WO2012033206A1 - 面状発光装置および照明モジュール - Google Patents
面状発光装置および照明モジュール Download PDFInfo
- Publication number
- WO2012033206A1 WO2012033206A1 PCT/JP2011/070643 JP2011070643W WO2012033206A1 WO 2012033206 A1 WO2012033206 A1 WO 2012033206A1 JP 2011070643 W JP2011070643 W JP 2011070643W WO 2012033206 A1 WO2012033206 A1 WO 2012033206A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- light
- light guide
- emitting device
- planar
- thickness
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H13/00—Switches having rectilinearly-movable operating part or parts adapted for pushing or pulling in one direction only, e.g. push-button switch
- H01H13/70—Switches having rectilinearly-movable operating part or parts adapted for pushing or pulling in one direction only, e.g. push-button switch having a plurality of operating members associated with different sets of contacts, e.g. keyboard
- H01H13/83—Switches having rectilinearly-movable operating part or parts adapted for pushing or pulling in one direction only, e.g. push-button switch having a plurality of operating members associated with different sets of contacts, e.g. keyboard characterised by legends, e.g. Braille, liquid crystal displays, light emitting or optical elements
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/0001—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
- G02B6/0011—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
- G02B6/0033—Means for improving the coupling-out of light from the light guide
- G02B6/0035—Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
- G02B6/004—Scattering dots or dot-like elements, e.g. microbeads, scattering particles, nanoparticles
- G02B6/0043—Scattering dots or dot-like elements, e.g. microbeads, scattering particles, nanoparticles provided on the surface of the light guide
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
- G06F3/042—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/0001—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
- G02B6/0011—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
- G02B6/0033—Means for improving the coupling-out of light from the light guide
- G02B6/0058—Means for improving the coupling-out of light from the light guide varying in density, size, shape or depth along the light guide
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H2219/00—Legends
- H01H2219/054—Optical elements
- H01H2219/056—Diffuser; Uneven surface
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H2219/00—Legends
- H01H2219/054—Optical elements
- H01H2219/06—Reflector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H2219/00—Legends
- H01H2219/054—Optical elements
- H01H2219/062—Light conductor
Definitions
- the present invention relates to a planar light emitting device and an illumination module used for a mobile phone, a liquid crystal television, an in-vehicle room lamp, and the like.
- This application claims priority on September 10, 2010 based on Japanese Patent Application No. 2010-203762 for which it applied to Japan, and uses the content here.
- FIG. 37 shows an example of a planar light emitting device
- the planar light emitting device 201 includes a light source 202 and a sheet-like light guide 203.
- the light guide 203 is formed with a plurality of concave portions 204 as light extraction portions (see Patent Document 1).
- the planar light emitting device 201 is not suitable for thinning because the formation of the recess 204 becomes difficult when the light guide 203 becomes thin.
- FIG. 38 shows another example of the planar light emitting device.
- the planar light emitting device 211 includes a light source 212 and a sheet-like light guide 213.
- an irregular reflection pattern 214 as a light extraction portion is formed by printing (see Patent Document 2). Since the irregular reflection pattern 214 includes a plurality of circular irregular reflection points 214 a having a diameter that increases with the distance from the light source 212, a light extraction amount can be secured even at a position far from the light source 212.
- the irregular reflection point 214a has a large diameter, it is visually recognized as a local light-emitting point, causing unevenness in light emission, which causes a problem in terms of characteristics as a light-emitting device.
- a diffuser plate is used, light emission can be made uniform. In this case, since the light passes through the diffuser plate, the overall luminance level is lowered. In addition, it is difficult to reduce the thickness of the apparatus.
- the present invention has been made in view of the above circumstances, and it is possible to achieve uniform light emission, increase the overall luminance, and achieve a reduction in thickness. The purpose is to provide.
- the planar light-emitting device of the present invention includes a light source and a sheet-like light guide that is guided in a surface direction by introducing light from the light source, and the light source is provided on one surface of the light guide.
- the thickness is 0.5 to 10 ⁇ m and contains 5% by mass or more of titanium oxide.
- the titanium oxide is preferably a rutile type.
- the plurality of dot-like ink layers are preferably arranged so that their centers are located at lattice points of an equilateral triangular lattice.
- the plurality of dot-like ink layers are preferably arranged so that their centers are located at lattice points of a square lattice.
- the illumination module of the present invention preferably includes the planar light emitting device and a touch pad. A reflector that reflects light leakage from the light guide can be provided between the light guide and the touch pad.
- the outer diameter of the dot-like ink layer constituting the light extraction portion is 10 to 100 ⁇ m, it is possible to prevent each dot-like ink layer from being visually recognized as a local light emitting point. For this reason, it is possible to prevent the occurrence of uneven light emission and improve the light emission characteristics. Since uneven light emission does not occur, a diffuser plate is not necessary, so that the overall luminance level can be increased and the apparatus can be made thinner.
- the thickness of the dot-like ink layer is 0.5 to 10 ⁇ m, absorption by the ink layer can be suppressed, and sufficient scattered light can be obtained, which is advantageous in terms of increasing the brightness. Further, the durability of the dot ink layer can be increased.
- the use of titanium oxide of 5% by mass or more can increase the light emission efficiency and further increase the luminance.
- FIG. 1st Embodiment of this invention It is a partial cross section figure which shows the principal part of the light source and light guide of the illumination module of a front figure. It is a figure which shows schematic structure of the illumination module of 2nd Embodiment of this invention. It is a schematic block diagram which shows an example of a resistive film type input sensor. It is a schematic block diagram which shows an example of a pressure-sensitive type membrane switch. It is sectional drawing which shows the principal part of the light guide which provided the protective layer. It is a graph which shows a test result. It is a graph which shows a test result. It is a graph which shows a test result. It is a graph which shows a test result. It is a graph which shows a test result. It is a graph which shows a test result. It is a graph which shows a test result. It is a graph which shows a test result.
- FIG. 1 It is a figure which shows schematic structure of 5th Embodiment of the illumination module of this invention. It is a figure which shows schematic structure of other embodiment of the illumination module of this invention. It is a figure which shows schematic structure of 6th Embodiment of the illumination module of this invention. It is a figure which shows the decorative board of the illumination module of a previous figure, (A) is sectional drawing, (B) is a top view. It is a top view which shows typically the other example of distribution of the micro dot which comprises a light extraction part. It is sectional drawing which shows schematic structure of an example of the conventional planar light-emitting device. It is a top view which shows schematic structure of the other example of the conventional planar light-emitting device.
- FIG. 1 is a diagram showing a schematic configuration of an illumination module 10 according to the first embodiment of the present invention.
- FIG. 2 is a partial cross-sectional view showing the main parts of the light source 2 and the light guide 3 of the illumination module 10.
- “upper and lower” refers to the upper and lower in FIG.
- the illumination module 10 is provided on the planar light emitting device 1, the reflective sheet 30 (reflector) provided on the lower surface side of the planar light emitting device 1, and the lower surface side of the reflective sheet 30.
- a touch pad 20 detection sensor
- the planar light emitting device 1 includes a light source 2 and a sheet-like (or plate-like) light guide 3.
- a light emitting diode hereinafter referred to as LED
- the light source 2 is preferably a high-luminance type, for example, a light intensity of 50 mcd or more (preferably 1000 to 3000 mcd).
- the height dimension of the light source 2 (the vertical dimension in FIGS. 1 and 2) is, for example, 0.3 to 2 mm.
- the light source 2 is installed with the light emitting surface 2 a facing the end surface 3 e of the one end portion 3 c of the light guide 3.
- the light emitting element used as the light source 2 is not limited to the LED but may be a cold cathode tube.
- the light guide 3 is preferably made of a transparent light-transmitting resin and has flexibility.
- a transparent light-transmitting resin As the light transmissive resin, urethane resin, acrylic resin, polycarbonate resin, silicone resin, polystyrene resin, polyimide resin, polymethyl methacrylate (PMMA) elastomer, urethane acrylate, or the like can be used.
- the thickness of the light guide 3, that is, the thickness T ⁇ b> 1 shown in FIG. 2 is 0.5 mm or more (preferably 0.7 mm or more). Accordingly, even when a high-luminance type large LED or the like that can cope with an increase in area is used as the light source 2, it is possible to increase the utilization efficiency of light from the light source 2. This is because if the thickness of the light guide 3 is in the above range (0.5 mm or more), the height of the end face 3e is sufficiently larger than the height dimension of the light source 2, and therefore the light guide 3 from the end face 3e. This is because the incidence rate of the light L can be increased. Accordingly, the luminance and illuminance can be increased, and the area of the light guide 3 can be increased. On the other hand, when the thickness of the light guide 3 is less than the above range, when a high-luminance type light source is used, the light use efficiency may be reduced, and the luminance and illuminance may be insufficient.
- the thickness T1 of the light guide 3 is 2 mm or less (preferably 1.5 mm or less). If the light guide 3 is too thick, the detection sensitivity of the input sensor of the touch pad 20 is lowered, but by increasing the thickness of the light guide 3 to the above range (2 mm or less), the detection sensitivity of the input sensor is increased. Can do. For example, in the case of using a capacitance type input sensor, it is possible to input at a position close to the input sensor by setting the thickness of the light guide 3 within the above range (2 mm or less). Sensitivity can be secured. In addition, when a resistance film type input sensor is used, since the light guide 3 is easily deformed by pressing by setting the thickness of the light guide 3 within the above range (2 mm or less), the detection sensitivity is increased.
- the light guide 3 can be provided with sufficient flexibility. Therefore, the degree of freedom of the shape of the light guide 3 is increased, and the light guide 3 is guided during assembly. Installation work of the light body 3 becomes easy. Further, even when the installation target is not flat (for example, when the installation target is conical), the installation can be performed without a gap. Further, the outer shape processing of the light guide 3 by VIC processing, mold processing, or the like is facilitated. Therefore, manufacturing workability is also improved. From the above, by setting the thickness of the light guide 3 to 0.5 mm or more and 2 mm or less, sufficient luminance and illuminance can be obtained, and the detection sensitivity of the input sensor can be increased. Furthermore, manufacturing workability is also improved.
- the thickness T1 of the light guide 3 can be substantially the same as the height H1 of the light source 2. Although the thickness T1 and the height H1 may be different, the difference between the thickness T1 and the height H1 is preferably within ⁇ 0.3 mm. Thereby, the incidence rate of light from the light source 2 to the light guide 3 can be increased.
- the light extraction part 4 can be formed.
- the light extraction unit 4 can display a target portion (for example, the operation key unit of the touch pad 20) brightly.
- the light extraction unit 4 can be a plurality of microdot-like ink layers (hereinafter simply referred to as microdots) formed by printing, for example.
- the minute dots are convex portions that protrude downward from the lower surface 3a.
- the planar view shape of each minute dot may be arbitrary, such as a circle, an ellipse, or a polygon (such as a rectangle).
- the minute dots can be formed by a printing method such as a screen printing method, a gravure printing method, a pad printing method, or an ink jet printing method.
- the ink constituting the fine dots for example, white ink using titanium oxide as a pigment is suitable.
- the light extraction part 4 may be a rough surface part formed by a notch, sandblasting or the like formed on the surface of the light guide.
- the fine dots 4a in the example shown in FIG. 12 are circular in plan view, have the same outer diameter, and are arranged in a matrix composed of a plurality of rows. Specifically, the minute dots 4a are arranged such that the center 4b is positioned at a lattice point 7a of the square lattice 7 (a square vertex formed by the square lattice 7).
- the minute dots 4a in this example form a plurality of rows 4A, 4A,... Parallel to each other, and the arrangement direction (left-right direction in FIG. 12) positions of the minute dots 4a between adjacent rows 4A are the same. If the micro dots 4a are arranged in contact with each other, there is a possibility that the luminance locally increases at the portion, and therefore it is preferable to arrange the micro dots 4a apart from each other.
- the minute dots 4a may be arranged as shown in FIG.
- the minute dots 4a in this example are arranged so that the center 4b is positioned at a lattice point 8a of the equilateral triangle lattice 8 (the vertex of the equilateral triangle formed by the equilateral triangle lattice 8).
- the positions of the minute dots 4a in the adjacent rows 4A are different from each other in the arrangement direction (left-right direction in FIG. 13).
- the minute dots 4a can be arranged densely, the amount of light extraction can be increased.
- the area ratio of the minute dots 4a per unit area is 0.65.
- the area ratio of the minute dots 4a per unit area is 0.75. According to the arrangement shown in FIG. 13, the area ratio of the minute dots 4a can be increased, so that the light extraction amount can be increased.
- FIG. 14 is a plan view schematically showing an example of the distribution of the minute dots 4a in the light extraction unit 4.
- the minute dots 4a have the same outer diameter and are basically arranged along the equilateral triangular lattice shown in FIG. 13, but the formation density changes according to the distance from the light source 2. is doing. That is, among the four regions A1 to A4 having different distances from the light source 2, in the first region A1 that is farthest from the light source 2, the fine dots 4a are arranged along the equilateral triangular lattice shown in FIG. ing.
- this arrangement is referred to as a first arrangement.
- the arrangement of the minute dots 4a is a second arrangement in which a predetermined number of minute dots 4a are omitted from the first arrangement.
- the arrangement of the minute dots 4a is a third arrangement in which a predetermined number of minute dots 4a are further omitted from the second arrangement.
- the arrangement of the minute dots 4a is a fourth arrangement in which a predetermined number of minute dots 4a are further omitted from the third arrangement.
- the positions of the minute dots 4a that are omitted in the second to fourth arrangements are selected so as not to concentrate locally.
- the outer diameter D1 of the minute dots 4a is 10 to 100 ⁇ m.
- the outer diameter D1 is 10 to 100 ⁇ m.
- a planar light emitting device 1 having microdots 4a having outer diameters of 100 ⁇ m and 150 ⁇ m was produced, and a test was performed in which a plurality of subjects were observed from a position 30 cm away. .
- 70% of the subjects were able to visually recognize the minute dots 4a having an outer diameter of 150 ⁇ m as light emission points, but most of the subjects were not able to visually recognize the minute dots 4a having an outer diameter of 100 ⁇ m as light emission points. From this test result, it was confirmed that when the outer diameter of the minute dots 4a is 100 ⁇ m or less, the minute dots 4a are difficult to visually recognize as light emitting points.
- the outer diameter D1 to 10 ⁇ m or more, dots having a certain thickness or more can be printed stably, and a sufficient amount of light can be extracted from each minute dot 4a. . Thereby, the brightness
- the outer diameter of the minute dots can be one of the maximum diameter, the minimum diameter, and the average diameter.
- the average value of the major axis and the minor axis can be set as the outer diameter.
- the average value of the maximum diameter and the minimum diameter can be set as the outer diameter.
- the thickness T2 (height) of the minute dots 4a is preferably 0.5 to 10 ⁇ m. If the micro dots 4a are too thick, they are easily damaged by an external force. However, if the thickness T2 is 10 ⁇ m or less, the micro dots 4a can be prevented from being damaged and the durability can be improved. If the micro dots 4a become too thick, the light absorbed by the micro dots 4a may increase and the loss may increase. However, by increasing the thickness T2 to 10 ⁇ m or less, an increase in loss can be prevented. .
- the micro dots 4a are too thin, sufficient scattered light may not be obtained. However, if the thickness T2 is 0.5 ⁇ m or more, a sufficient amount of filler 9 is included in the dots. It is possible to cause sufficient light scattering, increase the amount of extracted light, and improve the luminance.
- the micro dots 4a are too thin, the amount of the filler 9 contained in the ink constituting the micro dots 4a is reduced, and the interface of the micro dots 4a is that of the light guide 3. It tends to be almost parallel to the interface. As shown in FIG. 17 (b), when light enters such a micro dot 4a, more light is directly reflected at the interface of the micro dot 4a and returned into the light guide 3, and the light scattering efficiency deteriorates. there is a possibility. Therefore, it is desirable that the minute dots 4a are not too thin, and a thickness of 0.5 ⁇ m or more is preferable.
- 15 to 17 exemplify the case of using light (indicated by solid line arrows) emitted from the scattered light on the surface side (upper side in the figure) on which the minute dots 4a are formed.
- light indicated by solid line arrows
- downward light indicated by a two-dot chain line
- scattered light with a small inclination component can be obtained and the luminance can be increased. Can do.
- the illumination module (described later) shown in FIG. In this structure, light is extracted to the formed surface (upper surface 3b) side.
