[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2012029227A1 - Controller and control method for master-slave robot, master-slave robot, control program, and integrated electronic circuit - Google Patents

Controller and control method for master-slave robot, master-slave robot, control program, and integrated electronic circuit Download PDF

Info

Publication number
WO2012029227A1
WO2012029227A1 PCT/JP2011/003713 JP2011003713W WO2012029227A1 WO 2012029227 A1 WO2012029227 A1 WO 2012029227A1 JP 2011003713 W JP2011003713 W JP 2011003713W WO 2012029227 A1 WO2012029227 A1 WO 2012029227A1
Authority
WO
WIPO (PCT)
Prior art keywords
force
information
slave
master
unit
Prior art date
Application number
PCT/JP2011/003713
Other languages
French (fr)
Japanese (ja)
Inventor
勇大 札場
津坂 優子
太一 佐藤
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2012511479A priority Critical patent/JP5032716B2/en
Priority to CN201180005128.1A priority patent/CN102686366B/en
Publication of WO2012029227A1 publication Critical patent/WO2012029227A1/en
Priority to US13/433,800 priority patent/US8504206B2/en
Priority to US13/934,529 priority patent/US9089967B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1628Programme controls characterised by the control loop
    • B25J9/1633Programme controls characterised by the control loop compliant, force, torque control, e.g. combined with position control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J3/00Manipulators of master-slave type, i.e. both controlling unit and controlled unit perform corresponding spatial movements
    • B25J3/04Manipulators of master-slave type, i.e. both controlling unit and controlled unit perform corresponding spatial movements involving servo mechanisms

