[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2012020551A1 - 米粉の製造方法及び該方法により得られる米粉 - Google Patents

米粉の製造方法及び該方法により得られる米粉 Download PDF

Info

Publication number
WO2012020551A1
WO2012020551A1 PCT/JP2011/004319 JP2011004319W WO2012020551A1 WO 2012020551 A1 WO2012020551 A1 WO 2012020551A1 JP 2011004319 W JP2011004319 W JP 2011004319W WO 2012020551 A1 WO2012020551 A1 WO 2012020551A1
Authority
WO
WIPO (PCT)
Prior art keywords
rice
water
grain
rice flour
raw
Prior art date
Application number
PCT/JP2011/004319
Other languages
English (en)
French (fr)
Inventor
武 福森
昭 福原
敬治 元岡
一信 梶原
佑介 室井
浩司 深水
Shigeharu KANEMOTO (金本 繁晴)
Original Assignee
株式会社サタケ
金本 毬子
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社サタケ, 金本 毬子 filed Critical 株式会社サタケ
Priority to CN201180033084.3A priority Critical patent/CN103025176B/zh
Priority to KR1020127033438A priority patent/KR101467435B1/ko
Publication of WO2012020551A1 publication Critical patent/WO2012020551A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES, NOT OTHERWISE PROVIDED FOR; PREPARATION OR TREATMENT THEREOF
    • A23L7/00Cereal-derived products; Malt products; Preparation or treatment thereof
    • A23L7/10Cereal-derived products
    • A23L7/198Dry unshaped finely divided cereal products, not provided for in groups A23L7/117 - A23L7/196 and A23L29/00, e.g. meal, flour, powder, dried cereal creams or extracts
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES, NOT OTHERWISE PROVIDED FOR; PREPARATION OR TREATMENT THEREOF
    • A23L5/00Preparation or treatment of foods or foodstuffs, in general; Food or foodstuffs obtained thereby; Materials therefor
    • A23L5/30Physical treatment, e.g. electrical or magnetic means, wave energy or irradiation
    • A23L5/34Physical treatment, e.g. electrical or magnetic means, wave energy or irradiation using microwaves
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23PSHAPING OR WORKING OF FOODSTUFFS, NOT FULLY COVERED BY A SINGLE OTHER SUBCLASS
    • A23P10/00Shaping or working of foodstuffs characterised by the products
    • A23P10/20Agglomerating; Granulating; Tabletting
    • A23P10/22Agglomeration or granulation with pulverisation of solid particles, e.g. in a free-falling curtain
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2300/00Processes
    • A23V2300/10Drying, dehydrating
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2300/00Processes
    • A23V2300/12Electrical treatment, e.g. electrolysis, electrical field treatment, with or without heating effect
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2300/00Processes
    • A23V2300/31Mechanical treatment