- the thickness of the minute dots 4a is set within the above range (0.5 to 10 ⁇ m) and the outer diameter is in the above range (10 to 100 ⁇ m), a sufficiently large convex portion is formed on the lower surface 3 a of the light guide 3. It becomes difficult to adhere to the light, and adverse effects on the propagation of light in the light guide 3 can be prevented.
- the thin light guide 3 can be used unlike the case where the light extraction portion is formed by a concave portion.
- the thin light emitting device 1 can be reduced in thickness.
- the light extraction part 4 can be formed by printing, manufacturing efficiency can be improved.
- the ink constituting the minute dots 4a preferably contains titanium oxide. Since titanium oxide functions as a white pigment, the ink exhibits a white color. Titanium oxide also functions as a filler. By using titanium oxide, the light emission efficiency in the planar light emitting device 1 can be increased.
- FIG. 18 shows the brightness of the emitted light from the minute dots 4a by forming the minute dots 4a (area ratio 0.5) on the light guide 3 using ink containing rutile type titanium oxide having a concentration of 1 to 50% by mass. The result of having measured is shown. As shown in this figure, a high luminance is obtained when the titanium oxide content is 5 mass% or more, particularly 5 to 50 mass%. Further, when the content is 10 to 40% by mass, higher luminance can be obtained. From this result, it was confirmed that the luminous efficiency can be increased by adding titanium oxide to the ink constituting the minute dots 4a. When the titanium oxide content is 5 to 50% by mass or more, preferably 10 to 40% by mass or more, high luminance can be obtained.
- FIG. 19 is a graph showing the results of a comparative test between the rutile type and the anatase type.
- a minute dot 4a (area ratio 0.5) is formed on the light guide 3 using ink containing rutile or anatase type titanium oxide (20% by mass), and light emitted from the minute dot 4a. The brightness of was measured. From this figure, it can be seen that when rutile type titanium oxide was used, a luminance about 20 Cd / m 2 higher than that obtained when anatase type titanium oxide was used was obtained. From this result, it can be seen that it is preferable to use rutile type titanium oxide from the viewpoint of improving luminance.
- the particle size of titanium oxide is preferably 10 nm to 0.5 ⁇ m.
- the reflection sheet 30 is a sheet material made of a resin such as PET (polyethylene terephthalate) for reflecting light leaked downward from the light guide 3 by the upper surface 30b and returning it to the light guide 3. .
- the reflective sheet 30 is desirably white from the viewpoint of reflectivity.
- the reflection sheet 30 is provided on the lower surface 3 a side of the light guide 3.
- the touch pad 20 includes an input sensor 21 and a resist layer 22 (covering resin layer) formed thereon.
- the input sensor 21 is a sensor that detects the proximity or contact of the detection target 25 such as a human finger.
- the input sensor 21 is a capacitance type input sensor, and has a configuration in which the wiring layer 24 is provided on the upper surface 23 b of the substrate 23.
- the substrate 23 is a plate material made of a resin such as PET.
- the substrate 23 may be a flexible substrate made of PEN (polyethylene naphthalate), polyimide, or the like, or a rigid substrate made of glass epoxy resin or the like.
- the wiring layer 24 includes, for example, a plurality of electrodes 24a.
- the detection object 25 such as a human finger approaches, an electrostatic capacity is formed between the detection object 25 and the electrode 24a, and this capacitance is an opposing area between the detection object 25 and the electrode 24a. And changes depending on the separation distance. For this reason, the to-be-detected body 25 and the electrode 24a form a variable capacitance part.
- a change in the capacitance of the variable capacitance unit is detected by a detecting means (not shown), and an input operation by the detected body 25, its position, etc. are grasped by a control unit (not shown) based on the detected value.
- the wiring layer 24 can be formed, for example, by heating a silver paste containing silver particles after screen printing on the substrate 23.
- the wiring layer 24 may be formed by etching a copper foil laminated on the substrate 23.
- the resist layer 22 ensures electrical insulation between the wiring layers 24 and prevents oxidation.
- the resist layer 22 has an upper surface 23b of the substrate 23 and the wiring layer 24 on the upper surface (surface on the light guide 3 side) side of the input sensor 21. It is formed to cover.
- a general-purpose solder resist can be used as the resist layer 22.
- the capacitance type input sensor 21 employed in the touch pad 20 has a simple structure including one substrate 23 and a wiring layer 24, it is thinner than a sensor using a plurality of substrates. Is possible.
- the touch pad 20 can be made flexible by reducing the thickness. Further, since the structure of the input sensor 21 is simple, the cost can be reduced and the assembling work can be facilitated.
- the touch pad 20 employs a capacitive input sensor, but other methods such as a resistive film type input sensor may be employed.
- a pressure sensitive membrane switch can also be used. The resistance film type sensor and the membrane switch will be described later.
- the light guide 3 and the reflection sheet 30 are bonded to each other by the adhesive layer 5 formed on the peripheral edge portion of the lower surface 3 a of the light guide 3.
- the reflection sheet 30 and the touch pad 20 are bonded to each other by the adhesive layer 6 formed on the peripheral edge portion of the lower surface 30a of the reflection sheet 30.
- an adhesive material such as an acrylic resin, a polyurethane resin, an epoxy resin, a urethane resin, a natural rubber adhesive material, or a synthetic rubber adhesive material can be used.
- As the adhesive layers 5 and 6, a so-called double-sided tape-like material in which an adhesive material layer coated with an adhesive material is formed on both surfaces of a sheet-like base material can be used.
- the light L from the light source 2 enters the light guide 3 from the end surface 3e of the one end portion 3c, and is reflected on the upper surface 3b, the lower surface 3a, and the like toward the other end portion 3d. Propagate. Part of the incident light is scattered by the light extraction unit 4 and extracted to the upper surface 3b side.
- the thickness of the light guide 3 is 0.5 mm or more and 2 mm or less, the thickness of the light guide 3 can be changed even when a large high-luminance light source 2 is used. Therefore, it is possible to increase the incident rate of light introduced into the light guide 3 through the end face 3e and increase the light utilization efficiency.
- the planar light emitting device 1 is provided on the upper surface side (outer surface side) of the touch pad 20, light from the planar light emitting device 1 is not blocked by the touch pad. Therefore, sufficient luminance and illuminance can be ensured even when the light guide 3 has a large area.
- the detection sensitivity of the input sensor 21 of the touch pad 20 can be increased by setting the thickness of the light guide 3 in the above range.
- the touch pad 20 is installed on the lower surface side (back surface side) of the planar light emitting device 1, it is not necessary to use an expensive transparent type touch pad 20. For this reason, cost reduction can be achieved.
- the operations such as the outer shape processing and installation of the light guide 3 are facilitated in manufacturing the illumination module 10, the manufacturing workability is also improved.
- FIG. 3 is a diagram showing a schematic configuration of the illumination module 40 according to the second embodiment of the present invention.
- the illumination module 40 includes a planar light emitting device 1 and a touch pad 20 provided on the lower surface side of the planar light emitting device 1.
- a resist layer 22 (covering resin layer) formed on the upper surface (surface on the light guide 3 side) of the input sensor 21 of the touch pad 20 is a reflection that reflects light leaked downward from the light guide 3 on the upper surface 22a. Functions as a body.
- the resist layer 22 is preferably made of a white material.
- this white material for example, a material containing titanium oxide as a pigment can be used.
- a white material for example, a material containing titanium oxide as a pigment can be used.
- the white material constituting the resist layer 22 for example, a material containing 20 to 30% by mass of an acrylate resin, 20 to 30% by mass of diethylene glycol monoethyl ether acetate, and 10 to 20% by mass of titanium oxide can be used.
- the illumination module 40 compared with the illumination module 10 of 1st Embodiment, since there is no reflective sheet 30 between the planar light-emitting device 1 and the touchpad 20, thickness reduction can be achieved. In addition, since an adhesive layer for adhering the reflective sheet 30 to the touch pad 20 is not necessary, the thickness can be further reduced. Since there is no reflection sheet 30, input at a position close to the input sensor 21 is possible, so that the detection sensitivity of the input sensor 21 of the touch pad 20 can be further increased. Further, the flexibility of the illumination module 40 can be increased by reducing the thickness. Further, by causing the resist layer 22 to function as a reflector, it is possible to reduce the thickness without reducing the reflection performance. Moreover, since the structure is simpler than the illumination module 10 of the first embodiment, the number of parts is small, which is advantageous in terms of cost and manufacturing workability.
- the capacitance type input sensor 21 employed in the touch pad 20 has a simple structure including one substrate 23 and a wiring layer 24, it is thinner than a sensor using a plurality of substrates. Is possible. Therefore, the illumination module 40 can be further reduced in thickness.
- FIG. 3 shows an example of a touch pad using a resistance film type input sensor.
- the touch pad 60 includes an upper substrate 61 having a transparent conductive film 63 formed on the opposing surface 61a, and an opposing surface. 62a, and a lower substrate 62 on which a transparent conductive film 64 is formed.
- a plurality of dot spacers 66 are formed on the transparent conductive film 64 of the lower substrate 62.
- the upper substrate 61 and the lower substrate 62 are disposed so that the transparent conductive films 63 and 64 face each other with a space therebetween.
- a reflective layer 65 (reflector) is formed on the upper surface 61 b of the upper substrate 61.
- the reflective layer 65 functions as a reflector that reflects light leaked downward from the light guide 3. If the white material is used for the reflective layer 65, the effect of reflecting the light leaked from the light guide 3 can be enhanced.
- Reference numeral 67 denotes an adhesive layer.
- the touch pad 60 for example, when the touch pad 60 is pressed downward by the detection target 25 (see FIG. 1), the upper substrate 61 is bent downward, and the transparent conductive films 63 and 64 are brought into contact with each other to be conductive. An input operation or the like is detected.
- FIG. 5 shows a pressure-sensitive membrane switch 70.
- the membrane switch 70 includes an upper substrate 71 having a wiring layer 73 and an upper electrode 76 formed on the opposing surface 71a, and a wiring layer 74 and a lower portion on the opposing surface 72a. And a lower substrate 72 on which an electrode 77 is formed.
- the upper substrate 71 and the lower substrate 72 are arranged so that the electrodes 76 and 77 face each other with a space therebetween.
- a resist layer 75 (covering resin layer) is formed on the upper surface 71 b of the upper substrate 71.
- the resist layer 75 functions as a reflector that reflects light leaked downward from the light guide 3.
- Reference numeral 78 denotes an adhesive layer.
- the membrane switch 70 when the upper substrate 71 is bent downward by the pressure of the detection target 25 (see FIG. 1), the upper electrode 76 contacts the lower electrode 77, and these are electrically connected to detect an input operation or the like. .
- the illumination modules 10 and 40 of the first and second embodiments have a structure in which an external force is easily applied to the light guide 3 because the planar light emitting device 1 is positioned on the outermost surface side (upper surface side).
- FIG. 6 shows an example in which a structure for protecting the light guide 3 is provided.
- a protective layer 50 is provided on the upper surface 3 b of the light guide 3.
- the protective layer 50 is made of, for example, a fluororesin.
- the protective layer 50 can prevent the upper surface 3b of the light guide 3 from being damaged or contaminated.
- Test Example 1 As shown in FIG. 1, a planar shape including a urethane-based resin light guide 3 (length 100 mm, width 50 mm) and a light source 2 (LED, height 0.6 mm, luminous intensity 2400 mcd) having a rectangular shape in plan view.
- the light emitting device 1 was produced.
- the light source 2 has a configuration in which 21 LEDs are arranged at equal intervals along an edge portion that forms one long side of the light guide 3.
- a reflective sheet 30 made of PET was installed on the lower surface side of the planar light emitting device 1.
- Test Example 2 A planar light emitting device 1 similar to Test Example 1 was produced except that an LED having a height of 0.8 mm and a luminous intensity of 2500 mcd was used as the light source 2.
- Test Example 3 A planar light emitting device 1 similar to Test Example 1 was produced except that an LED having a height of 1.2 mm and a luminous intensity of 1500 mcd was used as the light source 2.
- Table 1 shows measurement results of luminance and illuminance, and luminous intensity contribution efficiency (efficiency in which the unit luminous intensity (1 cd) of the light source 2 contributes to illuminance (50 cm)).
- the luminous intensity contribution efficiency is also shown in FIG.
- adopted the electrostatic capacitance type sensor was produced.
- the relative permittivity of the light guide 3 was 7 and the relative permittivity of the resist layer 22 was 27.
- the area of the light guide 3 was 0.0001 m 2 , and the thickness of the resist layer 22 was 0.01 mm.
- the touch pad 20 is formed by forming a wiring layer 24 (thickness 10 ⁇ m) using a silver paste on an upper surface 23b of a substrate 23 (thickness 75 ⁇ m) made of PET, and forming a resist layer 22 (thickness 30 ⁇ m) thereon.
- the configuration total thickness 105 ⁇ m
- FIG. 8 shows the result of examining the influence of the thickness of the light guide 3 on the capacitance. As shown in this figure, when the thickness of the light guide 3 was 2 mm or less, a preferable capacitance (10 pF or more) was obtained.
- the illumination module 10 was produced in the same manner as in Test Example 4 except that a touch pad 60 employing a resistive film type sensor was used.
- the touch pad 60 includes an upper substrate 61 (total thickness 180 ⁇ m) on which a transparent conductive film 63 made of ITO is formed, and a lower substrate 62 (total thickness 180 ⁇ m) on which a transparent conductive film 64 made of ITO is formed.
- the reflection layer 65 (thickness 30 ⁇ m) was formed on the upper surface 61 b of the upper substrate 61 (total thickness 520 ⁇ m). The distance between the transparent conductive films 63 and 64 facing each other was 130 ⁇ m.
- FIG. 9 shows the result of examining the influence of the thickness of the light guide 3 on the ON load. As shown in this figure, when the thickness of the light guide 3 was 2 mm or less, a preferable ON load (2 N or less) was obtained.
- the membrane switch 70 includes an upper substrate 71 (thickness 75 ⁇ m) on which a wiring layer 73 (thickness 10 ⁇ m) and an upper electrode 76 are formed, and a lower substrate 72 on which a wiring layer 74 (thickness 10 ⁇ m) and a lower electrode 77 are formed. (Thickness: 75 ⁇ m), and the reflective layer 75 (thickness: 30 ⁇ m) is formed on the upper surface 71 b of the upper substrate 71 (total thickness: 250 ⁇ m). The distance between the substrates 71 and 72 facing each other was 70 ⁇ m. The influence of the thickness of the light guide 3 on the ON load was examined. The results are shown in FIG. As shown in this figure, when the thickness of the light guide 3 was 2 mm or less, a preferable ON load (7 N or less) was obtained.
- FIG. 20 is a diagram illustrating a schematic configuration of the illumination module 110 according to the third embodiment of the present invention.
- FIG. 21 is a cross-sectional view showing a main part of the planar light emitting device 101.
- FIG. 22 is a cross-sectional view showing the touch pad 20.
- the planar light emitting device 101 includes a light source 2, a sheet-shaped (or plate-shaped) light guide 3, and a low refractive index layer 104 formed on the lower surface 3 a (one surface) of the light guide 3. Yes. As shown in FIG.
- the light source 2 is installed with the light emitting surface 2 a facing the end surface 3 e of the one end 3 c of the light guide 3, and light can be incident on the light guide 3 from the end surface 3 e.
- the light from the light source 2 propagates from one end 3c of the light guide 3 toward the other end 3d (see FIG. 20) while being reflected on the upper surface 3b, the lower surface 3a, and the like of the light guide 3.
- the direction from the one end 3c toward the other end 3d (rightward in FIG. 20) may be referred to as a light guide direction X.
- the low refractive index layer 104 is a layer made of a material having a refractive index lower than that of the light guide 3, and for example, a fluororesin can be used.
- the refractive index of the low refractive index layer 104 can be set according to the refractive index of the light guide 3. This refractive index is preferably as low as possible, and can be, for example, 1.4 or less (for example, 1 to 1.4).
- the thickness of the low refractive index layer 104 can be set to 0.01 to 0.03 mm, for example.
- the low refractive index layer 104 is formed only in a partial region (hereinafter, formation region A1) of the lower surface 3a of the light guide 3. A region where the low refractive index layer 104 is not formed is referred to as a non-formed region A2.
- the formation area A1 and the non-formation area A2 are different from each other in the light guide direction X, and the non-formation area A2 is located farther from the light source 2 than the formation area A1.
