[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2012031520A1 - 一种电泳显示装置及其制备方法 - Google Patents

一种电泳显示装置及其制备方法 Download PDF

Info

Publication number
WO2012031520A1
WO2012031520A1 PCT/CN2011/078554 CN2011078554W WO2012031520A1 WO 2012031520 A1 WO2012031520 A1 WO 2012031520A1 CN 2011078554 W CN2011078554 W CN 2011078554W WO 2012031520 A1 WO2012031520 A1 WO 2012031520A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrophoretic display
microcell
white
display
color
Prior art date
Application number
PCT/CN2011/078554
Other languages
English (en)
French (fr)
Inventor
曾晞
陈宇
张磊
刘祖良
叶达文
Original Assignee
广州奥熠电子科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州奥熠电子科技有限公司 filed Critical 广州奥熠电子科技有限公司
Publication of WO2012031520A1 publication Critical patent/WO2012031520A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/166Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field characterised by the electro-optical or magneto-optical effect
    • G02F1/167Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field characterised by the electro-optical or magneto-optical effect by electrophoresis
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/1675Constructional details
    • G02F1/1679Gaskets; Spacers; Sealing of cells; Filling or closing of cells
    • G02F1/1681Gaskets; Spacers; Sealing of cells; Filling or closing of cells having two or more microcells partitioned by walls, e.g. of microcup type