Definitions

  • the present invention provides a method for producing rice flour that can provide fine and high-quality rice flour, even when the rice is pulverized only with an airflow pulverizer, by performing a treatment that significantly reduces the hardness of the rice, and the method Relates to rice flour obtained by
  • Rice flour is crushed rice, and in order to increase consumption of domestic rice (locally produced rice) in various parts of Japan, bread using 100% of the rice flour and cakes using the rice flour are manufactured. It is expected to develop new markets for rice in the field of bread making and confectionery, etc.
  • the long-time immersion treatment of the polished rice is performed in order to uniformize the moisture distribution in the rice grains and soften the rice grains.
  • the immersion treatment is performed only for a short time, the moisture distribution in the rice grains becomes non-uniform, and there are many places where water absorption is small.
  • the polished rice becomes a coarse powder at the time of pulverization at a portion where water absorption in the rice grain is small, and becomes a rice powder having a particle size with a large proportion of the coarse powder. For this reason, each process of the water washing before a grinding
  • Patent Document 1 after immersion rice (18-hour water immersion in the description of the examples) that has been sufficiently subjected to a water addition operation such as washing and dipping is coarsely pulverized by a roll mill, and further finely pulverized by an airflow pulverizer.
  • a method for producing pulverized rice flour is disclosed. According to the said manufacturing method, the fine and high-quality rice flour which surpasses body-powder flour can be provided by combining the characteristics of a roll mill and an airflow mill based on wet milling, and performing milling in two stages.
  • the soaked rice is preliminarily pulverized by the roll mill so that the grain size of rice powder passing through a 60 mesh (250 ⁇ m) sieve occupies about 60 to 70% by weight.
  • the coarsely pulverized powder is then pulverized by the airflow pulverizer such that the rice flour in the section passing through a 200 mesh (75 ⁇ m) sieve has a particle size occupying 99.5% by weight.
  • the above production method has a problem that the power of the roll mill is required separately.
  • Patent Document 2 discloses a method for producing rice flour that does not use a roll mill. That is, the production method includes a step of immersing rice in water, draining, and aging to make the water content of the rice 23.5 wt% to 26.5 wt%, and the water content that has passed through this step is Pulverized rice is pulverized with an airflow pulverizer, and the moisture content of the obtained rice flour is 16.0 wt% to 23.5%, and the obtained rice flour is refrigerated or frozen until immediately before use. Is included. According to the production method, it is possible to provide rice flour that is difficult for bacteria and fungi to propagate at any time of the year. Moreover, according to the said manufacturing method, while being able to provide the processed food excellent in texture, the rice flour with a high moisture content can be provided. Furthermore, according to the said manufacturing method, control of the moisture content of rice flour is attained.
  • the rice flour produced by the above production method has a particle size that occupies 60 to 73% by weight of the section passing through a 200 mesh (75 ⁇ m) sieve, and is produced by the method described in Patent Document 1. It is slightly coarser than rice flour.
  • the present invention performs a process that significantly reduces the hardness of rice, so that power for roll milling is unnecessary, and even when the rice is pulverized only with an airflow pulverizer, it is fine. It is a technical problem to provide a method for producing rice flour that can provide good quality rice flour.
  • the present invention provides a pretreatment step in which a large number of fine cracks are generated on the surface of the raw rice, a hydration step in which the water content of the rice grains in which the fine cracks have been generated is increased, And a pulverizing step of pulverizing the rice flour with an airflow pulverizer.
  • the invention according to claim 2 is characterized in that, in the pretreatment step, the raw rice is subjected to a drying process using hot air in which air of 40 to 50 ° C. is supplied for 10 to 40 minutes.
  • the invention according to claim 3 is characterized in that in the pretreatment step, the raw rice is subjected to a heat treatment that irradiates microwaves.
  • the invention according to claim 4 is characterized in that the moisture of the raw rice is adjusted to 10 to 13% (w.b.%) by the drying treatment or the heat treatment.
  • water droplets are attached to the surface of the rice grains of the raw rice by spraying or showering to generate surface-adhered water, and the moisture of the raw rice is increased by the surface-adhered water. It is characterized by that.
  • the invention described in claim 6 performs the treatment for adhering water droplets on the surface of the rice grain of the raw rice by the spraying or showering for 10 to 15 minutes, and adjusts the moisture of the whole rice grain to 20 to 30% (wb%). It is characterized by that.
  • the invention according to claim 7 is characterized in that the raw rice is non-washed rice obtained by removing rice bran from polished rice.
  • the invention according to claim 8 is the rice flour obtained by the method for producing rice flour according to any one of claims 1 to 6, wherein the rice flour passing through a 200 mesh sieve is 75 as the grain size of the rice flour after sieving. It is characterized by containing at least wt%.
  • the rice grain mainly has a cell structure in which starch double grains, which are a collection of a plurality of single starch grains, are wrapped in a strong cell wall tissue. For this reason, even if the rice grains are pulverized as they are, there is a concern that starch grains remain in a cell structure due to the presence of the strong cell wall tissue, and the starch grains are not broken down finely. Therefore, after many fine cracks are generated on the surface of the raw rice by the pretreatment process of the present invention, water absorption is performed smoothly by the fine cracks formed on the surface of the raw rice when water is absorbed by the hydration process. In other words, the progress of swelling of starch double grains is promoted.
  • the adhering water on the surface of the rice grain penetrates into the starch layer from fine cracks formed on the surface of the rice grain.
  • pipe is formed so that the gap
  • the cell wall tissue is easily broken down to a single starch granule due to a significant decrease in the hardness of rice. For this reason, the power for roll milling is unnecessary, fine and high-quality rice flour can be obtained, and the load current during pulverization can be reduced by about 20%.
  • the pretreatment step if a drying process using hot air is performed by supplying 40 to 50 ° C. air to the raw rice for 10 to 40 minutes, a number of fine cracks are generated on the surface of the raw rice with a simple device. be able to.
  • the pretreatment step if the raw material rice is subjected to a heat treatment that irradiates microwaves, many fine cracks can be generated on the surface of the raw material rice by rapid heating in a short time.
  • the moisture of the raw rice is adjusted to 10 to 13% (w.b.%) by the drying treatment or the heat treatment, many fine cracks can be efficiently generated on the surface of the raw rice.
  • the surface of the rice grains can be obtained by performing a treatment for adhering water droplets on the surface of the rice grains of the raw rice by spraying or showering for 10 to 15 minutes and adjusting the moisture of the whole rice grains to 20 to 30% (wb%).
  • the operation of washing the rice in advance when producing rice flour can be omitted.
  • the particle size of the rice flour after sieving is passed through 200 mesh (75 ⁇ m), that is, 75% by weight passing through a 200 mesh (75 ⁇ m spacing mesh) sieve. Since the rice flour containing the above is obtained, it is possible to provide fine and high-quality rice flour while requiring no power for roll milling.
  • FIG. 1 is a schematic view showing an example of a rice flour production apparatus for carrying out the production method of the present invention.
  • the rice flour production apparatus 1 includes a pretreatment unit 5, a hydration unit 12, and an airflow pulverization unit 19.
  • the pretreatment unit 5 is conveyed by the raw material tank 2, the endless belt conveyor 3 for conveying the rice grains supplied from the raw material tank 2 in the form of a thin sheet having a thickness of about 5 to 20 mm, and the endless belt conveyor 3.
  • a heating device 4 is provided for heating the raw rice grains by supplying hot air to the raw rice grains or irradiating the raw rice grains with microwaves.
  • the hydration unit 12 receives the rice grains having a number of cracks formed on the surface thereof in the pretreatment unit 5 and absorbs the water, so that the hydration drum 6, the stirring screw 7, the water tank 8, the pipe 9, the valve 10, and the drive motor 11 is provided.
  • the airflow pulverization unit 19 receives the rice grains hydrated by the hydration unit 12 and pulverizes the airflow, receiving hopper 13, rotary valve 14, pulverization chamber 15, wind suction port 16 provided in the pulverization chamber 15, pulverization A rotor 17 and a classification rotor 18 are provided.