- the non-forming area A2 is adjacent to the forming area A1 in the light guide direction X.
- the formation region A1 is a region within a predetermined distance in the light guide direction X from the one end 3c of the lower surface 3a of the light guide 3, and the non-formation region A2 is the other region, that is, low refraction. This is a region from the tip 104d in the light guide direction X of the index layer 104 to the other end 3d.
- the entire non-forming area A2 is located farther from the light source 2 than the forming area A1, but at least a part of the non-forming area A2 is located farther from the light source 2 than the forming area A1. That's fine.
- Incident light is scattered on the lower surface 104a (the surface opposite to the light guide 3 side) of the low refractive index layer 104 in the formation region A1 and the lower surface 3a of the light guide 3 in the non-formation region A2 to scatter the light guide 3. It is possible to form a light extraction portion 105 that is extracted (emitted) to the upper surface 3b (the other surface) side (see the arrow in FIG. 20). 20 and 21, the light extraction portion 105 is formed in the entire area of the lower surface 104a of the formation region A1 and the lower surface 3a of the non-formation region A2, but the light extraction portion 105 is formed in a partial region of the lower surfaces 3a and 104a. It may be formed.
- the light extraction unit 105 can be a plurality of microdot-like ink layers formed in a partial region of the lower surfaces 3a and 104a by printing, for example.
- the shape of each fine dot-shaped ink layer in plan view may be arbitrary, such as a circle, an ellipse, or a polygon (such as a rectangle).
- the light extraction unit 105 may have the same configuration as the light extraction unit 4 of the first and second embodiments.
- the touch pad 20 includes an input sensor 21 and a resist layer 22 (covering resin layer) formed thereon.
- the input sensor 21 is a capacitance type input sensor, and has a configuration in which a wiring layer 24 is provided on the upper surface 23 b of the substrate 23.
- a protective layer 50 made of, for example, a fluororesin can be provided on the upper surface 3 b of the light guide 3. The protective layer 50 can prevent the upper surface 3b of the light guide 3 from being damaged or contaminated.
- the planar light emitting device 101 and the reflection sheet 30 are mutually attached by the adhesive layer 106 formed on the peripheral portion of the planar light emitting device 101 (the lower surface 104a of the low refractive index layer 104 and the peripheral surface of the lower surface 3a of the light guide 3). It is glued.
- the reflective sheet 30 and the touch pad 20 are bonded to each other by an adhesive layer 107 formed on the lower surface 30 a of the reflective sheet 30.
- an adhesive material such as an acrylic resin, a polyurethane resin, an epoxy resin, a urethane resin, a natural rubber adhesive material, or a synthetic rubber adhesive material can be used.
- a so-called double-sided tape in which an adhesive material layer coated with an adhesive material is formed on both surfaces of a sheet-like substrate can be used.
- the light from the light source 2 enters the light guide 3 from the end surface 3e of the one end 3c.
- the high-order mode light L1 (light with a large propagation angle) out of the light incident on the light guide 3 is low-order mode light L2 (with a small propagation angle) when entering the low refractive index layer 104.
- Light Since the low-order mode light L2 propagating through the low refractive layer 104 is difficult to be emitted to the outside even when scattered, the amount of light emitted to the outside (light extraction amount) in the light extraction unit 105 is kept low.
- the light propagating through the low refractive layer 104 without being emitted to the outside is reconverted into the high-order mode light L1 by being incident on the light guide 3 again. For this reason, in the formation region A1, the loss of light that becomes a higher-order mode in the light guide 3 is suppressed.
- the light L2 in the low refractive index layer 104 is reflected by the lower surface 104a.
- the light L2 becomes high-order mode light L1 again when entering the light guide 3, is reflected by the upper surface 3b of the light guide 3, and becomes low-order mode light L2 when entering the low refractive index layer 104. Then, the light is propagated in the right direction of FIG. 21 while repeating the process of reflecting on the lower surface 104a of the low refractive index layer 104.
- the light L1 propagates toward the other end 3d while being reflected on the upper surface 3b, the lower surface 3a, and the like in the light guide 3 in the higher-order mode. Since higher-order mode light is easily emitted to the outside when scattered, the amount of light emitted to the outside (light extraction amount) in the light extraction unit 105 increases. As described above, the light converted into the low-order mode is incident again on the light guide and re-converted into the high-order mode while maintaining the low-order mode even when scattered. That is, since the high-order mode light is not lost in the formation region A1, the light introduced into the non-formation region A2 contains a large amount of high-order mode light, so that the light extraction amount in the light extraction unit 105 can be increased.
- the low refractive index layer 104 is formed only in a partial region of the lower surface 3a of the light guide 3, and the non-forming region A2 is located farther from the light source 2 than the forming region A1.
- the light extraction amount can be kept low in a region near the light source 2 and the light extraction amount can be increased in a region far from the light source 2. For this reason, it is effective in achieving uniform brightness.
- FIG. 23 a planar light emitting device 101A in which a light extraction portion 105 is formed on the upper surface 3b of the light guide 3 (refractive index 1.49) is assumed.
- the light guide 3 had a length of 50 mm, a width of 10 mm, and a thickness of 0.5 mm.
- a symbol L illustrated in FIG. 24 indicates higher-order mode light (light having a large propagation angle) among the light incident on the light guide 3. The light L propagates toward the other end 3d while being reflected by the upper surface 3b, the lower surface 3a, etc. in the light guide 3.
- the high-order mode light Since the high-order mode light has a large propagation angle, it is easily emitted outside the light guide 3 by scattering in the light extraction unit 105. For this reason, in the planar light emitting device 101A, the amount of light emitted from the light extraction unit 105 to the outside (light extraction amount) increases at a position close to the one end 3c.
- FIG. 25A is a plan view showing a luminance distribution obtained by simulation.
- light from the light source 2 input light quantity 0.55 (lm)
- the planar light emitting device 101A a portion where the light extraction amount is very large, that is, a so-called hot spot S1 is generated at a position near the one end 3c.
- the luminance at a position 3 mm away from the one end 3c was 730 cd / m 2 .
- the luminance at a position 28 mm away from the one end 3c (second position P2) was 64 cd / m 2 .
- the low refractive index layer 104 (refractive index 1.4) is formed over the entire upper surface 3 b of the light guide 3, and the light extraction portion 105 is formed on the upper surface 104 b of the low refractive index layer 104.
- a planar light emitting device 101B was assumed. 27 indicates high-order mode light (light having a large propagation angle) among the light incident on the light guide 3.
- the light L1 enters the low refractive index layer 104, the light L1 is converted into low-order mode light L2 (light having a small propagation angle). Even if the low-order mode light L2 is scattered, it is difficult to be emitted to the outside.
- the amount of light emitted to the outside (light extraction amount) in the light extraction unit 105 is kept low. For this reason, in the planar light emitting device 101B, the loss of light that becomes a higher-order mode within the light guide 3 is suppressed.
- the light L2 in the low refractive index layer 104 is reflected by the upper surface 104b.
- the light L2 becomes high-order mode light L1 again when entering the light guide 3, is reflected by the lower surface 3a of the light guide 3, and becomes low-order mode light L2 when entering the low refractive index layer 104. Then, the light is propagated in the right direction of FIG. 27 while repeating the process of reflecting on the upper surface 104b of the low refractive index layer 104.
- FIG. 28 is a plan view showing a luminance distribution obtained by the same simulation as in Test Example 7. From this figure, it can be seen that in the planar light emitting device 101B, the hot spot S1 near the one end 3c is smaller than that in Test Example 7.
- the luminance at the first position P1 (see FIG. 25B) was 407 cd / m 2 .
- the luminance at the second position P2 was 18 cd / m 2 .
- the low refractive index layer 104 (refractive index 1.4) is formed only in a partial region (formation region A1) of the upper surface 3b of the light guide 3, and the low refractive index layer 104 in the formation region A1.
- a planar light emitting device 101C in which a light extraction portion 105 is formed on the upper surface 104b of the light guide 3 and the upper surface 3b of the light guide 3 in the non-formation area A2 is assumed.
- the formation region A1 is a region within a predetermined distance from the one end 3c. In the formation region A1, the high-order mode light L1 is converted into the low-order mode light L2 when entering the low refractive index layer 104.
- the amount of light emitted to the outside (light extraction amount) in the light extraction unit 105 is kept low. For this reason, in the formation region A1, the loss of light that becomes a higher-order mode in the light guide 3 is suppressed.
- the light L2 in the low refractive index layer 104 is reflected by the upper surface 104b.
- the light L2 becomes high-order mode light L1 again when entering the light guide 3, is reflected by the lower surface 3a of the light guide 3, and becomes low-order mode light L2 when entering the low refractive index layer 104. Then, the light is propagated in the right direction of FIG. 29 while repeating the process of reflecting on the upper surface 104b of the low refractive index layer 104.
- the light L1 propagates toward the other end 3d while being reflected on the upper surface 3b, the lower surface 3a, etc. in the light guide 3 in the higher order mode. Since higher-order mode light is likely to be emitted to the outside when scattered, the amount of light emitted to the outside (light extraction amount) in the light extraction unit 105 increases.
- FIG. 30 is a plan view showing the luminance distribution obtained by the same simulation as in Test Example 7.
- the luminance at the first position P1 (in the formation region A1) (see FIG. 25B) was 407 cd / m 2 .
- the luminance at the second position P2 (in the non-forming area A2) was 129 cd / m 2 .
- the luminance obtained in Test Examples 7 to 9 is shown in Table 2.
- the luminance at the first position P1 is lower than that in Test Example 7, and therefore the light source 2 can be obtained by using the low refractive index layer 104. It can be seen that the amount of light extraction at a position close to can be suppressed. Moreover, in any test example, since the brightness
- the planar light emitting device 101 is applied to the illumination module 110, but is not limited thereto, and can be applied to a liquid crystal television, an in-vehicle room lamp, and the like. Since the planar light emitting device 101 can make the luminance uniform, it is particularly effective in the case of an application requiring a large area.
- FIG. 31 is a diagram showing a schematic configuration of an illumination module 140 according to the fourth embodiment of the present invention.
- the illumination module 140 includes a planar light emitting device 101 and a touch pad 20 provided on the lower surface side of the planar light emitting device 101.
- the resist layer 22 formed on the upper surface (surface on the light guide 3 side) of the input sensor 21 of the touch pad 20 reflects the light leaking downward from the light guide 3 and returns it to the light guide 3. Function as.
- the resist layer 22 (coating resin layer) (see FIG. 22) of the touch pad 20 is preferably made of a white material. As this white material, a material containing titanium oxide as a pigment can be used.
- the thickness can be reduced. Moreover, the detection sensitivity of the input sensor 21 of the touch pad 20 can be further increased. Further, since the structure is simple, it is advantageous in terms of cost and manufacturing workability.
- FIG. 32 is a diagram showing a schematic configuration of an illumination module 160 according to the fifth embodiment of the present invention.
- the illumination module 160 has the same configuration as the illumination module 110 except for the planar light emitting device 161.
- the planar light emitting device 161 is different from the planar light emitting device 101 in that the low refractive index layer 104 and the light extraction unit 105 are provided on the upper surface 3 b side of the light guide 3.
- the low refractive index layer 104 is formed only in a partial region (formation region A1) of the upper surface 3b of the light guide 3.
- a light extraction portion 105 is formed on the upper surface 104b of the low refractive index layer 104 in the formation region A1 and the upper surface 3b of the light guide 3 in the non-formation region A2.
- the formation region A1 is a region within a predetermined distance from the one end 3c.
- the light extraction amount can be kept low in the formation region A1 close to the light source 2, and the light extraction amount can be increased in the non-formation region A2 far from the light source 2.
- the brightness can be made uniform.
- the light extraction portion may be an uneven portion such as a notch or a rough surface portion formed in the upper surfaces 3b and 104b. Nanoimprinting or sandblasting can be used for forming the rough surface portion.
- the light extraction part 4 is provided on the lower surface 3a of the light guide 3.
- the light extraction part 4 can also be provided on the upper surface 3b. Also in this example, part of the light in the light guide 3 can be extracted upward by the light extraction unit 4.
- FIG. 34 is a diagram showing a schematic configuration of a lighting module 80 according to the sixth embodiment of the present invention.
- the illumination module 80 is such that a decorative plate 240 (cover plate) is provided on the upper surface 3b side of the light guide 3 and that the adhesive layer 6 is formed over the entire lower surface 30a of the reflective sheet 30. Different from the illumination module 10 of FIG.
- the decorative plate 240 has a size that can cover substantially the entire light guide 3 in plan view, and is bonded to the upper surface 3b of the light guide 3 via an adhesive layer 241 provided on the peripheral edge.
- the decorative board 240 is made of a resin material such as PET.
- the adhesive layer 6 is formed over the entire lower surface 30a of the reflective sheet 30, but the region where the adhesive layer 6 is formed is not limited to this, and only a part of the lower surface 30a (for example, only the peripheral portion). It may be formed.
- the decorative plate 240 is made of an opaque material, and the light from the light guide 3 can be visually recognized on the decorative plate 240 from the outside.
- An opening 242 can also be formed.
- the opening 242 has a shape representing a number, a character, a symbol, a figure, a pattern, or the like, light emission corresponding to the shape can be obtained.
- the opening 242 has a planar shape corresponding to the number “1”, and thus functions as a display indicating the number “1”.
- FIG. 36 is a plan view schematically showing another example of the distribution of the minute dots 4a in the light extraction unit 4.
- the micro dots 4a are arranged along the square lattice (see FIG. 12). The closer to the light source 2, the lower the formation density of the minute dots 4a. For example, among the four areas A1 to A4 having different distances from the light source 2, the closer to the light source 2, the lower the density of the fine dots 4a. Since the square lattice can arrange the fine dots 4a at a lower density than the regular triangle lattice, the amount of light extraction can be suppressed.
- the arrangement of the minute dots 4a shown in FIG. 36 is suitable when a relatively low luminance is required.
