WO2012029191A1 - Lubrification de nano-espaceur - Google Patents
Lubrification de nano-espaceur Download PDFInfo
- Publication number
- WO2012029191A1 WO2012029191A1 PCT/JP2010/065671 JP2010065671W WO2012029191A1 WO 2012029191 A1 WO2012029191 A1 WO 2012029191A1 JP 2010065671 W JP2010065671 W JP 2010065671W WO 2012029191 A1 WO2012029191 A1 WO 2012029191A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- nanospacers
- lubrication
- 5nbd
- particles
- composition
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M169/00—Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
- C10M169/04—Mixtures of base-materials and additives
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2201/00—Inorganic compounds or elements as ingredients in lubricant compositions
- C10M2201/04—Elements
- C10M2201/041—Carbon; Graphite; Carbon black
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/02—Hydroxy compounds
- C10M2207/021—Hydroxy compounds having hydroxy groups bound to acyclic or cycloaliphatic carbon atoms
- C10M2207/022—Hydroxy compounds having hydroxy groups bound to acyclic or cycloaliphatic carbon atoms containing at least two hydroxy groups
- C10M2207/0225—Hydroxy compounds having hydroxy groups bound to acyclic or cycloaliphatic carbon atoms containing at least two hydroxy groups used as base material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2209/00—Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
- C10M2209/10—Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- C10M2209/103—Polyethers, i.e. containing di- or higher polyoxyalkylene groups
- C10M2209/1033—Polyethers, i.e. containing di- or higher polyoxyalkylene groups used as base material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2219/00—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
- C10M2219/04—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides
- C10M2219/0406—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides used as base material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2030/00—Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
- C10N2030/06—Oiliness; Film-strength; Anti-wear; Resistance to extreme pressure
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/02—Bearings
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2050/00—Form in which the lubricant is applied to the material being lubricated
- C10N2050/01—Emulsions, colloids, or micelles
Definitions
- This invention is concerned on the basic problems of tribology, namely the nature of friction and methods to reduce the friction, or lubrication, occurring between moving solid parts of machines. As virtually every movement of matters on earth and in space induces frictions, and movements are controlled by lubrication, the invention is related with virtually all aspects of dynamic industrial operations.
- NPL5 so-called magnetic fluid
- magnetic spacers always completely cover the metal surfaces, hence they are available anytime whenever boundary condition appears. This is an excellent extension of the ball-bearing lubrication, but can be applied only to ferromagnetic metals and costly. Also questionable are the durability and stability of magnetic nanoparticles under high load or under conditions that erode the magnetic fluids.
- the spacer particles that we use in the present invention are the primary particles of detonation nanodiamond (FIG. 2), which we recently re-discovered (NPL9). Throughout this description we call it by a factual name of 5-nm bucky diamond (5nBD, NPL10).
- a 5nBD particle measures only 4.7 nm in size: so small and so light that only a nominal weight of 5nBD contains astronomical number of particles (FIG. 2).
- ⁇ of its 1% aqueous colloid solution contains 10 13 (100 billion) particles of 5nBD ⁇
- 5nBD is endowed with all other properties required for spacers: the hardest material on earth, quasi-spherical in shape (vide infra), giving stable colloid (FIG. 2), simple preparation (NPL7), and others (see below).
- NPL6,7 Let us explain how the Number Effect (NPL6,7) works in actual situation.
- a couple of metal plates are in relative motion in 1% 5nBD aqueous colloidal solution, and are approaching towards each other too close (FIG. 3(1)).
- the linear distance between the closest asperities decreased to the limiting distance of 7 nm, the effective diameter of hydrated 5nBD (FIG. 2), the spacers start to feel the plates (FIG. 3(2)).
- both asperities have a circular tip of ⁇ in diameter, then we may expect 316 5nBD particles forming a single-particle layer in the micro-space S*h (FIG. 3(2)'), according to simple calculations.
- EG ethylene glycol
- DMSO dimethyl sulfoxide
- DMSO is recognized as the best known solvent (actually dispersant) for 5nBD (NPLl l), quickly dissolving 5nBD up to more than 10%, and miscible with water and virtually all other known solvents. Hence DMSO will be a convenient medium when extremely high number density of 5nBD becomes necessary. Mixed solvents with EG and other media would also be interesting.