  • Washed rice is suitable for the rice grains supplied to the pretreatment unit 5, but polished rice can also be applied.
  • the rice grains supplied from the raw material tank 2 are transferred to the heating device 4 with a thickness of about 5 to 20 mm by the endless belt conveyor 3, and air of 40 to 50 ° C. is sent to the heating device 4 for 10 to 40 minutes.
  • air of 40 to 50 ° C. is sent to the heating device 4 for 10 to 40 minutes.
  • a large number of fine cracks are formed on the surface of the rice grains.
  • the moisture of the whole rice grain after heating is about 10 to 13% (wb%).
  • microwaves are used in the heating device 4
  • a number of fine cracks are formed on the surface of the rice grains by irradiating the rice grains with microwaves for 1 minute and rapidly heating the rice grains to 100 ° C.
  • the Rukoto when microwaves are used in the heating device 4, a number of fine cracks are formed on the surface of the rice grains by irradiating the rice grains with microwaves for 1 minute and rapidly
  • FIGS. 2 to 4 are photographs in place of drawings of the surface of rice grains pretreated by drying with hot air as described above when polished rice is used as a raw material (magnification: FIG. 2 is 25 times, FIGS. 3 and 4).
  • 5 is a photograph substituting for the drawing of the surface of the rice grain without treatment, that is, without the pretreatment (magnification: 50 times). From the comparison between the two, it can be seen that when the pretreatment is performed, fine cracks in the shape of a turtle shell or a fish scale are formed on the surface of the rice grain.
  • the rice grains in which such fine cracks are formed are carried out of the heating device 4 by the endless belt conveyor 3 and further supplied to the hydration drum 6 of the hydration unit 12.
  • water is supplied from the water tank 8 through the pipe 9 into the hydration drum 6, and a valve 10 is provided in the middle of the pipe 9 in order to control the amount of hydration.
  • the amount of water added is controlled so that the water content of the whole rice grain is 20-30% (wb%).
  • a spray nozzle is installed in the hydrating drum 6 and sprayed on the surface of the rice grains.
  • Adopting a method to increase the moisture by the water adhering to the surface of the rice grain, such as attaching fine water droplets or installing a shower nozzle in the hydrating drum 6 and attaching water droplets to the surface of the rice grain by shower It is desirable to do. Thereby, it is not necessary to use excess water associated with the immersion treatment, waste water treatment equipment is unnecessary, and energy costs associated with the waste water treatment can be reduced.
  • water is added for about 10 to 15 minutes by the spray nozzle or shower nozzle, the water content of the whole rice grain can be controlled to 20 to 30% (wb%).
  • the said water addition part 12 although it demonstrated as an example water-absorbing water to a rice grain, it is not limited to this, The aqueous solution containing various nutrients, such as high concentration GABA aqueous solution and a functional saccharified liquid, is used for a rice grain. It can also absorb water. This makes it possible to produce rice flour that is rich in functional components such as phytic acid, inositol, GABA, vitamins, and minerals.
  • FIG. 6 is a schematic view in which the vicinity of the epidermis of rice grains (milled rice) is broken.
  • the rice grain has a cell structure in which the starch double grain F, which is mainly a plurality of starch single grains T, is wrapped with a strong cell wall tissue S. Therefore, even if this rice grain is pulverized as it is, there is a concern that the starch double grain F remains in the cell structure due to the presence of the strong cell wall tissue S, and the starch single grain T is not broken finely.
  • FIG.6 (b) is a schematic diagram when a fine crack is produced in the rice grain (milled rice). Referring to this figure, the water adhering to the surface of the rice grain penetrates into the starch layer from the fine cracks K.
  • a conduit D is formed so as to sew the gap between adjacent starch granules F, and water absorption into the starch granules F is performed by the osmotic pressure of the cell wall tissue S from the conduit D.
  • Table 1 shows the relationship between immersion time and hardness (Vickers hardness) in untreated rice and surface cracked rice.
  • the untreated one has a hardness of 1.9 after 30 minutes of immersion, whereas the one with surface cracks has a hardness of 1.1 after a short time of only 5 minutes after immersion. I understood that.
  • the airflow crushing unit 19 shown in FIG. 1 may be one that can pulverize rice so that 70% by weight or more of rice powder in a section passing through a 200 mesh (75 ⁇ m) sieve is contained as the particle size of the rice powder.
  • the airflow crushing unit 19 includes a vertical cylindrical crushing chamber 15, a wind suction port 16 disposed on the inverted conical bottom wall at the bottom of the crushing chamber 15, and a crushing rotor 17 disposed on the bottom of the crushing chamber 15.
  • a main part is constituted by the classification rotor 18 disposed on the ceiling portion of the pulverization chamber 15.
  • the fine powder classified by the classification rotor 18 reaches a dust collector 20 made of a cyclone, and is taken out as a product through a discharge valve 21.
  • Reference numeral 22 denotes an exhaust fan.
  • ⁇ Treatment of causing fine cracks on the surface of rice grains As a raw material, rice with a moisture content of 15-16% (wb%) was used. Then, the glutinous rice was put into the raw material tank 2 of the pretreatment unit 5, and the glutinous rice supplied from the raw material tank 2 was conveyed on the endless belt conveyor 3 in the form of a thin sheet having a thickness of about 5 to 20 mm. In the heating device 4, hot air at 40 ° C. was fed for 10 to 40 minutes to dry the rice bran rice until the water content was about 11 to 13% (wb%). As a result, many fine cracks in the shape of a turtle shell or fish scale were formed on the surface of the rice grain (FIGS. 2 to 4).
  • FIG. 7 is an electron micrograph showing the starch layer when the rice grain surface is subjected to immersion treatment without causing fine cracks on the rice grain surface (no treatment), and FIG. It is an electron micrograph which shows a starch layer when an immersion process is performed to a process).
  • the starch granules remain in the state when there is no treatment, but the starch granules are decomposed into single starch grains when there is a pretreatment.
  • the pretreatment that causes microcracks on the surface of the rice grain makes it possible to easily separate and pulverize the starch single grain cells, and to keep the damaged starch rate low.
  • the hydrated rice grains coming out of the hydration unit 12 are put into the receiving hopper 13 of the airflow pulverization unit 19 and subjected to a laying process for a short period of about 30 minutes so that moisture penetrates into the interior and the whole becomes uniform. went.
  • the rice grains in the receiving hopper 13 were quantitatively charged into the crushing chamber 15 by the rotary valve 14 and crushed.
  • the pulverization was performed by pulverization by the pulverization rotor 17 rotating at high speed and the swirling air jet from the wind suction port 16, and the rice grains were pulverized while repeating the actions of vigorous stirring, friction, and collision.
  • the pulverized fine powder is classified in the ceiling classification rotor 18 while floating in the pulverization chamber 15, and only the fine powder having a particle size equal to or less than a certain particle size is collected in the dust collector 20, and discharged as a product to the outside through the discharge valve 21. It was done.
  • Example 1 The particle size of the produced rice flour was measured by sieving using a standard sieve defined in JIS Z8801 (2000). The results are shown in Table 2.
  • the comparative example 1 (no pre-processing) of Table 2 is a particle size distribution of the rice flour manufactured by the prior art. That is, the same rice bran as in Example 1 was used as the raw rice, the rice was washed by a conventional method, immersed for 18 hours by a soaking method, and then subjected to a tempering treatment to obtain a moisture content of 24% (wb%). The airflow crushing process similar to Example 1 was performed to this.
  • Example 2 the rice grains in which fine cracks were formed were hydrated and then subjected to airflow pulverization (Example 1) passed through 200 mesh (75 ⁇ m), that is, 200 mesh (75 ⁇ m-interval mesh). ) Is a rice powder having a particle size occupying 89.3%, which is finer and better quality rice flour than Comparative Example 1. And according to the method of the said Example 1, it became possible to provide the fine and good-quality rice flour substantially equivalent to what was described in patent document 1. FIG.
  • the present invention can be applied to various uses in the bread making field, the confectionery manufacturing field, the noodle making field, etc., such as bread using 100% rice flour and cakes using rice flour.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Nutrition Science (AREA)
  • Cereal-Derived Products (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