- the arrangement directions of the minute dots 4a in the square lattice are two directions orthogonal to each other, a general-purpose moving mechanism is used when the method of forming the minute dots 4a by the inkjet printing method while moving the light guide 3 is used. You can use the manufacturing equipment you have. Therefore, if the arrangement of the minute dots 4a shown in FIG. 36 is adopted, an inkjet printing method that does not require a printing plate can be used, and a general-purpose moving mechanism can be used, which facilitates manufacture.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Optics & Photonics (AREA)
- Human Computer Interaction (AREA)
- Planar Illumination Modules (AREA)
- Position Input By Displaying (AREA)
Abstract
光源と、光源からの光が導入されて面方向に導かれるシート状の導光体を備えた面状発光装置。導光体には、光源からの導入光を散乱させて表面側から出射させる光取出部が形成されている。光取出部は、印刷によって形成された複数のドット状インク層からなる。ドット状インク層は、外径が10~100μmであり、厚さが0.5~10μmであり、5質量%以上の酸化チタンを含む。
Description
本発明は、携帯電話、液晶テレビ、車載用ルームランプ等に用いられる面状発光装置および照明モジュールに関する。
本願は、2010年9月10日に、日本に出願された特願2010-203762号に基づき優先権を主張し、その内容をここに援用する。
本願は、2010年9月10日に、日本に出願された特願2010-203762号に基づき優先権を主張し、その内容をここに援用する。
図37は、面状発光装置の一例を示すもので、この面状発光装置201は、光源202と、シート状の導光体203とを有する。導光体203には、光取出部としての複数の凹部204が形成されている(特許文献1参照)。
しかしながら、面状発光装置201は、導光体203が薄くなると凹部204の形成が難しくなることから、薄型化には適していない。
図38は、面状発光装置の他の例を示すもので、この面状発光装置211は、光源212と、シート状の導光体213とを有する。導光体213には、光取出部としての乱反射パターン214が印刷により形成されている(特許文献2参照)。
乱反射パターン214は、光源212からの距離に応じて径が大きくなる複数の円形の乱反射点214aからなるため、光源212から遠い位置でも光取出量を確保できる。
しかしながら、面状発光装置201は、導光体203が薄くなると凹部204の形成が難しくなることから、薄型化には適していない。
図38は、面状発光装置の他の例を示すもので、この面状発光装置211は、光源212と、シート状の導光体213とを有する。導光体213には、光取出部としての乱反射パターン214が印刷により形成されている(特許文献2参照)。
乱反射パターン214は、光源212からの距離に応じて径が大きくなる複数の円形の乱反射点214aからなるため、光源212から遠い位置でも光取出量を確保できる。
しかしながら、面状発光装置211では、乱反射点214aの径が大きいと、これが局所的な発光点として視認されるため発光ムラが生じ、発光装置としての特性の点で問題があった。
拡散板を用いれば発光の均一化を図ることができるが、この場合には光が拡散板を透過するため全体の輝度レベルが低くなってしまう。また、装置の薄型化も難しくなる。
本発明は、上記事情に鑑みてなされたものであって、発光の均一化を図ることができ、かつ全体の高輝度化が可能であり、薄型化にも対応できる面状発光装置および照明モジュールを提供することを目的とする。
拡散板を用いれば発光の均一化を図ることができるが、この場合には光が拡散板を透過するため全体の輝度レベルが低くなってしまう。また、装置の薄型化も難しくなる。
本発明は、上記事情に鑑みてなされたものであって、発光の均一化を図ることができ、かつ全体の高輝度化が可能であり、薄型化にも対応できる面状発光装置および照明モジュールを提供することを目的とする。
本発明の面状発光装置は、光源と、前記光源からの光が導入されて面方向に導かれるシート状の導光体を備え、前記導光体のいずれか一方の面には、前記光源からの導入光を散乱させて出射させる光取出部が形成され、前記光取出部が、印刷によって形成された複数のドット状インク層からなり、前記ドット状インク層は、外径が10~100μmであり、厚さが0.5~10μmであり、5質量%以上の酸化チタンを含む。
前記酸化チタンは、ルチル型が好ましい。
前記複数のドット状インク層は、中心が正三角形格子の格子点に位置するように配置されていることが好ましい。
前記複数のドット状インク層は、中心が正方形格子の格子点に位置するように配置されていることが好ましい。
本発明の照明モジュールは、前記面状発光装置と、タッチパッドとを備えていることが好ましい。
前記導光体とタッチパッドとの間には、前記導光体からの漏光を反射する反射体を設けることができる。
前記酸化チタンは、ルチル型が好ましい。
前記複数のドット状インク層は、中心が正三角形格子の格子点に位置するように配置されていることが好ましい。
前記複数のドット状インク層は、中心が正方形格子の格子点に位置するように配置されていることが好ましい。
本発明の照明モジュールは、前記面状発光装置と、タッチパッドとを備えていることが好ましい。
前記導光体とタッチパッドとの間には、前記導光体からの漏光を反射する反射体を設けることができる。
本発明によれば、光取出部を構成するドット状インク層の外径が10~100μmとされるので、各ドット状インク層が局所的な発光点として視認されるのを防ぐことができる。このため、発光ムラが生じるのを防止し、発光特性を良好にすることができる。
発光ムラが生じないため、拡散板が必要ないことから、全体の輝度レベルを高くでき、しかも装置の薄型化を図ることができる。
また、ドット状インク層の厚さが0.5~10μmとされるので、インク層による吸収を抑えることができ、十分な散乱光が得られ、高輝度化の点で有利である。また、ドット状インク層の耐久性を高めることができる。
本発明では、さらに、5質量%以上の酸化チタンの使用によって発光効率を高め、いっそうの高輝度化を図ることができる。
発光ムラが生じないため、拡散板が必要ないことから、全体の輝度レベルを高くでき、しかも装置の薄型化を図ることができる。
また、ドット状インク層の厚さが0.5~10μmとされるので、インク層による吸収を抑えることができ、十分な散乱光が得られ、高輝度化の点で有利である。また、ドット状インク層の耐久性を高めることができる。
本発明では、さらに、5質量%以上の酸化チタンの使用によって発光効率を高め、いっそうの高輝度化を図ることができる。
(第1実施形態)
以下、本発明の実施形態について説明する。
図1は、本発明の第1実施形態である照明モジュール10の概略構成を示す図である。図2は、照明モジュール10の光源2および導光体3の要部を示す一部断面図である。
以下の説明において、上方および下方とは、図1における上方および下方をいう。
以下、本発明の実施形態について説明する。
図1は、本発明の第1実施形態である照明モジュール10の概略構成を示す図である。図2は、照明モジュール10の光源2および導光体3の要部を示す一部断面図である。
以下の説明において、上方および下方とは、図1における上方および下方をいう。
図1に示すように、照明モジュール10は、面状発光装置1と、面状発光装置1の下面側に設けられた反射シート30(反射体)と、反射シート30の下面側に設けられたタッチパッド20(検知センサ)とを備えている。
面状発光装置1は、光源2と、シート状(または板状)の導光体3とを備えている。
光源2としては、発光ダイオード(以下、LEDという)(発光素子)を使用できる。
光源2は、高輝度タイプ、例えば光度50mcd以上(好ましくは1000~3000mcd)のものが好適である。光源2の高さ寸法(図1および図2における上下方向の寸法)は例えば0.3~2mmである。
図2に示すように、光源2は、発光面2aを導光体3の一端部3cの端面3eに対面させて設置される。
なお、光源2として使用される発光素子は、LEDに限らず、冷陰極管などでもよい。
光源2としては、発光ダイオード(以下、LEDという)(発光素子)を使用できる。
光源2は、高輝度タイプ、例えば光度50mcd以上(好ましくは1000~3000mcd)のものが好適である。光源2の高さ寸法(図1および図2における上下方向の寸法)は例えば0.3~2mmである。
図2に示すように、光源2は、発光面2aを導光体3の一端部3cの端面3eに対面させて設置される。
なお、光源2として使用される発光素子は、LEDに限らず、冷陰極管などでもよい。
導光体3は、透明な光透過性樹脂からなり、可撓性を有することが好ましい。
光透過性樹脂としては、ウレタン樹脂、アクリル樹脂、ポリカーボネート樹脂、シリコーン樹脂、ポリスチレン樹脂、ポリイミド樹脂、ポリメチルメタクリレート(PMMA)のエラストマー、ウレタンアクリレート等を用いることができる。
光透過性樹脂としては、ウレタン樹脂、アクリル樹脂、ポリカーボネート樹脂、シリコーン樹脂、ポリスチレン樹脂、ポリイミド樹脂、ポリメチルメタクリレート(PMMA)のエラストマー、ウレタンアクリレート等を用いることができる。
導光体3の厚さ、すなわち図2に示す厚さT1は、0.5mm以上(好ましくは0.7mm以上)とされる。
これによって、大面積化に対応できる高輝度タイプの大型LED等を光源2として使用する場合でも、光源2からの光の利用効率を高めることができる。これは、導光体3の厚さを上記範囲(0.5mm以上)とすると、端面3eの高さが光源2の高さ寸法に対して十分に大きくなるため、端面3eから導光体3内への光Lの入射率を高くできるからである。従って、輝度および照度を高めることができ、導光体3の大面積化を実現できる。
これに対し、導光体3の厚さが上記範囲を下回ると、高輝度タイプの光源を使用する場合に光の利用効率が低下し、輝度および照度が不十分になるおそれがある。
これによって、大面積化に対応できる高輝度タイプの大型LED等を光源2として使用する場合でも、光源2からの光の利用効率を高めることができる。これは、導光体3の厚さを上記範囲(0.5mm以上)とすると、端面3eの高さが光源2の高さ寸法に対して十分に大きくなるため、端面3eから導光体3内への光Lの入射率を高くできるからである。従って、輝度および照度を高めることができ、導光体3の大面積化を実現できる。
これに対し、導光体3の厚さが上記範囲を下回ると、高輝度タイプの光源を使用する場合に光の利用効率が低下し、輝度および照度が不十分になるおそれがある。
導光体3の厚さT1は、2mm以下(好ましくは1.5mm以下)とされる。
導光体3は、厚すぎるとタッチパッド20の入力センサの検出感度が低くなるが、導光体3の厚さを上記範囲(2mm以下)とすることによって、入力センサの検出感度を高めることができる。
例えば、静電容量式入力センサを用いる場合には、導光体3の厚さを上記範囲(2mm以下)とすることによって、入力センサに近接した位置での入力が可能となるため十分な検出感度が確保できる。また、抵抗膜式入力センサを用いる場合には、導光体3の厚さを上記範囲(2mm以下)とすることによって、導光体3が押圧により変形しやすくなるため、検出感度を高めることができる。
また、厚さを上記範囲(2mm以下)とすることによって、導光体3に十分な可撓性を与えることができるため、導光体3の形状の自由度が高くなり、組み立て時の導光体3の設置作業が容易となる。また、設置対象が平坦でない場合(例えば設置対象が円錐形である場合)でも、隙間なく設置することが可能となる。また、VIC加工や金型加工などによる導光体3の外形加工が容易になる。よって、製造作業性も良好になる。
以上より、導光体3の厚さを0.5mm以上、2mm以下とすることによって、十分な輝度および照度が得られ、かつ入力センサの検出感度を高めることができる。さらには、製造作業性も良好になる。
導光体3は、厚すぎるとタッチパッド20の入力センサの検出感度が低くなるが、導光体3の厚さを上記範囲(2mm以下)とすることによって、入力センサの検出感度を高めることができる。
例えば、静電容量式入力センサを用いる場合には、導光体3の厚さを上記範囲(2mm以下)とすることによって、入力センサに近接した位置での入力が可能となるため十分な検出感度が確保できる。また、抵抗膜式入力センサを用いる場合には、導光体3の厚さを上記範囲(2mm以下)とすることによって、導光体3が押圧により変形しやすくなるため、検出感度を高めることができる。
また、厚さを上記範囲(2mm以下)とすることによって、導光体3に十分な可撓性を与えることができるため、導光体3の形状の自由度が高くなり、組み立て時の導光体3の設置作業が容易となる。また、設置対象が平坦でない場合(例えば設置対象が円錐形である場合)でも、隙間なく設置することが可能となる。また、VIC加工や金型加工などによる導光体3の外形加工が容易になる。よって、製造作業性も良好になる。
以上より、導光体3の厚さを0.5mm以上、2mm以下とすることによって、十分な輝度および照度が得られ、かつ入力センサの検出感度を高めることができる。さらには、製造作業性も良好になる。
導光体3の厚さT1は、光源2の高さH1とほぼ同じとすることができる。
厚さT1と高さH1は異なっていてもよいが、厚さT1と高さH1との差は±0.3mm以内であることが好ましい。これによって、光源2から導光体3への光の入射率を高めることができる。
厚さT1と高さH1は異なっていてもよいが、厚さT1と高さH1との差は±0.3mm以内であることが好ましい。これによって、光源2から導光体3への光の入射率を高めることができる。
図1に示すように、導光体3の下面3a(一方の面、裏面)には、入射光を散乱させて導光体3の上面3b(他方の面、表面)側に取り出す(出射させる)光取出部4を形成することができる。光取出部4によって、目的とする部分(例えばタッチパッド20の操作キー部)を明るく表示することが可能となる。
光取出部4は、例えば印刷により形成された複数の微小ドット状のインク層(以下、単に微小ドットという)とすることができる。微小ドットは、下面3aから下方に突出する凸部である。各微小ドットの平面視形状は円形、楕円形、多角形(矩形等)など任意としてよい。微小ドットはスクリーン印刷法、グラビア印刷法、パッド印刷法、インクジェット印刷法などの印刷法により形成することができる。
微小ドットを構成するインクとしては、例えば顔料として酸化チタンを用いた白色インクが好適である。
なお、光取出部4は、導光体表面に形成された切り欠き、サンドブラスト等によって形成した粗面部などであってもよい。
光取出部4は、例えば印刷により形成された複数の微小ドット状のインク層(以下、単に微小ドットという)とすることができる。微小ドットは、下面3aから下方に突出する凸部である。各微小ドットの平面視形状は円形、楕円形、多角形(矩形等)など任意としてよい。微小ドットはスクリーン印刷法、グラビア印刷法、パッド印刷法、インクジェット印刷法などの印刷法により形成することができる。
微小ドットを構成するインクとしては、例えば顔料として酸化チタンを用いた白色インクが好適である。
なお、光取出部4は、導光体表面に形成された切り欠き、サンドブラスト等によって形成した粗面部などであってもよい。
図12に示す例の微小ドット4aは、平面視円形とされ、互いに同じ外径を有し、複数列からなるマトリクス状に配列されている。具体的には、微小ドット4aは、中心4bが正方形格子7の格子点7a(正方形格子7がなす正方形の頂点)に位置するように配置されている。
この例の微小ドット4aは、互いに平行な複数の列4A,4A,・・・をなし、隣り合う列4Aどうしの微小ドット4aの配列方向(図12の左右方向)位置は互いに同じである。
微小ドット4aは、互いに接した配置とすると、その部分で局所的に輝度が高くなる可能性があるため、互いに離間して配置するのが好ましい。
この例の微小ドット4aは、互いに平行な複数の列4A,4A,・・・をなし、隣り合う列4Aどうしの微小ドット4aの配列方向(図12の左右方向)位置は互いに同じである。
微小ドット4aは、互いに接した配置とすると、その部分で局所的に輝度が高くなる可能性があるため、互いに離間して配置するのが好ましい。
微小ドット4aは、図13に示すように配置してもよい。この例の微小ドット4aは、中心4bが正三角形格子8の格子点8a(正三角形格子8がなす正三角形の頂点)に位置するように配置されている。
この例では、隣り合う列4Aどうしの微小ドット4aの配列方向(図13の左右方向)の位置は互いに異なる。
図13に示す配置では、微小ドット4aを密に配置することができるため、光取出量を多くすることができる。
この例では、隣り合う列4Aどうしの微小ドット4aの配列方向(図13の左右方向)の位置は互いに異なる。
図13に示す配置では、微小ドット4aを密に配置することができるため、光取出量を多くすることができる。
例えば、外径50μmの微小ドット4aを、隣り合う微小ドット4a同士の間隔5μmとして図12に示す正方形格子7上に配置すると、単位面積当たりの微小ドット4aの面積比率は0.65となるのに対し、図13に示す正三角形格子8上に配置すると単位面積当たりの微小ドット4aの面積比率は0.75となる。図13に示す配置によれば、微小ドット4aの面積比率を大きくできるため、光取出量を多くできる。
図14は、光取出部4における微小ドット4aの分布の例を模式的に示す平面図である。
この図に示す例では、微小ドット4aは互いに同じ外径を有し、基本的には図13に示す正三角形格子に沿う配置であるが、光源2からの距離に応じてその形成密度が変化している。