- DSER direct solvent exchange reaction
- the upper limit of spacer size depends on the smoothness of surface ⁇ ⁇ in relative movements: if the diameter D of a nanospacer is larger than ⁇ ⁇ of the surface, then the nanospacer will also be pinched between the hollow areas, thus damaging the surface. If D is smaller than ⁇ ⁇ , nanospacers will remain hidden under asperities and do no harm. Hence nanospacer lubrication with 5nBD will not work for highly polished surfaces having ⁇ ⁇ smaller than 5 nm.
- FIG. 1 depicts a Table illustrating the effects of dispersing small amounts of 5nBD, primary particles of detonation nanodiamond, in lubrication fluid upon frictional coefficient of sapphire/Si wafer.
- FIG. 2 depicts a Table illustrating selected properties of 5nBD relevant to nanospacer lubrication. Complex surface structures are further illustrated below the Table in cross sections and also in 3D models. On the left are spherical seamless models and on the right truncated octahedral holey bucky models.
- FIG. 3 illustrates cross sectional perspective snapshots of the incipient direct contact between a pair of asperities from the surfaces in relative shearing motion under boundary condition (1), wherein the thin film of lubrication fluid still maintains two surfaces untouched.
- the interfacial distance decreases to a critical distance of 7 nm (2)
- the nanospacers that happen to be pinched between the asperities begin to feel the tips of asperities.
- the concentration of 5nBD is in the range 0.1 to 1%
- the number of 5nBD pinched in the microscopic space particles are 30-300. These particles will stay in this space if the dispersing fluid has appropriate viscosity, and starts rotating due to the sphericity of spacers.
- FIG. 4 depicts TEM image of 5nBD particles. Note the scale bar to recognize the size of 5nBD particles. These do not seem like sharp-edged polyhedra but more like quasi-spherical multi-faceted worn-out diamond crystal particles.
- 5nBD product is aqueous colloid. Details of the first-generation beads-milling procedure to produce aqueous 5nBD colloid have been published elsewhere, and we will soon disclose the
- aqueous colloid of 5nBD is placed in a Kjeldahl evaporation flask and attached to a conventional rotary evaporator.
- a solvent like EG is slowly and continuously introduced into the evaporation flask through a thin PP pipe and a valve without breaking vacuum. Evaporated water was collected into a graduated receiving flask until calculated amount of water is distilled out.
- 5nBD particles are prepared at NanoCarbon Research Institute, Ueda, Japan, by disintegrating crude agglutinates of detonation nanodiamond, which was purchased from Guangzhou Panyu Guangda Electromechanical Co., Guangzhou, China. Procedure, characteristics, geometrical as well as electronic structures and properties are published elsewhere (NPL6-8). Average size of the primary single-crystals of cubic diamond is 4.7 ⁇ 0.7 nm. Diamond carbon constitute 92wt% of the current product as determined by X-ray diffraction intensity measurements calibrated by internal standard (NaF). Guaranteed grade of EG and other chemicals were used as purchased. Water content of EG was 0.12 ⁇ 0.03% as determined by Karl Fischer method (see below).
- the crude DMSO colloid was irradiated with powerful supersonic waves using Ultrasonic Processor UP-400S (400W, 24kHz) equipped with Sonotrode H22 (tip diameter 22mm, acoustic power density 85 W/cm 2 , both manufactured by Dr. Hielscher GmbH, Teltow, Germany) while circulating the colloidal solution by means of a peristaltic pump at a speed of ca 300 ml/min for one hour. Thereupon the particle size decreased to an acceptable range of 4.4 ⁇ 0.3 nm (100.00 vol %). Concentration of 5nBD was determined to be 6.71 w/v% by simple drying method. The resulting colloid looked similar as that of Example 1, and never produced any precipitates at least for three months of storage at room temperature under stray light.
- Ultrasonic Processor UP-400S 400W, 24kHz
- Sonotrode H22 tip diameter 22mm, acoustic power density 85 W/cm 2 , both manufactured by Dr. Hielscher GmbH, Teltow
- DMSO frication coefficients in DMSO.
