsulfonyl, Ci_ 1 2 haloalkylsulfonyl, C 6 _i 0 aryl-Ci_ 6 alkyl or heteroaryl-Ci_ 6 alkyl, among the definitions of R 9 , each group from d- 12 alkyl to Ci_i 2 haloalkylsulfonyl is optionally substituted, and the aryl moiety in C 6 _io aryl-Ci- 6 alkyl and the heteroaryl moiety in heteroaryl-Ci_ 6 alkyl may be substitute
- the compounds having Formula (I) of the invention can be prepared according to the following methods.
- Preparation method (a) A method of reducing the compounds represented by the following Formula (II) with a metal hydride.
- Preparation method (b) A method for the preparation of compounds of Formula (I), wherein T is Tl, G is a heterocyclic group; and Y is a halogen, which method comprises reacting the compounds represented by the following Formula (III) with the compounds represented by the following Formula (IV) in the presence of a base in an inert solvent.
- Preparation method (c) A method for the preparation of compounds of Formula (I), wherein T is Tl, G is a heterocyclic group, and Y is cyano; comprising reacting the compounds represented by the following Formula (V) with a cyanation agent.
- the compounds having Formula (I) of the invention have a pesticidal activity, and therefore can be used as a pesticide.
- alkyl represents linear or branched Ci_i 2 alkyl such as methyl, ethyl, n- or iso-propyl, n-, iso-, sec- or tert-butyl, n-pentyl, n-hexyl, n-heptyl, n-octyl, n-nonyl, n-decyl, n-undecyl or n-dodecyl, preferably Ci_ 6 alkyl, and more preferably Ci_ 4 alkyl.
- examples of an alkyl moiety included in each groups as a part of constitution can be those described above for the "alkyl”.
- acylamino represents, for example, alkylcarbonylamino, cyclopropylcarbonylamino, and benzoylamino.
- alkyl for the alkyl moiety, those having the same meaning as described in the above for the "alkyl” can be exemplified.
- halogen and a halogen moiety included in each group substituted with a halogen represent fluorine, chlorine, bromine or iodine, preferably fluorine, chlorine or bromine.
- cycloalkyl represents C 3 _ 8 cycloalkyl, such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl or cyclooctyl, preferably C 3 _ 7 cycloalkyl, and more preferably C 3 _ 6 cycloalkyl.
- alkenyl represents C 2 _ 6 alkenyl, preferably C 2 _ 4 alkenyl, such as vinyl, allyl, 1-propenyl, or 1- (or 2- or 3-) butenyl, more preferably C 2 _ 3 alkenyl.
- alkynyl represents C 2 _ 6 alkynyl, preferably C 2 _ 4 alkynyl, such as ethynyl, propargyl, 1- propynyl, butan-3-ynyl or pentan-4-ynyl, more preferably C 2 _ 3 alkynyl.
- aryl represents a C 6 . 12 aromatic hydrocarbon group, for example, phenyl, naphthyl or biphenyl, preferably a C 6 _i 0 aromatic hydrocarbon group, and more preferably a C 6 aromatic hydrocarbon group, phenyl.
- arylalkyl represents, for example, benzyl or phenethyl.
- Heterocycle represents a saturated or unsaturated 5- or 6-membered heterocyclic ring group comprising at least one of N, O and S as a hetero atom, and also represents a fused heterocyclic ring group which may be benzo-fused.
- heterocycle or heterocyclic group examples include furyl, thienyl, pyrrolyl, isoxazolyl, pyrazolyl, oxazolyl, oxathiaxolyl, imidazolyl, triazolyl, oxadiazolyl, thiadiazolyl, tetrazolyl, pyridyl, pyrimidinyl, pyridazinyl, pyrazinyl, triazinyl, indolyl, benzoxazolyl, and quinolyl.
- heteroaryl represents an unsaturated 5- or 6-membered heterocyclic group which contains a heteroatom in addition to carbon atoms in the ring structure, and specific examples thereof include furyl, thienyl, pyrrolyl, imidazolyl, pyrazolyl, oxazolyl, isoxazolyl, thiazolyl, triazolyl, pyridyl, pyrazyl, pyridazyl, pyrimidyl, and triazinyl.
- substituent for substituting a group which "is optionally substituted" ones selected from nitro, cyano, hydroxy, mercapto, isocyano, cyanato, isothiocyanato, carboxy, carbamoyl, aminosulfonyl, monoalkylamino, dialkylamino, N-alkylcarbonylamino, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, SF 5 , alkoxy, alkenyloxy, alkynyloxy, cycloalkyloxy, cycloalkenyloxy, alkoxycarbonyl, alkenyloxycarbonyl, alkynyloxycarbonyl, aryloxycarbonyl, alkylcarbonyl, alkylthio, alkenylthio, cycloalkenylthio, alkynylthio, alkylsulfinyl, alkylsulfinyl,
- T is one of the followin groups (Tl) to T4) or (T5):
- a 1 , A 2 and A 3 are C-Y or nitrogen;
- G is halogen, in particular fluorine, or the following heterocycle G6
- (Z) is CN, N0 2 , halogen, and k is 0, 1 or 2; more preferably (Z) is halogen and k is 0 or 1;
- R is Ci-6 alkyl or Ci_ 6 haloalkyl which is optionally substituted; preferably R is Ci_ 4 alkyl or Ci_ 4 haloalkyl which is optionally substituted; more preferably R is CF 3 ;
- R 2 is hydrogen, cyano, carbonyl, thiocarbonyl, Ci_ 6 alkyl-carbonyl, Ci_ 6 alkyl-thiocarbonyl, Ci_ 6 haloalkyl-carbonyl, Ci_ 6 haloalkyl-thiocarbonyl, Ci_ 6 alkyl-aminocarbonyl, Ci_ 6 alkylamino- thiocarbonyl, C 2 _i 2 dialkylamino-carbonyl, C 2 _i 2 dialkylamino-thiocarbonyl, Ci_ 6 alkoxyamino- carbonyl, Ci_ 6 alkoxyamino-thiocarbonyl, Ci_ 6 alkoxy-carbonyl, Ci_ 6 alkoxy-thiocarbonyl, Ci_ 6 alkylthio-carbonyl, Ci_ 6 alkylthio-thiocarbonyl, Ci_ 6 alkylsulfonyl, Ci_ 6 haloalkylsulfonyl, C 3 _ 7
- R 1 and R 2 may form, together with a nitrogen atom to which they are bonded, a 3- to 6-membered heterocycle, and the heterocycle may be substituted with X as described below, oxo, thioxo or nitroimino;
- R 3 is hydrogen, cyano, Ci_ 6 alkyl which is optionally substituted or Ci_ 6 haloalkyl which is optionally substituted; preferably R 3 is hydrogen, cyano, Ci_ 4 alkyl which is optionally substituted or Ci_ 4 haloalkyl which is optionally substituted; more preferably R 3 is hydrogen, or Ci_ 4 alkyl
- R 4 is hydrogen, Ci_ 6 alkyl, Ci_ 6 alkyl-carbonyl or Ci_ 6 alkoxy-carbonyl; preferably R 4 is hydrogen, Ci_ 4 alkyl, Ci_ alkyl-carbonyl or Ci_ alkoxy-carbonyl; more preferably R 4 is hydrogen
- R 6 is phenyl which is optionally substituted or a 5- to 6-membered heterocyclic group which is optionally substituted; preferably R 6 is phenyl which is optionally substituted or a 5- to 6- membered heterocyclic group which is optionally substituted,
- B is C-X, with X being halogen (in particular chlorine), or C-H, or N; preferably C-X, with X being chlorine or C-H; j is 1 or 2; preferably j is 1; m is 0, 1, 2, 3 or 4; n is 0, 1 or 2;
- X is halogen, nitro, cyano, Ci_ 6 alkyl, Ci_ 6 alkoxy, Ci_ 6 haloalkyl, Ci_ 6 haloalkoxy, Ci_ 6 alkylthio, Ci_ 6 alkylsulfinyl, Ci_ 6 alkylsulfonyl, Ci_ 6 haloalkylthio, Ci_ 6 haloalkylsulfinyl, Ci_ 6 haloalkylsulfonyl, acylamino, Ci_ 6 alkoxy-carbonylamino, Ci_ 6 haloalkoxy-carbonylamino, Ci_ 6 alkoxyimino, Ci_ 6 haloalkoxyimino, Ci_ 6 alkylsulfonylamino, sulfur pentafluoride, hydroxy, mercapto or amino, among the definitions of X, each group from Ci_ 6 alkyl to Ci_ 6 alkylsulfonylamino is optionally substitute
- Y is hydrogen, halogen, nitro, hydroxy, mercapto, cyano, amino, Ci_ 6 alkyl, Ci_ 6 haloalkyl, C 3 _ 7 cycloalkyl, C 3 _ 7 cyclohaloalkyl, Ci_ 6 alkoxy, Ci_ 6 haloalkoxy, Ci_ 6 alkylthio, Ci_ 6 alkylsulfinyl, Ci_ 6 alkylsulfonyl, Ci_ 6 haloalkylthio, Ci_ 6 haloalkylsulfinyl, Ci_ 6 haloalkylsulfonyl, Ci_ 6 alkylsulfonyloxy, Ci_ 6 haloalkylsulfonyloxy, Ci_ 6 alkylaminosulfonyl, Ci_ 6 haloalkylaminosulfonyl, C 2 -n dialkylaminosulfonyl, C 2 -n di-haloalky
- R 7 and R 8 each independently are hydrogen, halogen, Ci_ 6 or Ci_ alkyl which may be substituted or Ci_ 6 or Ci-4 haloalkyl which may be substituted; preferably stand for hydrogen and
- R 9 is hydrogen, cyano, nitro, Ci_ 6 alkyl, Ci_ 6 haloalkyl, C 3 _ 7 cycloalkyl-Ci_ alkyl, Ci_ 6 alkyl-carbonyl, Ci-6 haloalkyl-carbonyl, Ci_ 6 alkoxy-carbonyl, Ci_ 6 haloalkoxy-carbonyl, Ci_ 6 alkylsulfonyl, Ci_ 6 haloalkylsulfonyl, C 6 _i 0 aryl-Ci_ alkyl or heteroaryl-Ci_ alkyl, among the definitions of R 9 , each group from Ci_ 6 alkyl to Ci_ 6 haloalkylsulfonyl is optionally substituted, and the aryl moiety in C 6 _io aryl-Ci_ alkyl and the heteroaryl moiety in heteroaryl-Ci_ alkyl may be substituted with one to three groups selected from a group consisting of
- Each compound having Formula (I) according to the invention has an asymmetric carbon atom, and the compounds of the invention specified by Formula (I) include an optical isomer.
- Preparation method (b) is expressed by the following reaction scheme.
- the compounds having Formula (II) in Preparation method (a) are the compounds that have been described in international patent application PCT/EP2011/055639 or in its priority application Japanese Patent Application No. 2010-92182.
- Examples of the metal hydride compound which is used in Preparation method (a) include sodium borohydride, and lithium aluminum hydride.
- the reaction of Preparation method (a) may be carried out in the presence of an appropriate diluent, and examples of the diluent which can be used include aliphatic, alicyclic, and aromatic hydrocarbons (they may be also chlorinated depending on specific cases) such as pentane, hexane, cyclohexane, petroleum ether, ligroin, benzene, toluene, xylene, dichloromethane, chloroform, carbon tetrachloride, 1 ,2- dichloroethane, chlorobenzene, and dichlorobenzene; ethers such as ethyl ether, methylethyl ether, isopropyl ether, butyl ether, dioxane, dimethoxyethane (DME), tetrahydrofuran (THF), and diethylene glycol dimethyl ether (DGM); ketones such as acetone, methylethyl ketone
- the reaction of Preparation method (a) is preferably carried out in the presence of nickel chloride.
- Preparation method (a) can be carried out over a substantially wide range of temperatures. It may be generally carried out at a temperature between about -10°C and about 80°C, preferably between about 0°C and about 50°C.
- the reaction is preferably carried out under normal pressure . However, it may be carried out under reduced or elevated pressure.
- Preparation method (a) for example, by a reaction of 1 mole of the compound having Formula (II) and 0.5 mole of nickel (II) chloride hexahydrate with 3 moles of sodium borohydride in a mixture solvent of methanol and dioxane, the target compound having Formula (I) can be obtained.
- the compound having Formula (III) in Preparation method (b) can be synthesized according to the above Preparation method (a).
- the compound having Formula (IV) is well known as a heterocyclic compound.
- Examples of the compound having Formula (IV) include lH-l,2,4-triazole, lH-l,2,3-triazole, pyrazole, and lH-l,2,3,4-tetrazole.
- the reaction of Preparation method (b) may be carried out in the presence of an appropriate diluent, and examples of the diluent which can be used include aliphatic, alicyclic, and aromatic hydrocarbons (it may be also chlorinated depending on specific cases) such as pentane, hexane, cyclohexane, petroleum ether, ligroin, benzene, toluene, xylene, dichloromethane, chloroform, carbon tetrachloride, 1 ,2- dichloroethane, chlorobenzene, and dichlorobenzene; ethers such as ethyl ether, methylethyl ether, isopropyl ether, butyl ether, dioxane, dimethoxyethane (DME), tetrahydrofuran (THF), and diethylene glycol dimethyl ether (DGM); ketones such as acetone, methylethyl ketone
- Preparation method (b) can be carried out using a base, for example, alkali metal bases such as sodium carbonate, potassium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, sodium acetate, potassium acetate, sodium methoxide, sodium ethoxide, and potassium tert-butoxide; lithium hydride ; and organic base s such as triethylamine, diisopropylethylamine, tributylamine, N- methylmorpholine, N,N-dimethylaniline, ⁇ , ⁇ -diethylaniline, 4-tert-butyl-N,N-dimethylaniline, pyridine, picoline, lutidine, diazabicycloundecene, diazabicyclooctane, and imidazole.
- alkali metal bases such as sodium carbonate, potassium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, sodium acetate, potassium acetate, sodium methoxide, sodium ethoxide,
- the reaction of the Preparation method (b) can be carried out over a substantially wide range of temperatures. It may be generally carried out at a temperature between about -80°C and about 200°C, preferably between -10°C and about 100°C. Furthermore, the reaction is preferably carried out under normal pressure. However, it may be carried out under reduced or elevated pressure. The reaction time is 0.1 to 72 hours and preferably 1 to 24 hours.
- Preparation method (b) for example, by a reaction of the compound having Formula (IV) in an amount of 1 molar or a slightly excessive amount with respect to 1 molar of the compound having Formula (III) in a diluent, for example DMF, the target compound having Formula (I) can be obtained.
- a diluent for example DMF
- the compound having Formula (V) in Preparation method (c) can be synthesized according to the above Preparation method (b).
- Examples of the cyanation agent used in Preparation method (c) include zinc cyanide and copper cyanide.
- the reaction of Preparation method (c) may be carried out in the presence of an appropriate diluent, and examples of the diluent which can be used include aliphatic, alicyclic, and aromatic hydrocarbons (it may be also chlorinated depending on specific cases) such as pentane, hexane, cyclohexane, petroleum ether, ligroin, benzene, toluene, xylene, dichloromethane, chloroform, carbon tetrachloride, 1,2- dichloroethane, chlorobenzene, and dichlorobenzene; ethers such as ethyl ether, methylethyl ether, isopropyl ether, butyl ether, dioxane, dimethoxyethane (DME), tetrahydrofuran (THF), and diethylene glycol dimethyl ether (DGM); ketones such as acetone, methylethyl ketone (ME
- Preparation method (c) is preferably carried out in the presence of a transition metal catalyst.