すなわち、光源2からの距離が互いに異なる4つの領域A1~A4のうち、光源2から最も離れた位置にある第1領域A1では、微小ドット4aは図13に示す正三角形格子に沿う配置とされている。以下、この配置を第1配置という。
第2領域A2では、微小ドット4aの配置は、第1配置から所定数の微小ドット4aを省いた第2配置とされている。第3領域A3では、微小ドット4aの配置は、第2配置からさらに所定数の微小ドット4aを省いた第3配置とされている。第4領域A4では、微小ドット4aの配置は、第3配置からさらに所定数の微小ドット4aを省いた第4配置とされている。第2~第4配置で省かれる微小ドット4aの位置は局所に集中しないように選択される。
このように、光源2からの距離が大きくなるほど形成密度が高くなるように微小ドット4aを配置することによって、光源2から離れた位置でも十分な光取出量を確保できる。
このため、輝度の均一化を図ることができる。
この図に示す例では、微小ドット4aは互いに同じ外径を有し、基本的には図13に示す正三角形格子に沿う配置であるが、光源2からの距離に応じてその形成密度が変化している。
すなわち、光源2からの距離が互いに異なる4つの領域A1~A4のうち、光源2から最も離れた位置にある第1領域A1では、微小ドット4aは図13に示す正三角形格子に沿う配置とされている。以下、この配置を第1配置という。
第2領域A2では、微小ドット4aの配置は、第1配置から所定数の微小ドット4aを省いた第2配置とされている。第3領域A3では、微小ドット4aの配置は、第2配置からさらに所定数の微小ドット4aを省いた第3配置とされている。第4領域A4では、微小ドット4aの配置は、第3配置からさらに所定数の微小ドット4aを省いた第4配置とされている。第2~第4配置で省かれる微小ドット4aの位置は局所に集中しないように選択される。
このように、光源2からの距離が大きくなるほど形成密度が高くなるように微小ドット4aを配置することによって、光源2から離れた位置でも十分な光取出量を確保できる。
このため、輝度の均一化を図ることができる。
図12に示すように、微小ドット4aの外径D1は10~100μmとされる。
外径D1を100μm以下とすることによって、人間の目では各ドットの形状や大きさを視認することが困難になってくるので、各微小ドット4aが局所的な発光点として視認されるのを防ぐことができる。このため、発光ムラが生じるのを防止し、発光特性を良好にすることができる。
発光ムラが生じないため拡散板が必要ないことから、全体の輝度レベルを高くでき、装置の薄型化の点でも有利である。
外径D1を100μm以下とすることによって、人間の目では各ドットの形状や大きさを視認することが困難になってくるので、各微小ドット4aが局所的な発光点として視認されるのを防ぐことができる。このため、発光ムラが生じるのを防止し、発光特性を良好にすることができる。
発光ムラが生じないため拡散板が必要ないことから、全体の輝度レベルを高くでき、装置の薄型化の点でも有利である。
外径を上記範囲とした場合の効果を確認するため、外径100μmおよび150μmの微小ドット4aを有する面状発光装置1を作製し、複数の被験者に30cm離れた位置から観察させる試験を行った。その結果、外径150μmの微小ドット4aは70%の被験者が発光点として視認できたが、外径100μmの微小ドット4aはほとんどの被験者が発光点としては視認できなかった。
この試験結果より、微小ドット4aの外径を100μm以下とすることによって、微小ドット4aが発光点として視認しにくくなることが確認された。
また、外径D1を10μm以上とすることによって、ある一定以上の厚さを持ったドットを安定して印刷できるようになり、各微小ドット4aにおいて十分量の光を取り出すことができるようになる。このことにより、光取出部4全体の輝度を高めることができる。
この試験結果より、微小ドット4aの外径を100μm以下とすることによって、微小ドット4aが発光点として視認しにくくなることが確認された。
また、外径D1を10μm以上とすることによって、ある一定以上の厚さを持ったドットを安定して印刷できるようになり、各微小ドット4aにおいて十分量の光を取り出すことができるようになる。このことにより、光取出部4全体の輝度を高めることができる。
なお、微小ドットが円形でない場合には、微小ドットの外径は、最大径、最小径、および平均径のうち1つとすることができる。例えば楕円形の微小ドットでは、長径と短径の平均値を外径とすることができる。また、正方形の微小ドットでは、最大径と最小径の平均値を外径とすることができる。
図15に示すように、微小ドット4aの厚さT2(高さ)は0.5~10μmが好ましい。
微小ドット4aは厚くなりすぎると外力により破損しやすくなるが、厚さT2を10μm以下とすることによって破損を防ぎ、耐久性を高めることができる。
また、微小ドット4aは厚くなりすぎると、微小ドット4aに吸収される光が多くなって損失が増大するおそれがあるが、厚さT2を10μm以下とすることによって、損失増大を防ぐことができる。
微小ドット4aは厚くなりすぎると外力により破損しやすくなるが、厚さT2を10μm以下とすることによって破損を防ぎ、耐久性を高めることができる。
また、微小ドット4aは厚くなりすぎると、微小ドット4aに吸収される光が多くなって損失が増大するおそれがあるが、厚さT2を10μm以下とすることによって、損失増大を防ぐことができる。
図16に示すように、微小ドット4aは厚くなりすぎると、矢印で示す散乱光が導光体3に対し傾いた方向に多く出射するようになるため、導光体3を正面から見る利用者にとって輝度が低くなるというおそれがあるが、厚さT2を10μm以下とすれば、図15に示すように、傾斜成分が比較的少ない散乱光が得られるため、輝度を高めることができる。
微小ドット4aは、薄くなりすぎると十分な散乱光が得られなくなる可能性があるが、厚さT2を0.5μm以上とすることによって、ドットに十分量のフィラー9が含まれることになるので、十分な光の散乱を生じさせ、光取出量を多くし、輝度向上を図ることができる。
また、図17(a)に示すように、微小ドット4aは薄くなりすぎると、微小ドット4aを構成するインクに含まれるフィラー9の量が少なくなり、また微小ドット4a界面は導光体3の界面とほぼ平行になりやすくなる。
図17(b)に示すように、そのような微小ドット4aに光が進入すると直接微小ドット4a界面で全反射して導光体3内に戻る光が多くなり、光の散乱効率が悪くなる可能性がある。よって微小ドット4aは薄すぎないほうが望ましく、厚さ0.5μm以上が好適である。
図17(b)に示すように、そのような微小ドット4aに光が進入すると直接微小ドット4a界面で全反射して導光体3内に戻る光が多くなり、光の散乱効率が悪くなる可能性がある。よって微小ドット4aは薄すぎないほうが望ましく、厚さ0.5μm以上が好適である。
図15~図17では、散乱光のうち、微小ドット4aが形成されている面側(図中上方)に出射する光(実線矢印で示す)を利用する場合が例示されているが、微小ドット4aが形成されている面とは反対面側(図中下方)に光を取り出す必要がある場合には、散乱光のうち下向きの光(2点鎖線で示す)を利用することができる。
微小ドット4aとは反対の面側(図中下方)に出射する光についても、微小ドット4aの厚さを上述の範囲とすることによって、傾斜成分の少ない散乱光が得られ、輝度を高めることができる。
図1に示す照明モジュールは、微小ドット4aが形成された面(下面3a)とは反対の面側に光が取り出される構造であり、図33に示す照明モジュール(後述)は、微小ドット4aが形成された面(上面3b)側に光が取り出される構造である。
微小ドット4aとは反対の面側(図中下方)に出射する光についても、微小ドット4aの厚さを上述の範囲とすることによって、傾斜成分の少ない散乱光が得られ、輝度を高めることができる。
図1に示す照明モジュールは、微小ドット4aが形成された面(下面3a)とは反対の面側に光が取り出される構造であり、図33に示す照明モジュール(後述)は、微小ドット4aが形成された面(上面3b)側に光が取り出される構造である。
また、導光体3が反射シート30に密着すると導光体3内の光の伝搬に影響が及ぶおそれがあるが(図20参照)、微小ドット4aの厚さを上記範囲(0.5~10μm)とし、外径を上記範囲(10~100μm)とすれば、導光体3の下面3aに十分な大きさの凸部が形成されることになるため、導光体3が反射シート30に密着しにくくなり、導光体3内の光の伝搬への悪影響を防ぐことができる。
また、面状発光装置1では、印刷により形成されたインク層により光取出部4を形成するので、光取出部を凹部で形成する場合とは異なり、薄い導光体3を使用できるため、面状発光装置1の薄型化に対応できる。
また、光取出部4を印刷により形成できるため、製造効率を高めることができる。
また、光取出部4を印刷により形成できるため、製造効率を高めることができる。
微小ドット4aを構成するインクには、酸化チタンが含まれることが好ましい。酸化チタンは白色顔料として機能するため、前記インクは白色を呈する。酸化チタンはフィラーとしても機能する。
酸化チタンの使用により、面状発光装置1における発光効率を高めることができる。
酸化チタンの使用により、面状発光装置1における発光効率を高めることができる。
図18は、濃度1~50質量%のルチル型酸化チタンを含むインクを用いて、導光体3に微小ドット4a(面積比率0.5)を形成し、微小ドット4aからの出射光の輝度を測定した結果を示すものである。
この図に示すように、酸化チタン含有率は5質量%以上、特に5~50質量%で高い輝度が得られる。また、含有率10~40質量%ではさらに高い輝度が得られる。
この結果より、微小ドット4aを構成するインクに酸化チタンを添加することで、発光効率が高められることが確認された。酸化チタン含有率は、5~50質量%以上、好ましくは10~40質量%以上とすると高輝度が得られる。
この図に示すように、酸化チタン含有率は5質量%以上、特に5~50質量%で高い輝度が得られる。また、含有率10~40質量%ではさらに高い輝度が得られる。
この結果より、微小ドット4aを構成するインクに酸化チタンを添加することで、発光効率が高められることが確認された。酸化チタン含有率は、5~50質量%以上、好ましくは10~40質量%以上とすると高輝度が得られる。
微小ドット4aを構成するインクに添加する酸化チタンとしては、ルチル型、アナターゼ型等があり、特に、ルチル型の酸化チタンが好ましい。
図19は、ルチル型とアナターゼ型との比較試験の結果を示すグラフである。この試験では、ルチル型またはアナターゼ型の酸化チタン(20質量%)を含むインクを用いて、導光体3に微小ドット4a(面積比率0.5)を形成し、微小ドット4aからの出射光の輝度を測定した。
この図より、ルチル型酸化チタンを用いた場合は、アナターゼ型酸化チタンを用いた場合に比べて20Cd/m2程度高い輝度が得られたことがわかる。この結果より、ルチル型酸化チタンを用いることが輝度向上の点から好ましいことがわかる。
図19は、ルチル型とアナターゼ型との比較試験の結果を示すグラフである。この試験では、ルチル型またはアナターゼ型の酸化チタン(20質量%)を含むインクを用いて、導光体3に微小ドット4a(面積比率0.5)を形成し、微小ドット4aからの出射光の輝度を測定した。
この図より、ルチル型酸化チタンを用いた場合は、アナターゼ型酸化チタンを用いた場合に比べて20Cd/m2程度高い輝度が得られたことがわかる。この結果より、ルチル型酸化チタンを用いることが輝度向上の点から好ましいことがわかる。
白色光を発光させるためには可視光全域を満遍なく散乱させる必要がある。ここで、散乱させる波長と、酸化チタンの粒径の関係を考慮すると、酸化チタンの粒径は10nm~0.5μmであることが望ましい。
反射シート30は、導光体3から下方に漏れた光を上面30bで反射させ、導光体3に戻すためのものであって、例えばPET(ポリエチレンテレフタレート)などの樹脂からなるシート材である。反射シート30は反射性の点から白色であることが望ましい。反射シート30は導光体3の下面3a側に設けられている。
タッチパッド20は、入力センサ21と、その上に形成されたレジスト層22(被覆樹脂層)とを備えている。
入力センサ21は、人間の手指等の被検出体25の近接または接触を検出するセンサである。ここでは、入力センサ21は静電容量式の入力センサであって、基板23の上面23bに配線層24が設けられた構成である。
基板23は、例えばPETなどの樹脂で形成された板材である。基板23は、PEN(ポリエチレンナフタレート)、ポリイミド等からなるフレキシブル基板や、ガラスエポキシ樹脂等からなるリジッド基板であってもよい。
入力センサ21は、人間の手指等の被検出体25の近接または接触を検出するセンサである。ここでは、入力センサ21は静電容量式の入力センサであって、基板23の上面23bに配線層24が設けられた構成である。
基板23は、例えばPETなどの樹脂で形成された板材である。基板23は、PEN(ポリエチレンナフタレート)、ポリイミド等からなるフレキシブル基板や、ガラスエポキシ樹脂等からなるリジッド基板であってもよい。
配線層24は、例えば複数の電極24aを有する。人間の手指等の被検出体25が近づくと、被検出体25と電極24aとの間には静電容量が形成され、この静電容量は被検出体25と電極24aとの間の対向面積や離間距離によって変化する。このため、被検出体25と電極24aは可変容量部を形成する。
可変容量部の静電容量の変化は検出手段(図示略)で検出され、その検出値に基づいて制御部(図示略)で被検出体25による入力操作、その位置等が把握される。
可変容量部の静電容量の変化は検出手段(図示略)で検出され、その検出値に基づいて制御部(図示略)で被検出体25による入力操作、その位置等が把握される。
配線層24は、例えば、銀粒子を含む銀ペーストを基板23上にスクリーン印刷した後に加熱することで形成することができる。配線層24は、基板23に積層した銅箔をエッチングすることにより形成してもよい。
レジスト層22は、配線層24間の電気絶縁性を確保するとともに酸化を防止するもので、入力センサ21の上面(導光体3側の表面)側に、基板23の上面23bおよび配線層24を覆って形成される。レジスト層22としては、例えば汎用のソルダレジストを使用できる。
レジスト層22は、配線層24間の電気絶縁性を確保するとともに酸化を防止するもので、入力センサ21の上面(導光体3側の表面)側に、基板23の上面23bおよび配線層24を覆って形成される。レジスト層22としては、例えば汎用のソルダレジストを使用できる。
タッチパッド20に採用されている静電容量式の入力センサ21は、1枚の基板23と配線層24からなる単純な構造であるため、複数枚の基板を使用する方式のセンサに比べて薄型化が可能である。薄型化によりタッチパッド20に可撓性を与えることもできる。
また、入力センサ21の構造が単純であるためコスト低減が可能であり、組み立て作業も容易となる。
また、入力センサ21の構造が単純であるためコスト低減が可能であり、組み立て作業も容易となる。
図示例のタッチパッド20は静電容量式入力センサを採用しているが、他の方式、例えば抵抗膜式の入力センサを採用してもよい。また、感圧式のメンブレンスイッチを使用することもできる。抵抗膜式センサおよびメンブレンスイッチについては後述する。
導光体3と反射シート30とは、導光体3の下面3aの周縁部に形成された粘着層5によって互いに接着されている。
反射シート30とタッチパッド20とは、反射シート30の下面30aの周縁部に形成された粘着層6によって互いに接着されている。
粘着層5、6は、例えば、アクリル樹脂、ポリウレタン樹脂、エポキシ樹脂、ウレタン樹脂、天然ゴム系粘着材、合成ゴム系粘着材などの粘着材を用いることができる。粘着層5、6としては、シート状基材の両面に、粘着材料を塗布した粘着材層が形成された、いわゆる両面テープ状とされたものも使用可能である。
反射シート30とタッチパッド20とは、反射シート30の下面30aの周縁部に形成された粘着層6によって互いに接着されている。
粘着層5、6は、例えば、アクリル樹脂、ポリウレタン樹脂、エポキシ樹脂、ウレタン樹脂、天然ゴム系粘着材、合成ゴム系粘着材などの粘着材を用いることができる。粘着層5、6としては、シート状基材の両面に、粘着材料を塗布した粘着材層が形成された、いわゆる両面テープ状とされたものも使用可能である。
図2および図11に示すように、光源2からの光Lは、一端部3cの端面3eから導光体3に入射し、上面3b、下面3a等に反射しつつ他端部3dに向かって伝搬する。入射光の一部は、光取出部4で散乱して上面3b側に取り出される。
この照明モジュール10は、導光体3の厚さが0.5mm以上、2mm以下とされているので、高輝度タイプの大型の光源2を使用する場合でも、導光体3の厚さを光源2の厚さに合わせて適切な値にすることができるので、端面3eを通して導光体3内に導入される光の入射率を高め、光の利用効率を高めることができる。
また、面状発光装置1がタッチパッド20の上面側(外面側)に設けられるため、面状発光装置1からの光がタッチパッドによって遮られることがない。
従って、導光体3を大面積化した場合でも十分な輝度、照度を確保できる。
照明モジュール10では、さらに、導光体3の厚さを上記範囲とすることによって、タッチパッド20の入力センサ21の検出感度を高めることができる。
また、タッチパッド20が面状発光装置1の下面側(裏面側)に設置されるため、高価な透明タイプのタッチパッド20を使用する必要がない。このため、低コスト化を図ることができる。
また、照明モジュール10の製造にあたり導光体3の外形加工、設置などの作業が容易になるため、製造作業性も良好になる。
また、面状発光装置1がタッチパッド20の上面側(外面側)に設けられるため、面状発光装置1からの光がタッチパッドによって遮られることがない。
従って、導光体3を大面積化した場合でも十分な輝度、照度を確保できる。
照明モジュール10では、さらに、導光体3の厚さを上記範囲とすることによって、タッチパッド20の入力センサ21の検出感度を高めることができる。
また、タッチパッド20が面状発光装置1の下面側(裏面側)に設置されるため、高価な透明タイプのタッチパッド20を使用する必要がない。このため、低コスト化を図ることができる。
また、照明モジュール10の製造にあたり導光体3の外形加工、設置などの作業が容易になるため、製造作業性も良好になる。