Definitions

  • the invention relates to an electrophoretic display device and a preparation method thereof.
  • electrophoretic display Compared with the traditional flat panel display technology, the electrophoretic display has low energy consumption, flexibility, high contrast, high image bistability, good visibility and simple application. Combining the advantages of traditional paper and electronic displays, electrophoretic display is the most promising technology in current e-paper applications. Electrophoretic display technology was proposed in the 1970s and gradually gained widespread attention.
  • the main technique is to coat the electrophoretic display liquid which can display two or more colors under an external electric field with microcapsules, and coat a surface of the conductive substrate with a uniform thin layer of microcapsules, and then prepare the prepared The coating is combined with a control circuit to obtain an electrophoretic display device.
  • the method of microcapsule coating solves the problem of stability of the electrophoretic display liquid, and it is easy to obtain a uniform thin layer of electrophoretic display material, which can well realize the display of two or several colors and obtain The intermediate state of these colors.
  • using this technique to display full color is very difficult, mainly in how to uniformly and orderly distribute a plurality of microcapsules capable of displaying different basic colors on a conductive substrate, and simultaneously form smaller-sized pixels. unit.
  • Sipix, Inc. USA, has proposed a microcup technology to achieve electrophoretic display as described in U.S. Patent 6,672,921, US Pat. No. 6,751,008 and US Pat. No. 6,753,067.
  • Sipix's technology has developed a method of continuously producing microcups by injecting an electrophoretic display solution into a microcup and then encapsulating it. This technology can well realize the continuous production of the microcup, and also solve the stability problem of the electrophoretic display liquid.
  • different electrophoretic display liquids need to be poured into adjacent microcups to form a basic color display unit.
  • perfusion electrophoresis shows the liquid, it is difficult to avoid the mixing of different display liquids during the encapsulation process.
  • the technical problem to be solved by the present invention is to provide a new design scheme of an electrophoretic display device based on the existing electrophoretic display technology and combining the existing mature technologies of the electronics industry and other industries, which can be on a single display screen. Directly realize multi-color or full-color image text display.
  • the existing electrophoretic display screen is mainly based on microcapsule or microcup technology, and the microcapsule technology solves the stability problem of the electrophoretic display liquid, but it is difficult to use for real color display.
  • the microcup technology not only solves the problem of stability of the electrophoretic display liquid, but also realizes full color display by injecting different display liquids into adjacent microcups, but it cannot avoid the problem of mixed display liquid during the packaging process.
  • the inventors have proposed an idea to firstly electrophoretic display layers having microbubbles partially or completely connected to each other with a transparent common electrode panel and a control electrode panel with control circuit or temporary
  • the panel is packaged to form a complete micro-cell array empty box, and then the electrophoretic display liquid is poured into the micro-cell of the electrophoretic display layer, thereby effectively solving the problem of mixed display liquid.
  • an electrophoretic display device wherein the electrophoretic display layer comprises a plurality of basic display units, wherein each of the basic display units comprises a set of microcell subunits, and each of the microcell subunits is configured to implement an electrophoretic display liquid after encapsulation.
  • the microcells are interconnected with a microcell containing an electrophoretic display fluid.
  • the microcell subunits are in communication with one another in one direction or in two directions, lateral or longitudinal.
  • Such a layout saves material and makes the filling method efficient and labor-saving.
  • the mutually connected microcells are connected with a perfusion device at one end and a conduit at the other end. If all microcells are filled with the same electrophoretic display solution, all microcells can be placed in communication with one another so that only one perfusion device is placed at one end of all microcells and one conduit is provided at the other.
  • the planar area of the single microcell is generally 1 ⁇ m 2 - 4 ⁇ 10 8 ⁇ m 2 , preferably 25 ⁇ m 2 - 25 ⁇ 10 4 ⁇ m 2 , more preferably 1 ⁇ 10 2 ⁇ m 2 - 4 ⁇ 10 4 ⁇ m 2 , most It is preferably 4 ⁇ 10 2 ⁇ m 2 - 1 ⁇ 10 4 ⁇ m 2 .
  • the height of the individual microcells is generally from 1 to 1000 microns, preferably from 5 to 200 microns, more preferably from 10 to 100 microns, and most preferably from 10 to 30 microns.
  • the width of the connecting channel between the microcells in each of the microcell subunits is generally from 1 to 100 microns, preferably from 2 to 50 microns, more preferably from 2 to 20 microns.
  • the shape of the single microcell is preferably a diamond shape; the cell wall of the microcell is composed of a material that is not electrically conductive or has very low conductivity, such as glass, plastic, metal oxide, or other suitable material.
  • the transparent common electrode panel comprises a transparent substrate layer and a transparent conductive layer coated on the transparent substrate, wherein the transparent conductive layer material may be selected from the group consisting of indium tin oxide (ITO), zinc oxide (ZnO), and dioxide. Tin (SnO 2 ) or indium oxide (In 2 O 3 ); and the transparent substrate material may be selected from the group consisting of PET, nylon, polystyrene, polyethylene, polymethyl methacrylate or polyvinyl chloride.
  • the control electrode panel comprises a substrate layer and a conductive layer, wherein the conductive layer material may be selected from the group consisting of tin oxide (ITO), zinc oxide (ZnO), tin dioxide (SnO 2 ) or indium oxide (In 2 O 3 ), Carbon (C), gold (Au), silver (Ag), copper (Cu), aluminum (Al), thin film transistor (Thin Film Transistor), organic thin film transistor (Organic Thin Film Transistor), etc.; From PET, nylon, polystyrene, polyethylene, polymethyl methacrylate or polyvinyl chloride, epoxy resin, FR-4, glass, etc.
  • the control electrode panel is preferably a TFT of a glass substrate and an OTFT of a flexible substrate.
  • the control electrode panel is composed of a plurality of sets of secondary unit electrodes. As a specific implementation manner, each secondary unit electrode can be used for one microcell. Subunit Voltage control is performed in the area, or voltage control is performed on a single microcell, depending on the actual situation displayed.
  • a set of sub-unit electrodes constitutes a unit electrode, and a unit electrode drives a display unit. As a preferred embodiment, each sub-unit electrode can independently perform voltage control, including voltage magnitude and driving time.
  • the temporary panel may be only a substrate layer or a substrate layer and a conductive layer coated on the substrate, wherein the conductive layer material may be selected from the group consisting of indium tin oxide (ITO), zinc oxide (ZnO), and Tin oxide (SnO 2 ), indium oxide (In 2 O 3 ), carbon (C), gold (Au), silver (Ag), copper (Cu), aluminum (Al); and the substrate material is selected from PET, nylon , polystyrene, polyethylene, polymethyl methacrylate or polyvinyl chloride. PET coated with an aluminum film is preferred as the temporary panel. The temporary panel is removed, and the electrophoretic display layer with the common electrode panel is assembled on a control panel to form a finished display device.
  • the conductive layer material may be selected from the group consisting of indium tin oxide (ITO), zinc oxide (ZnO), and Tin oxide (SnO 2 ), indium oxide (In 2 O 3 ), carbon (C), gold (Au), silver (Ag), copper (Cu
  • the electrophoretic display liquid in the microcell may be a single particle system in which only one charged solid pigment particle is dispersed in a solvent containing an organic dye, and the solid pigment and the dye have different colors.
  • the electrophoretic display liquid in the microcell may also be a two-particle or multi-particle system, that is, at least two solid pigment particles of different colors are dispersed in a solution.
  • adjacent microcell subunits can be filled with the same electrophoretic display liquid or can be perfused with different kinds of electrophoretic display liquids.
  • a set of microcell subunits of the basic display unit may be four microcell subunits, that is, four different kinds of electrophoretic display liquids may be perfused.
  • the specific scheme of injecting four different electrophoretic display liquids into the display unit may be: three kinds of electrophoretic display consisting of a common color colorant and a basic color colorant different from the color of the common color colorant.
  • the liquid, the other is an electrophoretic display liquid containing both white and black colorants, wherein the colorant of the common color is a white colorant or a black colorant.
  • the color combinations of the colorants in the four different electrophoretic display solutions can be black/white, red/white, blue/white, and green/white, respectively; or black/white, cyan/white, magenta/ White, and yellow/white.
  • the driving voltage of each sub-unit electrode can be independently adjusted, and the color ash of the electrophoretic display liquid corresponding to the micro-cell area can be changed by adjusting the magnitude of the voltage or the driving time of the voltage, or simultaneously adjusting the magnitude of the voltage and the driving time. Degree to achieve the desired display color grayscale.
  • the color effect of the basic display unit is adjusted by the color gradation of the microcell controlled by each unit electrode under the same basic display unit, and finally the entire display screen is composed of the basic display units.
  • the invention also relates to a method of preparing an electrophoretic display device, the preparation comprising the steps of: (1) a transparent conductive film and a transparent substrate layer constitute a transparent common electrode panel, and a film of a material is coated on one side of the conductive film of the transparent common electrode panel; (2) preparing the material film of the step (1) on the transparent substrate into a microcell array having at least the respective microcells in the same microcell subunit communicating with each other; (3) The substrate layer and the conductive layer constitute a control circuit panel, and a plurality of sub-unit control electrodes are prepared on the conductive layer of the control electrode panel, and the control electrode panel is bonded to the transparent substrate described in the step (2) by using an adhesive The microcell array layers are packaged together to form a microcell array box; (4) Injecting the electrophoretic display liquid into the micro-cell array cassette obtained in the step (3) to seal the micro-cell array box.
  • the electrophoretic display device of the present invention is relatively simple in technology and easy to implement, and completely solves the problem of mixed display liquid in the microcup technology.
  • display of a plurality of colors and full colors can be realized by a combination of specific display liquids.
  • FIG. 1 is a schematic cross-sectional view of an electrophoretic display device
  • 2 is a schematic diagram showing the overall effect of a plurality of microcells in an electrophoretic display device according to an embodiment
  • 3 is a schematic enlarged view of a portion of a microcell in an electrophoretic display device according to an embodiment
  • 4 is a schematic diagram of a basic display unit of an electrophoretic display device according to an embodiment
  • Figure 5 is a schematic diagram of various stages of fabrication of the display device, wherein: Figure 5a is a transparent substrate layer coated with a material that is not electrically conductive or has very low conductivity;
  • Figure 5b is a schematic view of a convex mold according to an embodiment of the present invention;
  • Figure 5c is a schematic view of a mask plate according to an embodiment of the present invention;
  • 5d is a schematic view of a prepared microcell array according to an embodiment of the present invention;
  • 5e is a schematic view of a control electrode panel according to an embodiment of the present
  • the term 'basic display unit' means that the entire display plane area of the display device is divided into a plurality of small areas, each of which displays one of the small pixels of the display screen, as described above.
  • the small area is the basic display unit.
  • microcell subunit' a number of microcells connected together constitutes a microcell subunit, and the number of microcells contained under one microcell subunit depends on the actual application.
  • the term 'secondary unit electrode' refers to a basic display unit subdivided into a plurality of display areas, each of which corresponds to a small control electrode on the control panel. This small control electrode is called a secondary unit electrode.
  • the uppermost layer is a transparent substrate 110.
  • the material may be glass, other inorganic transparent materials or transparent plastics, including but not limited to polyester (such as PET). : Ethylene terephthalate), nylon, polystyrene, polyethylene, polymethyl methacrylate, polyvinyl chloride and other transparent polymer materials.
  • the second layer of the panel is a layer of conductive transparent material 120 coated on the transparent substrate 110, the material including but not limited to indium tin oxide (ITO), zinc oxide (ZnO), tin dioxide (SnO 2 ), oxidation Indium (In 2 O 3 ) and other conductive transparent inorganic materials and conductive transparent polymer materials.
  • a glass plate coated with ITO can be preferably used, and the glass material has a good light transmittance and high environmental stability.
  • a plastic coated with ITO is preferable, a polyester material coated with ITO is more preferable, and PET coated with ITO is further preferable.
  • the electrophoretic display layer 130 is an electrophoretic display layer, the other side of which is a control electrode panel 150 having a conductive material 140.
  • the conductive material 140 may be a metal material such as gold, silver, copper, aluminum, etc., a conductive oxide material such as ITO, ZnO, SnO 2 , In 2 O 3 , etc., and a thin film transistor TFT (Thin Film Transistor), an organic thin film transistor OTFT (Organic) Thin Film Transistor); the material of panel 150 can be a variety of sheet, sheet and film materials used in the industrial and electronics industries, such as various plastics, ceramic materials, and composite materials.
  • the conductive material 140 can be fabricated into the desired structure or device on the panel 150 by various existing methods, such as coating, electroplating, vacuum sputtering, vacuum coating, etching, and the like.
  • the control electrode panel is preferably a TFT of a glass substrate and an OTFT of a flexible substrate.