- the transition metal catalyst include a palladium complex and the representative examples include tetraki s (triphenylpho sphine) palladium , tris (benzylideneacetone) dipalladium , and bis(benzylideneacetone) palladium.
- the reaction of the Preparation method (c) can be carried out over a substantially wide range of temperatures. It may be generally carried out at a temperature between about -80°C and about 200°C, preferably between -10°C and about 100°C. Furthermore, the reaction is preferably carried out under normal pressure. However, it may be carried out under reduced or elevated pressure. The reaction time is 0.1 to 72 hours and preferably 1 to 24 hours.
- Preparation method (c) for example, by a reaction of zinc cyanide in an amount of 1 molar or a slightly excessive amount thereof with respect to 1 mole of the compound having Formula (V) in a diluent, for example DMF, in the presence of a catalytic amount of tetrakis(triphenylphosphine) palladium, the target compound having Formula (I) can be obtained.
- a diluent for example DMF
- the compounds having Formula (I) of the invention exhibit a strong pesticidal effect, and therefore can be used as pesticides. Furthermore, the compounds of the invention exhibit a strong controlling effect against noxious insects without causing any damages on crop plants that are cultivated. Therefore, the compounds of the invention can be used for controlling a wide variety of pests including, for example, harmful sucking insects, chewing insects and other plant parasitic pests, stored grain insects, hygienic pests, etc., and can be applied to control and eradicate these pests. Examples of pests are as follows.
- Coleoptera for example Callosobruchus chinensis, Sitophilus zeamais, Tribolium castaneum, Epilachna vigintioctomaculata, Agriotes fuscicollis, Anomala rufocuprea, Leptinotarsa decemlineata, Diabrotica spp., Monochamus alternatus, Lissorhoptrus oryzophilus, Lyctus bruneus and Aulacophora femoralis;
- Lepidoptera for example, Lymantria dispar, Malacosoma neustria, Pieris rapae, Spodoptera litura, Mamestra brassicae, Chilo suppressalis, Pyrausta nubilalis, Ephestia cautella, Adoxophyes orana, Carpocapsa pomonella, Agrotisfucosa, Galleria mellonella, Plutella maculipennis, Heliothis viresc
- Acarina for example, Tetranychus cinnabarinus, Tetranychus urticae, Panonychus citri, Aculops pelekassi and Tarsonemus spp are included.
- nematodes for example, Meloidogyne incognita, Bursaphelenchus lignicolus Mamiya et Kiyohara, Aphelenchoides besseyi, Heterodera glycines and Pratylenchus spp are included.
- the compounds of the present invention have good tolerance in plants and low toxicity to warm-blooded animals. Further, as being well received by an environment, the compounds of the present invention are appropriate for the protection of plants and plant parts.
- the compounds of the present invention are suitable for protection of preserved products and materials and for a hygiene field, in terms of controlling harmful animals, in particular insects, spider-like animals, helminth, nematodes and mollusks that are encountered in agriculture, horticulture, veterinary medicine, forest, garden and entertainment facilities.
- the compounds of the present invention can be preferably used as agents for protecting plants.
- the compounds of the present invention have an activity for normal sensitive species or resistant species, and for all over or several growth stages thereof.
- the harmful organisms mentioned above include the followings.
- Anoplura for example, Damalinia spp., Haematopinus, Linognathus spp., Pediculus spp. and Trichodectes spp are included.
- Arachnida for example, Acarus siro, Aceria sheldoni, Aculops spp., Aculus spp., Amblyomma spp., Argas spp., Boophilus spp., Brevipalpus spp., Bryobia praetiosa, Chorioptes spp., Dermanyssus gallinae, Eotetranychus spp., Epitrimerus pyri, Eutetranyctus spp., Eriophyes spp., Hemitarsonemus spp., Hyalomma spp ., Ixodes spp ., Latrodectus mactans, Metatetranychus spp., Oligonychus spp., Ornithodoros spp., Panonychus spp., Phyllocoptruta oleivora, Polyphagotarsonemus lat
- Chilopoda for example, Geophilus spp. and Scutigera spp are included.
- Onychiurus armatus is included.
- Forficula auricularia is included.
- Blaniulus guttulatus is included.
- Diptera for example, Aedes spp., Anopheles spp., Bibio hortulanus, Calliphora erythrocephala, Ceratitis capitata, Chrysomyia spp., Cochliomyia spp., Cordylobia anthropophaga, Culex spp., Cuterebra spp., Dacus oleae, Dermatobia hominis, Drosophila spp., Fannia spp., Gastrophilus spp., Hylemyia spp., Hyppobosca spp., Hypoderma spp., Liriomyza spp., Lucilia spp., Musca spp., Nezara spp., Oestrus spp., Oscinella frit, Pegomyia hyoscyami
- Gastropoda for example, Arion spp., Biomphalaria spp., Bulinus spp., Deroceras spp., Galba spp., Lymnaea spp., Oncomelania spp. and Succinea spp are included.
- Ancylostoma duodenale for example, Ancylostoma duodenale, Ancylostoma ceylanicum, Acylostoma braziliensis, Ancylostoma spp., Ascaris lubricoides, Ascaris spp., Brugia malayi, Brugia timori, Bunostomum spp., Chabertia spp., Clonorchis spp., Cooperia spp., Dicrocoelium spp., Dictyocaulus filaria, Diphyllobothrium latum, Dracunculus medeinensis, Echinococcus granulosus, Echinococcus multiocularis, Enterobius vermicularis, Faciola spp., Haemonchus spp., Heterakis spp., Hymenolepis nana, Hyostrongulus spp., Loa loa
- Protozoa such as Eimeria
- Heteroptera for example, Anasa tristis, Antestiopsis spp., Blissus spp., Calocoris spp., Campylomma livida, Cavelerius spp., Cimex spp ., Creontiades dilutus, Dasynus piperis, Dichelops furcatus, Diconocoris hewetti, Dysdercus,spp., Euschistus spp., Eurygaster spp., Heliopeltis spp., Horchias nobiellus, Leptocorisa spp., Leptoglossus phyllopus, Lygus spp., Macropes excavatus, Miridae, Nezara spp., Oebalus spp., Pentomidae, Piesma quad
- Hymenoptera for example, Diprion spp., Hoplocampa spp., Lasius spp., Monomorium pharaonis) and Vespa spp are included.
- Isopoda for example, Armadillidium vulgare, Oniscus asellus and Porcellio scaber are included.
- Isoptera for example, Reticulitermes spp. and Odontotermes spp are included.
- Lepidoptera for example, Acronicta major, Aedia leucomelas, Agrotis spp., Alabama argillacea, Anticarsia spp., Barathra brassicae, Bucculatrix thurberiella, Bupalus piniarius, Cacoecia podana, Capua reticulana, Carpocapsa pomonella, Cheimatobia brumata, Chilo spp., Choristoneura fumiferana, Clysia ambiguella, Cnaphalocerus spp., Earias insulana, Ephestia kuehniella, Euproctis chrysorrhoea, Euxoa spp., Feltia spp., Galleria mellonella, Helicoverpa spp., Heliothis spp., Hofmannophila pseudospretella, Homona magnanima, Hyponome
- Orthoptera for example, Acheta domesticus, Blatta orientalis, Blattella germanica, Gryllotalpa spp., Leucophaea maderae, Locusta spp., Melanoplus spp., Periplaneta Americana and Schistocerca gregaria are included.
- Siphonaptera for example, Ceratophyllus spp. and Xenopsylla cheopis are included.
- Symphyla for example, Scutigerella immaculate is included.
- Thynsanoptera for example, Basothrips biformis, Enneothrips flavens, Frankliniella spp., Heliothrips spp., Hercinothrips femoralis, Kakothrips spp., Rhipiphorothrips cruentatus, Scirtothrips spp., Taeniothrips cardamoni and Thrips spp are included.
- Thysanura for example, Lepisma saccharina is included.
- plant parasitic nematodes for example, Anguina spp., Aphelenchoides spp., Belonoaimus spp., Bursaphelenchus spp., Ditylenchus dipsaci, Globodera spp., Heliocotylenchus spp., Heterodera spp., Longidorus spp., Meloidogyne spp., Pratylenchus spp., Radopholus similis, Rotylenchus spp., Trichodorus spp., Tylenchorhynchus spp., Tylenchulus spp., Thlenchulus semipenetrans and Xiphinema spp. are included.
- the active compounds according to the invention in combination with good plant tolerance and favourable toxicity to warm-blooded animals and being tolerated well by the environment, are suitable for protecting plants and plant organs, for increasing harvest yields, for improving the quality of the harvested material and for controlling animal pests, in particular insects, arachnids, helminths, nematodes and molluscs, which are encountered in agriculture, in horticulture, in animal husbandry, in forests, in gardens and leisure facilities, in protection of stored products and of materials, and in the hygiene sector. They can be preferably employed as plant protection agents. They are active against normally sensitive and resistant species and against all or some stages of development.
- pests from the phylum Arthropoda especially from the class Arachnida, for example, Acarus spp., Aceria sheldoni, Aculops spp., Aculus spp., Amblyomma spp., Amphitetranychus viennensis, Argas spp., Boophilus spp., Brevipalpus spp., Bryobia graminum, Bryobia praetiosa, Centruroides spp., Chorioptes spp., Dermanyssus gallinae, Dermatophagoides pteronyssinus, Dermatophagoides farinae, Dermacentor spp., Eotetranychus spp., Epitrimerus pyri, Eutetranychus spp., Eriophyes spp ., Glycyphagus domesticus, Halotydeus destructor
- the class Diplopoda for example, Blaniulus guttulatus
- the class Insecta e.g. from the order Blattodea, for example, Blattella asahinai, Blattella germanica, Blatta orientalis, Leucophaea maderae, Panchlora spp., Parcoblatta spp., Periplaneta spp., Supella longipalpa
- from the order Coleoptera for example, Acalymma vittatum, Acanthoscelides obtectus
- Adoretus spp. Agelastica alni, Agriotes spp., Alphitobius diaperinus, Amphimallon solstitialis, Anobium punctatum, Anoplophora spp., Anthonomus spp., Anthrenus spp., Apion spp., Apogonia spp., Atomaria spp., Attagenus spp
- Hoplocampa spp. Lasius spp., Monomorium pharaonis, Sirex spp., Solenopsis invicta, Tapinoma spp., Urocerus spp., Vespa spp., Xeris spp.; from the order Isopoda, for example, Armadillidium vulgare, Oniscus asellus, Porcellio scaber; from the order Isoptera, for example, Coptotermes spp., Cornitermes cumulans, Cryptotermes spp., Incisitermes spp., Microtermes obesi, Odontotermes spp., Reticulitermes spp.; from the order Lepidoptera, for example, Achroia grisella, Acronicta major, Adoxophyes spp., Aedia leucomelas, Agrotis spp ., Alabama spp ., Amyelois transitella, Anarsia spp.
- Radopholus spp . Trichodorus spp .
- Tylenchulus spp . Xiphinema spp .
- Helicotylenchus spp. Tylenchorhynchus spp.
- Scutellonema spp. Paratrichodorus spp.
- Meloinema spp. Paraphelenchus spp ., Aglenchus spp., Belonolaimus spp ., Nacobbus spp.
- Rotylenchulus spp. Rotylenchus spp.
- Neotylenchus spp. Paraphelenchus spp.
- Dolichodorus spp. Hoplolaimus spp., Punctodera spp., Criconemella spp., Quinisulcius spp., Hemicycliophora spp., Anguina spp
- a plant should be understood as all plants and plant populations including desirable and undesirable wild plants or crop plants (including naturally-occurring crop plants) and the like.
- the crop plants they can be plants which are obtainable by conventional methods of breeding modified varieties and optimization methods, or biotechnological methods and genetic engineering methods, or by combination of these methods, and they include transgenic plants.
- plant varieties which are either protected or not protected by a plant breeder are also included.
- Plant parts should be understood as all parts and organs of a plant that are present above or under ground. Examples thereof include shoots, leaves, flowers and roots, etc.
- the plant parts also include a harvested material and a material which propagates sexually or asexually, for example, a cutting, a tuber, an underground tuber, a side branch and a seed.
- Treatment of plants and plant parts with the active compounds according to the present invention can be carried out directly or by using conventional methods such as impregnation, spray, evaporation, particularization, dispersion, coating and injection, or for a propagating material, especially for a seed, by coating it with one or more of the compounds, so that the compounds are applied to their surroundings, habitat environment, or preservation place.
- the compounds of the present invention have a penetrating activity and this means that the compounds can penetrate a plant body and can migrate from the underground part to the above- ground part of a plant. As it has been described above, according to the present invention, all plants and parts thereof can be treated.
- wild plant species and plant mutants, or those obtained by traditional plant breeding methods such as hybridization or protoplast fusion, and parts thereof are treated.
- transgenic plants and plant varieties obtained by conventional methods in appropriate combination with genetic engineering methods, and parts thereof are treated.
- the terms "parts”, “parts of a plant” and “plant parts” are as defined above.
- plants of plant varieties that are commercially available or currently in use are treated according to the present invention.
- Plant varieties are understood as plants having new characteristics ("traits") obtained by conventional breed improvements, introduction of mutation or recombinant DNA techniques. They can be plant varieties, biotypes or genotypes.
- the treatment according to the present invention may have a supra-additive ("synergy") effect.
- a supra-additive effect for example, exceeding an expected effect, it is possible to obtain several effects including reduction of application rate and/or broadening of an activity spectrum, and/or increased activity of the material and composition that can be used according to the present invention, improvement of plant growth, enhancement of tolerance to high or low temperature, enhancement of tolerance to drought, moisture or salt contained in soil, improvement of a flowering property, simplification of harvest methods, accelerated maturation, increased harvest amount, improvement of quality and/or nutritional value of harvest products, and improvement of preservation stability and/or processability of harvested products.
- the preferable transgenic plants or plant varieties (obtainable by genetic engineering methods) treated according to the present invention include all kinds of plant having genetic materials that can provide the plants with very advantageous and useful traits based on genetic modifications.
- traits include improvement of plant growth, enhancement of tolerance to high or low temperature, enhancement of tolerance to drought, moisture or salt contained in soil, improvement of a flowering property, simplification of harvest methods, accelerated maturation, increased harvest amount, improvement of quality and/or nutritional value of harvest products, and improvement of preservation stability and/or processability of harvested products.
- Further examples in which such traits are particularly more emphasized include improved protection of plants against harmful animals and harmful microorganisms such as insect, tick, plant pathogenic fungus, bacteria and/or virus, and improved tolerance of plants against compounds having certain type of herbicidal activities.
- transgenic plant examples include grain crops (barley, rice), corn, soybean, potato, sugar beet, tomato, bean and other modified plant species, useful plants such as cotton, tobacco, rape seed, and fruit plants (fruits like an apple, a pear, a citrus fruit and other fruit-bearing plants like a grape).
- grain crops barley, rice
- corn, soybean, potato, cotton, tobacco and rape seed are important.