 米の硬度を著しく低下させる処理を行うことで、ロール製粉用の動力が不要であり、かつ、米を気流粉砕機のみで粉砕した場合であっても、微細で良質な米粉を提供する。 原料米の表面に微細な亀裂を多数生じさせる前処理工程5と、表面に微細な亀裂を生じさせた米粒の水分を増加させる加水工程12と、加水後の米粒を気流粉砕機にて粉砕する粉砕工程19とを含む。すなわち、米粒表面に微細な亀裂を形成した後に加水を行うと、胚芽部を介して徐徐に吸水するよりも、デンプン複粒の膨潤の進行が著しく早まることになる。この急速な膨潤により細胞壁組織のひずみ量が増加し、強固な細胞壁組織が破壊されやすくなり、米の硬度が著しく低下する。粉砕時にあっては、前記米の硬度の著しい低下により、細胞壁組織が簡単に破壊され、デンプン単粒まで細かく破砕される。

Description

米粉の製造方法及び該方法により得られる米粉
 本発明は、米の硬度を著しく低下させる処理を行うことで、米を気流粉砕機のみで粉砕した場合であっても、微細で良質な米粉を提供することができる米粉の製造方法及び該方法により得られる米粉に関する。
 米粉は、米を粉砕したものであり、日本各地で国産米(地元産米)の消費拡大に向けて、前記米粉を100%使ったパンや、前記米粉を使ったケーキが製造されるなど、製パンの分野や洋菓子製造の分野などに米の新たな市場を開拓し、販路を拡大する布石として期待が寄せられている。
 従来の米粉の製造方法として、精白米を水洗し、該水洗した精白米を、2時間以上24時間以内の浸漬処理を施して含水させた後、水挽きや気流粉砕などで粉砕することが古くから知られている。当該製造方法によれば、前記水洗した後の精白米に前記長時間の浸漬処理を施すことにより、粒度の細かい上質な米粉を製造することが可能となる。
 つまり、前記精白米の長時間の浸漬処理は、米粒内の水分分布を均一化するとともに、該米粒を軟質化するために行われる。一方で、精白米は、浸漬処理が短時間しか行われないと、米粒内の水分分布が不均一となり、吸水が少ない箇所が多く存在することになる。その場合、前記精白米は、米粒内における吸水が少ない箇所では粉砕時に粗粉となり、粗粉の割合が多い粒度の米粉となる。このため、粉砕前の水洗、浸漬の各工程が米粉の品質上、極めて重要な意義を持つことになる(例えば、非特許文献1参照)。
 特許文献1には、洗米及び水漬けなどの加水操作を十分に行った浸漬米(実施例の記載では18時間の水浸漬)を、ロール製粉機で粗粉砕した後、さらに気流粉砕機で微粉砕する米粉の製造方法が開示されている。当該製造方法によれば、湿式粉砕をベースにして、ロール製粉機と気流粉砕機の特性を組み合わせて、二段階に製粉処理することで、胴搗き粉を上回る微細で良質な米粉を提供できる。
 上記製造方法は、まず、前記浸漬米を、前記ロール製粉機による予備的な粉砕により、60メッシュ(250μm)の篩を通過する区分の米粉が60~70重量%程度を占める粒度となるように粗粉砕し、次いで、前記気流粉砕機により200メッシュ(75μm)の篩を通過する区分の米粉が99.5重量%を占める粒度となるように微粉砕するものである。
 しかしながら、上記製造方法においては、前記ロール製粉機の動力が別途必要となる問題がある。
 また、特許文献2には、ロール製粉機を使用しない米粉の製造方法が開示されている。すなわち、当該製造方法は、米を水に浸漬し、水切りし、エージングさせて該米の水分含有率を23.5重量%乃至26.5重量%とする工程と、この工程を経た含水、未粉砕米を気流粉砕機にて粉砕し、得られる米粉の水分含有率を16.0重量%乃至23.5%とする工程と、得られた米粉をその使用直前まで冷蔵又は冷凍する工程とを含むものである。当該製造方法によれば、細菌やカビが繁殖し難い米粉を、一年中いつでも提供することが可能となる。また、当該製造方法によれば、食感に優れる加工食品を提供できるとともに、水分含有率の高い米粉を提供することができる。さらに、当該製造方法によれば、米粉の水分含有率の制御が可能となる。
 しかしながら、上記製造方法により製造された米粉は、200メッシュ(75μm)の篩を通過する区分のものが60~73重量%を占める粒度であり、前記特許文献1に記載された方法により製造される米粉よりも若干粗粉となっている。
倉澤文夫著、「最新食品加工講座 米とその加工」、株式会社建帛社、昭和57年11月25日初版発行、p.221-223
特公平4-73979号公報 特許第3943577号公報
 本発明は上記問題点にかんがみ、米の硬度を著しく低下させる処理を行うことで、ロール製粉用の動力が不要であり、かつ、米を気流粉砕機のみで粉砕した場合であっても、微細で良質な米粉を提供することができる米粉の製造方法を提供することを技術的課題とする。
 上記課題を解決するため本発明は、原料米の表面に微細な亀裂を多数生じさせる前処理工程と、表面に微細な亀裂を生じさせた米粒の水分を増加させる加水工程と、加水後の米粒を気流粉砕機にて粉砕する粉砕工程とを含む米粉の製造方法とした。
 請求項2記載の発明は、前記前処理工程において、前記原料米に40~50℃の空気を10~40分間送給する、熱風による乾燥処理を施すことを特徴とする。
 請求項3記載の発明は、前記前処理工程において、前記原料米にマイクロ波を照射する加熱処理を施すことを特徴とする。
 請求項4記載の発明は、前記乾燥処理又は加熱処理により、前記原料米の水分を10~13%(w.b.%)に調整することを特徴とする。
 請求項5記載の発明は、前記加水工程において、噴霧又はシャワーにより、前記原料米の米粒表面に水滴を付着させて表面付着水を生じさせ、該表面付着水によって前記原料米の水分を増加させることを特徴とする。
 請求項6記載の発明は、前記噴霧又はシャワーにより、前記原料米の米粒表面に水滴を付着させる処理を10~15分間行い、前記米粒全体の水分を20~30%(w.b.%)に調整することを特徴とする。
 請求項7記載の発明は、前記原料米が、精白米から糠を除去した無洗米であることを特徴とする。
 請求項8記載の発明は、請求項1から6のいずれかに記載の米粉の製造方法により得られる米粉であって、篩分け後の米粉の粒度として、200メッシュの篩を通過する米粉を75重量%以上含むことを特徴とする。
 米粒は、主として、デンプン単粒の複数の集まりであるデンプン複粒が、強固な細胞壁組織で包まれたセル構造になっている。そのため、該米粒は、このままで粉砕しても、前記強固な細胞壁組織の存在によりデンプン複粒がセル構造のまま残った状態になり、デンプン単粒まで細かく破壊されない懸念がある。
 そこで、本発明の前処理工程によって原料米の表面に微細な亀裂を多数生じさせた後、加水工程によって吸水を施すと、前記原料米の表面に形成された微細な亀裂によって吸水がスムーズに行われ、デンプン複粒の膨潤の進行が促進される。
 本発明において、米粒表面の付着水は、該米粒表面に形成された微細な亀裂からデンプン層に浸透するようになる。そして、前記デンプン層では、隣接するデンプン複粒同士の間隙を縫うように導管が形成されており、該導管から細胞壁組織の浸透圧によってデンプン複粒への吸水が行われることになる。