  • the temporary panel may be only a substrate layer or a substrate layer and a conductive layer coated on the substrate, wherein the conductive layer material may be selected from the group consisting of indium tin oxide (ITO), zinc oxide (ZnO), and Tin oxide (SnO 2 ), indium oxide (In 2 O 3 ), carbon (C), gold (Au), silver (Ag), copper (Cu), aluminum (Al); and the substrate material is selected from PET, nylon , polystyrene, polyethylene, polymethyl methacrylate or polyvinyl chloride. PET coated with an aluminum film is preferred as the temporary panel. The temporary panel is removed, and the electrophoretic display layer with the common electrode panel is assembled on a control panel to form a finished display device.
  • the conductive layer material may be selected from the group consisting of indium tin oxide (ITO), zinc oxide (ZnO), and Tin oxide (SnO 2 ), indium oxide (In 2 O 3 ), carbon (C), gold (Au), silver (Ag), copper (Cu
  • An electrophoretic display layer 130 is encapsulated between the conductive material layers 120 and 140.
  • the electrophoretic display layer includes a plurality of sets of basic display units, each basic display unit includes a set of microcell subunits, and each microcell subunit is connected by micro
  • the pool is composed of different subunits filled with electrophoretic display liquid of the same or different colors, and the microcell is surrounded by the pool wall 131.
  • the material of the wall 131 should be a material that is completely non-conductive or has very low electrical conductivity, such as glass, plastic, metal oxide, or other suitable material.
  • the shape of a single microcell can have a variety of options including, but not limited to, squares, rectangles, diamonds, triangles, hexagons, octagons, circles, ellipses, spheres, ellipsoids.
  • the micro-cell should be shaped so that the area occupied by the wall is minimized throughout the display, maximizing the effective display area of the display.
  • FIG. 2 is a schematic diagram of the overall effect of a micro-cell scheme.
  • the black lines in the figure represent the pool walls of the micro-pools.
  • Each diamond-shaped area represents a micro-cell.
  • This scheme designs the micro-pools into diamond shapes, which make the pool walls occupy The small area effectively increases the effective display area of the display.
  • FIG. 2 only illustrates a micro-cell solution of a certain area. The size of the micro-cell area depends on the actual application and should be equivalent to the display area of the actual electrophoretic display device.
  • Figure 3 is an enlarged schematic view of a small block of electrophoretic display microcells, i.e., the position shown by the dashed box in Figure 2. Similar to Fig. 2, the shape of the microcell in Fig. 3 is a diamond shape, and as described above, the shape of the microcell may be any shape. In order to facilitate the explanation of the micro-pool design, Figure 3 only includes a few microcells with a very limited number. The number of microcells in the actual electrophoretic display may be much larger than the number shown in Figure 3. The exact amount depends on the size of the actual electrophoretic display. As shown in FIG.
  • microcell 311 and the microcell 312 there may be a narrow channel 321 connected between the adjacent two microcells (for example, the microcell 311 and the microcell 312) to connect the microcells.
  • the interconnected microcells form a subunit, and the microcells 311, 312, 313 and 314 in Fig. 3 constitute a microcell subunit.
  • the microcell subunits of adjacent display units may be in communication with each other in the longitudinal direction, for example, a microcell subunit composed of microcells 311, 312, 313, and 314 and a microcell of an adjacent vertical display unit pass through a narrow Channels 321 are connected together.
  • the same longitudinal microcells in the display screen are connected to each other through the channel 321, and then the same electrophoretic display liquid is poured through the infusion step.
  • different vertical microcells may belong to different display units and are driven separately by the control circuit during the driving process.
  • Adjacent microcells may display different display states when displayed, or may be driven to the same color, depending on
  • each column of microcells has a longer conduit 322 for releasing air and excess electrophoretic display liquid while perfusion of the electrophoretic display solution, and a perfusion for perfusion of the electrophoretic display solution at the other end.
  • Fig. 3 only the microcell of a display unit is listed.
  • the number of microcells between the conduit 322 and the infusion device 323 in the display screen is much larger than that of the microcell shown in Fig. 3.
  • the perfusion device should be designed on the same edge of the display as much as possible to facilitate perfusion of the electrophoretic display solution.
  • the electrophoretic display liquid to be perfused is injected into the micro-cell through the infusion device 323 by means of a prior art device such as a capillary tube, a micro-sized needle, a liquid crystal display grouting device, etc.; the applied pressure and the liquid are generated in the micro-cell due to surface tension.
  • the combined action of the capillary forces causes the electrophoretic display liquid to fill all of the microcells that are in communication with each other.
  • the original air and excess electrophoretic display liquid in the micro-pool are discharged through the conduit 322, and the perfusion process can also be accelerated by applying a vacuum.
  • the catheter 322 and the infusion device 323 are sealed by a sealant or a thermocompression sealing method to prevent the loss of the electrophoretic display liquid and the entry of air.
  • All microcapsules inside a subunit should be perfused with the same electrophoretic display solution.
  • Adjacent subunits can be perfused with electrophoretic display fluids of different colors, or can be filled with electrophoretic display fluid of the same color.
  • the adjacent microcell subunits are infused with four different color electrophoretic display liquids. This is just one example.
  • the actual electrophoretic display screens have four types of electrophoretic display liquids, and can also be used as needed. Change to one, two, three, or even more. The combination of the type and color of the specific electrophoretic display liquid should be determined according to the needs of the actual application.
  • the size of a single microcell (eg, microcell 311 or microcell 312) in the planar layout of the actual microcell (the size described herein refers to the planar size of the microcell, rather than the microcell being between panels 120 and 140)
  • the height may be determined by many factors.
  • the size of a single microcell should not be too large. On the one hand, a large micro-cell will limit the resolution of the electrophoretic display, thereby affecting the final display effect; on the other hand, the large-sized micro-cell will affect the stability of the solid pigment particles in the electrophoretic display liquid, thereby affecting the display screen. Long-term display of effects and longevity.
  • planar area of a single microcell is generally 1 ⁇ m 2 - 4 ⁇ 10 8 ⁇ m 2 , preferably 25 ⁇ m 2 - 25 ⁇ 10 4 ⁇ m 2 , more preferably 1 ⁇ 10 2 ⁇ m 2 - 4 ⁇ 10 4 ⁇ m 2 Most preferably, it is 4 ⁇ 10 2 ⁇ m 2 - 1 ⁇ 10 4 ⁇ m 2 .
  • the height of the microcell (where the height of the microcell corresponds to the distance between panels 120 and 140) is also affected by a number of factors. If the height of the microcell is too high, it takes a long time for the solid pigment particles in the electrophoretic display liquid to move from one side panel to the other side panel driven by the applied electric field, thereby affecting the response speed of the color change of the electrophoretic display screen. However, the height of the microcell is too small, so that the number of pigment particles per unit area is insufficient, and the other color in the electrophoretic display liquid cannot be completely concealed, resulting in the color of the display being not pure and bright. Studies have shown that the height of a single microcell should be in the range of 1-1000 microns, preferably 5-200 microns, more preferably 10-100 microns, and most preferably 10-30 microns.
  • the width of the channel 321 between suitable adjacent microcells should also be selected. In order to allow the electrophoretic display liquid to pass through the channel 321 while being poured into the display screen, all the microcells in the subunit are not blocked, and the channel 321 should have sufficient width. However, the width of the channel 321 should not be too large. If the channel is too wide, the electrophoretic display liquid and the solid pigment particles in the adjacent micro-cells will flow through each other, so that the concentration of the pigment particles in some micro-cells may be high, while the number of solid pigment particles in other micro-cells is biased.
  • the electrophoretic display liquid in the microcell in the same subunit is not uniform, which may cause the color of the electrophoretic display to be uneven, affecting the final display effect.
  • the width of the channel 321 should be in the range of 1-100 microns, preferably 2-50 microns, more preferably 2-20 microns.
  • the electrophoretic display solution perfused in the microcell is commonly used in the prior art, and can be referred to the disclosure by the inventors in the application numbers CN101082752B and CN101738814A.
  • the electrophoretic display liquid may comprise a plurality of components, but at least one non-polar or low-polar solvent and one solid pigment particle having a certain number of charges on the surface.
  • the charged pigment particles can be moved in a specific direction in the solvent under the influence of an applied DC electric field.
  • the electrophoretic display liquid also includes other minor components such as blue dye Blue.
  • Organic dyes such as AHF (United Color Company, USA), such as polyether modified trisiloxane, Span 80 (Aldrich, USA), etc., such as BYK 164 (Berke Chemical Co., Germany) and other particle dispersing agents, such as OLOA 11000 particle charge control reagents, such as polymethyl methacrylate, polyisobutylene and other viscosity modifiers or other components.
  • the solvent of the electrophoretic display liquid may be various non-polar or low-polar organic solvents or a mixture thereof, including various aromatic hydrocarbons but not limited to toluene, benzene, xylene, various linear and branched carbons.
  • Hydrogen compounds are not limited to decane, alkane, Isopar series solvents, Norpar solvents or other alkane solvents, various halogenated hydrocarbons but not limited to chloroform, carbon tetrachloride, various cyclic hydrocarbons but not limited to cyclohexane Alkanes, as well as other solvents.
  • the solvent should be a high boiling point, low volatility, low viscosity, low toxicity organic liquid, preferably various linear and branched hydrocarbons, more preferably Isopar and Norpar series hydrocarbons.
  • the solid pigment particles in the electrophoretic display liquid can be classified into inorganic pigment particles and organic pigment particles, including but not limited to silicon dioxide, titanium dioxide, chromium oxide, iron oxide, zinc dioxide, copper oxide, lead oxide, carbon black. , silicate, titanium yellow, chrome yellow, lead chrome green, manganese violet, iron blue, cobalt blue, zinc white, cadmium yellow, cadmium red, barium sulfate, molybdenum orange, ultramarine blue, azure blue, emerald green, emerald green, etc.
  • inorganic pigment particles and organic pigment particles including but not limited to silicon dioxide, titanium dioxide, chromium oxide, iron oxide, zinc dioxide, copper oxide, lead oxide, carbon black. , silicate, titanium yellow, chrome yellow, lead chrome green, manganese violet, iron blue, cobalt blue, zinc white, cadmium yellow, cadmium red, barium sulfate, molybdenum orange, ultramarine blue, azure blue,
  • Organic pigments include, but are not limited to, organic yellow pigments (Pigment Yellow 174, benzidine yellow, Fast Yellow FGL, Hansa Yellow R), organic orange pigments (benzidine orange, Pigment Orange 5), organic blue pigments (quown blue) , indigo), organic red pigment (blush, permanent jujube red FRR, toluidine purple red).
  • the surface of the pigment particles may be modified by physical or chemical means to improve its stability in a solvent.
  • Physical methods include, but are not limited to, the addition of polymeric stabilizers or surfactants to the display liquid, such as dispersant NNO, sodium alkylbenzene sulfonate, Solsperse 26000 (ICI, UK), which adsorbs it on the surface of particles, Thereby, a repulsive force is generated between the particles to improve the dispersion stability of the particles in the solution.
  • Chemical methods include, but are not limited to, attaching a polymer chain to the surface of a pigment particle by covalent bonding to improve dispersion stability in solution, such as polystyrene, polymethyl methacrylate or other polymers. Grafting on the surface of the pigment particles to increase the stability of the pigment particles in solution.
  • Electrophoretic display solutions include, but are not limited to, single particle systems and two particle systems.
  • a single-particle system only one charged solid pigment particle is dispersed in a solvent containing an organic dye, and the solid pigment and the dye have different colors.
  • the solid pigment particles can move to the side of the display, and the display thus appears as the color of the solid pigment; the pigment particles can also be moved to the back of the display, and the display shows the color of the organic dye.
  • two different color solid pigment particles are dispersed in a solvent, and the display screen exhibits the color of one of the pigment particles when energized; and the display screen can be presented with another change in the electric field. The color of the pigment particles.
  • all the micro-cells can be filled with the same electrophoretic display liquid, in which case the panel can only realize the color of the coloring agent (including pigments and dyes) in the electrophoretic display liquid and A display of the derived color produced by the color mixing of these colorants.
  • the microcell in the panel is filled with an electrophoretic display liquid containing white and black colorants, and the panel can realize an all-white or all-black display state, and various grays between white and black.
  • the above is merely an electrophoretic display liquid to help illustrate the patent, but it does not mean that the panel referred to in this patent can only be filled with an electrophoretic display liquid containing white and black colorants. Any kind of electrophoretic display liquid can be poured into the micro-cell to meet the needs of practical applications.
  • each electrophoretic display liquid contains colorants of different colors, thereby realizing multiple colors or all Colored display.
  • the following will specifically explain how to use the display panel invented by this patent to combine the technology of electrophoretic display to realize full color display.
  • the liquid crystal display expresses other colors by different combinations of three colors of red, green, and blue, that is, the RGB system; in color printing and printing technology, the three basic colors are Cyan, Magenta, and Yellow, the CMY system.
  • the basic color can be RGB system, CMY system, or other color system. Starting from the basic principles of color, electrophoretic display technology is similar to color printing or printing technology. Therefore, the color electrophoretic display can select the CMY series, that is, cyan, magenta and yellow are the three basic colors.