- Bacillus thuringiensis genes including CrylA(a), CrylA(b), CrylA(c), CryllA, CrylllA, CryIIIB2, Cry9c, Cry2Ab, Cry3Bb and CrylF, and combination thereof
- Bacillus thuringiensis genes including CrylA(a), CrylA(b), CrylA(c), CryllA, CrylllA, CryIIIB2, Cry9c, Cry2Ab, Cry3Bb and CrylF, and combination thereof
- Bt plant genes including CrylA(a), CrylA(b), CrylA(c), CryllA, CrylllA, CryIIIB2, Cry9c, Cry2Ab, Cry3Bb and CrylF, and combination thereof
- traits considered to be important include improved plant defense against fungus, bacteria and virus, based on systemic acquired resistance (SAR), systemin, phytoallexin, elicitor, resistance gene and the corresponding protein and toxin expressed from the gene. Further, particularly important traits are improved tolerance of plants to a certain kind of an active compound having a herbicidal activity, such as imidazolinone, sulfonyl urea, glyphosate or phosphinotricine (e.g., "PTA" gene). Genes which can endow desired traits to a subject can also be present in combination each other in a transgenic plant.
- SAR systemic acquired resistance
- PTA phosphinotricine
- Bt plant examples include modified varieties of corn, modified varieties of cotton and modified varieties of potato that are commercially available under the trade names of YIELD GARD (R) (for example, corn, cotton, soybean), KnockOut (R) (for example, corn), StarLink (R) (for example, corn), Bollgard (R) (cotton), Nucotn (R) (cotton) and New Leaf R) (potato), respectively.
- R YIELD GARD
- R for example, corn, cotton, soybean
- KnockOut for example, corn
- StarLink for example, corn
- Bollgard (R) cotton
- Nucotn (R) cotton
- New Leaf R potato
- Examples of the plant having resistance to herbicides include modified varieties of corn, modified varieties of cotton and modified varieties of potato that are commercially available under the trade names of Roundup Ready (R) (resistance to glyphosate, for example, corn, cotton, soybean), Liberty Link (R) (resistance to phosphinotricine, for example rape seed), IMI (R) (resistance to imidazolinones) and STS (R) (resistance to sulfonylurea, for example, corn), respectively.
- R Roundup Ready
- R resistance to glyphosate
- corn cotton, soybean
- Liberty Link R
- IMI resistance to imidazolinones
- STS R
- Examples of the plant having resistance to herbicides i.e., the plant obtained by conventional breeding methods to have resistance to herbicides
- modified varieties for example those that are commercially available under the trade name of Clearfield (R) (for example, corn).
- R Clearfield
- these descriptions are also applied to plant varieties which have already had genetic traits or will have genetic traits to be developed in future. Such plant varieties will be developed and/or on the market in future.
- plants and plant parts can be treated.
- plants is meant all plants and plant populations such as desirable and undesirable wild plants, cultivars and plant varieties (whether or not protectable by plant variety or plant breeder's rights).
- Cultivars and plant varieties can be plants obtained by conventional propagation and breeding methods which can be assisted or supplemented by one or more biotechnological methods such as by use of double haploids, protoplast fusion, random and directed mutagenesis, molecular or genetic markers or by bioengineering and genetic engineering methods.
- plant parts all above ground and below ground parts and organs of plants such as shoot, leaf, blossom and root, whereby for example leaves, needles, stems, branches, blossoms, fruiting bodies, fruits and seed as well as roots, tubers, corms and rhizomes are listed.
- Crops and vegetative and generative propagating material for example cuttings, corms, rhizomes, tubers, runners and seeds also belong to plant parts.
- plants that can be protected by the method according to the invention mention may be made of major field crops like corn, soybean, cotton, Brassica oilseeds such as Brassica napus (e.g. canola), Brassica rapa, B. juncea (e.g. mustard) and Brassica carinata, rice, wheat, sugarbeet, sugarcane, oats, rye, barley, millet, triticale, flax, vine and various fruits and vegetables of various botanical taxa such as Rosaceae sp.
- Brassica oilseeds such as Brassica napus (e.g. canola), Brassica rapa, B. juncea (e.g. mustard) and Brassica carinata, rice, wheat, sugarbeet, sugarcane, oats, rye, barley, millet, triticale, flax, vine and various fruits and vegetables of various botanical taxa such as Rosaceae sp.
- Brassica oilseeds such as Brassica napus (e.g. canola
- Ribesioidae sp. for instance pip fruit such as apples and pears, but also stone fruit such as apricots, cherries, almonds and peaches, berry fruits such as strawberries
- Ribesioidae sp. Juglandaceae sp.
- Betulaceae sp. Anacardiaceae sp., Fagaceae sp., Moraceae sp., Oleaceae sp., Actinidaceae sp., Lauraceae sp., Musaceae sp. (for instance banana trees and plantings), Rubiaceae sp.
- Theaceae sp. for instance coffee
- Theaceae sp. Sterculiceae sp.
- Rutaceae sp. for instance lemons, oranges and grapefruit
- Solanaceae sp. for instance tomatoes, potatoes, peppers, eggplant
- Liliaceae sp. Compositiae sp.
- lettuce, artichoke and chicory - including root chicory, endive or common chicory for instance Umbelliferae sp. (for instance carrot, parsley, celery and celeriac)
- Cucurbitaceae sp. for instance cucumber - including pickling cucumber, squash, watermelon, gourds and melons
- Cruciferae sp. for instance white cabbage, red cabbage, broccoli, cauliflower, brussel sprouts, pak choi, kohlrabi, radish, horseradish, cress, Chinese cabbage
- Leguminosae sp. for instance peanuts, peas and beans beans - such as climbing beans and broad beans
- Chenopodiaceae sp. for instance mangold, spinach beet, spinach, beetroots
- Malvaceae for instance okra
- Asparagaceae for instance asparagus
- horticultural and forest crops ornamental plants; as well as genetically modified homologues of these crops.
- the method of treatment according to the invention can be used in the treatment of genetically modified organisms (GMOs), e.g. plants or seeds.
- GMOs genetically modified organisms
- Genetically modified plants are plants of which a heterologous gene has been stably integrated into genome.
- the expression "heterologous gene” essentially means a gene which is provided or assembled outside the plant and when introduced in the nuclear, chloroplastic or mitochondrial genome gives the transformed plant new or improved agronomic or other properties by expressing a protein or polypeptide of interest or by downregulating or silencing other gene(s) which are present in the plant (using for example, antisense technology, cosuppression technology or RNA interference - RNAi - technology).
- a heterologous gene that is located in the genome is also called a transgene.
- a transgene that is defined by its particular location in the plant genome is called a transformation or transgenic event.
- the treatment according to the invention may also result in superadditive (“synergistic") effects.
- superadditive for example, reduced application rates and/or a widening of the activity spectrum and/or an increase in the activity of the active compounds and compositions which can be used according to the invention, better plant growth, increased tolerance to high or low temperatures, increased tolerance to drought or to water or soil salt content, increased flowering performance, easier harvesting, accelerated maturation, higher harvest yields, bigger fruits, larger plant height, greener leaf color, earlier flowering, higher quality and/or a higher nutritional value of the harvested products, higher sugar concentration within the fruits, better storage stability and/or processability of the harvested products are possible, which exceed the effects which were actually to be expected.
- the active compound combinations according to the invention may also have a strengthening effect in plants. Accordingly, they are also suitable for mobilizing the defense system of the plant against attack by unwanted microorganisms. This may, if appropriate, be one of the reasons of the enhanced activity of the combinations according to the invention, for example against fungi.
- Plant- strengthening (resistance-inducing) substances are to be understood as meaning, in the present context, those substances or combinations of substances which are capable of stimulating the defense system of plants in such a way that, when subsequently inoculated with unwanted microorganisms, the treated plants display a substantial degree of resistance to these microorganisms.
- unwanted microorganisms are to be understood as meaning phytopathogenic fungi, bacteria and viruses.
- the substances according to the invention can be employed for protecting plants against attack by the abovementioned pathogens within a certain period of time after the treatment.
- the period of time within which protection is effected generally extends from 1 to 10 days, preferably 1 to 7 days, after the treatment of the plants with the active compounds.
- Plants and plant cultivars which are preferably to be treated according to the invention include all plants which have genetic material which impart particularly advantageous, useful traits to these plants (whether obtained by breeding and/or biotechnological means).
- Plants and plant cultivars which are also preferably to be treated according to the invention are resistant against one or more biotic stresses, i.e. said plants show a better defense against animal and microbial pests, such as against nematodes, insects, mites, phytopathogenic fungi, bacteria, viruses and/or viroids.
- nematode resistant plants are described in e.g. US Patent Application Nos 1 1/765,491, 1 1/765,494, 10/926,819, 10/782,020, 12/032,479, 10/783,417, 10/782,096, 1 1/657,964, 12/192,904, 11/396,808, 12/166,253, 12/166,239, 12/166, 124, 12/166,209, 1 1/762,886, 12/364,335, 1 1/763,947, 12/252,453, 12/209,354, 12/491,396 or 12/497,221.
- Plants and plant cultivars which may also be treated according to the invention are those plants which are resistant to one or more abiotic stresses.
- Abiotic stress conditions may include, for example, drought, cold temperature exposure, heat exposure, osmotic stress, flooding, increased soil salinity, increased mineral exposure, ozone exposure, high light exposure, limited availability of nitrogen nutrients, limited availability of phosphorus nutrients, shade avoidance.
- Plants and plant cultivars which may also be treated according to the invention are those plants characterized by enhanced yield characteristics. Increased yield in said plants can be the result of, for example, improved plant physiology, growth and development, such as water use efficiency, water retention efficiency, improved nitrogen use, enhanced carbon assimilation, improved photosynthesis, increased germination efficiency and accelerated maturation.
- Yield can furthermore be affected by improved plant architecture (under stress and non-stress conditions), including but not limited to, early flowering, flowering control for hybrid seed production, seedling vigor, plant size, internode number and distance, root growth, seed size, fruit size, pod size, pod or ear number, seed number per pod or ear, seed mass, enhanced seed filling, reduced seed dispersal, reduced pod dehiscence and lodging resistance.
- Further yield traits include seed composition, such as carbohydrate content, protein content, oil content and composition, nutritional value, reduction in anti-nutritional compounds, improved processability and better storage stability.
- Plants that may be treated according to the invention are hybrid plants that already express the characteristic of heterosis or hybrid vigor which results in generally higher yield, vigor, health and resistance towards biotic and abiotic stresses). Such plants are typically made by crossing an inbred male-sterile parent line (the female parent) with another inbred male-fertile parent line (the male parent). Hybrid seed is typically harvested from the male sterile plants and sold to growers. Male sterile plants can sometimes (e.g. in corn) be produced by detasseling, i.e. the mechanical removal of the male reproductive organs (or males flowers) but, more typically, male sterility is the result of genetic determinants in the plant genome.
- male sterile plants can also be obtained by plant biotechnology methods such as genetic engineering.
- a particularly useful means of obtaining male-sterile plants is described in WO 89/10396 in which, for example, a ribonuclease such as barnase is selectively expressed in the tapetum cells in the stamens. Fertility can then be restored by expression in the tapetum cells of a ribonuclease inhibitor such as barstar.
- Plants or plant cultivars obtained by plant biotechnology methods such as genetic engineering which may be treated according to the invention are herbicide-tolerant plants, i.e. plants made tolerant to one or more given herbicides. Such plants can be obtained either by genetic transformation, or by selection of plants containing a mutation imparting such herbicide tolerance.
- Herbicide-resistant plants are for example glyphosate-tolerant plants, i.e. plants made tolerant to the herbicide glyphosate or salts thereof. Plants can be made tolerant to glyphosate through different means.
- glyphosate-tolerant plants can be obtained by transforming the plant with a gene encoding the enzyme 5 -enolpyruvylshikimate-3 -phosphate synthase (EPSPS).
- EPSPS 5 -enolpyruvylshikimate-3 -phosphate synthase
- Examples of such EPSPS genes are the AroA gene (mutant CT7) of the bacterium Salmonella typhimurium (Comai et al., 1983, Science 221, 370-371), the CP4 gene of the bacterium Agrobacterium sp.
- Glyphosate-tolerant plants can also be obtained by expressing a gene that encodes a glyphosate oxido-reductase enzyme.
- Glyphosate-tolerant plants can also be obtained by expressing a gene that encodes a glyphosate acetyl transferase enzyme. Glyphosate- tolerant plants can also be obtained by selecting plants containing naturally-occurring mutations of the above-mentioned genes. Plants expressing EPSPS genes that confer glyphosate tolerance are described. Plants comprising other genes that confer glyphosate tolerance, such as decarboxylase genes, are described.
- herbicide resistant plants are for example plants that are made tolerant to herbicides inhibiting the enzyme glutamine synthase, such as bialaphos, phosphinothricin or glufosinate.
- Such plants can be obtained by expressing an enzyme detoxifying the herbicide or a mutant glutamine synthase enzyme that is resistant to inhibition .
- One such efficient detoxifying enzyme is an enzyme encoding a phosphinothricin acetyltransferase (such as the bar or pat protein from Streptomyces species). Plants expressing an exogenous phosphinothricin acetyltransferase are described.
- HPPD hydroxyphenylpyruvatedioxygenase
- HPPD is an enzyme that catalyzes the reaction in which para-hydroxyphenylpyruvate (HPP) is transformed into homogentisate.
- Plants tolerant to HPPD- inhibitors can be transformed with a gene encoding a naturally-occurring resistant HPPD enzyme, or a gene encoding a mutated or chimeric HPPD enzyme as described in WO 96/38567, WO 99/24585, WO 99/24586, WO 2009/144079, WO 2002/046387, or US 6,768,044.
- Tolerance to HPPD -inhibitors can also be obtained by transforming plants with genes encoding certain enzymes enabling the formation of homogentisate despite the inhibition of the native HPPD enzyme by the HPPD-inhibitor. Such plants and genes are described in WO 99/34008 and WO 02/36787. Tolerance of plants to HPPD inhibitors can also be improved by transforming plants with a gene encoding an enzyme having prephenate deshydrogenase (PDH) activity in addition to a gene encoding an HPPD-tolerant enzyme, as described in WO 2004/024928.
- PDH prephenate deshydrogenase
- plants can be made more tolerant to HPPD-inhibitor herbicides by adding into their genome a gene encoding an enzyme capable of metabolizing or degrading HPPD inhibitors, such as the CYP450 enzymes shown in WO 2007/103567 and WO 2008/150473.
- an enzyme capable of metabolizing or degrading HPPD inhibitors such as the CYP450 enzymes shown in WO 2007/103567 and WO 2008/150473.
- Still further herbicide resistant plants are plants that are made tolerant to acetolactate synthase (ALS) inhibitors .
- ALS acetolactate synthase
- Known AL S-inhibitors include , for example, sulfonylurea, imidazolinone , triazolopyrimidines, pryimidinyoxy(thio)benzoates, and/or sulfonylaminocarbonyltriazolinone herbicides.
- Different mutations in the ALS enzyme also known as acetohydroxyacid synthase, AHAS
- AHAS acetohydroxyacid synthase
- plants tolerant to imidazolinone and/or sulfonylurea can be obtained by induced mutagenesis, selection in cell cultures in the presence of the herbicide or mutation breeding as described for example for soybeans in U.S. Patent 5,084,082, for rice in WO 97/41218, for sugar beet in U.S. Patent 5,773,702 and WO 99/057965, for lettuce in U.S. Patent 5, 198,599, or for sunflower in WO 01/065922.