- DMSO is by far the best solvent for 5nBD, somewhat better than water in terms of the saturation concentration, which has never been determined accurately but probably exceeds 10%. Presumably because of this high salvation power, DMSO maintained very low ⁇ value even with 0.1 % concentration in 5nBD. However, DMSO suffers from low viscosity.
- NPL16 Osawa, E.; Ho, D.; Huang, H.; Korobov, M. V.; Rozhkova, N. N. Consequences of strong and diverse electrostatic potential field on the surface of detonation nanodiamond particles," Diam. Rel. Mater. 18, 904-909 (2009).
- NPL21 Schrand, A. M.; Johnson, J.; Dai, L.; Hussain, S. M.; Schlager, J. J.; Zhu, L.; Hong, Y.; Osawa, E. Cytotoxicity and genotoxity of carbon nanomaterials, in Safety of Nanoparticles: From Manufacturing to Medical Applications, Webster, T. J. (Ed.), Springer Science+Business Media, New York, 2008, Chapter 8, p. 159-188.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Organic Chemistry (AREA)
- Lubricants (AREA)
Abstract
La présente invention concerne la nécessité urgente, sur le plan écologique, de trouver des produits de remplacement pour l'huile de graissage, « mal nécessaire » connu pour posséder un grave défaut, à savoir que sa mince pellicule se rompt facilement dans des conditions limites. Si les lubrifiants solides sont de plus en plus utilisés en tant que produits de remplacement de l'huile, ils présentent généralement des coefficients de frottement supérieurs et coûtent plus chers. Il est souhaitable de trouver un système de lubrification par fluide permettant de toujours éviter le choc de surfaces interdépendantes. La présente invention porte sur des solutions colloïdales diluées de particules de nano-diamants uniques dans l'eau et quelques solvants organiques, qui montrent des coefficients de frottement étonnamment bas. Les résultats sont interprétés en termes de densité de nombre élevé de nano-particules uniques dans la solution colloïdale, ce qui leur permet d'agir en tant qu'espaceurs omniprésents à chaque fois que surviennent des conditions limites. Les cristaux de nano-diamants uniques possèdent toutes les autres conditions requises à cet effet. Vraisemblablement, il sera finalement possible de se passer de l'huile, qui a constitué trop longtemps le seul fluide de lubrification.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2010/065671 WO2012029191A1 (fr) | 2010-09-03 | 2010-09-03 | Lubrification de nano-espaceur |
JP2013526600A JP5959520B2 (ja) | 2010-09-03 | 2010-09-03 | ナノころ潤滑 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2010/065671 WO2012029191A1 (fr) | 2010-09-03 | 2010-09-03 | Lubrification de nano-espaceur |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012029191A1 true WO2012029191A1 (fr) | 2012-03-08 |
Family
ID=45772322
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/065671 WO2012029191A1 (fr) | 2010-09-03 | 2010-09-03 | Lubrification de nano-espaceur |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5959520B2 (fr) |
WO (1) | WO2012029191A1 (fr) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103438348A (zh) * | 2013-08-15 | 2013-12-11 | 清华大学 | 一种超滑基本结构、多级超滑结构、具有该结构的器件及其形成方法 |
JP2014516102A (ja) * | 2011-05-27 | 2014-07-07 | ハワード ユニバーシティ | 表面を調整するナノ潤滑剤 |
WO2015003343A1 (fr) * | 2013-07-10 | 2015-01-15 | 清华大学 | Structure de base à super-pouvoir lubrifiant, structure multi-étage à super-pouvoir lubrifiant, dispositif muni de la structure, et procédé de formation correspondant |