 その結果、前記前処理工程によって米粒表面に微細な亀裂を形成した場合は、胚芽部を介して徐徐に吸水するよりも、デンプン複粒の膨潤の進行が著しく早まる。そして、この急速な膨潤により細胞壁組織のひずみ量が増加し、強固な細胞壁組織が破壊されやすくなり、米の硬度が著しく低下する。
 したがって、気流粉砕時にあっては、米の硬度の著しい低下により、細胞壁組織が簡単に破壊され、デンプン単粒まで細かく破砕されることになる。このため、ロール製粉用の動力が不要であり、かつ、微細で良質な米粉が得られ、粉砕時の負荷電流も20%程度低減することができるものとなる。
 また、前記前処理工程において、原料米に40~50℃の空気を10~40分間送給する、熱風による乾燥処理を施せば、簡単な装置によって原料米の表面に微細な亀裂を多数生じさせることができる。また、前記前処理工程において、原料米にマイクロ波を照射する加熱処理を施せば、短時間の急激な加熱により原料米の表面に微細な亀裂を多数生じさせることができる。
 そして、前記乾燥処理又は加熱処理により、原料米の水分を10~13%(w.b.%)に調整すれば、効率よく原料米の表面に微細な亀裂を多数生じさせることができる。
 また、前記加水工程において、噴霧又はシャワーにより、原料米の米粒表面に水滴を付着させて表面付着水を生じさせ、該表面付着水によって原料米の水分を増加させることとすれば、浸漬処理に伴う過剰な水を使用する必要がなく、排水処理設備が不要であり、排水処理に伴うエネルギーコストも削減することができる。
 また、前記加水工程において、噴霧又はシャワーにより、原料米の米粒表面に水滴を付着させる処理を10~15分間行い、米粒全体の水分を20~30%(w.b.%)に調整すれば、米粒表面の亀裂を通して米粒中心部まで水が吸水され、しかも、米粒表面部と米粒中心部との間の水分ムラが生じ難いといった利点がある。
 さらに、原料米が、精白米から糠を除去した無洗米であると、米粉を製造する際にあらかじめ洗米する作業を省略することができる。
 そして、本発明の米粉の製造方法によれば、篩分け後の米粉の粒度として、200メッシュ(75μm)通過、即ち、200メッシュ(75μmの間隔のメッシュ)の篩を通過するものを75重量%以上含む米粉が得られるから、ロール製粉用の動力が不要でありながら、微細で良質な米粉を提供することができる。
本発明の製造方法を実施するための装置の一例を示す概略図である。 前処理を施した米粒表面の図面代用写真である(倍率:25倍)。 前処理を施した米粒表面の図面代用写真である(倍率:50倍)。 前処理を施した米粒表面の図面代用写真である(倍率:50倍)。 無処理の米粒表面の図面代用写真である(倍率:50倍)。 米粒(精白米)の表皮付近を破断した模式図である。 米粒表面に微細亀裂を生じさせない(無処理)で、そのまま浸漬処理を行ったときのデンプン層を示す電子顕微鏡写真である。 米粒表面に微細亀裂を生じさせた後(前処理あり)、浸漬処理を行ったときのデンプン層を示す電子顕微鏡写真である。
 本発明を実施するための形態を図面を参照しながら説明する。
 図1は本発明の製造方法を実施するための米粉の製造装置の一例を示す概略図である。
 この米粉の製造装置1は、前処理部5と、加水部12と、気流粉砕部19とから主要部が構成される。前記前処理部5は、原料タンク2、該原料タンク2から供給された米粒を5~20mm厚程度の薄いシート状にして搬送するための無端ベルトコンベア3、及び該無端ベルトコンベア3によって搬送される生米粒に熱風を送給するか又はマイクロ波を照射して該生米粒を加熱するための加熱装置4を備える。前記加水部12は、前記前処理部5において表面に多数の亀裂を形成した米粒を受け入れて吸水させるために、加水ドラム6、撹拌スクリュー7、水タンク8、パイプ9、バルブ10、及び駆動モータ11を備える。前記気流粉砕部19は、前記加水部12によって加水された米粒を受け入れて気流粉砕するために、受入ホッパー13、ロータリーバルブ14、粉砕室15、該粉砕室15に設けた風吸込口16、粉砕ロータ17及び分級ロータ18を備える。
 前記前処理部5に供給する米粒は、無洗米が好適であるが、精白米を適用することもできる。原料タンク2から供給された米粒は、無端ベルトコンベア3によって5~20mm程度の厚さで加熱装置4に移送され、該加熱装置4において40~50℃の空気を10~40分間送給されて熱風で乾燥させられることで、該米粒表面に多数の微細な亀裂が形成される。このとき、加熱後の米粒全体の水分は10~13%(w.b.%)程度となっている。
 また、前記加熱装置4においてマイクロ波を使用した場合は、米粒にマイクロ波を1分間照射し、該米粒を100℃に急激に加熱することにより、当該米粒表面に多数の微細な亀裂が形成されることとなる。このときも、米粒全体の水分は10~13%(w.b.%)程度となっている。
 図2乃至図4は、原料として精白米を用いた場合において、上述の熱風による乾燥で前処理を施した米粒表面の図面代用写真であり(倍率:図2は25倍、図3及び図4は50倍)、図5は無処理、即ち、前記前処理を施さない米粒表面の図面代用写真である(倍率:50倍)。両者の比較から、前記前処理を施した場合、いずれも米粒表面に亀甲状又は魚の鱗(うろこ)状の微細な亀裂が生じているのが分かる。
 このような微細な亀裂が形成された米粒は、無端ベルトコンベア3によって加熱装置4から搬出されて、さらに、加水部12の加水ドラム6に供給される。加水部12では、水タンク8からパイプ9によって水が加水ドラム6内に供給されるようになっており、パイプ9の途中には、加水量を制御するためにバルブ10が設けられている。
 前記加水量は、米粒全体の水分が20~30%(w.b.%)となるように制御される。具体的には、容器内に水を満たして該容器内で米粒を長時間浸漬処理する方法(どぶ浸け法)ではなく、前記加水ドラム6内に噴霧ノズルを設置して、噴霧によって米粒表面に微細な水滴を付着させるか、又は前記加水ドラム6内にシャワーノズルを設置して、シャワーによって米粒表面に水滴を付着させるなどして、米粒の表面に付着した水によって水分を増加させる方法を採用することが望ましい。これにより、浸漬処理に伴う過剰な水を使用する必要がなく、排水処理設備が不要であり、排水処理に伴うエネルギーコストも削減することができる。
 噴霧ノズル又はシャワーノズルによる加水は、10~15分間程行うと、米粒全体の水分を20~30%(w.b.%)に制御することができる。このような加水処理を施すことによって、米粒表面の亀裂を通して米粒中心部まで水が吸水され、しかも、米粒表面部と米粒中心部との間の水分ムラが生じ難いといった利点がある。
 なお、上記加水部12では、米粒に水を吸水させることを例として説明したが、これに限定されることはなく、高濃度GABA水溶液、機能性糖化液など、各種栄養素を含む水溶液を米粒に吸水させることもできる。これにより、フィチン酸、イノシトール、GABAなどの機能性成分や、ビタミン、ミネラルを豊富に含む米粉を製造することができる。