- Plants or plant cultivars obtained by plant biotechnology methods such as genetic engineering
- insect-resistant transgenic plants i.e. plants made resistant to attack by certain target insects. Such plants can be obtained by genetic transformation, or by selection of plants containing a mutation imparting such insect resistance.
- An "insect-resistant transgenic plant”, as used herein, includes any plant containing at least one transgene comprising a coding sequence encoding:
- an insecticidal crystal protein from Bacillus thuringiensis or an insecticidal portion thereof such as the insecticidal crystal proteins listed by Crickmore et al. (1998, Microbiology and Molecular Biology Reviews, 62: 807-813), updated by Crickmore et al.
- insecticidal portions thereof e.g., proteins of the Cry protein classes CrylAb, Cry lAc, CrylB, Cryl C, CrylD, CrylF, Cry2Ab, Cry3Aa, or Cry3Bb or insecticidal portions thereof (e.g. EP 1999141_and WO 2007/107302), or such proteins encoded by synthetic genes as e.g. described in US Patent Application No 12/249,016; or
- a crystal protein from Bacillus thuringiensis or a portion thereof which is insecticidal in the presence of a second other crystal protein from Bacillus thuringiensis or a portion thereof, such as the binary toxin made up of the Cry34 and Cry35 crystal proteins (Moellenbeck et al. 2001, Nat. Biotechnol. 19: 668-72; Schnepf et al. 2006, Applied Environm. Microbiol. 71, 1765-1774) or the binary toxin made up of the CrylA or CrylF proteins and the Cry2Aa or Cry2Ab or Cry2Ae proteins (US Patent Appl. No. 12/214,022 and EP 08010791.5); or
- a hybrid insecticidal protein comprising parts of different insecticidal crystal proteins from Bacillus thuringiensis, such as a hybrid of the proteins of 1) above or a hybrid of the proteins of 2) above, e.g., the CrylA.105 protein produced by corn event MON89034 (WO 2007/027777); or 4) a protein of any one of 1) to 3) above wherein some, particularly 1 to 10, amino acids have been replaced by another amino acid to obtain a higher insecticidal activity to a target insect species, and/or to expand the range of target insect species affected, and/or because of changes introduced into the encoding DNA during cloning or transformation, such as the Cry3Bbl protein in corn events MON863 or MON88017, or the Cry3A protein in corn event MIR604; or 5) an insecticidal secreted protein from Bacillus thuringiensis or Bacillus cereus, or an insecticidal portion thereof, such as the vegetative insecticidal (VIP)
- a secreted protein from Bacillus thuringiensis or Bacillus cereus which is insecticidal in the presence of a second secreted protein from Bacillus thuringiensis or B. cereus, such as the binary toxin made up of the VIP1A and VIP2A proteins (WO 94/21795); or
- a hybrid insecticidal protein comprising parts from different secreted proteins from Bacillus thuringiensis or Bacillus cereus, such as a hybrid of the proteins in 1) above or a hybrid of the proteins in 2) above; or
- 8) a protein of any one of 5) to 7) above wherein some, particularly 1 to 10, amino acids have been replaced by another amino acid to obtain a higher insecticidal activity to a target insect species, and/or to expand the range of target insect species affected, and/or because of changes introduced into the encoding DNA during cloning or transformation (while still encoding an insecticidal protein), such as the VIP3Aa protein in cotton event COT102; or
- a secreted protein from Bacillus thuringiensis or Bacillus cereus which is insecticidal in the presence of a crystal protein from Bacillus thuringiensis, such as the binary toxin made up of VIP3 and CrylA or CrylF (US Patent Appl. No. 61/126083 and 61/195019), or the binary toxin made up of the VIP3 protein and the Cry2Aa or Cry2Ab or Cry2Ae proteins (US Patent Appl. No. 12/214,022 and EP 08010791.5).
- a crystal protein from Bacillus thuringiensis such as the binary toxin made up of VIP3 and CrylA or CrylF (US Patent Appl. No. 61/126083 and 61/195019), or the binary toxin made up of the VIP3 protein and the Cry2Aa or Cry2Ab or Cry2Ae proteins (US Patent Appl. No. 12/214,022 and EP 08010791.5).
- an insect-resistant transgenic plant also includes any plant comprising a combination of genes encoding the proteins of any one of the above classes 1 to 10.
- an insect-resistant plant contains more than one transgene encoding a protein of any one of the above classes 1 to 10, to expand the range of target insect species affected when using different proteins directed at different target insect species, or to delay insect resistance development to the plants by using different proteins insecticidal to the same target insect species but having a different mode of action, such as binding to different receptor binding sites in the insect.
- An "insect-resistant transgenic plant”, as used herein, further includes any plant containing at least one transgene comprising a sequence producing upon expression a double-stranded RNA which upon ingestion by a plant insect pest inhibits the growth of this insect pest.
- Plants or plant cultivars obtained by plant biotechnology methods such as genetic engineering which may also be treated according to the invention are tolerant to abiotic stresses. Such plants can be obtained by genetic transformation, or by selection of plants containing a mutation imparting such stress resistance. Particularly useful stress tolerance plants include:
- plants which contain a stress tolerance enhancing transgene coding for a plant-functional enzyme of the nicotineamide adenine dinucleotide salvage synthesis pathway including nicotinamidase, nicotinate phosphoribosyltransferase, nicotinic acid mononucleotide adenyl transferase, nicotinamide adenine dinucleotide synthetase or nicotine amide phosphorybosyltransferase.
- Plants or plant cultivars which may also be treated according to the invention show altered quantity, quality and/or storage-stability of the harvested product and/or altered properties of specific ingredients of the harvested product such as : 1) transgenic plants which synthesize a modified starch, which in its physical-chemical characteristics, in particular the amylose content or the amylose/amylopectin ratio, the degree of branching, the average chain length, the side chain distribution, the viscosity behaviour, the gelling strength, the starch grain size and/or the starch grain morphology, is changed in comparison with the synthesised starch in wild type plant cells or plants, so that this is better suited for special applications.
- a modified starch which in its physical-chemical characteristics, in particular the amylose content or the amylose/amylopectin ratio, the degree of branching, the average chain length, the side chain distribution, the viscosity behaviour, the gelling strength, the starch grain size and/or the starch grain morphology, is changed in comparison with the
- transgenic plants which synthesize non starch carbohydrate polymers or which synthesize non starch carbohydrate polymers with altered properties in comparison to wild type plants without genetic modification.
- Examples are plants producing polyfructose, especially of the inulin and levan-type, plants producing alpha- 1,4-glucans, plants producing alpha- 1,6 branched alpha- 1,4-glucans, plants producing alternan.
- transgenic plants or hybrid plants such as onions with characteristics such as 'high soluble solids content', 'low pungency' (LP) and/or 'long storage' (LS).
- Plants or plant cultivars which may also be treated according to the invention are plants, such as cotton plants, with altered fiber characteristics.
- Such plants can be obtained by genetic transformation, or by selection of plants contain a mutation imparting such altered fiber characteristics and include: a) Plants, such as cotton plants, containing an altered form of cellulose synthase genes.
- Plants such as cotton plants, containing an altered form of rsw2 or rsw3 homologous nucleic acids Plants, such as cotton plants, with increased expression of sucrose phosphate synthase.
- Plants such as cotton plants, having fibers with altered reactivity, e.g. through the expression of N-acetylglucosaminetransferase gene including nodC and chitin synthase genes.
- Plants or plant cultivars which may also be treated according to the invention are plants, such as oilseed rape or related Brassica plants, with altered oil profile characteristics.
- Such plants can be obtained by genetic transformation, or by selection of plants contain a mutation imparting such altered oil profile characteristics and include: a) Plants, such as oilseed rape plants, producing oil having a high oleic acid content
- Plants or plant cultivars which may also be treated according to the invention are plants, such as potatoes which are virus-resistant, e.g. against potato virus Y (event SY230 and SY233 from Tecnoplant, Argentina), which are disease resistant, e.g. against potato late blight (e.g. RB gene), which show a reduction in cold- induced sweetening ( carrying the Nt-Inhh, IIR-INV gene) or which possess a dwarf phenotype (Gene A-20 oxidase).
- viruses which are virus-resistant, e.g. against potato virus Y (event SY230 and SY233 from Tecnoplant, Argentina), which are disease resistant, e.g. against potato late blight (e.g. RB gene), which show a reduction in cold- induced sweetening ( carrying the Nt-Inhh, IIR-INV gene) or which possess a dwarf phenotype (Gene A-20 oxidase).
- Plants or plant cultivars which may also be treated according to the invention are plants, such as oilseed rape or related Brassica plants, with altered seed shattering characteristics.
- Such plants can be obtained by genetic transformation, or by selection of plants contain a mutation imparting such altered seed shattering characteristics and include plants such as oilseed rape plants with delayed or reduced seed shattering.
- Particularly useful transgenic plants which may be treated according to the invention are plants containing transformation events, or combination of transformation events, that are the subject of petitions for non-regulated status, in the United States of America, to the Animal and Plant Health Inspection Service (APHIS) of the United States Department of Agriculture (USDA) whether such petitions are granted or are still pending.
- APHIS Animal and Plant Health Inspection Service
- U SA United States Department of Agriculture
- Petition the identification number of the petition.
- Technical descriptions of the transformation events can be found in the individual petition documents which are obtainable from APHIS, for example on the APHIS website, by reference to this petition number. These descriptions are herein incorporated by reference.
- Transgenic phenotype the trait conferred to the plants by the transformation event.
- Transformation event or line the name of the event or events (sometimes also designated as lines or lines) for which nonregulated status is requested.
- APHIS documents various documents published by APHIS in relation to the Petition and which can be requested with APHIS.
- the follwing conventional or GMO-plants as well as their seeds or their propargation material can be treated with the compound according to the invention: cotton, corn, maize, soybean, wheat, barley, oil seed rape, tobacco, banana, vine, rice, cereals, fruits and vegetables (such as aubergine, pome fruit, stone fruit, soft fruit, cucumber, pear, bell pepper, melons, cabbage, potato, apple) and turf.
- cotton, corn, maize, soybean, wheat, barley, oil seed rape, tobacco, banana, vine, rice, cereals fruits and vegetables (such as aubergine, pome fruit, stone fruit, soft fruit, cucumber, pear, bell pepper, melons, cabbage, potato, apple) and turf.
- the novel compounds of the present invention can be effectively used against various harmful animal parasites (endo- and ectoparasites), for example, insects and helminths.
- harmful animal parasites include the harmful organisms as follows.
- insects there are for example, Gasterophilus spp., Stomoxys spp., Trichodectes spp., Rhodnius spp., Ctenocephalides canis, Cimx lectularius, Ctenocephalides felis, Lucilia cuprina and the like.
- Acarina there are for example, Ornithodoros spp., Ixodes spp., Boophilus spp. and the like.
- the active compounds of the present invention show an activity against parasites, in particular endoparasites and ectoparasites .
- endoparasites especially include helminths such as tapeworms, nematodes, and trematodes and protozoas such as coccidian.
- Ectoparasites include, typically and also preferably, arthropods, in particular, insects such as fly (biting fly and sucking fly), larva of parasitic fly, louse, pubic louse, bird louse, and flea, and mites of Acarina such as hard tick or soft tick, sarcoptic mite, chigger mite and bird mite.
- insects such as fly (biting fly and sucking fly), larva of parasitic fly, louse, pubic louse, bird louse, and flea
- mites of Acarina such as hard tick or soft tick, sarcoptic mite, chigger mite and bird mite.
- Anoplurida for example, Haematopinus spp., Linognathus spp., Pediculus spp., Phtirus spp. and Solenopotes spp .
- specific examples thereof include Linognathus setosus, Linognathus vituli, Linognathus ovillus, Linognathus oviformis, Linognathus pedalis, Linognathus stenopsis, Haematopinus asini macrocephalus, Haematopinus eurysternus, Haematopinus suis, Pediculus humanus capitis, Pediculus humanus corporis, Phylloera vastatrix, Phthirus pubis and Solenopotes capillatus are included.
- Trimenopon spp. Menopon spp., Trinoton spp., Bovicola spp., Wemeckiella spp., Lepikentron spp., Damalina spp., Trichodectes spp. and Felicola spp.
- specific examples include Bovicola bovis, Bovicola ovis, Bovicola limbata, Damalina bovis, Trichodectes canis, Felicola subrostratus, Bovicola caprae, Lepikentron ovis) and Wemeckiella equi are included.
- Nematocerina and Brachycerina for example, Aedes spp., Anopheles spp., Culex spp., Simulium spp., Eusimulium spp., Phlebotomus spp., Lutzomyia spp., Culicoides spp., Chrysops spp., Odagmia spp., Wilhelmia spp., Hybomitora spp., Atylotus spp., Tabanus spp., Haematopota spp., Philipomyia spp., Braula spp., Musca spp., Hydrotaea spp., Stomoxys spp., Haematobia spp., Morellia spp., Fannia spp., Glossina spp., Calliphora spp., Lucilia s
- Aedes aegypti Aedes albopictus, Aedes taeniorhynchus, Anopheles gambiae, Anopheles maculipennis, Calliphora erythrocephala, Chrysozona pluvialis, Culex quinquefasciatus, Culex pipiens, Culex tarsalis, Fannia canicularis, Sarcophaga carnaria, Stomoxys calcitrans, Tipula paludosa, Lucilia cuprina, Lucilia sericata, Simulium reptans, Phlebotomus papatasi, Phlebotomus longipalpis, Odagmia omata, Wilhelmia equina, Boophthora erythrocephala, Tabanus bromius, Tabanus spodopterus, Tabanus atratus, Tabanus sudeticus, Hybo
- Siphonaptrida for example, Pulex spp., Ctenocephalides spp., Tunga spp., Xenopsylla spp. and Ceratophyllus spp., and specific examples include Ctenocephalides canis, Ctenocephalides felis, Pulex irritans, Tunga penetrans and Xenopsylla cheopsis are included.
- Cimex spp. Triatoma spp., Rhodnius spp. and Panstrongylus spp are included.
- Blattarida for example, Blatta orientalis, Periplaneta americana, Blattela germanica
- Supella spp. for example, Supella longipalpa are included.
- Argas persicus Argas reflexus, Ornithodorus moubata, Otobius megnini, Rhipicephalus(Boophilus)microplus, Rhipicephalus(Boophilus)decoloratus, Rhipicephalus(Boophilus)annulatus, Rhipicephalus(Boophilus)calceratus, Hyalomma annatolicum, Hyalomma aegypticum, Hyalomma marginatum, Hyalomma transiens, Rhipicephalus evertsi, Ixodes ricinus, Ixodes hexagonus, Ixodes canisuga, Ixodes pilosus, Ixodes rubicundus, Ixodes scapularis, Ixodes holocyclus, Haemaphysalis concinna, Haemaphysalis punctata, Haemaphysali
- Acarapis spp. Cheyletiella spp., OrnitACHeyletia spp., Myobia spp., Psorergates spp., Demodex spp., Trombicula spp., Listrophorus spp., Acarus spp., Tyrophagus spp., Caloglyphus spp., Hypodectes spp., Pterolichus spp., Psoroptes spp., Chorioptes spp., Otodectes spp., Sarcoptes spp., Notoedres spp., Knemidocoptes spp., Cytodites spp.) and Laminosioptes spp., and examples thereof include Cheyletiella yasguri, Cheyletiella spp., Ornitrocheyletia spp., Myobia spp., P
- the active compounds of the present invention are also suitable for controlling arthropods, helminths and protozoas which attack an animal.