US9434905B2 (en) | 2011-05-27 | 2016-09-06 | Howard University | Hybrid nanolubricant |
CN111800032A (zh) * | 2020-07-28 | 2020-10-20 | 大连海事大学 | 一种三维密集摩擦纳米发电模块及系统 |
EP4011561A1 (fr) * | 2020-12-11 | 2022-06-15 | Hilti Aktiengesellschaft | Machine-outil mobile et procédé |
US12138769B2 (en) | 2020-12-11 | 2024-11-12 | Hilti Aktiengesellschaft | Mobile power tool and method |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5681959B2 (ja) * | 2010-12-07 | 2015-03-11 | 国立大学法人金沢大学 | グラフェン・ダイヤモンド積層体 |
CN104152216B (zh) * | 2014-08-18 | 2016-08-17 | 福州固力工业成套设备有限公司 | 一种纳米超级节能润滑油 |
WO2017026031A1 (fr) * | 2015-08-10 | 2017-02-16 | 株式会社ナノ炭素研究所 | Diamant sphérique et son procédé de fabrication |
EP3608389B1 (fr) | 2017-04-05 | 2021-10-20 | Daicel Corporation | Composition lubrifiante et système de lubrification |
CN107099272A (zh) * | 2017-05-22 | 2017-08-29 | 和县科嘉阀门铸造有限公司 | 一种旋塞阀定期保养用密封脂及其注脂工艺 |
JP7129068B2 (ja) * | 2017-11-09 | 2022-09-01 | 株式会社ダイセル | 潤滑システムおよび潤滑システム用液剤セット |
CN111315854B (zh) * | 2017-11-09 | 2022-06-10 | 株式会社大赛璐 | 初期磨合剂组合物及包含该组合物的初期磨合系统 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005097375A (ja) * | 2003-09-24 | 2005-04-14 | Okamoto Machine Tool Works Ltd | ナノダイヤモンド非水分散液およびその調製方法 |
WO2007088649A1 (fr) * | 2006-01-31 | 2007-08-09 | Nissan Motor Co., Ltd. | Compositions d'huile lubrifiante contenant des nanoparticules |
JP2008179738A (ja) * | 2007-01-26 | 2008-08-07 | Nissan Motor Co Ltd | 潤滑油組成物 |
WO2009128258A1 (fr) * | 2008-04-14 | 2009-10-22 | 有限会社アプライドダイヤモンド | Composition d'émulsion de type aqueux |
-
2010
- 2010-09-03 WO PCT/JP2010/065671 patent/WO2012029191A1/fr active Application Filing
- 2010-09-03 JP JP2013526600A patent/JP5959520B2/ja not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005097375A (ja) * | 2003-09-24 | 2005-04-14 | Okamoto Machine Tool Works Ltd | ナノダイヤモンド非水分散液およびその調製方法 |
WO2007088649A1 (fr) * | 2006-01-31 | 2007-08-09 | Nissan Motor Co., Ltd. | Compositions d'huile lubrifiante contenant des nanoparticules |
JP2008179738A (ja) * | 2007-01-26 | 2008-08-07 | Nissan Motor Co Ltd | 潤滑油組成物 |
WO2009128258A1 (fr) * | 2008-04-14 | 2009-10-22 | 有限会社アプライドダイヤモンド | Composition d'émulsion de type aqueux |
Non-Patent Citations (2)
Title |
---|
A. KRUGER ET AL.: "Unusually tight aggregation in detonation nanodiamond: Identification and disintegration", CARBON, vol. 43, no. ISS.8, July 2005 (2005-07-01), pages 1722 - 1730 * |
HU ZHIMENG: "The Tribological Characteristics of Nano-scale Diamond in Polyoxyethylene Glycol", RUNHUA YU MIFENG, no. 5, September 2005 (2005-09-01), pages 7 - 10, 13 * |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014516102A (ja) * | 2011-05-27 | 2014-07-07 | ハワード ユニバーシティ | 表面を調整するナノ潤滑剤 |
US9434905B2 (en) | 2011-05-27 | 2016-09-06 | Howard University | Hybrid nanolubricant |
US9644166B2 (en) | 2011-05-27 | 2017-05-09 | Howard University | Surface conditioning nanolubricant |
WO2015003343A1 (fr) * | 2013-07-10 | 2015-01-15 | 清华大学 | Structure de base à super-pouvoir lubrifiant, structure multi-étage à super-pouvoir lubrifiant, dispositif muni de la structure, et procédé de formation correspondant |
CN103438348A (zh) * | 2013-08-15 | 2013-12-11 | 清华大学 | 一种超滑基本结构、多级超滑结构、具有该结构的器件及其形成方法 |
CN111800032A (zh) * | 2020-07-28 | 2020-10-20 | 大连海事大学 | 一种三维密集摩擦纳米发电模块及系统 |
CN111800032B (zh) * | 2020-07-28 | 2023-10-20 | 大连海事大学 | 一种三维密集摩擦纳米发电模块及系统 |
EP4011561A1 (fr) * | 2020-12-11 | 2022-06-15 | Hilti Aktiengesellschaft | Machine-outil mobile et procédé |