 図6は米粒(精白米)の表皮付近を破断した模式図である。図6(a)に示すように、米粒は、主として、デンプン単粒Tの複数の集まりであるデンプン複粒Fが、強固な細胞壁組織Sで包まれたセル構造になっている。そのため、該米粒は、このままで粉砕しても、前記強固な細胞壁組織Sの存在によりデンプン複粒Fがセル構造のまま残った状態になり、デンプン単粒Tまで細かく破壊されない懸念がある。
 そこで、前記前処理部5において前処理を施した後、前記加水部12によって吸水を施すと、米粒表面に形成される微細な亀裂によって吸水がスムーズに行われ、デンプン複粒Fの膨潤の進行が促進される。
 図6(b)は、米粒(精白米)に微細な亀裂を生じさせたときの模式図である。この図を参照すれば、米粒表面の付着水は、微細な亀裂Kからデンプン層に浸透するようになる。米粒のデンプン層では、隣接するデンプン複粒F同士の間隙を縫うように導管Dが形成され、該導管Dから細胞壁組織Sの浸透圧によってデンプン複粒Fへの吸水が行われる。
 その結果、前記前処理によって米粒表面に微細な亀裂Kを形成した場合は、前処理を行わず胚芽部を介して徐徐に吸水するよりも、デンプン複粒Fの膨潤の進行が著しく早まる。そして、この急速な膨潤により細胞壁組織Sのひずみ量が増加し、強固な細胞壁組織Sが破壊されやすくなり、米の硬度が著しく低下する。
 したがって、気流粉砕時にあっては、米の硬度の著しい低下により、細胞壁組織Sが簡単に破壊され、デンプン単粒Tまで細かく破砕されることになる。また、事前にロール粉砕を行う場合と比べ、粉砕時の負荷電流も20%程度低減することができるものとなる。
 表1は、無処理米と表面亀裂米における浸漬時間と硬度(ビッカース硬度)の関係を示したものである。無処理のものは、浸漬後30分で硬度が1.9に低下するのに対し、表面亀裂を施したものは、浸漬後わずか5分の短時間で硬度が1.1と大幅に低下することが分かった。
Figure JPOXMLDOC01-appb-T000001
 図1に示す気流粉砕部19は、米粉の粒度として、200メッシュ(75μm)の篩を通過する区分の米粉が70重量%以上含まれるように米を粉砕することができるものを使用するとよい。例えば、気流粉砕部19は、竪型円筒状の粉砕室15と、該粉砕室15下部の逆円錐状底壁に配設した風吸込口16と、粉砕室15底部に配設した粉砕ロータ17と、該粉砕ロータ17により粉砕された微粉を分級するために、粉砕室15天井部に配設した分級ロータ18とから主要部が構成される。
 前記分級ロータ18で分級された微粉は、サイクロンからなる集塵機20に至り、排出バルブ21を経て製品として取り出される。符号22は排風機である。
 以下に、実施例に基づき、本発明を具体的に説明する。
<米粒表面に微細亀裂を生じさせる処理>
 原料として水分15~16%(w.b.%)の粳米を使用した。そして、粳米を前処理部5の原料タンク2に投入し、該原料タンク2から供給される前記粳米を無端ベルトコンベア3上において5~20mm厚程度の薄いシート状にして搬送した。加熱装置4では、40℃の熱風を10~40分送給して前記粳米の水分が約11~13%(w.b.%)程度となるまで乾燥した。これにより、米粒表面には亀甲状又魚の鱗(うろこ)状の多数の微細な亀裂が生じた(図2乃至図4)。
<米粒へ吸水させる処理>
 表面に微細な亀裂が形成された米粒を加熱装置4から搬出して、加水部12の加水ドラム6に供給する。前記加水部12では、バルブ10によって加水量を制御した。加水量は米粒全体の水分が約20~30%(w.b.%)となるように制御した。そして、米粒に対して表面に付着水が生じる程度に、10~15分間程度、噴霧加水又はシャワー加水を行った。
 図7は米粒表面に微細亀裂を生じさせない(無処理)で、そのまま浸漬処理を行ったときのデンプン層を示す電子顕微鏡写真であり、図8は米粒表面に微細亀裂を生じさせた後(前処理あり)に、浸漬処理を行ったときのデンプン層を示す電子顕微鏡写真である。図7及び図8を参照すると、無処理の場合、デンプン複粒はその状態を維持しているが、前処理ありの場合、前記デンプン複粒はデンプン単粒に分解していることが分かる。これは、前記米粒表面に微細亀裂を生じさせる前処理が、デンプン単粒細胞を容易に分離・粉砕することを可能にし、損傷デンプン率を低く抑えることを可能にすることを示すものである。
<米粒を粉砕する処理>
 次いで、加水部12から出てきた加水後の米粒を、気流粉砕部19の受入ホッパー13に投入し、水分が内部に浸透し全体が均一化するように約30分の短時間の寝かし処理を行った。受入ホッパー13内の米粒は、ロータリーバルブ14により定量的に粉砕室15に投入され粉砕された。当該粉砕は、高速回転する粉砕ロータ17による破砕と、風吸込口16からの旋回する空気噴流とにより行われ、米粒は、激しい撹拌、摩擦、衝突の各作用を繰り返しながら微粉化された。粉砕された微粉は、粉砕室15内を浮遊しながら天井部の分級ロータ18で分級され、一定粒度以下となった微粉のみが集塵機20に集められ、排出バルブ21を経て製品として機外へ排出された。
<粒度分布>
 製造された米粉の粒度を、JIS Z8801(2000)に規定されている標準篩を用いて篩分けして測定した。その結果を表2に示す。
 なお、表2の比較例1(前処理なし)は、従来技術により製造した米粉の粒度分布である。すなわち、原料米として実施例1と同様の粳米を用い、該粳米を常法により洗米し、どぶ浸け法により18時間浸漬を行い、その後、テンパリング処理を行い、水分を24%(w.b.%)としたものに実施例1と同様の気流粉砕処理を施したものである。
Figure JPOXMLDOC01-appb-T000002
 表2から明らかなように、微細な亀裂が形成された米粒に加水した後、気流粉砕を施したもの(実施例1)は、200メッシュ(75μm)通過、即ち、200メッシュ(75μm間隔のメッシュ)を通過する区分が89.3%を占める粒度の米粉となり、比較例1と比べ微細で良質な米粉となっている。
 そして、前記実施例1の方法によれば、特許文献1に記載されたものとほぼ同等の微細で良質な米粉を提供することが可能となった。
 これは、本実施例において、米粒が、気流粉砕により細胞壁組織を破壊され、デンプン単粒まで細かく粉砕されたことを示すものである。
 本発明は、米粉を100%使ったパンや、米粉を使ったケーキなど、製パン分野や洋菓子製造分野、製麺分野などで多用途に適用することができる。
1 米粉の製造装置
2 原料タンク
3 無端ベルトコンベア
4 加熱装置
5 前処理部
6 加水ドラム
7 撹拌スクリュー
8 水タンク
9 パイプ
10 バルブ
11 駆動モータ
12 加水部
13 受入ホッパー
14 ロータリーバルブ
15 粉砕室
16 風吸込口
17 粉砕ロータ
18 分級ロータ
19 気流粉砕部
20 集塵機
21 排出バルブ
22 排風機