- the animal includes an agricultural livestock like a cow, a sheep, a goat, a horse, a pig, a donkey, a camel, a buffalo, a rabbit, a chicken, a turkey, a duck, a goose, a nursery fish, a honey bee and the like.
- the animal also includes a pet (i.e., companion animal) like a dog, a cat, a pet bird, an aquarium fish and the like and an animal known as a test animal like a hamster, a guinea pig, a rat, a mouse and the like.
- control used in the present specification in relation to a veterinary field means that the active compounds of the present invention are effective for reducing the occurrence of parasites in the animal infected with each parasite to a harmless level. More specifically, the term “control” used in the present specification means that the active compounds of the present invention are effective for eradicating each parasite or for inhibiting its growth or proliferation.
- the compounds of the present invention when used for an animal treatment, can be directly applied.
- the compounds of the present invention are applied as pharmaceutical compositions which may contain vehicles and/or auxiliary agents that are known in the field and pharmaceutically acceptable.
- the active compounds can be applied (administered) in various known ways, such as via enteral administration in form of a tablet, a capsule, a drink, a syrup, a granule, a paste, a bolus and a feed stuff, or a suppository; via parenteral administration based on injection (intramuscular, subcutaneous, intravenous, intraperitoneal, etc.), implant, intranasal administration, etc.; by administration on skin in form of impregnation, liquid impregnation, spray, pouring on, spotting on, washing and powder spray; or with an aid of an molded article containing the active compounds, such as a neck tag, an ear tag, a tail tag, a leg tag, a horse rein, an identification tag, etc.
- the active compounds also can be prepared as shampoo, an appropriate preparation usable in aerosol, or as an unpressurized spray, for example a pump spray and a sprayer.
- the active compounds of the present invention can be prepared as a formulation containing them in an amount of 1 to 80 % of weight (for example, powder, wettable preparation (WP), an emulsion, an emulsified concentrate (EC), a flowable, a homogenous solution and a suspension concentrate (SC)), and then can be applied directly or after dilution (for example, 100 to 10,000 times dilution), or they can be also applied as impregnation solution.
- WP wettable preparation
- EC emulsion
- SC suspension concentrate
- the active compounds of the present invention can be used in combination with appropriate synergists such as acaricides, pesticides, anti-helminth agents or anti- protozoa agents or with other active compounds.
- insecticides the compounds which have a pesticidal activity against the harmful pests encompassing all of the above are also referred to as insecticides.
- the active compounds of the present invention can be prepared in a common preparation form.
- a preparation form may include, for example, a solution, an emulsion, wettable powder, granulated wettable powder, a suspension, powder, a foam, a paste, a tablet, a granule, an aerosol, a natural or synthetic agent impregnated with the active compounds, a microcapsule, a coating agent for seeds, a formulation equipped with a combustion device (the combustion device can be a smoke or fog cartridge, a can or a coil, etc.) and ULV (cold mist, warm mist), and the like.
- combustion device can be a smoke or fog cartridge, a can or a coil, etc.
- ULV cold mist, warm mist
- they can be prepared by mixing the active compounds together with spreading agents, i.e. liquid diluents or carriers; liquefied gas diluents or carriers; solid diluents or carriers, and, optionally, with surfactants i.e. emulsifiers and/or dispersants and/or foam-forming agents.
- spreading agents i.e. liquid diluents or carriers; liquefied gas diluents or carriers; solid diluents or carriers, and, optionally, with surfactants i.e. emulsifiers and/or dispersants and/or foam-forming agents.
- organic solvents may be used as auxiliary solvents.
- the liquid diluents or carriers may include, for example, aromatic hydrocarbons (e.g. xylene, toluene, alkylnaphthalene etc.), chlorinated aromatic or chlorinated aliphatic hydrocarbons (e.g. chlorobenzenes, ethylene chlorides, methylene chlorides etc .), aliphatic hydrocarbons (e .g . cyclohexanes) or paraffins (e.g. mineral oil fractions), alcohols (e.g. butanol, glycol and ethers or esters thereof, etc.), ketones (e.g.
- the liquefied gas dilution agents or carriers may include those present as gas at atmospheric temperature and by evaporation, for example, butane, propane, nitrogen gas, carbon dioxide, and an aerosol propellant such as halogenated hydrocarbons.
- solid dilution agents examples include ground natural minerals (for example, kaolins, clay, talc, chalk, quartz, attapulgite, montmorillonite, diatomaceous earth, etc.) and finely-ground synthetic minerals (for example, highly dispersed silicic acid, alumina and silicate, etc.) and the like.
- ground natural minerals for example, kaolins, clay, talc, chalk, quartz, attapulgite, montmorillonite, diatomaceous earth, etc.
- finely-ground synthetic minerals for example, highly dispersed silicic acid, alumina and silicate, etc.
- solid carriers for granules may include finely pulverized and sifted rocks (for example, calcite, marble, pumice, sepiolite and dolomite, etc.), synthetic granules of inorganic or organic powders, and fine granules of organic materials (for example, sawdust, coconut shells, corn cobs and tobacco stalks, etc.) and the like.
- finely pulverized and sifted rocks for example, calcite, marble, pumice, sepiolite and dolomite, etc.
- synthetic granules of inorganic or organic powders for example, sawdust, coconut shells, corn cobs and tobacco stalks, etc.
- emulsifiers and/or blowing agents may include nonionic and anionic emulsifiers (for example, polyoxyethylene fatty acid esters, polyoxyethylene fatty acid alcohol ethers (for example, alkylaryl polyglycol ether), alkyl sulfonates, alkyl sulfates and aryl sulfonates), and albumin hydrolysates and the like.
- emulsifiers for example, polyoxyethylene fatty acid esters, polyoxyethylene fatty acid alcohol ethers (for example, alkylaryl polyglycol ether), alkyl sulfonates, alkyl sulfates and aryl sulfonates), and albumin hydrolysates and the like.
- dispersants include lignin sulfite waste liquor and methylcellulose. Fixing agents may also be used in the formulation (powder, granule and emulsion).
- the fixing agents may include carboxymethyl cellulose, natural or synthetic polymers (for example, gum arabic, polyvinyl alcohol and polyvinyl acetate, etc.). Colorants may also be used. Examples of the colorants may include inorganic pigments (for example, iron oxide, titanium oxide and Prussian blue, etc .), organic dyes (for example, Alizarin dyes, azo dyes or metal phthalocyanine dyes), and further, trace elements such as salts of iron, manganese, boron, copper, cobalt, molybdenum or zinc. In general, the formulation may include the above active components in an amount of 0.1 to 95% by weight, preferably 0.5 to 90% by weight.
- the active compounds represented by the Formula (I) of the present invention can be provided as mixtures with other active compounds such as pesticides, poison baits, sterilizing agents, acaricidal agents, nematocides, fungicides, growth regulating agents, and herbicides in a form of commercially useful Formulation or an application form modified from Formulation thereof.
- active compounds such as pesticides, poison baits, sterilizing agents, acaricidal agents, nematocides, fungicides, growth regulating agents, and herbicides in a form of commercially useful Formulation or an application form modified from Formulation thereof.
- the insecticide include organic phosphorus agents, carbamate agents, carboxylate agents, chlorinated hydrocarbon agents, neonicotinoide insecticides and insecticidal substances produced from organisms.
- Acetylcholinesterase (AChE) inhibitors for example carbamates, e.g. Alanycarb, Aldicarb, Bendiocarb, Benfuracarb, Butocarboxim, Butoxycarboxim, Carbaryl, Carbofuran, Carbosulfan, Ethiofencarb, Fenobucarb, Formetanate, Furathiocarb, Isoprocarb, Methiocarb, Methomyl, Metolcarb, Oxamyl, Pirimicarb, Propoxur, Thiodicarb, Thiofanox, Triazamate, Trimethacarb, XMC, and Xylylcarb; or organophosphates, e.g.
- AChE Acetylcholinesterase
- GABA-gated chloride channel antagonists for example cyclodiene organochlorines, e.g. Chlordane and Endosulfan; or phenylpyrazoles (fiproles), e.g. Ethiprole and Fipronil.
- Sodium channel modulators / voltage-dependent sodium channel blockers for example pyrethroids, e.g. Acrinathrin, Allethrin, d-cis-trans Allethrin, d-trans Allethrin, Bifenthrin, Bioallethrin, Bioallethrin S-cyclopentenyl isomer, Bioresmethrin, Cycloprothrin, Cyfluthrin, beta-Cyfluthrin, Cyhalothrin, lambda-Cyhalothrin, gamma-Cyhalothrin, Cypermethrin, alpha-Cypermethrin, beta-Cypermethrin, theta-Cypermethrin, zeta-Cypermethrin, Cyphenothrin [(lR)-trans isomers], Deltamethrin, Empenthrin [(EZ)-(IR) isomers), Esfen valerate,
- Nicotinic acetylcholine receptor (nAChR) agonists for example neonicotinoids, e.g. Acetamiprid, Clothianidin, Dinotefuran, Imidacloprid, Nitenpyram, Thiacloprid, and Thiamethoxam; or Nicotine.
- neonicotinoids e.g. Acetamiprid, Clothianidin, Dinotefuran, Imidacloprid, Nitenpyram, Thiacloprid, and Thiamethoxam
- Nicotine for example neonicotinoids, e.g. Acetamiprid, Clothianidin, Dinotefuran, Imidacloprid, Nitenpyram, Thiacloprid, and Thiamethoxam.
- Nicotinic acetylcholine receptor (nAChR) allosteric activators for example spinosyns, e.g. Spinetoram and Spinosad.
- Chloride channel activators for example avermectins/milbemycins, e.g. Abamectin, Emamectin benzoate, Lepimectin, and Milbemectin.
- Juvenile hormone mimics for example juvenile hormon analogues, e.g. Hydroprene, Kinoprene, and Methoprene; or Fenoxycarb; or Pyriproxyfen.
- Juvenile hormone mimics for example juvenile hormon analogues, e.g. Hydroprene, Kinoprene, and Methoprene; or Fenoxycarb; or Pyriproxyfen.
- Miscellaneous non-specific (multi-site) inhibitors for example alkyl halides, e.g. Methyl bromide and other alkyl halides; or Chloropicrin; or Sulfuryl fluoride; or Borax; or Tartar emetic.
- Mite growth inhibitors e.g. Clofentezine, Hexythiazox, and Diflovidazin; or Etoxazole.
- Microbial disrupters of insect midgut membranes e.g. Bacillus thuringiensis subspecies israelensis, Bacillus sphaericus, Bacillus thuringiensis subspecies aizawai, Bacillus thuringiensis subspecies kurstaki, Bacillus thuringiensis subspecies tenebrionis, and BT crop proteins: CrylAb, CrylAc, CrylFa, Cry2Ab, mCry3A, Cry3Ab, Cry3Bb, Cry34/35Abl .
- Inhibitors of mitochondrial ATP synthase for example Diafenthiuron; or organotin miticides, e.g. Azocyclotin, Cyhexatin, and Fenbutatin oxide; or Propargite; or Tetradifon.
- Nicotinic acetylcholine receptor (nAChR) channel blockers for example Bensultap, Cartap hydrochloride, Thiocyclam, and Thiosultap-sodium.
- Inhibitors of chitin biosynthesis type 0, for example Bistrifluron, Chlorfluazuron, Diflubenzuron, Flucycloxuron, Flufenoxuron, Hexaflumuron, Lufenuron, Novaluron, Noviflumuron, Teflubenzuron, and Triflumuron.
- Inhibitors of chitin biosynthesis type 1, for example Buprofezin.
- Moulting disrupters for example Cyromazine.
- Ecdysone receptor agonists for example Chromafenozide, Halofenozide, Methoxyfenozide, and Tebufenozide.
- Octopamine receptor agonists for example Amitraz.
- Mitochondrial complex III electron transport inhibitors for example Hydramethylnon; or Acequinocyl; or Fluacrypyrim.
- Mitochondrial complex I electron transport inhibitors for example METI acaricides, e .g. Fenazaquin, Fenpyroximate, Pyrimidifen, Pyridaben, Tebufenpyrad, and Tolfenpyrad; or Rotenone
- Inhibitors of acetyl CoA carboxylase for example tetronic and tetramic acid derivatives, e.g. Spirodiclofen, Spiromesifen, and Spirotetramat.
- Mitochondrial complex IV electron transport inhibitors for example phosphines, e.g. Aluminium phosphide, Calcium phosphide, Phosphine, and Zinc phosphide; or Cyanide.
- Fungicides which can be used in a combination according to the invention are the following:
- Inhibitors of the ergosterol biosynthesis for example aldimorph, azaconazole, bitertanol, bromuconazole, cyproconazole, diclobutrazole, difenoconazole, diniconazole, diniconazole-M, dodemorph, dodemorph acetate, epoxiconazole, etaconazole, fenarimol, fenbuconazole, fenhexamid, fenpropidin, fenpropimorph, fluquinconazole, flurprimidol, flusilazole, flutriafol, furconazole, furconazole-cis, hexaconazole, imazalil, imazalil sulfate, imibenconazole, ipconazole, metconazole, myclobutanil, naftifine, nuarimol, oxpoconazole, paclobutra
- inhibitors of the respiratory chain at complex I or II for example bixafen, boscalid, carboxin, diflumetorim, fenfuram, fluopyram, flutolanil, fluxapyroxad, furametpyr, furmecyclox, isopyrazam (mixture of syn-epimeric racemate 1RS,4SR,9RS and anti-epimeric racemate 1RS,4SR,9SR), isopyrazam (anti-epimeric racemate 1RS,4SR,9SR), isopyrazam (anti-epimeric enantiomer 1R,4S,9S), isopyrazam (anti-epimeric enantiomer 1S,4R,9R), isopyrazam (syn epimeric racemate 1RS,4SR,9RS), isopyrazam (syn-epimeric enantiomer 1R,4S,9R), isopyrazam (syn-epimeric enanti
- inhibitors of the respiratory chain at complex III for example ametoctradin, amisulbrom, azoxystrobin, cyazofamid, coumethoxystrobin, coumoxystrobin, dimoxystrobin, enestroburin, famoxadone, fenamidone, fenoxystrobin, fluoxastrobin, kresoxim-methyl, metominostrobin, orysastrobin, picoxystrobin, pyraclostrobin, pyrametostrobin, pyraoxystrobin, pyribencarb, triclopyricarb, trifloxystrobin, (2E)-2-(2- ⁇ [6-(3-chloro-2-methylphenoxy)-5-fluoropyrimidin-4- yl]oxy ⁇ phenyl)-2-(methoxyimino)-N-methylethanamide, (2E)-2-(methoxyimino)-N-methyl-2-(2- ⁇ [(
- Inhibitors of the mitosis and cell division for example benomyl, carbendazim, chlorfenazole, diethofencarb, ethaboxam, fluopicolide, fuberidazole, pencycuron, thiabendazole, thiophanate-methyl, thiophanate, zoxamide, 5-chloro-7-(4-methylpiperidin-l-yl)-6-(2,4,6-trifluorophenyl)[l,2,4]triazolo[l,5- a]pyrimidine and 3-chloro-5-(6-chloropyridin-3-yl)-6-methyl-4-(2,4,6-trifluorophenyl)pyridazine.