  • the electrophoretic display panel invented in this patent can adopt any color system, including but not limited to the RGB system and the CMY system; the specific basic color should be selected according to the requirements of the actual application and the electrophoretic display liquid. The type of colorant contained is determined.
  • the microcell of the electrophoretic display panel can be filled with three different electrophoretic display liquids to realize the basic color of CMY.
  • Each display liquid contains one color pigment and a common color (white or black) solid pigment. Particles or organic dyes.
  • a black/white electrophoretic display liquid can be added.
  • the present invention preferably combines four electrophoretic display liquids to realize full-color electrophoretic display, and more preferably, a combination of an electrophoretic display liquid containing CMY three basic colors and another common color plus a black/white electrophoretic display liquid, further A combination of C/W (cyan/white), M/W (magenta/white), Y/W (yellow/white) and K/W (black/white) electrophoretic display liquids is preferred.
  • each electrophoretic display solution is separately infused into adjacent four microcell subunits, as shown in FIG. Figure 3 provides an enlarged view of 12 microcell subunits, each of which is interconnected and infused with the same electrophoretic display solution; each of the four adjacent subunits is infused with a different electrophoretic display solution, and Form a complete basic display unit.
  • the flat display area of the entire display device is composed of continuously repeating basic display units; each basic display unit includes a microcell subunit filled with electrophoretic display liquids of four different colors, and the order of the subunits of the four different colors may be Any combination.
  • Controlling the electrode on the electrode panel is a common technique in the prior art, which can change the color displayed on the display by moving the charged pigment particles, such as Chinese patent CN100437714C and CN101373581 The content disclosed.
  • the cells (or microcell subunits) are of comparable size and each control electrode can independently apply a voltage to control the color state of the microcell (or microcell subunit).
  • the adjacent four microcell sub-units 411, 412, 413 and 414 filled with electrophoretic display liquids of different colors constitute a basic display unit as shown at 410, as shown in FIG.
  • the electrophoretic display screen designed by the present invention can achieve multiple color and full color display by separately controlling the color of a single microcell (or each microcell subunit).
  • the specified basic display unit needs to display one of the three basic colors, it is only necessary to drive the microcell of the electrophoretic display liquid containing the color to the saturated state of the color, and the other microcells display white. As shown in FIG.
  • microcell subunits 411, 412, 413, and 414 when the microcell subunits 411, 412, 413, and 414 are respectively filled with M/W (magenta/white), C/W (cyan/white), Y/W (yellow/white), and K/W (black/white) electrophoretic display liquid, driving all the microcells in the microcell subunit 411 to the state of magenta, and the microcells in the other microcell subunits 412, 413 and 414 are all driven to In the white state, the overall color of this basic display unit is magenta.
  • the display of cyan and yellow can be achieved in a similar way.
  • the white display is much simpler, just drive all the secondary units to a white state.
  • Black can then drive all the microcells in the four microcell subunits 411, 412, 413, and 414 to the opposite state of white, that is, the four microcell subunits are magenta, cyan, yellow, and black, respectively.
  • the basic display unit appears black in color due to the effect of color superposition.
  • the display of other composite colors requires a combination of more complex driving methods.
  • microcells of the C/W (cyan/white) and Y/W (yellow/white) electrophoretic display liquids of the microcell subunits 412 and 413 are respectively driven to the cyan and yellow states at the same time
  • the other two microcell subunits 411 and 414 of the same basic display unit are driven to a white state, and the entire basic display unit is macroscopically green due to the superposition of cyan and yellow.
  • Other colors can be achieved by a combination of similar adjacent microcell subunit colors.
  • the control electrode panel of the TFT or the OTFT will be described as an example, but the present invention is not limited to the TFT or the OTFT control electrode.
  • the electrophoretic display liquid will change correspondingly with the driving time, and the gradation will be changed accordingly. Changes in drive time can produce different gray levels.
  • To drive the black and white electrophoretic display liquid first input the voltage to the secondary unit electrode on the control electrode panel, and electrophorete the liquid until the white state is displayed, that is, the screen is screened, and then the reverse voltage is input, and the black gray scale is changed with the driving time.
  • the gray scale of the electrophoresis liquid is divided into 8 gray scales, simply, at a driving voltage of 15 V, the driving time of each gray scale is (n-1)*Ts/(8-1), and n is a representation.
  • Other color electrophoretic display liquids can also utilize this method. For example, the magenta/white electrophoretic display liquid is firstly brushed, that is, first driven to the all white state, and then reverse voltage is applied, and the input driving time corresponding to the nth gray scale is (n-1)*Ts/( 8-1).
  • Such a combination of different gray scales of different electrophoretic display liquids can combine a lot of colors.
  • the method of driving the gray level can also refer to the method of driving the bistable electro-optic display by the patent CN101430864A.
  • the TFT or OTFT can output voltages of +15V, -15V, and 0V, and the voltage on the common electrode panel is 0V. It has been found that the driving voltage waveform required to switch pixels from different levels is different, such as changing the color gradation from level 1 to level 0, and the voltage waveform required to change from level 1 to level 2 is not The same, and the drive voltage waveforms required to switch grayscales of different colors to the same color grayscale may also be different.
  • the color gradation changes from level 0 to level 1 of the drive waveform: Frame 1 Frame 2 Frame 3 Frame 4 Frame 5 Drive voltage (V) 15 0 15 -15 -15
  • the driving voltages in the above two tables are the driving voltages on the control electrode panel, and the common electrode voltage is 0V. Therefore, it is necessary to store a data lookup table containing the voltage waveform required for the transition, and find the relevant data through the data lookup table to drive the target color variation.
  • a data lookup table containing the voltage waveform required for the transition, and find the relevant data through the data lookup table to drive the target color variation.
  • the formation process of the electrophoretic display device of the present invention will be described with reference to the accompanying drawings of FIG. 5: First, apply a film on a transparent conductive substrate: As shown in FIG. 5a, on the transparent glass substrate or the plastic substrate 510 with the conductive film 520, by means of coating (including but not limited to: pre-measurement coating, such as sheet coating, slit or extrusion coating Application, sliding or lamination coating, curtain coating; roller coating, such as roller lining roller coating, dip coating, spray coating, spin coating, brush coating; screen printing process; inkjet printing process and other similar techniques)
  • the non-conductive or extremely low conductivity material 530 is uniformly coated on the side of the conductive film of the substrate, and these materials may be a combination of a thermoplastic resin, a thermosetting resin, or a precursor thereof, such as epoxy acrylate or polyacryl acrylate.
  • Composition having a film thickness of from 1 to 1000 microns, preferably from 5 to 500 microns, more preferably from 10 to 500 microns, most preferably from 10 to 100 microns; or a film of radiation curable material, such as an acrylated urethane
  • the oligomer, the propylene glycol type epoxy resin or the like is selected as needed, and the film thickness is from 1 to 1000 ⁇ m, preferably from 5 to 200 ⁇ m, more preferably from 10 to 100 ⁇ m, and most preferably from 10 to 30 ⁇ m.
  • a convex mold such as the convex mold 540 shown in Fig. 5b is formed by etching, engraving or electroforming in accordance with the shape of the microcell array to be prepared.
  • thermosetting resin or the precursor thereof Applying one side of the substrate coated with the thermoplastic resin, the thermosetting resin or the precursor thereof to the convex mold, at a temperature higher than the glass transition temperature of the thermoplastic resin, the thermosetting resin or the precursor layer thereof,
  • the resin material layer is molded by a convex mold, and after cooling, the mold is separated from the resin material layer to form, for example, a microcell array as shown in Fig. 5d.
  • a micro-cell array can be fabricated by photolithography:
  • the radiation curable material coated on the conductive film on the transparent conductive substrate is directly exposed and developed by ultraviolet light or other forms of radiation by a mask 590 as shown in FIG. 5c, which is customized according to the shape of the microcell array.
  • a mask 590 as shown in FIG. 5c, which is customized according to the shape of the microcell array.
  • the microcell array shown in Figure 5d the microcell array shown in Figure 5d.
  • the prepared microcell array also includes the settings, such as the perfusion device 552 and the conduit 551 disposed at both ends of the plurality of microcells as shown in Figure 5d.
  • the control circuit panel substrate is provided with a plurality of sub-unit control electrodes, and these sub-unit electrodes may be TFTs or OTFTs.
  • the adhesive is applied to the control electrode panel composed of the substrate and the secondary unit electrode, and the adhesive agent may be a pressure sensitive adhesive, a hot melt adhesive, a radiation curing adhesive or the like.
  • the micro-cell array is covered on the control electrode panel, and one side of the micro-cell is facing the adhesive agent side of the control electrode panel, and the micro-cell array and the control electrode panel are pasted together by lamination to form a micro-cell array box. .
  • the perfusion device is preferably designed to be misaligned, and the perfusion device infused with the same electrophoresis liquid is designed on the same horizontal line, as shown in FIG. 5f, such a design is advantageous for increasing the perfusion device.
  • the size of the opening also facilitates the perfusion of the same electrophoresis fluid.
  • the electrophoretic display liquid to be perfused is injected into the micro-cell through the infusion device 552 by means of a prior art device such as a capillary tube, a micro-sized needle, a liquid crystal display grouting device, etc.;
  • a prior art device such as a capillary tube, a micro-sized needle, a liquid crystal display grouting device, etc.
  • the combination of capillary forces due to surface tension causes the electrophoretic display solution to fill all of the microcells in the same subunit.
  • the entire display device is only filled with one type of electrophoresis liquid, it is only necessary to completely immerse the perfusion device end of the micro-cell array box into the electrophoretic display liquid, keep the catheter exposed to the air, and permeate the electrophoretic display liquid by capillary action. In the pool.
  • the original air and excess electrophoretic display liquid in the micro-cell are discharged through the conduit 551, and the perfusion process can also be accelerated by applying a vacuum.
  • the catheter 551 and the perfusion device 552 are sealed with a sealant or a thermocompression sealing method or the like to prevent the loss of the electrophoretic display liquid and the entry of air.
  • a composition including epoxy acrylate and polyacryl acrylate is uniformly applied to the conductive film side of the substrate by a roll lining roll coating, and the film thickness is 25 Micron.
  • a convex mold is formed according to the shape of the microcell array, wherein each microcell subunit has four interconnected microcells, and only the microcell subunits of the same column are connected to each other.
  • the laterally adjacent microcell subunits are not connected to each other, and the interconnected microcells have a perfusion end at one end and a conduit end at the other end.
  • the resin material was pressed on the convex mold by the side of the substrate coated with the resin material, and the resin material was molded by a convex mold at 60 ° C. After cooling, the mold was separated from the resin material to form a micro cell array 550.
  • a plurality of sub-unit control electrodes 570 are formed on the control circuit panel substrate 560, Thus, the control electrode panel is composed.
  • the secondary unit electrodes may be TFTs or OTFTs, and each of the secondary unit electrodes respectively corresponds to one microcell subunit, and has the same size, and can independently control the voltage of the microcell subunit.
  • a pressure-sensitive adhesive 580 is applied to the control electrode panel composed of the substrate 560 and the sub-unit electrode 570.
  • the micro-cell array is covered on the control electrode panel, and one side of the micro-cell is facing the adhesive agent side of the control electrode panel, and the micro-cell array and the control electrode panel are pasted together by lamination to form a micro-cell array box. .
  • a perfusion tube with a needle tip is used, and the needle tip is aligned with a perfusion device that needs to be perfused with the same electrophoretic display liquid, and the electrophoretic display liquid is input to the perfusion device, and injected into the micro-cell by capillary force.
  • the original air and excess electrophoretic display liquid in the microcell are discharged through the conduit 551 at one end of the microcell subunit of the same column.
  • the catheter 551 and the infusion device 552 are sealed with a sealant, and the entire electrophoretic display device is completed.
  • the electrophoretic display device is filled with four kinds of display liquids prepared by a known method, that is, referring to FIG. 4, 411 to M/W (magenta/white), 412 to C/W (cyan/white), 413 to Y/. W (yellow/white) and 414 to K/W (black/white), whereby four adjacent microcell subunits constitute an electrophoretic display unit.
  • four adjacent microcell subunits constitute an electrophoretic display unit.
  • the electrophoretic display liquid in the corresponding micro-cell sub-unit is controlled to a specific color, thereby causing each electrophoretic display.
  • the unit as a whole presents a certain color.
  • the specific control voltage and displayed color combination are shown in the table below.
  • the macro color of the combined display unit Voltage Display color The macro color of the combined display unit 411 15V magenta black 411 0 White White 412 15V green 412 0 White 413 15V yellow 413 0 White 414 15V black 414 0 White 411 15V magenta magenta 411 0 White green 412 0 White 412 15V green 413 0 White 413 0 White 414 0 White 414 0 White 411 0 White yellow 411 15V magenta blue 412 0 White 412 15V green 413 15V yellow 413 0 White 414 0 White 414 0 White 411 15V magenta red 411 0 White green 412 0 White 412 15V green 413 15V yellow 413 15V yellow 414 0 White 414 0 White 414 0 White 411 White