Claims (8)

  1.  原料米の表面に微細な亀裂を多数生じさせる前処理工程と、表面に微細な亀裂を生じさせた米粒の水分を増加させる加水工程と、加水後の米粒を気流粉砕機にて粉砕する粉砕工程とを含むことを特徴とする米粉の製造方法。
  2.  前記前処理工程において、前記原料米に40~50℃の空気を10~40分間送給する、熱風による乾燥処理を施す請求項1記載の米粉の製造方法。
  3.  前記前処理工程において、前記原料米にマイクロ波を照射する加熱処理を施す請求項1記載の米粉の製造方法。
  4.  前記乾燥処理又は加熱処理により、前記原料米の水分を10~13%(w.b.%)に調整してなる請求項2又は3記載の米粉の製造方法。
  5.  前記加水工程は、噴霧又はシャワーにより、前記原料米の米粒表面に水滴を付着させて表面付着水を生じさせ、該表面付着水によって原料米の水分を増加させる請求項1から4のいずれかに記載の米粉の製造方法。
  6.  前記加水工程は、前記噴霧又はシャワーにより、前記原料米の米粒表面に水滴を付着させる処理を10~15分間行い、前記米粒全体の水分を20~30%(w.b.%)に調整してなる請求項5記載の米粉の製造方法。
  7.  前記原料米が、精白米から糠を除去した無洗米である請求項1から6のいずれかに記載の米粉の製造方法。
  8.  請求項1から7のいずれかに記載の米粉の製造方法により得られる米粉であって、篩分け後の米粉の粒度として、200メッシュの篩を通過する米粉を75重量%以上含むことを特徴とする米粉。
PCT/JP2011/004319 2010-08-11 2011-07-29 米粉の製造方法及び該方法により得られる米粉 WO2012020551A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201180033084.3A CN103025176B (zh) 2010-08-11 2011-07-29 米粉的制造方法以及由该方法得到的米粉
KR1020127033438A KR101467435B1 (ko) 2010-08-11 2011-07-29 쌀가루의 제조방법 및 그 방법에 의해 얻어지는 쌀가루

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-180442 2010-08-11
JP2010180442A JP5743050B2 (ja) 2010-08-11 2010-08-11 米粉の製造方法及び該方法により得られる米粉

Publications (1)

Publication Number Publication Date
WO2012020551A1 true WO2012020551A1 (ja) 2012-02-16

Family

ID=45567527

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/004319 WO2012020551A1 (ja) 2010-08-11 2011-07-29 米粉の製造方法及び該方法により得られる米粉

Country Status (4)

Country Link
JP (1) JP5743050B2 (ja)
KR (1) KR101467435B1 (ja)
CN (1) CN103025176B (ja)
WO (1) WO2012020551A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5313982B2 (ja) * 2010-08-31 2013-10-09 株式会社 西村機械製作所 米粉製造方法、及び米粉製造システム
JP5664676B2 (ja) * 2013-02-15 2015-02-04 株式会社サタケ 全粒粉米粉の製造方法及び該方法で得られた全粒粉米粉
JP6372093B2 (ja) * 2014-02-26 2018-08-15 株式会社サタケ 製粉前処理装置
CN105615608B (zh) * 2014-10-25 2018-12-28 傅国要 一体化自动炒菜蒸饭设备
KR101845048B1 (ko) 2016-01-29 2018-04-03 주식회사 쁘띠아미 글루텐 프리 쌀빵 및 이의 제조 방법
KR101894370B1 (ko) * 2016-09-30 2018-09-03 황순옥 쌀가루의 제조방법
CN107927555B (zh) * 2017-12-27 2021-08-27 吉林农业大学 纯天然五谷果蔬复合营养调理型方便米饭及其生产方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0463555A (ja) * 1990-06-29 1992-02-28 Niigata Pref Gov 米粉の製造方法及びその利用食品
JPH04287652A (ja) * 1991-03-18 1992-10-13 Niigata Pref Gov 微細粒米粉並びにその製造方法並びに当該微細粒米粉を使用した加工食品
JPH0568468A (ja) * 1991-07-15 1993-03-23 Noriyuki Sugawara パン生地用米粉
JP2000175636A (ja) * 1998-12-16 2000-06-27 Niigata Prefecture 小麦粉の代替品となる米粉の製造方法及び当該米粉を使用した加工食品
JP2003153657A (ja) * 2001-11-21 2003-05-27 Oshikiri:Kk 表面に微細亀裂を有する加工米、並びに、その製造方法及び装置
JP2003164263A (ja) * 2001-11-30 2003-06-10 Niigata Gohan:Kk 電子レンジ炊飯用早炊き米の製造方法並びに電子レンジ加熱用容器付米食品
JP2003274881A (ja) * 2002-03-20 2003-09-30 Hayashibara Biochem Lab Inc 玄米を原料とする米粉の新規製造方法
JP2004049036A (ja) * 2002-07-17 2004-02-19 Hayashibara Biochem Lab Inc 米粉の製造方法
JP2005287365A (ja) * 2004-03-31 2005-10-20 Hokkaido 米粉の製造方法
JP2010148472A (ja) * 2008-12-26 2010-07-08 Noriyuki Sugawara 機械製麺用米麺粉