- Inhibitors of the amino acid and/or protein biosynthesis for example andoprim, blasticidin-S, cyprodinil, kasugamycin, kasugamycin hydrochloride hydrate, mepanipyrim, pyrimethanil and 3-(5- fluoro-3,3,4,4-tetramethyl-3,4-dihydroisoquinolin-l-yl)quinoline.
- Inhibitors of the ATP production for example fentin acetate, fentin chloride, fentin hydroxide and silthiofam.
- Inhibitors of the cell wall synthesis for example benthiavalicarb, dimethomorph, flumorph, iprovalicarb, mandipropamid, polyoxins, polyoxorim, validamycin A and valifenalate.
- Inhibitors of the lipid and membrane synthesis for example biphenyl, chloroneb, dicloran, edifenphos, etridiazole, iodocarb, iprobenfos, isoprothiolane, propamocarb, propamocarb hydrochloride, prothiocarb, pyrazophos, quintozene, tecnazene and tolclofos-methyl.
- Inhibitors of the melanine biosynthesis for example carpropamid, diclocymet, fenoxanil, phthalide, pyroquilon, tricyclazole and 2,2,2-trifluoroethyl ⁇ 3-methyl-l-[(4-methylbenzoyl)amino]butan-2- yl ⁇ carbamate.
- Inhibitors of the nucleic acid synthesis for example benalaxyl, benalaxyl-M (kiralaxyl), bupirimate, clozylacon, dimethirimol, ethirimol, furalaxyl, hymexazol, metalaxyl, metalaxyl-M (mefenoxam), ofurace, oxadixyl and oxolinic acid.
- Inhibitors of the signal transduction for example chlozolinate, fenpiclonil, fludioxonil, iprodione, procymidone, quinoxyfen and vinclozolin.
- Herbicidal components which can be used in combination with the active compounds according to the invention in mixed Formulations or in tank mix are, for example, known active compounds as they are described in, for example, Weed Research 26, 441-445 (1986), or "The Pesticide Manual", 15th edition, The British Crop Protection Council and the Royal Soc.
- active compounds which may be mentioned as herbicides or plant growth regulators which are known from the literature and which can be combined with the compounds according to the invention are the following (compounds are either described by "common name” in accordance with the International Organization for Standardization (ISO) or by chemical name or by a customary code number), and always comprise all applicable forms such as acids, salts, ester, or modifications such as isomers, like stereoisomers and optical isomers.
- ISO International Organization for Standardization
- acetochlor acibenzolar, acibenzolar-S-methyl, acifluorfen, acifluorfen-sodium, aclonifen, alachlor, allidochlor, alloxydim, alloxydim-sodium, ametryn, amicarbazone, amidochlor, amidosulfuron, aminocyclopyrachlor, aminocyclopyrachlor-methyl, aminocyclopyrachlor-potassium, aminopyralid, amitrole, ammoniumsulfamat, ancymidol, anilofos, asulam, atrazine, azafenidin, azimsulfuron, aziprotryn, beflubutamid, benazolin, benazolin-ethyl, bencarbazone, benfluralin, benfuresate, bensulide, bensulfuron, bensulfuron-methyl, benta
- 0-(2,4-dimethyl-6- nitrophenyl)-0-ethyl-isopropylphosphoramidothioate halosafen, halosulfuron, halosulfuron-methyl, haloxyfop, haloxyfop-P, haloxyfop-ethoxyethyl, haloxyfop-P-ethoxyethyl, haloxy fop-methyl, haloxyfop-P -methyl, hexazinone, HW-02, i.e.
- the active compounds of Formula (I) of the present invention can present in a Formulation or use form as a mixed agent with synergists.
- Examples of the Formulation or use form are those commercially useful.
- the synergists per se need not be active but can enhance the activity of the active compounds.
- the amount of the compounds of the present invention in commercially useful application form may vary over a broad range.
- the concentration of the active compounds of the Formula (I) of the present invention for actual use may be, for example, between 0.0000001 and 100% by weight, preferably between 0.00001 and 1% by weight.
- the compounds of the Formula (I) of the present invention can be used according to any common methods suitable for each application form.
- the present invention further provides Formulations, and application forms prepared from them, as crop protection agents and/or pesticidal agents, such as drench, drip and spray liquors, comprising at least one of the active compounds of the invention.
- the application forms may comprise further crop protection agents and/or pesticidal agents, and/or activity-enhancing adjuvants such as penetrants, examples being vegetable oils such as, for example, rapeseed oil, sunflower oil, mineral oils such as, for example, liquid paraffins, alkyl esters of vegetable fatty acids, such as rapeseed oil or soybean oil methyl esters, or alkanol alkoxylates, and/or spreaders such as, for example, alkylsiloxanes and/or salts, examples being organic or inorganic ammonium or phosphonium salts, examples being ammonium sulphate or diammonium hydrogen phosphate, and/or retention promoters such as dioctyl sulpho succinate or hydroxypropylgu
- Formulations examples include water-soluble liquids (SL), emulsifiable concentrates (EC), emulsions in water (EW), suspension concentrates (SC, SE, FS, OD), water-dispersible granules (WG), granules (GR) and capsule concentrates (CS); these and other possible types of Formulation are described, for example, by Crop Life International and in Pesticide Specifications, Manual on development and use of FAO and WHO specifications for pesticides, FAO Plant Production and Protection Papers - 173, prepared by the FAO/WHO Joint Meeting on Pesticide Specifications, 2004, ISBN: 9251048576.
- the Formulations may comprise active agrochemical compounds other than one or more active compounds of the invention.
- the Formulations or application forms in question preferably comprise auxiliaries, such as extenders, solvents, spontaneity promoters, carriers, emulsifiers, dispersants, frost protectants, biocides, thickeners and/or other auxiliaries, such as adjuvants, for example.
- auxiliaries such as extenders, solvents, spontaneity promoters, carriers, emulsifiers, dispersants, frost protectants, biocides, thickeners and/or other auxiliaries, such as adjuvants, for example.
- An adjuvant in this context is a component which enhances the biological effect of the Formulation, without the component itself having a biological effect.
- adjuvants are agents which promote the retention, spreading, attachment to the leaf surface, or penetration.
- Formulations are produced in a known manner, for example by mixing the active compounds with auxiliaries such as, for example, extenders, solvents and/or solid carriers and/or further auxiliaries, such as, for example, surfactants.
- auxiliaries such as, for example, extenders, solvents and/or solid carriers and/or further auxiliaries, such as, for example, surfactants.
- the Formulations are prepared either in suitable plants or else before or during the application.
- auxiliaries are substances which are suitable for imparting to the Formulation of the active compound or the application forms prepared from these Formulations (such as, e.g., usable crop protection agents, such as spray liquors or seed dressings) particular properties such as certain physical, technical and/or biological properties.
- Suitable extenders are, for example, water, polar and nonpolar organic chemical liquids, for example from the classes of the aromatic and non-aromatic hydrocarbons (such as paraffins, alkylbenzenes, alkylnaphthalenes, chlorobenzenes), the alcohols and polyols (which, if appropriate, may also be substituted, etherified and/or esterified), the ketones (such as acetone, cyclohexanone), esters (including fats and oils) and (poly)ethers, the unsubstituted and substituted amines, amides, lactams (such as N- alkylpyrrolidones) and lactones, the sulphones and sulphoxides (such as dimethyl sulphoxide).
- aromatic and non-aromatic hydrocarbons such as paraffins, alkylbenzenes, alkylnaphthalenes, chlorobenzenes
- the alcohols and polyols
- suitable liquid solvents are : aromatics such as xylene, toluene or alkylnaphthalenes, chlorinated aromatics and chlorinated aliphatic hydrocarbons such as chlorobenzenes, chloroethylenes or methylene chloride, aliphatic hydrocarbons such as cyclohexane or paraffins, for example petroleum fractions, mineral and vegetable oils, alcohols such as butanol or glycol and also their ethers and esters, ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone or cyclohexanone, strongly polar solvents such as dimethylformamide and dimethyl sulphoxide, and also water.
- aromatics such as xylene, toluene or alkylnaphthalenes
- chlorinated aromatics and chlorinated aliphatic hydrocarbons such as chlorobenzenes, chloroethylenes or methylene chloride
- Suitable solvents are, for example, aromatic hydrocarbons, such as xylene, toluene or alkylnaphthalenes, for example, chlorinated aromatic or aliphatic hydrocarbons, such as chlorobenzene, chloroethylene or methylene chloride, for example, aliphatic hydrocarbons, such as cyclohexane, for example, paraffins, petroleum fractions, mineral and vegetable oils, alcohols, such as methanol, ethanol, isopropanol, butanol or glycol, for example, and also their ethers and esters, ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone or cyclohexanone, for example, strongly polar solvents, such as dimethyl sulphoxide, and water.
- aromatic hydrocarbons such as xylene, toluene or alkylnaphthalenes
- chlorinated aromatic or aliphatic hydrocarbons such as chloro
- Suitable carriers are in particular: for example, ammonium salts and ground natural minerals such as kaolins, clays, talc, chalk, quartz, attapulgite, montmorillonite or diatomaceous earth, and ground synthetic minerals, such as finely divided silica, alumina and natural or synthetic silicates, resins, waxes and/or solid fertilizers. Mixtures of such carriers may likewise be used.
- Carriers suitable for granules include the following: for example, crushed and fractionated natural minerals such as calcite, marble, pumice, sepiolite, dolomite, and also synthetic granules of inorganic and organic meals, and also granules of organic material such as sawdust, paper, coconut shells, maize cobs and tobacco stalks.
- Liquefied gaseous extenders or solvents may also be used. Particularly suitable are those extenders or carriers which at standard temperature and under standard pressure are gaseous, examples being aerosol propellants, such as halogenated hydrocarbons, and also butane, propane, nitrogen and carbon dioxide.
- emulsifiers and/or foam-formers, dispersants or wetting agents having ionic or nonionic properties, or mixtures of these surface-active substances are salts of polyacrylic acid, salts of lignosulphonic acid, salts of phenolsulphonic acid or naphthalenesulphonic acid, polycondensates of ethylene oxide with fatty alcohols or with fatty acids or with fatty amines, with substituted phenols (preferably alkylphenols or arylphenols), salts of sulphosuccinic esters, taurine derivatives (preferably alkyltaurates), phosphoric esters of polyethoxylated alcohols or phenols, fatty acid esters of polyols, and derivatives of the compounds containing sulphates, sulphonates and phosphates, examples being alkylaryl polyglycol ethers, alkyl sulphonates, alkyl sulphates, arylsulphonates, protein hydrolys,
- auxiliaries that may be present in the Formulations and in the application forms derived from them include colorants such as inorganic pigments, examples being iron oxide, titanium oxide, Prussian Blue, and organic dyes, such as alizarin dyes, azo dyes and metal phthalocyanine dyes, and nutrients and trace nutrients, such as salts of iron, manganese, boron, copper, cobalt, molybdenum and zinc.
- colorants such as inorganic pigments, examples being iron oxide, titanium oxide, Prussian Blue, and organic dyes, such as alizarin dyes, azo dyes and metal phthalocyanine dyes, and nutrients and trace nutrients, such as salts of iron, manganese, boron, copper, cobalt, molybdenum and zinc.
- Stabilizers such as low-temperature stabilizers, preservatives, antioxidants, light stabilizers or other agents which improve chemical and/or physical stability may also be present. Additionally present may be foam-formers or defoamers.
- the Formulations and application forms derived from them may also comprise, as additional auxiliaries, stickers such as carboxymethylcellulose, natural and synthetic polymers in powder, granule or latex form, such as gum arabic, polyvinyl alcohol, polyvinyl acetate, and also natural phospholipids, such as cephalins and lecithins, and synthetic phospholipids.
- additional auxiliaries include mineral and vegetable oils. There may possibly be further auxiliaries present in the Formulations and the application forms derived from them.
- additives examples include fragrances, protective colloids, binders, adhesives, thickeners, thixotropic substances, penetrants, retention promoters, stabilizers, sequestrants, complexing agents, humectants and spreaders.
- the active compounds may be combined with any solid or liquid additive commonly used for Formulation purposes.
- Suitable retention promoters include all those substances which reduce the dynamic surface tension, such as dioctyl sulphosuccinate, or increase the viscoelasticity, such as hydroxypropylguar polymers, for example.
- Suitable penetrants in the present context include all those substances which are typically used in order to enhance the penetration of active agrochemical compounds into plants.
- Penetrants in this context are defined in that, from the (generally aqueous) application liquor and/or from the spray coating, they are able to penetrate the cuticle of the plant and thereby increase the mobility of the active compounds in the cuticle. This property can be determined using the method described in the literature (Baur et al., 1997, Pesticide Science 51, 131-152).
- Examples include alcohol alkoxylates such as coconut fatty ethoxylate (10) or isotridecyl ethoxylate (12), fatty acid esters such as rapeseed or soybean oil methyl esters, fatty amine alkoxylates such as tallowamine ethoxylate (15), or ammonium and/or phosphonium salts such as ammonium sulphate or diammonium hydrogen phosphate, for example.
- the Formulations preferably comprise between 0.00000001% and 98% by weight of active compound or, with particular preference, between 0.01% and 95% by weight of active compound, more preferably between 0.5% and 90% by weight of active compound, based on the weight of the Formulation.
- the amount of the compounds of the present invention in commercially useful application form may vary over a broad range.
- the concentration of the active compounds of the present invention for actual use may be, for example, between 0.0000001 and 100% by weight, preferably between 0.00001 and 1% by weight.
- the compounds of the present invention can be used according to any common methods suitable for each application form.
- the compounds of the invention when used against hygienically noxious organisms and other noxious organisms that accompany a stored product, have effective stability against alkaline substances present in lime materials. In addition, they have excellent residual efficacies in woods and soils.
- Lithium hydride (0.1 g) was added to tetrahydrofuran solution (50 mL) of 2,2,2-trifluoro-l-(3,4,5- trichlorophenyl)ethanone (4.0 g) and l-(3-bromo-4-fluorophenyl) ethanone (1.5 g) followed by reflux under heating for 8 hours.
- the mixture was diluted with t-butyl methyl ether and washed with sodium hydrogen carbonate solution and brine.
- the organic layer was dried over anhydrous magnesium sulfate, the mixture was concentrated under reduced pressure.
- N-dimethylformamide solution (20 mL) of l- ⁇ 2-bromo-4-[l-oxide-3-(3,4,5- trichlorophenyl)-3-(trifluoromethyl)-3,4-dihydro-2H-pyrrol-5-yl]-phenyl ⁇ -lH-l,2,4-triazole (0.5 g), zinc cyanide (0.1 g), and tetrakistriphenylphophine palladium (0.05 g) were stirred at 80°C for 4 hours. The mixture was diluted with t-butyl methyl ether and washed 3 times with brine. The organic layer was dried over anhydrous magnesium sulfate, the mixture was concentrated under reduced pressure.
- Lithium hydride (0.05 g) was added to tetrahydrofuran solution (20 mL) of 2,2,2-trifluoro-l-(3,4,5- trichlorophenyl)ethanone (1.0 g) and (5-acetyl-2,3-dihydro-lH-inden-l-yl) carbamate (0.5 g) followed by reflux under heating for 8 hours.
- the mixture was diluted with t-butyl methyl ether and washed with saturated sodium hydrogen carbonate solution and brine.
- the organic layer was dried over anhydrous magnesium sulfate, the mixture was concentrated under reduced pressure.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Plural Heterocyclic Compounds (AREA)
- Agricultural Chemicals And Associated Chemicals (AREA)
- Pyrrole Compounds (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
L'invention concerne un dérivé de N-oxyde de pyrroline qui est utile comme composé pesticide, représenté par la formule (I), et un pesticide et un agent visant à lutter contre les parasites d'animaux qui contient un dérivé de N-oxyde de pyrroline en tant qu'ingrédient actif.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010207020A JP2012062267A (ja) | 2010-09-15 | 2010-09-15 | 殺虫性ピロリンn−オキサイド誘導体 |
JP2010-207020 | 2010-09-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012034957A1 true WO2012034957A1 (fr) | 2012-03-22 |
Family
ID=44645704
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2011/065704 WO2012034957A1 (fr) | 2010-09-15 | 2011-09-12 | Dérivés de n-oxyde de pyrroline pesticides |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2012062267A (fr) |
WO (1) | WO2012034957A1 (fr) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8735362B2 (en) | 2009-12-01 | 2014-05-27 | Syngenta Crop Protection, Llc | Insecticidal compounds based on isoxazoline derivatives |
CN106243084A (zh) * | 2016-08-01 | 2016-12-21 | 中国农业大学 | 一种含三氟甲基的吡啶基吡咯啉化合物及制备方法和应用 |
WO2018118384A1 (fr) * | 2016-12-21 | 2018-06-28 | Fmc Corporation | Herbicides à base de nitrone |
US10875838B2 (en) | 2017-03-21 | 2020-12-29 | Fmc Corporation | Pyrrolidinones and a process to prepare them |
US10906873B2 (en) | 2015-05-29 | 2021-02-02 | Fmc Corporation | Substituted cyclic amides as herbicides |
US11019818B2 (en) | 2017-05-30 | 2021-06-01 | Fmc Corporation | Herbicidal 3-substituted lactams |
US11180453B2 (en) | 2015-06-02 | 2021-11-23 | Fmc Corporation | Substituted cyclic amides and their use as herbicides |
US11357230B2 (en) | 2017-05-30 | 2022-06-14 | Fmc Corporation | Herbicidal amides |
US11528906B2 (en) | 2013-12-03 | 2022-12-20 | Fmc Corporation | Pyrrolidinones as herbicides |
US11634421B2 (en) | 2015-05-12 | 2023-04-25 | Fmc Corporation | Aryl substituted bicyclic compounds as herbicides |
US11919859B2 (en) | 2017-03-21 | 2024-03-05 | Fmc Corporation | Herbicidal mixture, composition and method |
Citations (59)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1989010396A1 (fr) | 1988-04-28 | 1989-11-02 | Plant Genetic Systems N.V. | Plantes avec cellules d'etamines modifiees |
US5084082A (en) | 1988-09-22 | 1992-01-28 | E. I. Du Pont De Nemours And Company | Soybean plants with dominant selectable trait for herbicide resistance |
US5198599A (en) | 1990-06-05 | 1993-03-30 | Idaho Resarch Foundation, Inc. | Sulfonylurea herbicide resistance in plants |
EP0539588A1 (fr) | 1990-07-05 | 1993-05-05 | Nippon Soda Co., Ltd. | Derive d'amine |
WO1994021795A1 (fr) | 1993-03-25 | 1994-09-29 | Ciba-Geigy Ag | Nouvelles souches et proteines pesticides |
WO1996038567A2 (fr) | 1995-06-02 | 1996-12-05 | Rhone-Poulenc Agrochimie | Sequence adn d'un gene de l'hydroxy-phenyl pyruvate dioxygenase et obtention de plantes contenant un gene de l'hydroxy-phenyl pyruvate dioxygenase, tolerantes a certains herbicides |
WO1997041218A1 (fr) | 1996-04-29 | 1997-11-06 | Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College | Riz resistant aux herbicides |
US5773702A (en) | 1996-07-17 | 1998-06-30 | Board Of Trustees Operating Michigan State University | Imidazolinone herbicide resistant sugar beet plants |
WO1999024585A1 (fr) | 1997-11-07 | 1999-05-20 | Aventis Cropscience S.A. | Hydroxy-phenyl pyruvate dioxygenase mutee, sequence d'adn et obtention de plantes contenant un tel gene, tolerantes aux herbicides |
WO1999034008A1 (fr) | 1997-12-24 | 1999-07-08 | Aventis Cropscience S.A. | Procede de preparation enzymatique d'homogentisate |
WO1999057965A1 (fr) | 1998-05-14 | 1999-11-18 | Aventis Cropscience Gmbh | Mutants de betterave sucriere tolerants a la sulfonyluree |
WO2001066704A2 (fr) | 2000-03-09 | 2001-09-13 | Monsanto Technology Llc | Procedes permettant de rendre des plantes tolerantes au glyphosate et compositions associees |
WO2001065922A2 (fr) | 2000-03-09 | 2001-09-13 | E. I. Du Pont De Nemours And Company | Tournesols tolerants a la sulfonyluree |
WO2002036787A2 (fr) | 2000-10-30 | 2002-05-10 | Bayer Cropscience S.A. | Plantes tolerantes aux herbicides par contournement de voie metabolique |
WO2002046387A2 (fr) | 2000-12-07 | 2002-06-13 | Syngenta Limited | Vegetaux resistants aux herbicides |
WO2002096882A1 (fr) | 2001-05-31 | 2002-12-05 | Nihon Nohyaku Co., Ltd. | Derives d'anilide substitues, produits intermediaires de ces derives, produits chimiques agricoles et horticoles et leur utilisation |
WO2003106457A1 (fr) | 2002-06-14 | 2003-12-24 | Syngenta Limited | Derives de spiroindolinepiperidine |
WO2004024928A2 (fr) | 2002-09-11 | 2004-03-25 | Bayer Cropscience S.A. | Plantes transformees a biosynthese de prenylquinones amelioree |
US6768044B1 (en) | 2000-05-10 | 2004-07-27 | Bayer Cropscience Sa | Chimeric hydroxyl-phenyl pyruvate dioxygenase, DNA sequence and method for obtaining plants containing such a gene, with herbicide tolerance |
WO2004099160A1 (fr) | 2003-05-12 | 2004-11-18 | Sumitomo Chemical Company, Limited | Composes de pyrimidine et compostion de lutte contre les animaux nuisibles contenant ces composes |
WO2005035486A1 (fr) | 2003-10-02 | 2005-04-21 | Basf Aktiengesellschaft | 2-cyanobenzenesulfonamides destines a lutter contre les animaux nuisibles |
WO2005063094A1 (fr) | 2003-12-23 | 2005-07-14 | Koninklijke Philips Electronics N.V. | Appareil de preparation de boissons comportant plusieurs chambres de reception de boissons |
WO2005077934A1 (fr) | 2004-02-18 | 2005-08-25 | Ishihara Sangyo Kaisha, Ltd. | Anthranilamides, procédé pour la production de ceux-ci et agents antiparasitaires contenant ceux-ci |
WO2005085216A1 (fr) | 2004-03-05 | 2005-09-15 | Nissan Chemical Industries, Ltd. | Composé benzamide substitué par de l’isoxazoline et agent de contrôle d’organisme nocif |
WO2006043635A1 (fr) | 2004-10-20 | 2006-04-27 | Kumiai Chemical Industry Co., Ltd. | Dérivé de 3-triazolylphénylsulfide et insecticide/acaricide/nématicide incluant ledit dérivé au titre de principe actif |
WO2006056433A2 (fr) | 2004-11-26 | 2006-06-01 | Basf Aktiengesellschaft | Composes de 2-cyano-3-(halo)alcoxy-benzenesulfonamide destines au combat des parasites des animaux |
WO2006089633A2 (fr) | 2005-02-22 | 2006-08-31 | Bayer Cropscience Ag | Cetoenols cycliques substitues par spirocetal |
WO2006100288A2 (fr) | 2005-03-24 | 2006-09-28 | Basf Aktiengesellschaft | Composes a base de 2-cyanobenzenesulfonamide, destines au traitement des semences |
WO2007027777A2 (fr) | 2005-08-31 | 2007-03-08 | Monsanto Technology Llc | Sequences nucleotidiques codant des proteines insecticides |
WO2007040280A1 (fr) | 2005-10-06 | 2007-04-12 | Nippon Soda Co., Ltd. | Cyclic amine compound and pest control agent |
WO2007057407A2 (fr) | 2005-11-21 | 2007-05-24 | Basf Se | Procedes insecticides utilisant des derives de 3-amino-1,2-benzisothiazole |
WO2007075459A2 (fr) | 2005-12-16 | 2007-07-05 | E. I. Du Pont De Nemours And Company | 5-arylisoxazolines pour lutter contre des parasites invertebres |
WO2007103567A2 (fr) | 2006-03-09 | 2007-09-13 | E. I. Dupont De Nemours & Company | Polynucleotide codant un gene de resistance aux desherbants du mais et procedes d'utilisation associes |
WO2007101369A1 (fr) | 2006-03-09 | 2007-09-13 | East China University Of Science And Technology | Méthode de préparation et utilisation de composés présentant une action biocide |
WO2007107302A2 (fr) | 2006-03-21 | 2007-09-27 | Bayer Bioscience N.V. | Nouveaux gènes codant pour des protéines à action insecticide |
WO2007115643A1 (fr) | 2006-03-31 | 2007-10-18 | Bayer Cropscience Ag | Composés énaminocarbonylés substitués |
WO2007115644A1 (fr) | 2006-03-31 | 2007-10-18 | Bayer Cropscience Ag | Composés énaminocarbonylés substitués |
WO2007115646A1 (fr) | 2006-03-31 | 2007-10-18 | Bayer Cropscience Ag | Composés énaminocarbonylés substitués utilisés comme insecticides |
WO2007149134A1 (fr) | 2006-06-23 | 2007-12-27 | Dow Agrosciences Llc | Procédé pour lutter contre des insectes résistant aux insecticides courants |
WO2008009360A2 (fr) | 2006-07-20 | 2008-01-24 | Bayer Cropscience Ag | Dérivés de n'-cyano-n-halogènalkyle-imidamide |
WO2008066153A1 (fr) | 2006-11-30 | 2008-06-05 | Meiji Seika Kaisha, Ltd. | Agent antiparasitaire |
WO2008067911A1 (fr) | 2006-12-04 | 2008-06-12 | Bayer Cropscience Ag | Cétoénols spirocycliques substitués par le biphényle |
WO2008104503A1 (fr) | 2007-03-01 | 2008-09-04 | Basf Se | Mélanges actifs pesticides comprenant des composés aminothiazoline |
WO2008150473A2 (fr) | 2007-05-30 | 2008-12-11 | Syngenta Participations Ag | Gènes de cytochrome p450 conférant une résistance aux herbicides |
WO2009049851A1 (fr) | 2007-10-15 | 2009-04-23 | Syngenta Participations Ag | Dérivés pyrrolidine dione spirohétérocycliques utiles comme pesticides |
WO2009072621A1 (fr) | 2007-12-07 | 2009-06-11 | Nissan Chemical Industries, Ltd. | Composé dihydroazole substitué et agent antiparasitaire |
WO2009097992A1 (fr) | 2008-02-07 | 2009-08-13 | Bayer Cropscience Ag | Arylpyrrolines insecticidés |
WO2009112275A1 (fr) | 2008-03-14 | 2009-09-17 | Bayer Cropscience Ag | Composés aryles à noyaux condensés pesticides |
WO2009144079A1 (fr) | 2008-04-14 | 2009-12-03 | Bayer Bioscience N.V. | Nouvelle hydroxyphénylpyruvate disoxygénase mutée, séquence d'adn et isolement de plantes qui sont tolérantes à des herbicides inhibiteurs de hppd |
WO2010005692A2 (fr) | 2008-06-16 | 2010-01-14 | E. I. Du Pont De Nemours And Company | Carbonyl-amidines cycliques insecticides |
WO2010006713A2 (fr) | 2008-07-17 | 2010-01-21 | Bayer Cropscience Ag | Composés hétérocycliques utilisés comme pesticides |
JP2010018586A (ja) | 2008-07-14 | 2010-01-28 | Meiji Seika Kaisha Ltd | Pf1364物質、その製造方法、生産菌株、及び、それを有効成分とする農園芸用殺虫剤 |
WO2010069502A2 (fr) | 2008-12-18 | 2010-06-24 | Bayer Cropscience Ag | Amides d'acide anthranilique substitués par tétrazol, utilisés comme pesticides |
WO2010074747A1 (fr) | 2008-12-26 | 2010-07-01 | Dow Agrosciences, Llc | Compositions d'insecticide stables et procédés de production associés |
WO2010074751A1 (fr) | 2008-12-26 | 2010-07-01 | Dow Agrosciences, Llc | Compositions insecticides stables renfermant de la sulfoximine |
WO2010149506A1 (fr) * | 2009-06-22 | 2010-12-29 | Syngenta Participations Ag | Composés insecticides |
WO2011049233A1 (fr) | 2009-10-23 | 2011-04-28 | Sumitomo Chemical Company, Limited | Composition de lutte contre des animaux nuisibles |
WO2011054871A1 (fr) * | 2009-11-06 | 2011-05-12 | Bayer Cropscience Ag | Composés arylpyrroline insecticides |
CN102057925A (zh) | 2011-01-21 | 2011-05-18 | 陕西上格之路生物科学有限公司 | 一种含噻虫酰胺和生物源类杀虫剂的杀虫组合物 |
-
2010
- 2010-09-15 JP JP2010207020A patent/JP2012062267A/ja active Pending
-
2011
- 2011-09-12 WO PCT/EP2011/065704 patent/WO2012034957A1/fr active Application Filing
Patent Citations (61)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1989010396A1 (fr) | 1988-04-28 | 1989-11-02 | Plant Genetic Systems N.V. | Plantes avec cellules d'etamines modifiees |
US5084082A (en) | 1988-09-22 | 1992-01-28 | E. I. Du Pont De Nemours And Company | Soybean plants with dominant selectable trait for herbicide resistance |
US5198599A (en) | 1990-06-05 | 1993-03-30 | Idaho Resarch Foundation, Inc. | Sulfonylurea herbicide resistance in plants |
EP0539588A1 (fr) | 1990-07-05 | 1993-05-05 | Nippon Soda Co., Ltd. | Derive d'amine |
WO1994021795A1 (fr) | 1993-03-25 | 1994-09-29 | Ciba-Geigy Ag | Nouvelles souches et proteines pesticides |
WO1996038567A2 (fr) | 1995-06-02 | 1996-12-05 | Rhone-Poulenc Agrochimie | Sequence adn d'un gene de l'hydroxy-phenyl pyruvate dioxygenase et obtention de plantes contenant un gene de l'hydroxy-phenyl pyruvate dioxygenase, tolerantes a certains herbicides |
WO1997041218A1 (fr) | 1996-04-29 | 1997-11-06 | Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College | Riz resistant aux herbicides |
US5773702A (en) | 1996-07-17 | 1998-06-30 | Board Of Trustees Operating Michigan State University | Imidazolinone herbicide resistant sugar beet plants |
WO1999024585A1 (fr) | 1997-11-07 | 1999-05-20 | Aventis Cropscience S.A. | Hydroxy-phenyl pyruvate dioxygenase mutee, sequence d'adn et obtention de plantes contenant un tel gene, tolerantes aux herbicides |
WO1999024586A1 (fr) | 1997-11-07 | 1999-05-20 | Aventis Cropscience S.A. | Hydroxy-phenyl pyruvate dioxygenase chimere, sequence d'adn et obtention de plantes contenant un tel gene, tolerantes aux herbicides |
WO1999034008A1 (fr) | 1997-12-24 | 1999-07-08 | Aventis Cropscience S.A. | Procede de preparation enzymatique d'homogentisate |
WO1999057965A1 (fr) | 1998-05-14 | 1999-11-18 | Aventis Cropscience Gmbh | Mutants de betterave sucriere tolerants a la sulfonyluree |
WO2001066704A2 (fr) | 2000-03-09 | 2001-09-13 | Monsanto Technology Llc | Procedes permettant de rendre des plantes tolerantes au glyphosate et compositions associees |
WO2001065922A2 (fr) | 2000-03-09 | 2001-09-13 | E. I. Du Pont De Nemours And Company | Tournesols tolerants a la sulfonyluree |
US6768044B1 (en) | 2000-05-10 | 2004-07-27 | Bayer Cropscience Sa | Chimeric hydroxyl-phenyl pyruvate dioxygenase, DNA sequence and method for obtaining plants containing such a gene, with herbicide tolerance |
WO2002036787A2 (fr) | 2000-10-30 | 2002-05-10 | Bayer Cropscience S.A. | Plantes tolerantes aux herbicides par contournement de voie metabolique |
WO2002046387A2 (fr) | 2000-12-07 | 2002-06-13 | Syngenta Limited | Vegetaux resistants aux herbicides |
WO2002096882A1 (fr) | 2001-05-31 | 2002-12-05 | Nihon Nohyaku Co., Ltd. | Derives d'anilide substitues, produits intermediaires de ces derives, produits chimiques agricoles et horticoles et leur utilisation |
WO2003106457A1 (fr) | 2002-06-14 | 2003-12-24 | Syngenta Limited | Derives de spiroindolinepiperidine |
WO2004024928A2 (fr) | 2002-09-11 | 2004-03-25 | Bayer Cropscience S.A. | Plantes transformees a biosynthese de prenylquinones amelioree |
WO2004099160A1 (fr) | 2003-05-12 | 2004-11-18 | Sumitomo Chemical Company, Limited | Composes de pyrimidine et compostion de lutte contre les animaux nuisibles contenant ces composes |
WO2005035486A1 (fr) | 2003-10-02 | 2005-04-21 | Basf Aktiengesellschaft | 2-cyanobenzenesulfonamides destines a lutter contre les animaux nuisibles |
WO2005063094A1 (fr) | 2003-12-23 | 2005-07-14 | Koninklijke Philips Electronics N.V. | Appareil de preparation de boissons comportant plusieurs chambres de reception de boissons |
WO2005077934A1 (fr) | 2004-02-18 | 2005-08-25 | Ishihara Sangyo Kaisha, Ltd. | Anthranilamides, procédé pour la production de ceux-ci et agents antiparasitaires contenant ceux-ci |
WO2005085216A1 (fr) | 2004-03-05 | 2005-09-15 | Nissan Chemical Industries, Ltd. | Composé benzamide substitué par de l’isoxazoline et agent de contrôle d’organisme nocif |
WO2006043635A1 (fr) | 2004-10-20 | 2006-04-27 | Kumiai Chemical Industry Co., Ltd. | Dérivé de 3-triazolylphénylsulfide et insecticide/acaricide/nématicide incluant ledit dérivé au titre de principe actif |
WO2006056433A2 (fr) | 2004-11-26 | 2006-06-01 | Basf Aktiengesellschaft | Composes de 2-cyano-3-(halo)alcoxy-benzenesulfonamide destines au combat des parasites des animaux |
WO2006089633A2 (fr) | 2005-02-22 | 2006-08-31 | Bayer Cropscience Ag | Cetoenols cycliques substitues par spirocetal |
WO2006100288A2 (fr) | 2005-03-24 | 2006-09-28 | Basf Aktiengesellschaft | Composes a base de 2-cyanobenzenesulfonamide, destines au traitement des semences |
WO2007027777A2 (fr) | 2005-08-31 | 2007-03-08 | Monsanto Technology Llc | Sequences nucleotidiques codant des proteines insecticides |
WO2007040280A1 (fr) | 2005-10-06 | 2007-04-12 | Nippon Soda Co., Ltd. | Cyclic amine compound and pest control agent |
WO2007057407A2 (fr) | 2005-11-21 | 2007-05-24 | Basf Se | Procedes insecticides utilisant des derives de 3-amino-1,2-benzisothiazole |
WO2007075459A2 (fr) | 2005-12-16 | 2007-07-05 | E. I. Du Pont De Nemours And Company | 5-arylisoxazolines pour lutter contre des parasites invertebres |
WO2007103567A2 (fr) | 2006-03-09 | 2007-09-13 | E. I. Dupont De Nemours & Company | Polynucleotide codant un gene de resistance aux desherbants du mais et procedes d'utilisation associes |
WO2007101369A1 (fr) | 2006-03-09 | 2007-09-13 | East China University Of Science And Technology | Méthode de préparation et utilisation de composés présentant une action biocide |
WO2007107302A2 (fr) | 2006-03-21 | 2007-09-27 | Bayer Bioscience N.V. | Nouveaux gènes codant pour des protéines à action insecticide |
EP1999141A2 (fr) | 2006-03-21 | 2008-12-10 | Bayer BioScience N.V. | Nouveaux gènes codant pour des protéines à action insecticide |
WO2007115643A1 (fr) | 2006-03-31 | 2007-10-18 | Bayer Cropscience Ag | Composés énaminocarbonylés substitués |
WO2007115644A1 (fr) | 2006-03-31 | 2007-10-18 | Bayer Cropscience Ag | Composés énaminocarbonylés substitués |
WO2007115646A1 (fr) | 2006-03-31 | 2007-10-18 | Bayer Cropscience Ag | Composés énaminocarbonylés substitués utilisés comme insecticides |
WO2007149134A1 (fr) | 2006-06-23 | 2007-12-27 | Dow Agrosciences Llc | Procédé pour lutter contre des insectes résistant aux insecticides courants |
WO2008009360A2 (fr) | 2006-07-20 | 2008-01-24 | Bayer Cropscience Ag | Dérivés de n'-cyano-n-halogènalkyle-imidamide |
WO2008066153A1 (fr) | 2006-11-30 | 2008-06-05 | Meiji Seika Kaisha, Ltd. | Agent antiparasitaire |
WO2008067911A1 (fr) | 2006-12-04 | 2008-06-12 | Bayer Cropscience Ag | Cétoénols spirocycliques substitués par le biphényle |
WO2008104503A1 (fr) | 2007-03-01 | 2008-09-04 | Basf Se | Mélanges actifs pesticides comprenant des composés aminothiazoline |
WO2008150473A2 (fr) | 2007-05-30 | 2008-12-11 | Syngenta Participations Ag | Gènes de cytochrome p450 conférant une résistance aux herbicides |
WO2009049851A1 (fr) | 2007-10-15 | 2009-04-23 | Syngenta Participations Ag | Dérivés pyrrolidine dione spirohétérocycliques utiles comme pesticides |
WO2009072621A1 (fr) | 2007-12-07 | 2009-06-11 | Nissan Chemical Industries, Ltd. | Composé dihydroazole substitué et agent antiparasitaire |
WO2009097992A1 (fr) | 2008-02-07 | 2009-08-13 | Bayer Cropscience Ag | Arylpyrrolines insecticidés |
WO2009112275A1 (fr) | 2008-03-14 | 2009-09-17 | Bayer Cropscience Ag | Composés aryles à noyaux condensés pesticides |
WO2009144079A1 (fr) | 2008-04-14 | 2009-12-03 | Bayer Bioscience N.V. | Nouvelle hydroxyphénylpyruvate disoxygénase mutée, séquence d'adn et isolement de plantes qui sont tolérantes à des herbicides inhibiteurs de hppd |
WO2010005692A2 (fr) | 2008-06-16 | 2010-01-14 | E. I. Du Pont De Nemours And Company | Carbonyl-amidines cycliques insecticides |
JP2010018586A (ja) | 2008-07-14 | 2010-01-28 | Meiji Seika Kaisha Ltd | Pf1364物質、その製造方法、生産菌株、及び、それを有効成分とする農園芸用殺虫剤 |
WO2010006713A2 (fr) | 2008-07-17 | 2010-01-21 | Bayer Cropscience Ag | Composés hétérocycliques utilisés comme pesticides |
WO2010069502A2 (fr) | 2008-12-18 | 2010-06-24 | Bayer Cropscience Ag | Amides d'acide anthranilique substitués par tétrazol, utilisés comme pesticides |
WO2010074747A1 (fr) | 2008-12-26 | 2010-07-01 | Dow Agrosciences, Llc | Compositions d'insecticide stables et procédés de production associés |
WO2010074751A1 (fr) | 2008-12-26 | 2010-07-01 | Dow Agrosciences, Llc | Compositions insecticides stables renfermant de la sulfoximine |
WO2010149506A1 (fr) * | 2009-06-22 | 2010-12-29 | Syngenta Participations Ag | Composés insecticides |
WO2011049233A1 (fr) | 2009-10-23 | 2011-04-28 | Sumitomo Chemical Company, Limited | Composition de lutte contre des animaux nuisibles |
WO2011054871A1 (fr) * | 2009-11-06 | 2011-05-12 | Bayer Cropscience Ag | Composés arylpyrroline insecticides |
CN102057925A (zh) | 2011-01-21 | 2011-05-18 | 陕西上格之路生物科学有限公司 | 一种含噻虫酰胺和生物源类杀虫剂的杀虫组合物 |
Non-Patent Citations (12)
Title |
---|
"The Pesticide Manual", 14th Ed.,", 2006, BRITISH CROP PROTECTION COUNCIL |
"The Pesticide Manual,15th edition,", 2006, THE BRITISH CROP PROTECTION COUNCIL AND THE ROYAL SOC. OF CHEMISTRY |
BARRY ET AL., CURR. TOPICS PLANT PHYSIOL., vol. 7, 1992, pages 139 - 145 |
BAUR ET AL., PESTICIDE SCIENCE, vol. 51, 1997, pages 131 - 152 |
COMAI ET AL., SCIENCE, vol. 221, 1983, pages 370 - 371 |
CRICKMORE ET AL., MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS, vol. 62, 1998, pages 807 - 813 |
GASSER ET AL., J. BIOL. CHEM., vol. 263, 1988, pages 4280 - 4289 |
MOELLENBECK ET AL., NAT. BIOTECHNOL., vol. 19, 2001, pages 668 - 72 |
SCHNEPF ET AL., APPLIED ENVIRONM. MICROBIOL., vol. 71, 2006, pages 1765 - 1774 |
SHAH ET AL., SCIENCE, vol. 233, 1986, pages 478 - 481 |
TRANEL, WRIGHT, WEED SCIENCE, vol. 50, 2002, pages 700 - 712 |
WEED, RESEARCH, vol. 26, 1986, pages 441 - 445 |
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8735362B2 (en) | 2009-12-01 | 2014-05-27 | Syngenta Crop Protection, Llc | Insecticidal compounds based on isoxazoline derivatives |
US9609869B2 (en) | 2009-12-01 | 2017-04-04 | Syngenta Crop Protection, Llc | Insecticidal compounds based on isoxazoline derivatives |
US10206400B2 (en) | 2009-12-01 | 2019-02-19 | Syngenta Participations Ag | Insecticidal compounds based on isoxazoline derivatives |
US10750745B2 (en) | 2009-12-01 | 2020-08-25 | Syngenta Crop Protection, Llc | Insecticidal compounds based on isoxazoline derivatives |
US11357231B2 (en) | 2009-12-01 | 2022-06-14 | Syngenta Crop Protection Llc | Insecticidal compounds based on isoxazoline derivatives |
US11589583B2 (en) | 2013-12-03 | 2023-02-28 | Fmc Corporation | Pyrrolidinones herbicides |
US11528906B2 (en) | 2013-12-03 | 2022-12-20 | Fmc Corporation | Pyrrolidinones as herbicides |
US11634421B2 (en) | 2015-05-12 | 2023-04-25 | Fmc Corporation | Aryl substituted bicyclic compounds as herbicides |
US10906873B2 (en) | 2015-05-29 | 2021-02-02 | Fmc Corporation | Substituted cyclic amides as herbicides |
US11180453B2 (en) | 2015-06-02 | 2021-11-23 | Fmc Corporation | Substituted cyclic amides and their use as herbicides |
US12077503B2 (en) | 2015-06-02 | 2024-09-03 | Fmc Corporation | Substituted cyclic amides and their use as herbicides |
US11787765B2 (en) | 2015-06-02 | 2023-10-17 | Fmc Corporation | Substituted cyclic amides and their use as herbicides |
CN106243084A (zh) * | 2016-08-01 | 2016-12-21 | 中国农业大学 | 一种含三氟甲基的吡啶基吡咯啉化合物及制备方法和应用 |
CN110312712B (zh) * | 2016-12-21 | 2023-06-23 | Fmc公司 | 硝酮除草剂 |
US11498899B2 (en) | 2016-12-21 | 2022-11-15 | Fmc Corporation | Nitrone herbicides |
CN110312712A (zh) * | 2016-12-21 | 2019-10-08 | Fmc公司 | 硝酮除草剂 |
WO2018118384A1 (fr) * | 2016-12-21 | 2018-06-28 | Fmc Corporation | Herbicides à base de nitrone |
TWI769201B (zh) * | 2016-12-21 | 2022-07-01 | 美商富曼西公司 | 硝酮除草劑 |
US11560367B2 (en) | 2017-03-21 | 2023-01-24 | Fmc Corporation | Pyrrolidinones and a process to prepare them |
US10875838B2 (en) | 2017-03-21 | 2020-12-29 | Fmc Corporation | Pyrrolidinones and a process to prepare them |
US11919859B2 (en) | 2017-03-21 | 2024-03-05 | Fmc Corporation | Herbicidal mixture, composition and method |
US11019818B2 (en) | 2017-05-30 | 2021-06-01 | Fmc Corporation | Herbicidal 3-substituted lactams |
US11357230B2 (en) | 2017-05-30 | 2022-06-14 | Fmc Corporation | Herbicidal amides |
Also Published As
Publication number | Publication date |
---|---|
JP2012062267A (ja) | 2012-03-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9375000B2 (en) | Pesticidal arylpyrrolidines | |
TWI615385B (zh) | 作為除害劑之雜環化合物 | |
WO2012034957A1 (fr) | Dérivés de n-oxyde de pyrroline pesticides | |
WO2012004326A1 (fr) | Dérivés de pyrroline pesticide | |
JP5981948B2 (ja) | 殺虫剤および殺ダニ剤としてのインドール−およびベンゾイミダゾールカルボキサミド | |
US9783509B2 (en) | Six-membered C-N-linked aryl sulfide derivatives and aryl sulfoxide derivatives as pest conrol agents | |
US20110152332A1 (en) | Pesticidal Heterocyclic Compounds | |
EP2456759A2 (fr) | Carboxamides pesticides | |
US9206122B2 (en) | Pesticidal arylpyrrolidines | |
US20160108038A1 (en) | Bicyclic aryl sulfide and aryl sulfoxide derivatives as pest control agent |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11755326 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
NENP | Non-entry into the national phase |
Ref country code: JP |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11755326 Country of ref document: EP Kind code of ref document: A1 |