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)

Description

一种电泳显示装置及其制备方法
技术领域
本发明涉及一种电泳显示装置及其制备方法。
背景技术
与传统的平板显示技术相比,电泳显示具备能耗低、可弯曲,对比度高、高图象双稳性、可视性好、应用简单。结合了传统纸张和电子显示的优点,电泳显示是当前电子纸应用领域中最具潜力的技术。电泳显示技术大约在上世纪70年代提出,并逐步得到广泛重视。
美国的Eink公司发表了一系列的专利,包括以下专利如US6120588、US6652075、US6822782、US6982178、US7079305和US7230750等。其主要技术是将可以在外加电场下显示两种或者多种色彩的电泳显示液由微胶囊包覆起来,并在导电基材表面涂布有一层均匀的微胶囊薄层,然后将所制备的涂层与控制电路结合在一起得到电泳显示装置。该技术通过微胶囊包覆的方法较好地解决了电泳显示液的稳定性的问题,也容易得到一个均匀的电泳显示材料薄层,能够很好地实现两种或者数种色彩的显示以及得到这些色彩的中间状态。但是用这种技术来显示全彩色有很大的难度,主要在于如何将多种能够显示不同基本颜色的微胶囊均匀地、有序地分布在导电基材上,并且同时形成尺寸较小的像素单元。
美国的Sipix公司提出了一种微杯技术来实现电泳显示,如专利US6672921、US6751008和US6753067所述。Sipix公司的技术发展了一种连续生产微杯的方法,在微杯里灌注电泳显示液,然后再进行封装。这种技术可以很好地实现微杯的连续生产,也较好地解决了电泳显示液的稳定性问题。为了实现全彩色的显示,需要将不同的电泳显示液灌注在相邻的微杯里,从而形成一个基本的彩色显示单元。但是灌注电泳显示液后,在封装的过程中如何避免不同显示液的混杂有较大的困难。
发明内容
本发明所要解决的技术问题在于以现有的电泳显示技术为基础,并结合现有的电子工业和其他行业的成熟技术,提供一种新的电泳显示装置的设计方案,可以在单一显示屏上直接实现多种颜色或者全彩色的图像文字显示。
如前所述,现有的电泳显示屏主要基于微胶囊或者微杯技术,微胶囊技术解决了电泳显示液的稳定性问题,但其很难用于实现全彩色显示。微杯技术既解决了电泳显示液的稳定性问题,也可以通过在相邻微杯灌注不同显示液而实现全彩色的显示,但其不能避免在封装过程中显示液混杂的问题。
在现有技术的基础上,本发明人提出了一种构思,即先将具有部分或全部相互连通的微池的电泳显示层与一个透明的公共电极面板以及带控制电路的控制电极面板或临时面板进行封装,组成一个完整的微池阵列空盒,然后再将电泳显示液灌注到电泳显示层的微池中的方法,这样就有效地解决了显示液混杂的问题。
基于以上构思,本发明提供了一种电泳显示装置,具体技术方案如下:
一种电泳显示装置,其电泳显示层包括多个基本显示单元,其特征在于,每一基本显示单元包含一组微池亚单元,每个微池亚单元由可在封装之后实现电泳显示液的灌注相互连通的微池构成,所述微池包含电泳显示液。
优选的,所述微池亚单元在横向或纵向的一个方向或两个方向上彼此连通。这样的布局节省材料,并且使得灌注方式高效,省力。
所述相互连通的微池一端连有灌注装置,另一端连有导管。如果所有微池均灌注同一种电泳显示液,则可以将所有微池设置成彼此连通的,这样只需在所有微池的一端设置一个灌注装置,另一端设置一个导管。
所述单个微池的平面面积一般为1μm2-4×108μm2,优选为25μm2-25×104μm2,更优选为1×102μm2-4×104μm2,最优选为4×102μm2-1×104μm2
所述单个微池的高度一般为1-1000微米,优选5-200微米,更优选10-100微米,最优选10-30微米。
所述每一微池亚单元中的微池之间的连接通道的宽度一般为1-100微米,优选2-50微米,更优选2-20微米。
所述单个微池的形状优选为菱形;所述微池的池壁由不导电或者导电率极低的材料构成,如玻璃、塑料、金属氧化物、或者其他合适的材料。
所述的透明的公共电极面板包括透明基材层和涂布在透明基材上的透明导电层,其中透明导电层材料可选自铟锡氧化物(ITO),氧化锌(ZnO)、二氧化锡(SnO2)或氧化铟(In2O3);而透明基材材料可选自PET、尼龙、聚苯乙烯、聚乙烯、聚甲基丙烯酸甲酯或聚氯乙烯。
所述控制电极面板包括基材层和导电层,其中导电层材料可选自锡氧化物(ITO),氧化锌(ZnO)、二氧化锡(SnO2)或氧化铟(In2O3)、碳(C)、金(Au)、银(Ag)、铜(Cu)、铝(Al)、薄膜晶体管(Thin Film Transistor)、有机薄膜晶体管(Organic Thin Film Transistor)等等;而基材材料选自PET、尼龙、聚苯乙烯、聚乙烯、聚甲基丙烯酸甲酯或聚氯乙烯,环氧树脂、FR-4、玻璃等。控制电极面板优选玻璃基板的TFT和柔性基板的OTFT。
所述的控制电极面板上是由多组的次单元电极组成,作为一种具体的实施方式,每一个次单元电极能够对一个微池 亚单元 区域进行电压控制,或是对单个微池进行电压控制,根据显示的实际情况而定。一组的次单元电极组成一个单元电极,一个单元电极驱动一个显示单元,作为一种优选的实施方式,每一个次单元电极都能够独立进行电压的控制,包括电压的大小和驱动时间。
所述临时面板可以是只有基材层,或是包括基材层和涂布在基材上的导电层,其中导电层材料可选自铟锡氧化物(ITO),氧化锌(ZnO)、二氧化锡(SnO2)、氧化铟(In2O3)、碳(C)、金(Au)、银(Ag)、铜(Cu)、铝(Al);而基材材料选自PET、尼龙、聚苯乙烯、聚乙烯、聚甲基丙烯酸甲酯或聚氯乙烯等。优选涂有铝膜的PET作为临时面板。将上述临时面板去掉,再将上述带有公共电极面板的电泳显示层组装在一块控制面板上,就可以组成一个成品显示装置。
所述微池里的电泳显示液可以是一种单粒子体系,即只有一种带电的固体颜料颗粒分散在含有有机染料的溶剂中,固体颜料和染料具有不同的颜色。
所述微池里的电泳显示液也可以是一种双粒子或者多粒子体系,即至少有两种不同颜色的固体颜料粒子分散在溶液中。
在一个基本显示单元内,相邻的微池亚单元可以灌注同一种电泳显示液,也可以灌注不同种类的电泳显示液。
所述基本显示单元的一组微池亚单元,可以为四个微池亚单元,也就是可以灌注四种不同种类的电泳显示液。
所述显示单元里灌注有四种不同的电泳显示液的具体方案可以为:三种为由一种公共颜色的着色剂和一种与公共颜色着色剂颜色不同的基本颜色着色剂组成的电泳显示液,另一种为同时含有白色和黑色着色剂的电泳显示液,其中所述公共颜色的着色剂为白色着色剂或黑色着色剂。四种不同的电泳显示液里的着色剂的颜色组合可以分别为黑色/白色、红色/白色、蓝色/白色、和绿色/白色;还可以分别为黑色/白色、青色/白色、品红色/白色、和黄色/白色。
所述每个次单元电极的驱动电压可独立调节,可以通过调节电压的大小或电压的驱动时间,或者同时调节电压的大小和驱动时间,以此来改变对应微池区域电泳显示液的颜色灰度,来达到预期的显示颜色灰度。通过同一个基本显示单元下的各次单元电极控制的微池的颜色灰度,来调配出基本显示单元的颜色效果,最终由各个基本显示单元组成了整个显示画面。
本发明还涉及电泳显示装置的制备方法,其制备包括如下步骤:
(1)透明导电膜和透明基材层构成透明公共电极面板,在透明公共电极面板的导电膜一面涂布一层材料膜;
(2)将透明基板上的步骤(1)所述的材料膜制备成至少有同一微池亚单元中的各个微池彼此连通的微池阵列;
(3)基材层和导电层构成控制电路面板,在控制电极面板的导电层制备多个次单元控制电极,利用粘粘剂将该控制电极面板与步骤(2)所述的透明基板上的微池阵列层封装在一起,形成微池阵列盒;
(4)在步骤(3)所得微池阵列盒中注入电泳显示液,将微池阵列盒密封。
本发明的电泳显示装置在技术上相对简单,容易实施,彻底地解决了微杯技术中的显示液混杂问题,另外,通过特定的显示液的组合可以实现多种颜色和全彩色的显示。
附图说明
图1为电泳显示装置的横截面示意图;
图2为一种实施方式的电泳显示装置中多个微池的整体效果示意图;
图3为一种实施方式的电泳显示装置中部分微池放大后的示意图;
图4为一种实施方式的电泳显示装置的基本显示单元的示意图;
图5为显示装置的各个制作阶段的示意图,其中:
图5a为涂布了不导电或导电率极低的材料的透明基板层;
图5b为本发明的一种实施方式的凸式模具示意图;
图5c为本发明的一种实施方式的掩模版示意图;
图5d为本发明的一种实施方式的制备好的微池阵列的示意图;
图5e为本发明的一种实施方式的控制电极面板的示意图;
图5f为本发明的一种实施方式的灌注操作示意图。
具体实施方式
定义
本发明中的上下文中,术语'基本显示单元',是指显示装置的整个显示平面区域划分为许许多多的小区域,每一个小区域显示出显示画面的其中一个小像素,以上所述的小区域就是基本显示单元。
术语'微池亚单元',连通在一起的若干个微池组成了一个微池亚单元,一个微池亚单元下包含的微池数量根据实际的应用情况而定。
术语'次单元电极',是指一个基本显示单元再分为若干个显示区域,每一个显示区域对应的控制面板上的一个小的控制电极,这个小的控制电极就叫次单元电极。
本发明的电泳显示装置的一种实施方式如图1所示,最上面一层为透明基材110,该材料可以是玻璃、其他无机透明材料或者透明塑料,包括但不限于聚酯(如PET: 对苯二甲酸乙二酯 )、尼龙、聚苯乙烯、聚乙烯、聚甲基丙烯酸甲酯、聚氯乙烯和其他透明的高分子材料。面板第二层为涂布在透明基材110上的一层导电的透明材料120,该材料包括并不限于氧化铟锡(ITO)、氧化锌(ZnO)、二氧化锡(SnO2)、氧化铟(In2O3)和其他导电透明无机材料和导电透明高分子材料。110和120组成了公共电极面板,110和120材料的选择应根据电泳显示装置的应用来决定。在室外的固定装置上,可以优选涂布有ITO的玻璃板材,充分利用玻璃材料的透光性好、环境稳定性高的特点。在需要弯曲或折叠的场合下,优选涂布有ITO的塑料,更优选涂布有ITO的聚酯材料,再进一步优选涂布有ITO的PET。
130 为电泳显示层,其另外一面为具有导电材料140的控制电极面板150,当然该控制电极面板可以先利用一个临时面板来替代。导电材料140可以为金属材料如金、银、铜、铝等、导电氧化物材料如ITO、ZnO、SnO2、In2O3等和薄膜晶体管TFT(Thin Film Transistor)、有机薄膜晶体管OTFT(Organic Thin Film Transistor)等;面板150的材料可以为在工业和电子行业里使用的各种片材、板材和薄膜材料,例如各种塑料、陶瓷材料和复合材料。导电材料140可以通过现有的各种方法在面板150上制作需要的结构或器件,例如涂布、电镀、真空溅射、真空镀膜、刻蚀等其他工艺。控制电极面板优选的是玻璃基板的TFT和柔性基板的OTFT。
所述临时面板可以是只有基材层,或是包括基材层和涂布在基材上的导电层,其中导电层材料可选自铟锡氧化物(ITO),氧化锌(ZnO)、二氧化锡(SnO2)、氧化铟(In2O3)、碳(C)、金(Au)、银(Ag)、铜(Cu)、铝(Al);而基材材料选自PET、尼龙、聚苯乙烯、聚乙烯、聚甲基丙烯酸甲酯或聚氯乙烯等。优选涂有铝膜的PET作为临时面板。将上述临时面板去掉,再将上述带有公共电极面板的电泳显示层组装在一块控制面板上,就可以组成一个成品显示装置。
在导电材料层120和140之间封装有电泳显示层130,电泳显示层包括多组基本显示单元,每一基本显示单元包含一组微池亚单元,每个微池亚单元由彼此连通的微池构成,不同亚单元内灌注有相同或不同颜色的电泳显示液,微池由池壁131围成。池壁131的材料应为完全不导电或者导电率极低的材料,如玻璃、塑料、金属氧化物、或者其他合适的材料。单个微池的形状可以有多种选择,包括但并不限于正方形、长方形、菱形、三角形、六边形、八边形、圆形、椭圆形、球形、椭球形。微池应选择合适的形状使得池壁所占的面积在整个显示屏里最小化,尽量增加显示屏的有效显示面积。
图2是一种微池方案的总体效果示意图,图中的黑色线条代表了微池的池壁,每一个菱形区域代表了一个微池,此方案将微池设计成菱形,使池壁所占面积较小,有效地增加了显示屏的有效显示面积。同时图2只是示意了一定面积的微池方案,微池区域的大小取决于实际的应用,应与实际电泳显示装置的显示面积相当。
图3是一小块电泳显示微池的放大示意图,即图2中虚线框所示位置。同图2类似,图3中的微池形状为菱形,如前所述,微池的形状可以是任意一种形状。为了方便解释微池的设计方案,图3只包括了数目极其有限的几个微池。实际电泳显示屏的微池数目可能会远大于图3所示意的数量,具体的数量取决于实际的电泳显示屏的尺寸。如图3所示,相邻的两个微池(例如微池311和微池312)之间可能会有一个狭窄的通道321互相连接使微池连通。互相连通的微池组成一个亚单元,如图3中的微池311、312、313和314就组成了一个微池亚单元。相邻显示单元的微池亚单元可以在纵向上相互连通,例如由微池311、312、313和314组成的微池亚单元与相邻的纵向的下一个显示单元的微池通过一个狭窄的通道321连接在一起。这样,显示屏内的同一纵向的微池都通过通道321相互连接起来,随后通过灌注步骤,灌注同一种电泳显示液。但是不同纵向的微池可能属于不同的显示单元,在驱动的过程中由控制电路单独驱动。相邻的微池在显示的时候有可能显示不同的显示状态,也有可能被驱动成相同的颜色,这完全取决与显示的需要。
在微池阵列封装以后,每一列微池的一端有一个较长的导管322用于在灌注电泳显示液的时候释放空气和多余的电泳显示液,在另一端连接有用于灌注电泳显示液的灌注装置323。图3中只是列举了一个显示单元的微池,实际上显示屏内导管322和灌注装置323之间的微池的数目会远远多于图3所列示的微池。在制造显示屏的时候,应尽量将灌注装置设计在这个显示屏的同一个边缘,有利于灌注电泳显示液。通过现有技术如毛细管、微小尺寸的针头、液晶显示屏灌浆设备等设备将需要灌注的电泳显示液通过灌注装置323注入到微池里;在外加压力和液体在微池里因表面张力而产生的毛细作用力的共同作用下使电泳显示液充满相互连通的所有微池。同时微池里原有的空气和多余的电泳显示液通过导管322排出,也可以通过外加真空的办法加速这一灌注过程。在灌注完成之后,用密封胶或是热压密封方式等方式,将导管322和灌注装置323封住,防止电泳显示液的流失和空气的进入。
在一个亚单元内部的所有微池里应灌注同种电泳显示液,相邻的亚单元可以灌注不同颜色的电泳显示液,也可以灌注相同颜色的电泳显示液。在图3中相邻的微池亚单元灌注有四种不同颜色的电泳显示液,这只是列举的一个例子,实际的电泳显示屏的电泳显示液的颜色种类一般为四种,也可根据需要改为一种,两种,三种,或者甚至更多种类。具体的电泳显示液的颜色的种类和颜色的组合应根据实际应用的需要来决定。
在实际微池的平面布局时,单个微池(例如微池311或微池312)的尺寸(这里所述的尺寸是指微池的平面大小,而不是微池介于面板120和140之间的高度)可能由许多因素决定。单个微池的尺寸不宜太大。太大的微池一方面会限制电泳显示屏的分辨率,从而影响最终的显示效果;另一方面大尺寸的微池会影响固体颜料颗粒在电泳显示液里的稳定性,进而影响显示屏的长期显示效果和寿命。这是由于在大尺寸的微池里填充有相对较大体积的电泳显示液,会导致在单个微池里的固体颜料颗粒数量较多。即使采用了多种物理和化学的方法提高固体颜料颗粒在电泳显示液里的分散稳定性,固体颗粒依然会因受重力影响而缓慢沉降从而影响显示效果。如果沉积在一起的固体颗粒数目有限,那么它们在外加电场的驱动下会比较容易重新移动并分散到电泳显示液里,不会对显示效果有太大的影响。但是如果沉积在一起的固体颗粒数目太多,即使在外加电场的作用下,也难以使全部的固体颗粒重新分散到液相中,从而造成实际显示的颜料颗粒数量不够而影响最终的显示效果。然而,另一方面,研究表明,采用过小的微池尺寸并不会显著提高固体颗粒在液相中的稳定性,而且会大幅度增加显示器面板的制造成本和周期。经研究表明,单个微池的平面面积一般为1μm2-4×108μm2,优选为25μm2-25×104μm2,更优选为1×102μm2-4×104μm2,最优选为4×102μm2-1×104μm2
与微池的尺寸类似,微池的高度(这里微池的高度对应于面板120和140之间的距离)也受多种因素的影响。如果微池的高度太高,电泳显示液里的固体颜料颗粒在外加电场的驱动下从一侧面板移动到另一侧的面板需要时间较长,从而影响电泳显示屏的颜色变化的响应速度。但过小的微池高度会使得在单位面积里的颜料颗粒数目不足,不能完全掩盖电泳显示液里的另外一种颜色,导致显示屏的色彩不够纯正和鲜亮。经研究表明,单个微池的高度应在1-1000微米的范围内,优选5-200微米,更优选10-100微米,最优选10-30微米。
在设计电泳显示装置的时候,也应该选择合适的相邻微池之间的通道321的宽度。为了使电泳显示液在被灌注到显示屏的时候能顺利通过通道321,进入亚单元里所有的微池,不会引起堵塞,通道321应该有足够的宽度。但通道321的宽度也不宜太大。如果通道过宽,会造成相邻微池里的电泳显示液和固体颜料颗粒互相流通,因此有可能会造成某些微池内的颜料颗粒浓度偏高,而其他的微池里的固体颜料颗粒数目偏少,使得同一个亚单元内的微池里的电泳显示液不均匀,有可能导致电泳显示屏的色彩不均匀,影响最终的显示效果。经研究表明,通道321的宽度应在1-100微米的范围内,优选2-50微米,更优选2-20微米。
微池里灌注的电泳显示液为现有技术所通常使用的,可以参考本发明人在申请号为CN101082752B和CN101738814A中所公开的内容。电泳显示液可包括多种成分,但至少包括一种非极性或低极性溶剂和一种表面带有一定数目电荷的固体颜料颗粒。在外加直流电场的影响下带电的颜料颗粒可以在溶剂中朝某一个特定的方向运动。为了控制颜料颗粒在溶剂中的稳定性和电泳特性,电泳显示液里还包括其他次要成分,如蓝色染料Blue AHF(美国United Color公司)等有机染料,如 聚醚改性三硅氧烷、Span 80(美国Aldrich公司)等 表面活性剂,如BYK 164(德国毕克化学公司)等粒子分散剂,如OLOA 11000等粒子电荷控制试剂,如聚甲基丙烯酸甲酯、聚异丁烯等粘度调节试剂或其他成分。
电泳显示液的溶剂可以是各种非极性或低极性的有机溶剂或它们的混合物,包括各种芳香烃类但并不限于甲苯、苯、二甲苯,各种直链和支链的碳氢化合物但并不限于壬烷、葵烷、Isopar系列溶剂、Norpar溶剂或者其他烷烃类溶剂,各种卤代烃但并不限于氯仿、四氯化碳,各种环烃但并不限于环己烷,以及其他溶剂。溶剂应选取高沸点、低挥发性、低粘度、低毒性的有机液体,优选各种直链和支链的碳氢化合物,更优选Isopar和Norpar系列的碳氢化合物。
电泳显示液里的固体颜料颗粒可分为无机颜料粒子和有机颜料粒子,无机颜料包括但并不限于二氧化硅、二氧化钛、氧化铬、氧化铁、二氧化锌、氧化铜、氧化铅、碳黑、硅酸盐、钛黄、铬黄、铅铬绿、锰紫、铁蓝、钴蓝、锌白、镉黄、镉红、硫酸钡、钼橙、群青、天青蓝、翡翠绿、翠绿等;有机颜料包括但不限于有机黄色颜料(颜料黄174、联苯胺黄、坚牢黄FGL、汉沙黄R)、有机橙色颜料(联苯胺橙、颜料橙5)、有机蓝色颜料(群青蓝、蒽醌蓝)、有机红色颜料(苝红、永固枣红FRR、甲苯胺紫红)等。
为了防止粒子之间由于相互吸引而絮凝造成显示液的不稳定,可以通过物理或者化学的方法对颜料颗粒的表面进行改性来提高其在溶剂中的稳定性。物理的方法包括但不限于在显示液中加入高分子稳定剂或者表面活性剂,如分散剂NNO、烷基苯磺酸钠、Solsperse 26000(英国ICI公司), 使其吸附于粒子表面, 从而使粒子之间产生斥力来提高粒子在溶液中的分散稳定性。化学的方法包括但不限于将高分子链以共价键的方式连接在颜料颗粒的表面,提高其在溶液中的分散稳定性,如将聚苯乙烯、聚甲基丙烯酸甲酯或者其他高分子接枝在颜料颗粒表面来提高颜料颗粒在溶液中的稳定性。
电泳显示液包括但不限于单粒子体系和双粒子体系。在单粒子体系里只有一种带电的固体颜料颗粒分散在含有有机染料的溶剂中,固体颜料和染料具有不同的颜色。在通电的情况下固体颜料粒子可以运动到显示的一侧,显示屏因此表现为固体颜料的颜色;颜料颗粒也可以移动到显示屏的背面,显示屏则呈现出有机染料的颜色。双粒子体系里有两种不同颜色的固体颜料粒子分散在溶剂中,在通电的情况下显示屏呈现出其中一种颜料粒子的颜色;在改变电场的情况下也可以让显示屏呈现另一种颜料粒子的颜色。
在本专利所发明的电泳显示装置里,所有的微池里可以灌注同一种电泳显示液,在这种情况下,面板只能实现电泳显示液里的着色剂(包括颜料和染料)的颜色以及由这些着色剂的颜色混合而产生的衍生颜色的显示。例如面板里的微池灌注有一种含有白色和黑色着色剂的电泳显示液,面板就能实现一种全白色或者全黑色的显示状态,以及介于白色和黑色之间的各种灰色。以上只是列举了一种电泳显示液来帮助阐述本专利,但并不意味着本专利所涉及的面板只能灌注含有白色和黑色着色剂的电泳显示液。在微池里可以灌注任何一种电泳显示液,来满足实际应用的需求。
在本专利所发明的电泳显示装置里,不同的微池亚单元里也可以灌注有不同的电泳显示液,即每种电泳显示液里包含有不同颜色的着色剂,从而实现多种颜色或者全彩色的显示。以下将具体阐述如何利用本专利所发明的显示面板,结合电泳显示的技术来实现全彩色的显示。
在当前的实际应用中,全彩色可通过三种基本颜色的组合或者更多种颜色的组合来实现。例如液晶显示屏是通过红色(Red)、绿色(Green)、蓝色(Blue)三种颜色的不同组合来表达其他颜色的,即RGB体系;在彩色打印和印刷技术中,三种基本颜色是青色(Cyan)、品红(Magenta)和黄色(Yellow),即CMY体系。在电泳显示屏里,基本色可以采用RGB体系,也可以采用CMY体系,或者其他色彩体系。从颜色的基本原理出发,电泳显示技术类似于彩色打印或印刷技术。因此彩色电泳显示屏可以选择CMY系列,即采用青色、品红和黄色为三种基本颜色。以下文字以CMY体系为基础具体阐述了如何实现全彩色的电泳显示,但是这并不意味者本专利只局限于CMY体系。在实际应用中,本专利所发明的电泳显示面板可以采用任何一种色彩体系,包括但不局限于RGB体系和CMY体系;具体的基本色的选择应根据实际应用的要求和电泳显示液里所含有的着色剂的种类来决定。
电泳显示面板的微池里可以灌注三种不同的电泳显示液来实现CMY基本颜色,每种显示液里含有其中一种颜色的着色剂再加上一种公共颜色(白色或黑色)的固体颜料粒子或有机染料。在本发明中,为了较好地提供白色和黑色,还可以增加一种黑/白电泳显示液。虽然更多种类的颜色组合可以提供更加丰富的颜色和宽广的色谱,但是在电泳显示的实际应用中这会显著增加色彩控制软件的工作量和控制电路的复杂程度,同时也会增加电泳显示材料的制备难度和生产流程。因此本发明优选四种电泳显示液的组合来实现全彩色的电泳显示,更优选分别含有CMY三种基本色与另外一种公共颜色的电泳显示液加上黑/白电泳显示液的组合,进一步优选C/W(青/白)、M/W(品红/白)、Y/W(黄/白)和K/W(黑/白)电泳显示液的组合。
在本发明的一种实施方式中,四种电泳显示液分别被灌注在相邻的四个微池亚单元里,如图3所示。图3提供了12个微池亚单元的放大图,每个亚单元里的微池相互连通并且灌注有同一种电泳显示液;每四个相邻的亚单元分别灌注不同的电泳显示液,并组成一个完整的基本显示单元。整个显示装置的平面显示区域由不断重复的基本显示单元构成;每一个基本显示单元包括灌注有四种不同颜色的电泳显示液的微池亚单元,这四种不同颜色的亚单元的顺序可以是任何一种组合。
控制电极面板上的控制电极是现有技术中的常用技术,其可以通过使带电颜料粒子移动来改变显示屏显示的颜色,如 中国专利CN100437714C和CN101373581 所公开的内容。本发明的一种实施方式中,在下层控制电极面板上与每个微池(或是每一个微池亚单元)所对应的位置有一个独立的次单元电极,每个控制电极的尺寸与微池(或是微池亚单元)的尺寸相当,并且每个控制电极能独立施加电压从而控制微池(或是微池亚单元)的颜色状态。在控制显示效果的时候,相邻的四个灌注有不同颜色的电泳显示液的微池亚单元411、412、413和414组成一个如410所示的基本显示单元,如图4所示。
本发明设计的电泳显示屏可以通过分别控制单个微池颜色(或是每一个微池亚单元)的方法来达到多种色彩和全彩色显示的目的。当指定的基本显示单元需要显示三种基本色彩中的一种颜色的时候,只需将含有该色彩的电泳显示液的微池驱动至这种颜色的饱和状态,其他微池显示白色即可。如图4所示,当微池亚单元411、412、413和414中分别灌注有M/W(品红/白)、C/W(青/白)、Y/W(黄/白)和K/W(黑/白)电泳显示液,将微池亚单元411中的全部微池驱动至品红色(Magenta)的状态,其它微池亚单元412、413和414中的微池全部驱动至白色状态,这个基本显示单元的总体色彩则为品红色。青色和黄色的显示可以通过类似的方法实现。白色的显示则更为简单,只需将所有次级单元驱动至白色的状态即可。黑色则可以通过将四个微池亚单元411、412、413和414中的所有微池驱动至白色的相反状态,即四个微池亚单元分别呈现品红色、青色、黄色和黑色,这时基本显示单元由于颜色叠加的作用在宏观上呈现黑色。其它复合色彩的显示需要涉及到比较复杂的驱动方式的组合。又比如,当微池亚单元412和413的C/W(青/白)和Y/W(黄/白)两种电泳显示液所在的微池在同一时间分别驱动到青色和黄色的状态,同一基本显示单元的其它两个微池亚单元411和414驱动到白色的状态,整个基本显示单元则由于青色和黄色的叠加作用在宏观上呈现绿色。其他色彩可以通过类似的相邻微池亚单元颜色的组合来实现。
以TFT或OTFT的控制电极面板为例进行说明,但本发明不仅限于TFT或OTFT控制电极。根据电泳显示液的灰度与驱动的电压的大小或驱动时间有关系,在相同电压下,如一般采用±15V电压,电泳显示液随着驱动时间的变化,灰度会发生相应的变化,利用驱动时间上的变化,可以产生不同的灰度。进行驱动黑白电泳显示液,先给控制电极面板上的次单元电极输入电压,电泳显示液直到显示白的状态,即刷屏,然后再输入反向电压,随着驱动时间的变化,黑色灰度会逐渐增加,直到一个饱和的状态,全黑,这个时间为Ts。如果将这种电泳液的灰阶分为8个灰阶,简单地,在驱动电压15V,将每个灰阶的驱动时间为(n-1)*Ts/(8-1),n是表示第n个灰阶。即n=8时,表示驱动到全黑。其它的彩色电泳显示液,也可以利用此方法。如品红/白的电泳显示液,先进行刷屏,即先驱动到全白状态,再进行反向电压,第n个灰阶对应的输入驱动时间即是(n-1)*Ts/(8-1)。这样不同电泳显示液的不同灰阶的组合,可组合出许多的彩色。
进行灰级驱动的方法也可以参考专利CN101430864A驱动双稳态电光显示器的方法。TFT或OTFT可以输出+15V、-15V和0V的电压,而公共电极面板上的电压为0V。已经发现,将像素从不同等级之间的切换所需要的驱动电压波形是不一样的,如颜色灰度从等级1改变为等级0,与从等级1改变到等级2所需要的电压波形是不一样的,而且不同颜色灰度切换到相同的颜色灰度所需的驱动电压波形也可能不一样。
如颜色灰度从等级0改变到等级1的驱动波形:
第1帧 第2帧 第3帧 第4帧 第5帧
驱动电压(V) 15 0 15 -15 -15
从等级2改变到等级1的驱动波形
第1帧 第2帧 第3帧 第4帧 第5帧
驱动电压(V) 15 15 0 -15 -15
这上面二个表中驱动电压都是控制电极面板上输出的驱动电压,公共电极电压为0V。所以需存储包含转变所需的电压波形的数据查找表,通过数据查找表,找出相关的数据,进行目标颜色变度的驱动。通过精确控制每个微池(或是每一个微池亚单元)的驱动电压波形,可以实现单个微池的颜色的不同色度和灰度的变化。通过各微池亚单元之间颜色的叠加作用,可以在单个基本显示单元里呈现出多种颜色的总体效果,进而实现整个电泳显示屏全彩色显示的最终目标。
结合附图5各图,说明本发明的电泳显示装置的形成过程:
首先,在透明导电基板上涂膜:
如图5a所示,在带导电膜520的透明玻璃基板或塑料基板510上,通过涂布的方式(包括但不限于:预行计量涂敷,如片模涂层、狭缝或挤压涂敷、滑动或层叠涂敷、幕式淋涂;辊涂,如辊衬刮刀辊涂,浸渍涂布,喷涂,旋涂,刷涂;丝网印刷工艺;喷墨印刷工艺以及其它类似技术),将不导电或导电率极低的材料530,均匀涂在基板的导电膜一侧,这些材料可以是热塑性树脂、热固性树脂、或其前体的组合物,如环氧丙烯酸酯、聚氨丙烯酸酯的组合物,膜厚为1-1000微米,优选5-500微米,更优选10-500微米,最优选10-100微米;也可以涂可辐射固化材料膜, 如丙烯酸酯化的氨基甲酸乙酯低聚物、丙二酚型环氧树脂等,根据需要选择,膜厚度为1-1000微米,优选5-200微米,更优选10-100微米,最优选10-30微米。
然后,制备微池阵列;
当基板涂有热塑性树脂、热固性树脂、或其前体的组合物时,采用凸印的方法制作微池阵列:
通过刻蚀、雕刻或电铸的方法,依照要制备的微池阵列的形状,制作出了凸式模具,例如图5b所示的凸式模具540。
用基板的涂好热塑性树脂、热固性树脂或其前体物的一侧,压在凸式模具上,在高于所用热塑性树脂、热固性树脂或其前体物层的玻璃化转变温度的条件下,用凸式模具对树脂材料层进行模压,冷却后,模具与树脂材料层分开,制成例如图5d所示的微池阵列。
当基板涂有可辐射固化材料时,可以采用光刻的方法制作微池阵列:
通过按照微池阵列形状定做的例如图5c所示掩膜版590,用紫外线或其它形式的辐射将涂布在透明导电基板上的导电膜上的可辐射固化材料,直接进行曝光、显影来制作例如图5d所示的微池阵列。
当电泳显示层包含灌注装置以及导管等设置时,则制备的微池阵列也要包含该些设置,如图5d所示的几组微池两端设置的灌注装置552和导管551。
紧接着,制作微池阵列盒:
控制电路面板基板上具备多个次单元控制电极,这些次单元电极可以是TFT或是OTFT。在由基板和次单元电极组成的控制电极面板上涂上粘贴剂,粘贴剂可以是压敏粘贴剂、热熔粘贴剂、辐射固化粘贴剂等。将微池阵列覆盖在控制电极面板上,微池的一侧朝向控制电极面板的粘贴剂一侧,通过层压的方式,将微池阵列与控制电极面板粘贴在一起,制成微池阵列盒。
考虑到多种的电泳显示液的灌注,灌注装置优选进行错位设计,并且,灌注同种电泳液的灌注装置设计在同一水平线上,如图5f所示,这样的设计,有利于增加灌注装置的开口大小,也方便同种电泳液的灌注。
最后,在微池阵列中灌注电泳显示液:
例如图5f所示,通过现有技术如毛细管、微小尺寸的针头、液晶显示屏灌浆设备等设备将需要灌注的电泳显示液通过灌注装置552注入到微池里;在外加压力和液体在微池里因表面张力而产生的毛细作用力的共同作用下使电泳显示液充满同一亚单元内所有的微池。如果整个显示装置只灌注一种电泳液,则只需将微池阵列盒的灌注装置端完全浸入到电泳显示液中,保持导管裸露在空气中,通过毛细作用就可以将电泳显示液灌注在微池中。同时微池里原有的空气和多余的电泳显示液通过导管551排出,也可以通过外加真空的办法加速这一灌注过程。在灌注完成之后,用密封胶或是热压密封方式等,将导管551和灌注装置552封住,防止电泳显示液的流失和空气的进入。
实施例
下面举例说明具体设计实例。所举的实例只是用于帮助阐述这个专利,并不意味着本发明局限于所列举的实例。
实施例1
一、电泳显示装置的制备
1. 通过凸式模具制作微池阵列
在带ITO构成的导电膜的透明玻璃基板上,通过辊衬刮刀辊涂的方式,将包括环氧丙烯酸酯、聚氨丙烯酸酯的组合物,均匀涂在基板的导电膜一侧,膜厚25微米。
通过刻蚀的方法,依照微池阵列的形状制作出了凸式模具,其中,每个微池亚单元具有4个相互连通的微池,仅同一纵列的微池亚单元之间相互连通,而横向相邻的微池亚单元之间不连通,相互连通的微池一端具有一灌注端,另一端具有导管端。
用涂好树脂材料的基板一侧,压在凸式模具上,在60℃条件下,用凸式模具对树脂材料进行模压,冷却后,模具与树脂材料分开,制成微池阵列550。
2. 微池阵列盒的制作
如图5e所示,控制电路面板基板560上制作多个次单元控制电极570, 从而组成控制电极面板,这些次单元电极可以是TFT或是OTFT,每个次单元电极分别与一个微池亚单元相对应,尺寸相当,并可以独立控制该微池亚单元的电压。在由基板560和次单元电极570组成的控制电极面板上涂上压敏粘贴剂580。将微池阵列覆盖在控制电极面板上,微池的一侧朝向控制电极面板的粘贴剂一侧,通过层压的方式,将微池阵列与控制电极面板粘贴在一起,制成微池阵列盒。
3. 灌注电泳显示液
如图5f所示,采用带有针嘴的灌注管,将针嘴对准需灌注同种电泳显示液的灌注装置,将电泳显示液输入到灌注装置上,通过毛细作用力注入到微池里。同时微池里原有的空气和多余的电泳显示液通过同一纵列的微池亚单元一端的导管551排出。在灌注完成之后,用密封胶,将导管551和灌注装置552封住,则完成整个电泳显示装置的制作。
二、电泳显示装置的显示
该电泳显示装置中灌注了四种通过已知方法配制的显示液,即参考图4,411~M/W(品红/白)、412~C/W(青/白)、413~Y/W(黄/白)和414~K/W(黑/白),由此相邻的四个微池亚单元组成了一个电泳显示单元。并且,以图4中的一个电泳显示单元为例,通过调节控制面板上的各个次单元电极的电压,以控制对应的微池亚单元中的电泳显示液至特定颜色,从而使得每个电泳显示单元总体呈现某种颜色。具体的控制电压和显示的颜色组合见下表。
电压 显示颜色 组合的显示单元的宏观颜色 电压 显示颜色 组合的显示单元的宏观颜色
411 15V 品红 411 0
412 15V 412 0
413 15V 413 0
414 15V 414 0
411 15V 品红 品红 411 0
412 0 412 15V
413 0 413 0
414 0 414 0
411 0 411 15V 品红
412 0 412 15V
413 15V 413 0
414 0 414 0
411 15V 品红 411 0 绿
412 0 412 15V
413 15V 413 15V
414 0 414 0
试验证明,利用该电泳显示装置能够实现全彩色显示,并且颜色没有混杂。

Claims (19)

  1. 每一基本显示单元包含一组微池亚单元,每个微池亚单元由能够在封装之后实现电泳显示液的灌注相互连通的微池构成,所述微池包含电泳显示液。
  2. 一种电泳显示装置,其电泳显示层包括多个基本显示单元,其特征在于,一种电泳显示装置的制备方法,包括如下步骤:
    (1)透明导电膜和透明基材层构成透明公共电极面板,在透明公共电极面板的导电膜一面涂布一层材料膜;
    (2)将透明基板上的步骤(1)所述的材料膜制备成至少有同一微池亚单元中的各个微池彼此连通的微池阵列;
    (3)基材层和导电层构成控制电路面板,在控制电极面板的导电层制备多个次单元控制电极,利用粘粘剂将该控制电极面板与步骤(2)所述的透明基板上的微池阵列层封装在一起,形成微池阵列盒;
    (4)在步骤(3)所得微池阵列盒中注入电泳显示液,将微池阵列盒密封。
  3. 如权利要求1所述的装置或权利要求2所述的方法,其特征在于,所述微池亚单元在横向或纵向一个方向或两个方向上彼此连通。
  4. 如权利要求1、2或3所述的装置或方法,其特征在于,所述相互连通的微池一端连有灌注装置,另一端连有导管。
  5. 如权利要求1所述的装置或权利要求2所述的方法,其特征在于,所述单个微池的平面面积一般为1μm2-4×108μm2,优选为25μm2-25×104μm2,更优选为1×102μm2-4×104μm2,最优选为4×102μm2-1×104μm2
  6. 如权利要求1所述的装置或权利要求2所述的方法,其特征在于,所述单个微池的高度为1-1000微米,优选5-200微米,更优选10-100微米,最优选10-30微米。
  7. 如权利要求1所述的装置或权利要求2所述的方法,其特征在于,所述每一微池亚单元中的微池之间的连接通道的宽度为1-100微米,优选2-50微米,更优选2-20微米。
  8. 如权利要求1所述的装置或权利要求2所述的方法,其特征在于,所述微池的池壁由不导电或者导电率极低的材料构成。
  9. 如权利要求1所述的装置或权利要求2所述的方法,其特征在于,所述单个微池的形状为正方形、长方形、菱形、三角形、六边形、八边形、圆形、椭圆形、球形、椭球形,优选为菱形。
  10. 如权利要求1所述的电泳显示装置,其特征在于,在电泳显示层一侧还包括透明的公共电极面板,所述透明的公共电极面板包括透明基材层和涂布在透明基材上的透明导电层。
  11. 如权利要求10所述的电泳显示装置,其特征在于,在电泳显示层另一侧还包括控制电极面板或者临时面板,所述控制电极面板包括基材层和导电层。
  12. 如权利要求2所述的方法或权利要求11所述的装置,其特征在于,所述的控制电极面板上的控制电极由多组次单元电极组成,每一个次单元电极设置成能独立对一个微池亚单元区域或一个微池进行电压控制的结构,一组的次单元电极组成一个基本显示单元的控制电极。
  13. 如权利要求12所述的装置或方法,其特征在于,所述控制电极的每一个次单元电极设置成能够独立控制电压的大小和驱动时间的结构。
  14. 如权利要求1、10或12所述的装置或权利要求2所述的方法,其特征在于,所述相邻的微池亚单元内灌注有同一种电泳显示液或者分别灌注不同种类的电泳显示液。
  15. 如权利要求14所述的装置或方法,其特征在于,所述相邻的微池亚单元的灌注装置错位设计,并且,灌注同种电泳显示液的灌注装置设计在同一水平线上。
  16. 如权利要求13所述的装置或方法,其特征在于,所述显示单元里灌注有四种不同的电泳显示液,其中三种为由一种公共颜色的着色剂和一种与公共颜色着色剂颜色不同的基本颜色着色剂组成的电泳显示液,另一种为同时含有白色和黑色着色剂的电泳显示液。
  17. 如权利要求16所述的装置或方法,其特征在于,所述公共颜色的着色剂为白色着色剂或黑色着色剂。
  18. 如权利要求16所述的装置或方法,其特征在于,所述四种不同的电泳显示液里的着色剂的颜色组合分别为黑色/白色、红色/白色、蓝色/白色、和绿色/白色。
  19. 如权利要求16所述的装置或方法,其特征在于,所述四种不同的电泳显示液里的着色剂的颜色组合分别为黑色/白色、青色/白色、品红色/白色、和黄色/白色。
PCT/CN2011/078554 2010-09-06 2011-08-18 一种电泳显示装置及其制备方法 WO2012031520A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010286402.4A CN102385213B (zh) 2010-09-06 2010-09-06 一种电泳显示装置及其制备方法
CN201010286402.4 2010-09-06

Publications (1)

Publication Number Publication Date
WO2012031520A1 true WO2012031520A1 (zh) 2012-03-15

Family

ID=45810113

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/078554 WO2012031520A1 (zh) 2010-09-06 2011-08-18 一种电泳显示装置及其制备方法

Country Status (2)

Country Link
CN (1) CN102385213B (zh)
WO (1) WO2012031520A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103424947B (zh) * 2012-05-21 2018-11-09 广州奥翼电子科技股份有限公司 一种微胶囊电泳显示组件及其制作方法
CN105448423B (zh) * 2014-06-12 2018-06-22 宸鸿科技(厦门)有限公司 导电膜的制作方法及触控面板的制作方法及触控面板
CN106142919B (zh) * 2016-08-15 2018-08-31 浙江大学 一种字体可缩放的写字板
CN110231744A (zh) * 2019-07-17 2019-09-13 深圳秋田微电子股份有限公司 一种电泳显示器、电泳显示模组及其制作方法
CN111698492B (zh) * 2020-06-18 2021-04-02 掌阅科技股份有限公司 可局部变换显示颜色的方法、终端及计算机可读存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1862351A (zh) * 2006-06-12 2006-11-15 天津大学 微格法电泳显示器的制备
JP2008064888A (ja) * 2006-09-05 2008-03-21 Ricoh Co Ltd 電気泳動表示装置及びその製造方法
CN101154010A (zh) * 2006-09-29 2008-04-02 启萌科技有限公司 电子纸装置
CN101738814A (zh) * 2009-11-11 2010-06-16 广州奥翼电子科技有限公司 一种电泳显示液及其制备方法
CN101794051A (zh) * 2010-02-08 2010-08-04 天津大学 微杯型电泳显示器件的制备方法及电泳显示液制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1862351A (zh) * 2006-06-12 2006-11-15 天津大学 微格法电泳显示器的制备
JP2008064888A (ja) * 2006-09-05 2008-03-21 Ricoh Co Ltd 電気泳動表示装置及びその製造方法
CN101154010A (zh) * 2006-09-29 2008-04-02 启萌科技有限公司 电子纸装置
CN101738814A (zh) * 2009-11-11 2010-06-16 广州奥翼电子科技有限公司 一种电泳显示液及其制备方法
CN101794051A (zh) * 2010-02-08 2010-08-04 天津大学 微杯型电泳显示器件的制备方法及电泳显示液制备方法

Also Published As

Publication number Publication date
CN102385213A (zh) 2012-03-21
CN102385213B (zh) 2016-01-20

Similar Documents

Publication Publication Date Title
US7388572B2 (en) Backplanes for electro-optic displays
WO2012031520A1 (zh) 一种电泳显示装置及其制备方法
US10254622B2 (en) Polymer additives used in color electrophoretic display medium
EP3593341A1 (en) Drivers providing dc-balanced refresh sequences for color electrophoretic displays
JP2021503614A (ja) 二層微細構造のディスプレイプラズマモジュール及びその製造方法
CN206039109U (zh) 显示层结构及显示模块
JP2013057974A (ja) 電気泳動表示装置および電子機器
JP4508322B2 (ja) 表示装置
WO2012047000A2 (ko) 전기 영동 입자들 및 이의 제조 방법, 이를 이용한 디스플레이 장치, 및 구동 방법
US11430626B2 (en) High-resolution display plasma module and manufacturing method thereof
TW202223520A (zh) 用於先進彩色電泳顯示器之改良式驅動電壓及具有改良式驅動電壓的顯示器
KR100972471B1 (ko) 전기 영동 디스플레이 소자 및 그 제조 방법
WO2012030198A2 (ko) 전기 영동 입자들, 멀티 컬러 디스플레이 장치 및 이미지 시트
KR100662194B1 (ko) 전기영동 디스플레이 장치
CN114265256B (zh) 一种电子纸显示设备的制造方法
KR20070024752A (ko) 칼라 전자종이 디스플레이
US20110069372A1 (en) Electrophoretic display
KR100662198B1 (ko) 전자종이 디스플레이
KR102578744B1 (ko) 반사형 맞춤 컬러 표시장치
WO2024215136A2 (ko) 3차원 구조체를 포함하는 스마트 윈도우
JP3554222B2 (ja) 表示装置
KR20060123959A (ko) 멀티컬러 전자종이 표시소자 및 그 제조방법
JPH03238494A (ja) 電気泳動表示装置
WO2016170970A1 (ja) 表示装置および表示装置の製造方法
KR20070036354A (ko) 전자종이 디스플레이의 구동장치 및 이를 구비한 전자종이디스플레이

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11823043

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11823043

Country of ref document: EP

Kind code of ref document: A1