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10235295A (ja) * 1997-02-24 1998-09-08 Tiger Kawashima Co Ltd 穀類選別装置
TW200421986A (en) * 2002-11-25 2004-11-01 Hayashibara Biochem Lab Method of producing rice flour and use thereof
JP3738025B2 (ja) * 2004-05-14 2006-01-25 株式会社ファンケル 発芽玄米
JP4286825B2 (ja) * 2005-10-03 2009-07-01 株式会社ファンケル 発芽精白米
JP2008193939A (ja) * 2007-02-09 2008-08-28 Satake Corp 無菌パック米飯の製造方法及びその装置
CN101779757A (zh) * 2009-01-15 2010-07-21 上海亦晨信息科技发展有限公司 一种具有微波烘干的箱式多级烘干塔及其烘干方法
CN101717182A (zh) * 2009-12-02 2010-06-02 单军成 一种低羟基灰色石英管及其生产方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0463555A (ja) * 1990-06-29 1992-02-28 Niigata Pref Gov 米粉の製造方法及びその利用食品
JPH04287652A (ja) * 1991-03-18 1992-10-13 Niigata Pref Gov 微細粒米粉並びにその製造方法並びに当該微細粒米粉を使用した加工食品
JPH0568468A (ja) * 1991-07-15 1993-03-23 Noriyuki Sugawara パン生地用米粉
JP2000175636A (ja) * 1998-12-16 2000-06-27 Niigata Prefecture 小麦粉の代替品となる米粉の製造方法及び当該米粉を使用した加工食品
JP2003153657A (ja) * 2001-11-21 2003-05-27 Oshikiri:Kk 表面に微細亀裂を有する加工米、並びに、その製造方法及び装置
JP2003164263A (ja) * 2001-11-30 2003-06-10 Niigata Gohan:Kk 電子レンジ炊飯用早炊き米の製造方法並びに電子レンジ加熱用容器付米食品
JP2003274881A (ja) * 2002-03-20 2003-09-30 Hayashibara Biochem Lab Inc 玄米を原料とする米粉の新規製造方法
JP2004049036A (ja) * 2002-07-17 2004-02-19 Hayashibara Biochem Lab Inc 米粉の製造方法
JP2005287365A (ja) * 2004-03-31 2005-10-20 Hokkaido 米粉の製造方法
JP2010148472A (ja) * 2008-12-26 2010-07-08 Noriyuki Sugawara 機械製麺用米麺粉

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KANEMOTO, S.: "The development of recent processed rice and the rice flour milling technology", FOOD PROCESSING AND INGREDIENTS, vol. 44, no. 6, 2009, pages 11 - 14, XP008174105 *
MESAKI, T. ET AL.: "A Basic Study on the Absorption and Migration of Water in Rice Kernels (Part 2)", JOURNAL OF THE JAPANESE SOCIETY OF AGRICULTURAL MACHINERY, vol. 68, no. 3, 2006, pages 35 - 45 *

Also Published As

Publication number Publication date
KR101467435B1 (ko) 2014-12-01
JP2012034665A (ja) 2012-02-23
JP5743050B2 (ja) 2015-07-01
CN103025176A (zh) 2013-04-03
KR20130031295A (ko) 2013-03-28
CN103025176B (zh) 2014-05-14

Similar Documents

Publication Publication Date Title
WO2012020551A1 (ja) 米粉の製造方法及び該方法により得られる米粉
CN1167510C (zh) 一种加工无糠谷物的方法与设备
CN102500446B (zh) 一种玉米干法加工工艺及装置
CN207342751U (zh) 一种新型大米抛光装置
EP2792249B1 (en) Method for producing rice flour
CN105536914A (zh) 一种藜麦米干法加工工艺
CN204638248U (zh) 卧式砂辊碾米机
CN104801362A (zh) 一种薏仁米干法加工工艺
CN103920555A (zh) 一种苦荞麦非热脱壳方法及其脱壳装置
CN113019568A (zh) 一种半干法磨米的工艺
RU2354451C2 (ru) Способ приготовления пшеничной муки
CN108559003A (zh) 一种节能、减排、高效的玉米淀粉加工方法
CN106179563B (zh) 一种胚芽分离工艺
JP5828443B2 (ja) 米粉製造のための製粉前処理方法及びその装置
JP5313982B2 (ja) 米粉製造方法、及び米粉製造システム
CN104772174A (zh) 一种糙米雾化着水辗米方法及雾化装置
CN103881804A (zh) 一种冷榨芝麻油的方法
CN112219973A (zh) 一种燕麦全粉的制备方法
CN107484943B (zh) 低破损淀粉含量的大米粉节能制备方法
JPH01135546A (ja) 湿式製粉方法及びその装置
JP4411645B2 (ja) 無洗米の製造方法及びその装置
CN110973646A (zh) 一种改善小麦膳食纤维粉口感的加工工艺
RU2453369C1 (ru) Способ гидротермической обработки проса
JP2001259447A (ja) 無洗米の製造方法及びその装置
JP5460311B2 (ja) オゾンを使用した小麦粒の剥皮

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180033084.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11816221

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 20127033438

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11816221

Country of ref document: EP

Kind code of ref document: A1