(第2実施形態)
図3は、本発明の第2実施形態である照明モジュール40の概略構成を示す図である。
以下の説明において、第1実施形態との共通部分については同一符号を付してその説明を省略する場合がある。
照明モジュール40は、面状発光装置1と、面状発光装置1の下面側に設けられたタッチパッド20とを備えている。
タッチパッド20の入力センサ21の上面(導光体3側の表面)側に形成されたレジスト層22(被覆樹脂層)は、導光体3から下方に漏れた光を上面22aで反射させる反射体として機能する。レジスト層22は白色材料で構成することが好ましい。この白色材料としては、例えば顔料として酸化チタンを含むものが使用できる。レジスト層22に白色材料を使用すると、導光体3から漏れた光を反射させる効果を高めることができる。
レジスト層22を構成する白色材料としては、例えばアクリレート系樹脂20~30質量%、ジエチレングリコールモノエチルエーテルアセテート20~30質量%、および酸化チタン10~20質量%を含むものを使用できる。
図3は、本発明の第2実施形態である照明モジュール40の概略構成を示す図である。
以下の説明において、第1実施形態との共通部分については同一符号を付してその説明を省略する場合がある。
照明モジュール40は、面状発光装置1と、面状発光装置1の下面側に設けられたタッチパッド20とを備えている。
タッチパッド20の入力センサ21の上面(導光体3側の表面)側に形成されたレジスト層22(被覆樹脂層)は、導光体3から下方に漏れた光を上面22aで反射させる反射体として機能する。レジスト層22は白色材料で構成することが好ましい。この白色材料としては、例えば顔料として酸化チタンを含むものが使用できる。レジスト層22に白色材料を使用すると、導光体3から漏れた光を反射させる効果を高めることができる。
レジスト層22を構成する白色材料としては、例えばアクリレート系樹脂20~30質量%、ジエチレングリコールモノエチルエーテルアセテート20~30質量%、および酸化チタン10~20質量%を含むものを使用できる。
照明モジュール40では、第1実施形態の照明モジュール10に比べ、面状発光装置1とタッチパッド20との間に反射シート30がないため、薄型化を図ることができる。また、反射シート30をタッチパッド20に接着するための粘着層が不要となるため、いっそうの薄型化が可能である。
反射シート30がないため、入力センサ21に近接した位置での入力が可能となることから、タッチパッド20の入力センサ21の検出感度をさらに高めることができる。また、薄型化により照明モジュール40の可撓性を高めることができる。
さらに、レジスト層22を反射体として機能させることにより、反射性能を低下させずに薄型化を図ることができる。
また、第1実施形態の照明モジュール10に比べて構造が簡略であるため、部品点数が少なく、コストおよび製造作業性の点で有利である。
反射シート30がないため、入力センサ21に近接した位置での入力が可能となることから、タッチパッド20の入力センサ21の検出感度をさらに高めることができる。また、薄型化により照明モジュール40の可撓性を高めることができる。
さらに、レジスト層22を反射体として機能させることにより、反射性能を低下させずに薄型化を図ることができる。
また、第1実施形態の照明モジュール10に比べて構造が簡略であるため、部品点数が少なく、コストおよび製造作業性の点で有利である。
タッチパッド20に採用されている静電容量式の入力センサ21は、1枚の基板23と配線層24からなる単純な構造であるため、複数枚の基板を使用する方式のセンサに比べて薄型化が可能である。従って、照明モジュール40をさらに薄型化することができる。
図3では、静電容量式の入力センサ21が採用されているが、他の方式、例えば抵抗膜式の入力センサを採用してもよい。
図4は、抵抗膜式入力センサを用いたタッチパッドの一例を示すもので、このタッチパッド60(検知センサ)は、対向面61aに透明導電膜63が形成された上部基板61と、対向面62aに透明導電膜64が形成された下部基板62とを備えている。
下部基板62の透明導電膜64上には複数のドットスペーサ66が形成されている。上部基板61と下部基板62は、透明導電膜63、64が間隔をおいて向かい合うように配置される。
上部基板61の上面61bには、反射層65(反射体)が形成されている。反射層65は、導光体3から下方に漏れた光を反射させる反射体として機能する。反射層65には前記白色材料を使用すると、導光体3から漏れた光を反射させる効果を高めることができる。符号67は粘着層である。
タッチパッド60では、例えば被検出体25(図1参照)によってタッチパッド60が下方に押圧されることにより、上部基板61が下方に撓み、透明導電膜63、64同士が接触して導通がなされ、入力操作等が検出される。
図4は、抵抗膜式入力センサを用いたタッチパッドの一例を示すもので、このタッチパッド60(検知センサ)は、対向面61aに透明導電膜63が形成された上部基板61と、対向面62aに透明導電膜64が形成された下部基板62とを備えている。
下部基板62の透明導電膜64上には複数のドットスペーサ66が形成されている。上部基板61と下部基板62は、透明導電膜63、64が間隔をおいて向かい合うように配置される。
上部基板61の上面61bには、反射層65(反射体)が形成されている。反射層65は、導光体3から下方に漏れた光を反射させる反射体として機能する。反射層65には前記白色材料を使用すると、導光体3から漏れた光を反射させる効果を高めることができる。符号67は粘着層である。
タッチパッド60では、例えば被検出体25(図1参照)によってタッチパッド60が下方に押圧されることにより、上部基板61が下方に撓み、透明導電膜63、64同士が接触して導通がなされ、入力操作等が検出される。
本発明では、タッチパッド20に代えて、感圧式のメンブレンスイッチ(検知センサ)を使用することもできる。
図5は、感圧式のメンブレンスイッチ70を示すもので、このメンブレンスイッチ70は、対向面71aに配線層73および上部電極76が形成された上部基板71と、対向面72aに配線層74および下部電極77が形成された下部基板72とを備えている。
上部基板71と下部基板72は、電極76、77が間隔をおいて向かい合うように配置される。
上部基板71の上面71bにはレジスト層75(被覆樹脂層)が形成されている。レジスト層75は、導光体3から下方に漏れた光を反射させる反射体として機能する。レジスト層75に前記白色材料を使用すると、導光体3から漏れた光を反射させる効果を高めることができる。符号78は粘着層である。
このメンブレンスイッチ70では、被検出体25(図1参照)による押圧によって上部基板71が下方に撓むと、上部電極76が下部電極77に当接し、これらが導通して入力操作等が検出される。
図5は、感圧式のメンブレンスイッチ70を示すもので、このメンブレンスイッチ70は、対向面71aに配線層73および上部電極76が形成された上部基板71と、対向面72aに配線層74および下部電極77が形成された下部基板72とを備えている。
上部基板71と下部基板72は、電極76、77が間隔をおいて向かい合うように配置される。
上部基板71の上面71bにはレジスト層75(被覆樹脂層)が形成されている。レジスト層75は、導光体3から下方に漏れた光を反射させる反射体として機能する。レジスト層75に前記白色材料を使用すると、導光体3から漏れた光を反射させる効果を高めることができる。符号78は粘着層である。
このメンブレンスイッチ70では、被検出体25(図1参照)による押圧によって上部基板71が下方に撓むと、上部電極76が下部電極77に当接し、これらが導通して入力操作等が検出される。
第1および第2実施形態の照明モジュール10、40は、面状発光装置1が最も外面側(上面側)に位置するため、導光体3には外力が加えられやすい構造である。
図6は、導光体3を保護する構造を設けた例を示すもので、この例では、導光体3の上面3bに保護層50が設けられている。保護層50は、例えばフッ素樹脂からなる。
保護層50によって、導光体3の上面3bが傷ついたり汚れが付着するのを防止できる。
図6は、導光体3を保護する構造を設けた例を示すもので、この例では、導光体3の上面3bに保護層50が設けられている。保護層50は、例えばフッ素樹脂からなる。
保護層50によって、導光体3の上面3bが傷ついたり汚れが付着するのを防止できる。
次に、照明モジュール10における導光体3の厚さの影響についての試験結果を説明する。
(試験例1)
図1に示すように、平面視矩形のウレタン系樹脂製の導光体3(長さ100mm、幅50mm)と、光源2(LED、高さ0.6mm、光度2400mcd)とを備えた面状発光装置1を作製した。
光源2は、導光体3の一方の長辺をなす縁部に、この縁部に沿って21個の前記LEDを等間隔に配置した構成とした。
面状発光装置1の下面側にはPETからなる反射シート30を設置した。
(試験例1)
図1に示すように、平面視矩形のウレタン系樹脂製の導光体3(長さ100mm、幅50mm)と、光源2(LED、高さ0.6mm、光度2400mcd)とを備えた面状発光装置1を作製した。
光源2は、導光体3の一方の長辺をなす縁部に、この縁部に沿って21個の前記LEDを等間隔に配置した構成とした。
面状発光装置1の下面側にはPETからなる反射シート30を設置した。
(試験例2)
光源2として、高さ0.8mm、光度2500mcdのLEDを用いたこと以外は試験例1と同様の面状発光装置1を作製した。
光源2として、高さ0.8mm、光度2500mcdのLEDを用いたこと以外は試験例1と同様の面状発光装置1を作製した。
(試験例3)
光源2として、高さ1.2mm、光度1500mcdのLEDを用いたこと以外は試験例1と同様の面状発光装置1を作製した。
光源2として、高さ1.2mm、光度1500mcdのLEDを用いたこと以外は試験例1と同様の面状発光装置1を作製した。
各試験例について、導光体3の上面3b中央部の輝度と、上面3bから上方に60cmの位置での照度を測定した。輝度、照度の測定結果、および光度寄与効率(光源2の単位光度(1cd)が照度(50cm)に寄与する効率)を表1に示す。光度寄与効率は図7にも示す。
表1および図7より、導光体3の厚さを0.5mm以上とすることで輝度、照度、光度寄与効率とも優れた結果が得られたことがわかる。
(試験例4)
図1に示すように、静電容量式センサを採用したタッチパッド20を用いた照明モジュール10を作製した。導光体3の比誘電率は7、レジスト層22の比誘電率は27とした。導光体3面積は0.0001m2、レジスト層22の厚さは0.01mmとした。
タッチパッド20は、PETからなる基板23(厚さ75μm)の上面23bに、銀ペーストを用いて配線層24(厚さ10μm)を形成し、その上にレジスト層22(厚さ30μm)を形成した構成(全体厚さ105μm)とした。
導光体3の厚さが静電容量に及ぼす影響を調べた結果を図8に示す。
この図に示すように、導光体3の厚さを2mm以下としたときに、好ましい静電容量(10pF以上)が得られた。
図1に示すように、静電容量式センサを採用したタッチパッド20を用いた照明モジュール10を作製した。導光体3の比誘電率は7、レジスト層22の比誘電率は27とした。導光体3面積は0.0001m2、レジスト層22の厚さは0.01mmとした。
タッチパッド20は、PETからなる基板23(厚さ75μm)の上面23bに、銀ペーストを用いて配線層24(厚さ10μm)を形成し、その上にレジスト層22(厚さ30μm)を形成した構成(全体厚さ105μm)とした。
導光体3の厚さが静電容量に及ぼす影響を調べた結果を図8に示す。
この図に示すように、導光体3の厚さを2mm以下としたときに、好ましい静電容量(10pF以上)が得られた。
(試験例5)
図4に示すように、抵抗膜式センサを採用したタッチパッド60を使用すること以外は試験例4と同様にして照明モジュール10を作製した。
タッチパッド60は、ITOからなる透明導電膜63が形成された上部基板61(合計厚さ180μm)と、ITOからなる透明導電膜64が形成された下部基板62(合計厚さ180μm)とを備え、上部基板61の上面61bに反射層65(厚さ30μm)を形成した構成(全体厚さ520μm)とした。向かい合う透明導電膜63、64の間隔は130μmとした。
導光体3に下方への荷重を加え、透明導電膜63、64の導通が得られたときの荷重をON荷重として記録した。導光体3の厚さがON荷重に及ぼす影響を調べた結果を図9に示す。
この図に示すように、導光体3の厚さを2mm以下としたときに、好ましいON荷重(2N以下)が得られた。
図4に示すように、抵抗膜式センサを採用したタッチパッド60を使用すること以外は試験例4と同様にして照明モジュール10を作製した。
タッチパッド60は、ITOからなる透明導電膜63が形成された上部基板61(合計厚さ180μm)と、ITOからなる透明導電膜64が形成された下部基板62(合計厚さ180μm)とを備え、上部基板61の上面61bに反射層65(厚さ30μm)を形成した構成(全体厚さ520μm)とした。向かい合う透明導電膜63、64の間隔は130μmとした。
導光体3に下方への荷重を加え、透明導電膜63、64の導通が得られたときの荷重をON荷重として記録した。導光体3の厚さがON荷重に及ぼす影響を調べた結果を図9に示す。
この図に示すように、導光体3の厚さを2mm以下としたときに、好ましいON荷重(2N以下)が得られた。
(試験例6)
図5に示すように、メンブレンスイッチを採用すること以外は試験例4と同様にして照明モジュール10を作製した。
メンブレンスイッチ70は、配線層73(厚さ10μm)および上部電極76が形成された上部基板71(厚さ75μm)と、配線層74(厚さ10μm)および下部電極77が形成された下部基板72(厚さ75μm)とを備え、上部基板71の上面71bに反射層75(厚さ30μm)を形成した構成(全体厚さ250μm)とした。向かい合う基板71、72の間隔は70μmとした。
導光体3の厚さがON荷重に及ぼす影響を調べた。結果を図10に示す。
この図に示すように、導光体3の厚さを2mm以下としたときに、好ましいON荷重(7N以下)が得られた。
図5に示すように、メンブレンスイッチを採用すること以外は試験例4と同様にして照明モジュール10を作製した。
メンブレンスイッチ70は、配線層73(厚さ10μm)および上部電極76が形成された上部基板71(厚さ75μm)と、配線層74(厚さ10μm)および下部電極77が形成された下部基板72(厚さ75μm)とを備え、上部基板71の上面71bに反射層75(厚さ30μm)を形成した構成(全体厚さ250μm)とした。向かい合う基板71、72の間隔は70μmとした。
導光体3の厚さがON荷重に及ぼす影響を調べた。結果を図10に示す。
この図に示すように、導光体3の厚さを2mm以下としたときに、好ましいON荷重(7N以下)が得られた。
試験例1~6の結果より、導光体の厚さを0.5~2mmとすることによって、十分な輝度、照度を確保でき、かつ検知センサの検出感度を高めることができることがわかった。
(第3実施形態)
次に、本発明の第3実施形態について説明する。第1実施形態または第2実施形態との共通部分については同一符号を付してその説明を省略する場合がある。
図20は、本発明の第3実施形態の照明モジュール110の概略構成を示す図である。図21は、面状発光装置101の要部を示す断面図である。図22は、タッチパッド20を示す断面図である。
面状発光装置101は、光源2と、シート状(または板状)の導光体3と、導光体3の下面3a(一方の面)に形成された低屈折率層104とを備えている。
図21に示すように、光源2は、発光面2aを導光体3の一端部3cの端面3eに対面させて設置され、光をこの端面3eから導光体3に入射させることができる。光源2からの光は、導光体3の一端部3cから他端部3d(図20参照)に向けて、導光体3の上面3b、下面3a等に反射しつつ伝搬する。
以下、一端部3cから他端部3dに向かう方向(図20においては右方)を、導光方向Xということがある。
次に、本発明の第3実施形態について説明する。第1実施形態または第2実施形態との共通部分については同一符号を付してその説明を省略する場合がある。
図20は、本発明の第3実施形態の照明モジュール110の概略構成を示す図である。図21は、面状発光装置101の要部を示す断面図である。図22は、タッチパッド20を示す断面図である。
面状発光装置101は、光源2と、シート状(または板状)の導光体3と、導光体3の下面3a(一方の面)に形成された低屈折率層104とを備えている。
図21に示すように、光源2は、発光面2aを導光体3の一端部3cの端面3eに対面させて設置され、光をこの端面3eから導光体3に入射させることができる。光源2からの光は、導光体3の一端部3cから他端部3d(図20参照)に向けて、導光体3の上面3b、下面3a等に反射しつつ伝搬する。
以下、一端部3cから他端部3dに向かう方向(図20においては右方)を、導光方向Xということがある。
図21に示すように、低屈折率層104は、導光体3より屈折率が低い材料からなる層であり、例えばフッ素樹脂が使用できる。
低屈折率層104の屈折率は、導光体3の屈折率に応じて設定することができる。この屈折率は低いほど好ましく、例えば1.4以下(例えば1~1.4)とすることができる。
低屈折率層104の厚さは、例えば0.01~0.03mmとすることができる。
低屈折率層104の屈折率は、導光体3の屈折率に応じて設定することができる。この屈折率は低いほど好ましく、例えば1.4以下(例えば1~1.4)とすることができる。
低屈折率層104の厚さは、例えば0.01~0.03mmとすることができる。
低屈折率層104は、導光体3の下面3aの一部領域(以下、形成領域A1)にのみ形成されている。低屈折率層104が形成されていない領域を非形成領域A2という。
形成領域A1と非形成領域A2は導光方向Xの位置が異なり、非形成領域A2は、形成領域A1に比べて光源2から離れた位置にある。
図示例では、非形成領域A2は、形成領域A1に対し導光方向Xに隣接している。具体的には、形成領域A1は、導光体3の下面3aのうち一端部3cから導光方向Xに所定距離の範囲の領域であり、非形成領域A2はそれ以外の領域、すなわち低屈折率層104の導光方向Xの先端部104dから他端部3dに至る領域である。
形成領域A1と非形成領域A2は導光方向Xの位置が異なり、非形成領域A2は、形成領域A1に比べて光源2から離れた位置にある。