Definitions

  • the present invention relates to, for example, a master-slave robot controller and control method for generating and teaching a robot arm master-slave robot operation, a master-slave robot having a master-slave robot controller, and a master-slave robot controller
  • the present invention relates to a control program and an integrated electronic circuit.
  • a force sensor is attached to the wrist of the robot, the teacher directly grasps the handle attached to the tip of the force sensor, guides the robot to the teaching point, and teaches the position of the robot Is known (see Patent Document 1).
  • a master-slave robot that feeds back the force acquired by the slave manipulator to the master manipulator and allows the person to feel the force applied to the slave manipulator
  • the teaching method using the control device is used (see Patent Documents 2, 3, and 4).
  • a person grasps and operates the master manipulator to teach the master manipulator. Then, based on the information taught to the master manipulator, a method of teaching to a slave manipulator having a size different from that of the master manipulator by enlarging or reducing the distance between the teaching points is used (see Patent Document 5). ).
  • Patent Document 1 since the force acquired by the robot is physically fed back to the person, the magnitude of the force transmitted to the person cannot be changed. For this reason, for example, when inserting a flexible board, if the component or work procedure is changed and the rigidity of the flexible board is lower, or the position where the robot grips the flexible board is farther from the tip of the board. In some cases, since the magnitude of the force acquired by the robot is reduced, the magnitude of the force transmitted to the person is also reduced, and the working time is greatly increased.
  • FIG. 29A shows a case where the gripping position is 5 mm from the insertion-side edge 104a
  • FIG. 29B shows a case where the gripping position is 10 mm from the insertion-side edge 104a
  • FIG. 29C shows a work procedure for inserting the flexible board 104 into the connector 106.
  • FIGS. 30 and 31 show the experimental results when the gripping position is 5 mm
  • FIG. 31 shows the experimental results when the gripping position is 10 mm
  • the solid line in FIGS. 30 and 31 indicates the magnitude of the force when the flexible substrate 104 collides with the connector 106
  • the broken line indicates the speed of the hand of the manipulator 105.
  • 30 and 31 indicate the experiment time (ms), the experiment start time is 0 ms, and the time until the experiment ends.
  • the left vertical axis indicates the magnitude of the force when the flexible substrate 104 collides with the connector 106 (N)
  • the right vertical axis in FIGS. 30 and 31 indicates the speed of the hand of the manipulator 105 (mm / ms). Indicates.
  • 30 and 31 show the insertion state of the flexible board 104 with respect to the connector 106, and what the flexible board 104 has with respect to the connector 106 in the experiment time indicated by the horizontal axis of the graph. Indicates whether the situation is present.
  • reference numeral A indicates that the flexible board 104 has collided with the entrance of the connector 106 and has started insertion
  • reference numeral B indicates that the flexible board 104 has collided with the back of the connector 106.
  • Patent Documents 2, 3, and 4 the magnitude of the force transmitted to a person can be changed using the control device of the master / slave robot.
  • the strength of the power cannot be clearly defined to change the size of. For this reason, the strength of the force during work is not clearly transmitted to the worker, and changing the magnitude of the force does not lead to a reduction in work time.
  • Patent Document 5 teaching is performed using a control device for a master-slave robot, but teaching is performed using only position information, force information is not used, and it is added to the slave manipulator from the outside during work. The transmitted force cannot be transmitted to the hand of the person holding the master manipulator.
  • An object of the present invention has been made in view of such problems, and even when parts or work procedures are changed, an operator can easily perform work without damaging an object in a short time.
  • An object of the present invention is to provide a master slave robot control device and method, a master slave robot, a control program, and an integrated electronic circuit.
  • the present invention is configured as follows.
  • a master-slave robot including a slave manipulator that grips an object and performs work while contacting the object, and a master manipulator that a person remotely operates the slave manipulator.
  • a force information acquisition unit that acquires force information applied to the slave manipulator from the outside;
  • a force correction point detection unit that detects a force correction point that is information of a section that needs to be corrected in the force information from the force information acquired by the force information acquisition unit;
  • a force transmission unit that transmits force information from the force correction unit to the master manipulator;
  • a master control unit that controls operation information of the master manipulator; Control of a master-slave robot connected to the slave manipulator and the master control unit, and comprising a slave control unit that outputs a control signal for transmitting operation information of the master manipulator sent from the master control unit to the
  • a slave manipulator that grips an object and performs work while contacting the object
  • a master-slave robot control device comprising a master manipulator that allows a human to remotely operate the slave manipulator, A master force information acquisition unit that acquires force information applied by the person to the master manipulator; A slave force correction point detection unit that detects a force correction point that is information of a section that needs to be corrected in the force information from force information acquired by the master force information acquisition unit; A slave force correction unit that corrects the force information of the section detected by the slave force correction point detection unit; A slave force transmission unit that transmits force information from the slave force correction unit to the slave manipulator;
  • a master control unit that controls operation information of the master manipulator; Control of a master-slave robot connected to the slave manipulator and the master control unit, and comprising a slave control unit that outputs a control signal for transmitting operation information of the master manipulator sent from the master
  • a master grip position acquisition unit that acquires position information for the person to grip the master manipulator;
  • a correction amount storage unit that stores relationship information between the positional information and the correction amount by which the person holds the master manipulator;
  • the force correction unit or the slave force correction unit is When the “master grip position information” is selected in the force correction method selection unit,
  • the master gripping position information acquisition unit acquires position information for gripping the master manipulator by the person,
  • a control device for a master-slave robot according to a thirteenth aspect, wherein a correction amount of the force information is obtained from the correction amount storage unit using the position information acquired by the master gripping position information acquisition unit.
  • a master slave robot comprising: a slave manipulator that grips an object and performs an operation while making contact with the object; and a master manipulator that a person remotely operates the slave manipulator.
  • a control method for a control device comprising: A force information acquisition unit acquires force information applied to the slave manipulator from the outside, In the force information, a force correction location that is information of a section that needs to be corrected is detected by the force correction location detection unit from the force information acquired by the force information acquisition unit, The force correction section corrects the force information of the section detected by the force correction point detection section, Transmit force information from the force correction unit to the master manipulator with a force transmission unit, When the person operates the master manipulator based on the force information from the force transmission unit, the operation information of the master manipulator is controlled by the master control unit, A control device for a master-slave robot connected to the slave manipulator and the master control unit, wherein the slave control unit outputs a control signal for transmitting operation information of the
  • the master manipulator and the slave manipulator A master-slave robot comprising the master-slave robot control device according to any one of the first to sixteenth aspects.
  • a master slave robot comprising: a slave manipulator that grips an object and performs an operation while making contact with the object; and a master manipulator that a person remotely operates the slave manipulator.
  • a control program for a control device On the computer, Acquiring force information externally applied to the slave manipulator with a force information acquisition unit; Detecting a force correction location, which is information of a section requiring correction in the force information, by a force correction location detection unit from force information acquired by the force information acquisition unit; A step of correcting the force information of the section detected by the force correction point detection unit by a force correction unit; Transmitting force information from the force correction unit to the master manipulator with a force transmission unit; When the person operates the master manipulator based on the force information from the force transmission unit, controlling the operation information of the master manipulator with a master control unit; The slave manipulator is connected to the master control unit, and the operation information of the master manipulator sent from the master control unit is transmitted to the slave manipulator
  • a master slave robot comprising: a slave manipulator that grips an object and performs work while contacting the object; and a master manipulator that a person remotely operates the slave manipulator.
  • An integrated electronic circuit of a control device A force information acquisition unit acquires force information applied to the slave manipulator from the outside, In the force information, a force correction location that is information of a section that needs to be corrected is detected by the force correction location detection unit from the force information acquired by the force information acquisition unit, The force correction section corrects the force information of the section detected by the force correction point detection section, Transmit force information from the force correction unit to the master manipulator with a force transmission unit, When the person operates the master manipulator based on the force information from the force transmission unit, the operation information of the master manipulator is controlled by the master control unit, A control device for a master-slave robot connected to the slave manipulator and the master control unit, wherein the slave control unit outputs a control signal for transmitting operation information of the master manipulator sent from
  • the master-slave robot, the robot control program, and the integrated electronic circuit of the present invention it is important among the force information applied to the slave manipulator from the outside when performing work. Only the force information of the process can be increased and transmitted to the master manipulator. As a result, the strength of the force during the work is clearly transmitted to the worker, and the work can be easily performed in a short time even when the parts or the work procedure is changed. Moreover, even when an operator applies excessive force to the master manipulator, it is possible to prevent the object from being damaged by reducing the force information transmitted to the slave manipulator.
  • FIG. 1 is a block diagram of a master-slave robot in the first embodiment of the present invention.
  • FIG. 2 is an explanatory diagram of the master robot system in the first embodiment of the present invention.
  • FIG. 3 is an explanatory diagram of the slave robot system according to the first embodiment of the present invention.
  • FIG. 4A is an explanatory diagram of a state in which a person in the first embodiment of the present invention works using a control device of a master slave robot
  • FIG. 4B is an explanatory diagram in the case where the person in the first embodiment of the present invention works using the control device of the master-slave robot
  • FIG. 5A is a graph showing the relationship between the force detected by the slave manipulator (slave side) and time for detecting the increase in force and increasing the force in the first embodiment of the present invention.
  • FIG. 5B is a graph showing the relationship between the speed detected by the slave manipulator and the time for explaining that the force increasing point in the first embodiment of the present invention is detected and the force is increased
  • FIG. 5C is a case where the direction of the positive / negative sign of the force sensor is the case of FIG. 4A, and the master manipulator for explaining that the force increase point is detected and the force is increased in the first embodiment of the present invention. It is explanatory drawing including the graph which shows the relationship between the power to transmit and time, FIG.
  • FIG. 5D shows a case where the direction of the positive and negative signs of the force sensor is that in FIG. 4B, and a master manipulator for explaining that the force increase point is detected and the force is increased in the first embodiment of the present invention.
  • FIG. 6 is a flowchart showing the flow of processing from the acquisition of force information and speed information to force correction in the first embodiment of the present invention
  • FIG. 7 is a block diagram of the master-slave robot in the second embodiment of the present invention
  • FIG. 8A is a graph showing the relationship between the force detected by the master manipulator and the time for detecting the force decrease point in the second embodiment of the present invention and explaining reducing the force;
  • FIG. 8B is a graph showing the relationship between the speed detected by the slave manipulator and the time for explaining that the force reduction point is detected and the force is reduced in the second embodiment of the present invention
  • FIG. 8C is an explanatory diagram including a graph showing the relationship between the force transmitted to the slave manipulator and the time for explaining that the force decrease point is detected and the force is decreased in the second embodiment of the present invention.
  • FIG. 9 is a flowchart showing a flow of processing from acquisition of force information and speed information to force correction in the second embodiment of the present invention
  • FIG. 10A is a block diagram of a master-slave robot in the third embodiment of the present invention
  • FIG. 10B is a block diagram of a master-slave robot in the third embodiment of the present invention.
  • FIG. 11 is a diagram showing a database having a detection method according to the third embodiment of the present invention.
  • FIG. 12A shows the force and time detected by the slave manipulator for explaining that the force increase point is detected and the force is increased in the third embodiment (when “force information” is selected) of the present invention.
  • FIG. 13A shows the force and time detected by the master manipulator for explaining that the force reduction point is detected and the force is reduced in the third embodiment (when “force information” is selected) of the present invention.
  • FIG. 13B shows the force and time to be transmitted to the slave manipulator for detecting the force decrease point and explaining the force decrease in the third embodiment of the present invention (when “force information” is selected).
  • FIG. 14A shows the force and time detected by the slave manipulator for explaining that the force increase point is detected and the force is increased in the third embodiment (when “speed information” is selected) of the present invention.
  • FIG. 14B shows the speed and time detected by the slave manipulator for explaining that the force increase point is detected and the force is increased in the third embodiment of the present invention (when “speed information” is selected).
  • FIG. 14C shows the force and time transmitted to the master manipulator for explaining that the force increase point is detected and the force is increased in the third embodiment (when “velocity information” is selected) of the present invention.
  • FIG. 15A shows the force and time detected by the master manipulator for explaining that the force reduction point is detected and the force is reduced in the third embodiment (when “velocity information” is selected) of the present invention.
  • FIG. 15B shows the speed and time detected by the slave manipulator for explaining that the force reduction point is detected and the force is reduced in the third embodiment (when “speed information” is selected).
  • FIG. 15C shows the force and time transmitted to the slave manipulator for explaining that the force reduction point is detected and the force is reduced in the third embodiment (when “speed information” is selected) of the present invention.
  • FIG. 16A shows the force and time detected by the slave manipulator for explaining that the force increase point is detected and the force is increased in the third embodiment (when “reference” is selected) of the present invention.
  • FIG. 16B shows the reference (force) detected by the slave manipulator for explaining that the force increase point is detected and the force is increased in the third embodiment of the present invention (when “reference” is selected). It is a graph showing the relationship with time, FIG.
  • FIG. 16C shows the reference (velocity) detected by the slave manipulator for explaining that the force increase point is detected and the force is increased in the third embodiment (when “reference” is selected) of the present invention. It is a graph showing the relationship with time, FIG. 16D shows the relationship between the force transmitted to the master manipulator and the time for detecting the force increasing portion and explaining increasing the force in the third embodiment (when “reference” is selected) of the present invention. It is explanatory drawing including the graph which shows, FIG. 17A shows the force and time detected by the master manipulator for explaining that the force reduction point is detected and the force is reduced in the third embodiment (when “reference” is selected) of the present invention. Is a graph showing the relationship, FIG.
  • FIG. 17B shows a reference (force) detected by the master manipulator for explaining that the force decrease point is detected and the force is decreased in the third embodiment of the present invention (when “reference” is selected). It is a graph showing the relationship with time, FIG. 17C shows the reference (velocity) detected by the master manipulator for explaining that the force reduction point is detected and the force is reduced in the third embodiment (when “reference” is selected) of the present invention. It is a graph showing the relationship with time, FIG. 17D shows the relationship between the force transmitted to the slave manipulator and the time for detecting the force-decreasing point in the third embodiment of the present invention (when “reference” is selected) and reducing the force. It is explanatory drawing including the graph which shows, FIG.
  • FIG. 18 is a diagram showing a database that holds references in the third embodiment of the present invention (when “reference” is selected)
  • FIG. 19 is a flowchart showing a flow of processing from acquisition of force information and speed information to force correction in the third embodiment of the present invention
  • FIG. 20A is a block diagram of a master-slave robot in the fourth embodiment of the present invention
  • FIG. 20B is a block diagram of a master-slave robot in the fourth embodiment of the present invention
  • FIG. 21 is an explanatory diagram showing an object gripping position in the fourth embodiment (when “target gripping position information” is selected)
  • FIG. 22A is a block diagram of a master-slave robot in a fourth embodiment of the present invention (when “object gripping position information” is selected);
  • FIG. 22A is a block diagram of a master-slave robot in a fourth embodiment of the present invention (when “object gripping position information” is selected);
  • FIG. 22B is a block diagram of the master-slave robot in the fourth embodiment of the present invention (when “object gripping position information” is selected);
  • FIG. 23 is a diagram showing a database holding correction amounts in the fourth embodiment of the present invention (when “object gripping position information” is selected),
  • FIG. 24A is an explanatory diagram showing a method for measuring a buckling load of a flexible board in the fourth embodiment of the present invention (when “object flexibility information” is selected);
  • FIG. 24B is an explanatory diagram showing a method for measuring the buckling load of the flexible board in the fourth embodiment of the present invention (when “object flexibility information” is selected);
  • FIG. 24C is an explanatory diagram showing a method for measuring the buckling load of the flexible board in the fourth embodiment of the present invention (when “object flexibility information” is selected);
  • FIG. 24D is an explanatory diagram showing a method for measuring the buckling load of a screw in the fourth embodiment of the present invention (when “object flexibility information” is selected);
  • FIG. 24E is an explanatory diagram showing a method for measuring the buckling load of a screw in the fourth embodiment of the present invention (when “object flexibility information” is selected);
  • FIG. 24F is an explanatory diagram showing a method for measuring the buckling load of a screw in the fourth embodiment of the present invention (when “object flexibility information” is selected);
  • FIG. 24C is an explanatory diagram showing a method for measuring the buckling load of the flexible board in the fourth embodiment of the present invention (when “object flexibility information” is selected);
  • FIG. 24D is an explanatory diagram showing a method for measuring the buckling load of a screw in the fourth embodiment
  • FIG. 25 is a diagram showing a database that holds correction amounts in the fourth embodiment of the present invention (when “object flexibility information” is selected);
  • FIG. 26A is an explanatory diagram showing a master grip position in the fourth embodiment of the present invention (when “master grip position information” is selected);
  • FIG. 26B is an explanatory diagram showing a master grip position in the fourth embodiment of the present invention (when “master grip position information” is selected);
  • FIG. 27 is a diagram showing a database holding correction amounts in the fourth embodiment of the present invention (when “master grip position information” is selected),
  • FIG. 28 is a flowchart showing a flow of processing from acquisition of force information and speed information to force correction in the fourth embodiment of the present invention, FIG.
  • FIG. 29A is a diagram showing a gripping position and an insertion procedure of a flexible substrate of a manipulator in an insertion experiment of a conventional flexible substrate into a connector
  • FIG. 29B is a diagram showing a gripping position and an insertion procedure of a flexible substrate of a manipulator in an insertion experiment of a conventional flexible substrate into a connector
  • FIG. 29C is a diagram showing a gripping position and an insertion procedure of a flexible board of a manipulator in an insertion experiment of a conventional flexible board into a connector
  • FIG. 30 is an explanatory view showing an experimental result of a gripping position of 5 mm in an experiment for inserting a conventional flexible board into a connector
  • FIG. 31 is an explanatory diagram showing an experimental result of a gripping position of 10 mm in an experiment for inserting a conventional flexible board into a connector.
  • a master-slave robot including a slave manipulator that grips an object and performs work while contacting the object, and a master manipulator that a person remotely operates the slave manipulator.
  • a force information acquisition unit that acquires force information applied to the slave manipulator from the outside;
  • a force correction point detection unit that detects a force correction point that is information of a section that needs to be corrected in the force information from the force information acquired by the force information acquisition unit;
  • a force transmission unit that transmits force information from the force correction unit to the master manipulator;
  • a master control unit that controls operation information of the master manipulator; Control of a master-slave robot connected to the slave manipulator and the master control unit, and comprising a slave control unit that outputs a control signal for transmitting operation information of the master manipulator sent from the master control unit to the
  • a slave manipulator that grips an object and performs work while contacting the object
  • a master-slave robot control device comprising a master manipulator that allows a human to remotely operate the slave manipulator, A master force information acquisition unit that acquires force information applied by the person to the master manipulator; A slave force correction point detection unit that detects a force correction point that is information of a section that needs to be corrected in the force information from force information acquired by the master force information acquisition unit; A slave force correction unit that corrects the force information of the section detected by the slave force correction point detection unit; A slave force transmission unit that transmits force information from the slave force correction unit to the slave manipulator;
  • a master control unit that controls operation information of the master manipulator; Control of a master-slave robot connected to the slave manipulator and the master control unit, and comprising a slave control unit that outputs a control signal for transmitting operation information of the master manipulator sent from the master
  • a section from the force correction start time to the force correction end time is set as the force correction portion, and the force information in the section is in a mountain shape in relation to time and the magnitude of force.
  • a control device for a master-slave robot according to the first or second aspect which is represented by a curved line or a straight line that changes to
  • the force correction location detection unit increases the absolute value of the force information from the force information acquired by the force information acquisition unit, and corrects the force information. Detect as force information of any section with the force information of the section that does not correct the information,
  • amendment part provides the control apparatus of the master slave robot as described in a 1st aspect which correct
  • the slave force correction point detection unit from the force information acquired by the master force information acquisition unit, the force information of the section to be corrected by reducing the absolute value of the force information,
  • the force information is detected as force information of any section with the force information of the section not corrected
  • the slave force correction unit according to the second aspect wherein the slave force correction unit corrects the absolute value of the force information of the section to be decreased, which is detected by the slave force correction point detection unit, to be decreased.
  • a speed information acquisition unit that acquires speed information of a hand part of the slave manipulator;
  • the said force correction location detection part provides the control apparatus of the master slave robot as described in a 1st aspect which detects the area which correct
  • the apparatus further comprises a speed information acquisition unit that acquires speed information of a hand part of the slave manipulator,
  • the slave force correction location detection unit provides a control device for a master-slave robot according to a second aspect that detects a section in which the force information is corrected based on the speed information acquired by the speed information acquisition unit.
  • the force correction point detection unit or the slave force correction point detection unit when detecting the force correction location in the force correction location detection unit or the slave force correction location detection unit, "force information and speed information", "force information”, A detection method selection unit that selects any one of “speed information” and “stored force information and speed information”;
  • the master-slave robot control according to the sixth or seventh aspect wherein the force correction point detection unit or the slave force correction point detection unit detects the force correction point based on the information selected by the detection method selection unit.
  • the force correction point detector or the slave force correction point detector is When the "force information and speed information" is selected in the detection method selection unit, The time when the displacement of the speed information acquired by the speed information acquisition unit exceeds the first threshold is the force correction start time, The time when the displacement of the force information acquired by the force information acquisition unit falls below the second threshold is the force correction end time, A control device for a master-slave robot according to an eighth aspect, wherein a period from the force correction start time to the force correction end time is detected as the force correction point.
  • the force correction point detector or the slave force correction point detector is When the “force information” is selected in the detection method selection unit, The time when the displacement of the force information acquired by the force information acquisition unit exceeds the first threshold is the force correction start time, The time when the displacement of the force information acquired by the force information acquisition unit falls below the second threshold is the force correction end time,
  • the force correction point detection unit or the slave force correction point detection unit is When the “speed information” is selected in the detection method selection unit, The time when the displacement of the speed information acquired by the speed information acquisition unit exceeds the first threshold is the force correction start time, The time when the displacement of the speed information acquired by the speed information acquisition unit falls below the second threshold is the force correction end time, A control device for a master-slave robot according to an eighth aspect, wherein a section from the force correction start time to the force correction end time is detected as the force correction point.
  • the apparatus further includes a storage unit that stores force information and speed information in advance.
  • the force correction point detection unit or the slave force correction point detection unit When the “stored force information and speed information” is selected in the detection method selection unit, For the displacement of force information or speed information when the displacement of the force information or speed information stored in the storage unit exceeds a first threshold, acquired by the force information acquisition unit or the speed information acquisition unit, The time when the displacement of the force information or speed information falls within a certain threshold range is the force correction start time, For the displacement of the force information or speed information when the displacement of the force information or speed information stored in the storage unit is below a second threshold, acquired by the force information acquisition unit or the speed information acquisition unit, The time within which the displacement of the force information or speed information falls within a certain threshold range is the force correction end time,
  • a control device for a master-slave robot wherein a section from the force correction start time to the force correction end time is detected as the force correction point.
  • the said force correction part or the said slave force correction part provides the control apparatus of the master slave robot as described in the 1st or 2nd aspect which correct
  • an object gripping position acquisition unit that acquires position information for the slave manipulator to grip the object;
  • a correction amount storage unit that stores relationship information between the position information and the correction amount at which the slave manipulator grips the object;
  • the force correction unit or the slave force correction unit is When the “target gripping position information” is selected in the force correction method selection unit,
  • the slave manipulator acquires grip position information for gripping the target object by the target grip position acquisition unit,
  • a control device for a master-slave robot according to a thirteenth aspect, wherein a correction amount of the force information is obtained from the correction amount storage unit using the grip position information acquired by the object gripping position acquisition unit.
  • the apparatus further comprises a correction amount storage unit that stores relationship information between the flexibility information of the object and the correction amount,
  • the force correction unit or the slave force correction unit is When the “object flexibility information” is selected in the force correction method selection unit, Acquiring flexibility information of the object based on the object from the correction amount storage unit;
  • a control device for a master-slave robot according to a thirteenth aspect of obtaining a correction amount of the force information from the correction amount storage unit using the flexibility information.
  • a master grip position acquisition unit that acquires position information for the person to grip the master manipulator;
  • a correction amount storage unit that stores relationship information between the positional information and the correction amount by which the person holds the master manipulator;
  • the force correction unit or the slave force correction unit is When the “master grip position information” is selected in the force correction method selection unit,
  • the master gripping position information acquisition unit acquires position information for gripping the master manipulator by the person,
  • a control device for a master-slave robot according to a thirteenth aspect, wherein a correction amount of the force information is obtained from the correction amount storage unit using the position information acquired by the master gripping position information acquisition unit.
  • a master slave robot comprising: a slave manipulator that grips an object and performs an operation while making contact with the object; and a master manipulator that a person remotely operates the slave manipulator.
  • a control method for a control device comprising: A force information acquisition unit acquires force information applied to the slave manipulator from the outside, In the force information, a force correction location that is information of a section that needs to be corrected is detected by the force correction location detection unit from the force information acquired by the force information acquisition unit, The force correction section corrects the force information of the section detected by the force correction point detection section, Transmit force information from the correction in the force correction unit to the master manipulator in the force transmission unit, When the person operates the master manipulator based on the force information from the force transmission unit, the operation information of the master manipulator is controlled by the master control unit, A control device for a master-slave robot connected to the slave manipulator and the master control unit, wherein the slave control unit outputs a control signal for transmitting operation information
  • the master manipulator and the slave manipulator A master-slave robot comprising the master-slave robot control device according to any one of the first to sixteenth aspects.
  • a master slave robot comprising: a slave manipulator that grips an object and performs an operation while making contact with the object; and a master manipulator that a person remotely operates the slave manipulator.
  • a control program for a control device On the computer, Acquiring force information externally applied to the slave manipulator with a force information acquisition unit; Detecting a force correction location, which is information of a section requiring correction in the force information, by a force correction location detection unit from force information acquired by the force information acquisition unit; A step of correcting the force information of the section detected by the force correction point detection unit by a force correction unit; Transmitting force information from the force correction unit to the master manipulator with a force transmission unit; When the person operates the master manipulator based on the force information from the force transmission unit, controlling the operation information of the master manipulator with a master control unit; The slave manipulator is connected to the master control unit, and the operation information of the master manipulator sent from the master control unit is transmitted to the slave manipulator
  • a master slave robot comprising: a slave manipulator that grips an object and performs work while contacting the object; and a master manipulator that a person remotely operates the slave manipulator.
  • An integrated electronic circuit of a control device A force information acquisition unit acquires force information applied to the slave manipulator from the outside, In the force information, a force correction location that is information of a section that needs to be corrected is detected by the force correction location detection unit from the force information acquired by the force information acquisition unit, The force correction section corrects the force information of the section detected by the force correction point detection section, Transmit force information from the force correction unit to the master manipulator with a force transmission unit, When the person operates the master manipulator based on the force information from the force transmission unit, the operation information of the master manipulator is controlled by the master control unit, A control device for a master-slave robot connected to the slave manipulator and the master control unit, wherein the slave control unit outputs a control signal for transmitting operation information of the master manipulator sent from
  • FIG. 1 is a block diagram showing the control device 100 of the master-slave robot 150 in the first embodiment of the present invention.
  • a master / slave robot control device 100 includes a master robot system 1 that is operated by direct contact with a person, and a slave robot system 21 that performs actual work.
  • the master robot system 1 includes a master control device 3, a master peripheral device 6 connected to the master control device 3, and a master manipulator 9 connected to the master peripheral device 6.
  • the master control device 3 includes a master control unit 4 connected to the master input / output IF 7 and a force transmission unit 5 connected to the master control unit 4 and transmitting force information to a person.
  • the master peripheral device 6 includes a master input / output IF 7 connected to the master control unit 4 and connected to the master manipulator 9, and a master motor driver 8 connected to the master input / output IF 7 and connected to the master manipulator 9. It is configured.
  • the slave robot system 21 includes a slave control device 23, a slave peripheral device 29 connected to the slave control device 23, and a slave manipulator 32 connected to the slave peripheral device 29.
  • the slave control device 23 includes a slave control unit 24, a force information acquisition unit 26 that acquires force information applied to the slave manipulator 32 from the outside at certain intervals, and a hand part (slave hand 71) of the slave manipulator 32.
  • a location where force information is corrected based on one or more pieces of information of speed information acquisition unit 28 for acquiring speed information, force information acquired by force information acquisition unit 26 and speed information acquired by speed information acquisition unit 28 (Specifically, a force correction location detection unit 27 that detects a force correction location, which is information of a zone requiring correction in the force information, from the force information acquired by the force information acquisition unit 26);
  • the force correction part detection unit 27 includes a force correction part 25 that corrects force information detected as a force correction part (force correction section).
  • the slave control unit 24 is connected to the master control unit 4 by wire or wireless, and is connected to the force correction unit 25, the force correction point detection unit 27, and the slave input / output IF 30.
  • the force correction unit 25 is connected to the slave control unit 24 and the force information acquisition unit 26.
  • the force information acquisition unit 26 is connected to the force correction unit 25 and the force correction point detection unit 27.
  • the force correction point detection unit 27 is connected to the force information acquisition unit 26, the slave control unit 24, and the speed information acquisition unit 28.
  • the speed information acquisition unit 28 is connected to the force correction location detection unit 27.
  • the slave peripheral device 29 includes a slave input / output IF 30 connected to the slave control unit 24, the speed information acquisition unit 28, and the slave manipulator 32, and a slave motor driver connected to the slave input / output IF 30 and connected to the slave manipulator 32. 31.
  • the force information acquisition unit 26 acquires the value of the force sensor 86 as force information from the slave force sensor 86 attached to the slave hand 71 of the slave manipulator 32 via the slave peripheral device 29, etc.
  • the acquisition unit 28 acquires the position information of the manipulator 32 from the slave encoder 85 attached to the slave manipulator 32 via the slave peripheral device 29 and the like, and the value derived by differentiating by the speed information acquisition unit 28 is the speed. Obtain as information.
  • FIGS. 2 and 3 are views showing the master manipulator 9 and the slave manipulator 32, respectively.
  • Each of the manipulators 9 and 32 constitutes a multi-link manipulator having 6 degrees of freedom so as to be rotatable around a total of six axes (for details, refer to WO 2009/107358).
  • the master manipulator 9 is an articulated robot arm as an example, specifically a multi-link master manipulator with 6 degrees of freedom, and the master hand 51 and the master hand 51 are attached to the master manipulator 9.
  • a master forearm link 53 having a master wrist 52 at the distal end 53a, a master upper arm link 54 having a distal end 54a rotatably connected to a proximal end 53b of the master forearm link 53, and a proximal end 54b of the master upper arm link 54
  • a master base 55 that is rotatably connected and supported.
  • the master base 55 is fixed at a fixed position, but may be movably connected to a rail (not shown).
  • the master wrist 52 has three rotation axes of a master fourth joint 59, a master fifth joint 60, and a master sixth joint 61, and the master hand 51 is relative to the master forearm link 53.
  • the master fifth joint 60 can change the relative posture of the master hand 51 with respect to the master wrist 52 around the vertical axis perpendicular to the horizontal axis of the master fourth joint 59.
  • the master sixth joint 61 has a relative posture of the master hand 51 with respect to the master wrist 52 around the horizontal axis orthogonal to the horizontal axis of the master fourth joint 59 and the vertical axis of the master fifth joint 60. Can be changed.
  • the other end 53b of the master forearm link 53 is rotatable around the master third joint 58 with respect to the tip 54a of the master upper arm link 54, that is, around a horizontal axis parallel to the horizontal axis of the master fourth joint 59.
  • the other end of the master upper arm link 54 is rotatable around the master second joint portion 57 with respect to the master base portion 55, that is, around a horizontal axis parallel to the horizontal axis of the master fourth joint portion 59.
  • the upper movable portion 55a of the master base portion 55 is arranged around the master first joint portion 56 with respect to the lower fixed portion 55b of the master base portion 55, that is, in a vertical direction parallel to the longitudinal axis of the master fifth joint portion 60. It can rotate around the axis.
  • the master manipulator 9 constitutes the multi-link manipulator having 6 degrees of freedom so as to be rotatable around a total of six axes.
  • a rotational drive device such as a master motor 64 for driving the joint part and a rotational phase angle (that is, a joint angle) of the rotation axis of the master motor 64 are detected and positioned.
  • a master encoder 65 (in fact, disposed inside each joint portion of the master manipulator 9) for outputting information.
  • the master motor 64 (actually disposed inside each joint portion of the master manipulator 9) has a pair of members (for example, a rotation side member and the rotation side member) constituting each joint portion.
  • the driving is controlled by a master motor driver 8 provided on one of the supporting members.
  • the rotation shaft of the master motor 64 provided in one member of each joint is connected to the other member of each joint and rotates the rotation shaft forward and backward so that the other member becomes one member. On the other hand, it can be rotated around each axis.
  • a master motor 64 for driving the master hand and a master encoder 65 for detecting the rotational phase angle of the rotation axis of the master motor 64 for driving the master hand, Is further provided in the master hand 51.
  • the rotation angle information detected by the master encoder 65 is taken into the master control unit 4 through the master input / output IF 7 (for example, a counter board), and based on the rotation angle information taken into the master control unit 4, the master control unit 4 A control command value (control signal) in the opening / closing operation of the master hand 51 is calculated.
  • the control command value calculated by the master control unit 4 is given to the master motor driver 8 that also opens and closes the master hand 51 through the master input / output IF 7 (for example, D / A board), and is sent from the master motor driver 8.
  • the rotation of the master motor 64 is driven and controlled, and the rotation axis of the master motor 64 for driving the master hand is rotated forward and backward to open and close the master hand 51, and the object 102 (for example, Simulates gripping and releasing of the flexible substrate).
  • the object 102 for example, a flexible substrate
  • the object 102 for example, the flexible substrate
  • the master hand 51 here means that the object 102 (for example, a flexible substrate) is grasped and released by virtual or simulation.
  • the horizontal axis of the sixth joint portion 61 can be positioned parallel to the x axis of the master hand coordinate system 63, and the horizontal axis of the master fourth joint portion 59 can be positioned parallel to the y axis. It is preferable that the vertical axis of the master fifth joint 60 can be positioned parallel to the z-axis.
  • the rotation angle with respect to the x-axis of the master hand coordinate system 63 is the yaw angle ⁇
  • the rotation angle with respect to the y-axis is the pitch angle ⁇
  • the rotation angle with respect to the z-axis is the roll angle ⁇ .
  • the hand position and posture vector r are set to the hand position generated by the target trajectory generating unit disclosed in the international application publication of WO 2009/107358 and the like. It would be to follow the orientation target vector r d.
  • the slave manipulator 32 is an articulated robot arm as an example, and is a multi-link slave manipulator with 6 degrees of freedom, and includes a slave hand 71 and a slave wrist portion to which the slave hand 71 is attached.
  • 72 a slave forearm link 73 having a distal end 73a
  • a slave upper arm link 74 having a distal end 74a rotatably connected to a base end 73b of the slave forearm link 73, and a base end 74b of the slave upper arm link 74 being rotatably supported.
  • the slave base part 75 is provided.
  • the slave base 75 is fixed at a fixed position, but may be movably connected to a rail (not shown).
  • the slave wrist 72 has three rotational axes of a slave fourth joint 79, a slave fifth joint 80, and a slave sixth joint 81, and the slave hand 71 is relative to the slave forearm link 73.
  • the slave fifth joint 80 can change the relative posture of the slave hand 71 relative to the slave wrist 72 around the vertical axis perpendicular to the horizontal axis of the slave fourth joint 79.
  • the slave sixth joint 81 has a relative posture around the horizontal axis orthogonal to the horizontal axis of the slave fourth joint 79 and the vertical axis of the slave fifth joint 80 of the slave hand 71 with respect to the slave wrist 72. Can be changed.
  • the other end 73b of the slave forearm link 73 is rotatable around the slave third joint portion 78 with respect to the distal end 74a of the slave upper arm link 74, that is, around a horizontal axis parallel to the horizontal axis of the slave fourth joint portion 79.
  • the other end 74 b of the slave upper arm link 74 is rotatable about the slave second joint portion 77 with respect to the slave base portion 75, that is, around a horizontal axis parallel to the horizontal axis of the slave fourth joint portion 79.
  • the upper movable portion 75a of the slave base portion 75 is arranged around the slave first joint portion 76 with respect to the lower fixed portion 75b of the slave base portion 75, that is, in a vertical direction parallel to the longitudinal axis of the slave fifth joint portion 80. It can rotate around the axis.
  • the slave manipulator 32 constitutes the multi-link manipulator having 6 degrees of freedom so that it can rotate around a total of six axes.
  • each joint part constituting the rotation part of each axis there is a rotation drive device such as a slave motor 84, and a slave that detects the rotation phase angle (that is, the joint angle) of the rotation axis of the slave motor 84 and outputs position information.
  • An encoder 85 (actually disposed inside each joint of the slave manipulator 32).
  • the slave motor 84 (actually disposed inside each joint portion of the slave manipulator 32) includes a pair of members (for example, a rotation side member and the rotation side member) constituting each joint portion. Driven and controlled by a slave motor driver 31 provided on one of the supporting side members).
  • the rotation shaft of the slave motor 84 provided in one member of each joint portion is connected to the other member of each joint portion, and the other member is turned into one member by rotating the rotation shaft forward and backward. On the other hand, it can be rotated around each axis.
  • a slave motor 84 for driving the slave hand and a slave encoder 85 that detects the rotational phase angle of the rotation axis of the slave motor 84 for driving the slave hand, Is further provided in the slave hand 71.
  • the rotation angle information detected by the slave encoder 85 is taken into the slave control unit 24 through the slave input / output IF 30 (for example, a counter board), and based on the rotation angle information taken into the slave control unit 24, the slave control unit 24 A control command value (control signal) in the opening / closing operation of the slave hand 71 is calculated.
  • the control command value calculated by the slave control unit 24 is given to the slave motor driver 31 that also opens and closes the slave hand 71 through the slave input / output IF 30 (for example, the D / A board), and is sent from the slave motor driver 31.
  • the rotation of the slave motor 84 is driven and controlled, and the rotation axis of the slave motor 84 for driving the slave hand is rotated forward and backward to open and close the slave hand 71, and the object 102 (for example, Grip and release of the flexible substrate).
  • the slave origin position O e (x, y, z) of the slave hand coordinate system 83 viewed from the slave absolute coordinate system 82 is the hand position of the slave manipulator 32
  • the posture of the slave hand coordinate system 83 viewed from the slave absolute coordinate system 82 is
  • the ( ⁇ , ⁇ , ⁇ ) expressed by the roll angle, pitch angle, and yaw angle is the hand posture of the slave manipulator 32
  • the horizontal axis of the sixth joint portion 81 can be positioned parallel to the x axis of the slave hand coordinate system 83, and the horizontal axis of the slave fourth joint portion 79 can be positioned parallel to the y axis. It is preferable that the vertical axis of the slave fifth joint 80 can be positioned parallel to the z-axis.
  • the rotation angle with respect to the x axis of the slave hand coordinate system 83 is a yaw angle ⁇
  • the rotation angle with respect to the y axis is a pitch angle ⁇
  • the rotation angle with respect to the z axis is a roll angle ⁇ .
  • the hand position and posture vector r are set to the hand position generated by the target trajectory generation unit disclosed in the International Application Publication No. WO 2009/107358 and the like. It would be to follow the orientation target vector r d.
  • the master-slave robot control device 100 is the entire device according to the present invention, and is a device that can be operated remotely by a person when performing work.
  • the master robot system 1 is a robot system that is operated by direct contact with a person.
  • the slave robot system 21 is located away from the master robot system 1 and actually performs work (for example, work performed while holding the object 102 with the robot and bringing the object 102 into contact with the object 103). It is a robot system for.
  • the master manipulator 9 is a robot that is operated by direct contact with a person. When the person moves, the master manipulator 9 uses a timer built in the master input / output IF 7 at regular intervals (for example, every 1 ms). Are acquired from each master encoder 65 and output to the master input / output IF 7.
  • the slave manipulator 32 grips the object 102 (for example, a flexible substrate) and inserts the object 103 (for example, the object 103 held by a holding member (not shown)) (for example, one end of the flexible substrate). It is a robot that performs work (for example, insertion or mounting work) on a connector having a recess, and operates the slave manipulator 32 so as to follow the position information acquired by the master manipulator 9 (see FIG. 4A).
  • the master peripheral device 6 transmits information between the master manipulator 9 and the master control device 3.
  • the slave peripheral device 29 transmits information between the slave manipulator 32 and the slave control device 23.
  • the master input / output IF 7 outputs the position information input from each master encoder 65 of the master manipulator 9 to the master input / output IF 7 and the time information from the timer built in the master input / output IF 7 to the master control unit 4.
  • the master input / output IF 7 outputs the position information input from the master control unit 4 to the master input / output IF 7 to the master motor driver 8.
  • the master motor driver 8 moves the master motor 64 of the master manipulator 9 so that the master manipulator 9 follows the position information input to the master motor driver 8 from the master input / output IF 7.
  • the slave input / output IF 30 outputs the position information input from the slave control unit 23 to the slave input / output IF 30 to the slave motor driver 31. Further, the position information and time information input from the slave manipulator 32 to the slave input / output IF 30 are output from the slave input / output IF 30 to the slave control unit 24.
  • the slave motor driver 31 moves the slave motors 84 of the slave manipulator 32 so that the slave manipulator 32 follows the position information input to the slave motor driver 31 from the slave input / output IF 30.
  • the master control device 3 (I) The position information of the movement of the master manipulator 9 is sent to the slave control device 23 via the master input / output IF 7 and the master control device 3 at regular intervals using a timer built in the master input / output IF 7.
  • the master control unit 4 controls operation information of the master manipulator 9 when a person operates the master manipulator 9 based on the force information from the force transmission unit 5. Specifically, the master control unit 4 outputs the position information and time information of the master manipulator 9 input from the master input / output IF 7 to the master control unit 4 to the slave control unit 24. Further, the force information input from the slave control unit 24 to the master control unit 4 is output from the master control unit 4 to the force transmission unit 5.
  • the force transmission unit 5 transmits the force information input from the slave control unit 24 via the master control unit 4 to the human hand 101.
  • force information is converted into position information by the force transmission unit 5 using the Hooke's law (for example, the spring constant is 0.5), and the force transmission unit 5 calculates the force information.
  • the transmitted position information is output as a command value to the master manipulator 9 from the force transmission unit 5 via the master control unit 4 and the master peripheral device 6 and the like, and the master motor 64 is moved to realize transmission of force.
  • the force transmission unit 5 transmits force information from the force correction unit 25 to the master manipulator 9 in relation to the force correction unit 25.
  • the slave control device 23 (I) causing the slave manipulator 32 to follow position information and time information input from the master controller 3 to the slave controller 23; (Ii) Based on the force information and speed information acquired by the slave manipulator 32, a force correction point (force correction section) is detected, and only the detected force correction point (force correction section) is subjected to force correction.
  • Output force information to the It has two roles.
  • the force information acquisition unit 26 is incorporated in the slave input / output IF 30 via the slave input / output IF 30 using the value of the slave force sensor 86 (see FIG. 3) attached to the slave hand 71 of the slave manipulator 32 as force information.
  • the data is acquired every certain time via the slave input / output IF 30.
  • the acquired force information is output to the force correction unit 25 and the force correction point detection unit 27.
  • the speed information acquisition unit 28 acquires speed information of the hand of the slave manipulator 32.
  • the acquisition method acquires the position information obtained by the slave encoder 85 (see FIG. 3) at regular intervals based on the time information from the timer built in the speed information acquisition unit 28, and the speed information acquisition unit
  • the position information of a predetermined time before is subtracted from the current position information stored in 28, divided by a certain fixed time, and the obtained value is used as speed information.
  • the speed information acquired by the speed information acquisition unit 28 is output from the speed information acquisition unit 28 to the force correction location detection unit 27.
  • the force correction location detection unit 27 uses the force information input from the force information acquisition unit 26 to the force correction location detection unit 27 and the speed information input from the speed information acquisition unit 28 to the force correction location detection unit 27.
  • a force correction point (force correction interval) in the force information is detected, and the detected force information is output from the force correction point detection unit 27 to the slave control unit 24.
  • FIGS. 4A to 5C The detection method of the force correction portion (force correction section) will be described with reference to FIGS. 4A to 5C.
  • 4A is an operation of inserting the tip 102a of the object 102 into the recess 103a of the object 103.
  • the human hand 101 directly contacts the master manipulator 9
  • the object 102 is moved by the slave hand 71.
  • the slave manipulator 32 to be gripped is operated, the insertion work is performed while the object 102 gripped by the slave hand 71 is in contact with the object 103.
  • FIG. 5A is a graph showing the relationship between the force detected by the slave manipulator 32 and time, and is the force information acquired by the force information acquisition unit 26.
  • FIG. 5B is a graph showing the relationship between the speed detected by the slave manipulator 32 and time, and is the speed information acquired by the speed information acquisition unit 28.
  • FIG. 5C is a graph showing the relationship between the force transmitted to the master manipulator 9 and time, and is the force information transmitted to the master manipulator 9 after the force correction.
  • the broken lines and white circles are values before correction. Yes, solid lines and black circles are values after correction.
  • displacement of force information (difference in force information, that is, When the force correction point detection unit 27 determines that (f12)-(f11)) of FIG. 5A exceeds the displacement threshold (for example, 1.0 N) of the force information, the slave hand 71 of the slave manipulator 32 holds it. That is, the force correction point detection unit 27 detects that the target object 102 collides with the target object 103, and the time when the force information (f12) is acquired is the force correction point (force correction interval).
  • force information for example, force information (f11) and force information (f12) in FIG. 5A
  • the displacement of force information is the displacement of force information. Is not exceeded, the force correction point detection unit 27 detects that there is no change.
  • “no change” means that there is no force correction portion (force correction section).
  • the force information in the section changes to an upward convex mountain shape instead of a constant value in relation to the time and the magnitude of the force.
  • the graph of FIG. 5C is not an upward convex chevron.
  • FIG. 5D a downward convex mountain shape is obtained.
  • the section from the force correction start time to the force correction end time is used as the force correction point, and the force information in the section is not a constant value but a downward convexity in the relationship between the time and the magnitude of the force. It is represented by a curve or a straight line that changes to a mountain shape (in other words, a valley shape).
  • curve or straight line that changes into a mountain shape refers to the case of FIG. 5D in which the direction of the sign of the slave force sensor 86 is reversed in addition to the case of FIG. Is also meant.
  • a force correction point for correcting the force information can be detected.
  • the force correction point detector 27 determines that the slave of the slave manipulator 32
  • the force correction location detection unit 27 detects that the object 102 held by the hand 71 has collided with the object 103, and the time point when the velocity information (v12) is acquired is “force correction location” (force correction).
  • the force correction location detection unit 27 determines that “the value exceeds the threshold” has the same sign as the threshold and the absolute value is greater than the threshold. This It means, showing a state where the operation slows down the master manipulator 9. Later, are used herein in the same meaning.).
  • the force correction point detection unit 27 detects the time as “no change”.
  • “no change” means that there is no force correction portion (force correction section).
  • the “force correction start time” and the “force correction end time” are detected by using both the force information acquired by the force information acquisition unit 26 and the speed information acquired by the speed information acquisition unit 28.
  • the “force correction start time” and the “force correction end” are used. Compared to the case of detecting “time”, it is possible to perform accurate detection with few false detections.
  • the force correction unit 25 Based on the force information input from the slave control unit 24 to the force correction unit 25, the force correction unit 25 performs slave control on the information obtained by correcting the force information as the force information of the “force correction point” (force correction section). On the other hand, as the “no change” information in which the force information does not exceed the threshold value, the force information is output to the slave control unit 24 without being changed.
  • the force information correction method is a value obtained by multiplying the displacement of force information ((fa12)-(fa11) in FIG. 5C) by a predetermined constant (for example, 0.5) by the force correction unit 25. Is added to the current force information (fa12 in FIG. 5C) by the force correction unit 25 ((fa12) + 0.5 ⁇ ((fa12) ⁇ (fa11) in FIG. 5C)). Correction can be performed.
  • the slave control unit 24 outputs the position information input from the master control unit 4 to the slave control unit 24 to the slave input / output IF 30. Further, the force information input from the force correction point detection unit 27 to the slave control unit 24 is output from the slave control unit 24 to the force correction unit 25, and the force information input from the force correction unit 25 to the slave control unit 24 is output. And output from the slave controller 24 to the master controller 4.
  • step S201 when the object 102 collides with the object 103, the force information acquisition unit 26 acquires force information, the speed information acquisition unit 28 acquires speed information, and the force information acquisition unit 26 and speed information acquisition. From the unit 28, the force information acquired by the force information acquisition unit 26 and the speed information acquired by the speed information acquisition unit 28 are output to the force correction location detection unit 27, respectively.
  • the force information acquired by the force information acquisition unit 26 it is not necessary to acquire the speed information by the speed information acquisition unit 28. The case where both the force information acquired by the force information acquisition unit 26 and the speed information by the speed information acquisition unit 28 are used is described here.
  • step S206 when both the force information and the speed information are acquired in step S201, one or more of the force information and the speed information are used, and the force correction point detecting unit 27 is used.
  • Force correction location information force correction interval information
  • the detected force correction location information force correction interval information
  • the force correction point detection unit 27 determines whether or not there is a force correction point (force correction section).
  • the force correction location information (force correction interval information) is detected by the force correction location detection unit 27 using only the force information, and the detected force correction location information (force correction) is detected.
  • detection information is output from the force correction point detection unit 27 to the force correction unit 25 via the slave control unit 24.
  • step S206 when the force correction point detection unit 27 determines that there is no force correction point (force correction section), the process proceeds to step S210.
  • step S206 when the force correction point detection unit 27 determines that there is a force correction point (force correction section), the process proceeds to step S208.
  • step S208 the force correction unit 25 corrects the force information detected by the force correction location information (force correction section information) as to force correction with respect to the force information acquired by the force information acquisition unit 26, and the slave After outputting to the control unit 24, the process proceeds to step S210.
  • step S210 the force information output to the slave control unit 24 is transmitted from the slave control unit 24 to the master control unit 4, and further transmitted from the master control unit 4 to the force transmission unit 5.
  • the force information input to the force transmission unit 5 is transmitted to the human hand 101 by the method described above, and this flow is finished.
  • the force correction unit 25 corrects only the force information when the object 102 collides with the object 103, so that the force information is increased by the force correction unit 25. Is done.
  • the increased force information is output from the force transmission unit 5 to the master manipulator 9 via the master control unit 4 and the master peripheral device 6, and the master motor 64 is driven based on the increased force information.
  • the important points in operation are clearly transmitted to the human hand 101, the work is simplified, and the time required to complete the work is shortened.
  • force correction point detection unit 27 and the force correction unit 25 can be provided in the master control device 3.
  • the absolute value of the force information applied to the slave manipulator 32 when the object 102 collides with the object 103 is increased and transmitted to the master manipulator 9, so that The power is clearly transmitted, making it easy to work.
  • the absolute value of the force information excessively applied to the master manipulator 9 by the human hand 101 when the object 102 collides with the object 103 is reduced to reduce the slave information.
  • FIG. 7 is a block diagram showing the control device 100A of the master-slave robot 150 in the second embodiment of the present invention.
  • Master controller 4 master input / output IF 7, master motor driver 8, master manipulator 9, slave controller 24, speed information acquisition unit 28, slave input / output IF 30 in the second embodiment of the present invention, Since the slave motor driver 31 and the slave manipulator 32 are the same as those in the first embodiment, common reference numerals are assigned and description of common parts is omitted, and only different parts will be described in detail below.
  • the master control device 3 includes a master control unit 4 and a master force information acquisition unit 10.
  • the slave control device 23 includes a slave control unit 24, a speed information acquisition unit 28, a slave force transmission unit 33, a slave force correction unit 39, and a slave force correction point detection unit 40.
  • the master force information acquisition unit 10 acquires the value of the master force sensor 66 (see FIG. 2) attached to the master hand 51 of the master manipulator 9 as force information via the master input / output IF 7.
  • the force information acquired by the master force information acquisition unit 10 is output from the master force information acquisition unit 10 to the master control unit 4.
  • the slave force transmission unit 33 transmits force information input from the slave control unit 24 to the slave force transmission unit 33 from the slave force transmission unit 33 to the slave manipulator 32.
  • the force information transmission method uses the Hooke's law (for example, the spring constant is 0.5), converts the force information into position information by the slave force transmission unit 33, and calculates the position calculated by the slave force transmission unit 33.
  • Information is output from the slave force transmission unit 33 to the slave manipulator 32 as a command value, and the slave motor 74 is moved to realize transmission of force information.
  • the slave force correction point detection unit 40 receives force information and speed information acquisition unit 28 from the master force information acquisition unit 10 via the master control unit 4 and the slave control unit 24, and the slave force from the velocity information acquisition unit 28. Using the velocity information input to the correction location detection unit 40, the force correction location (force correction interval) in the force information is detected by the slave force correction location detection unit 40, and the force information detected by the slave force correction location detection unit 40 Is output from the slave force correction point detector 40 to the slave controller 24.
  • FIG. 8A is a graph showing the relationship between the force detected by the master manipulator 9 and time, and is force information acquired by the master force information acquisition unit 10.
  • FIG. 8B is a graph showing the relationship between the speed detected by the slave manipulator 32 and time, and is the speed information acquired by the speed information acquisition unit 28.
  • FIG. 8C is a graph showing the relationship between the force transmitted to the slave manipulator 32 and time, and is the force information transmitted to the slave manipulator 32 after the force correction, and the broken line and the white circle are values before correction. Yes, solid lines and black circles are values after correction.
  • displacement of force information (difference in force information, That is, when the slave force correction point detection unit 40 determines that (f22)-(f21)) in FIG. 8A exceeds the displacement threshold (for example, 1.0 N) of the force information, the slave hand 71 of the slave manipulator 32 is determined. That is, the slave force correction location detection unit 40 detects that the object 102 to be gripped by the object 103 has collided with the object 103, and the time point when the force information (f22) is acquired is “force correction location” (force correction interval). ) Is detected by the slave force correction point detector 40.
  • the displacement of force information (difference in force information, that is, (f22)-(f21) in FIG. 8A) If the displacement threshold value is not exceeded, “no change” is detected by the slave force correction point detector 40.
  • “no change” means that there is no force correction portion (force correction section).
  • the above describes the method of detecting the force correction point (force correction section) for correcting the force information by the slave force correction point detection unit 40 using only the force information acquired by the master force information acquisition unit 10.
  • An advantage of using only the force information acquired by the master force information acquisition unit 10 is that it is not necessary to use the speed information acquisition unit 28, and can be performed simply and inexpensively.
  • the present invention is not limited to this.
  • a force correction point for correcting the force information may be detected. it can.
  • the displacement of the speed information (difference in speed information, That is, if (v22)-(v21)) in FIG.
  • the slave force correction point detection unit 40 determines that the slave manipulator 32
  • the slave force correction location detection unit 40 detects that the object 102 gripped by the slave hand 71 has collided with the object 103, and the time point when the velocity information (v22) is acquired is the “force correction location” ( The force correction section) is detected by the slave force correction point detection unit 40.
  • the slave force correction point detection unit 40 detects the time as “no change”.
  • “no change” means that there is no force correction portion (force correction section).
  • the “force correction start time” and the “force correction end time” are calculated.
  • the slave force correction unit 39 uses information obtained by correcting the force information as force information of the “force correction point” (force correction section). While outputting to the slave control part 24, as "no change” information, it outputs to the slave control part 24, without changing force information.
  • the force information correction method is obtained by multiplying the displacement of force information ((fa22)-(fa21) in FIG. 8C) by a predetermined constant (for example, 0.5) by the slave force correction unit 39.
  • the slave force correction unit 39 reduces the value from the current force information (fa22 in FIG. 8C) by the slave force correction unit 39 ((fa22) ⁇ 0.5 ⁇ ((fa22) ⁇ (fa21) in FIG. 8C)). 39, force information can be corrected.
  • step S212 when the object 102 collides with the object 103, the master force information acquisition unit 10 acquires force information, the speed information acquisition unit 28 acquires speed information, and the master force information acquisition unit 10 and the speed From the information acquisition unit 28, the force information acquired by the master force information acquisition unit 10 and the speed information acquired by the speed information acquisition unit 28 are output to the slave force correction point detection unit 40, respectively. If only the force information acquired by the master force information acquisition unit 10 is used, it is not necessary to acquire the speed information by the speed information acquisition unit 28. The case where both the force information acquired by the master force information acquisition unit 10 and the speed information by the speed information acquisition unit 28 are used is described here.
  • step S213 when both the force information and the speed information are acquired in step S212, one or more of the force information and the speed information are used, and the slave force correction point detection unit. 40, force correction location information (force correction interval information) is detected, and the detected force correction location information (force correction interval information) is sent from the slave force correction location detection unit 40 via the slave control unit 24 to the slave force correction unit. 39. Then, in the slave force correction unit 39, regarding the force information acquired by the master force information acquisition unit 10, the slave force correction point detection unit 40 determines whether there is a force correction point (force correction section).
  • the force correction location information (force correction interval information) is detected by the slave force correction location detection unit 40 using only the force information, and the detected force correction location information (force Correction section information) is output from the slave force correction point detection unit 40 to the slave force correction unit 39 via the slave control unit 24.
  • step S213 when the slave force correction point detection unit 40 determines that there is no force correction point (force correction section), the process proceeds to step S211.
  • step S213 when the slave force correction point detection unit 40 determines that there is a force correction point (force correction section), the process proceeds to step S209.
  • step S209 the slave force correction unit 39 corrects the force information detected by the force correction point information (force correction section information) as to force correction with respect to the force information acquired by the master force information acquisition unit 10. After the output to the slave control unit 24, the process proceeds to step S211.
  • step S211 the force information output to the slave control unit 24 is transmitted from the slave control unit 24 to the slave force transmission unit 33.
  • the force information input to the slave force transmission unit 33 is transmitted to the slave manipulator 9 by the method described above, and this flow is finished.
  • the slave force correction point detection unit 40 detects that the human hand 101 has applied an excessive force, and the absolute value of the force information is detected by the slave force correction unit 39. Is reduced and transmitted to the slave manipulator 32, and the slave manipulator 32 is driven based on the transmitted force information, thereby preventing the object 102 or the object 103 from being damaged.
  • all the master motors 64 for driving the joints and for driving the hands in FIG. 2 can be removed. Further, the slave force correction point detection unit 40 and the slave force correction unit 39 can be provided in the master control device 3.
  • FIGS. 10A and 10B are block diagrams showing the control device 100B of the master-slave robot 150 in the third embodiment of the present invention.
  • the master robot system 1, the slave control unit 24, the force information acquisition unit 26, the speed information acquisition unit 28, the slave peripheral device 29, and the slave manipulator 32 in the third embodiment of the present invention are the same as those in the first embodiment. Since they are the same, common reference numerals are assigned and description of common parts is omitted, and only different parts will be described in detail below.
  • the master control device 3 includes a master control unit 4 and a force transmission unit 5.
  • the slave control device 23 includes a slave control unit 24, a force correction unit 25, a force information acquisition unit 26, a speed information acquisition unit 28, a detection method selection unit 34, a reference information storage unit 41, and a force correction location detection. Part 27.
  • the force correction unit 25 has a function of increasing the force transmitted to the master manipulator 9.
  • the slave force correction unit 39 has a function of reducing the force transmitted to the slave manipulator 32.
  • the detection method selection unit 34 includes “force information and speed information”, “force information”, “speed information”, and “stored force information and speed information” (hereinafter referred to as “reference”). Select one piece of information.
  • the selection information selected by the detection method selection unit 34 is output to the force correction point detection unit 27, and information used when detecting a force correction point (force correction section) is used as the force correction point detection unit 27 based on the selection information. Specify with. Since the force correction point detection unit 27, the slave force correction point detection unit 40, the force correction unit 25, and the slave force correction unit 39 differ depending on the information selected by the detection method selection unit 34, for each piece of information selected below Explained.
  • the selection method of each information in the detection method selection part 34 is as follows.
  • the worker person uses, for example, a master input / output IF 7 constituted by an operation panel or the like on which a plurality of buttons are arranged.
  • the button corresponding to the difficulty level is pressed, the corresponding information is automatically selected by the detection method selection unit 34 according to the database of FIG. 11 (the database of FIG. 11 is added to the detection method selection unit 34).
  • the operator selects one of “0 to 1 year”, “1 to 3 years”, and “3 years to” and uses the master input / output IF 7 to enter the detection method selection unit 34. input.
  • the detection method selection unit 34 selects FIG. “Speed information” is selected based on the database.
  • the detection method selection unit 34 selects “force information and speed information” based on the database of FIG.
  • the reference information storage unit 41 is used when “reference” is selected by the detection method selection unit 34, and a database that selects reference information to be used according to the object 102 or the gripping position of the object 102 is used. It is stored in advance (the details will be described later when “reference” is selected).
  • the force correction location detection unit 27 and the slave force correction location detection unit 40 include the force information input from the force information acquisition unit 26 and the master force information acquisition unit 10 to the force correction location detection unit 27 and the slave force correction location detection unit 40, and Using the velocity information input from the velocity information acquisition unit 28 to the force correction location detection unit 27 and the slave force correction location detection unit 40, the force correction location (force correction interval) in the force information is converted into the force correction location detection unit 27 and the slave.
  • the force information detected by the force correction point detection unit 40 and detected by the force correction point detection unit 27 and the slave force correction point detection unit 40 is transmitted from the force correction point detection unit 27 and the slave force correction point detection unit 40 to the slave control unit 24. Output to.
  • FIGS. 5A to 5C and FIGS. 8A to 8C are force information acquired by the force information acquisition unit 26
  • FIG. 8A is force information acquired by the master force information acquisition unit 10
  • FIGS. 5B and 8B are acquired by the speed information acquisition unit 28.
  • Speed information is acquired by the speed information acquisition unit 28.
  • FIG. 5C shows force information transmitted to the master manipulator 9 after force correction
  • FIG. 8C shows force information transmitted to the slave manipulator 32 after force correction
  • broken lines and white circles are values before correction.
  • the solid line and black circle are values after correction.
  • the displacement of the speed information ((v12)-(v11) in FIG. 5B, (v22)-(v21) in FIG. 8B) is a threshold (for example, , ⁇ 0.01 mm / ms)
  • the object 102 gripped by the slave hand 71 of the slave manipulator 32 becomes the object 103 when the force correction point detector 27 and the slave force correction point detector 40 determine.
  • the fact that the collision has been detected by the force correction point detection unit 27 and the slave force correction point detection unit 40, and the time point when the velocity information (v12) is acquired is referred to as a “force correction point” (force correction interval). It is detected by the detection unit 27 and the slave force correction point detection unit 40.
  • the force information detected as the “force correction location” indicates that if the displacement of the force information acquired by the force information acquisition unit 26 exceeds a threshold (for example, 1.0 N), the force correction location detection unit 27 and the slave force correction point detection unit 40, when the force correction point detection unit 27 and the slave force correction point detection unit 40 detect “increase”, the force information acquired by the master force information acquisition unit 10
  • a threshold for example, 1.0 N
  • the force correction point detection unit 27 and the slave force correction point detection unit 40 determine that the displacement exceeds the threshold
  • the force correction point detection unit 27 and the slave force correction point detection unit 40 detect “decrease”. To do.
  • the force correction point detector 27 and the slave force correction point detector 40 determine that the displacement of the speed information does not exceed the threshold, the force correction point detector 27 and the slave force correction point are detected as “no change”. Detected by the unit 40.
  • the section from “force correction start time” to “force correction end time” is divided into “force correction position” (force correction section) (B1 section in FIG. 5C) by the force correction position detection unit 27 and the slave force correction position detection unit 40. (B2 section in FIG. 8C).
  • the force correction unit 25 corrects the force information as the force information of the “force correction point” (force correction section) based on the detected force information input from the slave control unit 24 to the force correction unit 25.
  • the information is output to the slave control unit 24, while the “no change” information is output to the slave control unit 24 without changing the force information.
  • the force information correction method is a value obtained by multiplying the displacement of force information ((fa12)-(fa11) in FIG. 5C) by a predetermined constant (for example, 0.5) by the force correction unit 25. Is added to the current force information ((fa12) in FIG. 5C) by the force correction unit 25 ((fa12) + 0.5 ⁇ ((fa12) ⁇ (fa11) in FIG. 5C)). Information can be corrected.
  • the slave force correction unit 39 uses force information as force information of the “force correction point” (force correction section). While the corrected information is output to the slave control unit 24, the “no change” information is output to the slave control unit 24 without changing the force information.
  • the force information correction method is obtained by multiplying the displacement of force information ((fa22)-(fa21) in FIG. 8C) by a predetermined constant (for example, 0.5) by the slave force correction unit 39.
  • the slave force correction unit 39 reduces the value from the current force information ((fa22) in FIG. 8C) by the slave force correction unit 39 ((fa22) ⁇ 0.5 ⁇ ((fa22) ⁇ (fa21)) in FIG. 8C).
  • the unit 39 can correct force information.
  • the force correction point detection unit 27 and the slave force correction point detection unit 40 receive the force information input from the force information acquisition unit 26 and the master force information acquisition unit 10 to the force correction point detection unit 27 and the slave force correction point detection unit 40.
  • the force correction point (force correction section) in the force information is detected by the force correction point detection unit 27 and the slave force correction point detection unit 40 and detected by the force correction point detection unit 27 and the slave force correction point detection unit 40.
  • the force information is output from the force correction point detection unit 27 and the slave force correction point detection unit 40 to the slave control unit 24.
  • FIG. 12A is force information acquired by the force information acquisition unit 26 and FIG. 13A is force information acquired by the master force information acquisition unit 10.
  • 12B shows the force information transmitted to the master manipulator 9 after the force correction
  • FIG. 13B shows the force information transmitted to the slave manipulator 32 after the force correction
  • broken lines and white circles are values before correction.
  • the solid line and the black circle are values after correction.
  • the displacement of the force information ((fa32)-(fa31) in FIG. 12B, (fa42)-(fa41) in FIG. 13B) is a threshold (for example, , 1.0N), the object 102 held by the slave hand 71 of the slave manipulator 32 collides with the object 103 when judged by the force correction point detector 27 and the slave force correction point detector 40. Is detected by the force correction point detection unit 27 and the slave force correction point detection unit 40, and is detected by the force correction point detection unit 27 and the slave force correction point detection unit 40 as a "force correction point" (force correction section).
  • a threshold for example, 1.0N
  • the force information detected by the force correction point detection unit 27 and the slave force correction point detection unit 40 as the “force correction point” indicates that the displacement of the force information acquired by the force information acquisition unit 26 exceeds the threshold value. If the force correction point detection unit 27 and the slave force correction point detection unit 40 determine that “increase” is detected, the force correction point detection unit 27 and the slave force correction point detection unit 40 detect the master force information acquisition unit. If the force correction location detection unit 27 and the slave force correction location detection unit 40 determine that the displacement of the force information acquired in 10 exceeds the threshold, “decrease” means that the force correction location detection unit 27 and the slave force correction It is detected by the location detector 40.
  • the force correction point detection unit 27 and the slave force correction point detection unit 40 determine that the displacement of the force information does not exceed the threshold, the force correction point detection unit 27 and the slave force correction point detection are determined as “no change”. Detected by the unit 40.
  • the section from “force correction start time” to “force correction end time” is divided into “force correction position” (force correction section) (section B3 in FIG. 12B) by the force correction position detection unit 27 and the slave force correction position detection unit 40. (B4 section in FIG. 13B).
  • the force correction unit 25 corrects the force information as the force information of the “force correction point” (force correction section) based on the detected force information input from the slave control unit 24 to the force correction unit 25.
  • the information is output to the slave control unit 24, while the “no change” information is output to the slave control unit 24 without changing the force information.
  • the force information correction method is a value obtained by multiplying the displacement of force information ((fa32)-(fa31) in FIG. 12b) by a predetermined constant (for example, 0.5) by the force correction unit 25 and multiplying it. Is added to the current force information ((fa32) in FIG. 12B) by the force correction unit 25 ((fa32) + 0.5 ⁇ ((fa32) ⁇ (fa31) in FIG. 12B)). Information can be corrected.
  • the slave force correction unit 39 uses force information as force information of the “force correction point” (force correction section). While the corrected information is output to the slave control unit 24, the “no change” information is output to the slave control unit 24 without changing the force information.
  • the force information correction method is obtained by multiplying the displacement of force information ((fa42)-(fa41) in FIG. 13b) by a predetermined constant (for example, 0.5) by the slave force correction unit 39.
  • the slave force correction is performed by reducing the value from the current force information ((fa42) in FIG. 13B) by the slave force correction unit 39 ((fa42) ⁇ 0.5 ⁇ ((fa42) ⁇ (fa41)) in FIG. 13B).
  • the unit 39 can correct force information.
  • the force correction location detection unit 27 and the slave force correction location detection unit 40 use the speed information input from the speed information acquisition unit 28 to the force correction location detection unit 27 to determine a force correction location (force correction interval) in the force information.
  • the force information detected and detected by the force correction location detection unit 27 is output from the force correction location detection unit 27 to the slave control unit 24.
  • FIGS. 14A to 15C The detection method of the force correction point (force correction section) will be described with reference to FIGS. 14A to 15C.
  • 14A is force information acquired by the force information acquisition unit 26
  • FIG. 15A is force information acquired by the master force information acquisition unit 10
  • FIGS. 14B and 15B are acquired by the speed information acquisition unit 28. It is speed information.
  • FIG. 14C shows force information transmitted to the master manipulator 9 after force correction
  • FIG. 15C shows force information transmitted to the slave manipulator 32 after force correction
  • broken lines and white circles are values before correction.
  • the solid line and black circle are values after correction.
  • the displacement of the speed information ((v52)-(v51) in FIG. 14B, (v62)-(v61) in FIG. 15B) is a threshold (for example, , ⁇ 0.01 mm / ms)
  • the object 102 to be grasped by the slave hand 71 of the slave manipulator 32 becomes the object 103 when the force correction point detector 27 and the slave force correction point detector 40 determine.
  • the force correction point detection unit 27 and the slave force correction point detection unit 40 have detected the collision, and the time point when the velocity information (v52) is acquired is the “force correction point” (force correction interval). It is detected by the detection unit 27 and the slave force correction point detection unit 40.
  • the force information detected as the “force correction location” indicates that if the displacement of the force information acquired by the force information acquisition unit 26 exceeds a threshold (for example, 1.0 N), the force correction location detection unit 27 and the slave force correction point detection unit 40, when the force correction point detection unit 27 and the slave force correction point detection unit 40 detect “increase”, the force information acquired by the master force information acquisition unit 10
  • a threshold for example, 1.0 N
  • the force correction point detection unit 27 and the slave force correction point detection unit 40 determine that the displacement exceeds the threshold
  • the force correction point detection unit 27 and the slave force correction point detection unit 40 detect “decrease”. To do.
  • the force correction point detector 27 and the slave force correction point detector 40 determine that the displacement of the speed information does not exceed the threshold, the force correction point detector 27 and the slave force correction point are detected as “no change”. Detected by the unit 40.
  • the section from “force correction start time” to “force correction end time” is divided into “force correction position” (force correction section) (section B5 in FIG. 14C) by the force correction position detection unit 27 and the slave force correction position detection unit 40. (B6 section in FIG. 15C).
  • the force correction unit 25 corrects the force information as the force information of the “force correction point” (force correction section) based on the detected force information input from the slave control unit 24 to the force correction unit 25.
  • the information is output to the slave control unit 24, while the “no change” information is output to the slave control unit 24 without changing the force information.
  • the force information can be corrected by the force correction unit 25 by multiplying the force information by a constant by the force correction unit 25 (1.5 ⁇ (fa51) in FIG. 14B).
  • the slave force correction unit 39 corrects force information as force information of the “force correction point” (force correction section) based on the detected force information input from the slave control unit 24 to the slave force correction unit 39.
  • the information is output to the slave control unit 24, while the “no change” information is output to the slave control unit 24 without changing the force information.
  • the slave force correction unit 39 can correct the force information by multiplying the force information by a constant number by the slave force correction unit 39 (0.5 ⁇ (fa61) in FIG. 15B).
  • the force correction point detection unit 27 and the slave force correction point detection unit 40 are force information input to the force correction point detection unit 27 from the reference information storage unit 41, the force information acquisition unit 26, and the master force information acquisition unit 10.
  • the force correction location (force correction interval) in the force information is detected by the force correction location detection unit 27, and force correction is performed.
  • the force information detected by the location detection unit 27 is output from the force correction location detection unit 27 to the slave control unit 24.
  • FIGS. 16A to 17D are force information acquired by the force information acquisition unit 26, respectively.
  • FIGS. 16B and 17B show the force information of the slave reference and the master reference, respectively.
  • FIGS. 16C and 17C show the speed information of the slave reference and the master reference, respectively.
  • FIG. 16D and FIG. 17D are force information transmitted to the master manipulator 9 and the slave manipulator 32 after force correction, respectively, the broken line and white circle are values before correction, and the solid line and black circle are values after correction. .
  • the force correction point detector 27 and the slave force are used as the force correction location detection unit 27 and the slave force correction location detection unit.
  • force information (when the displacement of the reference force information is multiplied by a constant (for example, 0.5 and 2) within a range (0.5 ⁇ (( fr72) ⁇ (fr71)) ⁇ ((f72) ⁇ (f71)) ⁇ 2 ⁇ ((fr72) ⁇ (fr71))), 0.5 ⁇ ((fr82) ⁇ (fr81)) ⁇ ((F82)-(f 1)) ⁇ 2 ⁇ ((fr82) - (fr81)) holds time)) is detected by the force correction portion detecting unit 27 and the slave force correction portion detecting unit 40.
  • a constant for example, 0.5 and 2
  • the force correction point detection unit 27 and the slave force correction point detection unit 40 Based on the plurality of force information thus detected, when the object 102 held by the slave hand 71 of the slave manipulator 32 collides with the object 103, the force correction point detection unit 27 and the slave force correction point detection unit 40 The force correction point detection unit 27 and the slave force correction point detection unit 40 detect the “force correction point” (force correction section). On the other hand, when the force correction point detection unit 27 and the slave force correction point detection unit 40 determine that the displacement of the force information does not show the same tendency, the force correction point detection unit 27 and the slave force correction are determined as “no change”. It is detected by the location detector 40.
  • the displacement of the force information acquired by the force information acquisition unit 26 is the slave reference.
  • the force correction point detection unit 27 and the slave force correction point detection unit 40 determine that the displacement of the force information is matched, the force correction point detection unit 27 and the slave force correction point detection unit 40 detect “increase”.
  • the force correction point detection unit 27 and the slave force correction point detection unit 40 determine that the displacement of the force information acquired by the master force information acquisition unit 10 matches the displacement of the force information of the master reference, “Decrease” is detected by the force correction point detection unit 27 and the slave force correction point detection unit 40.
  • the time point at which the same tendency as the displacement of the force information is observed is defined as “force correction end time”.
  • the section from “force correction start time” to “force correction end time” is divided into “force correction position” (force correction section) (section B7 in FIG. 16D) by the force correction position detection unit 27 and the slave force correction position detection unit 40. (B8 section in FIG. 17D).
  • the force correction unit 25 is based on the detected force information input from the slave control unit 24 to the force correction unit 25, and the force information of the “force correction portion” (force correction section) is information obtained by correcting the force information. Is output to the slave control unit 24 without changing the force information as the “no change” information. In the force information correction method, the force correction unit 25 increases the force information to the same value as the reference force information.
  • the slave force correction unit 39 corrects force information as force information of the “force correction point” (force correction section) based on the detected force information input from the slave control unit 24 to the slave force correction unit 39.
  • the information is output to the slave control unit 24, while the “no change” information is output to the slave control unit 24 without changing the force information.
  • the force information correction method reduces the force information to the same value as the reference force information.
  • the reference information can be stored in advance in the reference information storage unit 41, for example, provided in advance by a manufacturer that manufactures a control device for the master-slave robot. Reference information can also be added, and reference information of force information or speed information acquired in a prior experiment can be additionally stored in the reference information storage unit 41 using the master input / output IF 7.
  • the situation in which the slave manipulator 32 can easily acquire force information is used as reference information.
  • the gripping position of the flexible substrate 104 is 5 mm. It is better to use this information as reference information than to use information on the gripping position 10 mm of the flexible substrate 104 as reference information.
  • the reference information is stored in the reference information storage unit 41, stored in a database as shown in FIG. 18, and the reference information to be used is determined by the operator using the master input / output IF7. Is determined with a button and used as reference information when operating.
  • FIG. 19 is a flowchart from the acquisition of force information and speed information to force correction in the third embodiment of the present invention.
  • step S201 the force information acquisition unit 26 and the master force information acquisition unit 10 respectively acquire force information, and the speed information acquisition unit 28 acquires speed information.
  • step S202 in the detection method selection unit 34, as information used in the force correction point detection unit 27, the slave force correction point detection unit 40, the force correction unit 25, and the slave force correction unit 39, “force information and The detection method selection unit 34 determines whether or not “speed information” is selected.
  • the detection method selection unit 34 determines that the process proceeds to step S206. If the detection method selection unit 34 determines that any item other than “force information and speed information” is selected, the process proceeds to step S203.
  • step S ⁇ b> 203 the detection method selection unit 34 selects “force information” as information used by the force correction point detection unit 27, the slave force correction point detection unit 40, the force correction unit 25, and the slave force correction unit 39. Whether or not the detection method selection unit 34 determines. When the operator selects and inputs the detection method to the detection method selection unit 34 using the master input / output IF 7 and selects “force information”, the detection method selection unit 34 determines that the process proceeds to step S206. If the detection method selection unit 34 determines that any item other than “force information” is selected, the process proceeds to step S204.
  • step S ⁇ b> 204 the detection method selection unit 34 selects “speed information” as information used by the force correction point detection unit 27, the slave force correction point detection unit 40, the force correction unit 25, and the slave force correction unit 39. Whether or not the detection method selection unit 34 determines. If the operator selects and inputs the detection method to the detection method selection unit 34 using the master input / output IF 7 to select “speed information”, the process proceeds to step S206. If the detection method selection unit 34 determines that the item other than “speed information” is selected, the process proceeds to step S205.
  • step S205 whether the detection method selection unit 34 selects “reference” as information used by the force correction point detection unit 27, the slave force correction point detection unit 40, the force correction unit 25, and the slave force correction unit 39.
  • the detection method selection unit 34 determines whether or not. If the operator selects and inputs a detection method to the detection method selection unit 34 using the master input / output IF 7, and the detection method selection unit 34 determines that “reference” is selected, the process proceeds to step S206. If the detection method selection unit 34 determines that any item other than “reference” is selected, it means that no information is selected from step S202 to step S205. In this case, the work experience and the work difficulty level are determined in the above description. Applicable when each is not selected. That is, the detection method selection unit 34 automatically selects “force information and speed information”, and the process proceeds to step S206.
  • step S206 the information selected by the detection method selection unit 34 is used to detect whether the force correction point detection unit 27 and the slave force correction point detection unit 40 perform force correction or not. If force correction is detected by the force correction point detection unit 27 and the slave force correction point detection unit 40, the process proceeds to step S207. If force correction is not performed by the force correction point detection unit 27 and the slave force correction point detection unit 40, the process proceeds to step S300.
  • step S300 force information for which force correction is not performed is transmitted as it is from the force correction unit 25 to the master manipulator 9 and the slave manipulator 32, and the series of flows is completed.
  • step S207 the force correction point detection unit 27 and the slave force correction point detection unit 40 detect whether force correction is performed, and detect whether force information is increased or decreased as force correction. . It should be noted that the force correction point detection unit 27 and the slave force correction point are not corrected at the point (section) detected by the force correction point detection unit 27 and the slave force correction point detection unit 40 as “no change”. Force information is transmitted by the detection unit 40. In the part (section) detected by the force correction part detection unit 27 and the slave force correction part detection unit 40 as “increase”, the process proceeds to step S208. In the part (section) detected by the force correction part detection unit 27 and the slave force correction part detection unit 40 as “decrease” instead of “increase”, the process proceeds to step S209.
  • step S208 the force correction unit 25 increases the absolute value of the force information, and then proceeds to step S210.
  • step S210 the increased force information is transmitted from the force correction unit 25 to the master manipulator 9, and the series of flows is completed.
  • step S209 in the portion (section) detected by the force correction point detection unit 27 and the slave force correction point detection unit 40 as “decrease”, the slave force correction unit 39 decreases the absolute value of the force information, The process proceeds to step S211.
  • step S211 the reduced force information is transmitted from the slave force correction unit 39 to the slave manipulator 32, and a series of flows is completed.
  • FIGS. 20A and 20B are block diagrams showing a control device 100C of the master-slave robot 150 in the fourth embodiment of the present invention.
  • Master robot system 1 slave control unit 24, force information acquisition unit 26, force correction location detection unit 27, speed information acquisition unit 28, slave peripheral device 29, slave manipulator in the fourth embodiment of the present invention Since 32 is the same as that of the first embodiment, common reference numerals are assigned and description of common portions is omitted, and only different portions will be described in detail below.
  • the master control device 3 includes a master control unit 4 and a force transmission unit 5.
  • the slave control device 23 includes a slave control unit 24, a force correction unit 25, a force information acquisition unit 26, a force correction location detection unit 27, a speed information acquisition unit 28, a force correction method selection unit 35, and a correction amount. And a storage unit 42.
  • the force correction method selection unit 35 selects one piece of information from “object gripping position information”, “object flexibility information”, and “master gripping position information”.
  • the selection information selected by the force correction method selection unit 35 is output to the force correction unit 25, and information used when performing force correction is designated by the force correction unit 25 based on the selection information. Since the force correction unit 25 and the slave force correction unit 39 differ depending on the selection information selected by the force correction method selection unit 35, each of the selected information will be described below.
  • a method for selecting each information in the force correction method selection unit 35 is as follows. An operator (person) manually uses the master input / output IF 7 including an operation panel on which a plurality of buttons are arranged. When one of the buttons of “object grip position information”, “object flexibility information”, and “master grip position information” is pressed, the input information is based on the input information by pressing the button. Is selected by the force correction method selection unit 35. If the operator does not select anything, “target gripping position information” is automatically selected by the force correction method selection unit 35.
  • the correction amount storage unit 42 is a database corresponding to the information selected by the force correction method selection unit 35 (information selected by the force correction method selection unit 35 such as position information where the slave manipulator 32 grips the object 102 and the correction). A database that stores information related to quantity. Each database will be described later. Further, in each database, the correction amount is determined from the correction amount storage unit 42 by the force correction unit 25 and the slave force correction unit 39 in accordance with the input at the master input / output IF 7.
  • the force correction unit 25 and the slave force correction unit 39 are based on the force information input from the slave control unit 24 to the force correction unit 25 and the slave force correction unit 39, and force information of “force correction point” (force correction section). As such, the information on which the force information is corrected is output to the slave control unit 24, while the “no change” information is output to the slave control unit 24 without changing the force information.
  • the force correction unit 25 has a function of increasing the force transmitted to the master manipulator 9.
  • the slave force correction unit 39 has a function of reducing the force transmitted to the slave manipulator 32.
  • a method for correcting force information will be described with reference to FIGS. 21, 22A, and 22B.
  • the correction amount of the force information is determined from the correction amount storage unit 42 by the force correction unit 25 and the slave force correction unit 39 according to the type of the object and the gripping position.
  • the target gripping position refers to the target object from the hand portion (slave hand 71) (A in FIG. 21) of the slave manipulator 32.
  • the distance D1 to the tip of 102 (B in FIG. 21) is shown.
  • a method for acquiring the object gripping position D1 there are a method in which a person directly measures the distance D1 with a ruler or the like and inputs it using the master input IF 7, or a method in which the distance D1 is measured by image recognition using a camera. Conceivable.
  • FIGS. 22A and 22B In the block diagram showing the control device 100D of the master-slave robot 150 in FIGS. 22A and 22B, the master robot system 1, the slave control unit 24, the force information acquisition unit 26, and the force correction location detection unit 27 in FIG. Since the speed information acquisition unit 28, the slave peripheral device 29, and the slave manipulator 32 are the same as those in the first embodiment, common reference numerals are assigned and description of common parts is omitted, and only different parts are described. The details will be described below.
  • an image imaging device 36 such as a camera and a gripping position acquisition unit 37 connected to the image imaging device 36 are added. is there.
  • the image capturing device 36 and the grip position acquisition unit 37 constitute the object grip position acquisition unit 110.
  • the image capturing device 36 such as a camera acquires an image in which the slave manipulator 32 grips the object 102, and outputs the acquired image information to the gripping position acquisition unit 37.
  • the gripping position acquisition unit 37 calculates target gripping position information based on the image information acquired by the image capturing device 36 and outputs the target gripping position information to the force correction unit 25 and the slave force correction unit 39.
  • the force correction unit 25 and the slave force correction unit 39 use the object gripping position information from the gripping position acquisition unit 37 and store the target object as shown in FIG. From the database that stores the relationship between the gripping position and the correction amount, the force correction unit 25 and the slave force correction unit 39 obtain the correction amount, respectively.
  • the type of the object to be used (such as the flexible board A or the screw A in FIG. 23) is input to the correction amount storage unit 42 by the operator using the button of the master input / output IF 7.
  • the force correction unit 25 and the slave force correction unit 39 are transferred from the correction amount storage unit 42. Get the correction amount.
  • the value in the database of the correction amount storage unit 42 increases to 1.2 times and 1.4 times when the correction amount increases as the gripping position becomes longer as 5 mm and 10 mm. When it decreases, it becomes as large as 0.6 times and 0.8 times.
  • the correction amount increases to 1.5 times and 2.0 times when the correction amount increases, and 0.2 times when the correction amount decreases. .5 times larger.
  • the judgment on whether the correction amount increases or decreases is shown below. If the force correction point detection unit 27 and the slave force correction point detection unit 40 determine that the displacement of the force information acquired by the force information acquisition unit 26 exceeds a threshold (for example, 1.0 N), force correction The location detection unit 27 and the slave force correction location detection unit 40 detect “increase”. When the force correction point detection unit 27 and the slave force correction point detection unit 40 determine that the displacement of the force information acquired by the master force information acquisition unit 10 exceeds the threshold, the force correction point detection unit 27 and the slave The force correction point detection unit 40 detects “decrease”.
  • a threshold for example, 1.0 N
  • the force correction unit 25 and the slave force correction unit 39 are based on the force information input from the slave control unit 24 to the force correction unit 25 and the slave force correction unit 39, and force information of “force correction point” (force correction section). As such, the information on which the force information is corrected is output to the slave control unit 24, while the “no change” information is output to the slave control unit 24 without changing the force information.
  • the force correction unit 25 and the slave force correction unit 39 determine the correction amount of the force information from the correction amount storage unit 42 in accordance with the object flexibility information.
  • the object flexibility indicates a buckling load of the object, and the operator needs to measure the buckling load of the object in advance.
  • the buckling load measured and acquired in advance is input to the correction amount storage unit 42 by the operator using the master input IF 7.
  • a method for measuring the buckling load of the object will be described with reference to FIGS. 24A to 24F.
  • 24A to 24C are views seen from the side when the flexible substrate 104 is used
  • FIGS. 24D to 24F are views when the screw 107 is used.
  • the object is raised on the fixing base 108, and the end opposite to the insertion direction side of the object is fixed with the fixing base 108.
  • a force is gradually applied along the longitudinal direction of the object using the force application device 109 to the end of the object in the insertion direction.
  • the operator inputs the buckling load and the type of the object obtained in this way using the master input IF 7 and stores them in the correction amount storage unit 42.
  • the correction amount storage unit 42 has a database storing the relationship between the object type, buckling load, and the correction amount as shown in FIG. Then, the force correction unit 25 and the slave force correction unit 39 obtain the correction amount from the correction amount storage unit 42 according to the information on the type of the object and the buckling load.
  • the value of the database decreases as 1.4 times and 1.2 times when the correction amount increases as the buckling load increases (hardens) to 10N and 20N, and the correction amount decreases. When decreasing, it becomes 0.8 times and 0.6 times smaller.
  • the force correction point detection unit 27 and the slave force correction point detection unit 40 determine that the displacement of the force information acquired by the force information acquisition unit 26 exceeds a threshold (for example, 1.0 N), force correction When the location detection unit 27 and the slave force correction location detection unit 40 detect “increase” and the displacement of the force information acquired by the master force information acquisition unit 10 exceeds a threshold value, the force correction location detection unit 27 and the slave force When it is determined by the correction point detection unit 40, the force correction point detection unit 27 and the slave force correction point detection unit 40 detect “decrease”.
  • a threshold for example, 1.0 N
  • the force correction unit 25 and the slave force correction unit 39 are based on the force information input from the slave control unit 24 to the force correction unit 25 and the slave force correction unit 39, and force information of “force correction point” (force correction section). As such, the information on which the force information is corrected is output to the slave control unit 24, while the “no change” information is output to the slave control unit 24 without changing the force information.
  • the force information correction method will be described with reference to FIGS. 26A to 26B.
  • the master grip position information is position information where the human hand 101 grips the master manipulator 9 as shown in FIG. 26A.
  • force sensors 66A, 66B, and 66C as examples of the master gripping position acquisition unit are attached to the master manipulator 9 at points A, B, and C in FIG. 26A, respectively.
  • the force information acquired by the force sensors 66A, 66B, 66C is sent to the master force information acquisition unit 10 via the master input / output IF 7 (see FIG. 7), the master control unit 4 and the slave control unit 24, the force information is sent to the force correction unit 25.
  • the force information of the points A, B, and C is compared by the force correction unit 25, and the point having the largest value in the force correction unit 25 is set as the master gripping position. Further, even in the case of FIG. 26B where the shape of the slave manipulator 32 (see the shape of FIG.
  • the correction amount storage unit 42 owns a database storing the relationship between the master grip position and the correction amount as shown in FIG. And the correction amount of the force information is obtained from the correction amount storage unit 42 by the slave force correction unit 39.
  • the master gripping position becomes points A, B, and C
  • the value of the database increases to 1.2, 1.4, and 1.6 times when the correction amount increases, and the correction amount decreases. When it does, it becomes small with 0.8 times, 0.6 times, and 0.4 times.
  • FIG. 28 is a flowchart from the acquisition of force information and speed information in the fourth embodiment of the present invention until force correction.
  • step S201 the force information acquisition unit 26 and the master force information acquisition unit 10 respectively acquire force information, and the speed information acquisition unit 28 acquires speed information.
  • step S206 the force correction point detection unit 27 and the slave force correction point detection unit 40 detect whether force correction is performed or not. That is, in the force correction unit 25, with respect to the force information acquired by the force information acquisition unit 26 and the master force information acquisition unit 10, a force correction point (force correction section) is detected by the force correction point detection unit 27 and the slave force correction point detection unit 40. Judge whether there is.
  • the force correction location detection unit 27 uses one or more of the force information acquired by the force information acquisition unit 26 and the speed information acquired by the speed information acquisition unit 28 to generate a “force correction location” (force correction It has a function to detect (interval).
  • the slave force correction point detection unit 40 uses one or more information of the force information acquired by the master force information acquisition unit 10 and the speed information acquired by the speed information acquisition unit 28 to perform “force correction”. It has a function to detect “location” (force correction section).
  • step S206 when the force correction point detector 27 and the slave force correction point detector 40 determine that there is no force correction point (force correction section), the process proceeds to step S300.
  • step S300 force information for which force correction is not performed is transmitted as it is from the force correction unit 25 to the master manipulator 9 and the slave manipulator 32, and the series of flows is completed.
  • step S206 when the force correction point detection unit 27 or the slave force correction point detection unit 40 determines that there is a force correction point (force correction section), the process proceeds to step S207.
  • step S207 the force correction point detection unit 27 or the slave force correction point detection unit 40 determines that there is a force correction point (force correction section), and the force correction point detection unit 27 or the slave force correction point detection unit 40 When force correction is performed, it is detected whether the correction amount is increased or decreased. It should be noted that in the portion (section) detected by the force correction location detector 27 or the slave force correction location detector 40 as “no change”, the force correction location detector 27 and the slave force correction location are not corrected without correcting the force information. Force information is transmitted by the detection unit 40. In the part (section) detected by the force correction part detection unit 27 and the slave force correction part detection unit 40 as “increase”, the process proceeds to step S221A. On the other hand, in the part (section) detected by the force correction part detection part 27 and the slave force correction part detection part 40 as “decrease”, it progresses to step S221B.
  • step S ⁇ b> 221 ⁇ / b> A the force correction method selection unit 35 determines whether to select “target gripping position information” as information used by the force correction unit 25 and the slave force correction unit 39. To do. If the force correction method selection unit 35 determines that “target gripping position information” is selected as information used by the force correction unit 25 and the slave force correction unit 39, the process proceeds to step S208. When the force correction method selection unit 35 determines that “object gripping position information” is not selected as information used by the force correction unit 25 and the slave force correction unit 39, the process proceeds to step S222A.
  • step S222A the force correction method selection unit 35 determines whether or not “object flexibility information” is selected as information used by the force correction unit 25 and the slave force correction unit 39. To do. If “force object flexibility information” is selected as information used by the force correction unit 25 and the slave force correction unit 39, the force correction method selection unit 35 proceeds to step S208. When the force correction method selection unit 35 determines that “object flexibility information” is not selected as information used by the force correction unit 25 and the slave force correction unit 39, the process proceeds to step S223A.
  • step S223A the force correction method selection unit 35 determines whether or not “master grip position information” is selected as information used by the force correction unit 25 and the slave force correction unit 39. . In the case where the force correction method selection unit 35 determines that “master gripping position information” is selected as information used by the force correction unit 25 and the slave force correction unit 39, the process proceeds to step S208.
  • the force correction method selection unit 35 determines that “master grip position information” is not selected as information used by the force correction unit 25 and the slave force correction unit 39, no information is selected from step S221A to step S223A. In this case, the operator does not select anything, and “target gripping position information” is automatically selected by the force correction method selection unit 35, and the process proceeds to step S208.
  • step S208 using the information selected by the force correction method selection unit 35, the force correction unit 25 is detected at a location (section) detected by the force correction location detection unit 27 and the slave force correction location detection unit 40 as “increase”. After increasing the absolute value of the force information, the process proceeds to step S210.
  • step S210 the increased force information is transmitted from the force correction unit 25 to the master manipulator 9, and the series of flows is completed.
  • step S221B the force correction method selection unit 35 determines whether or not to select “target gripping position information” as information used by the force correction unit 25 and the slave force correction unit 39. Judge with. If the force correction method selection unit 35 determines that “object gripping position information” is selected as information used by the force correction unit 25 and the slave force correction unit 39, the process proceeds to step S209. When the force correction method selection unit 35 determines that “object gripping position information” is not selected as information used by the force correction unit 25 and the slave force correction unit 39, the process proceeds to step S222B.
  • step S222B the force correction method selection unit 35 determines whether or not “target object flexibility information” is selected as information used by the force correction unit 25 and the slave force correction unit 39. To do. When the force correction method selection unit 35 determines that “object flexibility information” is selected as information used by the force correction unit 25 and the slave force correction unit 39, the process proceeds to step S209. When the force correction method selection unit 35 determines that “target object flexibility information” is not selected as information used by the force correction unit 25 and the slave force correction unit 39, the process proceeds to step S223B.
  • step S223B the force correction method selection unit 35 determines whether or not “master grip position information” is selected as information used by the force correction unit 25 and the slave force correction unit 39. . In the case where the force correction method selection unit 35 determines that “master grip position information” is selected as information used by the force correction unit 25 and the slave force correction unit 39, the process proceeds to step S209.
  • the force correction method selection unit 35 determines that “master grip position information” is not selected as information used by the force correction unit 25 and the slave force correction unit 39, no information is selected from step S221B to step S223B. In this case, the operator does not select anything, and “target gripping position information” is automatically selected by the force correction method selection unit 35, and the process proceeds to step S209.
  • step S209 the absolute value of the force information is reduced in the slave force correction unit 39 in the portion (section) detected by the force correction location detection unit 27 and the slave force correction location detection unit 40 as “decrease”, and then in step S211. Proceed to
  • step S211 the reduced force information is transmitted from the force correction unit 25 to the slave manipulator 32, and a series of flows is completed.
  • the correction amount is increased.
  • a rough work for example, when the flexible board is moved to the insertion port of the connector
  • the correction amount can be adjusted by a person according to the work, such as reducing the correction amount.
  • the present invention is useful as a master-slave robot control device and control method, a master-slave robot, a robot control program, and an integrated electronic circuit that can be operated separately by a human-operated robot and a working robot such as an industrial robot. is there. Further, the present invention is not limited to industrial robots, and may be applied to household robots, robot control devices, robot control control programs, and integrated electronic circuits.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)

Abstract

The present invention provides a controller for a master-slave robot. The controller is provided with a force correction location detection unit for detecting a location where force information is corrected from the force information and/or velocity information, and a force correction unit for correcting the force information at the location detected as the force correction location by the force correction location detection unit. As a result, a small external force applied to a slave manipulator (32) is magnified for transmission to a master manipulator (9), and excessive manipulation force applied to the master manipulator (9) is reduced for transmission to the slave manipulator (32).

Description

マスタースレーブロボットの制御装置及び制御方法、マスタースレーブロボット、制御プログラム、並びに、集積電子回路Master-slave robot control device and control method, master-slave robot, control program, and integrated electronic circuit
 本発明は、例えばロボットアームマスタースレーブロボットの動作を生成及び教示するためのマスタースレーブロボットの制御装置及び制御方法、マスタースレーブロボットの制御装置を有するマスタースレーブロボット、マスタースレーブロボットの制御装置のための制御プログラム、並びに、集積電子回路に関する。 The present invention relates to, for example, a master-slave robot controller and control method for generating and teaching a robot arm master-slave robot operation, a master-slave robot having a master-slave robot controller, and a master-slave robot controller The present invention relates to a control program and an integrated electronic circuit.
 近年、製造現場では多品種少量生産のためモデルチェンジが頻繁に起こっている。セル生産が盛んに行われている近年の製造現場において、ネジ締め作業又は部品の嵌合作業、装着作業、フレキシブル基板などの挿入作業、研磨作業などをロボットにより自動化するためには、多種多様な部品又は作業手順に柔軟に対応する必要がある。また、フレキシブル基板の挿入作業などのように柔軟物を取り扱う作業などは、作業が複雑であり、依然として、人手、中心で行っている。そのような人手中心で行っている作業を、ロボットにより自動化する需要は大きい。 In recent years, model changes have frequently occurred at manufacturing sites due to high-mix low-volume production. In a recent manufacturing site where cell production is actively carried out, there are various types of robots to automate screw tightening work or part fitting work, mounting work, flexible board insertion work, polishing work, etc. It is necessary to respond flexibly to parts or work procedures. Also, operations such as inserting flexible substrates that handle flexible objects are complicated, and are still performed manually and centrally. There is a great demand for automating such human-centered work by robots.
 そこで、ティーチングペンダント又はプログラミングを用いて、ロボットに作業を教示する方法が用いられている。しかしながら、それらの方法により教示を行うと、教示工数が非常に増えるといった問題がある。その問題を解消するために、ロボットを直接触って教示するダイレクトティーチング、又は、人が操作するロボット(マスター)と実際に作業するロボット(スレーブ)とが別のロボットであるマスタースレーブロボットの制御装置を用いて簡単に教示する方法が用いられている。 Therefore, a method of teaching work to a robot using a teaching pendant or programming is used. However, when teaching is performed by these methods, there is a problem that the number of teaching steps is greatly increased. In order to solve the problem, direct teaching that directly teaches the robot, or a control device for a master-slave robot in which a robot (master) operated by a person and a robot (slave) actually operated are different robots. A simple teaching method is used.
 ダイレクトティーチングの一例として、ロボットの手首などに力センサを装着し、力センサの先に装着されたハンドルを教示者が直接把持してロボットを教示点に誘導し、ロボットの位置の教示を行うものが知られている(特許文献1を参照)。 As an example of direct teaching, a force sensor is attached to the wrist of the robot, the teacher directly grasps the handle attached to the tip of the force sensor, guides the robot to the teaching point, and teaches the position of the robot Is known (see Patent Document 1).
 また、マスタースレーブロボットの制御装置を用いて簡単に教示する方法の一例として、スレーブマニピュレータで取得した力をマスターマニピュレータにフィードバックし、人がスレーブマニピュレータに加えられた力を感じることができるマスタースレーブロボットの制御装置を用いて教示する方法が用いられている(特許文献2、3、4を参照)。 Also, as an example of a simple teaching method using a master-slave robot controller, a master-slave robot that feeds back the force acquired by the slave manipulator to the master manipulator and allows the person to feel the force applied to the slave manipulator The teaching method using the control device is used (see Patent Documents 2, 3, and 4).
 マスタースレーブロボットの制御装置を用いた教示方法の一例としては、人がマスターマニピュレータを把持して動作させ、マスターマニピュレータに教示する。そして、マスターマニピュレータに教示した情報を基に、教示点間の距離を拡大又は縮小することによって、マスターマニピュレータと大きさの異なるスレーブマニピュレータに、教示する方法が用いられている(特許文献5を参照)。 As an example of the teaching method using the control device of the master-slave robot, a person grasps and operates the master manipulator to teach the master manipulator. Then, based on the information taught to the master manipulator, a method of teaching to a slave manipulator having a size different from that of the master manipulator by enlarging or reducing the distance between the teaching points is used (see Patent Document 5). ).
特開昭59-157715号公報JP 59-157715 A 特開2002-59380号公報JP 2002-59380 A 特開平8-281573号公報JP-A-8-281573 特開平1-34686号公報JP-A-1-34686 特開平5-204440号公報Japanese Patent Laid-Open No. 5-204440
 しかしながら、特許文献1においては、ロボットが取得した力を人に物理的にフィードバックしているので、人に伝わる力の大きさを変化させることができない。そのため、例えばフレキシブル基板の挿入作業を行う場合において、部品又は作業手順が変わりフレキシブル基板の剛性がより低くなった場合、又はロボットがフレキシブル基板を把持する位置が基板の先端からより遠くなってしまった場合などに、ロボットが取得する力の大きさが小さくなるので、人に伝わる力の大きさも小さくなり、作業時間が大幅に増えることになる。 However, in Patent Document 1, since the force acquired by the robot is physically fed back to the person, the magnitude of the force transmitted to the person cannot be changed. For this reason, for example, when inserting a flexible board, if the component or work procedure is changed and the rigidity of the flexible board is lower, or the position where the robot grips the flexible board is farther from the tip of the board. In some cases, since the magnitude of the force acquired by the robot is reduced, the magnitude of the force transmitted to the person is also reduced, and the working time is greatly increased.
 ここで、フレキシブル基板の挿入作業についてダイレクトティーチングを用いて、人がロボットに伝わる力を感じながら挿入作業を行った結果を以下に示す。その際、ロボットが把持するフレキシブル基板の把持位置を変えて作業を行うことで、把持位置の変更によって、作業時間がどのように変わるか、実験を通して検証する。図29A~図29Cにおいて、人の手101が、フレキシブル基板104を把持するマニピュレータ105を直接触り、コネクタ106への挿入作業を行う。図29Aは把持位置が挿入側の端縁104aから5mmの場合を示し、図29Bは把持位置が挿入側の端縁104aから10mmの場合を示す。図29Cは、フレキシブル基板104のコネクタ106への挿入作業の作業手順を示している。把持位置が5mmの場合の実験結果を図30に、把持位置が10mmの場合の実験結果を図31に示す。図30及び図31における実線はフレキシブル基板104がコネクタ106に衝突したときの力の大きさを示し、破線はマニピュレータ105の手先の速度を示す。図30及び図31の横軸は実験時間(ms)を示し、実験開始時間を0msとし実験終了までの時間を示している。図30及び図31の左縦軸はフレキシブル基板104がコネクタ106に衝突したときの力の大きさ(N)、図30及び図31の右縦軸はマニピュレータ105の手先の速度(mm/ms)を示す。図30及び図31のグラフの下に描かれている図は、フレキシブル基板104のコネクタ106に対する挿入状況を示し、グラフの横軸が示す実験時間においてコネクタ106に対してフレキシブル基板104がどのような状況にあるのかを示す。また、図30及び図31中の参照符号Aは、フレキシブル基板104がコネクタ106の入り口に衝突しており、挿入開始した状態を示し、参照符号Bは、フレキシブル基板104がコネクタ106の奥に衝突しており、挿入完了した状態を示す。図30及び図31のAを比較すると、図31のAのほうがより時間が長く、図30及び図31のBを比較すると、図31のBのほうがより力が小さいことがわかる。よって、把持位置が10mmのほうが把持位置が5mmと比較して、挿入に要する時間が長く、得られる力の大きさが小さくなり、挿入作業が難しくなることが確認できる。 Here, the results of inserting the flexible substrate using direct teaching while feeling the force transmitted to the robot are shown below. At that time, it is verified through an experiment how the work time changes by changing the gripping position by changing the gripping position of the flexible substrate held by the robot. 29A to 29C, a human hand 101 directly touches the manipulator 105 that holds the flexible substrate 104 and performs an insertion operation into the connector 106. FIG. 29A shows a case where the gripping position is 5 mm from the insertion-side edge 104a, and FIG. 29B shows a case where the gripping position is 10 mm from the insertion-side edge 104a. FIG. 29C shows a work procedure for inserting the flexible board 104 into the connector 106. FIG. 30 shows the experimental results when the gripping position is 5 mm, and FIG. 31 shows the experimental results when the gripping position is 10 mm. The solid line in FIGS. 30 and 31 indicates the magnitude of the force when the flexible substrate 104 collides with the connector 106, and the broken line indicates the speed of the hand of the manipulator 105. 30 and 31 indicate the experiment time (ms), the experiment start time is 0 ms, and the time until the experiment ends. 30 and 31, the left vertical axis indicates the magnitude of the force when the flexible substrate 104 collides with the connector 106 (N), and the right vertical axis in FIGS. 30 and 31 indicates the speed of the hand of the manipulator 105 (mm / ms). Indicates. 30 and 31 show the insertion state of the flexible board 104 with respect to the connector 106, and what the flexible board 104 has with respect to the connector 106 in the experiment time indicated by the horizontal axis of the graph. Indicates whether the situation is present. 30 and 31, reference numeral A indicates that the flexible board 104 has collided with the entrance of the connector 106 and has started insertion, and reference numeral B indicates that the flexible board 104 has collided with the back of the connector 106. And shows a state where insertion has been completed. Comparing A in FIGS. 30 and 31, it can be seen that A in FIG. 31 has a longer time, and comparing B in FIGS. 30 and 31, the force in B in FIG. 31 is smaller. Therefore, it can be confirmed that when the gripping position is 10 mm, the time required for insertion is longer than when the gripping position is 5 mm, the magnitude of the obtained force is reduced, and the insertion work becomes difficult.
 また、特許文献2、3、4においては、マスタースレーブロボットの制御装置を用いて、人に伝わる力の大きさを変化させることができるが、同一作業内では、どの工程においても、同様に力の大きさを変化させるため力の強弱を明確につけることができない。そのため、作業中の力の強弱がはっきりと作業者に伝わらず、力の大きさを変化させても、作業時間の短縮にはつながらない。 In Patent Documents 2, 3, and 4, the magnitude of the force transmitted to a person can be changed using the control device of the master / slave robot. The strength of the power cannot be clearly defined to change the size of. For this reason, the strength of the force during work is not clearly transmitted to the worker, and changing the magnitude of the force does not lead to a reduction in work time.
 さらに、フレキシブル基板の挿入作業などのように柔軟物を取り扱う作業では、過度の力を加えると、基板などが破損してしまうという課題も併せ持つ。 Furthermore, in the operation of handling a flexible object such as an operation of inserting a flexible substrate, there is a problem that the substrate is damaged if an excessive force is applied.
 特許文献5においては、マスタースレーブロボットの制御装置を用いた教示を行っているが、位置情報のみを用いた教示であり、力情報を使用しておらず、作業中にスレーブマニピュレータに外部から加えられた力を、マスターマニピュレータを把持した人の手に伝えることができない。 In Patent Document 5, teaching is performed using a control device for a master-slave robot, but teaching is performed using only position information, force information is not used, and it is added to the slave manipulator from the outside during work. The transmitted force cannot be transmitted to the hand of the person holding the master manipulator.
 本発明の目的は、このような課題に鑑みてなされたものであり、部品又は作業手順が変わった場合においても、作業者が簡単に短時間で、かつ対象物を破損しない作業を行うことができるマスタースレーブロボットの制御装置及び制御方法、マスタースレーブロボット、制御プログラム、並びに、集積電子回路を提供することにある。 The object of the present invention has been made in view of such problems, and even when parts or work procedures are changed, an operator can easily perform work without damaging an object in a short time. An object of the present invention is to provide a master slave robot control device and method, a master slave robot, a control program, and an integrated electronic circuit.
 上記目的を達成するために、本発明は以下のように構成する。 In order to achieve the above object, the present invention is configured as follows.
 本発明の第1態様によれば、対象物を把持し被対象物に対して接触しながら作業を行うスレーブマニピュレータと、前記スレーブマニピュレータを人が遠隔により操作するマスターマニピュレータとを備えるマスタースレーブロボットの制御装置において、
 前記スレーブマニピュレータに外部から加えられた力情報を取得する力情報取得部と、
 前記力情報において補正が必要である区間の情報である力補正箇所を、前記力情報取得部で取得した力情報より検出する力補正箇所検出部と、
 前記力補正箇所検出部で検出された区間の前記力情報を補正する力補正部と、
 前記力補正部からの力情報を前記マスターマニピュレータに伝達する力伝達部と、
 前記人が、前記力伝達部からの力情報に基づいて前記マスターマニピュレータを操作するとき、前記マスターマニピュレータの操作情報を制御するマスター制御部と、
 前記スレーブマニピュレータと前記マスター制御部とに接続され、前記マスター制御部から送られる前記マスターマニピュレータの操作情報を、前記スレーブマニピュレータに伝達する制御信号を出力するスレーブ制御部とを備えるマスタースレーブロボットの制御装置を提供する。
According to the first aspect of the present invention, there is provided a master-slave robot including a slave manipulator that grips an object and performs work while contacting the object, and a master manipulator that a person remotely operates the slave manipulator. In the control device,
A force information acquisition unit that acquires force information applied to the slave manipulator from the outside;
A force correction point detection unit that detects a force correction point that is information of a section that needs to be corrected in the force information from the force information acquired by the force information acquisition unit;
A force correction unit for correcting the force information of the section detected by the force correction point detection unit;
A force transmission unit that transmits force information from the force correction unit to the master manipulator;
When the person operates the master manipulator based on force information from the force transmission unit, a master control unit that controls operation information of the master manipulator;
Control of a master-slave robot connected to the slave manipulator and the master control unit, and comprising a slave control unit that outputs a control signal for transmitting operation information of the master manipulator sent from the master control unit to the slave manipulator Providing equipment.
 本発明の第2態様によれば、対象物を把持し被対象物に対して接触しながら作業を行うスレーブマニピュレータと、
 前記スレーブマニピュレータを人が遠隔により操作するマスターマニピュレータとを備えるマスタースレーブロボットの制御装置において、
 前記人が前記マスターマニピュレータに加える力情報を取得するマスター力情報取得部と、
 前記力情報において補正が必要である区間の情報である力補正箇所を、前記マスター力情報取得部で取得した力情報より検出するスレーブ力補正箇所検出部と、
 前記スレーブ力補正箇所検出部で検出された区間の前記力情報を補正するスレーブ力補正部と、
 前記スレーブ力補正部からの力情報を前記スレーブマニピュレータに伝達するスレーブ力伝達部と、
 前記人が、前記スレーブ力伝達部からの力情報に基づいて前記マスターマニピュレータを操作するとき、前記マスターマニピュレータの操作情報を制御するマスター制御部と、
 前記スレーブマニピュレータと前記マスター制御部とに接続され、前記マスター制御部から送られる前記マスターマニピュレータの操作情報を、前記スレーブマニピュレータに伝達する制御信号を出力するスレーブ制御部とを備えるマスタースレーブロボットの制御装置を提供する。
According to the second aspect of the present invention, a slave manipulator that grips an object and performs work while contacting the object;
In a master-slave robot control device comprising a master manipulator that allows a human to remotely operate the slave manipulator,
A master force information acquisition unit that acquires force information applied by the person to the master manipulator;
A slave force correction point detection unit that detects a force correction point that is information of a section that needs to be corrected in the force information from force information acquired by the master force information acquisition unit;
A slave force correction unit that corrects the force information of the section detected by the slave force correction point detection unit;
A slave force transmission unit that transmits force information from the slave force correction unit to the slave manipulator;
When the person operates the master manipulator based on force information from the slave force transmission unit, a master control unit that controls operation information of the master manipulator;
Control of a master-slave robot connected to the slave manipulator and the master control unit, and comprising a slave control unit that outputs a control signal for transmitting operation information of the master manipulator sent from the master control unit to the slave manipulator Providing equipment.
 本発明の第16態様によれば、前記人が前記マスターマニピュレータを把持する位置情報を取得するマスター把持位置取得部と、
 前記人が前記マスターマニピュレータを把持する位置情報と補正量との関係情報を記憶する補正量記憶部をさらに備え、
 前記力補正部又は前記スレーブ力補正部は、
 前記力補正方法選択部において前記「マスター把持位置情報」が選択された場合には、
 前記人が前記マスターマニピュレータを把持する位置情報を前記マスター把持位置情報取部で取得し、
 前記マスター把持位置情報取部で取得された前記位置情報を用いて、前記補正量記憶部から前記力情報の補正量を求める第13の態様に記載のマスタースレーブロボットの制御装置を提供する。
According to a sixteenth aspect of the present invention, a master grip position acquisition unit that acquires position information for the person to grip the master manipulator;
A correction amount storage unit that stores relationship information between the positional information and the correction amount by which the person holds the master manipulator;
The force correction unit or the slave force correction unit is
When the “master grip position information” is selected in the force correction method selection unit,
The master gripping position information acquisition unit acquires position information for gripping the master manipulator by the person,
A control device for a master-slave robot according to a thirteenth aspect, wherein a correction amount of the force information is obtained from the correction amount storage unit using the position information acquired by the master gripping position information acquisition unit.
 本発明の第17態様によれば、対象物を把持し被対象物に対して接触しながら作業を行うスレーブマニピュレータと、前記スレーブマニピュレータを人が遠隔により操作するマスターマニピュレータとを備えるマスタースレーブロボットの制御装置の制御方法であって、
 前記スレーブマニピュレータに外部から加えられた力情報を力情報取得部で取得し、
 前記力情報において補正が必要である区間の情報である力補正箇所を、前記力情報取得部で取得した力情報より力補正箇所検出部で検出し、
 前記力補正箇所検出部で検出された区間の前記力情報を力補正部で補正し、
 前記力補正部からの力情報を前記マスターマニピュレータに力伝達部で伝達し、
 前記人が、前記力伝達部からの力情報に基づいて前記マスターマニピュレータを操作するとき、前記マスターマニピュレータの操作情報をマスター制御部で制御し、
 前記スレーブマニピュレータと前記マスター制御部とに接続され、前記マスター制御部から送られる前記マスターマニピュレータの操作情報を、前記スレーブマニピュレータに伝達する制御信号をスレーブ制御部で出力するマスタースレーブロボットの制御装置の制御方法を提供する。
According to the seventeenth aspect of the present invention, there is provided a master slave robot comprising: a slave manipulator that grips an object and performs an operation while making contact with the object; and a master manipulator that a person remotely operates the slave manipulator. A control method for a control device, comprising:
A force information acquisition unit acquires force information applied to the slave manipulator from the outside,
In the force information, a force correction location that is information of a section that needs to be corrected is detected by the force correction location detection unit from the force information acquired by the force information acquisition unit,
The force correction section corrects the force information of the section detected by the force correction point detection section,
Transmit force information from the force correction unit to the master manipulator with a force transmission unit,
When the person operates the master manipulator based on the force information from the force transmission unit, the operation information of the master manipulator is controlled by the master control unit,
A control device for a master-slave robot connected to the slave manipulator and the master control unit, wherein the slave control unit outputs a control signal for transmitting operation information of the master manipulator sent from the master control unit to the slave manipulator. Provide a control method.
 本発明の第18態様によれば、前記マスターマニピュレータ及び前記スレーブマニピュレータと、
 第1~16のいずれか1つの態様に記載の前記マスタースレーブロボットの制御装置とを備えるマスタースレーブロボットを提供する。
According to an eighteenth aspect of the present invention, the master manipulator and the slave manipulator;
A master-slave robot comprising the master-slave robot control device according to any one of the first to sixteenth aspects.
 本発明の第19態様によれば、対象物を把持し被対象物に対して接触しながら作業を行うスレーブマニピュレータと、前記スレーブマニピュレータを人が遠隔により操作するマスターマニピュレータとを備えるマスタースレーブロボットの制御装置の制御プログラムであって、
 コンピュータに、
 前記スレーブマニピュレータに外部から加えられた力情報を力情報取得部で取得するステップと、
 前記力情報において補正が必要である区間の情報である力補正箇所を、前記力情報取得部で取得した力情報より力補正箇所検出部で検出するステップと、
 前記力補正箇所検出部で検出された区間の前記力情報を力補正部で補正するステップと、
 前記力補正部からの力情報を前記マスターマニピュレータに力伝達部で伝達するステップと、
 前記人が、前記力伝達部からの力情報に基づいて前記マスターマニピュレータを操作するとき、前記マスターマニピュレータの操作情報をマスター制御部で制御するステップと、
 前記スレーブマニピュレータとマスター制御部とに接続され、前記マスター制御部から送られる前記マスターマニピュレータの操作情報を、前記スレーブマニピュレータに伝達する制御信号をスレーブ制御部で出力するステップとを実行するための、マスタースレーブロボットの制御装置の制御プログラムを提供する。
According to the nineteenth aspect of the present invention, there is provided a master slave robot comprising: a slave manipulator that grips an object and performs an operation while making contact with the object; and a master manipulator that a person remotely operates the slave manipulator. A control program for a control device,
On the computer,
Acquiring force information externally applied to the slave manipulator with a force information acquisition unit;
Detecting a force correction location, which is information of a section requiring correction in the force information, by a force correction location detection unit from force information acquired by the force information acquisition unit;
A step of correcting the force information of the section detected by the force correction point detection unit by a force correction unit;
Transmitting force information from the force correction unit to the master manipulator with a force transmission unit;
When the person operates the master manipulator based on the force information from the force transmission unit, controlling the operation information of the master manipulator with a master control unit;
The slave manipulator is connected to the master control unit, and the operation information of the master manipulator sent from the master control unit is transmitted to the slave manipulator, and the slave control unit outputs a control signal. A control program for a master / slave robot controller is provided.
 本発明の第20態様によれば、対象物を把持し被対象物に対して接触しながら作業を行うスレーブマニピュレータと、前記スレーブマニピュレータを人が遠隔により操作するマスターマニピュレータとを備えるマスタースレーブロボットの制御装置の集積電子回路であって、
 前記スレーブマニピュレータに外部から加えられた力情報を力情報取得部で取得し、
 前記力情報において補正が必要である区間の情報である力補正箇所を、前記力情報取得部で取得した力情報より力補正箇所検出部で検出し、
 前記力補正箇所検出部で検出された区間の前記力情報を力補正部で補正し、
 前記力補正部からの力情報を前記マスターマニピュレータに力伝達部で伝達し、
 前記人が、前記力伝達部からの力情報に基づいて前記マスターマニピュレータを操作するとき、前記マスターマニピュレータの操作情報をマスター制御部で制御し、
 前記スレーブマニピュレータと前記マスター制御部とに接続され、前記マスター制御部から送られる前記マスターマニピュレータの操作情報を、前記スレーブマニピュレータに伝達する制御信号をスレーブ制御部で出力するマスタースレーブロボットの制御装置の集積電子回路を提供する。
According to the twentieth aspect of the present invention, there is provided a master slave robot comprising: a slave manipulator that grips an object and performs work while contacting the object; and a master manipulator that a person remotely operates the slave manipulator. An integrated electronic circuit of a control device,
A force information acquisition unit acquires force information applied to the slave manipulator from the outside,
In the force information, a force correction location that is information of a section that needs to be corrected is detected by the force correction location detection unit from the force information acquired by the force information acquisition unit,
The force correction section corrects the force information of the section detected by the force correction point detection section,
Transmit force information from the force correction unit to the master manipulator with a force transmission unit,
When the person operates the master manipulator based on the force information from the force transmission unit, the operation information of the master manipulator is controlled by the master control unit,
A control device for a master-slave robot connected to the slave manipulator and the master control unit, wherein the slave control unit outputs a control signal for transmitting operation information of the master manipulator sent from the master control unit to the slave manipulator. An integrated electronic circuit is provided.
 本発明のマスタースレーブロボットの制御装置及び制御方法、マスタースレーブロボット、ロボット制御のプログラム、並びに集積電子回路によれば、作業を行う際にスレーブマニピュレータに外部から加えられた力情報のうちで重要となる工程の力情報のみを増加して、マスターマニピュレータに伝達することができる。その結果、作業中の力の強弱がはっきりと作業者に伝わり、部品又は作業手順が変わった場合においても簡単に短時間で作業を行うことができる。また、作業者がマスターマニピュレータに過度の力を加えた場合においても、スレーブマニピュレータに伝達する力情報を減少させることによって、対象物が破損することを防ぐことができる。 According to the master-slave robot control device and method, the master-slave robot, the robot control program, and the integrated electronic circuit of the present invention, it is important among the force information applied to the slave manipulator from the outside when performing work. Only the force information of the process can be increased and transmitted to the master manipulator. As a result, the strength of the force during the work is clearly transmitted to the worker, and the work can be easily performed in a short time even when the parts or the work procedure is changed. Moreover, even when an operator applies excessive force to the master manipulator, it is possible to prevent the object from being damaged by reducing the force information transmitted to the slave manipulator.
 本発明のこれらと他の目的と特徴は、添付された図面についての好ましい実施形態に関連した次の記述から明らかになる。この図面においては、
図1は、本発明の第1実施形態におけるマスタースレーブロボットのブロック図であり、 図2は、本発明の第1実施形態におけるマスターロボットシステムの説明図であり、 図3は、本発明の第1実施形態におけるスレーブロボットシステムの説明図であり、 図4Aは、本発明の第1実施形態における人がマスタースレーブロボットの制御装置を用いて作業する状態の説明図であり、 図4Bは、本発明の第1実施形態における人がマスタースレーブロボットの制御装置を用いて作業する状態において、図4Aとは力センサの正負の符号の向きが逆の場合の説明図であり、 図5Aは、本発明の第1実施形態における力増加箇所を検出し、力を増加することを説明するための、スレーブマニピュレータ(スレーブ側)で検出された力と時間との関係を示すグラフであり、 図5Bは、本発明の第1実施形態における力増加箇所を検出し、力を増加することを説明するための、スレーブマニピュレータで検出された速度と時間との関係を示すグラフであり、 図5Cは、力センサの正負の符号の向きが図4Aの場合であって、本発明の第1実施形態における力増加箇所を検出し、力を増加することを説明するための、マスターマニピュレータに伝達する力と時間との関係を示すグラフを含む説明図であり、 図5Dは、力センサの正負の符号の向きが図4Bの場合であって、本発明の第1実施形態における力増加箇所を検出し、力を増加することを説明するための、マスターマニピュレータに伝達する力と時間との関係を示すグラフを含む説明図であり、 図6は、本発明の第1実施形態における力情報、速度情報を取得してから力補正するまでの処理の流れを示すフローチャートであり、 図7は、本発明の第2実施形態におけるマスタースレーブロボットのブロック図であり、 図8Aは、本発明の第2実施形態における力減少箇所を検出し、力を減少することを説明するための、マスターマニピュレータで検出された力と時間との関係を示すグラフであり、 図8Bは、本発明の第2実施形態における力減少箇所を検出し、力を減少することを説明するための、スレーブマニピュレータで検出された速度と時間との関係を示すグラフであり、 図8Cは、本発明の第2実施形態における力減少箇所を検出し、力を減少することを説明するための、スレーブマニピュレータに伝達する力と時間との関係を示すグラフを含む説明図であり、 図9は、本発明の第2実施形態における力情報、速度情報を取得してから力補正するまでの処理の流れを示すフローチャートであり、 図10Aは、本発明の第3実施形態におけるマスタースレーブロボットのブロック図であり、 図10Bは、本発明の第3実施形態におけるマスタースレーブロボットのブロック図であり、 図11は、本発明の第3実施形態における検出方法を保有するデータベースを示す図であり、 図12Aは、本発明の第3実施形態(「力情報」を選択した場合)における力増加箇所を検出し、力を増加することを説明するための、スレーブマニピュレータで検出された力と時間との関係を示すグラフであり、 図12Bは、本発明の第3実施形態における(「力情報」を選択した場合)における力増加箇所を検出し、力を増加することを説明するための、マスターマニピュレータに伝達する力と時間との関係を示すグラフを含む説明図であり、 図13Aは、本発明の第3実施形態(「力情報」を選択した場合)における力減少箇所を検出し、力を減少することを説明するための、マスターマニピュレータで検出された力と時間との関係を示すグラフであり、 図13Bは、本発明の第3実施形態(「力情報」を選択した場合)における力減少箇所を検出し、力を減少することを説明するための、スレーブマニピュレータに伝達する力と時間との関係を示すグラフを含む説明図であり、 図14Aは、本発明の第3実施形態(「速度情報」を選択した場合)における力増加箇所を検出し、力を増加することを説明するための、スレーブマニピュレータで検出された力と時間との関係を示すグラフであり、 図14Bは、本発明の第3実施形態(「速度情報」を選択した場合)における力増加箇所を検出し、力を増加することを説明するための、スレーブマニピュレータで検出された速度と時間との関係を示すグラフであり、 図14Cは、本発明の第3実施形態(「速度情報」を選択した場合)における力増加箇所を検出し、力を増加することを説明するための、マスターマニピュレータに伝達する力と時間との関係を示すグラフを含む説明図であり、 図15Aは、本発明の第3実施形態(「速度情報」を選択した場合)における力減少箇所を検出し、力を減少することを説明するための、マスターマニピュレータで検出された力と時間との関係を示すグラフであり、 図15Bは、本発明の第3実施形態(「速度情報」を選択した場合)における力減少箇所を検出し、力を減少することを説明するための、スレーブマニピュレータで検出された速度と時間との関係を示すグラフであり、 図15Cは、本発明の第3実施形態(「速度情報」を選択した場合)における力減少箇所を検出し、力を減少することを説明するための、スレーブマニピュレータに伝達する力と時間との関係を示すグラフを含む説明図であり、 図16Aは、本発明の第3実施形態(「リファレンス」を選択した場合)における力増加箇所を検出し、力を増加することを説明するための、スレーブマニピュレータで検出された力と時間との関係を示すグラフであり、 図16Bは、本発明の第3実施形態(「リファレンス」を選択した場合)における力増加箇所を検出し、力を増加することを説明するための、スレーブマニピュレータで検出されたリファレンス(力)と時間との関係を示すグラフであり、 図16Cは、本発明の第3実施形態(「リファレンス」を選択した場合)における力増加箇所を検出し、力を増加することを説明するための、スレーブマニピュレータで検出されたリファレンス(速度)と時間との関係を示すグラフであり、 図16Dは、本発明の第3実施形態(「リファレンス」を選択した場合)における力増加箇所を検出し、力を増加することを説明するための、マスターマニピュレータに伝達する力と時間との関係を示すグラフを含む説明図であり、 図17Aは、本発明の第3実施形態(「リファレンス」を選択した場合)における力減少箇所を検出し、力を減少することを説明するための、マスターマニピュレータで検出された力と時間との関係を示すグラフであり、 図17Bは、本発明の第3実施形態(「リファレンス」を選択した場合)における力減少箇所を検出し、力を減少することを説明するための、マスターマニピュレータで検出されたリファレンス(力)と時間との関係を示すグラフであり、 図17Cは、本発明の第3実施形態(「リファレンス」を選択した場合)における力減少箇所を検出し、力を減少することを説明するための、マスターマニピュレータで検出されたリファレンス(速度)と時間との関係を示すグラフであり、 図17Dは、本発明の第3実施形態(「リファレンス」を選択した場合)における力減少箇所を検出し、力を減少することを説明するための、スレーブマニピュレータに伝達する力と時間との関係を示すグラフを含む説明図であり、 図18は、本発明の第3実施形態(「リファレンス」を選択した場合)におけるリファレンスを保有するデータベースを示す図であり、 図19は、本発明の第3実施形態における力情報、速度情報を取得してから力補正するまでの処理の流れを示すフローチャートであり、 図20Aは、本発明の第4実施形態におけるマスタースレーブロボットのブロック図であり、 図20Bは、本発明の第4実施形態におけるマスタースレーブロボットのブロック図であり、 図21は、本発明の第4実施形態(「対象物把持位置情報」を選択した場合)における対象物把持位置を示す説明図であり、 図22Aは、本発明の第4実施形態(「対象物把持位置情報」を選択した場合)におけるマスタースレーブロボットのブロック図であり、 図22Bは、本発明の第4実施形態(「対象物把持位置情報」を選択した場合)におけるマスタースレーブロボットのブロック図であり、 図23は、本発明の第4実施形態(「対象物把持位置情報」を選択した場合)における補正量を保有するデータベースを示す図であり、 図24Aは、本発明の第4実施形態(「対象物柔軟度情報」を選択した場合)において、フレキシブル基板の座屈荷重の測定方法を示す説明図であり、 図24Bは、本発明の第4実施形態(「対象物柔軟度情報」を選択した場合)において、フレキシブル基板の座屈荷重の測定方法を示す説明図であり、 図24Cは、本発明の第4実施形態(「対象物柔軟度情報」を選択した場合)において、フレキシブル基板の座屈荷重の測定方法を示す説明図であり、 図24Dは、本発明の第4実施形態(「対象物柔軟度情報」を選択した場合)において、ネジの座屈荷重の測定方法を示す説明図であり、 図24Eは、本発明の第4実施形態(「対象物柔軟度情報」を選択した場合)において、ネジの座屈荷重の測定方法を示す説明図であり、 図24Fは、本発明の第4実施形態(「対象物柔軟度情報」を選択した場合)において、ネジの座屈荷重の測定方法を示す説明図であり、 図25は、本発明の第4実施形態(「対象物柔軟度情報」を選択した場合)における補正量を保有するデータベースを示す図であり、 図26Aは、本発明の第4実施形態(「マスター把持位置情報」を選択した場合)におけるマスター把持位置を示す説明図であり、 図26Bは、本発明の第4実施形態(「マスター把持位置情報」を選択した場合)におけるマスター把持位置を示す説明図であり、 図27は、本発明の第4実施形態(「マスター把持位置情報」を選択した場合)における補正量を保有するデータベースを示す図であり、 図28は、本発明の第4実施形態における力情報、速度情報を取得してから力補正するまでの処理の流れを示すフローチャートであり、 図29Aは、従来のフレキシブル基板のコネクタへの挿入実験におけるマニピュレータのフレキシブル基板の把持位置及び挿入手順を示す図であり、 図29Bは、従来のフレキシブル基板のコネクタへの挿入実験におけるマニピュレータのフレキシブル基板の把持位置及び挿入手順を示す図であり、 図29Cは、従来のフレキシブル基板のコネクタへの挿入実験におけるマニピュレータのフレキシブル基板の把持位置及び挿入手順を示す図であり、 図30は、従来のフレキシブル基板のコネクタへの挿入実験における把持位置5mmの実験結果を示す説明図であり、 図31は、従来のフレキシブル基板のコネクタへの挿入実験における把持位置10mmの実験結果を示す説明図である。
These and other objects and features of the invention will become apparent from the following description taken in conjunction with the preferred embodiments with reference to the accompanying drawings. In this drawing,
FIG. 1 is a block diagram of a master-slave robot in the first embodiment of the present invention. FIG. 2 is an explanatory diagram of the master robot system in the first embodiment of the present invention. FIG. 3 is an explanatory diagram of the slave robot system according to the first embodiment of the present invention. FIG. 4A is an explanatory diagram of a state in which a person in the first embodiment of the present invention works using a control device of a master slave robot, FIG. 4B is an explanatory diagram in the case where the person in the first embodiment of the present invention works using the control device of the master-slave robot, and FIG. FIG. 5A is a graph showing the relationship between the force detected by the slave manipulator (slave side) and time for detecting the increase in force and increasing the force in the first embodiment of the present invention. Yes, FIG. 5B is a graph showing the relationship between the speed detected by the slave manipulator and the time for explaining that the force increasing point in the first embodiment of the present invention is detected and the force is increased, FIG. 5C is a case where the direction of the positive / negative sign of the force sensor is the case of FIG. 4A, and the master manipulator for explaining that the force increase point is detected and the force is increased in the first embodiment of the present invention. It is explanatory drawing including the graph which shows the relationship between the power to transmit and time, FIG. 5D shows a case where the direction of the positive and negative signs of the force sensor is that in FIG. 4B, and a master manipulator for explaining that the force increase point is detected and the force is increased in the first embodiment of the present invention. It is explanatory drawing including the graph which shows the relationship between the power to transmit and time, FIG. 6 is a flowchart showing the flow of processing from the acquisition of force information and speed information to force correction in the first embodiment of the present invention, FIG. 7 is a block diagram of the master-slave robot in the second embodiment of the present invention, FIG. 8A is a graph showing the relationship between the force detected by the master manipulator and the time for detecting the force decrease point in the second embodiment of the present invention and explaining reducing the force; FIG. 8B is a graph showing the relationship between the speed detected by the slave manipulator and the time for explaining that the force reduction point is detected and the force is reduced in the second embodiment of the present invention; FIG. 8C is an explanatory diagram including a graph showing the relationship between the force transmitted to the slave manipulator and the time for explaining that the force decrease point is detected and the force is decreased in the second embodiment of the present invention. , FIG. 9 is a flowchart showing a flow of processing from acquisition of force information and speed information to force correction in the second embodiment of the present invention, FIG. 10A is a block diagram of a master-slave robot in the third embodiment of the present invention, FIG. 10B is a block diagram of a master-slave robot in the third embodiment of the present invention. FIG. 11 is a diagram showing a database having a detection method according to the third embodiment of the present invention. FIG. 12A shows the force and time detected by the slave manipulator for explaining that the force increase point is detected and the force is increased in the third embodiment (when “force information” is selected) of the present invention. Is a graph showing the relationship between FIG. 12B shows the force and time to be transmitted to the master manipulator for explaining that the force increase point is detected in the third embodiment of the present invention (when “force information” is selected) and the force is increased. It is explanatory drawing including the graph which shows the relationship of FIG. 13A shows the force and time detected by the master manipulator for explaining that the force reduction point is detected and the force is reduced in the third embodiment (when “force information” is selected) of the present invention. Is a graph showing the relationship between FIG. 13B shows the force and time to be transmitted to the slave manipulator for detecting the force decrease point and explaining the force decrease in the third embodiment of the present invention (when “force information” is selected). It is an explanatory diagram including a graph showing the relationship, FIG. 14A shows the force and time detected by the slave manipulator for explaining that the force increase point is detected and the force is increased in the third embodiment (when “speed information” is selected) of the present invention. Is a graph showing the relationship between FIG. 14B shows the speed and time detected by the slave manipulator for explaining that the force increase point is detected and the force is increased in the third embodiment of the present invention (when “speed information” is selected). Is a graph showing the relationship between FIG. 14C shows the force and time transmitted to the master manipulator for explaining that the force increase point is detected and the force is increased in the third embodiment (when “velocity information” is selected) of the present invention. It is an explanatory diagram including a graph showing the relationship, FIG. 15A shows the force and time detected by the master manipulator for explaining that the force reduction point is detected and the force is reduced in the third embodiment (when “velocity information” is selected) of the present invention. Is a graph showing the relationship between FIG. 15B shows the speed and time detected by the slave manipulator for explaining that the force reduction point is detected and the force is reduced in the third embodiment (when “speed information” is selected). Is a graph showing the relationship between FIG. 15C shows the force and time transmitted to the slave manipulator for explaining that the force reduction point is detected and the force is reduced in the third embodiment (when “speed information” is selected) of the present invention. It is an explanatory diagram including a graph showing the relationship, FIG. 16A shows the force and time detected by the slave manipulator for explaining that the force increase point is detected and the force is increased in the third embodiment (when “reference” is selected) of the present invention. Is a graph showing the relationship, FIG. 16B shows the reference (force) detected by the slave manipulator for explaining that the force increase point is detected and the force is increased in the third embodiment of the present invention (when “reference” is selected). It is a graph showing the relationship with time, FIG. 16C shows the reference (velocity) detected by the slave manipulator for explaining that the force increase point is detected and the force is increased in the third embodiment (when “reference” is selected) of the present invention. It is a graph showing the relationship with time, FIG. 16D shows the relationship between the force transmitted to the master manipulator and the time for detecting the force increasing portion and explaining increasing the force in the third embodiment (when “reference” is selected) of the present invention. It is explanatory drawing including the graph which shows, FIG. 17A shows the force and time detected by the master manipulator for explaining that the force reduction point is detected and the force is reduced in the third embodiment (when “reference” is selected) of the present invention. Is a graph showing the relationship, FIG. 17B shows a reference (force) detected by the master manipulator for explaining that the force decrease point is detected and the force is decreased in the third embodiment of the present invention (when “reference” is selected). It is a graph showing the relationship with time, FIG. 17C shows the reference (velocity) detected by the master manipulator for explaining that the force reduction point is detected and the force is reduced in the third embodiment (when “reference” is selected) of the present invention. It is a graph showing the relationship with time, FIG. 17D shows the relationship between the force transmitted to the slave manipulator and the time for detecting the force-decreasing point in the third embodiment of the present invention (when “reference” is selected) and reducing the force. It is explanatory drawing including the graph which shows, FIG. 18 is a diagram showing a database that holds references in the third embodiment of the present invention (when “reference” is selected), FIG. 19 is a flowchart showing a flow of processing from acquisition of force information and speed information to force correction in the third embodiment of the present invention, FIG. 20A is a block diagram of a master-slave robot in the fourth embodiment of the present invention, FIG. 20B is a block diagram of a master-slave robot in the fourth embodiment of the present invention, FIG. 21 is an explanatory diagram showing an object gripping position in the fourth embodiment (when “target gripping position information” is selected), FIG. 22A is a block diagram of a master-slave robot in a fourth embodiment of the present invention (when “object gripping position information” is selected); FIG. 22B is a block diagram of the master-slave robot in the fourth embodiment of the present invention (when “object gripping position information” is selected); FIG. 23 is a diagram showing a database holding correction amounts in the fourth embodiment of the present invention (when “object gripping position information” is selected), FIG. 24A is an explanatory diagram showing a method for measuring a buckling load of a flexible board in the fourth embodiment of the present invention (when “object flexibility information” is selected); FIG. 24B is an explanatory diagram showing a method for measuring the buckling load of the flexible board in the fourth embodiment of the present invention (when “object flexibility information” is selected); FIG. 24C is an explanatory diagram showing a method for measuring the buckling load of the flexible board in the fourth embodiment of the present invention (when “object flexibility information” is selected); FIG. 24D is an explanatory diagram showing a method for measuring the buckling load of a screw in the fourth embodiment of the present invention (when “object flexibility information” is selected); FIG. 24E is an explanatory diagram showing a method for measuring the buckling load of a screw in the fourth embodiment of the present invention (when “object flexibility information” is selected); FIG. 24F is an explanatory diagram showing a method for measuring the buckling load of a screw in the fourth embodiment of the present invention (when “object flexibility information” is selected); FIG. 25 is a diagram showing a database that holds correction amounts in the fourth embodiment of the present invention (when “object flexibility information” is selected); FIG. 26A is an explanatory diagram showing a master grip position in the fourth embodiment of the present invention (when “master grip position information” is selected); FIG. 26B is an explanatory diagram showing a master grip position in the fourth embodiment of the present invention (when “master grip position information” is selected); FIG. 27 is a diagram showing a database holding correction amounts in the fourth embodiment of the present invention (when “master grip position information” is selected), FIG. 28 is a flowchart showing a flow of processing from acquisition of force information and speed information to force correction in the fourth embodiment of the present invention, FIG. 29A is a diagram showing a gripping position and an insertion procedure of a flexible substrate of a manipulator in an insertion experiment of a conventional flexible substrate into a connector; FIG. 29B is a diagram showing a gripping position and an insertion procedure of a flexible substrate of a manipulator in an insertion experiment of a conventional flexible substrate into a connector; FIG. 29C is a diagram showing a gripping position and an insertion procedure of a flexible board of a manipulator in an insertion experiment of a conventional flexible board into a connector; FIG. 30 is an explanatory view showing an experimental result of a gripping position of 5 mm in an experiment for inserting a conventional flexible board into a connector. FIG. 31 is an explanatory diagram showing an experimental result of a gripping position of 10 mm in an experiment for inserting a conventional flexible board into a connector.
 以下に、本発明にかかる実施の形態を図面に基づいて詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
 以下、図面を参照して本発明における実施形態を詳細に説明する前に、本発明の種々の態様について説明する。 Hereinafter, various embodiments of the present invention will be described before the embodiments of the present invention are described in detail with reference to the drawings.
 本発明の第1態様によれば、対象物を把持し被対象物に対して接触しながら作業を行うスレーブマニピュレータと、前記スレーブマニピュレータを人が遠隔により操作するマスターマニピュレータとを備えるマスタースレーブロボットの制御装置において、
 前記スレーブマニピュレータに外部から加えられた力情報を取得する力情報取得部と、
 前記力情報において補正が必要である区間の情報である力補正箇所を、前記力情報取得部で取得した力情報より検出する力補正箇所検出部と、
 前記力補正箇所検出部で検出された区間の前記力情報を補正する力補正部と、
 前記力補正部からの力情報を前記マスターマニピュレータに伝達する力伝達部と、
 前記人が、前記力伝達部からの力情報に基づいて前記マスターマニピュレータを操作するとき、前記マスターマニピュレータの操作情報を制御するマスター制御部と、
 前記スレーブマニピュレータと前記マスター制御部とに接続され、前記マスター制御部から送られる前記マスターマニピュレータの操作情報を、前記スレーブマニピュレータに伝達する制御信号を出力するスレーブ制御部とを備えるマスタースレーブロボットの制御装置を提供する。
According to the first aspect of the present invention, there is provided a master-slave robot including a slave manipulator that grips an object and performs work while contacting the object, and a master manipulator that a person remotely operates the slave manipulator. In the control device,
A force information acquisition unit that acquires force information applied to the slave manipulator from the outside;
A force correction point detection unit that detects a force correction point that is information of a section that needs to be corrected in the force information from the force information acquired by the force information acquisition unit;
A force correction unit for correcting the force information of the section detected by the force correction point detection unit;
A force transmission unit that transmits force information from the force correction unit to the master manipulator;
When the person operates the master manipulator based on force information from the force transmission unit, a master control unit that controls operation information of the master manipulator;
Control of a master-slave robot connected to the slave manipulator and the master control unit, and comprising a slave control unit that outputs a control signal for transmitting operation information of the master manipulator sent from the master control unit to the slave manipulator Providing equipment.
 本発明の第2態様によれば、対象物を把持し被対象物に対して接触しながら作業を行うスレーブマニピュレータと、
 前記スレーブマニピュレータを人が遠隔により操作するマスターマニピュレータとを備えるマスタースレーブロボットの制御装置において、
 前記人が前記マスターマニピュレータに加える力情報を取得するマスター力情報取得部と、
 前記力情報において補正が必要である区間の情報である力補正箇所を、前記マスター力情報取得部で取得した力情報より検出するスレーブ力補正箇所検出部と、
 前記スレーブ力補正箇所検出部で検出された区間の前記力情報を補正するスレーブ力補正部と、
 前記スレーブ力補正部からの力情報を前記スレーブマニピュレータに伝達するスレーブ力伝達部と、
 前記人が、前記スレーブ力伝達部からの力情報に基づいて前記マスターマニピュレータを操作するとき、前記マスターマニピュレータの操作情報を制御するマスター制御部と、
 前記スレーブマニピュレータと前記マスター制御部とに接続され、前記マスター制御部から送られる前記マスターマニピュレータの操作情報を、前記スレーブマニピュレータに伝達する制御信号を出力するスレーブ制御部とを備えるマスタースレーブロボットの制御装置を提供する。
According to the second aspect of the present invention, a slave manipulator that grips an object and performs work while contacting the object;
In a master-slave robot control device comprising a master manipulator that allows a human to remotely operate the slave manipulator,
A master force information acquisition unit that acquires force information applied by the person to the master manipulator;
A slave force correction point detection unit that detects a force correction point that is information of a section that needs to be corrected in the force information from force information acquired by the master force information acquisition unit;
A slave force correction unit that corrects the force information of the section detected by the slave force correction point detection unit;
A slave force transmission unit that transmits force information from the slave force correction unit to the slave manipulator;
When the person operates the master manipulator based on force information from the slave force transmission unit, a master control unit that controls operation information of the master manipulator;
Control of a master-slave robot connected to the slave manipulator and the master control unit, and comprising a slave control unit that outputs a control signal for transmitting operation information of the master manipulator sent from the master control unit to the slave manipulator Providing equipment.
 本発明の第3態様によれば、前記力補正開始時間から前記力補正終了時間までの区間を前記力補正箇所とし、当該区間内の力情報は、時間と力の大きさとの関係において、山形に変化する曲線又は直線で表される、第1又は2の態様に記載のマスタースレーブロボットの制御装置を提供する。 According to the third aspect of the present invention, a section from the force correction start time to the force correction end time is set as the force correction portion, and the force information in the section is in a mountain shape in relation to time and the magnitude of force. A control device for a master-slave robot according to the first or second aspect, which is represented by a curved line or a straight line that changes to
 本発明の第4態様によれば、前記力補正箇所検出部は、前記力情報取得部で取得した力情報から、前記力情報の絶対値を増加させて補正する区間の力情報と、前記力情報を補正しない区間の力情報とのいずれかの区間の力情報として検出し、
 前記力補正部は、前記力補正箇所検出部で検出された、前記増加させる区間の力情報の絶対値を増加させるよう補正する第1の態様に記載のマスタースレーブロボットの制御装置を提供する。
According to the fourth aspect of the present invention, the force correction location detection unit increases the absolute value of the force information from the force information acquired by the force information acquisition unit, and corrects the force information. Detect as force information of any section with the force information of the section that does not correct the information,
The said force correction | amendment part provides the control apparatus of the master slave robot as described in a 1st aspect which correct | amends so that the absolute value of the force information of the said area to increase detected by the said force correction location detection part may be increased.
 本発明の第5態様によれば、前記スレーブ力補正箇所検出部は、前記マスター力情報取得部で取得した力情報から、前記力情報の絶対値を減少させて補正する区間の力情報と、前記力情報を補正しない区間の力情報とのいずれかの区間の力情報として検出し、
 前記スレーブ力補正部は、前記スレーブ力補正箇所検出部で検出された、前記減少させる区間の力情報の絶対値を減少させるよう補正する第2の態様に記載のマスタースレーブロボットの制御装置を提供する。
According to the fifth aspect of the present invention, the slave force correction point detection unit, from the force information acquired by the master force information acquisition unit, the force information of the section to be corrected by reducing the absolute value of the force information, The force information is detected as force information of any section with the force information of the section not corrected,
The slave force correction unit according to the second aspect, wherein the slave force correction unit corrects the absolute value of the force information of the section to be decreased, which is detected by the slave force correction point detection unit, to be decreased. To do.
 本発明の第6態様によれば、前記スレーブマニピュレータの手先部の速度情報を取得する速度情報取得部と、
 前記力補正箇所検出部は、前記速度情報取得部で取得した速度情報より、前記力情報を補正する区間を検出する第1の態様に記載のマスタースレーブロボットの制御装置を提供する。
According to the sixth aspect of the present invention, a speed information acquisition unit that acquires speed information of a hand part of the slave manipulator;
The said force correction location detection part provides the control apparatus of the master slave robot as described in a 1st aspect which detects the area which correct | amends the said force information from the speed information acquired by the said speed information acquisition part.
 本発明の第7態様によれば、前記スレーブマニピュレータの手先部の速度情報を取得する速度情報取得部をさらに備え、
 前記スレーブ力補正箇所検出部は、前記速度情報取得部で取得した速度情報より、前記力情報を補正する区間を検出する第2の態様に記載のマスタースレーブロボットの制御装置を提供する。
According to a seventh aspect of the present invention, the apparatus further comprises a speed information acquisition unit that acquires speed information of a hand part of the slave manipulator,
The slave force correction location detection unit provides a control device for a master-slave robot according to a second aspect that detects a section in which the force information is corrected based on the speed information acquired by the speed information acquisition unit.
 本発明の第8態様によれば、前記力補正箇所検出部又は前記スレーブ力補正箇所検出部において前記力補正箇所を検出する際に、「力情報及び速度情報」と、「力情報」と、「速度情報」と、「記憶された力情報と速度情報」とのいずれか1つの情報を選択する検出方法選択部をさらに備え、
 前記検出方法選択部で選択した前記情報に基づき、前記力補正箇所検出部又は前記スレーブ力補正箇所検出部で前記力補正箇所を検出する第6又は第7の態様に記載のマスタースレーブロボットの制御装置を提供する。
According to the eighth aspect of the present invention, when detecting the force correction location in the force correction location detection unit or the slave force correction location detection unit, "force information and speed information", "force information", A detection method selection unit that selects any one of “speed information” and “stored force information and speed information”;
The master-slave robot control according to the sixth or seventh aspect, wherein the force correction point detection unit or the slave force correction point detection unit detects the force correction point based on the information selected by the detection method selection unit. Providing equipment.
 本発明の第9態様によれば、前記力補正箇所検出部又は前記スレーブ力補正箇所検出部は、
 前記検出方法選択部において前記「力情報及び速度情報」が選択された場合には、
 前記速度情報取得部で取得した速度情報の変位が第一の閾値を上回った時間を力補正開始時間とし、
 前記力情報取得部で取得した力情報の変位が第二の閾値を下回った時間を力補正終了時間とし、
 前記力補正開始時間から前記力補正終了時間までの間を前記力補正箇所として検出する第8の態様に記載のマスタースレーブロボットの制御装置を提供する。
According to the ninth aspect of the present invention, the force correction point detector or the slave force correction point detector is
When the "force information and speed information" is selected in the detection method selection unit,
The time when the displacement of the speed information acquired by the speed information acquisition unit exceeds the first threshold is the force correction start time,
The time when the displacement of the force information acquired by the force information acquisition unit falls below the second threshold is the force correction end time,
A control device for a master-slave robot according to an eighth aspect, wherein a period from the force correction start time to the force correction end time is detected as the force correction point.
 本発明の第10態様によれば、前記力補正箇所検出部又は前記スレーブ力補正箇所検出部は、
 前記検出方法選択部において前記「力情報」が選択された場合には、
 前記力情報取得部で取得した力情報の変位が第一の閾値を上回った時間を力補正開始時間とし、
 前記力情報取得部で取得した力情報の変位が第二の閾値を下回った時間を力補正終了時間とし、
 前記力補正開始時間から前記力補正終了時間までの区間を前記力補正箇所として検出する第8の態様に記載のマスタースレーブロボットの制御装置を提供する。
According to the tenth aspect of the present invention, the force correction point detector or the slave force correction point detector is
When the “force information” is selected in the detection method selection unit,
The time when the displacement of the force information acquired by the force information acquisition unit exceeds the first threshold is the force correction start time,
The time when the displacement of the force information acquired by the force information acquisition unit falls below the second threshold is the force correction end time,
A control device for a master-slave robot according to an eighth aspect, wherein a section from the force correction start time to the force correction end time is detected as the force correction point.
 本発明の第11態様によれば、前記力補正箇所検出部又は前記スレーブ力補正箇所検出部は、
 前記検出方法選択部において前記「速度情報」が選択された場合には、
 前記速度情報取得部で取得した速度情報の変位が第一の閾値を上回った時間を力補正開始時間とし、
 前記速度情報取得部で取得した速度情報の変位が第二の閾値を下回った時間を力補正終了時間とし、
 前記力補正開始時間から前記力補正終了時間までの区間を前記力補正箇所として検出する第8の態様に記載のマスタースレーブロボットの制御装置を提供する。
According to an eleventh aspect of the present invention, the force correction point detection unit or the slave force correction point detection unit is
When the “speed information” is selected in the detection method selection unit,
The time when the displacement of the speed information acquired by the speed information acquisition unit exceeds the first threshold is the force correction start time,
The time when the displacement of the speed information acquired by the speed information acquisition unit falls below the second threshold is the force correction end time,
A control device for a master-slave robot according to an eighth aspect, wherein a section from the force correction start time to the force correction end time is detected as the force correction point.
 本発明の第12態様によれば、力情報と速度情報とを予め記憶する記憶部をさらに備え、
 前記力補正箇所検出部又は前記スレーブ力補正箇所検出部は、
 前記検出方法選択部において前記「記憶された力情報と速度情報」が選択された場合には、
 前記記憶部に記憶された力情報又は速度情報の変位が第一の閾値を上回ったときの力情報又は速度情報の変位に対して、前記力情報取得部又は前記速度情報取得部で取得した、力情報又は速度情報の変位がある閾値の範囲内に収まる時間を力補正開始時間とし、
 前記記憶部に記憶された力情報又は速度情報の変位が第二の閾値を下回ったときの力情報又は速度情報の変位に対して、前記力情報取得部又は前記速度情報取得部で取得した、力情報又は速度情報の変位がある閾値の範囲内に収まる時間を力補正終了時間とし、
 前記力補正開始時間から前記力補正終了時間までの区間を前記力補正箇所として検出する第8の態様に記載のマスタースレーブロボットの制御装置を提供する。
According to the twelfth aspect of the present invention, the apparatus further includes a storage unit that stores force information and speed information in advance.
The force correction point detection unit or the slave force correction point detection unit,
When the “stored force information and speed information” is selected in the detection method selection unit,
For the displacement of force information or speed information when the displacement of the force information or speed information stored in the storage unit exceeds a first threshold, acquired by the force information acquisition unit or the speed information acquisition unit, The time when the displacement of the force information or speed information falls within a certain threshold range is the force correction start time,
For the displacement of the force information or speed information when the displacement of the force information or speed information stored in the storage unit is below a second threshold, acquired by the force information acquisition unit or the speed information acquisition unit, The time within which the displacement of the force information or speed information falls within a certain threshold range is the force correction end time,
A control device for a master-slave robot according to an eighth aspect, wherein a section from the force correction start time to the force correction end time is detected as the force correction point.
 本発明の第13態様によれば、前記力補正部又は前記スレーブ力補正部において力を補正する際に、「対象物把持位置情報」と、「対象物柔軟度情報」と、「マスター把持位置情報」とのいずれか1つの情報を選択する力補正方法選択部をさらに備え、
 前記力補正部又は前記スレーブ力補正部は、前記力補正方法選択部で選択した力補正方法により、前記力情報を補正する第1又は第2の態様に記載のマスタースレーブロボットの制御装置を提供する。
According to the thirteenth aspect of the present invention, when the force is corrected in the force correction unit or the slave force correction unit, “object gripping position information”, “target object flexibility information”, and “master gripping position” A force correction method selection unit for selecting any one of the information and information,
The said force correction part or the said slave force correction part provides the control apparatus of the master slave robot as described in the 1st or 2nd aspect which correct | amends the said force information with the force correction method selected in the said force correction method selection part. To do.
 本発明の第14態様によれば、前記スレーブマニピュレータが前記対象物を把持する位置情報を取得する対象物把持位置取得部と、
 前記スレーブマニピュレータが前記対象物を把持する位置情報と補正量との関係情報を記憶する補正量記憶部をさらに備え、
 前記力補正部又は前記スレーブ力補正部は、
 前記力補正方法選択部において前記「対象物把持位置情報」が選択された場合には、
 前記スレーブマニピュレータが前記対象物を把持する把持位置情報を前記対象物把持位置取得部で取得し、
 前記対象物把持位置取得部で取得された前記把持位置情報を用いて、前記補正量記憶部から前記力情報の補正量を求める第13の態様に記載のマスタースレーブロボットの制御装置を提供する。
According to a fourteenth aspect of the present invention, an object gripping position acquisition unit that acquires position information for the slave manipulator to grip the object;
A correction amount storage unit that stores relationship information between the position information and the correction amount at which the slave manipulator grips the object;
The force correction unit or the slave force correction unit is
When the “target gripping position information” is selected in the force correction method selection unit,
The slave manipulator acquires grip position information for gripping the target object by the target grip position acquisition unit,
A control device for a master-slave robot according to a thirteenth aspect, wherein a correction amount of the force information is obtained from the correction amount storage unit using the grip position information acquired by the object gripping position acquisition unit.
 本発明の第15態様によれば、前記対象物の柔軟度情報と補正量との関係情報を記憶する補正量記憶部をさらに備え、
 前記力補正部又は前記スレーブ力補正部は、
 前記力補正方法選択部において前記「対象物柔軟度情報」が選択された場合には、
 前記対象物に基づく前記対象物の柔軟度情報を前記補正量記憶部から取得し、
 前記柔軟度情報を用いて、前記補正量記憶部から前記力情報の補正量を求める第13の態様に記載のマスタースレーブロボットの制御装置を提供する。
According to the fifteenth aspect of the present invention, the apparatus further comprises a correction amount storage unit that stores relationship information between the flexibility information of the object and the correction amount,
The force correction unit or the slave force correction unit is
When the “object flexibility information” is selected in the force correction method selection unit,
Acquiring flexibility information of the object based on the object from the correction amount storage unit;
A control device for a master-slave robot according to a thirteenth aspect of obtaining a correction amount of the force information from the correction amount storage unit using the flexibility information.
 本発明の第16態様によれば、前記人が前記マスターマニピュレータを把持する位置情報を取得するマスター把持位置取得部と、
 前記人が前記マスターマニピュレータを把持する位置情報と補正量との関係情報を記憶する補正量記憶部をさらに備え、
 前記力補正部又は前記スレーブ力補正部は、
 前記力補正方法選択部において前記「マスター把持位置情報」が選択された場合には、
 前記人が前記マスターマニピュレータを把持する位置情報を前記マスター把持位置情報取部で取得し、
 前記マスター把持位置情報取部で取得された前記位置情報を用いて、前記補正量記憶部から前記力情報の補正量を求める第13の態様に記載のマスタースレーブロボットの制御装置を提供する。
According to a sixteenth aspect of the present invention, a master grip position acquisition unit that acquires position information for the person to grip the master manipulator;
A correction amount storage unit that stores relationship information between the positional information and the correction amount by which the person holds the master manipulator;
The force correction unit or the slave force correction unit is
When the “master grip position information” is selected in the force correction method selection unit,
The master gripping position information acquisition unit acquires position information for gripping the master manipulator by the person,
A control device for a master-slave robot according to a thirteenth aspect, wherein a correction amount of the force information is obtained from the correction amount storage unit using the position information acquired by the master gripping position information acquisition unit.
 本発明の第17態様によれば、対象物を把持し被対象物に対して接触しながら作業を行うスレーブマニピュレータと、前記スレーブマニピュレータを人が遠隔により操作するマスターマニピュレータとを備えるマスタースレーブロボットの制御装置の制御方法であって、
 前記スレーブマニピュレータに外部から加えられた力情報を力情報取得部で取得し、
 前記力情報において補正が必要である区間の情報である力補正箇所を、前記力情報取得部で取得した力情報より力補正箇所検出部で検出し、
 前記力補正箇所検出部で検出された区間の前記力情報を力補正部で補正し、
 前記力補正部で補正からの力情報を前記マスターマニピュレータに力伝達部で伝達し、
 前記人が、前記力伝達部からの力情報に基づいて前記マスターマニピュレータを操作するとき、前記マスターマニピュレータの操作情報をマスター制御部で制御し、
 前記スレーブマニピュレータと前記マスター制御部とに接続され、前記マスター制御部から送られる前記マスターマニピュレータの操作情報を、前記スレーブマニピュレータに伝達する制御信号をスレーブ制御部で出力するマスタースレーブロボットの制御装置の制御方法を提供する。
According to the seventeenth aspect of the present invention, there is provided a master slave robot comprising: a slave manipulator that grips an object and performs an operation while making contact with the object; and a master manipulator that a person remotely operates the slave manipulator. A control method for a control device, comprising:
A force information acquisition unit acquires force information applied to the slave manipulator from the outside,
In the force information, a force correction location that is information of a section that needs to be corrected is detected by the force correction location detection unit from the force information acquired by the force information acquisition unit,
The force correction section corrects the force information of the section detected by the force correction point detection section,
Transmit force information from the correction in the force correction unit to the master manipulator in the force transmission unit,
When the person operates the master manipulator based on the force information from the force transmission unit, the operation information of the master manipulator is controlled by the master control unit,
A control device for a master-slave robot connected to the slave manipulator and the master control unit, wherein the slave control unit outputs a control signal for transmitting operation information of the master manipulator sent from the master control unit to the slave manipulator. Provide a control method.
 本発明の第18態様によれば、前記マスターマニピュレータ及び前記スレーブマニピュレータと、
 第1~16のいずれか1つの態様に記載の前記マスタースレーブロボットの制御装置とを備えるマスタースレーブロボットを提供する。
According to an eighteenth aspect of the present invention, the master manipulator and the slave manipulator;
A master-slave robot comprising the master-slave robot control device according to any one of the first to sixteenth aspects.
 本発明の第19態様によれば、対象物を把持し被対象物に対して接触しながら作業を行うスレーブマニピュレータと、前記スレーブマニピュレータを人が遠隔により操作するマスターマニピュレータとを備えるマスタースレーブロボットの制御装置の制御プログラムであって、
 コンピュータに、
 前記スレーブマニピュレータに外部から加えられた力情報を力情報取得部で取得するステップと、
 前記力情報において補正が必要である区間の情報である力補正箇所を、前記力情報取得部で取得した力情報より力補正箇所検出部で検出するステップと、
 前記力補正箇所検出部で検出された区間の前記力情報を力補正部で補正するステップと、
 前記力補正部からの力情報を前記マスターマニピュレータに力伝達部で伝達するステップと、
 前記人が、前記力伝達部からの力情報に基づいて前記マスターマニピュレータを操作するとき、前記マスターマニピュレータの操作情報をマスター制御部で制御するステップと、
 前記スレーブマニピュレータとマスター制御部とに接続され、前記マスター制御部から送られる前記マスターマニピュレータの操作情報を、前記スレーブマニピュレータに伝達する制御信号をスレーブ制御部で出力するステップとを実行するための、マスタースレーブロボットの制御装置の制御プログラムを提供する。
According to the nineteenth aspect of the present invention, there is provided a master slave robot comprising: a slave manipulator that grips an object and performs an operation while making contact with the object; and a master manipulator that a person remotely operates the slave manipulator. A control program for a control device,
On the computer,
Acquiring force information externally applied to the slave manipulator with a force information acquisition unit;
Detecting a force correction location, which is information of a section requiring correction in the force information, by a force correction location detection unit from force information acquired by the force information acquisition unit;
A step of correcting the force information of the section detected by the force correction point detection unit by a force correction unit;
Transmitting force information from the force correction unit to the master manipulator with a force transmission unit;
When the person operates the master manipulator based on the force information from the force transmission unit, controlling the operation information of the master manipulator with a master control unit;
The slave manipulator is connected to the master control unit, and the operation information of the master manipulator sent from the master control unit is transmitted to the slave manipulator, and the slave control unit outputs a control signal. A control program for a master / slave robot controller is provided.
 本発明の第20態様によれば、対象物を把持し被対象物に対して接触しながら作業を行うスレーブマニピュレータと、前記スレーブマニピュレータを人が遠隔により操作するマスターマニピュレータとを備えるマスタースレーブロボットの制御装置の集積電子回路であって、
 前記スレーブマニピュレータに外部から加えられた力情報を力情報取得部で取得し、
 前記力情報において補正が必要である区間の情報である力補正箇所を、前記力情報取得部で取得した力情報より力補正箇所検出部で検出し、
 前記力補正箇所検出部で検出された区間の前記力情報を力補正部で補正し、
 前記力補正部からの力情報を前記マスターマニピュレータに力伝達部で伝達し、
 前記人が、前記力伝達部からの力情報に基づいて前記マスターマニピュレータを操作するとき、前記マスターマニピュレータの操作情報をマスター制御部で制御し、
 前記スレーブマニピュレータと前記マスター制御部とに接続され、前記マスター制御部から送られる前記マスターマニピュレータの操作情報を、前記スレーブマニピュレータに伝達する制御信号をスレーブ制御部で出力するマスタースレーブロボットの制御装置の集積電子回路を提供する。
According to the twentieth aspect of the present invention, there is provided a master slave robot comprising: a slave manipulator that grips an object and performs work while contacting the object; and a master manipulator that a person remotely operates the slave manipulator. An integrated electronic circuit of a control device,
A force information acquisition unit acquires force information applied to the slave manipulator from the outside,
In the force information, a force correction location that is information of a section that needs to be corrected is detected by the force correction location detection unit from the force information acquired by the force information acquisition unit,
The force correction section corrects the force information of the section detected by the force correction point detection section,
Transmit force information from the force correction unit to the master manipulator with a force transmission unit,
When the person operates the master manipulator based on the force information from the force transmission unit, the operation information of the master manipulator is controlled by the master control unit,
A control device for a master-slave robot connected to the slave manipulator and the master control unit, wherein the slave control unit outputs a control signal for transmitting operation information of the master manipulator sent from the master control unit to the slave manipulator. An integrated electronic circuit is provided.
 以下本発明の実施の形態について、図面を参照しながら説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 (第1実施形態)
 図1は、本発明の第1実施形態におけるマスタースレーブロボット150の制御装置100を示すブロック線図である。図1において、マスタースレーブロボットの制御装置100は、人が直接触って操作するマスターロボットシステム1と、実際に作業をするスレーブロボットシステム21とを備えて構成されている。
(First embodiment)
FIG. 1 is a block diagram showing the control device 100 of the master-slave robot 150 in the first embodiment of the present invention. In FIG. 1, a master / slave robot control device 100 includes a master robot system 1 that is operated by direct contact with a person, and a slave robot system 21 that performs actual work.
 マスターロボットシステム1は、マスター制御装置3と、マスター制御装置3に接続されたマスター周辺装置6と、マスター周辺装置6に接続されたマスターマニピュレータ9とで構成されている。 The master robot system 1 includes a master control device 3, a master peripheral device 6 connected to the master control device 3, and a master manipulator 9 connected to the master peripheral device 6.
 マスター制御装置3は、マスター入出力IF7に接続されたマスター制御部4と、マスター制御部4に接続されて人に力情報を伝える力伝達部5とで構成されている。 The master control device 3 includes a master control unit 4 connected to the master input / output IF 7 and a force transmission unit 5 connected to the master control unit 4 and transmitting force information to a person.
 マスター周辺装置6は、マスター制御部4に接続されるとともにマスターマニピュレータ9に接続されたマスター入出力IF7と、マスター入出力IF7に接続されるとともにマスターマニピュレータ9に接続されたマスターモータドライバ8とで構成されている。 The master peripheral device 6 includes a master input / output IF 7 connected to the master control unit 4 and connected to the master manipulator 9, and a master motor driver 8 connected to the master input / output IF 7 and connected to the master manipulator 9. It is configured.
 一方、スレーブロボットシステム21は、スレーブ制御装置23と、スレーブ制御装置23に接続されたスレーブ周辺装置29と、スレーブ周辺装置29に接続されたスレーブマニピュレータ32とで構成されている。 Meanwhile, the slave robot system 21 includes a slave control device 23, a slave peripheral device 29 connected to the slave control device 23, and a slave manipulator 32 connected to the slave peripheral device 29.
 スレーブ制御装置23は、スレーブ制御部24と、スレーブマニピュレータ32に外部から加えられた力情報をある一定時間毎に取得する力情報取得部26と、スレーブマニピュレータ32の手先部(スレーブハンド71)の速度情報を取得する速度情報取得部28と、力情報取得部26で取得した力情報と速度情報取得部28で取得した速度情報とのいずれか1つ以上の情報より力情報を補正する箇所(区間)を検出する(具体的には、力情報において補正が必要である区間の情報である力補正箇所を、力情報取得部26で取得した力情報より検出する)力補正箇所検出部27と、力補正箇所検出部27で力補正箇所(力補正区間)として検出された力情報を補正する力補正部25とで構成されている。スレーブ制御部24は、マスター制御部4に有線又は無線で接続されるとともに、力補正部25と力補正箇所検出部27とスレーブ入出力IF30とに接続されている。力補正部25は、スレーブ制御部24と力情報取得部26とに接続されている。力情報取得部26は、力補正部25と力補正箇所検出部27とに接続されている。力補正箇所検出部27は、力情報取得部26とスレーブ制御部24と速度情報取得部28とに接続されている。速度情報取得部28は、力補正箇所検出部27に接続されている。 The slave control device 23 includes a slave control unit 24, a force information acquisition unit 26 that acquires force information applied to the slave manipulator 32 from the outside at certain intervals, and a hand part (slave hand 71) of the slave manipulator 32. A location where force information is corrected based on one or more pieces of information of speed information acquisition unit 28 for acquiring speed information, force information acquired by force information acquisition unit 26 and speed information acquired by speed information acquisition unit 28 ( (Specifically, a force correction location detection unit 27 that detects a force correction location, which is information of a zone requiring correction in the force information, from the force information acquired by the force information acquisition unit 26); The force correction part detection unit 27 includes a force correction part 25 that corrects force information detected as a force correction part (force correction section). The slave control unit 24 is connected to the master control unit 4 by wire or wireless, and is connected to the force correction unit 25, the force correction point detection unit 27, and the slave input / output IF 30. The force correction unit 25 is connected to the slave control unit 24 and the force information acquisition unit 26. The force information acquisition unit 26 is connected to the force correction unit 25 and the force correction point detection unit 27. The force correction point detection unit 27 is connected to the force information acquisition unit 26, the slave control unit 24, and the speed information acquisition unit 28. The speed information acquisition unit 28 is connected to the force correction location detection unit 27.
 スレーブ周辺装置29は、スレーブ制御部24と速度情報取得部28とスレーブマニピュレータ32とに接続されたスレーブ入出力IF30と、スレーブ入出力IF30に接続されるとともにスレーブマニピュレータ32に接続されたスレーブモータドライバ31とで構成されている。 The slave peripheral device 29 includes a slave input / output IF 30 connected to the slave control unit 24, the speed information acquisition unit 28, and the slave manipulator 32, and a slave motor driver connected to the slave input / output IF 30 and connected to the slave manipulator 32. 31.
 ここで、力情報取得部26は、スレーブマニピュレータ32のスレーブハンド71に取り付けられたスレーブ力センサ86から、スレーブ周辺装置29などを介して、力センサ86の値を力情報として取得し、速度情報取得部28は、スレーブマニピュレータ32に取り付けられたスレーブエンコーダ85から、スレーブ周辺装置29などを介して、マニピュレータ32の位置情報を取得し、速度情報取得部28で微分することによって導出した値を速度情報として取得する。 Here, the force information acquisition unit 26 acquires the value of the force sensor 86 as force information from the slave force sensor 86 attached to the slave hand 71 of the slave manipulator 32 via the slave peripheral device 29, etc. The acquisition unit 28 acquires the position information of the manipulator 32 from the slave encoder 85 attached to the slave manipulator 32 via the slave peripheral device 29 and the like, and the value derived by differentiating by the speed information acquisition unit 28 is the speed. Obtain as information.
 図2及び図3は、それぞれ、マスターマニピュレータ9とスレーブマニピュレータ32とを示す図である。各マニピュレータ9、32は、合計6個の軸周りに回転可能として6自由度の多リンクマニピュレータを構成している(詳細については、WO 2009/107358を参照)。 2 and 3 are views showing the master manipulator 9 and the slave manipulator 32, respectively. Each of the manipulators 9 and 32 constitutes a multi-link manipulator having 6 degrees of freedom so as to be rotatable around a total of six axes (for details, refer to WO 2009/107358).
 図2に示すように、マスターマニピュレータ9は、一例として、多関節ロボットアームであって、具体的には6自由度の多リンクのマスターマニピュレータであり、マスターハンド51と、マスターハンド51が取り付けられているマスター手首部52を先端53aに有するマスター前腕リンク53と、マスター前腕リンク53の基端53bに回転可能に先端54aが連結されるマスター上腕リンク54と、マスター上腕リンク54の基端54bが回転可能に連結支持されるマスター台部55とを備えている。マスター台部55は、一定位置に固定されているが、図示しないレールに移動可能に連結されていても良い。マスター手首部52は、マスター第4関節部59と、マスター第5関節部60と、マスター第6関節部61との3つの回転軸を有しており、マスター前腕リンク53に対するマスターハンド51の相対的な姿勢(向き)を変化させることができる。すなわち、図2において、マスター第4関節部59は、マスター手首部52に対するマスターハンド51の横軸周りの相対的な姿勢を変化させることができる。マスター第5関節部60は、マスター手首部52に対するマスターハンド51の、マスター第4関節部59の横軸とは直交する縦軸周りの相対的な姿勢を変化させることができる。マスター第6関節部61は、マスター手首部52に対するマスターハンド51の、マスター第4関節部59の横軸及びマスター第5関節部60の縦軸とそれぞれ直交する横軸周りの相対的な姿勢を変化させることができる。マスター前腕リンク53の他端53bは、マスター上腕リンク54の先端54aに対してマスター第3関節部58周りに、すなわち、マスター第4関節部59の横軸と平行な横軸周りに回転可能とする。マスター上腕リンク54の他端は、マスター台部55に対してマスター第2関節部57周りに、すなわち、マスター第4関節部59の横軸と平行な横軸周りに回転可能とする。さらに、マスター台部55の上側可動部55aは、マスター台部55の下側固定部55bに対してマスター第1関節部56周りに、すなわち、マスター第5関節部60の縦軸と平行な縦軸周りに回転可能としている。 As shown in FIG. 2, the master manipulator 9 is an articulated robot arm as an example, specifically a multi-link master manipulator with 6 degrees of freedom, and the master hand 51 and the master hand 51 are attached to the master manipulator 9. A master forearm link 53 having a master wrist 52 at the distal end 53a, a master upper arm link 54 having a distal end 54a rotatably connected to a proximal end 53b of the master forearm link 53, and a proximal end 54b of the master upper arm link 54 And a master base 55 that is rotatably connected and supported. The master base 55 is fixed at a fixed position, but may be movably connected to a rail (not shown). The master wrist 52 has three rotation axes of a master fourth joint 59, a master fifth joint 60, and a master sixth joint 61, and the master hand 51 is relative to the master forearm link 53. Can change the general posture (orientation). That is, in FIG. 2, the master fourth joint part 59 can change the relative posture around the horizontal axis of the master hand 51 with respect to the master wrist part 52. The master fifth joint 60 can change the relative posture of the master hand 51 with respect to the master wrist 52 around the vertical axis perpendicular to the horizontal axis of the master fourth joint 59. The master sixth joint 61 has a relative posture of the master hand 51 with respect to the master wrist 52 around the horizontal axis orthogonal to the horizontal axis of the master fourth joint 59 and the vertical axis of the master fifth joint 60. Can be changed. The other end 53b of the master forearm link 53 is rotatable around the master third joint 58 with respect to the tip 54a of the master upper arm link 54, that is, around a horizontal axis parallel to the horizontal axis of the master fourth joint 59. To do. The other end of the master upper arm link 54 is rotatable around the master second joint portion 57 with respect to the master base portion 55, that is, around a horizontal axis parallel to the horizontal axis of the master fourth joint portion 59. Further, the upper movable portion 55a of the master base portion 55 is arranged around the master first joint portion 56 with respect to the lower fixed portion 55b of the master base portion 55, that is, in a vertical direction parallel to the longitudinal axis of the master fifth joint portion 60. It can rotate around the axis.
 この結果、マスターマニピュレータ9は、合計6個の軸周りに回転可能として前記6自由度の多リンクマニピュレータを構成している。 As a result, the master manipulator 9 constitutes the multi-link manipulator having 6 degrees of freedom so as to be rotatable around a total of six axes.
 各軸の回転部分を構成する各関節部には、関節部駆動用のマスターモータ64のような回転駆動装置と、マスターモータ64の回転軸の回転位相角(すなわち関節角)を検出して位置情報を出力するマスターエンコーダ65(実際には、マスターマニピュレータ9の各関節部の内部に配設されている)とを備えている。マスターモータ64(実際には、マスターマニピュレータ9の各関節部の内部に配設されている)は、各関節部を構成する一対の部材(例えば、回動側部材と、該回動側部材を支持する支持側部材)のうちの一方の部材に備えられる、マスターモータドライバ8により駆動制御される。各関節部の一方の部材に備えられたマスターモータ64の回転軸が、各関節部の他方の部材に連結されて、前記回転軸を正逆回転させることにより、他方の部材を一方の部材に対して各軸周りに回転可能とする。 At each joint part constituting the rotation part of each axis, a rotational drive device such as a master motor 64 for driving the joint part and a rotational phase angle (that is, a joint angle) of the rotation axis of the master motor 64 are detected and positioned. And a master encoder 65 (in fact, disposed inside each joint portion of the master manipulator 9) for outputting information. The master motor 64 (actually disposed inside each joint portion of the master manipulator 9) has a pair of members (for example, a rotation side member and the rotation side member) constituting each joint portion. The driving is controlled by a master motor driver 8 provided on one of the supporting members. The rotation shaft of the master motor 64 provided in one member of each joint is connected to the other member of each joint and rotates the rotation shaft forward and backward so that the other member becomes one member. On the other hand, it can be rotated around each axis.
 また、マスターモータドライバ8により駆動制御されるマスターハンド駆動装置の一例としてマスターハンド駆動用のマスターモータ64と、マスターハンド駆動用のマスターモータ64の回転軸の回転位相角を検出するマスターエンコーダ65とを、さらに、マスターハンド51に備えている。マスターエンコーダ65で検出された回転角度情報が、マスター入出力IF7(例えばカウンタボード)を通じてマスター制御部4に取り込まれ、マスター制御部4に取り込まれた回転角度情報を基に、マスター制御部4によってマスターハンド51の開閉動作での制御指令値(制御信号)が算出される。マスター制御部4で算出された制御指令値は、マスター入出力IF7(例えばD/Aボード)を通じて、マスターハンド51の開閉駆動も行うマスターモータドライバ8に与えられ、マスターモータドライバ8から送られた各制御指令値に従って、マスターモータ64の回転を駆動制御して、マスターハンド駆動用のマスターモータ64の回転軸を正逆回転させることにより、マスターハンド51を開閉させて、対象物102(例えば、フレキシブル基板)の把持及び把持解除の模擬的な動作を行なう。実際には、スレーブマニピュレータ32のスレーブハンド71で対象物102(例えば、フレキシブル基板)の把持及び把持解除動作を行うのであり、マスターハンド51では、直接的には、対象物102(例えば、フレキシブル基板)の把持及び把持解除動作を行うものではない。よって、ここでのマスターハンド51は、仮想的に又は模擬的に、対象物102(例えば、フレキシブル基板)の把持及び把持解除動作を行うことを意味している。 Further, as an example of a master hand driving device that is driven and controlled by the master motor driver 8, a master motor 64 for driving the master hand, and a master encoder 65 for detecting the rotational phase angle of the rotation axis of the master motor 64 for driving the master hand, Is further provided in the master hand 51. The rotation angle information detected by the master encoder 65 is taken into the master control unit 4 through the master input / output IF 7 (for example, a counter board), and based on the rotation angle information taken into the master control unit 4, the master control unit 4 A control command value (control signal) in the opening / closing operation of the master hand 51 is calculated. The control command value calculated by the master control unit 4 is given to the master motor driver 8 that also opens and closes the master hand 51 through the master input / output IF 7 (for example, D / A board), and is sent from the master motor driver 8. In accordance with each control command value, the rotation of the master motor 64 is driven and controlled, and the rotation axis of the master motor 64 for driving the master hand is rotated forward and backward to open and close the master hand 51, and the object 102 (for example, Simulates gripping and releasing of the flexible substrate). Actually, the object 102 (for example, a flexible substrate) is gripped and released by the slave hand 71 of the slave manipulator 32. In the master hand 51, the object 102 (for example, the flexible substrate) is directly used. ) Is not performed. Therefore, the master hand 51 here means that the object 102 (for example, a flexible substrate) is grasped and released by virtual or simulation.
 また、62はマスター台部55の下側固定部55bに対して相対的な位置関係が固定されたマスター絶対座標系であり、63はマスターハンド51に対して相対的な位置関係が固定されたマスター手先座標系である。マスター絶対座標系62から見たマスター手先座標系63のマスター原点位置O(x,y,z)をマスターマニピュレータ9の手先位置、マスター絶対座標系62から見たマスター手先座標系63の姿勢をロール角とピッチ角とヨー角で表現した(φ,θ,ψ)をマスターマニピュレータ9の手先姿勢とし、手先位置及び姿勢ベクトルをベクトルr=[x,y,z,φ,θ,ψ]と定義する。よって、一例として、マスター絶対座標系62のz軸に対してマスター第1関節部56の縦軸が平行であり、x軸に対してマスター第2関節部57の横軸が平行に位置可能とするのが好ましい。また、マスター手先座標系63のx軸に対して第6関節部61の横軸が平行に位置可能であり、y軸に対してマスター第4関節部59の横軸が平行に位置可能であり、z軸に対してマスター第5関節部60の縦軸が平行に位置可能とするのが好ましい。なお、マスター手先座標系63のx軸に対しての回転角をヨー角ψとし、y軸に対しての回転角をピッチ角θとし、z軸に対しての回転角をロール角φとする。マスターマニピュレータ9の手先位置と姿勢を制御する場合には、手先位置及び姿勢ベクトルrを、前記WO 2009/107358号の国際出願公開公報などに開示された目標軌道生成部で生成された手先位置及び姿勢目標ベクトルrに追従させることになる。 62 is a master absolute coordinate system in which the relative positional relationship is fixed with respect to the lower fixed portion 55b of the master base 55, and 63 is a relative positional relationship with respect to the master hand 51. Master hand coordinate system. The master origin position O e (x, y, z) of the master hand coordinate system 63 viewed from the master absolute coordinate system 62 is the hand position of the master manipulator 9, and the posture of the master hand coordinate system 63 viewed from the master absolute coordinate system 62 is The (φ, θ, ψ) expressed by the roll angle, the pitch angle, and the yaw angle is the hand posture of the master manipulator 9, and the hand position and posture vector are vectors r = [x, y, z, φ, θ, ψ] T It is defined as Therefore, as an example, the vertical axis of the master first joint portion 56 can be parallel to the z axis of the master absolute coordinate system 62, and the horizontal axis of the master second joint portion 57 can be parallel to the x axis. It is preferable to do this. Further, the horizontal axis of the sixth joint portion 61 can be positioned parallel to the x axis of the master hand coordinate system 63, and the horizontal axis of the master fourth joint portion 59 can be positioned parallel to the y axis. It is preferable that the vertical axis of the master fifth joint 60 can be positioned parallel to the z-axis. The rotation angle with respect to the x-axis of the master hand coordinate system 63 is the yaw angle ψ, the rotation angle with respect to the y-axis is the pitch angle θ, and the rotation angle with respect to the z-axis is the roll angle φ. . When controlling the hand position and posture of the master manipulator 9, the hand position and posture vector r are set to the hand position generated by the target trajectory generating unit disclosed in the international application publication of WO 2009/107358 and the like. It would be to follow the orientation target vector r d.
 また、図3では、スレーブマニピュレータ32は、一例として、多関節ロボットアームであって、6自由度の多リンクのスレーブマニピュレータであり、スレーブハンド71と、スレーブハンド71が取り付けられているスレーブ手首部72を先端73aに有するスレーブ前腕リンク73と、スレーブ前腕リンク73の基端73bに回転可能に先端74aが連結されるスレーブ上腕リンク74と、スレーブ上腕リンク74の基端74bが回転可能に連結支持されるスレーブ台部75とを備えている。スレーブ台部75は、一定位置に固定されているが、図示しないレールに移動可能に連結されていても良い。スレーブ手首部72は、スレーブ第4関節部79と、スレーブ第5関節部80と、スレーブ第6関節部81との3つの回転軸を有しており、スレーブ前腕リンク73に対するスレーブハンド71の相対的な姿勢(向き)を変化させることができる。すなわち、図3において、スレーブ第4関節部79は、スレーブ手首部72に対するスレーブハンド71の横軸周りの相対的な姿勢を変化させることができる。スレーブ第5関節部80は、スレーブ手首部72に対するスレーブハンド71の、スレーブ第4関節部79の横軸とは直交する縦軸周りの相対的な姿勢を変化させることができる。スレーブ第6関節部81は、スレーブ手首部72に対するスレーブハンド71の、スレーブ第4関節部79の横軸及びスレーブ第5関節部80の縦軸とそれぞれ直交する横軸周りの相対的な姿勢を変化させることができる。スレーブ前腕リンク73の他端73bは、スレーブ上腕リンク74の先端74aに対してスレーブ第3関節部78周りに、すなわち、スレーブ第4関節部79の横軸と平行な横軸周りに回転可能とする。スレーブ上腕リンク74の他端74bは、スレーブ台部75に対してスレーブ第2関節部77周りに、すなわち、スレーブ第4関節部79の横軸と平行な横軸周りに回転可能とする。さらに、スレーブ台部75の上側可動部75aは、スレーブ台部75の下側固定部75bに対してスレーブ第1関節部76周りに、すなわち、スレーブ第5関節部80の縦軸と平行な縦軸周りに回転可能としている。 In FIG. 3, the slave manipulator 32 is an articulated robot arm as an example, and is a multi-link slave manipulator with 6 degrees of freedom, and includes a slave hand 71 and a slave wrist portion to which the slave hand 71 is attached. 72, a slave forearm link 73 having a distal end 73a, a slave upper arm link 74 having a distal end 74a rotatably connected to a base end 73b of the slave forearm link 73, and a base end 74b of the slave upper arm link 74 being rotatably supported. The slave base part 75 is provided. The slave base 75 is fixed at a fixed position, but may be movably connected to a rail (not shown). The slave wrist 72 has three rotational axes of a slave fourth joint 79, a slave fifth joint 80, and a slave sixth joint 81, and the slave hand 71 is relative to the slave forearm link 73. Can change the general posture (orientation). That is, in FIG. 3, the slave fourth joint 79 can change the relative posture around the horizontal axis of the slave hand 71 with respect to the slave wrist 72. The slave fifth joint 80 can change the relative posture of the slave hand 71 relative to the slave wrist 72 around the vertical axis perpendicular to the horizontal axis of the slave fourth joint 79. The slave sixth joint 81 has a relative posture around the horizontal axis orthogonal to the horizontal axis of the slave fourth joint 79 and the vertical axis of the slave fifth joint 80 of the slave hand 71 with respect to the slave wrist 72. Can be changed. The other end 73b of the slave forearm link 73 is rotatable around the slave third joint portion 78 with respect to the distal end 74a of the slave upper arm link 74, that is, around a horizontal axis parallel to the horizontal axis of the slave fourth joint portion 79. To do. The other end 74 b of the slave upper arm link 74 is rotatable about the slave second joint portion 77 with respect to the slave base portion 75, that is, around a horizontal axis parallel to the horizontal axis of the slave fourth joint portion 79. Further, the upper movable portion 75a of the slave base portion 75 is arranged around the slave first joint portion 76 with respect to the lower fixed portion 75b of the slave base portion 75, that is, in a vertical direction parallel to the longitudinal axis of the slave fifth joint portion 80. It can rotate around the axis.
 この結果、スレーブマニピュレータ32は、合計6個の軸周りに回転可能として前記6自由度の多リンクマニピュレータを構成している。 As a result, the slave manipulator 32 constitutes the multi-link manipulator having 6 degrees of freedom so that it can rotate around a total of six axes.
 各軸の回転部分を構成する各関節部には、スレーブモータ84のような回転駆動装置と、スレーブモータ84の回転軸の回転位相角(すなわち関節角)を検出して位置情報を出力するスレーブエンコーダ85(実際には、スレーブマニピュレータ32の各関節部の内部に配設されている)とを備えている。スレーブモータ84(実際には、スレーブマニピュレータ32の各関節部の内部に配設されている)は、各関節部を構成する一対の部材(例えば、回動側部材と、該回動側部材を支持する支持側部材)のうちの一方の部材に備えられる、スレーブモータドライバ31により駆動制御される。各関節部の一方の部材に備えられたスレーブモータ84の回転軸が、各関節部の他方の部材に連結されて、前記回転軸を正逆回転させることにより、他方の部材を一方の部材に対して各軸周りに回転可能とする。 In each joint part constituting the rotation part of each axis, there is a rotation drive device such as a slave motor 84, and a slave that detects the rotation phase angle (that is, the joint angle) of the rotation axis of the slave motor 84 and outputs position information. An encoder 85 (actually disposed inside each joint of the slave manipulator 32). The slave motor 84 (actually disposed inside each joint portion of the slave manipulator 32) includes a pair of members (for example, a rotation side member and the rotation side member) constituting each joint portion. Driven and controlled by a slave motor driver 31 provided on one of the supporting side members). The rotation shaft of the slave motor 84 provided in one member of each joint portion is connected to the other member of each joint portion, and the other member is turned into one member by rotating the rotation shaft forward and backward. On the other hand, it can be rotated around each axis.
 また、スレーブモータドライバ31により駆動制御されるスレーブハンド駆動装置の一例としてスレーブハンド駆動用のスレーブモータ84と、スレーブハンド駆動用のスレーブモータ84の回転軸の回転位相角を検出するスレーブエンコーダ85とを、さらに、スレーブハンド71に備えている。スレーブエンコーダ85で検出された回転角度情報が、スレーブ入出力IF30(例えばカウンタボード)を通じてスレーブ制御部24に取り込まれ、スレーブ制御部24に取り込まれた回転角度情報を基に、スレーブ制御部24によってスレーブハンド71の開閉動作での制御指令値(制御信号)が算出される。スレーブ制御部24で算出された制御指令値は、スレーブ入出力IF30(例えばD/Aボード)を通じて、スレーブハンド71の開閉駆動も行うスレーブモータドライバ31に与えられ、スレーブモータドライバ31から送られた各制御指令値に従って、スレーブモータ84の回転を駆動制御して、スレーブハンド駆動用のスレーブモータ84の回転軸を正逆回転させることにより、スレーブハンド71を開閉させて、対象物102(例えば、フレキシブル基板)の把持及び把持解除を行なう。 In addition, as an example of a slave hand driving device that is driven and controlled by the slave motor driver 31, a slave motor 84 for driving the slave hand, and a slave encoder 85 that detects the rotational phase angle of the rotation axis of the slave motor 84 for driving the slave hand, Is further provided in the slave hand 71. The rotation angle information detected by the slave encoder 85 is taken into the slave control unit 24 through the slave input / output IF 30 (for example, a counter board), and based on the rotation angle information taken into the slave control unit 24, the slave control unit 24 A control command value (control signal) in the opening / closing operation of the slave hand 71 is calculated. The control command value calculated by the slave control unit 24 is given to the slave motor driver 31 that also opens and closes the slave hand 71 through the slave input / output IF 30 (for example, the D / A board), and is sent from the slave motor driver 31. According to each control command value, the rotation of the slave motor 84 is driven and controlled, and the rotation axis of the slave motor 84 for driving the slave hand is rotated forward and backward to open and close the slave hand 71, and the object 102 (for example, Grip and release of the flexible substrate).
 また、82はスレーブ台部75の下側固定部75bに対して相対的な位置関係が固定されたスレーブ絶対座標系であり、83はスレーブハンド71に対して相対的な位置関係が固定されたスレーブ手先座標系である。スレーブ絶対座標系82から見たスレーブ手先座標系83のスレーブ原点位置O(x,y,z)をスレーブマニピュレータ32の手先位置、スレーブ絶対座標系82から見たスレーブ手先座標系83の姿勢をロール角とピッチ角とヨー角で表現した(φ,θ,ψ)をスレーブマニピュレータ32の手先姿勢とし、手先位置及び姿勢ベクトルをベクトルr=[x,y,z,φ,θ,ψ]と定義する。よって、一例として、スレーブ絶対座標系82のz軸に対してスレーブ第1関節部76の縦軸が平行であり、x軸に対してスレーブ第2関節部77の横軸が平行に位置可能とするのが好ましい。また、スレーブ手先座標系83のx軸に対して第6関節部81の横軸が平行に位置可能であり、y軸に対してスレーブ第4関節部79の横軸が平行に位置可能であり、z軸に対してスレーブ第5関節部80の縦軸が平行に位置可能とするのが好ましい。なお、スレーブ手先座標系83のx軸に対しての回転角をヨー角ψとし、y軸に対しての回転角をピッチ角θとし、z軸に対しての回転角をロール角φとする。スレーブマニピュレータ32の手先位置と姿勢を制御する場合には、手先位置及び姿勢ベクトルrを、前記WO 2009/107358号の国際出願公開公報などに開示された目標軌道生成部で生成された手先位置及び姿勢目標ベクトルrに追従させることになる。 82 is a slave absolute coordinate system in which the relative positional relationship is fixed with respect to the lower fixed portion 75b of the slave base portion 75, and 83 is a relative positional relationship with respect to the slave hand 71. Slave hand coordinate system. The slave origin position O e (x, y, z) of the slave hand coordinate system 83 viewed from the slave absolute coordinate system 82 is the hand position of the slave manipulator 32, and the posture of the slave hand coordinate system 83 viewed from the slave absolute coordinate system 82 is The (φ, θ, ψ) expressed by the roll angle, pitch angle, and yaw angle is the hand posture of the slave manipulator 32, and the hand position and posture vector are vectors r = [x, y, z, φ, θ, ψ] T It is defined as Therefore, as an example, the vertical axis of the slave first joint portion 76 can be parallel to the z axis of the slave absolute coordinate system 82, and the horizontal axis of the slave second joint portion 77 can be parallel to the x axis. It is preferable to do this. Further, the horizontal axis of the sixth joint portion 81 can be positioned parallel to the x axis of the slave hand coordinate system 83, and the horizontal axis of the slave fourth joint portion 79 can be positioned parallel to the y axis. It is preferable that the vertical axis of the slave fifth joint 80 can be positioned parallel to the z-axis. The rotation angle with respect to the x axis of the slave hand coordinate system 83 is a yaw angle ψ, the rotation angle with respect to the y axis is a pitch angle θ, and the rotation angle with respect to the z axis is a roll angle φ. . When controlling the hand position and posture of the slave manipulator 32, the hand position and posture vector r are set to the hand position generated by the target trajectory generation unit disclosed in the International Application Publication No. WO 2009/107358 and the like. It would be to follow the orientation target vector r d.
 マスタースレーブロボットの制御装置100は、本発明における装置全体であり、作業を行うにあたり人が遠隔により操作することができる装置である。マスターロボットシステム1は、人が直接触って操作するためのロボットシステムである。スレーブロボットシステム21は、マスターロボットシステム1と離れたところにあり、実際に作業(例えば、対象物102をロボットで把持し被対象物103に対して対象物102を接触させながら行う作業)を行うためのロボットシステムである。 The master-slave robot control device 100 is the entire device according to the present invention, and is a device that can be operated remotely by a person when performing work. The master robot system 1 is a robot system that is operated by direct contact with a person. The slave robot system 21 is located away from the master robot system 1 and actually performs work (for example, work performed while holding the object 102 with the robot and bringing the object 102 into contact with the object 103). It is a robot system for.
 マスターマニピュレータ9は、人が直接触り操作するロボットであり、人が動かす際に、マスター入出力IF7に内蔵されたタイマーを利用して、ある一定時間毎(例えば、1ms毎)に、マスターマニピュレータ9の位置情報を各マスターエンコーダ65から取得し、マスター入出力IF7に出力する。 The master manipulator 9 is a robot that is operated by direct contact with a person. When the person moves, the master manipulator 9 uses a timer built in the master input / output IF 7 at regular intervals (for example, every 1 ms). Are acquired from each master encoder 65 and output to the master input / output IF 7.
 スレーブマニピュレータ32は、対象物102(例えば、フレキシブル基板)を把持して被対象物103(例えば、図示しない保持部材に保持された被対象物103)(例えば、フレキシブル基板の一端部を挿入すべき凹部を有するコネクタ)に対して作業(例えば、挿入又は取付作業)を行うロボットであり、マスターマニピュレータ9で取得した位置情報に追従するようにスレーブマニピュレータ32を動作する(図4A参照)。 The slave manipulator 32 grips the object 102 (for example, a flexible substrate) and inserts the object 103 (for example, the object 103 held by a holding member (not shown)) (for example, one end of the flexible substrate). It is a robot that performs work (for example, insertion or mounting work) on a connector having a recess, and operates the slave manipulator 32 so as to follow the position information acquired by the master manipulator 9 (see FIG. 4A).
 マスター周辺装置6は、マスターマニピュレータ9とマスター制御装置3との間の情報を伝達する。スレーブ周辺装置29も同様に、スレーブマニピュレータ32とスレーブ制御装置23との間の情報を伝達する。 The master peripheral device 6 transmits information between the master manipulator 9 and the master control device 3. Similarly, the slave peripheral device 29 transmits information between the slave manipulator 32 and the slave control device 23.
 マスター入出力IF7は、マスターマニピュレータ9の各マスターエンコーダ65からマスター入出力IF7に入力された位置情報と、マスター入出力IF7に内蔵されたタイマーからの時間情報とをマスター制御部4に出力する。また、マスター制御部4からマスター入出力IF7に入力された位置情報を、マスター入出力IF7がマスターモータドライバ8に出力する。マスターモータドライバ8は、マスター入出力IF7からマスターモータドライバ8に入力された位置情報にマスターマニピュレータ9が追従するように、マスターマニピュレータ9のマスターモータ64をそれぞれ動かす。 The master input / output IF 7 outputs the position information input from each master encoder 65 of the master manipulator 9 to the master input / output IF 7 and the time information from the timer built in the master input / output IF 7 to the master control unit 4. The master input / output IF 7 outputs the position information input from the master control unit 4 to the master input / output IF 7 to the master motor driver 8. The master motor driver 8 moves the master motor 64 of the master manipulator 9 so that the master manipulator 9 follows the position information input to the master motor driver 8 from the master input / output IF 7.
 スレーブ入出力IF30は、スレーブ制御部23からスレーブ入出力IF30に入力された位置情報をスレーブモータドライバ31に出力する。また、スレーブマニピュレータ32からスレーブ入出力IF30に入力された位置情報と時間情報とを、スレーブ入出力IF30からスレーブ制御部24に出力する。スレーブモータドライバ31は、スレーブ入出力IF30からスレーブモータドライバ31に入力された位置情報にスレーブマニピュレータ32が追従するように、スレーブマニピュレータ32のスレーブモータ84をそれぞれ動かす。 The slave input / output IF 30 outputs the position information input from the slave control unit 23 to the slave input / output IF 30 to the slave motor driver 31. Further, the position information and time information input from the slave manipulator 32 to the slave input / output IF 30 are output from the slave input / output IF 30 to the slave control unit 24. The slave motor driver 31 moves the slave motors 84 of the slave manipulator 32 so that the slave manipulator 32 follows the position information input to the slave motor driver 31 from the slave input / output IF 30.
 マスター制御装置3は、
   (i)マスターマニピュレータ9が動いた位置情報を、マスター入出力IF7に内蔵されたタイマーを利用して、ある一定時間毎に、マスター入出力IF7及びマスター制御装置3を介してスレーブ制御装置23に出力することと、
   (ii)スレーブ制御装置23からマスター制御装置3に入力される力情報を人に伝達すること、
   の二つの役割を持つ。
The master control device 3
(I) The position information of the movement of the master manipulator 9 is sent to the slave control device 23 via the master input / output IF 7 and the master control device 3 at regular intervals using a timer built in the master input / output IF 7. Output,
(Ii) transmitting force information input from the slave controller 23 to the master controller 3 to a person;
It has two roles.
 マスター制御部4は、人が、力伝達部5からの力情報に基づいてマスターマニピュレータ9を操作するとき、マスターマニピュレータ9の操作情報を制御するものである。具体的には、マスター制御部4は、マスター入出力IF7からマスター制御部4に入力されたマスターマニピュレータ9の位置情報と時間情報とをスレーブ制御部24に出力する。また、スレーブ制御部24からマスター制御部4に入力された力情報を、マスター制御部4から力伝達部5に出力する。 The master control unit 4 controls operation information of the master manipulator 9 when a person operates the master manipulator 9 based on the force information from the force transmission unit 5. Specifically, the master control unit 4 outputs the position information and time information of the master manipulator 9 input from the master input / output IF 7 to the master control unit 4 to the slave control unit 24. Further, the force information input from the slave control unit 24 to the master control unit 4 is output from the master control unit 4 to the force transmission unit 5.
 力伝達部5は、スレーブ制御部24からマスター制御部4を介して入力された力情報を、人の手101に伝達する。人の手101への力の伝達方法は、フックの法則(例えば、バネ定数は0.5とする)を用いて力情報を位置情報に力伝達部5で変換し、力伝達部5で算出した位置情報を指令値としてマスターマニピュレータ9に力伝達部5からマスター制御部4及びマスター周辺装置6などを介して出力し、マスターモータ64を動かすことで、力の伝達を実現する。力伝達部5は、力補正部25との関係では、力補正部25からの力情報をマスターマニピュレータ9に伝達する。 The force transmission unit 5 transmits the force information input from the slave control unit 24 via the master control unit 4 to the human hand 101. As a method of transmitting force to the human hand 101, force information is converted into position information by the force transmission unit 5 using the Hooke's law (for example, the spring constant is 0.5), and the force transmission unit 5 calculates the force information. The transmitted position information is output as a command value to the master manipulator 9 from the force transmission unit 5 via the master control unit 4 and the master peripheral device 6 and the like, and the master motor 64 is moved to realize transmission of force. The force transmission unit 5 transmits force information from the force correction unit 25 to the master manipulator 9 in relation to the force correction unit 25.
 スレーブ制御装置23は、
   (i)マスター制御装置3からスレーブ制御装置23に入力された位置情報と時間情報とにスレーブマニピュレータ32を追従させることと、
   (ii)スレーブマニピュレータ32が取得した力情報と速度情報とを基に力補正箇所(力補正区間)を検出し、検出した力補正箇所(力補正区間)のみの力補正を行いマスター制御装置3に力情報を出力すること、
   の二つの役割を持つ。
The slave control device 23
(I) causing the slave manipulator 32 to follow position information and time information input from the master controller 3 to the slave controller 23;
(Ii) Based on the force information and speed information acquired by the slave manipulator 32, a force correction point (force correction section) is detected, and only the detected force correction point (force correction section) is subjected to force correction. Output force information to the
It has two roles.
 力情報取得部26は、スレーブマニピュレータ32のスレーブハンド71に取り付けられたスレーブ力センサ86(図3参照)の値を力情報として、スレーブ入出力IF30を介して、スレーブ入出力IF30に内蔵されたタイマーを利用して、スレーブ入出力IF30を介して、ある一定時間毎に取得する。取得した力情報を力補正部25及び力補正箇所検出部27に出力する。 The force information acquisition unit 26 is incorporated in the slave input / output IF 30 via the slave input / output IF 30 using the value of the slave force sensor 86 (see FIG. 3) attached to the slave hand 71 of the slave manipulator 32 as force information. Using a timer, the data is acquired every certain time via the slave input / output IF 30. The acquired force information is output to the force correction unit 25 and the force correction point detection unit 27.
 速度情報取得部28は、スレーブマニピュレータ32の手先の速度情報を取得する。取得方法は、スレーブエンコーダ85(図3参照)で得られた位置情報を、速度情報取得部28に内蔵されたタイマーからの時間情報を基に、ある一定時間毎に取得し、速度情報取得部28に記憶されていた現在の位置情報から一定時間前の位置情報を引き、ある一定時間で割り、得られた値を速度情報とする。速度情報取得部28で取得した速度情報を、速度情報取得部28から力補正箇所検出部27に出力する。 The speed information acquisition unit 28 acquires speed information of the hand of the slave manipulator 32. The acquisition method acquires the position information obtained by the slave encoder 85 (see FIG. 3) at regular intervals based on the time information from the timer built in the speed information acquisition unit 28, and the speed information acquisition unit The position information of a predetermined time before is subtracted from the current position information stored in 28, divided by a certain fixed time, and the obtained value is used as speed information. The speed information acquired by the speed information acquisition unit 28 is output from the speed information acquisition unit 28 to the force correction location detection unit 27.
 力補正箇所検出部27は、力情報取得部26から力補正箇所検出部27に入力された力情報と速度情報取得部28から力補正箇所検出部27に入力された速度情報とを用いて、力情報における力補正箇所(力補正区間)を検出し、検出した力情報を力補正箇所検出部27からスレーブ制御部24に出力する。 The force correction location detection unit 27 uses the force information input from the force information acquisition unit 26 to the force correction location detection unit 27 and the speed information input from the speed information acquisition unit 28 to the force correction location detection unit 27. A force correction point (force correction interval) in the force information is detected, and the detected force information is output from the force correction point detection unit 27 to the slave control unit 24.
 力補正箇所(力補正区間)の検出方法については、図4A~図5Cを用いて説明する。図4Aに示す作業は、対象物102の先端102aを被対象物103のくぼみ103aに挿入する作業であり、マスターマニピュレータ9を人の手101が直接触ることにより、対象物102をスレーブハンド71で把持するスレーブマニピュレータ32を操作している場合において、スレーブハンド71で把持された対象物102が被対象物103に接触しながら挿入作業を行う。 The detection method of the force correction portion (force correction section) will be described with reference to FIGS. 4A to 5C. 4A is an operation of inserting the tip 102a of the object 102 into the recess 103a of the object 103. When the human hand 101 directly contacts the master manipulator 9, the object 102 is moved by the slave hand 71. When the slave manipulator 32 to be gripped is operated, the insertion work is performed while the object 102 gripped by the slave hand 71 is in contact with the object 103.
 図5Aは、スレーブマニピュレータ32で検出された力と時間との関係を示すグラフであって、力情報取得部26で取得された力情報である。図5Bは、スレーブマニピュレータ32で検出された速度と時間との関係を示すグラフであって、速度情報取得部28で取得された速度情報である。また、図5Cは、マスターマニピュレータ9に伝達する力と時間との関係を示すグラフであって、力補正された後にマスターマニピュレータ9に伝達する力情報であり、破線及び白丸は補正前の値であり、実線及び黒丸は補正後の値である。 FIG. 5A is a graph showing the relationship between the force detected by the slave manipulator 32 and time, and is the force information acquired by the force information acquisition unit 26. FIG. 5B is a graph showing the relationship between the speed detected by the slave manipulator 32 and time, and is the speed information acquired by the speed information acquisition unit 28. FIG. 5C is a graph showing the relationship between the force transmitted to the master manipulator 9 and time, and is the force information transmitted to the master manipulator 9 after the force correction. The broken lines and white circles are values before correction. Yes, solid lines and black circles are values after correction.
 力情報取得部26で前記一定時間毎に取得された力情報(例えば、図5Aの力情報(f11)と力情報(f12)と)を基に、力情報の変位(力情報の差、すなわち、図5Aの(f12)-(f11))が力情報の変位の閾値(例えば、1.0N)を上回ると力補正箇所検出部27で判断されると、スレーブマニピュレータ32のスレーブハンド71で把持する対象物102が被対象物103に衝突したことを力補正箇所検出部27で検知したことになり、その力情報(f12)を取得した時点が「力補正箇所」(力補正区間)として力補正箇所検出部27で検出される(ただし、「閾値を上回る」とは、閾値と符号が同じであり、かつ絶対値が閾値より大きいことを力補正箇所検出部27で判断することを意味し、マスターマニピュレータ9の動作速度が遅くなった状態を示す。以降、本明細書では、同様の意味で用いる。)。 Based on force information (for example, force information (f11) and force information (f12) in FIG. 5A) acquired by the force information acquisition unit 26 at regular intervals, displacement of force information (difference in force information, that is, When the force correction point detection unit 27 determines that (f12)-(f11)) of FIG. 5A exceeds the displacement threshold (for example, 1.0 N) of the force information, the slave hand 71 of the slave manipulator 32 holds it. That is, the force correction point detection unit 27 detects that the target object 102 collides with the target object 103, and the time when the force information (f12) is acquired is the force correction point (force correction interval). Detected by the correction location detector 27 (however, “exceeding the threshold” means that the force correction location detector 27 determines that the threshold and the sign are the same and that the absolute value is greater than the threshold). Master manipulator It shows a state in which the speed of operation becomes slower. The remainder of this specification, used in the same sense.).
 一方、力情報取得部26で前記力情報(f11)と(f12)を基に、力情報の変位(力情報の差、すなわち、図5Aの(f12)-(f11))が力情報の変位の閾値を上回らない場合は、「変更なし」として力補正箇所検出部27で検出される。ここで、「変更なし」とは、力補正箇所(力補正区間)が無いことを意味する。 On the other hand, based on the force information (f11) and (f12) in the force information acquisition unit 26, the displacement of force information (difference in force information, ie, (f12)-(f11) in FIG. 5A) is the displacement of force information. Is not exceeded, the force correction point detection unit 27 detects that there is no change. Here, “no change” means that there is no force correction portion (force correction section).
 よって、力補正箇所検出部27により、力情報取得部26で取得された力情報の前記変位((f12)-(f11))が前記閾値を上回っている時点(すなわち、マスターマニピュレータ9に伝達する力の変位(図5Cの(fa12)-(fa11))が閾値を上回っている時点(図5CのA1の時点))を「力補正開始時間」とする。また、力補正箇所検出部27により、力情報取得部26で取得された力情報の前記変位(図5Aの(f14)-(f13))が前記閾値以下となる時点(すなわち、マスターマニピュレータ9に伝達する力の変位(図5Cの(fc12)-(fc11))が前記閾値以下の時点(図5CのC1時点))を「力補正終了時間」とする。そして、「力補正開始時間」から「力補正終了時間」の区間を、力補正箇所検出部27で、「力補正箇所」(力補正区間)(図5CのB1区間)とする。 Therefore, when the displacement ((f12)-(f11)) of the force information acquired by the force information acquisition unit 26 exceeds the threshold by the force correction location detection unit 27 (that is, is transmitted to the master manipulator 9). The time point at which the displacement of force ((fa12)-(fa11) in FIG. 5C) exceeds the threshold value (time point A1 in FIG. 5C) is defined as “force correction start time”. Further, when the displacement of the force information acquired by the force information acquisition unit 26 ((f14)-(f13) in FIG. 5A) becomes equal to or less than the threshold by the force correction point detection unit 27 (that is, the master manipulator 9 A time point at which the displacement of the transmitted force ((fc12)-(fc11) in FIG. 5C) is equal to or less than the threshold value (time C1 in FIG. 5C) is defined as “force correction end time”. Then, the section from “force correction start time” to “force correction end time” is set as “force correction position” (force correction section) (B1 section in FIG. 5C) by the force correction position detection unit 27.
 よって、 力補正開始時間から力補正終了時間までの区間を力補正箇所とすると、当該区間内の力情報は、時間と力の大きさとの関係において、一定値ではなく、上向き凸の山形に変化する曲線又は直線で表されることになる。 Therefore, if the section from the force correction start time to the force correction end time is set as the force correction point, the force information in the section changes to an upward convex mountain shape instead of a constant value in relation to the time and the magnitude of the force. Will be represented by a curved line or straight line.
 以上は、力情報取得部26で取得した力情報のみを使用して、力情報を補正する力補正箇所(力補正区間)を力補正箇所検出部27で検出する方法について説明した。力情報取得部26で取得した力情報のみを使用する場合の利点としては、速度情報取得部28を用いる必要がなく、簡易で安価に行える点が挙げられる。しかしながら、本発明はこれに限定されるものではない。 In the above, the method of detecting the force correction location (force correction section) for correcting the force information using only the force information acquired by the force information acquisition unit 26 has been described. An advantage of using only the force information acquired by the force information acquisition unit 26 is that it is not necessary to use the speed information acquisition unit 28 and can be performed simply and inexpensively. However, the present invention is not limited to this.
 例えば、図4Aにおいて力情報取得部26のスレーブ力センサ86の正負の符号の向きを逆にすれば、言い換えれば、図4Bに示すようにすれば、図5Cのグラフは上向き凸の山形ではなく、図5Dに示すように下向き凸の山形となる。この場合であっても、力補正開始時間から力補正終了時間までの区間を力補正箇所とし、当該区間内の力情報は、時間と力の大きさとの関係において、一定値ではなく、下向き凸の山形に(言い換えれば、谷形に)変化する曲線又は直線で表される。よって、本明細書及び請求の範囲において、前記した「山形に変化する曲線又は直線」とは、図5Cの場合の他、スレーブ力センサ86の正負の符号の向きを逆にした図5Dの場合をも意味するものとする。 For example, in FIG. 4A, if the direction of the sign of the slave force sensor 86 of the force information acquisition unit 26 is reversed, in other words, as shown in FIG. 4B, the graph of FIG. 5C is not an upward convex chevron. As shown in FIG. 5D, a downward convex mountain shape is obtained. Even in this case, the section from the force correction start time to the force correction end time is used as the force correction point, and the force information in the section is not a constant value but a downward convexity in the relationship between the time and the magnitude of the force. It is represented by a curve or a straight line that changes to a mountain shape (in other words, a valley shape). Therefore, in the present specification and claims, the above-mentioned “curve or straight line that changes into a mountain shape” refers to the case of FIG. 5D in which the direction of the sign of the slave force sensor 86 is reversed in addition to the case of FIG. Is also meant.
 例えば、力情報取得部26で取得した力情報と速度情報取得部28で取得した速度情報との両方を使用して、力情報を補正する力補正箇所(力補正区間)を検出することもできる。 For example, by using both the force information acquired by the force information acquisition unit 26 and the speed information acquired by the speed information acquisition unit 28, a force correction point (force correction section) for correcting the force information can be detected. .
 すなわち、速度情報取得部28で一定時間毎に取得された速度情報(例えば、図5Bの速度情報(v11)と速度情報(v12)と)を基に、速度情報の変位(速度情報の差、すなわち、図5Bの(v12)-(v11))が速度情報の変位の閾値(例えば、-0.01mm/ms)を上回ると力補正箇所検出部27で判断されると、スレーブマニピュレータ32のスレーブハンド71で把持する対象物102が被対象物103に衝突したことを力補正箇所検出部27で検知したことになり、その速度情報(v12)を取得した時点が「力補正箇所」(力補正区間)として力補正箇所検出部27で検出される(ただし、「閾値を上回る」とは、閾値と符号が同じであり、かつ絶対値が閾値より大きいことを力補正箇所検出部27で判断することを意味し、マスターマニピュレータ9の動作速度が遅くなった状態を示す。以降、本明細書では、同様の意味で用いる。)。 That is, based on the speed information (for example, the speed information (v11) and the speed information (v12) in FIG. 5B) acquired at regular intervals by the speed information acquisition unit 28, the displacement of the speed information (difference in speed information, That is, when (v12)-(v11)) of FIG. 5B exceeds the threshold value of the displacement of the speed information (for example, −0.01 mm / ms), the force correction point detector 27 determines that the slave of the slave manipulator 32 The force correction location detection unit 27 detects that the object 102 held by the hand 71 has collided with the object 103, and the time point when the velocity information (v12) is acquired is “force correction location” (force correction). The force correction location detection unit 27 determines that “the value exceeds the threshold” has the same sign as the threshold and the absolute value is greater than the threshold. This It means, showing a state where the operation slows down the master manipulator 9. Later, are used herein in the same meaning.).
 一方、速度情報取得部28で前記速度情報(v11)と(v12)を基に、速度情報の変位(速度情報の差、すなわち、図5Bの(v12)-(v11))が速度情報の変位の閾値を上回らない場合は、「変更なし」の時点として力補正箇所検出部27で検出される。ここで、「変更なし」とは、力補正箇所(力補正区間)が無いことを意味する。 On the other hand, based on the speed information (v11) and (v12) in the speed information acquisition unit 28, the displacement of the speed information (the difference between the speed information, that is, (v12)-(v11) in FIG. 5B) is the displacement of the speed information. In the case where the threshold value is not exceeded, the force correction point detection unit 27 detects the time as “no change”. Here, “no change” means that there is no force correction portion (force correction section).
 よって、力補正箇所検出部27により、速度情報取得部28で取得された速度情報の変位((v12)-(v11))が前記閾値を上回っている時点(すなわち、マスターマニピュレータ9に伝達する力の変位(図5Cの(fa12)-(fa11))が閾値を上回っている時点(図5CのA1の時点))を「力補正開始時間」とする。 Therefore, when the displacement ((v12)-(v11)) of the velocity information acquired by the velocity information acquisition unit 28 exceeds the threshold by the force correction location detection unit 27 (that is, the force transmitted to the master manipulator 9). Is the time when the displacement ((fa12)-(fa11) in FIG. 5C) exceeds the threshold (time A1 in FIG. 5C) is defined as “force correction start time”.
 また、力補正箇所検出部27により、力情報取得部26で取得された力情報の変位(図5Cの(fc12)-(fc11))が閾値(例えば、-1.0N)を下回る時点(図5CのC1の時点)を「力補正終了時間」とする。すなわち、前記力情報の変位が、前記閾値を越えていた状態から前記閾値を下回る状態になった時点を「力補正終了時間」とする。「力補正開始時間」から「力補正終了時間」の区間を、力補正箇所検出部27で、「力補正箇所」(力補正区間)(図5CのB1区間)とする。 In addition, when the displacement of the force information ((fc12)-(fc11) in FIG. 5C) acquired by the force information acquisition unit 26 by the force correction location detection unit 27 falls below a threshold (for example, −1.0 N) (FIG. (C1 point of 5C) is defined as “force correction end time”. That is, the time point at which the displacement of the force information has changed from being in a state exceeding the threshold to being in a state below the threshold is referred to as “force correction end time”. The section from “force correction start time” to “force correction end time” is set as “force correction position” (force correction section) (B1 section in FIG. 5C) by the force correction position detection unit 27.
 以上のように、力情報取得部26で取得された力情報と速度情報取得部28で取得された速度情報との両方を使用し、「力補正開始時間」及び「力補正終了時間」を検出する場合の利点として、力情報取得部26で取得された力情報又は速度情報取得部28で取得された速度情報のどちらか1つの情報を使用し、「力補正開始時間」及び「力補正終了時間」を検出する場合と比較して、誤検出の少ない正確な検出が行えることが挙げられる。 As described above, the “force correction start time” and the “force correction end time” are detected by using both the force information acquired by the force information acquisition unit 26 and the speed information acquired by the speed information acquisition unit 28. As an advantage in the case of using the force information acquired by the force information acquisition unit 26 or the speed information acquired by the speed information acquisition unit 28, the “force correction start time” and the “force correction end” are used. Compared to the case of detecting “time”, it is possible to perform accurate detection with few false detections.
 力補正部25は、スレーブ制御部24から力補正部25に入力された力情報を基に、「力補正箇所」(力補正区間)の力情報としては、力情報を補正した情報をスレーブ制御部24に出力する一方、力情報がその前記閾値を超えていない状態である「変更なし」の情報としては、力情報を変更せずにスレーブ制御部24に出力する。力情報の補正方法は、力情報の変位(図5Cの(fa12)-(fa11))に予め決められた定数(例えば、0.5)を力補正部25で掛け、掛けて求められた値を現在の力情報(図5Cのfa12)に力補正部25で加える(図5Cの(fa12)+0.5×((fa12)-(fa11)))ことにより、力補正部25で力情報の補正を行なうことができる。 Based on the force information input from the slave control unit 24 to the force correction unit 25, the force correction unit 25 performs slave control on the information obtained by correcting the force information as the force information of the “force correction point” (force correction section). On the other hand, as the “no change” information in which the force information does not exceed the threshold value, the force information is output to the slave control unit 24 without being changed. The force information correction method is a value obtained by multiplying the displacement of force information ((fa12)-(fa11) in FIG. 5C) by a predetermined constant (for example, 0.5) by the force correction unit 25. Is added to the current force information (fa12 in FIG. 5C) by the force correction unit 25 ((fa12) + 0.5 × ((fa12) − (fa11) in FIG. 5C)). Correction can be performed.
 スレーブ制御部24は、マスター制御部4からスレーブ制御部24に入力された位置情報をスレーブ入出力IF30に出力する。また、力補正箇所検出部27からスレーブ制御部24に入力された力情報を、スレーブ制御部24から力補正部25に出力し、力補正部25からスレーブ制御部24に入力された力情報を、スレーブ制御部24からマスター制御部4に出力する。 The slave control unit 24 outputs the position information input from the master control unit 4 to the slave control unit 24 to the slave input / output IF 30. Further, the force information input from the force correction point detection unit 27 to the slave control unit 24 is output from the slave control unit 24 to the force correction unit 25, and the force information input from the force correction unit 25 to the slave control unit 24 is output. And output from the slave controller 24 to the master controller 4.
 第1実施形態におけるマスタースレーブロボットの制御装置100の操作手順を図4Aと図6のフローチャートを用いて説明する。 The operation procedure of the master / slave robot control device 100 in the first embodiment will be described with reference to the flowcharts of FIGS. 4A and 6.
 ステップS201では、対象物102が被対象物103に衝突するとき、力情報取得部26により力情報を取得し、速度情報取得部28により速度情報を取得し、力情報取得部26と速度情報取得部28とから、力情報取得部26で取得した力情報と速度情報取得部28で取得した速度情報とを力補正箇所検出部27にそれぞれ出力する。なお、力情報取得部26で取得した力情報のみを使用する場合には、速度情報取得部28で速度情報を取得することは不要である。力情報取得部26で取得した力情報と速度情報取得部28で速度情報との両方を使用する場合について、ここでは説明している。 In step S201, when the object 102 collides with the object 103, the force information acquisition unit 26 acquires force information, the speed information acquisition unit 28 acquires speed information, and the force information acquisition unit 26 and speed information acquisition. From the unit 28, the force information acquired by the force information acquisition unit 26 and the speed information acquired by the speed information acquisition unit 28 are output to the force correction location detection unit 27, respectively. When only the force information acquired by the force information acquisition unit 26 is used, it is not necessary to acquire the speed information by the speed information acquisition unit 28. The case where both the force information acquired by the force information acquisition unit 26 and the speed information by the speed information acquisition unit 28 are used is described here.
 ステップS201に続いて、ステップS206では、ステップS201で力情報と速度情報との両方を取得した場合には、力情報と速度情報とのどちらか1つ以上を用いて、力補正箇所検出部27において、力補正箇所情報(力補正区間情報)を検出し、検出した力補正箇所情報(力補正区間情報)を、力補正箇所検出部27からスレーブ制御部24を介して力補正部25に出力する。そして、力補正部25において、力情報取得部26で取得した力情報に関して、力補正箇所検出部27で力補正箇所(力補正区間)があるか否かを判断する。なお、力情報のみを使用する場合には、力情報のみを用いて、力補正箇所検出部27において、力補正箇所情報(力補正区間情報)を検出し、検出した力補正箇所情報(力補正区間情報)を、力補正箇所検出部27からスレーブ制御部24を介して力補正部25に出力する。 Subsequent to step S201, in step S206, when both the force information and the speed information are acquired in step S201, one or more of the force information and the speed information are used, and the force correction point detecting unit 27 is used. , Force correction location information (force correction interval information) is detected, and the detected force correction location information (force correction interval information) is output from the force correction location detection unit 27 to the force correction unit 25 via the slave control unit 24. To do. Then, in the force correction unit 25, regarding the force information acquired by the force information acquisition unit 26, the force correction point detection unit 27 determines whether or not there is a force correction point (force correction section). When only the force information is used, the force correction location information (force correction interval information) is detected by the force correction location detection unit 27 using only the force information, and the detected force correction location information (force correction) is detected. (Section information) is output from the force correction point detection unit 27 to the force correction unit 25 via the slave control unit 24.
 ステップS206において、力補正箇所(力補正区間)が無いと力補正箇所検出部27で判断する場合には、ステップS210に進む。 In step S206, when the force correction point detection unit 27 determines that there is no force correction point (force correction section), the process proceeds to step S210.
 ステップS206において、力補正箇所(力補正区間)が有ると力補正箇所検出部27で判断する場合には、ステップS208に進む。 In step S206, when the force correction point detection unit 27 determines that there is a force correction point (force correction section), the process proceeds to step S208.
 ステップS208では、力補正部25において、力情報取得部26で取得した力情報に関して、力補正箇所情報(力補正区間情報)により力補正が必要であると検出された力情報を補正し、スレーブ制御部24に出力したのち、ステップS210に進む。 In step S208, the force correction unit 25 corrects the force information detected by the force correction location information (force correction section information) as to force correction with respect to the force information acquired by the force information acquisition unit 26, and the slave After outputting to the control unit 24, the process proceeds to step S210.
 ステップS210では、スレーブ制御部24に出力された力情報が、スレーブ制御部24からマスター制御部4に送られ、さらに、マスター制御部4から力伝達部5へと伝達される。力伝達部5に入力された前記力情報は、前述した方法で人の手101に伝達して、このフローを終了する。 In step S210, the force information output to the slave control unit 24 is transmitted from the slave control unit 24 to the master control unit 4, and further transmitted from the master control unit 4 to the force transmission unit 5. The force information input to the force transmission unit 5 is transmitted to the human hand 101 by the method described above, and this flow is finished.
 《第1実施形態の効果》
 一般に、作業中に、スレーブマニピュレータ32の対象物102の把持方法が変わり、対象物102が被対象物103に衝突するときに力情報取得部26で取得される力情報が把持方法が変わる前と比較して小さい場合において、従来では、人の手101が感じる力情報が小さく、操作が困難になり、作業完了に要する時間が長くなる。
<< Effects of First Embodiment >>
In general, during the work, the gripping method of the object 102 of the slave manipulator 32 changes, and the force information acquired by the force information acquisition unit 26 when the object 102 collides with the object 103 changes before the gripping method changes. When the comparison is smaller, conventionally, the force information felt by the human hand 101 is small, the operation becomes difficult, and the time required for completing the work becomes long.
 これに対して、第1実施形態を用いることによって、対象物102が被対象物103に衝突するときの力情報のみを力補正部25で補正することにより、力情報が力補正部25で増加される。この増加された力情報が、力伝達部5からマスター制御部4及びマスター周辺装置6などを介してマスターマニピュレータ9に出力し、前記増加された力情報に基づいてマスターモータ64が駆動されるので、操作する上で重要となる箇所が、人の手101に明確に伝わり、作業が簡単になり、作業完了に要する時間が短くなる。 On the other hand, by using the first embodiment, the force correction unit 25 corrects only the force information when the object 102 collides with the object 103, so that the force information is increased by the force correction unit 25. Is done. The increased force information is output from the force transmission unit 5 to the master manipulator 9 via the master control unit 4 and the master peripheral device 6, and the master motor 64 is driven based on the increased force information. The important points in operation are clearly transmitted to the human hand 101, the work is simplified, and the time required to complete the work is shortened.
 例えば、作業を行う際にスレーブマニピュレータ32に外部から加えられた力情報のうちで重要となる工程の力情報のみを増加して、マスターマニピュレータ9に伝達することができる。その結果、作業中の力の強弱がはっきりと作業者に伝わり、部品又は作業手順が変わった場合においても簡単に短時間で作業を行うことができる。 For example, it is possible to increase only the force information of an important process among the force information applied to the slave manipulator 32 from the outside when performing the work, and transmit it to the master manipulator 9. As a result, the strength of the force during the work is clearly transmitted to the worker, and the work can be easily performed in a short time even when the parts or the work procedure is changed.
 なお、力補正箇所検出部27と力補正部25はマスター制御装置3に備えることも可能である。 It should be noted that the force correction point detection unit 27 and the force correction unit 25 can be provided in the master control device 3.
 (第2実施形態)
 第1実施形態においては、対象物102が被対象物103に衝突したときのスレーブマニピュレータ32に加えられた力情報の絶対値を増加してマスターマニピュレータ9に伝達することで、人の手101に明確に力が伝わり、作業を簡単に行うことを可能としている。それに対して、本発明の第2実施形態においては、対象物102が被対象物103に衝突したときの人の手101がマスターマニピュレータ9に過度に加えた力情報の絶対値を減少してスレーブマニピュレータ32に伝達することで、人の手101がマスターマニピュレータ9に過度の力を加えた場合においても、対象物102又は被対象物103が破損することを防ぐことを可能とする。以下、これについて説明する。
(Second Embodiment)
In the first embodiment, the absolute value of the force information applied to the slave manipulator 32 when the object 102 collides with the object 103 is increased and transmitted to the master manipulator 9, so that The power is clearly transmitted, making it easy to work. On the other hand, in the second embodiment of the present invention, the absolute value of the force information excessively applied to the master manipulator 9 by the human hand 101 when the object 102 collides with the object 103 is reduced to reduce the slave information. By transmitting to the manipulator 32, even when the human hand 101 applies an excessive force to the master manipulator 9, it is possible to prevent the object 102 or the object 103 from being damaged. This will be described below.
 図7は、本発明の第2実施形態におけるマスタースレーブロボット150の制御装置100Aを示すブロック線図である。本発明の第2実施形態におけるマスター制御部4と、マスター入出力IF7と、マスターモータドライバ8と、マスターマニピュレータ9と、スレーブ制御部24と、速度情報取得部28と、スレーブ入出力IF30と、スレーブモータドライバ31と、スレーブマニピュレータ32とは第1実施形態と同様であるので、共通の参照符号を付して共通部分の説明は省略し、異なる部分についてのみ、以下、詳細に説明する。 FIG. 7 is a block diagram showing the control device 100A of the master-slave robot 150 in the second embodiment of the present invention. Master controller 4, master input / output IF 7, master motor driver 8, master manipulator 9, slave controller 24, speed information acquisition unit 28, slave input / output IF 30 in the second embodiment of the present invention, Since the slave motor driver 31 and the slave manipulator 32 are the same as those in the first embodiment, common reference numerals are assigned and description of common parts is omitted, and only different parts will be described in detail below.
 マスター制御装置3は、マスター制御部4と、マスター力情報取得部10とを備えている。 The master control device 3 includes a master control unit 4 and a master force information acquisition unit 10.
 スレーブ制御装置23は、スレーブ制御部24と、速度情報取得部28と、スレーブ力伝達部33と、スレーブ力補正部39と、スレーブ力補正箇所検出部40とを備えている。 The slave control device 23 includes a slave control unit 24, a speed information acquisition unit 28, a slave force transmission unit 33, a slave force correction unit 39, and a slave force correction point detection unit 40.
 マスター力情報取得部10は、マスターマニピュレータ9のマスターハンド51に取り付けられたマスター力センサ66(図2参照)の値を力情報として、マスター入出力IF7を介して、取得する。マスター力情報取得部10で取得した力情報を、マスター力情報取得部10からマスター制御部4に出力する。 The master force information acquisition unit 10 acquires the value of the master force sensor 66 (see FIG. 2) attached to the master hand 51 of the master manipulator 9 as force information via the master input / output IF 7. The force information acquired by the master force information acquisition unit 10 is output from the master force information acquisition unit 10 to the master control unit 4.
 スレーブ力伝達部33は、スレーブ制御部24からスレーブ力伝達部33に入力された力情報を、スレーブ力伝達部33からスレーブマニピュレータ32に伝達する。力情報の伝達方法は、フックの法則(例えば、バネ定数は0.5とする)を用いて、力情報を位置情報にスレーブ力伝達部33で変換し、スレーブ力伝達部33で算出した位置情報を、指令値としてスレーブマニピュレータ32にスレーブ力伝達部33から出力して、スレーブモータ74を動かすことで、力情報の伝達を実現する。 The slave force transmission unit 33 transmits force information input from the slave control unit 24 to the slave force transmission unit 33 from the slave force transmission unit 33 to the slave manipulator 32. The force information transmission method uses the Hooke's law (for example, the spring constant is 0.5), converts the force information into position information by the slave force transmission unit 33, and calculates the position calculated by the slave force transmission unit 33. Information is output from the slave force transmission unit 33 to the slave manipulator 32 as a command value, and the slave motor 74 is moved to realize transmission of force information.
 スレーブ力補正箇所検出部40は、マスター力情報取得部10からマスター制御部4及びスレーブ制御部24を介してスレーブ力補正箇所検出部40に入力された力情報及び速度情報取得部28からスレーブ力補正箇所検出部40に入力された速度情報を用いて、力情報における力補正箇所(力補正区間)をスレーブ力補正箇所検出部40で検出し、スレーブ力補正箇所検出部40で検出した力情報を、スレーブ力補正箇所検出部40からスレーブ制御部24に出力する。 The slave force correction point detection unit 40 receives force information and speed information acquisition unit 28 from the master force information acquisition unit 10 via the master control unit 4 and the slave control unit 24, and the slave force from the velocity information acquisition unit 28. Using the velocity information input to the correction location detection unit 40, the force correction location (force correction interval) in the force information is detected by the slave force correction location detection unit 40, and the force information detected by the slave force correction location detection unit 40 Is output from the slave force correction point detector 40 to the slave controller 24.
 スレーブ力補正箇所検出部40での力補正箇所(力補正区間)の検出方法については、図4A、図8A~図8Cを用いて説明する。図8Aは、マスターマニピュレータ9で検出された力と時間との関係を示すグラフであって、マスター力情報取得部10で取得された力情報である。図8Bは、スレーブマニピュレータ32で検出された速度と時間との関係を示すグラフであって、速度情報取得部28で取得された速度情報である。また、図8Cは、スレーブマニピュレータ32に伝達する力と時間との関係を示すグラフであって、力補正された後にスレーブマニピュレータ32に伝達する力情報であり、破線及び白丸は補正前の値であり、実線及び黒丸は補正後の値である。 A method for detecting a force correction point (force correction section) in the slave force correction point detection unit 40 will be described with reference to FIGS. 4A and 8A to 8C. FIG. 8A is a graph showing the relationship between the force detected by the master manipulator 9 and time, and is force information acquired by the master force information acquisition unit 10. FIG. 8B is a graph showing the relationship between the speed detected by the slave manipulator 32 and time, and is the speed information acquired by the speed information acquisition unit 28. FIG. 8C is a graph showing the relationship between the force transmitted to the slave manipulator 32 and time, and is the force information transmitted to the slave manipulator 32 after the force correction, and the broken line and the white circle are values before correction. Yes, solid lines and black circles are values after correction.
 マスター力情報取得部10で前記一定時間毎に取得された力情報(例えば、図8Aの力情報(f21)と力情報(f22)と)を基に、力情報の変位(力情報の差、すなわち、図8Aの(f22)-(f21))が力情報の変位の閾値(例えば、1.0N)を上回るとスレーブ力補正箇所検出部40で判断されると、スレーブマニピュレータ32のスレーブハンド71で把持する対象物102が被対象物103に衝突したことをスレーブ力補正箇所検出部40で検知したことになり、その力情報(f22)を取得した時点が「力補正箇所」(力補正区間)としてスレーブ力補正箇所検出部40で検出される。 Based on the force information (for example, force information (f21) and force information (f22) in FIG. 8A) acquired by the master force information acquisition unit 10 at regular intervals, displacement of force information (difference in force information, That is, when the slave force correction point detection unit 40 determines that (f22)-(f21)) in FIG. 8A exceeds the displacement threshold (for example, 1.0 N) of the force information, the slave hand 71 of the slave manipulator 32 is determined. That is, the slave force correction location detection unit 40 detects that the object 102 to be gripped by the object 103 has collided with the object 103, and the time point when the force information (f22) is acquired is “force correction location” (force correction interval). ) Is detected by the slave force correction point detector 40.
 一方、マスター力情報取得部10で前記力情報(f21)と(f22)を基に、力情報の変位(力情報の差、すなわち、図8Aの(f22)-(f21))が力情報の変位の閾値を上回らない場合は、「変更なし」としてスレーブ力補正箇所検出部40で検出される。ここで、「変更なし」とは、力補正箇所(力補正区間)が無いことを意味する。 On the other hand, based on the force information (f21) and (f22) in the master force information acquisition unit 10, the displacement of force information (difference in force information, that is, (f22)-(f21) in FIG. 8A) If the displacement threshold value is not exceeded, “no change” is detected by the slave force correction point detector 40. Here, “no change” means that there is no force correction portion (force correction section).
 よって、スレーブ力補正箇所検出部40により、マスター力情報取得部10で取得された力情報の前記変位((f22)-(f21))が前記閾値を上回っている時点(すなわち、スレーブマニピュレータ32に伝達する力の変位(図8Cの(fa22)-(fa21))が閾値を上回っている時点(図8CのA2の時点))を「力補正開始時間」とする。また、スレーブ力補正箇所検出部40により、マスター力情報取得部10で取得された力情報の前記変位(図8Aの(f24)-(f23))が前記閾値以下となる時点(すなわち、スレーブマニピュレータ32に伝達する力の変位(図8Cの(fc22)-(fc21))が前記閾値以下の時点(図8CのC2時点))を「力補正終了時間」とする。そして、「力補正開始時間」から「力補正終了時間」の区間を、スレーブ力補正箇所検出部40で、「力補正箇所」(力補正区間)(図8CのB2区間)とする。 Therefore, when the displacement ((f22)-(f21)) of the force information acquired by the master force information acquisition unit 10 by the slave force correction point detection unit 40 exceeds the threshold (that is, the slave manipulator 32). The time point at which the displacement of the transmitted force ((fa22)-(fa21) in FIG. 8C) exceeds the threshold (time A2 in FIG. 8C)) is defined as “force correction start time”. In addition, when the displacement of the force information ((f24)-(f23) in FIG. 8A) of the force information acquired by the master force information acquisition unit 10 by the slave force correction point detection unit 40 is equal to or less than the threshold (that is, slave manipulator The displacement of the force transmitted to 32 ((fc22)-(fc21) in FIG. 8C) is equal to or less than the threshold value (time C2 in FIG. 8C) is defined as “force correction end time”. Then, a section from “force correction start time” to “force correction end time” is set as a “force correction section” (force correction section) (B2 section in FIG. 8C) by the slave force correction section detector 40.
 以上は、マスター力情報取得部10で取得した力情報のみを使用して、力情報を補正する力補正箇所(力補正区間)をスレーブ力補正箇所検出部40で検出する方法について説明した。マスター力情報取得部10で取得した力情報のみを使用する場合の利点としては、速度情報取得部28を用いる必要がなく、簡易で安価に行える点が挙げられる。しかしながら、本発明はこれに限定されるものではない。 The above describes the method of detecting the force correction point (force correction section) for correcting the force information by the slave force correction point detection unit 40 using only the force information acquired by the master force information acquisition unit 10. An advantage of using only the force information acquired by the master force information acquisition unit 10 is that it is not necessary to use the speed information acquisition unit 28, and can be performed simply and inexpensively. However, the present invention is not limited to this.
 例えば、マスター力情報取得部10で取得した力情報と速度情報取得部28で取得した速度情報との両方を使用して、力情報を補正する力補正箇所(力補正区間)を検出することもできる。 For example, using both the force information acquired by the master force information acquisition unit 10 and the speed information acquired by the speed information acquisition unit 28, a force correction point (force correction section) for correcting the force information may be detected. it can.
 すなわち、速度情報取得部28で一定時間毎に取得された速度情報(例えば、図8Bの速度情報(v21)と速度情報(v22)と)を基に、速度情報の変位(速度情報の差、すなわち、図8Bの(v22)-(v21))が速度情報の変位の閾値(例えば、-0.01mm/ms)を上回るとスレーブ力補正箇所検出部40で判断されると、スレーブマニピュレータ32のスレーブハンド71で把持する対象物102が被対象物103に衝突したことをスレーブ力補正箇所検出部40で検知したことになり、その速度情報(v22)を取得した時点が「力補正箇所」(力補正区間)としてスレーブ力補正箇所検出部40で検出される。 That is, based on the speed information (for example, the speed information (v21) and the speed information (v22) in FIG. 8B) acquired at regular time intervals by the speed information acquisition unit 28, the displacement of the speed information (difference in speed information, That is, if (v22)-(v21)) in FIG. 8B exceeds the threshold value of the velocity information displacement (for example, −0.01 mm / ms), the slave force correction point detection unit 40 determines that the slave manipulator 32 The slave force correction location detection unit 40 detects that the object 102 gripped by the slave hand 71 has collided with the object 103, and the time point when the velocity information (v22) is acquired is the “force correction location” ( The force correction section) is detected by the slave force correction point detection unit 40.
 一方、速度情報取得部28で前記速度情報(v21)と(v22)を基に、速度情報の変位(速度情報の差、すなわち、図8Bの(v22)-(v21))が速度情報の変位の閾値を上回らない場合は、「変更なし」の時点としてスレーブ力補正箇所検出部40で検出される。ここで、「変更なし」とは、力補正箇所(力補正区間)が無いことを意味する。 On the other hand, based on the speed information (v21) and (v22) in the speed information acquisition unit 28, the displacement of the speed information (the difference between the speed information, that is, (v22)-(v21) in FIG. 8B) is the displacement of the speed information. Is not exceeded, the slave force correction point detection unit 40 detects the time as “no change”. Here, “no change” means that there is no force correction portion (force correction section).
 よって、スレーブ力補正箇所検出部40により、速度情報取得部28で取得された速度情報の変位((v22)-(v21))が前記閾値を上回っている時点(すなわち、スレーブマニピュレータ32に伝達する力の変位(図8Cの(fa22)-(fa21))が閾値を上回っている時点(図8CのA2の時点))を「力補正開始時間」とする。また、スレーブ力補正箇所検出部40により、マスター力情報取得部10で取得された力情報の変位(図8Cの(fc22)-(fc21))が閾値(例えば、-1.0N)を下回る時点(図8CのC2の時点)を「力補正終了時間」とする。「力補正開始時間」から「力補正終了時間」の区間を、スレーブ力補正箇所検出部40で、「力補正箇所」(力補正区間)(図8CのB2区間)とする。 Therefore, when the displacement ((v22)-(v21)) of the speed information acquired by the speed information acquisition unit 28 exceeds the threshold value by the slave force correction point detection unit 40 (that is, transmitted to the slave manipulator 32). The time point at which the displacement of the force ((fa22)-(fa21) in FIG. 8C) exceeds the threshold value (the time point A2 in FIG. 8C) is defined as “force correction start time”. Further, when the displacement of the force information ((fc22)-(fc21) in FIG. 8C) acquired by the master force information acquisition unit 10 by the slave force correction point detection unit 40 falls below a threshold value (for example, -1.0N). (Time point C2 in FIG. 8C) is defined as “force correction end time”. The section from “force correction start time” to “force correction end time” is defined as “force correction position” (force correction section) (B2 section in FIG. 8C) by the slave force correction position detection unit 40.
 以上のように、マスター力情報取得部10で取得された力情報と速度情報取得部28で取得された速度情報との両方を使用し、「力補正開始時間」及び「力補正終了時間」を検出する場合の利点として、マスター力情報取得部10で取得された力情報又は速度情報取得部28で取得された速度情報のどちらか1つの情報を使用し、「力補正開始時間」及び「力補正終了時間」を検出する場合と比較して、誤検出の少ない正確な検出が行えることが挙げられる。 As described above, using both the force information acquired by the master force information acquisition unit 10 and the speed information acquired by the speed information acquisition unit 28, the “force correction start time” and the “force correction end time” are calculated. As an advantage when detecting, using either one of the force information acquired by the master force information acquisition unit 10 or the speed information acquired by the speed information acquisition unit 28, the “force correction start time” and the “force Compared to the case of detecting the “correction end time”, it is possible to perform accurate detection with few false detections.
 スレーブ力補正部39は、スレーブ制御部24からスレーブ力補正部39に入力された力情報を基に、「力補正箇所」(力補正区間)の力情報としては、力情報を補正した情報をスレーブ制御部24に出力する一方、「変更なし」の情報としては、力情報を変更せずにスレーブ制御部24に出力する。力情報の補正方法は、力情報の変位(図8Cの(fa22)-(fa21))に予め決められた定数(例えば、0.5)をスレーブ力補正部39で掛け、掛けて求められた値を、現在の力情報(図8Cのfa22)からスレーブ力補正部39で減らす(図8Cの(fa22)-0.5×((fa22)-(fa21)))ことにより、スレーブ力補正部39で力情報の補正を行なうことができる。 Based on the force information input from the slave control unit 24 to the slave force correction unit 39, the slave force correction unit 39 uses information obtained by correcting the force information as force information of the “force correction point” (force correction section). While outputting to the slave control part 24, as "no change" information, it outputs to the slave control part 24, without changing force information. The force information correction method is obtained by multiplying the displacement of force information ((fa22)-(fa21) in FIG. 8C) by a predetermined constant (for example, 0.5) by the slave force correction unit 39. The slave force correction unit 39 reduces the value from the current force information (fa22 in FIG. 8C) by the slave force correction unit 39 ((fa22) −0.5 × ((fa22) − (fa21) in FIG. 8C)). 39, force information can be corrected.
 第2実施形態におけるマスタースレーブロボットの制御装置100Aの操作手順を図4Aと図9のフローチャートを用いて説明する。 The operation procedure of the master / slave robot control device 100A in the second embodiment will be described with reference to the flowcharts of FIGS. 4A and 9.
 ステップS212では、対象物102が被対象物103に衝突するとき、マスター力情報取得部10により力情報を取得し、速度情報取得部28により速度情報を取得し、マスター力情報取得部10と速度情報取得部28とから、マスター力情報取得部10で取得した力情報と速度情報取得部28で取得した速度情報とをスレーブ力補正箇所検出部40にそれぞれ出力する。なお、マスター力情報取得部10で取得した力情報のみを使用する場合には、速度情報取得部28で速度情報を取得することは不要である。マスター力情報取得部10で取得した力情報と速度情報取得部28で速度情報との両方を使用する場合について、ここでは説明している。 In step S212, when the object 102 collides with the object 103, the master force information acquisition unit 10 acquires force information, the speed information acquisition unit 28 acquires speed information, and the master force information acquisition unit 10 and the speed From the information acquisition unit 28, the force information acquired by the master force information acquisition unit 10 and the speed information acquired by the speed information acquisition unit 28 are output to the slave force correction point detection unit 40, respectively. If only the force information acquired by the master force information acquisition unit 10 is used, it is not necessary to acquire the speed information by the speed information acquisition unit 28. The case where both the force information acquired by the master force information acquisition unit 10 and the speed information by the speed information acquisition unit 28 are used is described here.
 ステップS212に続いて、ステップS213では、ステップS212で力情報と速度情報との両方を取得した場合には、力情報と速度情報とのどちらか1つ以上を用いて、スレーブ力補正箇所検出部40において、力補正箇所情報(力補正区間情報)を検出し、検出した力補正箇所情報(力補正区間情報)を、スレーブ力補正箇所検出部40からスレーブ制御部24を介してスレーブ力補正部39に出力する。そして、スレーブ力補正部39において、マスター力情報取得部10で取得した力情報に関して、スレーブ力補正箇所検出部40で力補正箇所(力補正区間)があるか否かを判断する。なお、力情報のみを使用する場合には、力情報のみを用いて、スレーブ力補正箇所検出部40において、力補正箇所情報(力補正区間情報)を検出し、検出した力補正箇所情報(力補正区間情報)を、スレーブ力補正箇所検出部40からスレーブ制御部24を介してスレーブ力補正部39に出力する。 Subsequent to step S212, in step S213, when both the force information and the speed information are acquired in step S212, one or more of the force information and the speed information are used, and the slave force correction point detection unit. 40, force correction location information (force correction interval information) is detected, and the detected force correction location information (force correction interval information) is sent from the slave force correction location detection unit 40 via the slave control unit 24 to the slave force correction unit. 39. Then, in the slave force correction unit 39, regarding the force information acquired by the master force information acquisition unit 10, the slave force correction point detection unit 40 determines whether there is a force correction point (force correction section). When only force information is used, the force correction location information (force correction interval information) is detected by the slave force correction location detection unit 40 using only the force information, and the detected force correction location information (force Correction section information) is output from the slave force correction point detection unit 40 to the slave force correction unit 39 via the slave control unit 24.
 ステップS213において、力補正箇所(力補正区間)が無いとスレーブ力補正箇所検出部40で判断する場合には、ステップS211に進む。 In step S213, when the slave force correction point detection unit 40 determines that there is no force correction point (force correction section), the process proceeds to step S211.
 ステップS213において、力補正箇所(力補正区間)が有るとスレーブ力補正箇所検出部40で判断する場合には、ステップS209に進む。 In step S213, when the slave force correction point detection unit 40 determines that there is a force correction point (force correction section), the process proceeds to step S209.
 ステップS209では、スレーブ力補正部39において、マスター力情報取得部10で取得した力情報に関して、力補正箇所情報(力補正区間情報)により力補正が必要であると検出された力情報を補正し、スレーブ制御部24に出力したのち、ステップS211に進む。 In step S209, the slave force correction unit 39 corrects the force information detected by the force correction point information (force correction section information) as to force correction with respect to the force information acquired by the master force information acquisition unit 10. After the output to the slave control unit 24, the process proceeds to step S211.
 ステップS211では、スレーブ制御部24に出力された力情報が、スレーブ制御部24からスレーブ力伝達部33へと伝達される。スレーブ力伝達部33に入力された前記力情報は、前述した方法でスレーブマニピュレータ9に伝達して、このフローを終了する。 In step S211, the force information output to the slave control unit 24 is transmitted from the slave control unit 24 to the slave force transmission unit 33. The force information input to the slave force transmission unit 33 is transmitted to the slave manipulator 9 by the method described above, and this flow is finished.
 《第2実施形態の効果》
 人の手101でマスターマニピュレータ9を操作し、対象物102を把持したスレーブマニピュレータ32が作業を行う場合において、人の手101がマスターマニピュレータ9に対して過度の力を加え対象物102が被対象物103に衝突するとき、従来では対象物102又は被対象物103が破損する場合があった。
<< Effects of Second Embodiment >>
When the master manipulator 9 is operated with the human hand 101 and the slave manipulator 32 holding the object 102 performs the work, the human hand 101 applies excessive force to the master manipulator 9 so that the object 102 is the object. Conventionally, when the object 103 collides, the object 102 or the object 103 may be damaged.
 これに対して、第2実施形態を用いることによって、人の手101が過度の力を加えたことをスレーブ力補正箇所検出部40で検出し、その力情報の絶対値をスレーブ力補正部39で減少してスレーブマニピュレータ32に伝達して、伝達された力情報に基づきスレーブマニピュレータ32が駆動されることによって、対象物102又は被対象物103が破損することを防止する。 On the other hand, by using the second embodiment, the slave force correction point detection unit 40 detects that the human hand 101 has applied an excessive force, and the absolute value of the force information is detected by the slave force correction unit 39. Is reduced and transmitted to the slave manipulator 32, and the slave manipulator 32 is driven based on the transmitted force information, thereby preventing the object 102 or the object 103 from being damaged.
 なお、第2実施形態においては、図2中の各関節部駆動用及びハンド駆動用のすべてのマスターモータ64を取り除くことができる。また、スレーブ力補正箇所検出部40とスレーブ力補正部39とはマスター制御装置3に備えることも可能である。 In the second embodiment, all the master motors 64 for driving the joints and for driving the hands in FIG. 2 can be removed. Further, the slave force correction point detection unit 40 and the slave force correction unit 39 can be provided in the master control device 3.
 (第3実施形態)
 図10A及び図10Bは、本発明の第3実施形態におけるマスタースレーブロボット150の制御装置100Bを示すブロック線図である。本発明の第3実施形態におけるマスターロボットシステム1と、スレーブ制御部24と、力情報取得部26と、速度情報取得部28と、スレーブ周辺装置29と、スレーブマニピュレータ32とは第1実施形態と同様であるので、共通の参照符号を付して共通部分の説明は省略し、異なる部分についてのみ、以下、詳細に説明する。
(Third embodiment)
10A and 10B are block diagrams showing the control device 100B of the master-slave robot 150 in the third embodiment of the present invention. The master robot system 1, the slave control unit 24, the force information acquisition unit 26, the speed information acquisition unit 28, the slave peripheral device 29, and the slave manipulator 32 in the third embodiment of the present invention are the same as those in the first embodiment. Since they are the same, common reference numerals are assigned and description of common parts is omitted, and only different parts will be described in detail below.
 マスター制御装置3は、マスター制御部4と、力伝達部5とを備えている。 The master control device 3 includes a master control unit 4 and a force transmission unit 5.
 スレーブ制御装置23は、スレーブ制御部24と、力補正部25と、力情報取得部26と、速度情報取得部28と、検出方法選択部34と、リファレンス情報記憶部41と、力補正箇所検出部27とを備えている。 The slave control device 23 includes a slave control unit 24, a force correction unit 25, a force information acquisition unit 26, a speed information acquisition unit 28, a detection method selection unit 34, a reference information storage unit 41, and a force correction location detection. Part 27.
 また、力補正部25とスレーブ力補正部39との機能の差異については下記に示す。力補正部25では、マスターマニピュレータ9に伝達する力を増やす機能を持つ。一方で、スレーブ力補正部39では、スレーブマニピュレータ32に伝達する力を減らす機能を持つ。 Further, the difference in function between the force correction unit 25 and the slave force correction unit 39 will be described below. The force correction unit 25 has a function of increasing the force transmitted to the master manipulator 9. On the other hand, the slave force correction unit 39 has a function of reducing the force transmitted to the slave manipulator 32.
 検出方法選択部34は、「力情報及び速度情報」と、「力情報」と、「速度情報」と、「記憶された力情報と速度情報」(以降、「リファレンス」と呼ぶ)とのうち1つの情報を選択する。検出方法選択部34で選択された選択情報は力補正箇所検出部27に出力され、力補正箇所(力補正区間)を検出する際に使用する情報を前記選択情報に基づき力補正箇所検出部27で指定する。力補正箇所検出部27と、スレーブ力補正箇所検出部40及び力補正部25とスレーブ力補正部39とは、検出方法選択部34で選択された情報により異なるので、以下に選択された情報毎に説明する。 The detection method selection unit 34 includes “force information and speed information”, “force information”, “speed information”, and “stored force information and speed information” (hereinafter referred to as “reference”). Select one piece of information. The selection information selected by the detection method selection unit 34 is output to the force correction point detection unit 27, and information used when detecting a force correction point (force correction section) is used as the force correction point detection unit 27 based on the selection information. Specify with. Since the force correction point detection unit 27, the slave force correction point detection unit 40, the force correction unit 25, and the slave force correction unit 39 differ depending on the information selected by the detection method selection unit 34, for each piece of information selected below Explained.
 検出方法選択部34における各情報の選択方法は、作業者(人)が、例えば複数のボタンが配置された操作盤などで構成されるマスター入出力IF7を用いて、作業者の作業経験と作業難易度の該当するボタンを押下すると、図11のデータベースに従って、対応する情報が検出方法選択部34で自動的に選択されるように構成している(図11のデータベースは検出方法選択部34に情報として記憶されている)。作業経験は、「0~1年」と、「1~3年」と、「3年~」との中から作業者が1つ選択してマスター入出力IF7を用いて検出方法選択部34に入力する。作業難易度は、「難」と、「普通」と、「易」との中から1つ選択してマスター入出力IF7を用いて検出方法選択部34に入力する。例えば、作業経験は「0~1年」を選択し、作業難易度は「難」を選択して、それぞれマスター入出力IF7から検出方法選択部34に入力すると、検出方法選択部34では、図11のデータベースに基づいて、「リファレンス」を選択する。また、作業経験は「3年~」を選択し、作業難易度は「易」を選択して、それぞれマスター入出力IF7から検出方法選択部34に入力すると、検出方法選択部34では、図11のデータベースに基づいて、「速度情報」を選択する。また、作業経験と作業難易度とをそれぞれ選択しなかった場合は、作業経験については「0~1年」、作業難易度については「普通」が自動的に選択されてマスター入出力IF7を用いて検出方法選択部34に入力されて、検出方法選択部34では、図11のデータベースに基づいて、「力情報及び速度情報」を選択する。 The selection method of each information in the detection method selection part 34 is as follows. The worker (person) uses, for example, a master input / output IF 7 constituted by an operation panel or the like on which a plurality of buttons are arranged. When the button corresponding to the difficulty level is pressed, the corresponding information is automatically selected by the detection method selection unit 34 according to the database of FIG. 11 (the database of FIG. 11 is added to the detection method selection unit 34). Stored as information). As for the work experience, the operator selects one of “0 to 1 year”, “1 to 3 years”, and “3 years to” and uses the master input / output IF 7 to enter the detection method selection unit 34. input. As the work difficulty level, one of “difficulty”, “normal”, and “easy” is selected and input to the detection method selection unit 34 using the master input / output IF 7. For example, when “0 to 1 year” is selected as the work experience, “difficult” is selected as the work difficulty level, and each is input from the master input / output IF 7 to the detection method selection unit 34, the detection method selection unit 34 Based on 11 databases, “reference” is selected. Further, when the work experience is selected from “3 years” and the work difficulty level is selected as “easy”, and input from the master input / output IF 7 to the detection method selection unit 34, the detection method selection unit 34 selects FIG. “Speed information” is selected based on the database. If neither work experience nor work difficulty is selected, “0 to 1 year” for work experience and “normal” for work difficulty are automatically selected and the master I / O IF7 is used. Then, the detection method selection unit 34 selects “force information and speed information” based on the database of FIG.
 リファレンス情報記憶部41は、検出方法選択部34で「リファレンス」が選択された場合に用いられ、対象物102又は対象物102の把持位置に応じて使用するリファレンスの情報を選択するようなデータベースが予め記憶されている(後で、「リファレンス」を選択した場合において、その詳細を述べる。)。 The reference information storage unit 41 is used when “reference” is selected by the detection method selection unit 34, and a database that selects reference information to be used according to the object 102 or the gripping position of the object 102 is used. It is stored in advance (the details will be described later when “reference” is selected).
 (「力情報及び速度情報」を検出方法選択部34で選択した場合)
 力補正箇所検出部27及びスレーブ力補正箇所検出部40は、力情報取得部26及びマスター力情報取得部10から力補正箇所検出部27及びスレーブ力補正箇所検出部40に入力された力情報及び速度情報取得部28から力補正箇所検出部27及びスレーブ力補正箇所検出部40に入力された速度情報を用いて、力情報における力補正箇所(力補正区間)を力補正箇所検出部27及びスレーブ力補正箇所検出部40で検出し、力補正箇所検出部27及びスレーブ力補正箇所検出部40で検出した力情報を、力補正箇所検出部27及びスレーブ力補正箇所検出部40からスレーブ制御部24に出力する。
(When “force information and speed information” is selected by the detection method selection unit 34)
The force correction location detection unit 27 and the slave force correction location detection unit 40 include the force information input from the force information acquisition unit 26 and the master force information acquisition unit 10 to the force correction location detection unit 27 and the slave force correction location detection unit 40, and Using the velocity information input from the velocity information acquisition unit 28 to the force correction location detection unit 27 and the slave force correction location detection unit 40, the force correction location (force correction interval) in the force information is converted into the force correction location detection unit 27 and the slave. The force information detected by the force correction point detection unit 40 and detected by the force correction point detection unit 27 and the slave force correction point detection unit 40 is transmitted from the force correction point detection unit 27 and the slave force correction point detection unit 40 to the slave control unit 24. Output to.
 力補正箇所(力補正区間)の検出方法については、図5A~図5C、図8A~図8Cを用いて説明する。図5Aは力情報取得部26で取得された力情報であり、図8Aはマスター力情報取得部10で取得された力情報であり、図5Bと図8Bとは速度情報取得部28で取得された速度情報である。また、図5Cは力補正された後にマスターマニピュレータ9に伝達する力情報であり、図8Cは力補正された後にスレーブマニピュレータ32に伝達する力情報であり、破線及び白丸は補正前の値であり、実線及び黒丸は補正後の値である。 The detection method of the force correction portion (force correction section) will be described with reference to FIGS. 5A to 5C and FIGS. 8A to 8C. 5A is force information acquired by the force information acquisition unit 26, FIG. 8A is force information acquired by the master force information acquisition unit 10, and FIGS. 5B and 8B are acquired by the speed information acquisition unit 28. Speed information. FIG. 5C shows force information transmitted to the master manipulator 9 after force correction, FIG. 8C shows force information transmitted to the slave manipulator 32 after force correction, and broken lines and white circles are values before correction. The solid line and black circle are values after correction.
 速度情報取得部28で一定時間毎に取得された速度情報を基に、速度情報の変位(図5Bの(v12)-(v11)、図8Bの(v22)-(v21))が閾値(例えば、-0.01mm/ms)を上回ると力補正箇所検出部27及びスレーブ力補正箇所検出部40で判断されると、スレーブマニピュレータ32のスレーブハンド71で把持する対象物102が被対象物103に衝突したことを力補正箇所検出部27及びスレーブ力補正箇所検出部40で検知したことになり、その速度情報(v12)を取得した時点が「力補正箇所」(力補正区間)として力補正箇所検出部27及びスレーブ力補正箇所検出部40で検出される。「力補正箇所」(力補正区間)として検出された力情報は、力情報取得部26で取得された力情報の変位が閾値(例えば、1.0N)を上回っていると力補正箇所検出部27及びスレーブ力補正箇所検出部40で判断される場合は、力補正箇所検出部27及びスレーブ力補正箇所検出部40で「増加」と検出し、マスター力情報取得部10で取得された力情報の変位が閾値を上回っていると力補正箇所検出部27及びスレーブ力補正箇所検出部40で判断される場合は、力補正箇所検出部27及びスレーブ力補正箇所検出部40で「減少」と検出する。一方、速度情報の変位が閾値を上回らないと力補正箇所検出部27及びスレーブ力補正箇所検出部40で判断される場合は、「変更なし」として力補正箇所検出部27及びスレーブ力補正箇所検出部40で検出される。 Based on the speed information acquired at fixed time intervals by the speed information acquisition unit 28, the displacement of the speed information ((v12)-(v11) in FIG. 5B, (v22)-(v21) in FIG. 8B) is a threshold (for example, , −0.01 mm / ms), the object 102 gripped by the slave hand 71 of the slave manipulator 32 becomes the object 103 when the force correction point detector 27 and the slave force correction point detector 40 determine. The fact that the collision has been detected by the force correction point detection unit 27 and the slave force correction point detection unit 40, and the time point when the velocity information (v12) is acquired is referred to as a “force correction point” (force correction interval). It is detected by the detection unit 27 and the slave force correction point detection unit 40. The force information detected as the “force correction location” (force correction interval) indicates that if the displacement of the force information acquired by the force information acquisition unit 26 exceeds a threshold (for example, 1.0 N), the force correction location detection unit 27 and the slave force correction point detection unit 40, when the force correction point detection unit 27 and the slave force correction point detection unit 40 detect “increase”, the force information acquired by the master force information acquisition unit 10 When the force correction point detection unit 27 and the slave force correction point detection unit 40 determine that the displacement exceeds the threshold, the force correction point detection unit 27 and the slave force correction point detection unit 40 detect “decrease”. To do. On the other hand, when the force correction point detector 27 and the slave force correction point detector 40 determine that the displacement of the speed information does not exceed the threshold, the force correction point detector 27 and the slave force correction point are detected as “no change”. Detected by the unit 40.
 よって、力補正箇所検出部27及びスレーブ力補正箇所検出部40により、速度情報取得部28で取得された速度情報の変位が閾値を上回っている時点(図5CのA1の時点、図8CのA2の時点)を「力補正開始時間」とする。また、力補正箇所検出部27及びスレーブ力補正箇所検出部40により、力情報取得部26及びマスター力情報取得部10で取得された力情報の変位(図5Cの(fc12)-(fc11)、図8Cの(fc22)-(fc21))が閾値(例えば、-1.0N)を下回る時点(図5CのC1の時点、図8CのC2の時点)を「力補正終了時間」とする。「力補正開始時間」から「力補正終了時間」の区間を、力補正箇所検出部27及びスレーブ力補正箇所検出部40で、「力補正箇所」(力補正区間)(図5CのB1区間、図8CのB2区間)とする。 Therefore, when the displacement of the speed information acquired by the speed information acquisition unit 28 exceeds the threshold by the force correction point detection unit 27 and the slave force correction point detection unit 40 (time A1 in FIG. 5C, A2 in FIG. 8C). Is the “force correction start time”. Further, the displacement of the force information acquired by the force information acquisition unit 26 and the master force information acquisition unit 10 by the force correction point detection unit 27 and the slave force correction point detection unit 40 ((fc12)-(fc11) in FIG. 5C, A time point (time point C1 in FIG. 5C, time point C2 in FIG. 8C) when (fc22)-(fc21)) in FIG. 8C falls below a threshold value (for example, −1.0 N) is defined as “force correction end time”. The section from “force correction start time” to “force correction end time” is divided into “force correction position” (force correction section) (B1 section in FIG. 5C) by the force correction position detection unit 27 and the slave force correction position detection unit 40. (B2 section in FIG. 8C).
 力補正部25は、スレーブ制御部24から力補正部25に入力された、検出された力情報を基に、「力補正箇所」(力補正区間)の力情報としては、力情報を補正した情報をスレーブ制御部24に出力する一方、「変更なし」の情報としては、力情報を変更せずにスレーブ制御部24に出力する。力情報の補正方法は、力情報の変位(図5Cの(fa12)-(fa11))に予め決められた定数(例えば、0.5)を力補正部25で掛け、掛けて求められた値を現在の力情報(図5Cの(fa12))に力補正部25で加える(図5Cの(fa12)+0.5×((fa12)-(fa11)))ことにより、力補正部25で力情報の補正を行なうことができる。 The force correction unit 25 corrects the force information as the force information of the “force correction point” (force correction section) based on the detected force information input from the slave control unit 24 to the force correction unit 25. The information is output to the slave control unit 24, while the “no change” information is output to the slave control unit 24 without changing the force information. The force information correction method is a value obtained by multiplying the displacement of force information ((fa12)-(fa11) in FIG. 5C) by a predetermined constant (for example, 0.5) by the force correction unit 25. Is added to the current force information ((fa12) in FIG. 5C) by the force correction unit 25 ((fa12) + 0.5 × ((fa12) − (fa11) in FIG. 5C)). Information can be corrected.
 スレーブ力補正部39は、スレーブ制御部24からスレーブ力補正部39に入力された、検出された力情報を基に、「力補正箇所」(力補正区間)の力情報としては、力情報を補正した情報をスレーブ制御部24に出力する一方、「変更なし」の情報としては、力情報を変更せずにスレーブ制御部24に出力する。力情報の補正方法は、力情報の変位(図8Cの(fa22)-(fa21))に予め決められた定数(例えば、0.5)をスレーブ力補正部39で掛け、掛けて求められた値を現在の力情報(図8Cの(fa22))からスレーブ力補正部39で減らす(図8Cの(fa22)-0.5×((fa22)-(fa21)))ことにより、スレーブ力補正部39で力情報の補正を行なうことができる。 Based on the detected force information input from the slave control unit 24 to the slave force correction unit 39, the slave force correction unit 39 uses force information as force information of the “force correction point” (force correction section). While the corrected information is output to the slave control unit 24, the “no change” information is output to the slave control unit 24 without changing the force information. The force information correction method is obtained by multiplying the displacement of force information ((fa22)-(fa21) in FIG. 8C) by a predetermined constant (for example, 0.5) by the slave force correction unit 39. The slave force correction unit 39 reduces the value from the current force information ((fa22) in FIG. 8C) by the slave force correction unit 39 ((fa22) −0.5 × ((fa22) − (fa21)) in FIG. 8C). The unit 39 can correct force information.
 (「力情報」を検出方法選択部34で選択した場合)
 力補正箇所検出部27及びスレーブ力補正箇所検出部40は、力情報取得部26及びマスター力情報取得部10から力補正箇所検出部27及びスレーブ力補正箇所検出部40に入力された力情報を用いて、力情報における力補正箇所(力補正区間)を力補正箇所検出部27及びスレーブ力補正箇所検出部40で検出し、力補正箇所検出部27及びスレーブ力補正箇所検出部40で検出した力情報を、力補正箇所検出部27及びスレーブ力補正箇所検出部40からスレーブ制御部24に出力する。
(When “force information” is selected by the detection method selection unit 34)
The force correction point detection unit 27 and the slave force correction point detection unit 40 receive the force information input from the force information acquisition unit 26 and the master force information acquisition unit 10 to the force correction point detection unit 27 and the slave force correction point detection unit 40. The force correction point (force correction section) in the force information is detected by the force correction point detection unit 27 and the slave force correction point detection unit 40 and detected by the force correction point detection unit 27 and the slave force correction point detection unit 40. The force information is output from the force correction point detection unit 27 and the slave force correction point detection unit 40 to the slave control unit 24.
 力補正箇所(力補正区間)の検出方法については、図12A~図13Bを用いて説明する。図12Aは力情報取得部26で取得された力情報であり、図13Aは、マスター力情報取得部10で取得された力情報である。また、図12Bは、力補正された後にマスターマニピュレータ9に伝達する力情報であり、図13Bは、力補正された後にスレーブマニピュレータ32に伝達する力情報であり、破線及び白丸は補正前の値であり、実線及び黒丸は補正後の値である。 The detection method of the force correction point (force correction section) will be described with reference to FIGS. 12A to 13B. FIG. 12A is force information acquired by the force information acquisition unit 26, and FIG. 13A is force information acquired by the master force information acquisition unit 10. 12B shows the force information transmitted to the master manipulator 9 after the force correction, FIG. 13B shows the force information transmitted to the slave manipulator 32 after the force correction, and broken lines and white circles are values before correction. The solid line and the black circle are values after correction.
 力情報取得部26で一定時間毎に取得された力情報を基に、力情報の変位(図12Bの(fa32)-(fa31)、図13Bの(fa42)-(fa41))が閾値(例えば、1.0N)を上回ると力補正箇所検出部27及びスレーブ力補正箇所検出部40で判断されると、スレーブマニピュレータ32のスレーブハンド71で把持する対象物102が被対象物103に衝突したことを力補正箇所検出部27及びスレーブ力補正箇所検出部40で検知し、「力補正箇所」(力補正区間)として力補正箇所検出部27及びスレーブ力補正箇所検出部40で検出される。「力補正箇所」(力補正区間)として力補正箇所検出部27及びスレーブ力補正箇所検出部40で検出された力情報は、力情報取得部26で取得された力情報の変位が閾値を上回っていると力補正箇所検出部27及びスレーブ力補正箇所検出部40で判断される場合は「増加」と力補正箇所検出部27及びスレーブ力補正箇所検出部40で検出し、マスター力情報取得部10で取得された力情報の変位が閾値を上回っていると力補正箇所検出部27及びスレーブ力補正箇所検出部40で判断される場合は「減少」と力補正箇所検出部27及びスレーブ力補正箇所検出部40で検出する。一方、力情報の変位が閾値を上回らないと力補正箇所検出部27及びスレーブ力補正箇所検出部40で判断される場合は、「変更なし」として力補正箇所検出部27及びスレーブ力補正箇所検出部40で検出される。 Based on the force information acquired by the force information acquisition unit 26 at regular intervals, the displacement of the force information ((fa32)-(fa31) in FIG. 12B, (fa42)-(fa41) in FIG. 13B) is a threshold (for example, , 1.0N), the object 102 held by the slave hand 71 of the slave manipulator 32 collides with the object 103 when judged by the force correction point detector 27 and the slave force correction point detector 40. Is detected by the force correction point detection unit 27 and the slave force correction point detection unit 40, and is detected by the force correction point detection unit 27 and the slave force correction point detection unit 40 as a "force correction point" (force correction section). The force information detected by the force correction point detection unit 27 and the slave force correction point detection unit 40 as the “force correction point” (force correction interval) indicates that the displacement of the force information acquired by the force information acquisition unit 26 exceeds the threshold value. If the force correction point detection unit 27 and the slave force correction point detection unit 40 determine that “increase” is detected, the force correction point detection unit 27 and the slave force correction point detection unit 40 detect the master force information acquisition unit. If the force correction location detection unit 27 and the slave force correction location detection unit 40 determine that the displacement of the force information acquired in 10 exceeds the threshold, “decrease” means that the force correction location detection unit 27 and the slave force correction It is detected by the location detector 40. On the other hand, when the force correction point detection unit 27 and the slave force correction point detection unit 40 determine that the displacement of the force information does not exceed the threshold, the force correction point detection unit 27 and the slave force correction point detection are determined as “no change”. Detected by the unit 40.
 よって、力補正箇所検出部27及びスレーブ力補正箇所検出部40により、力情報取得部26で取得された力情報の変位が閾値を上回っている時点(図12BのA3時点、図13BのA4の時点)を「力補正開始時間」とする。また、力補正箇所検出部27及びスレーブ力補正箇所検出部40により、力情報取得部26で取得された力情報の変位(図12Bの(fc32)-(fc31)、図13Bの(fc42)-(fc41))が閾値(例えば、-1.0N)を下回る時点(図12BのC3の時点、図13BのC4の時点)を「力補正終了時間」とする。「力補正開始時間」から「力補正終了時間」の区間を、力補正箇所検出部27及びスレーブ力補正箇所検出部40で、「力補正箇所」(力補正区間)(図12BのB3区間、図13BのB4区間)とする。 Therefore, when the displacement of the force information acquired by the force information acquisition unit 26 exceeds the threshold by the force correction point detection unit 27 and the slave force correction point detection unit 40 (time A3 in FIG. 12B, A4 in FIG. 13B). Time) is defined as “force correction start time”. Further, the displacement of the force information acquired by the force information acquisition unit 26 by the force correction point detection unit 27 and the slave force correction point detection unit 40 ((fc32)-(fc31) in FIG. 12B, (fc42)-in FIG. 13B)- The time when (fc41)) falls below a threshold value (for example, −1.0 N) (time C3 in FIG. 12B, time C4 in FIG. 13B) is defined as “force correction end time”. The section from “force correction start time” to “force correction end time” is divided into “force correction position” (force correction section) (section B3 in FIG. 12B) by the force correction position detection unit 27 and the slave force correction position detection unit 40. (B4 section in FIG. 13B).
 力補正部25は、スレーブ制御部24から力補正部25に入力された、検出された力情報を基に、「力補正箇所」(力補正区間)の力情報としては、力情報を補正した情報をスレーブ制御部24に出力する一方、「変更なし」の情報としては、力情報を変更せずにスレーブ制御部24に出力する。力情報の補正方法は、力情報の変位(図12bの(fa32)-(fa31))に予め決められた定数(例えば、0.5)を力補正部25で掛け、掛けて求められた値を現在の力情報(図12Bの(fa32))に力補正部25で加える(図12Bの(fa32)+0.5×((fa32)-(fa31)))ことにより、力補正部25で力情報の補正を行なうことができる。 The force correction unit 25 corrects the force information as the force information of the “force correction point” (force correction section) based on the detected force information input from the slave control unit 24 to the force correction unit 25. The information is output to the slave control unit 24, while the “no change” information is output to the slave control unit 24 without changing the force information. The force information correction method is a value obtained by multiplying the displacement of force information ((fa32)-(fa31) in FIG. 12b) by a predetermined constant (for example, 0.5) by the force correction unit 25 and multiplying it. Is added to the current force information ((fa32) in FIG. 12B) by the force correction unit 25 ((fa32) + 0.5 × ((fa32) − (fa31) in FIG. 12B)). Information can be corrected.
 スレーブ力補正部39は、スレーブ制御部24からスレーブ力補正部39に入力された、検出された力情報を基に、「力補正箇所」(力補正区間)の力情報としては、力情報を補正した情報をスレーブ制御部24に出力する一方、「変更なし」の情報としては、力情報を変更せずにスレーブ制御部24に出力する。力情報の補正方法は、力情報の変位(図13bの(fa42)-(fa41))に予め決められた定数(例えば、0.5)をスレーブ力補正部39で掛け、掛けて求められた値を現在の力情報(図13Bの(fa42))からスレーブ力補正部39で減らす(図13Bの(fa42)-0.5×((fa42)-(fa41)))ことにより、スレーブ力補正部39で力情報の補正を行なうことができる。 Based on the detected force information input from the slave control unit 24 to the slave force correction unit 39, the slave force correction unit 39 uses force information as force information of the “force correction point” (force correction section). While the corrected information is output to the slave control unit 24, the “no change” information is output to the slave control unit 24 without changing the force information. The force information correction method is obtained by multiplying the displacement of force information ((fa42)-(fa41) in FIG. 13b) by a predetermined constant (for example, 0.5) by the slave force correction unit 39. The slave force correction is performed by reducing the value from the current force information ((fa42) in FIG. 13B) by the slave force correction unit 39 ((fa42) −0.5 × ((fa42) − (fa41)) in FIG. 13B). The unit 39 can correct force information.
 (「速度情報」を検出方法選択部34で選択した場合)
 力補正箇所検出部27及びスレーブ力補正箇所検出部40は、速度情報取得部28から力補正箇所検出部27に入力された速度情報を用いて、力情報における力補正箇所(力補正区間)を検出し、力補正箇所検出部27で検出した力情報を力補正箇所検出部27からスレーブ制御部24に出力する。
(When “speed information” is selected by the detection method selection unit 34)
The force correction location detection unit 27 and the slave force correction location detection unit 40 use the speed information input from the speed information acquisition unit 28 to the force correction location detection unit 27 to determine a force correction location (force correction interval) in the force information. The force information detected and detected by the force correction location detection unit 27 is output from the force correction location detection unit 27 to the slave control unit 24.
 力補正箇所(力補正区間)の検出方法については、図14A~図15Cを用いて説明する。図14Aは力情報取得部26で取得された力情報であり、図15Aはマスター力情報取得部10で取得された力情報であり、図14B、図15Bは速度情報取得部28で取得された速度情報である。また、図14Cは力補正された後にマスターマニピュレータ9に伝達する力情報であり、図15Cは力補正された後にスレーブマニピュレータ32に伝達する力情報であり、破線及び白丸は補正前の値であり、実線及び黒丸は補正後の値である。 The detection method of the force correction point (force correction section) will be described with reference to FIGS. 14A to 15C. 14A is force information acquired by the force information acquisition unit 26, FIG. 15A is force information acquired by the master force information acquisition unit 10, and FIGS. 14B and 15B are acquired by the speed information acquisition unit 28. It is speed information. FIG. 14C shows force information transmitted to the master manipulator 9 after force correction, FIG. 15C shows force information transmitted to the slave manipulator 32 after force correction, and broken lines and white circles are values before correction. The solid line and black circle are values after correction.
 速度情報取得部28で一定時間毎に取得された速度情報を基に、速度情報の変位(図14Bの(v52)-(v51)、図15Bの(v62)-(v61))が閾値(例えば、-0.01mm/ms)を上回ると力補正箇所検出部27及びスレーブ力補正箇所検出部40で判断されると、スレーブマニピュレータ32のスレーブハンド71で把持する対象物102が被対象物103に衝突したことを力補正箇所検出部27及びスレーブ力補正箇所検出部40で検知したことになり、その速度情報(v52)を取得した時点が「力補正箇所」(力補正区間)として力補正箇所検出部27及びスレーブ力補正箇所検出部40で検出される。「力補正箇所」(力補正区間)として検出された力情報は、力情報取得部26で取得された力情報の変位が閾値(例えば、1.0N)を上回っていると力補正箇所検出部27及びスレーブ力補正箇所検出部40で判断される場合は、力補正箇所検出部27及びスレーブ力補正箇所検出部40で「増加」と検出し、マスター力情報取得部10で取得された力情報の変位が閾値を上回っていると力補正箇所検出部27及びスレーブ力補正箇所検出部40で判断される場合は、力補正箇所検出部27及びスレーブ力補正箇所検出部40で「減少」と検出する。一方、速度情報の変位が閾値を上回らないと力補正箇所検出部27及びスレーブ力補正箇所検出部40で判断される場合は、「変更なし」として力補正箇所検出部27及びスレーブ力補正箇所検出部40で検出される。 Based on the speed information acquired at fixed time intervals by the speed information acquisition unit 28, the displacement of the speed information ((v52)-(v51) in FIG. 14B, (v62)-(v61) in FIG. 15B) is a threshold (for example, , −0.01 mm / ms), the object 102 to be grasped by the slave hand 71 of the slave manipulator 32 becomes the object 103 when the force correction point detector 27 and the slave force correction point detector 40 determine. The force correction point detection unit 27 and the slave force correction point detection unit 40 have detected the collision, and the time point when the velocity information (v52) is acquired is the “force correction point” (force correction interval). It is detected by the detection unit 27 and the slave force correction point detection unit 40. The force information detected as the “force correction location” (force correction interval) indicates that if the displacement of the force information acquired by the force information acquisition unit 26 exceeds a threshold (for example, 1.0 N), the force correction location detection unit 27 and the slave force correction point detection unit 40, when the force correction point detection unit 27 and the slave force correction point detection unit 40 detect “increase”, the force information acquired by the master force information acquisition unit 10 When the force correction point detection unit 27 and the slave force correction point detection unit 40 determine that the displacement exceeds the threshold, the force correction point detection unit 27 and the slave force correction point detection unit 40 detect “decrease”. To do. On the other hand, when the force correction point detector 27 and the slave force correction point detector 40 determine that the displacement of the speed information does not exceed the threshold, the force correction point detector 27 and the slave force correction point are detected as “no change”. Detected by the unit 40.
 よって、力補正箇所検出部27及びスレーブ力補正箇所検出部40により、速度情報取得部28で取得された速度情報の変位が閾値を上回っている時点(図14CのA5の時点、図15CのA6の時点)を「力補正開始時間」とする。また、力補正箇所検出部27及びスレーブ力補正箇所検出部40により、速度情報取得部28で取得された速度情報の変位(図14Bの(v54)-(v53)、図15Bの(v64)-(v63))が閾値(例えば、-0.01mm/ms)を下回る時点(図14CのC5の時点、図15CのC6の時点)を「力補正終了時間」とする。「力補正開始時間」から「力補正終了時間」の区間を、力補正箇所検出部27及びスレーブ力補正箇所検出部40で、「力補正箇所」(力補正区間)(図14CのB5区間、図15CのB6区間)とする。 Therefore, when the displacement of the speed information acquired by the speed information acquisition unit 28 exceeds the threshold by the force correction point detection unit 27 and the slave force correction point detection unit 40 (time A5 in FIG. 14C, A6 in FIG. 15C). Is the “force correction start time”. Further, the displacement of the speed information acquired by the speed information acquisition unit 28 by the force correction point detection unit 27 and the slave force correction point detection unit 40 ((v54)-(v53) in FIG. 14B, (v64)-in FIG. 15B) (V63)) falls below a threshold value (for example, −0.01 mm / ms) (time point C5 in FIG. 14C, time point C6 in FIG. 15C) is defined as “force correction end time”. The section from “force correction start time” to “force correction end time” is divided into “force correction position” (force correction section) (section B5 in FIG. 14C) by the force correction position detection unit 27 and the slave force correction position detection unit 40. (B6 section in FIG. 15C).
 力補正部25は、スレーブ制御部24から力補正部25に入力された、検出された力情報を基に、「力補正箇所」(力補正区間)の力情報としては、力情報を補正した情報をスレーブ制御部24に出力する一方、「変更なし」の情報としては、力情報を変更せずにスレーブ制御部24に出力する。力情報の補正方法は、力情報を力補正部25で定数倍する(図14Bの1.5×(fa51))ことにより、力補正部25で力情報の補正を行なうことができる。 The force correction unit 25 corrects the force information as the force information of the “force correction point” (force correction section) based on the detected force information input from the slave control unit 24 to the force correction unit 25. The information is output to the slave control unit 24, while the “no change” information is output to the slave control unit 24 without changing the force information. In the force information correction method, the force information can be corrected by the force correction unit 25 by multiplying the force information by a constant by the force correction unit 25 (1.5 × (fa51) in FIG. 14B).
 スレーブ力補正部39は、スレーブ制御部24からスレーブ力補正部39に入力された検出された力情報を基に、「力補正箇所」(力補正区間)の力情報としては、力情報を補正した情報をスレーブ制御部24に出力する一方、「変更なし」の情報としては、力情報を変更せずにスレーブ制御部24に出力する。力情報の補正方法は、力情報をスレーブ力補正部39で定数倍する(図15Bの0.5×(fa61))ことにより、スレーブ力補正部39で力情報の補正を行なうことができる。 The slave force correction unit 39 corrects force information as force information of the “force correction point” (force correction section) based on the detected force information input from the slave control unit 24 to the slave force correction unit 39. The information is output to the slave control unit 24, while the “no change” information is output to the slave control unit 24 without changing the force information. In the force information correction method, the slave force correction unit 39 can correct the force information by multiplying the force information by a constant number by the slave force correction unit 39 (0.5 × (fa61) in FIG. 15B).
 (「リファレンス」を検出方法選択部34で選択した場合)
 力補正箇所検出部27及びスレーブ力補正箇所検出部40は、リファレンス情報記憶部41と、力情報取得部26と、マスター力情報取得部10とから力補正箇所検出部27に入力された力情報と、速度情報取得部28とから力補正箇所検出部27に入力された速度情報とを用いて、力情報における力補正箇所(力補正区間)を力補正箇所検出部27で検出し、力補正箇所検出部27で検出した力情報を、力補正箇所検出部27からスレーブ制御部24に出力する。
(When “Reference” is selected by the detection method selection unit 34)
The force correction point detection unit 27 and the slave force correction point detection unit 40 are force information input to the force correction point detection unit 27 from the reference information storage unit 41, the force information acquisition unit 26, and the master force information acquisition unit 10. Using the velocity information input from the velocity information acquisition unit 28 to the force correction location detection unit 27, the force correction location (force correction interval) in the force information is detected by the force correction location detection unit 27, and force correction is performed. The force information detected by the location detection unit 27 is output from the force correction location detection unit 27 to the slave control unit 24.
 力補正箇所(力補正区間)の検出方法については、図16A~図17Dを用いて説明する。図16A及び図17Aはそれぞれ力情報取得部26で取得された力情報である。また、図16B及び図17Bは、それぞれ、スレーブリファレンス及びマスターリファレンスの力情報であり、図16C、図17Cは、それぞれ、スレーブリファレンス及びマスターリファレンスの速度情報である。図16D及び図17Dは、それぞれ、力補正された後にマスターマニピュレータ9及びスレーブマニピュレータ32に伝達する力情報であり、破線及び白丸は補正前の値であり、実線及び黒丸は補正後の値である。 The detection method of the force correction portion (force correction section) will be described with reference to FIGS. 16A to 17D. 16A and 17A are force information acquired by the force information acquisition unit 26, respectively. FIGS. 16B and 17B show the force information of the slave reference and the master reference, respectively. FIGS. 16C and 17C show the speed information of the slave reference and the master reference, respectively. FIG. 16D and FIG. 17D are force information transmitted to the master manipulator 9 and the slave manipulator 32 after force correction, respectively, the broken line and white circle are values before correction, and the solid line and black circle are values after correction. .
 リファレンスの力情報の変位(図16Bの(fr72)-(fr71)、図17Bの(fr82)-(fr81))が閾値(例えば、1.0N)を上回ると力補正箇所検出部27及びスレーブ力補正箇所検出部40で判断されたときの力情報と、力情報取得部26及びマスター力情報取得部10で取得された力情報の変位とを力補正箇所検出部27及びスレーブ力補正箇所検出部40でマッチングさせて、同様の傾向が見られる力情報(リファレンスの力情報の変位に定数(例えば0.5と、2と)を掛けた範囲に収まる場合(図17の0.5×((fr72)-(fr71))<((f72)-(f71))<2×((fr72)-(fr71))が成り立つ時点、図18の0.5×((fr82)-(fr81))<((f82)-(f81))<2×((fr82)-(fr81))が成り立つ時点))を力補正箇所検出部27及びスレーブ力補正箇所検出部40で検出する。 When the displacement of the reference force information ((fr72)-(fr71) in FIG. 16B, (fr82)-(fr81) in FIG. 17B) exceeds a threshold value (for example, 1.0 N), the force correction point detector 27 and the slave force The force information as determined by the correction location detection unit 40 and the displacement of the force information acquired by the force information acquisition unit 26 and the master force information acquisition unit 10 are used as the force correction location detection unit 27 and the slave force correction location detection unit. When matching is performed at 40, force information (when the displacement of the reference force information is multiplied by a constant (for example, 0.5 and 2) within a range (0.5 × (( fr72) − (fr71)) <((f72) − (f71)) <2 × ((fr72) − (fr71))), 0.5 × ((fr82) − (fr81)) < ((F82)-(f 1)) <2 × ((fr82) - (fr81)) holds time)) is detected by the force correction portion detecting unit 27 and the slave force correction portion detecting unit 40.
 そのようにして検出された複数の力情報に基づき、スレーブマニピュレータ32のスレーブハンド71で把持する対象物102が被対象物103に衝突したと力補正箇所検出部27及びスレーブ力補正箇所検出部40で検出し、「力補正箇所」(力補正区間)として力補正箇所検出部27及びスレーブ力補正箇所検出部40で検出する。一方、力情報の変位が同様の傾向が見られないと力補正箇所検出部27及びスレーブ力補正箇所検出部40で判断する場合は、「変更なし」として力補正箇所検出部27及びスレーブ力補正箇所検出部40で検出する。「力補正箇所」(力補正区間)として力補正箇所検出部27及びスレーブ力補正箇所検出部40で検出された力情報において、力情報取得部26で取得された力情報の変位がスレーブリファレンスの力情報の変位とマッチングが取れたと力補正箇所検出部27及びスレーブ力補正箇所検出部40で判断する場合は、「増加」と力補正箇所検出部27及びスレーブ力補正箇所検出部40で検出する。一方、マスター力情報取得部10で取得された力情報の変位がマスターリファレンスの力情報の変位とマッチングが取れたと力補正箇所検出部27及びスレーブ力補正箇所検出部40で判断する場合は、「減少」と力補正箇所検出部27及びスレーブ力補正箇所検出部40で検出する。 Based on the plurality of force information thus detected, when the object 102 held by the slave hand 71 of the slave manipulator 32 collides with the object 103, the force correction point detection unit 27 and the slave force correction point detection unit 40 The force correction point detection unit 27 and the slave force correction point detection unit 40 detect the “force correction point” (force correction section). On the other hand, when the force correction point detection unit 27 and the slave force correction point detection unit 40 determine that the displacement of the force information does not show the same tendency, the force correction point detection unit 27 and the slave force correction are determined as “no change”. It is detected by the location detector 40. In the force information detected by the force correction point detection unit 27 and the slave force correction point detection unit 40 as the “force correction point” (force correction interval), the displacement of the force information acquired by the force information acquisition unit 26 is the slave reference. When the force correction point detection unit 27 and the slave force correction point detection unit 40 determine that the displacement of the force information is matched, the force correction point detection unit 27 and the slave force correction point detection unit 40 detect “increase”. . On the other hand, when the force correction point detection unit 27 and the slave force correction point detection unit 40 determine that the displacement of the force information acquired by the master force information acquisition unit 10 matches the displacement of the force information of the master reference, “Decrease” is detected by the force correction point detection unit 27 and the slave force correction point detection unit 40.
 よって、力補正箇所検出部27及びスレーブ力補正箇所検出部40により、力情報取得部26及びマスター力情報取得部10で取得された力情報がリファレンスの力情報と同様の傾向が見られる時点(図16DのA7の時点、図17DのA8の時点)を「力補正開始時間」とする。一方、力補正箇所検出部27及びスレーブ力補正箇所検出部40により、リファレンスの力情報の変位(図16Bの(fr74)-(fr73)、図17Bの(fr84)-(fr83))が閾値(例えば、-1.0N)を下回ると力補正箇所検出部27及びスレーブ力補正箇所検出部40で判断されたときの力情報と、力情報取得部26及びマスター力情報取得部10で取得された力情報の変位とが同様の傾向が見られる時点(図16DのC7の時点、図17DのC8の時点)を「力補正終了時間」とする。「力補正開始時間」から「力補正終了時間」の区間を、力補正箇所検出部27及びスレーブ力補正箇所検出部40で、「力補正箇所」(力補正区間)(図16DのB7区間、図17DのB8区間)とする。 Therefore, when the force information acquired by the force information acquisition unit 26 and the master force information acquisition unit 10 by the force correction point detection unit 27 and the slave force correction point detection unit 40 has the same tendency as the reference force information ( The time point A7 in FIG. 16D and the time point A8 in FIG. 17D are defined as “force correction start time”. On the other hand, the displacement of the reference force information ((fr74)-(fr73) in FIG. 16B, (fr84)-(fr83) in FIG. 17B) is detected by the force correction point detection unit 27 and the slave force correction point detection unit 40). For example, when the value is less than −1.0 N), the force information when the force correction point detection unit 27 and the slave force correction point detection unit 40 determine, and the force information acquisition unit 26 and the master force information acquisition unit 10 acquire the force information. The time point at which the same tendency as the displacement of the force information is observed (time point C7 in FIG. 16D, time point C8 in FIG. 17D) is defined as “force correction end time”. The section from “force correction start time” to “force correction end time” is divided into “force correction position” (force correction section) (section B7 in FIG. 16D) by the force correction position detection unit 27 and the slave force correction position detection unit 40. (B8 section in FIG. 17D).
 力補正部25は、スレーブ制御部24から力補正部25に入力された検出された力情報を基に、「力補正箇所」(力補正区間)の力情報としては、力情報を補正した情報をスレーブ制御部24に出力する一方、「変更なし」の情報としては、力情報を変更せずにスレーブ制御部24に出力する。力情報の補正方法は、力情報をリファレンスの力情報と同じ値に力補正部25で増加させる。 The force correction unit 25 is based on the detected force information input from the slave control unit 24 to the force correction unit 25, and the force information of the “force correction portion” (force correction section) is information obtained by correcting the force information. Is output to the slave control unit 24 without changing the force information as the “no change” information. In the force information correction method, the force correction unit 25 increases the force information to the same value as the reference force information.
 スレーブ力補正部39は、スレーブ制御部24からスレーブ力補正部39に入力された検出された力情報を基に、「力補正箇所」(力補正区間)の力情報としては、力情報を補正した情報をスレーブ制御部24に出力する一方、「変更なし」の情報としては、力情報を変更せずにスレーブ制御部24に出力する。力情報の補正方法は、力情報をリファレンスの力情報と同じ値に減少させる。 The slave force correction unit 39 corrects force information as force information of the “force correction point” (force correction section) based on the detected force information input from the slave control unit 24 to the slave force correction unit 39. The information is output to the slave control unit 24, while the “no change” information is output to the slave control unit 24 without changing the force information. The force information correction method reduces the force information to the same value as the reference force information.
 リファレンスの情報は、例えば、マスタースレーブロボットの制御装置を製造するメーカーから予め提供されて、リファレンス情報記憶部41に予め記憶することができる。また、リファレンスの情報を追加することもでき、事前実験で取得した力情報又は速度情報のリファレンスの情報について、マスター入出力IF7を用いて、リファレンス情報記憶部41に追加記憶することができる。スレーブマニピュレータ32が力情報を取得しやすい状況が、リファレンスの情報として用いられ、図29A~図31において従来の実験結果を示してあるフレキシブル基板104の挿入実験においては、フレキシブル基板104の把持位置5mmの情報をリファレンスの情報として用いるほうが、フレキシブル基板104の把持位置10mmの情報をリファレンスの情報として用いるよりも優れている。リファレンスの情報は、リファレンス情報記憶部41で記憶され、図18に示すようなデータベースで保存し、どのリファレンスの情報を用いるかを、操作者がマスター入出力IF7を用いて対象物102又は把持位置をボタンで決定し、操作する際にリファレンスの情報として用いる。 The reference information can be stored in advance in the reference information storage unit 41, for example, provided in advance by a manufacturer that manufactures a control device for the master-slave robot. Reference information can also be added, and reference information of force information or speed information acquired in a prior experiment can be additionally stored in the reference information storage unit 41 using the master input / output IF 7. The situation in which the slave manipulator 32 can easily acquire force information is used as reference information. In the insertion experiment of the flexible substrate 104, which shows the conventional experimental results in FIGS. 29A to 31, the gripping position of the flexible substrate 104 is 5 mm. It is better to use this information as reference information than to use information on the gripping position 10 mm of the flexible substrate 104 as reference information. The reference information is stored in the reference information storage unit 41, stored in a database as shown in FIG. 18, and the reference information to be used is determined by the operator using the master input / output IF7. Is determined with a button and used as reference information when operating.
 図19は、本発明の第3実施形態において、力情報及び速度情報を取得してから力補正するまでのフローチャートである。 FIG. 19 is a flowchart from the acquisition of force information and speed information to force correction in the third embodiment of the present invention.
 まず、ステップS201で、力情報取得部26及びマスター力情報取得部10において力情報をそれぞれ取得するとともに、速度情報取得部28において速度情報を取得する。 First, in step S201, the force information acquisition unit 26 and the master force information acquisition unit 10 respectively acquire force information, and the speed information acquisition unit 28 acquires speed information.
 次に、ステップS202で、検出方法選択部34において、力補正箇所検出部27及びスレーブ力補正箇所検出部40と力補正部25及びスレーブ力補正部39とで使用する情報として、「力情報及び速度情報」を選択するか否か、検出方法選択部34で判断する。作業者がマスター入出力IF7を用いて検出方法を検出方法選択部34に選択入力することにより、「力情報及び速度情報」を選択すると検出方法選択部34で判断すると、ステップS206に進む。「力情報及び速度情報」以外を選択すると検出方法選択部34で判断すると、ステップS203に進む。 Next, in step S202, in the detection method selection unit 34, as information used in the force correction point detection unit 27, the slave force correction point detection unit 40, the force correction unit 25, and the slave force correction unit 39, “force information and The detection method selection unit 34 determines whether or not “speed information” is selected. When the operator selects and inputs the detection method to the detection method selection unit 34 using the master input / output IF 7 and selects “force information and speed information”, the detection method selection unit 34 determines that the process proceeds to step S206. If the detection method selection unit 34 determines that any item other than “force information and speed information” is selected, the process proceeds to step S203.
 ステップS203では、検出方法選択部34において、力補正箇所検出部27及びスレーブ力補正箇所検出部40と力補正部25及びスレーブ力補正部39とで使用する情報として、「力情報」を選択するか否か、検出方法選択部34で判断する。作業者がマスター入出力IF7を用いて検出方法を検出方法選択部34に選択入力することにより、「力情報」を選択すると検出方法選択部34で判断すると、ステップS206に進む。「力情報」以外を選択すると検出方法選択部34で判断すると、ステップS204に進む。 In step S <b> 203, the detection method selection unit 34 selects “force information” as information used by the force correction point detection unit 27, the slave force correction point detection unit 40, the force correction unit 25, and the slave force correction unit 39. Whether or not the detection method selection unit 34 determines. When the operator selects and inputs the detection method to the detection method selection unit 34 using the master input / output IF 7 and selects “force information”, the detection method selection unit 34 determines that the process proceeds to step S206. If the detection method selection unit 34 determines that any item other than “force information” is selected, the process proceeds to step S204.
 ステップS204では、検出方法選択部34において、力補正箇所検出部27及びスレーブ力補正箇所検出部40と力補正部25及びスレーブ力補正部39とで使用する情報として、「速度情報」を選択するか否か、検出方法選択部34で判断する。作業者がマスター入出力IF7を用いて検出方法を検出方法選択部34に選択入力することにより、「速度情報」を選択すると検出方法選択部34で判断すると、ステップS206に進む。「速度情報」以外を選択すると検出方法選択部34で判断すると、ステップS205に進む。 In step S <b> 204, the detection method selection unit 34 selects “speed information” as information used by the force correction point detection unit 27, the slave force correction point detection unit 40, the force correction unit 25, and the slave force correction unit 39. Whether or not the detection method selection unit 34 determines. If the operator selects and inputs the detection method to the detection method selection unit 34 using the master input / output IF 7 to select “speed information”, the process proceeds to step S206. If the detection method selection unit 34 determines that the item other than “speed information” is selected, the process proceeds to step S205.
 ステップS205では、検出方法選択部34において、力補正箇所検出部27及びスレーブ力補正箇所検出部40と力補正部25及びスレーブ力補正部39とで使用する情報として、「リファレンス」を選択するか否か、検出方法選択部34で判断する。作業者がマスター入出力IF7を用いて検出方法を検出方法選択部34に選択入力することにより、「リファレンス」を選択すると検出方法選択部34で判断すると、ステップS206に進む。「リファレンス」以外を選択すると検出方法選択部34で判断すると、ステップS202~ステップS205までどの情報も選択しなかったこととなり、この場合には、先の説明中、作業経験と作業難易度とをそれぞれ選択しなかった場合に該当する。すなわち、検出方法選択部34で、「力情報及び速度情報」を自動的に選択することになり、ステップS206に進む。 In step S205, whether the detection method selection unit 34 selects “reference” as information used by the force correction point detection unit 27, the slave force correction point detection unit 40, the force correction unit 25, and the slave force correction unit 39. The detection method selection unit 34 determines whether or not. If the operator selects and inputs a detection method to the detection method selection unit 34 using the master input / output IF 7, and the detection method selection unit 34 determines that “reference” is selected, the process proceeds to step S206. If the detection method selection unit 34 determines that any item other than “reference” is selected, it means that no information is selected from step S202 to step S205. In this case, the work experience and the work difficulty level are determined in the above description. Applicable when each is not selected. That is, the detection method selection unit 34 automatically selects “force information and speed information”, and the process proceeds to step S206.
 ステップS206では、検出方法選択部34で選択した情報を用いて、力補正箇所検出部27及びスレーブ力補正箇所検出部40において、力補正を行うか行わないかを検出する。力補正を行うと力補正箇所検出部27及びスレーブ力補正箇所検出部40で検出されると、ステップS207に進む。力補正を行わないと力補正箇所検出部27及びスレーブ力補正箇所検出部40で検出されると、ステップS300に進む。 In step S206, the information selected by the detection method selection unit 34 is used to detect whether the force correction point detection unit 27 and the slave force correction point detection unit 40 perform force correction or not. If force correction is detected by the force correction point detection unit 27 and the slave force correction point detection unit 40, the process proceeds to step S207. If force correction is not performed by the force correction point detection unit 27 and the slave force correction point detection unit 40, the process proceeds to step S300.
 ステップS300では、力補正を行わない力情報を、そのまま、力補正部25からマスターマニピュレータ9及びスレーブマニピュレータ32に伝達して、一連のフローを終了する。 In step S300, force information for which force correction is not performed is transmitted as it is from the force correction unit 25 to the master manipulator 9 and the slave manipulator 32, and the series of flows is completed.
 ステップS207では、力補正箇所検出部27及びスレーブ力補正箇所検出部40において、力補正を行うことを検出した場合であって、力補正として、力情報を増加させるか又は減少させるかを検出する。なお、「変更なし」として力補正箇所検出部27及びスレーブ力補正箇所検出部40で検出された箇所(区間)では、力情報を補正せずに、力補正箇所検出部27及びスレーブ力補正箇所検出部40で力情報を伝達する。「増加」として力補正箇所検出部27及びスレーブ力補正箇所検出部40で検出された箇所(区間)では、ステップS208に進む。「増加」ではなく、「減少」として力補正箇所検出部27及びスレーブ力補正箇所検出部40で検出された箇所(区間)では、ステップS209に進む。 In step S207, the force correction point detection unit 27 and the slave force correction point detection unit 40 detect whether force correction is performed, and detect whether force information is increased or decreased as force correction. . It should be noted that the force correction point detection unit 27 and the slave force correction point are not corrected at the point (section) detected by the force correction point detection unit 27 and the slave force correction point detection unit 40 as “no change”. Force information is transmitted by the detection unit 40. In the part (section) detected by the force correction part detection unit 27 and the slave force correction part detection unit 40 as “increase”, the process proceeds to step S208. In the part (section) detected by the force correction part detection unit 27 and the slave force correction part detection unit 40 as “decrease” instead of “increase”, the process proceeds to step S209.
 ステップS208では、力補正部25において力情報の絶対値を増加したのち、ステップS210に進む。 In step S208, the force correction unit 25 increases the absolute value of the force information, and then proceeds to step S210.
 ステップS210では、増加した力情報を、力補正部25からマスターマニピュレータ9に伝達して、一連のフローを終了する。 In step S210, the increased force information is transmitted from the force correction unit 25 to the master manipulator 9, and the series of flows is completed.
 一方、ステップS209では、「減少」として力補正箇所検出部27及びスレーブ力補正箇所検出部40で検出された箇所(区間)では、スレーブ力補正部39において力情報の絶対値を減少したのち、ステップS211に進む。 On the other hand, in step S209, in the portion (section) detected by the force correction point detection unit 27 and the slave force correction point detection unit 40 as “decrease”, the slave force correction unit 39 decreases the absolute value of the force information, The process proceeds to step S211.
 ステップS211では、減少した力情報を、スレーブ力補正部39からスレーブマニピュレータ32に伝達して、一連のフローを終了する。 In step S211, the reduced force information is transmitted from the slave force correction unit 39 to the slave manipulator 32, and a series of flows is completed.
 《第3実施形態の効果》
 作業者の能力又は作業の難易度に合わせて力を補正する手順を変更することができるので、第1実施形態及び第2実施形態と比較して、より効率的に作業を行うことができる。
<< Effects of Third Embodiment >>
Since the procedure for correcting the force can be changed in accordance with the ability of the worker or the difficulty level of the work, the work can be performed more efficiently compared to the first embodiment and the second embodiment.
 (第4実施形態)
 図20A及び図20Bは、本発明の第4実施形態におけるマスタースレーブロボット150の制御装置100Cを示すブロック線図である。本発明の第4実施形態におけるマスターロボットシステム1と、スレーブ制御部24と、力情報取得部26と、力補正箇所検出部27と、速度情報取得部28と、スレーブ周辺装置29と、スレーブマニピュレータ32は第1実施形態と同様であるので、共通の参照符号を付して共通部分の説明は省略し、異なる部分についてのみ、以下、詳細に説明する。
(Fourth embodiment)
20A and 20B are block diagrams showing a control device 100C of the master-slave robot 150 in the fourth embodiment of the present invention. Master robot system 1, slave control unit 24, force information acquisition unit 26, force correction location detection unit 27, speed information acquisition unit 28, slave peripheral device 29, slave manipulator in the fourth embodiment of the present invention Since 32 is the same as that of the first embodiment, common reference numerals are assigned and description of common portions is omitted, and only different portions will be described in detail below.
 マスター制御装置3は、マスター制御部4と、力伝達部5とを備えている。 The master control device 3 includes a master control unit 4 and a force transmission unit 5.
 スレーブ制御装置23は、スレーブ制御部24と、力補正部25と、力情報取得部26と、力補正箇所検出部27と、速度情報取得部28と、力補正方法選択部35と、補正量記憶部42とを備えている。 The slave control device 23 includes a slave control unit 24, a force correction unit 25, a force information acquisition unit 26, a force correction location detection unit 27, a speed information acquisition unit 28, a force correction method selection unit 35, and a correction amount. And a storage unit 42.
 力補正方法選択部35では、「対象物把持位置情報」と、「対象物柔軟度情報」と、「マスター把持位置情報」とのうち1つの情報を選択する。力補正方法選択部35で選択された選択情報は力補正部25に出力され、力補正を行う際に使用する情報を前記選択情報に基づき力補正部25で指定する。力補正部25及びスレーブ力補正部39は、力補正方法選択部35で選択された選択情報により異なるので、以下に選択された情報毎に説明する。 The force correction method selection unit 35 selects one piece of information from “object gripping position information”, “object flexibility information”, and “master gripping position information”. The selection information selected by the force correction method selection unit 35 is output to the force correction unit 25, and information used when performing force correction is designated by the force correction unit 25 based on the selection information. Since the force correction unit 25 and the slave force correction unit 39 differ depending on the selection information selected by the force correction method selection unit 35, each of the selected information will be described below.
 力補正方法選択部35における各情報の選択方法は、作業者(人)が、例えば複数のボタンが配置された操作盤などで構成されるマスター入出力IF7を用いて、作業者の手動で「対象物把持位置情報」と、「対象物柔軟度情報」と、「マスター把持位置情報」とのボタンのうち1つを押下すると、その押下られて入力された情報に基づき、前記入力された情報を力補正方法選択部35で選択する。もし作業者が何も選択しなかった場合は、「対象物把持位置情報」が力補正方法選択部35で自動的に選択される。 A method for selecting each information in the force correction method selection unit 35 is as follows. An operator (person) manually uses the master input / output IF 7 including an operation panel on which a plurality of buttons are arranged. When one of the buttons of “object grip position information”, “object flexibility information”, and “master grip position information” is pressed, the input information is based on the input information by pressing the button. Is selected by the force correction method selection unit 35. If the operator does not select anything, “target gripping position information” is automatically selected by the force correction method selection unit 35.
 補正量記憶部42は、力補正方法選択部35で選択された情報に応じたデータベース(スレーブマニピュレータ32が対象物102を把持する位置情報などの力補正方法選択部35で選択された情報と補正量との関係情報を記憶するデータベース)を保管している。それぞれのデータベースについては後述する。また、各データベースは、マスター入出力IF7での入力に応じて、力補正部25及びスレーブ力補正部39により補正量記憶部42から補正量を決定する。 The correction amount storage unit 42 is a database corresponding to the information selected by the force correction method selection unit 35 (information selected by the force correction method selection unit 35 such as position information where the slave manipulator 32 grips the object 102 and the correction). A database that stores information related to quantity. Each database will be described later. Further, in each database, the correction amount is determined from the correction amount storage unit 42 by the force correction unit 25 and the slave force correction unit 39 in accordance with the input at the master input / output IF 7.
 (「対象物把持位置情報」を力補正方法選択部35で選択した場合)
 力補正部25及びスレーブ力補正部39は、スレーブ制御部24から力補正部25及びスレーブ力補正部39に入力された力情報を基に、「力補正箇所」(力補正区間)の力情報としては、力情報を補正した情報をスレーブ制御部24に出力する一方、「変更なし」の情報としては、力情報を変更せずにスレーブ制御部24に出力する。
(When “target gripping position information” is selected by the force correction method selection unit 35)
The force correction unit 25 and the slave force correction unit 39 are based on the force information input from the slave control unit 24 to the force correction unit 25 and the slave force correction unit 39, and force information of “force correction point” (force correction section). As such, the information on which the force information is corrected is output to the slave control unit 24, while the “no change” information is output to the slave control unit 24 without changing the force information.
 また、力補正部25とスレーブ力補正部39との機能の差異については下記に示す。力補正部25では、マスターマニピュレータ9に伝達する力を増やす機能を持つ。一方で、スレーブ力補正部39では、スレーブマニピュレータ32に伝達する力を減らす機能を持つ。 Further, the difference in function between the force correction unit 25 and the slave force correction unit 39 will be described below. The force correction unit 25 has a function of increasing the force transmitted to the master manipulator 9. On the other hand, the slave force correction unit 39 has a function of reducing the force transmitted to the slave manipulator 32.
 力情報の補正方法について、図21及び図22A及び図22Bを用いて説明する。一例として、対象物の種類と把持位置とに応じて、力補正部25及びスレーブ力補正部39により補正量記憶部42から力情報の補正量を決定する場合について説明する。ここで、対象物の把持位置とは、図21に示すように、スレーブマニピュレータ32が対象物102を把持するとき、スレーブマニピュレータ32の手先部(スレーブハンド71)(図21のA)から対象物102の先端(図21のB)までの距離D1のことを示す。 A method for correcting force information will be described with reference to FIGS. 21, 22A, and 22B. As an example, a case will be described in which the correction amount of the force information is determined from the correction amount storage unit 42 by the force correction unit 25 and the slave force correction unit 39 according to the type of the object and the gripping position. Here, as shown in FIG. 21, when the slave manipulator 32 grips the target object 102, the target gripping position refers to the target object from the hand portion (slave hand 71) (A in FIG. 21) of the slave manipulator 32. The distance D1 to the tip of 102 (B in FIG. 21) is shown.
 対象物把持位置D1の取得方法としては、人が定規などで距離D1を直接測定し、マスター入力IF7を用いて入力する方法、又は、カメラを用いて画像認識により距離D1を測定する方法などが考えられる。 As a method for acquiring the object gripping position D1, there are a method in which a person directly measures the distance D1 with a ruler or the like and inputs it using the master input IF 7, or a method in which the distance D1 is measured by image recognition using a camera. Conceivable.
 ここでは、一例として、画像認識により対象物把持位置D1を測定し、力補正する手順について図22A及び図22Bを用いて説明する。 Here, as an example, a procedure for measuring the object gripping position D1 by image recognition and correcting the force will be described with reference to FIGS. 22A and 22B.
 図22A及び図22Bのマスタースレーブロボット150の制御装置100Dを示すブロック線図においては、図1におけるマスターロボットシステム1と、スレーブ制御部24と、力情報取得部26と、力補正箇所検出部27と、速度情報取得部28と、スレーブ周辺装置29と、スレーブマニピュレータ32とは第1実施形態と同様であるので、共通の参照符号を付して共通部分の説明は省略し、異なる部分についてのみ、以下、詳細に説明する。なお、図20A及び図20Bの構成と図22A及び図22Bの構成との差異は、カメラなどの画像撮像装置36と、画像撮像装置36に接続された把持位置取得部37とを追加したことである。ここでは、画像撮像装置36と把持位置取得部37とで対象物把持位置取得部110を構成している。 In the block diagram showing the control device 100D of the master-slave robot 150 in FIGS. 22A and 22B, the master robot system 1, the slave control unit 24, the force information acquisition unit 26, and the force correction location detection unit 27 in FIG. Since the speed information acquisition unit 28, the slave peripheral device 29, and the slave manipulator 32 are the same as those in the first embodiment, common reference numerals are assigned and description of common parts is omitted, and only different parts are described. The details will be described below. The difference between the configuration of FIGS. 20A and 20B and the configuration of FIGS. 22A and 22B is that an image imaging device 36 such as a camera and a gripping position acquisition unit 37 connected to the image imaging device 36 are added. is there. Here, the image capturing device 36 and the grip position acquisition unit 37 constitute the object grip position acquisition unit 110.
 カメラなどの画像撮像装置36は、スレーブマニピュレータ32が対象物102を把持する画像を取得し、取得した画像情報を把持位置取得部37に出力する。 The image capturing device 36 such as a camera acquires an image in which the slave manipulator 32 grips the object 102, and outputs the acquired image information to the gripping position acquisition unit 37.
 把持位置取得部37は、画像撮像装置36で取得した画像情報を基に対象物把持位置情報を算出し、力補正部25とスレーブ力補正部39とに出力する。力補正部25及びスレーブ力補正部39は、把持位置取得部37からの対象物把持位置情報を用いて、補正量記憶部42で保管されている、図23に示すような、対象物と、把持位置と、補正量との関係を保存したデータベースより、力補正部25及びスレーブ力補正部39により、補正量をそれぞれ求める。ここで、使用する対象物の種類(図23中のフレキシブル基板A又はネジAなど)については、マスター入出力IF7のボタンを用いて、作業者が補正量記憶部42に入力する。作業者が入力した、使用する対象物の種類の情報と、把持位置取得部37からの対象物把持位置情報とに基づき、力補正部25及びスレーブ力補正部39は、補正量記憶部42から補正量を取得する。補正量記憶部42のデータベースの値は、フレキシブル基板Aの場合、把持位置が5mm、10mmと長くなるにつれて、補正量が増加する場合は1.2倍、1.4倍と大きくなり、補正量が減少する場合は0.6倍、0.8倍と大きくなる。フレキシブル基板Bの場合、把持位置が5mm、10mmと長くなるにつれて、補正量が増加する場合は1.5倍、2.0倍と大きくなり、補正量が減少する場合は0.2倍、0.5倍と大きくなる。 The gripping position acquisition unit 37 calculates target gripping position information based on the image information acquired by the image capturing device 36 and outputs the target gripping position information to the force correction unit 25 and the slave force correction unit 39. The force correction unit 25 and the slave force correction unit 39 use the object gripping position information from the gripping position acquisition unit 37 and store the target object as shown in FIG. From the database that stores the relationship between the gripping position and the correction amount, the force correction unit 25 and the slave force correction unit 39 obtain the correction amount, respectively. Here, the type of the object to be used (such as the flexible board A or the screw A in FIG. 23) is input to the correction amount storage unit 42 by the operator using the button of the master input / output IF 7. Based on the information on the type of the object used by the operator and the object gripping position information from the gripping position acquisition unit 37, the force correction unit 25 and the slave force correction unit 39 are transferred from the correction amount storage unit 42. Get the correction amount. In the case of the flexible substrate A, the value in the database of the correction amount storage unit 42 increases to 1.2 times and 1.4 times when the correction amount increases as the gripping position becomes longer as 5 mm and 10 mm. When it decreases, it becomes as large as 0.6 times and 0.8 times. In the case of the flexible substrate B, as the gripping position becomes longer as 5 mm and 10 mm, the correction amount increases to 1.5 times and 2.0 times when the correction amount increases, and 0.2 times when the correction amount decreases. .5 times larger.
 補正量が増加する場合か、減少する場合かの判断について、下記に示す。力情報取得部26で取得された力情報の変位が閾値(例えば、1.0N)を上回っていると力補正箇所検出部27及びスレーブ力補正箇所検出部40で判断される場合は、力補正箇所検出部27及びスレーブ力補正箇所検出部40で「増加」と検出する。マスター力情報取得部10で取得された力情報の変位が閾値を上回っていると力補正箇所検出部27及びスレーブ力補正箇所検出部40で判断される場合は、力補正箇所検出部27及びスレーブ力補正箇所検出部40で「減少」と検出する。 The judgment on whether the correction amount increases or decreases is shown below. If the force correction point detection unit 27 and the slave force correction point detection unit 40 determine that the displacement of the force information acquired by the force information acquisition unit 26 exceeds a threshold (for example, 1.0 N), force correction The location detection unit 27 and the slave force correction location detection unit 40 detect “increase”. When the force correction point detection unit 27 and the slave force correction point detection unit 40 determine that the displacement of the force information acquired by the master force information acquisition unit 10 exceeds the threshold, the force correction point detection unit 27 and the slave The force correction point detection unit 40 detects “decrease”.
 (「対象物柔軟度情報」を力補正方法選択部35で選択した場合)
 力補正部25及びスレーブ力補正部39は、スレーブ制御部24から力補正部25及びスレーブ力補正部39に入力された力情報を基に、「力補正箇所」(力補正区間)の力情報としては、力情報を補正した情報をスレーブ制御部24に出力する一方、「変更なし」の情報としては、力情報を変更せずにスレーブ制御部24に出力する。
(When “object flexibility information” is selected by the force correction method selection unit 35)
The force correction unit 25 and the slave force correction unit 39 are based on the force information input from the slave control unit 24 to the force correction unit 25 and the slave force correction unit 39, and force information of “force correction point” (force correction section). As such, the information on which the force information is corrected is output to the slave control unit 24, while the “no change” information is output to the slave control unit 24 without changing the force information.
 力情報の補正方法については、対象物柔軟度情報に応じて、力補正部25及びスレーブ力補正部39は、補正量記憶部42から力情報の補正量を決定する。対象物柔軟度とは、対象物の座屈荷重のことを示し、作業者が対象物の座屈荷重を事前に測定する必要がある。事前に測定して取得した座屈荷重は、マスター入力IF7を用いて、補正量記憶部42に作業者が入力する。対象物の座屈荷重の測定方法について、図24A~図24Fを用いて説明する。図24A~図24Cはフレキシブル基板104を用いた場合の横から見た図、図24D~図24Fはネジ107を用いた場合の図を示す。 Regarding the force information correction method, the force correction unit 25 and the slave force correction unit 39 determine the correction amount of the force information from the correction amount storage unit 42 in accordance with the object flexibility information. The object flexibility indicates a buckling load of the object, and the operator needs to measure the buckling load of the object in advance. The buckling load measured and acquired in advance is input to the correction amount storage unit 42 by the operator using the master input IF 7. A method for measuring the buckling load of the object will be described with reference to FIGS. 24A to 24F. 24A to 24C are views seen from the side when the flexible substrate 104 is used, and FIGS. 24D to 24F are views when the screw 107 is used.
 まず、図24A及び図24Dに示すように、対象物を固定台108上で起立させて、対象物の挿入方向側とは逆側の端部を、固定台108で固定する。 First, as shown in FIG. 24A and FIG. 24D, the object is raised on the fixing base 108, and the end opposite to the insertion direction side of the object is fixed with the fixing base 108.
 次に、図24B及び図24Eに示すように、対象物の挿入方向側の端部に対して、力印加装置109を用いて徐々に力を、対象物の長手方向沿いに印加する。 Next, as shown in FIG. 24B and FIG. 24E, a force is gradually applied along the longitudinal direction of the object using the force application device 109 to the end of the object in the insertion direction.
 そして、図24C及び図24Fに示すように、対象物が座屈したときの力の大きさを測定し、その力の大きさを座屈荷重とする。 Then, as shown in FIGS. 24C and 24F, the magnitude of the force when the object is buckled is measured, and the magnitude of the force is taken as the buckling load.
 こうして得られた座屈荷重と対象物の種類について、マスター入力IF7を用いて作業者が入力して、補正量記憶部42に記憶させる。 The operator inputs the buckling load and the type of the object obtained in this way using the master input IF 7 and stores them in the correction amount storage unit 42.
 対象物柔軟度情報を用いた補正量の算出方法としては、図25に示すような対象物の種類と、座屈荷重と、補正量との関係を保存したデータベースを補正量記憶部42で所有し、対象物の種類と座屈荷重との情報に応じて、力補正部25及びスレーブ力補正部39が、補正量記憶部42から補正量を求める。データベースの値は、フレキシブル基板Aの場合、座屈荷重が10N、20Nと大きくなる(硬くなる)につれて、補正量が増加する場合は1.4倍、1.2倍と小さくなり、補正量が減少する場合は0.8倍、0.6倍と小さくなる。 As a calculation method of the correction amount using the object flexibility information, the correction amount storage unit 42 has a database storing the relationship between the object type, buckling load, and the correction amount as shown in FIG. Then, the force correction unit 25 and the slave force correction unit 39 obtain the correction amount from the correction amount storage unit 42 according to the information on the type of the object and the buckling load. In the case of the flexible substrate A, the value of the database decreases as 1.4 times and 1.2 times when the correction amount increases as the buckling load increases (hardens) to 10N and 20N, and the correction amount decreases. When decreasing, it becomes 0.8 times and 0.6 times smaller.
 補正量が増加する場合か、減少する場合かの判断について、下記に示す。力情報取得部26で取得された力情報の変位が閾値(例えば、1.0N)を上回っていると力補正箇所検出部27及びスレーブ力補正箇所検出部40で判断される場合は、力補正箇所検出部27及びスレーブ力補正箇所検出部40で「増加」と検出し、マスター力情報取得部10で取得された力情報の変位が閾値を上回っていると力補正箇所検出部27及びスレーブ力補正箇所検出部40で判断される場合は、力補正箇所検出部27及びスレーブ力補正箇所検出部40で「減少」と検出する。 The judgment on whether the correction amount increases or decreases is shown below. If the force correction point detection unit 27 and the slave force correction point detection unit 40 determine that the displacement of the force information acquired by the force information acquisition unit 26 exceeds a threshold (for example, 1.0 N), force correction When the location detection unit 27 and the slave force correction location detection unit 40 detect “increase” and the displacement of the force information acquired by the master force information acquisition unit 10 exceeds a threshold value, the force correction location detection unit 27 and the slave force When it is determined by the correction point detection unit 40, the force correction point detection unit 27 and the slave force correction point detection unit 40 detect “decrease”.
 (「マスター把持位置情報」を力補正方法選択部35で選択した場合)
 力補正部25及びスレーブ力補正部39は、スレーブ制御部24から力補正部25及びスレーブ力補正部39に入力された力情報を基に、「力補正箇所」(力補正区間)の力情報としては、力情報を補正した情報をスレーブ制御部24に出力する一方、「変更なし」の情報としては、力情報を変更せずにスレーブ制御部24に出力する。
(When “Master gripping position information” is selected by the force correction method selection unit 35)
The force correction unit 25 and the slave force correction unit 39 are based on the force information input from the slave control unit 24 to the force correction unit 25 and the slave force correction unit 39, and force information of “force correction point” (force correction section). As such, the information on which the force information is corrected is output to the slave control unit 24, while the “no change” information is output to the slave control unit 24 without changing the force information.
 力情報の補正方法について、図26A~図26Bを用いて説明する。マスター把持位置情報とは、図26Aに示すように、人の手101がマスターマニピュレータ9を把持する位置情報のことである。ここで、マスターマニピュレータ9には、図26A中のA点、B点、C点の3点に、マスター把持位置取得部の一例としての力センサ66A,66B,66Cがそれぞれ取り付けられている。 The force information correction method will be described with reference to FIGS. 26A to 26B. The master grip position information is position information where the human hand 101 grips the master manipulator 9 as shown in FIG. 26A. Here, force sensors 66A, 66B, and 66C as examples of the master gripping position acquisition unit are attached to the master manipulator 9 at points A, B, and C in FIG. 26A, respectively.
 力センサ66A,66B,66Cで取得された力情報がマスター入出力IF7を介してマスター力情報取得部10に各力情報が送られたのち(図7参照)、マスター制御部4とスレーブ制御部24とを介して力補正部25に前記各力情報が送られる。その際、A点、B点、C点の力情報を力補正部25で比較し、力補正部25において、最も大きな値を示した点をマスター把持位置とする。また、スレーブマニピュレータ32(図21の形状参照)とマスターマニピュレータ9の形状が異なる図26Bのような場合においても、マスターマニピュレータ9に力センサ66A,66B,66Cを3個取り付け、A点、B点、C点の力情報を基に把持位置を取得する。マスター把持位置情報を用いた補正量の算出方法としては、図27に示すような、マスター把持位置と、補正量との関係を保存したデータベースを補正量記憶部42で所有し、力補正部25及びスレーブ力補正部39により補正量記憶部42から力情報の補正量を求める。データベースの値は、マスター把持位置がA点、B点、C点となるにつれて、補正量が増加する場合は1.2倍、1.4倍、1.6倍と大きくなり、補正量が減少する場合は0.8倍、0.6倍、0.4倍と小さくなる。 After the force information acquired by the force sensors 66A, 66B, 66C is sent to the master force information acquisition unit 10 via the master input / output IF 7 (see FIG. 7), the master control unit 4 and the slave control unit 24, the force information is sent to the force correction unit 25. At that time, the force information of the points A, B, and C is compared by the force correction unit 25, and the point having the largest value in the force correction unit 25 is set as the master gripping position. Further, even in the case of FIG. 26B where the shape of the slave manipulator 32 (see the shape of FIG. 21) and the master manipulator 9 is different, three force sensors 66A, 66B, 66C are attached to the master manipulator 9, and points A and B The gripping position is acquired based on the force information of point C. As a method of calculating the correction amount using the master grip position information, the correction amount storage unit 42 owns a database storing the relationship between the master grip position and the correction amount as shown in FIG. And the correction amount of the force information is obtained from the correction amount storage unit 42 by the slave force correction unit 39. As the master gripping position becomes points A, B, and C, the value of the database increases to 1.2, 1.4, and 1.6 times when the correction amount increases, and the correction amount decreases. When it does, it becomes small with 0.8 times, 0.6 times, and 0.4 times.
 図28は、本発明の第4実施形態における力情報と速度情報とを取得してから、力補正するまでのフローチャートである。 FIG. 28 is a flowchart from the acquisition of force information and speed information in the fourth embodiment of the present invention until force correction.
 まず、ステップS201で、力情報取得部26及びマスター力情報取得部10において力情報をそれぞれ取得するとともに、速度情報取得部28において速度情報を取得する。 First, in step S201, the force information acquisition unit 26 and the master force information acquisition unit 10 respectively acquire force information, and the speed information acquisition unit 28 acquires speed information.
 次に、ステップS206で、力補正箇所検出部27及びスレーブ力補正箇所検出部40において、力補正を行うか行わないかを検出する。すなわち、力補正部25において、力情報取得部26及びマスター力情報取得部10で取得した力情報に関して、力補正箇所検出部27及びスレーブ力補正箇所検出部40で力補正箇所(力補正区間)があるか否かを判断する。 Next, in step S206, the force correction point detection unit 27 and the slave force correction point detection unit 40 detect whether force correction is performed or not. That is, in the force correction unit 25, with respect to the force information acquired by the force information acquisition unit 26 and the master force information acquisition unit 10, a force correction point (force correction section) is detected by the force correction point detection unit 27 and the slave force correction point detection unit 40. Judge whether there is.
 力補正箇所検出部27とスレーブ力補正箇所検出部40との機能の差異については下記に示す。力補正箇所検出部27では、力情報取得部26で取得された力情報と速度情報取得部28で取得された速度情報のどちらか1つ以上の情報を用いて「力補正箇所」(力補正区間)を検出する機能を持つ。一方で、スレーブ力補正箇所検出部40では、マスター力情報取得部10で取得された力情報と速度情報取得部28で取得された速度情報のどちらか1つ以上の情報を用いて「力補正箇所」(力補正区間)を検出する機能を持つ。 The difference in function between the force correction point detector 27 and the slave force correction point detector 40 will be described below. The force correction location detection unit 27 uses one or more of the force information acquired by the force information acquisition unit 26 and the speed information acquired by the speed information acquisition unit 28 to generate a “force correction location” (force correction It has a function to detect (interval). On the other hand, the slave force correction point detection unit 40 uses one or more information of the force information acquired by the master force information acquisition unit 10 and the speed information acquired by the speed information acquisition unit 28 to perform “force correction”. It has a function to detect “location” (force correction section).
 ステップS206において、力補正箇所(力補正区間)が無いと力補正箇所検出部27及びスレーブ力補正箇所検出部40で判断する場合には、ステップS300に進む。 In step S206, when the force correction point detector 27 and the slave force correction point detector 40 determine that there is no force correction point (force correction section), the process proceeds to step S300.
 ステップS300では、力補正を行わない力情報を、そのまま、力補正部25からマスターマニピュレータ9及びスレーブマニピュレータ32に伝達して、一連のフローを終了する。 In step S300, force information for which force correction is not performed is transmitted as it is from the force correction unit 25 to the master manipulator 9 and the slave manipulator 32, and the series of flows is completed.
 ステップS206において、力補正箇所(力補正区間)が有ると力補正箇所検出部27又はスレーブ力補正箇所検出部40で判断する場合には、ステップS207に進む。 In step S206, when the force correction point detection unit 27 or the slave force correction point detection unit 40 determines that there is a force correction point (force correction section), the process proceeds to step S207.
 ステップS207で、力補正箇所(力補正区間)が有ると力補正箇所検出部27又はスレーブ力補正箇所検出部40で判断して、力補正箇所検出部27又はスレーブ力補正箇所検出部40において、力補正を行う場合、補正量を増加させるか又は減少させるかを検出する。なお、「変更なし」として力補正箇所検出部27又はスレーブ力補正箇所検出部40で検出された箇所(区間)では、力情報を補正せずに、力補正箇所検出部27及びスレーブ力補正箇所検出部40で力情報を伝達する。「増加」として力補正箇所検出部27及びスレーブ力補正箇所検出部40で検出された箇所(区間)では、ステップS221Aに進む。一方、「減少」として力補正箇所検出部27及びスレーブ力補正箇所検出部40で検出された箇所(区間)では、ステップS221Bに進む。 In step S207, the force correction point detection unit 27 or the slave force correction point detection unit 40 determines that there is a force correction point (force correction section), and the force correction point detection unit 27 or the slave force correction point detection unit 40 When force correction is performed, it is detected whether the correction amount is increased or decreased. It should be noted that in the portion (section) detected by the force correction location detector 27 or the slave force correction location detector 40 as “no change”, the force correction location detector 27 and the slave force correction location are not corrected without correcting the force information. Force information is transmitted by the detection unit 40. In the part (section) detected by the force correction part detection unit 27 and the slave force correction part detection unit 40 as “increase”, the process proceeds to step S221A. On the other hand, in the part (section) detected by the force correction part detection part 27 and the slave force correction part detection part 40 as "decrease", it progresses to step S221B.
 ステップS221Aでは、力補正方法選択部35において、力補正部25及びスレーブ力補正部39で使用する情報として「対象物把持位置情報」を選択するか否かを、力補正方法選択部35で判断する。力補正部25及びスレーブ力補正部39で使用する情報として「対象物把持位置情報」を選択すると力補正方法選択部35で判断する場合には、ステップS208に進む。力補正部25及びスレーブ力補正部39で使用する情報として「対象物把持位置情報」を選択しないと力補正方法選択部35で判断する場合には、ステップS222Aに進む。 In step S <b> 221 </ b> A, the force correction method selection unit 35 determines whether to select “target gripping position information” as information used by the force correction unit 25 and the slave force correction unit 39. To do. If the force correction method selection unit 35 determines that “target gripping position information” is selected as information used by the force correction unit 25 and the slave force correction unit 39, the process proceeds to step S208. When the force correction method selection unit 35 determines that “object gripping position information” is not selected as information used by the force correction unit 25 and the slave force correction unit 39, the process proceeds to step S222A.
 ステップS222Aでは、力補正方法選択部35において、力補正部25及びスレーブ力補正部39で使用する情報として「対象物柔軟度情報」を選択するか否かを、力補正方法選択部35で判断する。力補正部25及びスレーブ力補正部39で使用する情報として「対象物柔軟度情報」を選択すると力補正方法選択部35で判断する場合には、ステップS208に進む。力補正部25及びスレーブ力補正部39で使用する情報として「対象物柔軟度情報」を選択しないと力補正方法選択部35で判断する場合には、ステップS223Aに進む。 In step S222A, the force correction method selection unit 35 determines whether or not “object flexibility information” is selected as information used by the force correction unit 25 and the slave force correction unit 39. To do. If “force object flexibility information” is selected as information used by the force correction unit 25 and the slave force correction unit 39, the force correction method selection unit 35 proceeds to step S208. When the force correction method selection unit 35 determines that “object flexibility information” is not selected as information used by the force correction unit 25 and the slave force correction unit 39, the process proceeds to step S223A.
 ステップS223Aでは、力補正方法選択部35において、力補正部25及びスレーブ力補正部39で使用する情報として「マスター把持位置情報」を選択するか否かを、力補正方法選択部35で判断する。力補正部25及びスレーブ力補正部39で使用する情報として「マスター把持位置情報」を選択すると力補正方法選択部35で判断する場合には、ステップS208に進む。力補正部25及びスレーブ力補正部39で使用する情報として「マスター把持位置情報」を選択しないと力補正方法選択部35で判断する場合には、ステップS221A~ステップS223Aまでどの情報も選択しなかったこととなり、この場合には、作業者が何も選択しなかった場合となり、「対象物把持位置情報」が力補正方法選択部35で自動的に選択することになり、ステップS208に進む。 In step S223A, the force correction method selection unit 35 determines whether or not “master grip position information” is selected as information used by the force correction unit 25 and the slave force correction unit 39. . In the case where the force correction method selection unit 35 determines that “master gripping position information” is selected as information used by the force correction unit 25 and the slave force correction unit 39, the process proceeds to step S208. When the force correction method selection unit 35 determines that “master grip position information” is not selected as information used by the force correction unit 25 and the slave force correction unit 39, no information is selected from step S221A to step S223A. In this case, the operator does not select anything, and “target gripping position information” is automatically selected by the force correction method selection unit 35, and the process proceeds to step S208.
 ステップS208では、力補正方法選択部35で選択した情報を用いて、「増加」として力補正箇所検出部27及びスレーブ力補正箇所検出部40で検出された箇所(区間)では、力補正部25において力情報の絶対値を増加したのち、ステップS210に進む。 In step S208, using the information selected by the force correction method selection unit 35, the force correction unit 25 is detected at a location (section) detected by the force correction location detection unit 27 and the slave force correction location detection unit 40 as “increase”. After increasing the absolute value of the force information, the process proceeds to step S210.
 ステップS210では、増加した力情報を、力補正部25からマスターマニピュレータ9に伝達して、一連のフローを終了する。 In step S210, the increased force information is transmitted from the force correction unit 25 to the master manipulator 9, and the series of flows is completed.
 一方、 ステップS221Bでは、力補正方法選択部35において、力補正部25及びスレーブ力補正部39で使用する情報として「対象物把持位置情報」を選択するか否かを、力補正方法選択部35で判断する。力補正部25及びスレーブ力補正部39で使用する情報として「対象物把持位置情報」を選択すると力補正方法選択部35で判断する場合には、ステップS209に進む。力補正部25及びスレーブ力補正部39で使用する情報として「対象物把持位置情報」を選択しないと力補正方法選択部35で判断する場合には、ステップS222Bに進む。 On the other hand, in step S221B, the force correction method selection unit 35 determines whether or not to select “target gripping position information” as information used by the force correction unit 25 and the slave force correction unit 39. Judge with. If the force correction method selection unit 35 determines that “object gripping position information” is selected as information used by the force correction unit 25 and the slave force correction unit 39, the process proceeds to step S209. When the force correction method selection unit 35 determines that “object gripping position information” is not selected as information used by the force correction unit 25 and the slave force correction unit 39, the process proceeds to step S222B.
 ステップS222Bでは、力補正方法選択部35において、力補正部25及びスレーブ力補正部39で使用する情報として「対象物柔軟度情報」を選択するか否かを、力補正方法選択部35で判断する。力補正部25及びスレーブ力補正部39で使用する情報として「対象物柔軟度情報」を選択すると力補正方法選択部35で判断する場合には、ステップS209に進む。力補正部25及びスレーブ力補正部39で使用する情報として「対象物柔軟度情報」を選択しないと力補正方法選択部35で判断する場合には、ステップS223Bに進む。 In step S222B, the force correction method selection unit 35 determines whether or not “target object flexibility information” is selected as information used by the force correction unit 25 and the slave force correction unit 39. To do. When the force correction method selection unit 35 determines that “object flexibility information” is selected as information used by the force correction unit 25 and the slave force correction unit 39, the process proceeds to step S209. When the force correction method selection unit 35 determines that “target object flexibility information” is not selected as information used by the force correction unit 25 and the slave force correction unit 39, the process proceeds to step S223B.
 ステップS223Bでは、力補正方法選択部35において、力補正部25及びスレーブ力補正部39で使用する情報として「マスター把持位置情報」を選択するか否かを、力補正方法選択部35で判断する。力補正部25及びスレーブ力補正部39で使用する情報として「マスター把持位置情報」を選択すると力補正方法選択部35で判断する場合には、ステップS209に進む。力補正部25及びスレーブ力補正部39で使用する情報として「マスター把持位置情報」を選択しないと力補正方法選択部35で判断する場合には、ステップS221B~ステップS223Bまでどの情報も選択しなかったこととなり、この場合には、作業者が何も選択しなかった場合となり、「対象物把持位置情報」が力補正方法選択部35で自動的に選択することになり、ステップS209に進む。 In step S223B, the force correction method selection unit 35 determines whether or not “master grip position information” is selected as information used by the force correction unit 25 and the slave force correction unit 39. . In the case where the force correction method selection unit 35 determines that “master grip position information” is selected as information used by the force correction unit 25 and the slave force correction unit 39, the process proceeds to step S209. When the force correction method selection unit 35 determines that “master grip position information” is not selected as information used by the force correction unit 25 and the slave force correction unit 39, no information is selected from step S221B to step S223B. In this case, the operator does not select anything, and “target gripping position information” is automatically selected by the force correction method selection unit 35, and the process proceeds to step S209.
 ステップS209では、「減少」として力補正箇所検出部27及びスレーブ力補正箇所検出部40で検出された箇所(区間)では、スレーブ力補正部39において力情報の絶対値を減少したのち、ステップS211に進む。 In step S209, the absolute value of the force information is reduced in the slave force correction unit 39 in the portion (section) detected by the force correction location detection unit 27 and the slave force correction location detection unit 40 as “decrease”, and then in step S211. Proceed to
 ステップS211では、減少した力情報を、力補正部25からスレーブマニピュレータ32に伝達して、一連のフローを終了する。 In step S211, the reduced force information is transmitted from the force correction unit 25 to the slave manipulator 32, and a series of flows is completed.
 《第4実施形態の効果》
 作業毎に対象物の把持位置が異なるような作業を行う場合、「対象物把持位置情報」を選択すると、対象物を把持した位置に応じて補正量を調整する。その結果、作業毎に対象物の把持位置が異なるような作業を行う場合の作業を容易に行うことができる。同様に、作業毎に対象物の柔軟度が異なるような作業を行う場合、「対象物柔軟度情報」を選択すると、対象物の柔軟度に応じて補正量を調整する。その結果、作業毎に対象物の柔軟度が異なるような作業を行う場合の作業を容易に行うことができる。また、「マスター把持位置情報」を選択すると、人の意思で補正量を調整することができるので、細かい作業を行う場合(例えば、フレキシブル基板をコネクタに挿入する作業の場合)に補正量を大きくし、大雑把な作業を行う場合(例えば、フレキシブル基板をコネクタの挿入口まで移動する作業の場合)に補正量を小さくするといったように、作業に応じて補正量を人が調整できるようになる。
<< Effect of Fourth Embodiment >>
When performing an operation in which the gripping position of the target object is different for each work, when “target gripping position information” is selected, the correction amount is adjusted according to the position where the target object is gripped. As a result, it is possible to easily perform a task when performing a task in which the gripping position of the object is different for each task. Similarly, when performing an operation in which the flexibility of the object is different for each operation, when “object flexibility information” is selected, the correction amount is adjusted according to the flexibility of the object. As a result, it is possible to easily perform work when performing work in which the degree of flexibility of the object differs for each work. In addition, when “Master gripping position information” is selected, the correction amount can be adjusted by the intention of a person. Therefore, when performing a fine work (for example, a work of inserting a flexible board into a connector), the correction amount is increased. In addition, when a rough work is performed (for example, when the flexible board is moved to the insertion port of the connector), the correction amount can be adjusted by a person according to the work, such as reducing the correction amount.
 なお、上記様々な実施形態のうちの任意の実施形態を適宜組み合わせることにより、それぞれの有する効果を奏するようにすることができる。 It should be noted that, by appropriately combining arbitrary embodiments of the above-described various embodiments, the effects possessed by them can be produced.
 本発明は、産業用ロボットなど、人が操作するロボットと作業するロボットが別々の操作可能なマスタースレーブロボットの制御装置及び制御方法、マスタースレーブロボット、ロボット制御のプログラム、並びに集積電子回路として有用である。また、産業用ロボットに限らず、家庭用のロボット、ロボットの制御装置、ロボット制御の制御プログラム、並びに、集積電子回路として適用される可能性がある。 INDUSTRIAL APPLICABILITY The present invention is useful as a master-slave robot control device and control method, a master-slave robot, a robot control program, and an integrated electronic circuit that can be operated separately by a human-operated robot and a working robot such as an industrial robot. is there. Further, the present invention is not limited to industrial robots, and may be applied to household robots, robot control devices, robot control control programs, and integrated electronic circuits.
 本発明は、添付図面を参照しながら好ましい実施形態に関連して充分に記載されているが、この技術の熟練した人々にとっては種々の変形又は修正は明白である。そのような変形又は修正は、添付した請求の範囲による本発明の範囲から外れない限りにおいて、その中に含まれると理解されるべきである。 Although the present invention has been fully described in connection with preferred embodiments with reference to the accompanying drawings, various variations or modifications will be apparent to those skilled in the art. Such changes and modifications are to be understood as being included therein unless they depart from the scope of the invention as defined by the appended claims.

Claims (20)

  1.  対象物を把持し被対象物に対して接触しながら作業を行うスレーブマニピュレータと、前記スレーブマニピュレータを人が遠隔により操作するマスターマニピュレータとを備えるマスタースレーブロボットの制御装置において、
     前記スレーブマニピュレータに外部から加えられた力情報を取得する力情報取得部と、
     前記力情報において補正が必要である区間の情報である力補正箇所を、前記力情報取得部で取得した力情報より検出する力補正箇所検出部と、
     前記力補正箇所検出部で検出された区間の前記力情報を補正する力補正部と、
     前記力補正部からの力情報を前記マスターマニピュレータに伝達する力伝達部と、
     前記人が、前記力伝達部からの力情報に基づいて前記マスターマニピュレータを操作するとき、前記マスターマニピュレータの操作情報を制御するマスター制御部と、
     前記スレーブマニピュレータと前記マスター制御部とに接続され、前記マスター制御部から送られる前記マスターマニピュレータの操作情報を、前記スレーブマニピュレータに伝達する制御信号を出力するスレーブ制御部とを備えるマスタースレーブロボットの制御装置。
    In a control apparatus for a master-slave robot comprising a slave manipulator that grips an object and performs work while contacting the object, and a master manipulator that a person remotely operates the slave manipulator,
    A force information acquisition unit that acquires force information applied to the slave manipulator from the outside;
    A force correction point detection unit that detects a force correction point that is information of a section that needs to be corrected in the force information from the force information acquired by the force information acquisition unit;
    A force correction unit for correcting the force information of the section detected by the force correction point detection unit;
    A force transmission unit that transmits force information from the force correction unit to the master manipulator;
    When the person operates the master manipulator based on force information from the force transmission unit, a master control unit that controls operation information of the master manipulator;
    Control of a master-slave robot connected to the slave manipulator and the master control unit, and comprising a slave control unit that outputs a control signal for transmitting operation information of the master manipulator sent from the master control unit to the slave manipulator apparatus.
  2.  対象物を把持し被対象物に対して接触しながら作業を行うスレーブマニピュレータと、
     前記スレーブマニピュレータを人が遠隔により操作するマスターマニピュレータとを備えるマスタースレーブロボットの制御装置において、
     前記人が前記マスターマニピュレータに加える力情報を取得するマスター力情報取得部と、
     前記力情報において補正が必要である区間の情報である力補正箇所を、前記マスター力情報取得部で取得した力情報より検出するスレーブ力補正箇所検出部と、
     前記スレーブ力補正箇所検出部で検出された区間の前記力情報を補正するスレーブ力補正部と、
     前記スレーブ力補正部からの力情報を前記スレーブマニピュレータに伝達するスレーブ力伝達部と、
     前記人が、前記スレーブ力伝達部からの力情報に基づいて前記マスターマニピュレータを操作するとき、前記マスターマニピュレータの操作情報を制御するマスター制御部と、
     前記スレーブマニピュレータと前記マスター制御部とに接続され、前記マスター制御部から送られる前記マスターマニピュレータの操作情報を、前記スレーブマニピュレータに伝達する制御信号を出力するスレーブ制御部とを備えるマスタースレーブロボットの制御装置。
    A slave manipulator that grips the object and works while contacting the object;
    In a master-slave robot control device comprising a master manipulator that allows a human to remotely operate the slave manipulator,
    A master force information acquisition unit that acquires force information applied by the person to the master manipulator;
    A slave force correction point detection unit that detects a force correction point that is information of a section that needs to be corrected in the force information from force information acquired by the master force information acquisition unit;
    A slave force correction unit that corrects the force information of the section detected by the slave force correction point detection unit;
    A slave force transmission unit that transmits force information from the slave force correction unit to the slave manipulator;
    When the person operates the master manipulator based on force information from the slave force transmission unit, a master control unit that controls operation information of the master manipulator;
    Control of a master-slave robot connected to the slave manipulator and the master control unit, and comprising a slave control unit that outputs a control signal for transmitting operation information of the master manipulator sent from the master control unit to the slave manipulator apparatus.
  3.  前記力補正開始時間から前記力補正終了時間までの区間を前記力補正箇所とし、当該区間内の力情報は、時間と力の大きさとの関係において、山形に変化する曲線又は直線で表される、請求項1又は2に記載のマスタースレーブロボットの制御装置。 The section from the force correction start time to the force correction end time is defined as the force correction location, and the force information in the section is represented by a curve or straight line that changes into a mountain shape in relation to time and the magnitude of force. The control apparatus for a master-slave robot according to claim 1 or 2.
  4.  前記力補正箇所検出部は、前記力情報取得部で取得した力情報から、前記力情報の絶対値を増加させて補正する区間の力情報と、前記力情報を補正しない区間の力情報とのいずれかの区間の力情報として検出し、
     前記力補正部は、前記力補正箇所検出部で検出された、前記増加させる区間の力情報の絶対値を増加させるよう補正する請求項1に記載のマスタースレーブロボットの制御装置。
    The force correction point detection unit includes force information of a section to be corrected by increasing an absolute value of the force information from force information acquired by the force information acquisition unit, and force information of a section not to correct the force information. Detect as force information of any section,
    The master-slave robot control device according to claim 1, wherein the force correction unit corrects the absolute value of the force information of the section to be increased, which is detected by the force correction point detection unit.
  5.  前記スレーブ力補正箇所検出部は、前記マスター力情報取得部で取得した力情報から、前記力情報の絶対値を減少させて補正する箇所区間の力情報と、前記力情報を補正しない区間の力情報とのいずれかの区間の力情報として検出し、
     前記スレーブ力補正部は、前記スレーブ力補正箇所検出部で検出された、前記減少させる区間の力情報の絶対値を減少させるよう補正する請求項2に記載のマスタースレーブロボットの制御装置。
    The slave force correction location detection unit is configured to reduce the force information obtained by the master force information acquisition unit by reducing the absolute value of the force information and correct the force information of the interval in which the force information is not corrected. Detect as force information of any section with information,
    The control device for a master-slave robot according to claim 2, wherein the slave force correction unit corrects the absolute value of the force information of the section to be decreased, which is detected by the slave force correction point detection unit.
  6.  前記スレーブマニピュレータの手先部の速度情報を取得する速度情報取得部と、
     前記力補正箇所検出部は、前記速度情報取得部で取得した速度情報より、前記力情報を補正する区間を検出する請求項1に記載のマスタースレーブロボットの制御装置。
    A speed information acquisition unit for acquiring speed information of a hand part of the slave manipulator;
    2. The control device for a master-slave robot according to claim 1, wherein the force correction location detection unit detects a section in which the force information is corrected based on speed information acquired by the speed information acquisition unit.
  7.  前記スレーブマニピュレータの手先部の速度情報を取得する速度情報取得部をさらに備え、
     前記スレーブ力補正箇所検出部は、前記速度情報取得部で取得した速度情報より、前記力情報を補正する区間を検出する請求項2に記載のマスタースレーブロボットの制御装置。
    A speed information acquisition unit that acquires speed information of a hand part of the slave manipulator;
    The control device for a master-slave robot according to claim 2, wherein the slave force correction point detection unit detects a section in which the force information is corrected from the speed information acquired by the speed information acquisition unit.
  8.  前記力補正箇所検出部又は前記スレーブ力補正箇所検出部において前記力補正箇所を検出する際に、「力情報及び速度情報」と、「力情報」と、「速度情報」と、「記憶された力情報と速度情報」とのいずれか1つの情報を選択する検出方法選択部をさらに備え、
     前記検出方法選択部で選択した前記情報に基づき、前記力補正箇所検出部又は前記スレーブ力補正箇所検出部で前記力補正箇所を検出する請求項6又は請求項7に記載のマスタースレーブロボットの制御装置。
    When detecting the force correction point in the force correction point detection unit or the slave force correction point detection unit, “force information and speed information”, “force information”, “speed information”, and “stored” A detection method selection unit that selects any one information of “force information and speed information”,
    The control of the master slave robot according to claim 6 or 7, wherein the force correction location is detected by the force correction location detection unit or the slave force correction location detection unit based on the information selected by the detection method selection unit. apparatus.
  9.  前記力補正箇所検出部又は前記スレーブ力補正箇所検出部は、
     前記検出方法選択部において前記「力情報及び速度情報」が選択された場合には、
     前記速度情報取得部で取得した速度情報の変位が第一の閾値を上回った時間を力補正開始時間とし、
     前記力情報取得部で取得した力情報の変位が第二の閾値を下回った時間を力補正終了時間とし、
     前記力補正開始時間から前記力補正終了時間までの区間を前記力補正箇所として検出する請求項8に記載のマスタースレーブロボットの制御装置。
    The force correction point detection unit or the slave force correction point detection unit,
    When the "force information and speed information" is selected in the detection method selection unit,
    The time when the displacement of the speed information acquired by the speed information acquisition unit exceeds the first threshold is the force correction start time,
    The time when the displacement of the force information acquired by the force information acquisition unit falls below the second threshold is the force correction end time,
    9. The master-slave robot control device according to claim 8, wherein a section from the force correction start time to the force correction end time is detected as the force correction portion.
  10.  前記力補正箇所検出部又は前記スレーブ力補正箇所検出部は、
     前記検出方法選択部において前記「力情報」が選択された場合には、
     前記力情報取得部で取得した力情報の変位が第一の閾値を上回った時間を力補正開始時間とし、
     前記力情報取得部で取得した力情報の変位が第二の閾値を下回った時間を力補正終了時間とし、
     前記力補正開始時間から前記力補正終了時間までの区間を前記力補正箇所として検出する請求項8に記載のマスタースレーブロボットの制御装置。
    The force correction point detection unit or the slave force correction point detection unit,
    When the “force information” is selected in the detection method selection unit,
    The time when the displacement of the force information acquired by the force information acquisition unit exceeds the first threshold is the force correction start time,
    The time when the displacement of the force information acquired by the force information acquisition unit falls below the second threshold is the force correction end time,
    9. The master-slave robot control device according to claim 8, wherein a section from the force correction start time to the force correction end time is detected as the force correction portion.
  11.  前記力補正箇所検出部又は前記スレーブ力補正箇所検出部は、
     前記検出方法選択部において前記「速度情報」が選択された場合には、
     前記速度情報取得部で取得した速度情報の変位が第一の閾値を上回った時間を力補正開始時間とし、
     前記速度情報取得部で取得した速度情報の変位が第二の閾値を下回った時間を力補正終了時間とし、
     前記力補正開始時間から前記力補正終了時間までの区間を前記力補正箇所として検出する請求項8に記載のマスタースレーブロボットの制御装置。
    The force correction point detection unit or the slave force correction point detection unit,
    When the “speed information” is selected in the detection method selection unit,
    The time when the displacement of the speed information acquired by the speed information acquisition unit exceeds the first threshold is the force correction start time,
    The time when the displacement of the speed information acquired by the speed information acquisition unit falls below the second threshold is the force correction end time,
    9. The master-slave robot control device according to claim 8, wherein a section from the force correction start time to the force correction end time is detected as the force correction portion.
  12.  力情報と速度情報とを予め記憶する記憶部をさらに備え、
     前記力補正箇所検出部又は前記スレーブ力補正箇所検出部は、
     前記検出方法選択部において前記「記憶された力情報と速度情報」が選択された場合には、
     前記記憶部に記憶された力情報又は速度情報の変位が第一の閾値を上回ったときの力情報又は速度情報の変位に対して、前記力情報取得部又は前記速度情報取得部で取得した、力情報又は速度情報の変位がある閾値の範囲内に収まる時間を力補正開始時間とし、
     前記記憶部に記憶された力情報又は速度情報の変位が第二の閾値を下回ったときの力情報又は速度情報の変位に対して、前記力情報取得部又は前記速度情報取得部で取得した、力情報又は速度情報の変位がある閾値の範囲内に収まる時間を力補正終了時間とし、
     前記力補正開始時間から前記力補正終了時間までの区間を前記力補正箇所として検出する請求項8に記載のマスタースレーブロボットの制御装置。
    A storage unit for storing force information and speed information in advance;
    The force correction point detection unit or the slave force correction point detection unit,
    When the “stored force information and speed information” is selected in the detection method selection unit,
    For the displacement of force information or speed information when the displacement of the force information or speed information stored in the storage unit exceeds a first threshold, acquired by the force information acquisition unit or the speed information acquisition unit, The time when the displacement of the force information or speed information falls within a certain threshold range is the force correction start time,
    For the displacement of the force information or speed information when the displacement of the force information or speed information stored in the storage unit is below a second threshold, acquired by the force information acquisition unit or the speed information acquisition unit, The time within which the displacement of the force information or speed information falls within a certain threshold range is the force correction end time,
    9. The master-slave robot control device according to claim 8, wherein a section from the force correction start time to the force correction end time is detected as the force correction portion.
  13.  前記力補正部又は前記スレーブ力補正部において力を補正する際に、「対象物把持位置情報」と、「対象物柔軟度情報」と、「マスター把持位置情報」とのいずれか1つの情報を選択する力補正方法選択部をさらに備え、
     前記力補正部又は前記スレーブ力補正部は、前記力補正方法選択部で選択した力補正方法により、前記力情報を補正する請求項1又は請求項2に記載のマスタースレーブロボットの制御装置。
    When correcting the force in the force correction unit or the slave force correction unit, any one information of “target grip position information”, “target flexibility information”, and “master grip position information” is used. A force correction method selection unit for selecting,
    The master / slave robot control device according to claim 1, wherein the force correction unit or the slave force correction unit corrects the force information by a force correction method selected by the force correction method selection unit.
  14.  前記スレーブマニピュレータが前記対象物を把持する位置情報を取得する対象物把持位置取得部と、
     前記スレーブマニピュレータが前記対象物を把持する位置情報と補正量との関係情報を記憶する補正量記憶部をさらに備え、
     前記力補正部又は前記スレーブ力補正部は、
     前記力補正方法選択部において前記「対象物把持位置情報」が選択された場合には、
     前記スレーブマニピュレータが前記対象物を把持する把持位置情報を前記対象物把持位置取得部で取得し、
     前記対象物把持位置取得部で取得された前記把持位置情報を用いて、前記補正量記憶部から前記力情報の補正量を求める請求項13に記載のマスタースレーブロボットの制御装置。
    An object gripping position acquisition unit that acquires position information for the slave manipulator to grip the object;
    A correction amount storage unit that stores relationship information between the position information and the correction amount at which the slave manipulator grips the object;
    The force correction unit or the slave force correction unit is
    When the “target gripping position information” is selected in the force correction method selection unit,
    The slave manipulator acquires grip position information for gripping the target object by the target grip position acquisition unit,
    The master-slave robot control device according to claim 13, wherein a correction amount of the force information is obtained from the correction amount storage unit using the grip position information acquired by the object gripping position acquisition unit.
  15.  前記対象物の柔軟度情報と補正量との関係情報を記憶する補正量記憶部をさらに備え、
     前記力補正部又は前記スレーブ力補正部は、
     前記力補正方法選択部において前記「対象物柔軟度情報」が選択された場合には、
     前記対象物に基づく前記対象物の柔軟度情報を前記補正量記憶部から取得し、
     前記柔軟度情報を用いて、前記補正量記憶部から前記力情報の補正量を求める請求項13に記載のマスタースレーブロボットの制御装置。
    A correction amount storage unit that stores relationship information between the flexibility information of the object and the correction amount;
    The force correction unit or the slave force correction unit is
    When the “object flexibility information” is selected in the force correction method selection unit,
    Acquiring flexibility information of the object based on the object from the correction amount storage unit;
    The master-slave robot control device according to claim 13, wherein a correction amount of the force information is obtained from the correction amount storage unit using the flexibility information.
  16.  前記人が前記マスターマニピュレータを把持する位置情報を取得するマスター把持位置取得部と、
     前記人が前記マスターマニピュレータを把持する位置情報と補正量との関係情報を記憶する補正量記憶部をさらに備え、
     前記力補正部又は前記スレーブ力補正部は、
     前記力補正方法選択部において前記「マスター把持位置情報」が選択された場合には、
     前記人が前記マスターマニピュレータを把持する位置情報を前記マスター把持位置情報取部で取得し、
     前記マスター把持位置情報取部で取得された前記位置情報を用いて、前記補正量記憶部から前記力情報の補正量を求める請求項13に記載のマスタースレーブロボットの制御装置。
    A master grip position acquisition unit for acquiring position information for the person to grip the master manipulator;
    A correction amount storage unit that stores relationship information between the positional information and the correction amount by which the person holds the master manipulator;
    The force correction unit or the slave force correction unit is
    When the “master grip position information” is selected in the force correction method selection unit,
    The master gripping position information acquisition unit acquires position information for gripping the master manipulator by the person,
    The master-slave robot control device according to claim 13, wherein a correction amount of the force information is obtained from the correction amount storage unit using the position information acquired by the master gripping position information acquisition unit.
  17.  対象物を把持し被対象物に対して接触しながら作業を行うスレーブマニピュレータと、前記スレーブマニピュレータを人が遠隔により操作するマスターマニピュレータとを備えるマスタースレーブロボットの制御装置の制御方法であって、
     前記スレーブマニピュレータに外部から加えられた力情報を力情報取得部で取得し、
     前記力情報において補正が必要である区間の情報である力補正箇所を、前記力情報取得部で取得した力情報より力補正箇所検出部で検出し、
     前記力補正箇所検出部で検出された区間の前記力情報を力補正部で補正し、
     前記力補正部からの力情報を前記マスターマニピュレータに力伝達部で伝達し、
     前記人が、前記力伝達部からの力情報に基づいて前記マスターマニピュレータを操作するとき、前記マスターマニピュレータの操作情報をマスター制御部で制御し、
     前記スレーブマニピュレータと前記マスター制御部とに接続され、前記マスター制御部から送られる前記マスターマニピュレータの操作情報を、前記スレーブマニピュレータに伝達する制御信号をスレーブ制御部で出力するマスタースレーブロボットの制御装置の制御方法。
    A control method of a control device for a master-slave robot comprising a slave manipulator that grips an object and performs work while making contact with the object, and a master manipulator that a person remotely operates the slave manipulator,
    A force information acquisition unit acquires force information applied to the slave manipulator from the outside,
    In the force information, a force correction location that is information of a section that needs to be corrected is detected by the force correction location detection unit from the force information acquired by the force information acquisition unit,
    The force correction section corrects the force information of the section detected by the force correction point detection section,
    Transmit force information from the force correction unit to the master manipulator with a force transmission unit,
    When the person operates the master manipulator based on the force information from the force transmission unit, the operation information of the master manipulator is controlled by the master control unit,
    A control device for a master-slave robot connected to the slave manipulator and the master control unit, wherein the slave control unit outputs a control signal for transmitting operation information of the master manipulator sent from the master control unit to the slave manipulator. Control method.
  18.  前記マスターマニピュレータ及び前記スレーブマニピュレータと、
     請求項1~16のいずれか1つに記載の前記マスタースレーブロボットの制御装置とを備えるマスタースレーブロボット。
    The master manipulator and the slave manipulator;
    A master-slave robot comprising the control device for the master-slave robot according to any one of claims 1 to 16.
  19.  対象物を把持し被対象物に対して接触しながら作業を行うスレーブマニピュレータと、前記スレーブマニピュレータを人が遠隔により操作するマスターマニピュレータとを備えるマスタースレーブロボットの制御装置の制御プログラムであって、
     コンピュータに、
     前記スレーブマニピュレータに外部から加えられた力情報を力情報取得部で取得するステップと、
     前記力情報において補正が必要である区間の情報である力補正箇所を、前記力情報取得部で取得した力情報より力補正箇所検出部で検出するステップと、
     前記力補正箇所検出部で検出された区間の前記力情報を力補正部で補正するステップと、
     前記力補正部からの力情報を前記マスターマニピュレータに力伝達部で伝達するステップと、
     前記人が、前記力伝達部からの力情報に基づいて前記マスターマニピュレータを操作するとき、前記マスターマニピュレータの操作情報をマスター制御部で制御するステップと、
     前記スレーブマニピュレータとマスター制御部とに接続され、前記マスター制御部から送られる前記マスターマニピュレータの操作情報を、前記スレーブマニピュレータに伝達する制御信号をスレーブ制御部で出力するステップとを実行するための、マスタースレーブロボットの制御装置の制御プログラム。
    A control program of a control device for a master-slave robot comprising a slave manipulator that grips an object and performs work while contacting the object, and a master manipulator that a person remotely operates the slave manipulator,
    On the computer,
    Acquiring force information externally applied to the slave manipulator with a force information acquisition unit;
    Detecting a force correction location, which is information of a section requiring correction in the force information, by a force correction location detection unit from force information acquired by the force information acquisition unit;
    A step of correcting the force information of the section detected by the force correction point detection unit by a force correction unit;
    Transmitting force information from the force correction unit to the master manipulator with a force transmission unit;
    When the person operates the master manipulator based on the force information from the force transmission unit, controlling the operation information of the master manipulator with a master control unit;
    The slave manipulator is connected to the master control unit, and the operation information of the master manipulator sent from the master control unit is transmitted to the slave manipulator, and the slave control unit outputs a control signal. Control program for the master / slave robot controller.
  20.  対象物を把持し被対象物に対して接触しながら作業を行うスレーブマニピュレータと、前記スレーブマニピュレータを人が遠隔により操作するマスターマニピュレータとを備えるマスタースレーブロボットの制御装置の集積電子回路であって、
     前記スレーブマニピュレータに外部から加えられた力情報を力情報取得部で取得し、
     前記力情報において補正が必要である区間の情報である力補正箇所を、前記力情報取得部で取得した力情報より力補正箇所検出部で検出し、
     前記力補正箇所検出部で検出された区間の前記力情報を力補正部で補正し、
     前記力補正部からの力情報を前記マスターマニピュレータに力伝達部で伝達し、
     前記人が、前記力伝達部からの力情報に基づいて前記マスターマニピュレータを操作するとき、前記マスターマニピュレータの操作情報をマスター制御部で制御し、
     前記スレーブマニピュレータと前記マスター制御部とに接続され、前記マスター制御部から送られる前記マスターマニピュレータの操作情報を、前記スレーブマニピュレータに伝達する制御信号をスレーブ制御部で出力するマスタースレーブロボットの制御装置の集積電子回路。
    An integrated electronic circuit of a control device for a master-slave robot comprising a slave manipulator that grips an object and performs work while contacting the object, and a master manipulator that allows a human to remotely operate the slave manipulator,
    A force information acquisition unit acquires force information applied to the slave manipulator from the outside,
    In the force information, a force correction location that is information of a section that needs to be corrected is detected by the force correction location detection unit from the force information acquired by the force information acquisition unit,
    The force correction section corrects the force information of the section detected by the force correction point detection section,
    Transmit force information from the force correction unit to the master manipulator with a force transmission unit,
    When the person operates the master manipulator based on the force information from the force transmission unit, the operation information of the master manipulator is controlled by the master control unit,
    A control device for a master-slave robot connected to the slave manipulator and the master control unit, wherein the slave control unit outputs a control signal for transmitting operation information of the master manipulator sent from the master control unit to the slave manipulator. Integrated electronic circuit.
PCT/JP2011/003713 2010-08-31 2011-06-29 Controller and control method for master-slave robot, master-slave robot, control program, and integrated electronic circuit WO2012029227A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012511479A JP5032716B2 (en) 2010-08-31 2011-06-29 Master-slave robot control device, control method, and control program
CN201180005128.1A CN102686366B (en) 2010-08-31 2011-06-29 Controller and control method for master-slave robot
US13/433,800 US8504206B2 (en) 2010-08-31 2012-03-29 Control apparatus and method for master-slave robot, master-slave robot, control program, and integrated electronic circuit
US13/934,529 US9089967B2 (en) 2010-08-31 2013-07-03 Control apparatus and method for master-slave robot, master-slave robot, control program, and integrated electronic circuit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-193605 2010-08-31
JP2010193605 2010-08-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/433,800 Continuation US8504206B2 (en) 2010-08-31 2012-03-29 Control apparatus and method for master-slave robot, master-slave robot, control program, and integrated electronic circuit

Publications (1)

Publication Number Publication Date
WO2012029227A1 true WO2012029227A1 (en) 2012-03-08

Family

ID=45772354

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/003713 WO2012029227A1 (en) 2010-08-31 2011-06-29 Controller and control method for master-slave robot, master-slave robot, control program, and integrated electronic circuit

Country Status (4)

Country Link
US (2) US8504206B2 (en)
JP (1) JP5032716B2 (en)
CN (1) CN102686366B (en)
WO (1) WO2012029227A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102873674A (en) * 2012-09-04 2013-01-16 上海交通大学 Remote control system capable of performing force/moment feedback control
JP2015027724A (en) * 2013-06-24 2015-02-12 パナソニックIpマネジメント株式会社 Control device of master slave robot, control method, robot, control program of master slave robot, and controlling integrated electronic circuit for master slave robot
US9233467B2 (en) 2013-01-10 2016-01-12 Panasonic Intellectual Property Management Co., Ltd. Control apparatus and method for master-slave robot, master-slave robot, and control program
US9421686B2 (en) 2013-05-27 2016-08-23 Panasonic Intellectual Property Management Co., Ltd. Master device for master slave apparatus, method of controlling the same, and master slave robot
JPWO2017033379A1 (en) * 2015-08-25 2018-06-14 川崎重工業株式会社 Robot system
WO2019069850A1 (en) * 2017-10-02 2019-04-11 株式会社オカムラ Management system and control method
JPWO2019189671A1 (en) * 2018-03-28 2021-11-04 株式会社Re−al Force-tactile transmission system, force-tactile transmission device, force-tactile transmission method and program

Families Citing this family (87)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012049623A1 (en) 2010-10-11 2012-04-19 Ecole Polytechnique Federale De Lausanne (Epfl) Mechanical manipulator for surgical instruments
JP5743495B2 (en) * 2010-11-05 2015-07-01 キヤノン株式会社 Robot controller
US8942846B2 (en) * 2011-04-29 2015-01-27 Raytheon Company System and method for controlling a teleoperated robotic agile lift system
US9789603B2 (en) 2011-04-29 2017-10-17 Sarcos Lc Teleoperated robotic system
CN103717355B (en) 2011-07-27 2015-11-25 洛桑联邦理工学院 For the mechanical remote control operating means of remote control
JP6021353B2 (en) 2011-08-04 2016-11-09 オリンパス株式会社 Surgery support device
WO2013018861A1 (en) 2011-08-04 2013-02-07 オリンパス株式会社 Medical manipulator and method for controlling same
JP6000641B2 (en) 2011-08-04 2016-10-05 オリンパス株式会社 Manipulator system
JP6005950B2 (en) 2011-08-04 2016-10-12 オリンパス株式会社 Surgery support apparatus and control method thereof
JP5841451B2 (en) 2011-08-04 2016-01-13 オリンパス株式会社 Surgical instrument and control method thereof
JP6021484B2 (en) 2011-08-04 2016-11-09 オリンパス株式会社 Medical manipulator
CN103732173B (en) 2011-08-04 2016-03-09 奥林巴斯株式会社 Surgical instrument and medical manipulator
JP5931497B2 (en) 2011-08-04 2016-06-08 オリンパス株式会社 Surgery support apparatus and assembly method thereof
JP5936914B2 (en) 2011-08-04 2016-06-22 オリンパス株式会社 Operation input device and manipulator system including the same
JP6009840B2 (en) 2011-08-04 2016-10-19 オリンパス株式会社 Medical equipment
JP5953058B2 (en) 2011-08-04 2016-07-13 オリンパス株式会社 Surgery support device and method for attaching and detaching the same
WO2013018908A1 (en) 2011-08-04 2013-02-07 オリンパス株式会社 Manipulator for medical use and surgery support device
JP6081061B2 (en) * 2011-08-04 2017-02-15 オリンパス株式会社 Surgery support device
JP5915214B2 (en) * 2012-02-01 2016-05-11 セイコーエプソン株式会社 Robot apparatus, assembling method, and assembling program
KR101800189B1 (en) * 2012-04-30 2017-11-23 삼성전자주식회사 Apparatus and method for controlling power of surgical robot
US9616580B2 (en) 2012-05-14 2017-04-11 Sarcos Lc End effector for a robotic arm
US9694495B1 (en) * 2013-06-24 2017-07-04 Redwood Robotics Inc. Virtual tools for programming a robot arm
JP6382203B2 (en) * 2013-09-19 2018-08-29 学校法人慶應義塾 Position / force control device, position / force control method and program
JP6358463B2 (en) * 2013-11-13 2018-07-18 パナソニックIpマネジメント株式会社 Master device for master-slave device, control method therefor, and master-slave device
CN103862473A (en) * 2014-03-04 2014-06-18 南昌大学 Wave variable displacement tracking and control method based on local data of slave
JP5845311B2 (en) * 2014-04-30 2016-01-20 ファナック株式会社 Control device for flexible control of robots
US10766133B2 (en) 2014-05-06 2020-09-08 Sarcos Lc Legged robotic device utilizing modifiable linkage mechanism
JP2016032533A (en) * 2014-07-31 2016-03-10 オリンパス株式会社 Medical manipulator and treatment instrument package
CN104317245A (en) * 2014-10-30 2015-01-28 胡玥 Master-slave control system with force feedback function
CN104440864B (en) * 2014-12-04 2017-08-11 深圳先进技术研究院 A kind of master-slave mode remote operating industrial robot system and its control method
US9804593B1 (en) * 2014-12-12 2017-10-31 X Development Llc Methods and systems for teaching positions to components of devices
EP3232977B1 (en) 2014-12-19 2020-01-29 DistalMotion SA Docking system for mechanical telemanipulator
EP3232951B1 (en) 2014-12-19 2023-10-25 DistalMotion SA Surgical instrument with articulated end-effector
DK3653145T3 (en) 2014-12-19 2024-04-15 Distalmotion Sa REUSABLE SURGICAL INSTRUMENT FOR MINIMALLY INVASIVE PROCEDURES
US11039820B2 (en) 2014-12-19 2021-06-22 Distalmotion Sa Sterile interface for articulated surgical instruments
EP3232974B1 (en) 2014-12-19 2018-10-24 DistalMotion SA Articulated handle for mechanical telemanipulator
WO2016136614A1 (en) * 2015-02-26 2016-09-01 オリンパス株式会社 Operation input device and medical manipulator system
EP3280343B1 (en) 2015-04-09 2024-08-21 DistalMotion SA Mechanical teleoperated device for remote manipulation
EP3280337B1 (en) 2015-04-09 2019-11-13 DistalMotion SA Articulated hand-held instrument
WO2017037532A1 (en) 2015-08-28 2017-03-09 Distalmotion Sa Surgical instrument with increased actuation force
CN105345823B (en) * 2015-10-29 2017-12-19 广东工业大学 A kind of industrial robot based on space force information freely drives teaching method
JP6706489B2 (en) 2015-11-24 2020-06-10 川崎重工業株式会社 Robot direct teaching method
JP2017196705A (en) * 2016-04-28 2017-11-02 セイコーエプソン株式会社 Robot and robot system
US11352843B2 (en) 2016-05-12 2022-06-07 Nov Canada Ulc System and method for offline standbuilding
US20180021949A1 (en) * 2016-07-20 2018-01-25 Canon Kabushiki Kaisha Robot apparatus, robot controlling method, program, and recording medium
US10765537B2 (en) 2016-11-11 2020-09-08 Sarcos Corp. Tunable actuator joint modules having energy recovering quasi-passive elastic actuators for use within a robotic system
US10828767B2 (en) 2016-11-11 2020-11-10 Sarcos Corp. Tunable actuator joint modules having energy recovering quasi-passive elastic actuators with internal valve arrangements
US10821614B2 (en) 2016-11-11 2020-11-03 Sarcos Corp. Clutched joint modules having a quasi-passive elastic actuator for a robotic assembly
US10919161B2 (en) 2016-11-11 2021-02-16 Sarcos Corp. Clutched joint modules for a robotic system
JP6534126B2 (en) * 2016-11-22 2019-06-26 パナソニックIpマネジメント株式会社 Picking system and control method therefor
JP6484213B2 (en) * 2016-12-09 2019-03-13 ファナック株式会社 Robot system including a plurality of robots, robot control apparatus, and robot control method
US10661438B2 (en) * 2017-01-16 2020-05-26 Ants Technology (Hk) Limited Robot apparatus, methods and computer products
US11058503B2 (en) 2017-05-11 2021-07-13 Distalmotion Sa Translational instrument interface for surgical robot and surgical robot systems comprising the same
JP6476358B1 (en) * 2017-05-17 2019-02-27 Telexistence株式会社 Control device, robot control method, and robot control system
JP6959762B2 (en) * 2017-05-19 2021-11-05 川崎重工業株式会社 Remote control robot system
US10843330B2 (en) 2017-12-07 2020-11-24 Sarcos Corp. Resistance-based joint constraint for a master robotic system
US11331809B2 (en) 2017-12-18 2022-05-17 Sarcos Corp. Dynamically controlled robotic stiffening element
JP7069747B2 (en) 2018-01-26 2022-05-18 セイコーエプソン株式会社 Robot control device and robot system
AU2019218707B2 (en) 2018-02-07 2024-10-24 Distalmotion Sa Surgical robot systems comprising robotic telemanipulators and integrated laparoscopy
JP7239916B2 (en) * 2018-05-21 2023-03-15 Telexistence株式会社 Remote control system, information processing method, and program
US11035183B2 (en) 2018-08-03 2021-06-15 National Oilwell Varco, L.P. Devices, systems, and methods for top drive clearing
US11192253B2 (en) * 2018-10-12 2021-12-07 Toyota Research Institute, Inc. Systems and methods for conditional robotic teleoperation
US11351675B2 (en) 2018-12-31 2022-06-07 Sarcos Corp. Robotic end-effector having dynamic stiffening elements for conforming object interaction
US11241801B2 (en) 2018-12-31 2022-02-08 Sarcos Corp. Robotic end effector with dorsally supported actuation mechanism
US10906191B2 (en) 2018-12-31 2021-02-02 Sarcos Corp. Hybrid robotic end effector
WO2020151386A1 (en) 2019-01-25 2020-07-30 National Oilwell Varco, L.P. Pipe handling arm
US11988059B2 (en) 2019-02-22 2024-05-21 National Oilwell Varco, L.P. Dual activity top drive
US11834914B2 (en) 2020-02-10 2023-12-05 National Oilwell Varco, L.P. Quick coupling drill pipe connector
US11274508B2 (en) 2020-03-31 2022-03-15 National Oilwell Varco, L.P. Robotic pipe handling from outside a setback area
WO2021226622A1 (en) 2020-05-03 2021-11-11 National Oilwell Varco, L.P. Passive rotation disconnect
WO2022004568A1 (en) * 2020-06-30 2022-01-06 学校法人慶應義塾 Control system, control method, and program
US11833676B2 (en) 2020-12-07 2023-12-05 Sarcos Corp. Combining sensor output data to prevent unsafe operation of an exoskeleton
US11794345B2 (en) 2020-12-31 2023-10-24 Sarcos Corp. Unified robotic vehicle systems and methods of control
US11365592B1 (en) * 2021-02-02 2022-06-21 National Oilwell Varco, L.P. Robot end-effector orientation constraint for pipe tailing path
CN115070749A (en) * 2021-03-12 2022-09-20 腾讯科技(深圳)有限公司 Method, device, equipment and system for controlling robot and readable storage medium
US11814911B2 (en) 2021-07-02 2023-11-14 National Oilwell Varco, L.P. Passive tubular connection guide
EP4401666A1 (en) 2021-09-13 2024-07-24 DistalMotion SA Instruments for surgical robotic system and interfaces for the same
US11982139B2 (en) 2021-11-03 2024-05-14 National Oilwell Varco, L.P. Passive spacer system
CN114098993B (en) * 2021-11-24 2023-05-23 重庆金山医疗机器人有限公司 Main hand pitching information acquisition method
WO2023123259A1 (en) * 2021-12-30 2023-07-06 西门子(中国)有限公司 Robot remote control method and apparatus
CN114378819B (en) * 2022-01-18 2022-07-26 上海健康医学院 Master-slave hand control method and device for digestive endoscopy minimally invasive surgery robot
US11826907B1 (en) 2022-08-17 2023-11-28 Sarcos Corp. Robotic joint system with length adapter
US11717956B1 (en) 2022-08-29 2023-08-08 Sarcos Corp. Robotic joint system with integrated safety
WO2024050729A1 (en) * 2022-09-07 2024-03-14 Shanghai Flexiv Robotics Technology Co., Ltd. Robot teleoperation system and method
US11924023B1 (en) 2022-11-17 2024-03-05 Sarcos Corp. Systems and methods for redundant network communication in a robot
US11897132B1 (en) 2022-11-17 2024-02-13 Sarcos Corp. Systems and methods for redundant network communication in a robot
US11844585B1 (en) 2023-02-10 2023-12-19 Distalmotion Sa Surgical robotics systems and devices having a sterile restart, and methods thereof

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59157715A (en) 1983-02-25 1984-09-07 Hitachi Ltd Direct teaching method of robot
JPS6328580A (en) * 1986-07-22 1988-02-06 株式会社東芝 Force feedback type bilateral servo manipulator
JPS6434686A (en) 1987-07-29 1989-02-06 Kubota Ltd Master/slave manipulator
JPH04101789A (en) * 1990-08-22 1992-04-03 Furukawa Electric Co Ltd:The Manipulator
JPH05204440A (en) 1992-01-28 1993-08-13 Yaskawa Electric Corp Off-line direct teaching device
JPH06270075A (en) * 1993-03-24 1994-09-27 Yaskawa Electric Corp Robot control device
JPH08164807A (en) * 1994-12-13 1996-06-25 Hitachi Ltd Collision avoiding device
JPH08229858A (en) * 1995-02-28 1996-09-10 Nippon Steel Corp Master-slave manipulator control method and device thereof
JPH08281573A (en) 1995-04-12 1996-10-29 Nippon Steel Corp Master-slave manipulator and control method thereof
JPH09285984A (en) * 1996-04-19 1997-11-04 Nippon Steel Corp Remote operation type robot controlling method and remote operation type shaft insertion device
JPH11333764A (en) * 1998-05-29 1999-12-07 Kawasaki Heavy Ind Ltd Remotely operating device
JP2002059380A (en) 2000-08-22 2002-02-26 Olympus Optical Co Ltd Master-slave device
JP2002307336A (en) * 2001-04-17 2002-10-23 Keio Gijuku Master and slave device, control method and computer program
JP2006212741A (en) * 2005-02-04 2006-08-17 National Institute Of Advanced Industrial & Technology Task skill generating device
JP2006341348A (en) * 2005-06-09 2006-12-21 National Institute Of Advanced Industrial & Technology 3-pin plug insert device for power supply
WO2009107358A1 (en) 2008-02-28 2009-09-03 パナソニック株式会社 Control apparatus and control method for a robot arm, robot, control program for a robot arm, and electronic integrated circuit for controlling a robot arm

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5046022A (en) * 1988-03-10 1991-09-03 The Regents Of The University Of Michigan Tele-autonomous system and method employing time/position synchrony/desynchrony
US5279309A (en) * 1991-06-13 1994-01-18 International Business Machines Corporation Signaling device and method for monitoring positions in a surgical operation
US5734373A (en) * 1993-07-16 1998-03-31 Immersion Human Interface Corporation Method and apparatus for controlling force feedback interface systems utilizing a host computer
JPH09281573A (en) * 1996-04-18 1997-10-31 Fuji Photo Film Co Ltd Camera
US6636197B1 (en) * 1996-11-26 2003-10-21 Immersion Corporation Haptic feedback effects for control, knobs and other interface devices
US5943914A (en) * 1997-03-27 1999-08-31 Sandia Corporation Master-slave micromanipulator apparatus
WO2000060571A1 (en) * 1999-04-02 2000-10-12 Massachusetts Institute Of Technology Haptic interface system for collision detection and applications therefore
US6565554B1 (en) * 1999-04-07 2003-05-20 Intuitive Surgical, Inc. Friction compensation in a minimally invasive surgical apparatus
US10820949B2 (en) * 1999-04-07 2020-11-03 Intuitive Surgical Operations, Inc. Medical robotic system with dynamically adjustable slave manipulator characteristics
US20040243147A1 (en) * 2001-07-03 2004-12-02 Lipow Kenneth I. Surgical robot and robotic controller
JP4524729B2 (en) 2001-07-25 2010-08-18 株式会社安川電機 Remote control robot controller
US7831292B2 (en) * 2002-03-06 2010-11-09 Mako Surgical Corp. Guidance system and method for surgical procedures with improved feedback
JP3752494B2 (en) * 2003-03-31 2006-03-08 株式会社東芝 Master-slave manipulator, control device and control method thereof
WO2005009692A1 (en) * 2003-07-29 2005-02-03 Matsushita Electric Industrial Co., Ltd. Robot arm control method and control device
US7904182B2 (en) * 2005-06-08 2011-03-08 Brooks Automation, Inc. Scalable motion control system
US7819859B2 (en) * 2005-12-20 2010-10-26 Intuitive Surgical Operations, Inc. Control system for reducing internally generated frictional and inertial resistance to manual positioning of a surgical manipulator
EP1815949A1 (en) * 2006-02-03 2007-08-08 The European Atomic Energy Community (EURATOM), represented by the European Commission Medical robotic system with manipulator arm of the cylindrical coordinate type
CN101448467B (en) * 2006-05-19 2014-07-09 马科外科公司 Method and apparatus for controlling a haptic device
JP5327687B2 (en) * 2007-03-01 2013-10-30 国立大学法人東京工業大学 Maneuvering system with haptic function
EP2148629B1 (en) * 2007-04-16 2012-06-06 NeuroArm Surgical, Ltd. Frame mapping and force feedback methods, devices and systems
CN101687321B (en) * 2007-07-05 2012-08-08 松下电器产业株式会社 Robot arm control device and control method, robot and control program
US9895813B2 (en) * 2008-03-31 2018-02-20 Intuitive Surgical Operations, Inc. Force and torque sensing in a surgical robot setup arm
US8423188B2 (en) 2009-01-09 2013-04-16 Panasonic Corporation Control apparatus and control method for robot arm, robot, control program for robot arm, and integrated electronic circuit
US20110295248A1 (en) * 2010-05-28 2011-12-01 Hansen Medical, Inc. System and method for automated minimally invasive instrument command

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59157715A (en) 1983-02-25 1984-09-07 Hitachi Ltd Direct teaching method of robot
JPS6328580A (en) * 1986-07-22 1988-02-06 株式会社東芝 Force feedback type bilateral servo manipulator
JPS6434686A (en) 1987-07-29 1989-02-06 Kubota Ltd Master/slave manipulator
JPH04101789A (en) * 1990-08-22 1992-04-03 Furukawa Electric Co Ltd:The Manipulator
JPH05204440A (en) 1992-01-28 1993-08-13 Yaskawa Electric Corp Off-line direct teaching device
JPH06270075A (en) * 1993-03-24 1994-09-27 Yaskawa Electric Corp Robot control device
JPH08164807A (en) * 1994-12-13 1996-06-25 Hitachi Ltd Collision avoiding device
JPH08229858A (en) * 1995-02-28 1996-09-10 Nippon Steel Corp Master-slave manipulator control method and device thereof
JPH08281573A (en) 1995-04-12 1996-10-29 Nippon Steel Corp Master-slave manipulator and control method thereof
JPH09285984A (en) * 1996-04-19 1997-11-04 Nippon Steel Corp Remote operation type robot controlling method and remote operation type shaft insertion device
JPH11333764A (en) * 1998-05-29 1999-12-07 Kawasaki Heavy Ind Ltd Remotely operating device
JP2002059380A (en) 2000-08-22 2002-02-26 Olympus Optical Co Ltd Master-slave device
JP2002307336A (en) * 2001-04-17 2002-10-23 Keio Gijuku Master and slave device, control method and computer program
JP2006212741A (en) * 2005-02-04 2006-08-17 National Institute Of Advanced Industrial & Technology Task skill generating device
JP2006341348A (en) * 2005-06-09 2006-12-21 National Institute Of Advanced Industrial & Technology 3-pin plug insert device for power supply
WO2009107358A1 (en) 2008-02-28 2009-09-03 パナソニック株式会社 Control apparatus and control method for a robot arm, robot, control program for a robot arm, and electronic integrated circuit for controlling a robot arm

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102873674A (en) * 2012-09-04 2013-01-16 上海交通大学 Remote control system capable of performing force/moment feedback control
US9233467B2 (en) 2013-01-10 2016-01-12 Panasonic Intellectual Property Management Co., Ltd. Control apparatus and method for master-slave robot, master-slave robot, and control program
US9421686B2 (en) 2013-05-27 2016-08-23 Panasonic Intellectual Property Management Co., Ltd. Master device for master slave apparatus, method of controlling the same, and master slave robot
JP2015027724A (en) * 2013-06-24 2015-02-12 パナソニックIpマネジメント株式会社 Control device of master slave robot, control method, robot, control program of master slave robot, and controlling integrated electronic circuit for master slave robot
JPWO2017033379A1 (en) * 2015-08-25 2018-06-14 川崎重工業株式会社 Robot system
WO2019069850A1 (en) * 2017-10-02 2019-04-11 株式会社オカムラ Management system and control method
JP2019063950A (en) * 2017-10-02 2019-04-25 株式会社オカムラ Management system and control method
US11534907B2 (en) 2017-10-02 2022-12-27 Okamura Corporation Management system and control method
JPWO2019189671A1 (en) * 2018-03-28 2021-11-04 株式会社Re−al Force-tactile transmission system, force-tactile transmission device, force-tactile transmission method and program
JP7029521B2 (en) 2018-03-28 2022-03-03 株式会社Re-al Force-tactile transmission system, force-tactile transmission device, force-tactile transmission method and program

Also Published As

Publication number Publication date
US20120191245A1 (en) 2012-07-26
CN102686366B (en) 2015-02-25
US9089967B2 (en) 2015-07-28
JP5032716B2 (en) 2012-09-26
US8504206B2 (en) 2013-08-06
US20130297072A1 (en) 2013-11-07
JPWO2012029227A1 (en) 2013-10-28
CN102686366A (en) 2012-09-19

Similar Documents

Publication Publication Date Title
JP5032716B2 (en) Master-slave robot control device, control method, and control program
JP5512048B2 (en) ROBOT ARM CONTROL DEVICE AND CONTROL METHOD, ROBOT, CONTROL PROGRAM, AND INTEGRATED ELECTRONIC CIRCUIT
US9211646B2 (en) Control apparatus and control method for robot arm, assembly robot, control program for robot arm, and control-purpose integrated electronic circuit for robot arm
US8725295B2 (en) Robot, robot control apparatus, robot control method, and robot control program
JP6450960B2 (en) Robot, robot system and teaching method
CN110977931A (en) Robot control device and display device using augmented reality and mixed reality
WO2010079564A1 (en) Control apparatuas and control method for robot arm, robot, control program for robot arm, and integrated electronic circuit
WO2012147595A1 (en) Manipulator device
CN107718018A (en) The robot controller of mounter people
JP5345046B2 (en) Robot teaching device and robot control device
TW201404560A (en) Control system, program, and method of controlling mechanical equipment
CN106493711B (en) Control device, robot, and robot system
JP2018167334A (en) Teaching device and teaching method
JP2010064155A (en) Holding device
JP2014151377A (en) Robot control method, robot control device, robot system, robot, and program
JP2014014902A (en) Control system, program and control method for mechanical device
JP2013111684A (en) Robot arm control device and control method, robot, robot arm control program, and integrated electronic circuit for controlling robot arm
JP2019034398A (en) Control device, robot, and robot system
JP2016221653A (en) Robot control device and robot system
JP2013043250A (en) Device and method for controlling robot arm, robot, control program, and integrated electronic circuit
JP2009196040A (en) Robot system
CN112118940A (en) Direct teaching device and direct teaching method for robot
CN112654469A (en) Direct teaching device and direct teaching method for robot
JP7535968B2 (en) ROBOT REMOTE OPERATION CONTROL DEVICE, ROBOT REMOTE OPERATION CONTROL SYSTEM, ROBOT REMOTE OPERATION CONTROL METHOD, AND PROGRAM
WO2022210186A1 (en) Control device for calculating parameters for controlling position and posture of robot

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180005128.1

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2012511479

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11821252

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011821252

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11821252

Country of ref document: EP

Kind code of ref document: A1