WO2022122413A1 (fr) * | 2020-12-11 | 2022-06-16 | Hilti Aktiengesellschaft | Machine-outil mobile et procédé |
US12138769B2 (en) | 2020-12-11 | 2024-11-12 | Hilti Aktiengesellschaft | Mobile power tool and method |
Also Published As
Publication number | Publication date |
---|---|
JP2013538274A (ja) | 2013-10-10 |
JP5959520B2 (ja) | 2016-08-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2012029191A1 (fr) | Lubrification de nano-espaceur | |
Chang et al. | Anti-wear and friction properties of nanoparticles as additives in the lithium grease | |
Azman et al. | Dispersion stability and lubrication mechanism of nanolubricants: a review | |
Ivanov et al. | Nanodiamond-based nanolubricants for motor oils | |
Gulzar et al. | Tribological performance of nanoparticles as lubricating oil additives | |
Zhou et al. | Sliding tribological properties of 0.45% carbon steel lubricated with Fe3O4 magnetic nano-particle additives in baseoil | |
He et al. | In situ fabrication of carbon dots-based lubricants using a facile ultrasonic approach | |
Fan et al. | Probing the function of solid nanoparticle structure under boundary lubrication | |
Wu et al. | The emulsifying and tribological properties of modified graphene oxide in oil-in-water emulsion | |
US10138439B2 (en) | Lubrication material using self-dispersed crumpled graphene balls as additives in oil for friction and wear reduction | |
Opia et al. | Nano-particles additives as a promising trend in tribology: a review on their fundamentals and mechanisms on friction and wear reduction | |
Huang et al. | Machining characteristics and mechanism of GO/SiO2 nanoslurries in fixed abrasive lapping | |
Pamies et al. | Antiwear performance of ionic liquid+ graphene dispersions with anomalous viscosity-temperature behavior | |
Zin et al. | Effect of external magnetic field on tribological properties of goethite (a-FeOOH) based nanofluids | |
Pisal et al. | Experimental investigation of tribological properties of engine oil with CuO nanoparticles | |
Devan et al. | Improving the characteristics of engine oil using nanofluid as coolant in combat vehicles | |
Xue et al. | Carbon Dots with Spatially‐Mediated‐N/S‐Co‐Doping Enabling One‐Year Stable Lubricant with Oil Leakage Detection Capability | |
Chen et al. | Inhibition of cold‐welding and adhesive wear occurring on surface of the 6061 aluminum alloy by graphene oxide/polyethylene glycol composite water‐based lubricant | |
Sun et al. | Tribological behavior of graphene oxide-Fe3O4 nanocomposites for additives in water-based lubricants | |
Rajesh et al. | Tailoring the tribological behavior of composite structures with optimized ratio of graphene and boron nitride nanosheets | |
Ivanov et al. | Nanodiamond-based oil lubricants on steel-steel and stainless steel-hard alloy high load contact: investigation of friction surfaces | |
Wang et al. | Effect of morphology on tribological properties of Fe3O4 as lubricant additive: Nanospheres, nanowires and nanosheets | |
Jiang et al. | Research progresses of nanomaterials as lubricant additives | |
JP6749433B2 (ja) | 初期なじみ用潤滑剤組成物 | |
Wei et al. | Preparation and tribological properties of a multilayer graphene-reinforced TiO2 composite nanolubricant additive |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10856736 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2013526600 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10856736 Country of ref document: EP Kind code of ref document: A1 |