図示例では、非形成領域A2は、形成領域A1に対し導光方向Xに隣接している。具体的には、形成領域A1は、導光体3の下面3aのうち一端部3cから導光方向Xに所定距離の範囲の領域であり、非形成領域A2はそれ以外の領域、すなわち低屈折率層104の導光方向Xの先端部104dから他端部3dに至る領域である。
なお、図示例では、非形成領域A2の全域が形成領域A1に比べて光源2から遠い位置にあるが、非形成領域A2は、少なくとも一部が形成領域A1に比べ光源2から遠い位置にあればよい。
形成領域A1の低屈折率層104の下面104a(導光体3側とは反対の面)および非形成領域A2の導光体3の下面3aには、入射光を散乱させて導光体3の上面3b(他方の面)側(図20の矢印参照)に取り出す(出射させる)光取出部105を形成することができる。
図20および図21では、光取出部105は形成領域A1の下面104aおよび非形成領域A2の下面3aの全領域に形成されているが、光取出部105は下面3a、104aの一部領域に形成してもよい。光取出部105は、例えば印刷により下面3a、104aの一部領域に形成された複数の微小ドット状のインク層とすることができる。各微小ドット状のインク層の平面視形状は円形、楕円形、多角形(矩形等)など任意としてよい。
光取出部105は第1および第2実施形態の光取出部4と同様の構成としてもよい。
図20および図21では、光取出部105は形成領域A1の下面104aおよび非形成領域A2の下面3aの全領域に形成されているが、光取出部105は下面3a、104aの一部領域に形成してもよい。光取出部105は、例えば印刷により下面3a、104aの一部領域に形成された複数の微小ドット状のインク層とすることができる。各微小ドット状のインク層の平面視形状は円形、楕円形、多角形(矩形等)など任意としてよい。
光取出部105は第1および第2実施形態の光取出部4と同様の構成としてもよい。
図22に示すように、タッチパッド20は、入力センサ21と、その上に形成されたレジスト層22(被覆樹脂層)とを備えている。図示例では、入力センサ21は静電容量式の入力センサであって、基板23の上面23bに配線層24が設けられた構成である。
導光体3の上面3bには、例えばフッ素樹脂からなる保護層50を設けることができる。保護層50によって、導光体3の上面3bが傷ついたり汚れが付着するのを防止できる。
導光体3の上面3bには、例えばフッ素樹脂からなる保護層50を設けることができる。保護層50によって、導光体3の上面3bが傷ついたり汚れが付着するのを防止できる。
面状発光装置101と反射シート30とは、面状発光装置101の周縁部(低屈折率層104の下面104aおよび導光体3の下面3aの周縁部)に形成された粘着層106によって互いに接着されている。
反射シート30とタッチパッド20とは、反射シート30の下面30aに形成された粘着層107によって互いに接着されている。
粘着層106、107は、例えば、アクリル樹脂、ポリウレタン樹脂、エポキシ樹脂、ウレタン樹脂、天然ゴム系粘着材、合成ゴム系粘着材などの粘着材を用いることができる。粘着層106、107としては、シート状基材の両面に、粘着材料を塗布した粘着材層が形成された、いわゆる両面テープ状とされたものも使用可能である。
反射シート30とタッチパッド20とは、反射シート30の下面30aに形成された粘着層107によって互いに接着されている。
粘着層106、107は、例えば、アクリル樹脂、ポリウレタン樹脂、エポキシ樹脂、ウレタン樹脂、天然ゴム系粘着材、合成ゴム系粘着材などの粘着材を用いることができる。粘着層106、107としては、シート状基材の両面に、粘着材料を塗布した粘着材層が形成された、いわゆる両面テープ状とされたものも使用可能である。
図21に示すように、光源2からの光は、一端部3cの端面3eから導光体3に入射する。
形成領域A1では、導光体3に入射された光のうち高次モード光L1(伝搬角が大きい光)は、低屈折率層104に入射する際に低次モード光L2(伝搬角が小さい光)に変換される。
低屈折層104を伝搬する低次モード光L2は散乱しても外部に出射しにくいことから、光取出部105における外部への出射量(光取出量)は低く抑えられる。また外部へ出射せずに低屈折層104を伝搬する光は、導光体3に再入射することにより高次モード光L1に再変換される。このため、形成領域A1では、導光体3内で高次モードとなる光の損失が抑えられる。低屈折率層104内の光L2は下面104aで反射する。
光L2は、導光体3に入射する際に再び高次モード光L1となって導光体3の上面3bで反射し、低屈折率層104に入射する際に低次モード光L2となって低屈折率層104の下面104aで反射する過程を繰り返しつつ、図21の右方向に向けて伝搬する。
形成領域A1では、導光体3に入射された光のうち高次モード光L1(伝搬角が大きい光)は、低屈折率層104に入射する際に低次モード光L2(伝搬角が小さい光)に変換される。
低屈折層104を伝搬する低次モード光L2は散乱しても外部に出射しにくいことから、光取出部105における外部への出射量(光取出量)は低く抑えられる。また外部へ出射せずに低屈折層104を伝搬する光は、導光体3に再入射することにより高次モード光L1に再変換される。このため、形成領域A1では、導光体3内で高次モードとなる光の損失が抑えられる。低屈折率層104内の光L2は下面104aで反射する。
光L2は、導光体3に入射する際に再び高次モード光L1となって導光体3の上面3bで反射し、低屈折率層104に入射する際に低次モード光L2となって低屈折率層104の下面104aで反射する過程を繰り返しつつ、図21の右方向に向けて伝搬する。
非形成領域A2では、光L1は高次モードのまま導光体3内で上面3b、下面3a等に反射しつつ他端部3dに向けて伝搬する。高次モード光は散乱すると外部に出射しやすいことから、光取出部105における外部への出射量(光取出量)は多くなる。
上述のように、低次モードに変換された光は、散乱されても低次モードを維持したまま、導光体に再度入射して高次モードに再変換される。つまり、形成領域A1で高次モード光が失われないため、非形成領域A2に導入される光には高次モード光が多く含まれることから、光取出部105における光取出量を高くできる。
上述のように、低次モードに変換された光は、散乱されても低次モードを維持したまま、導光体に再度入射して高次モードに再変換される。つまり、形成領域A1で高次モード光が失われないため、非形成領域A2に導入される光には高次モード光が多く含まれることから、光取出部105における光取出量を高くできる。
面状発光装置101は、低屈折率層104が導光体3の下面3aの一部領域にのみ形成され、非形成領域A2は形成領域A1に比べて光源2から離れた位置にあるので、光源2に近い領域で光取出量を低く抑えるとともに、光源2から遠い領域で光取出量を高くできる。このため、輝度の均一化を図る上で有効である。
以下、面状発光装置101の作用効果について、図23~図30を参照して詳しく説明する。
(試験例7)
図23に示すように、導光体3(屈折率1.49)の上面3bに光取出部105が形成された面状発光装置101Aを想定した。導光体3は長さ50mm、幅10mm、厚さ0.5mmとした。
図24に示す符号Lは、導光体3に入射された光のうち高次モード光(伝搬角が大きい光)を示すものである。光Lは導光体3内で上面3b、下面3a等に反射しつつ他端部3dに向けて伝搬する。高次モード光は伝搬角が大きいため、光取出部105における散乱によって導光体3の外部に出射しやすい。このため、面状発光装置101Aでは、一端部3cに近い位置で光取出部105から外部への出射量(光取出量)が多くなる。
(試験例7)
図23に示すように、導光体3(屈折率1.49)の上面3bに光取出部105が形成された面状発光装置101Aを想定した。導光体3は長さ50mm、幅10mm、厚さ0.5mmとした。
図24に示す符号Lは、導光体3に入射された光のうち高次モード光(伝搬角が大きい光)を示すものである。光Lは導光体3内で上面3b、下面3a等に反射しつつ他端部3dに向けて伝搬する。高次モード光は伝搬角が大きいため、光取出部105における散乱によって導光体3の外部に出射しやすい。このため、面状発光装置101Aでは、一端部3cに近い位置で光取出部105から外部への出射量(光取出量)が多くなる。
図25(a)は、シミュレーションによって得られた輝度分布を示す平面図である。本シミュレーションでは、光源2からの光(投入光量0.55(lm))を、一端部3cの端面から導光体3に入射させることを想定した。この図より、面状発光装置101Aでは、一端部3cに近い位置で、光取出量が非常に多くなる部位、いわゆるホットスポットS1が生じることがわかる。
図25(b)に示すように、一端部3cからの距離3mmの位置(第1位置P1)での輝度は730cd/m2であった。一端部3cからの距離28mmの位置(第2位置P2)での輝度は64cd/m2であった。
図25(b)に示すように、一端部3cからの距離3mmの位置(第1位置P1)での輝度は730cd/m2であった。一端部3cからの距離28mmの位置(第2位置P2)での輝度は64cd/m2であった。
(試験例8)
図26に示すように、導光体3の上面3bに、全域にわたり低屈折率層104(屈折率1.4)が形成され、低屈折率層104の上面104bに光取出部105が形成された面状発光装置101Bを想定した。
図27に示す符号L1は導光体3に入射された光のうち高次モード光(伝搬角が大きい光)を示すものである。光L1は低屈折率層104に入射する際に低次モード光L2(伝搬角が小さい光)に変換される。
低次モード光L2は散乱しても外部に出射しにくいことから、光取出部105における外部への出射量(光取出量)は低く抑えられる。このため、面状発光装置101Bでは、導光体3内で高次モードとなる光の損失が抑えられる。低屈折率層104内の光L2は上面104bで反射する。
光L2は、導光体3に入射する際に再び高次モード光L1となって導光体3の下面3aで反射し、低屈折率層104に入射する際に低次モード光L2となって低屈折率層104の上面104bで反射する過程を繰り返しつつ、図27の右方向に向けて伝搬する。
図26に示すように、導光体3の上面3bに、全域にわたり低屈折率層104(屈折率1.4)が形成され、低屈折率層104の上面104bに光取出部105が形成された面状発光装置101Bを想定した。
図27に示す符号L1は導光体3に入射された光のうち高次モード光(伝搬角が大きい光)を示すものである。光L1は低屈折率層104に入射する際に低次モード光L2(伝搬角が小さい光)に変換される。
低次モード光L2は散乱しても外部に出射しにくいことから、光取出部105における外部への出射量(光取出量)は低く抑えられる。このため、面状発光装置101Bでは、導光体3内で高次モードとなる光の損失が抑えられる。低屈折率層104内の光L2は上面104bで反射する。
光L2は、導光体3に入射する際に再び高次モード光L1となって導光体3の下面3aで反射し、低屈折率層104に入射する際に低次モード光L2となって低屈折率層104の上面104bで反射する過程を繰り返しつつ、図27の右方向に向けて伝搬する。
図28は、試験例7と同様のシミュレーションによって得られた輝度分布を示す平面図である。この図より、面状発光装置101Bでは、一端部3cに近い位置でのホットスポットS1は、試験例7に比べて小さいことがわかる。
第1位置P1(図25(b)参照)での輝度は407cd/m2であった。第2位置P2での輝度は18cd/m2であった。
第1位置P1(図25(b)参照)での輝度は407cd/m2であった。第2位置P2での輝度は18cd/m2であった。
(試験例9)
図29に示すように、導光体3の上面3bの一部領域(形成領域A1)のみに低屈折率層104(屈折率1.4)が形成され、形成領域A1の低屈折率層104の上面104bと非形成領域A2の導光体3の上面3bに光取出部105が形成された面状発光装置101Cを想定した。形成領域A1は一端部3cから所定距離の範囲の領域である。
形成領域A1では、高次モード光L1は、低屈折率層104に入射する際に低次モード光L2に変換される。低次モード光L2は散乱しても外部に出射しにくいことから、光取出部105における外部への出射量(光取出量)は低く抑えられる。このため、形成領域A1では、導光体3内で高次モードとなる光の損失が抑えられる。低屈折率層104内の光L2は上面104bで反射する。
光L2は、導光体3に入射する際に再び高次モード光L1となって導光体3の下面3aで反射し、低屈折率層104に入射する際に低次モード光L2となって低屈折率層104の上面104bで反射する過程を繰り返しつつ、図29の右方向に向けて伝搬する。
図29に示すように、導光体3の上面3bの一部領域(形成領域A1)のみに低屈折率層104(屈折率1.4)が形成され、形成領域A1の低屈折率層104の上面104bと非形成領域A2の導光体3の上面3bに光取出部105が形成された面状発光装置101Cを想定した。形成領域A1は一端部3cから所定距離の範囲の領域である。
形成領域A1では、高次モード光L1は、低屈折率層104に入射する際に低次モード光L2に変換される。低次モード光L2は散乱しても外部に出射しにくいことから、光取出部105における外部への出射量(光取出量)は低く抑えられる。このため、形成領域A1では、導光体3内で高次モードとなる光の損失が抑えられる。低屈折率層104内の光L2は上面104bで反射する。
光L2は、導光体3に入射する際に再び高次モード光L1となって導光体3の下面3aで反射し、低屈折率層104に入射する際に低次モード光L2となって低屈折率層104の上面104bで反射する過程を繰り返しつつ、図29の右方向に向けて伝搬する。
非形成領域A2では、光L1は高次モードのまま導光体3内で上面3b、下面3a等に反射しつつ他端部3dに向けて伝搬する。高次モード光は散乱すると外部に出射しやすいことから、光取出部105における外部への出射量(光取出量)は多くなる。
図30は、試験例7と同様のシミュレーションによって得られた輝度分布を示す平面図である。
第1位置P1(形成領域A1内)(図25(b)参照)での輝度は407cd/m2であった。第2位置P2(非形成領域A2内)での輝度は129cd/m2であった。
試験例7~9で得られた輝度を表2に示す。
第1位置P1(形成領域A1内)(図25(b)参照)での輝度は407cd/m2であった。第2位置P2(非形成領域A2内)での輝度は129cd/m2であった。
試験例7~9で得られた輝度を表2に示す。
表2に示すように、低屈折率層104を設けた試験例8、9では、第1位置P1における輝度が試験例7に比べて低いことから、低屈折率層104を用いることによって光源2に近い位置での光取出量を抑えることができることがわかる。
また、いずれの試験例でも、第2位置P2における輝度は第1位置P1における輝度より低いことから、光源2から離れるに従って光は減衰することが示された。
導光体3の全域に低屈折率層104を形成した試験例8では、第2位置P2における輝度が試験例7に比べて低くなったことから、低屈折率層104を挟むことで効率的に光を閉じ込めていることがわかる。
試験例9における第2位置P2での輝度は試験例8に比べて高いことから、第2位置P2(非形成領域A2)での光取出量を高めることができることがわかる。
また、いずれの試験例でも、第2位置P2における輝度は第1位置P1における輝度より低いことから、光源2から離れるに従って光は減衰することが示された。
導光体3の全域に低屈折率層104を形成した試験例8では、第2位置P2における輝度が試験例7に比べて低くなったことから、低屈折率層104を挟むことで効率的に光を閉じ込めていることがわかる。
試験例9における第2位置P2での輝度は試験例8に比べて高いことから、第2位置P2(非形成領域A2)での光取出量を高めることができることがわかる。
これらの試験結果より、低屈折率層104が導光体3の下面3aの一部領域にのみ形成された試験例9では、光源2に近い領域で光取出量を低く抑えるとともに、光源2から遠い領域で光取出量を高くできるため、輝度の均一化が可能となることがわかる。
図20に示す例では、面状発光装置101は照明モジュール110に適用されているが、これに限らず、液晶テレビや車載用ルームランプなどに適用することもできる。面状発光装置101は輝度の均一化が可能となるため、大面積化が要求される用途の場合に特に有効である。
(第4実施形態)
図31は、本発明の第4実施形態である照明モジュール140の概略構成を示す図である。
照明モジュール140は、面状発光装置101と、面状発光装置101の下面側に設けられたタッチパッド20とを備えている。
タッチパッド20の入力センサ21の上面(導光体3側の表面)側に形成されたレジスト層22は、導光体3から下方に漏れた光を反射させて導光体3に戻す反射体として機能する。タッチパッド20のレジスト層22(被覆樹脂層)(図22参照)は白色材料で構成することが好ましい。この白色材料としては、顔料として酸化チタンを含むものが使用できる。
図31は、本発明の第4実施形態である照明モジュール140の概略構成を示す図である。
照明モジュール140は、面状発光装置101と、面状発光装置101の下面側に設けられたタッチパッド20とを備えている。
タッチパッド20の入力センサ21の上面(導光体3側の表面)側に形成されたレジスト層22は、導光体3から下方に漏れた光を反射させて導光体3に戻す反射体として機能する。タッチパッド20のレジスト層22(被覆樹脂層)(図22参照)は白色材料で構成することが好ましい。この白色材料としては、顔料として酸化チタンを含むものが使用できる。
照明モジュール140では、照明モジュール110に比べ、面状発光装置101とタッチパッド20との間に反射シート30がないため、薄型化を図ることができる。また、タッチパッド20の入力センサ21の検出感度をさらに高めることができる。また、構造が簡略であるためコストおよび製造作業性の点で有利である。
(第5実施形態)
図32は、本発明の第5実施形態である照明モジュール160の概略構成を示す図である。
照明モジュール160は、面状発光装置161以外は照明モジュール110と同じ構成である。
面状発光装置161は、低屈折率層104および光取出部105が導光体3の上面3b側に設けられている点で面状発光装置101と異なる。
面状発光装置161では、導光体3の上面3bの一部領域(形成領域A1)のみに低屈折率層104が形成されている。形成領域A1の低屈折率層104の上面104bと非形成領域A2の導光体3の上面3bには光取出部105が形成されている。形成領域A1は一端部3cから所定距離の範囲の領域である。
図32は、本発明の第5実施形態である照明モジュール160の概略構成を示す図である。
照明モジュール160は、面状発光装置161以外は照明モジュール110と同じ構成である。
面状発光装置161は、低屈折率層104および光取出部105が導光体3の上面3b側に設けられている点で面状発光装置101と異なる。
面状発光装置161では、導光体3の上面3bの一部領域(形成領域A1)のみに低屈折率層104が形成されている。形成領域A1の低屈折率層104の上面104bと非形成領域A2の導光体3の上面3bには光取出部105が形成されている。形成領域A1は一端部3cから所定距離の範囲の領域である。
面状発光装置161においても、面状発光装置101と同様に、光源2に近い形成領域A1で光取出量を低く抑えるとともに、光源2から遠い非形成領域A2で光取出量を高くできるため、輝度の均一化を図ることができる。
なお、光取出部は、上面3b、104bに形成された切り欠き、粗面部などの凹凸部であってもよい。粗面部の形成にはナノインプリントやサンドブラストを採用できる。
図1では、光取出部4が導光体3の下面3aに設けられているが、図33に示すように、光取出部4は上面3bに設けることもできる。この例においても、導光体3内の光の一部を光取出部4で上方に取り出すことができる。
(第6実施形態)
図34は、本発明の第6実施形態である照明モジュール80の概略構成を示す図である。
この照明モジュール80は、導光体3の上面3b側に、化粧板240(カバー板)が設けられている点、および粘着層6が反射シート30の下面30a全域に形成されている点で、図1の照明モジュール10と異なる。
化粧板240は、平面視において導光体3の略全体を覆うことができる大きさとされ、周縁部に設けられた粘着層241を介して導光体3の上面3bに接着されている。
化粧板240は、PETなどの樹脂材料からなる。化粧板240には、導光体3から出射した光が外部から視認可能となるように、透明材料を使用するのが好ましい。
化粧板240を設けることによって、導光体3に傷がついたり汚れが付着するのを防止し、照明モジュール80の耐久性を高めることができる。
なお、図示例では、粘着層6は反射シート30の下面30a全域に形成されているが、粘着層6が形成される領域はこれに限らず、下面30aの一部のみ(例えば周縁部のみ)に形成されていてもよい。
図34は、本発明の第6実施形態である照明モジュール80の概略構成を示す図である。
この照明モジュール80は、導光体3の上面3b側に、化粧板240(カバー板)が設けられている点、および粘着層6が反射シート30の下面30a全域に形成されている点で、図1の照明モジュール10と異なる。
化粧板240は、平面視において導光体3の略全体を覆うことができる大きさとされ、周縁部に設けられた粘着層241を介して導光体3の上面3bに接着されている。
化粧板240は、PETなどの樹脂材料からなる。化粧板240には、導光体3から出射した光が外部から視認可能となるように、透明材料を使用するのが好ましい。
化粧板240を設けることによって、導光体3に傷がついたり汚れが付着するのを防止し、照明モジュール80の耐久性を高めることができる。
なお、図示例では、粘着層6は反射シート30の下面30a全域に形成されているが、粘着層6が形成される領域はこれに限らず、下面30aの一部のみ(例えば周縁部のみ)に形成されていてもよい。
図35(A)および図35(B)に示すように、照明モジュール80では、化粧板240を不透明材料で構成するとともに、化粧板240に、導光体3からの光を外部から視認可能な開口部242を形成することもできる。
開口部242を、数字、文字、記号、図形、模様などを表す形状とすると、その形状に即した発光が得られる。図35(B)に示す例では、開口部242は、数字の「1」に即した平面視形状を有するため、数字の「1」を示す表示として機能する。
開口部242を、数字、文字、記号、図形、模様などを表す形状とすると、その形状に即した発光が得られる。図35(B)に示す例では、開口部242は、数字の「1」に即した平面視形状を有するため、数字の「1」を示す表示として機能する。
図36は、光取出部4における微小ドット4aの分布の他の例を模式的に示す平面図である。
図36に示す例では、図14に示す正三角形格子に沿う配置とは異なり、微小ドット4aは、正方形格子(図12参照)に沿う配置である。微小ドット4aは、光源2に近いほど形成密度が低い。例えば、光源2からの距離が異なる4つの領域A1~A4のうち、光源2に近いものほど微小ドット4aの密度が低くなる。
正方形格子は、正三角形格子に比べ、微小ドット4aを低密度に配置することができるため、光取出量を抑えることができる。このため、図36に示す微小ドット4aの配置は、比較的輝度を低くすることが要求される場合に好適である。
また、正方形格子における微小ドット4aの配列方向は互いに直交する2方向であるため、導光体3を移動させつつインクジェット印刷法により微小ドット4aを形成する方法をとる場合に、汎用の移動機構を有する製造装置を使用できる。
従って、図36に示す微小ドット4aの配置を採用すれば、刷版が不要なインクジェット印刷法を使用でき、かつ汎用の移動機構を使用できるため、製造が容易になる。
図36に示す例では、図14に示す正三角形格子に沿う配置とは異なり、微小ドット4aは、正方形格子(図12参照)に沿う配置である。微小ドット4aは、光源2に近いほど形成密度が低い。例えば、光源2からの距離が異なる4つの領域A1~A4のうち、光源2に近いものほど微小ドット4aの密度が低くなる。
正方形格子は、正三角形格子に比べ、微小ドット4aを低密度に配置することができるため、光取出量を抑えることができる。このため、図36に示す微小ドット4aの配置は、比較的輝度を低くすることが要求される場合に好適である。
また、正方形格子における微小ドット4aの配列方向は互いに直交する2方向であるため、導光体3を移動させつつインクジェット印刷法により微小ドット4aを形成する方法をとる場合に、汎用の移動機構を有する製造装置を使用できる。
従って、図36に示す微小ドット4aの配置を採用すれば、刷版が不要なインクジェット印刷法を使用でき、かつ汎用の移動機構を使用できるため、製造が容易になる。
1、101、161 面状発光装置
2 光源
3 導光体
3a 下面(一方の面)
3b 上面(他方の面)
4、105 光取出部
4a 微小ドット(ドット状インク層)
4b 微小ドットの中心
7 正方形格子
8 正三角形格子
8a 格子点
10、40、80、110、140、160 照明モジュール
20、60 タッチパッド(検知センサ)
70 メンブレンスイッチ(検知センサ)
30 反射シート(反射体)
50 保護層
104 低屈折率層
X 導光方向(光が導かれる方向)
2 光源
3 導光体
3a 下面(一方の面)
3b 上面(他方の面)
4、105 光取出部
4a 微小ドット(ドット状インク層)
4b 微小ドットの中心
7 正方形格子
8 正三角形格子
8a 格子点
10、40、80、110、140、160 照明モジュール
20、60 タッチパッド(検知センサ)
70 メンブレンスイッチ(検知センサ)
30 反射シート(反射体)
50 保護層
104 低屈折率層
X 導光方向(光が導かれる方向)
Claims (6)
- 光源と、
前記光源からの光が導入されて面方向に導かれるシート状の導光体を備え、
前記導光体のいずれか一方の面(3a、3b)には、前記光源からの導入光を散乱させて出射させる光取出部が形成され、
前記光取出部が、印刷によって形成された複数のドット状インク層からなり、
前記ドット状インク層は、外径が10~100μmであり、厚さが0.5~10μmであり、5質量%以上の酸化チタンを含むことを特徴とする面状発光装置。 - 前記酸化チタンがルチル型であることを特徴とする請求項1に記載の面状発光装置。
- 前記複数のドット状インク層は、中心が正三角形格子の格子点に位置するように配置されていることを特徴とする請求項1または2に記載の面状発光装置。
- 前記複数のドット状インク層は、中心が正方形格子の格子点に位置するように配置されていることを特徴とする請求項1または2に記載の面状発光装置。
- 請求項1~4のうちいずれか1項に記載の面状発光装置と、タッチパッドと、を備えていることを特徴とする照明モジュール。
- 前記導光体とタッチパッドとの間には、前記導光体からの漏光を反射する反射体が設けられていることを特徴とする請求項5に記載の照明モジュール。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010203762A JP2013254559A (ja) | 2010-09-10 | 2010-09-10 | 面状発光装置および照明モジュール |
JP2010-203762 | 2010-09-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012033206A1 true WO2012033206A1 (ja) | 2012-03-15 |
Family
ID=45810801
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/070643 WO2012033206A1 (ja) | 2010-09-10 | 2011-09-09 | 面状発光装置および照明モジュール |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2013254559A (ja) |
WO (1) | WO2012033206A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2998351A1 (fr) * | 2012-11-21 | 2014-05-23 | Innovative Technologies | Panneau de retroeclairage a leds, a lumiere tangentielle et a luminance homogene |
WO2018008466A1 (ja) * | 2016-07-05 | 2018-01-11 | 信越ポリマー株式会社 | 静電容量式3次元センサ |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3584280A4 (en) * | 2017-02-16 | 2020-12-30 | Kuraray Co., Ltd. | RESIN COMPOSITION COMPRISING AN ACRYLIC BLOCK COPOLYMER AND A LIGHT SCATTERING AGENT |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006318905A (ja) * | 2005-05-13 | 2006-11-24 | Samsung Electronics Co Ltd | 導光層を有するキーパッド、キーパッドアセンブリ及び携帯端末 |
JP2008311090A (ja) * | 2007-06-14 | 2008-12-25 | Citizen Electronics Co Ltd | 導光板の製造方法、導光板及びバックライトユニット並びに表示装置 |
JP2010128447A (ja) * | 2008-12-01 | 2010-06-10 | Oji Paper Co Ltd | 光学シート、光学シートの製造方法、照明装置、投影装置、看板および画像表示装置 |
JP2010170359A (ja) * | 2009-01-23 | 2010-08-05 | Shin Etsu Polymer Co Ltd | キーボード |
JP2010186679A (ja) * | 2009-02-13 | 2010-08-26 | Oji Paper Co Ltd | 面光源装置および面光源装置用光学部材の製造方法 |
-
2010
- 2010-09-10 JP JP2010203762A patent/JP2013254559A/ja active Pending
-
2011
- 2011-09-09 WO PCT/JP2011/070643 patent/WO2012033206A1/ja active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006318905A (ja) * | 2005-05-13 | 2006-11-24 | Samsung Electronics Co Ltd | 導光層を有するキーパッド、キーパッドアセンブリ及び携帯端末 |
JP2008311090A (ja) * | 2007-06-14 | 2008-12-25 | Citizen Electronics Co Ltd | 導光板の製造方法、導光板及びバックライトユニット並びに表示装置 |
JP2010128447A (ja) * | 2008-12-01 | 2010-06-10 | Oji Paper Co Ltd | 光学シート、光学シートの製造方法、照明装置、投影装置、看板および画像表示装置 |
JP2010170359A (ja) * | 2009-01-23 | 2010-08-05 | Shin Etsu Polymer Co Ltd | キーボード |
JP2010186679A (ja) * | 2009-02-13 | 2010-08-26 | Oji Paper Co Ltd | 面光源装置および面光源装置用光学部材の製造方法 |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2998351A1 (fr) * | 2012-11-21 | 2014-05-23 | Innovative Technologies | Panneau de retroeclairage a leds, a lumiere tangentielle et a luminance homogene |
WO2018008466A1 (ja) * | 2016-07-05 | 2018-01-11 | 信越ポリマー株式会社 | 静電容量式3次元センサ |
CN109416601A (zh) * | 2016-07-05 | 2019-03-01 | 信越聚合物株式会社 | 电容式三维传感器 |
KR20190024956A (ko) * | 2016-07-05 | 2019-03-08 | 신에츠 폴리머 가부시키가이샤 | 정전 용량식 3차원 센서 |
JPWO2018008466A1 (ja) * | 2016-07-05 | 2019-04-18 | 信越ポリマー株式会社 | 静電容量式3次元センサ |
US10761667B2 (en) | 2016-07-05 | 2020-09-01 | Shin-Etsu Polymer Co., Ltd. | Capacitive three-dimensional sensor |
CN109416601B (zh) * | 2016-07-05 | 2021-08-31 | 信越聚合物株式会社 | 电容式三维传感器 |
KR102357515B1 (ko) | 2016-07-05 | 2022-01-28 | 신에츠 폴리머 가부시키가이샤 | 정전 용량식 3차원 센서 |
Also Published As
Publication number | Publication date |
---|---|
JP2013254559A (ja) | 2013-12-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2012059645A (ja) | 面状発光装置および照明モジュール | |
JP6640948B2 (ja) | 光発生源を用いた光拡散 | |
JP2010198415A (ja) | 入力装置、表示装置および電子機器 | |
JP4833044B2 (ja) | 照光型入力装置 | |
JP2012018917A (ja) | 面状発光装置およびシートスイッチモジュール | |
WO2018040609A1 (en) | Display apparatus | |
US20120256844A1 (en) | Sensor-integrated illuminated key sheet | |
TW201502609A (zh) | 顯示裝置 | |
WO2016078249A1 (zh) | 红外触摸屏、触摸检测方法及显示设备 | |
JP2014113828A (ja) | 面状発光装置および照明装置 | |
TW202036255A (zh) | 發光觸控板裝置 | |
TW201835654A (zh) | 前光板及其前光模組 | |
TWI446240B (zh) | 具有發光圖案之輸入裝置 | |
TW201413770A (zh) | 導光模組及電子裝置 | |
TW201419062A (zh) | 觸控顯示器 | |
WO2012033206A1 (ja) | 面状発光装置および照明モジュール | |
JP2007233513A (ja) | タッチパネル | |
WO2012033207A1 (ja) | 照明モジュール | |
JP2009146835A (ja) | 表示装置 | |
JP2013114617A (ja) | 照明モジュール | |
JP2013214364A (ja) | 面状発光装置およびその製造方法 | |
JP2013114618A (ja) | 照明モジュール | |
JP2013143274A (ja) | 面状発光装置およびシートスイッチモジュール | |
JP4077678B2 (ja) | タッチパネル装置および液晶表示装置 | |
JP2012048355A (ja) | タッチパッドおよび静電容量センサーシート |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11823680 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11823680 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |