WO2012017916A1 - System for conversion of carbon dioxide into carbon monoxide in ironworks - Google Patents
System for conversion of carbon dioxide into carbon monoxide in ironworks Download PDFInfo
- Publication number
- WO2012017916A1 WO2012017916A1 PCT/JP2011/067279 JP2011067279W WO2012017916A1 WO 2012017916 A1 WO2012017916 A1 WO 2012017916A1 JP 2011067279 W JP2011067279 W JP 2011067279W WO 2012017916 A1 WO2012017916 A1 WO 2012017916A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- gas
- carbon dioxide
- blast furnace
- carbon monoxide
- converter
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C5/00—Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
- C21C5/28—Manufacture of steel in the converter
- C21C5/38—Removal of waste gases or dust
- C21C5/40—Offtakes or separating apparatus for converter waste gases or dust
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/40—Carbon monoxide
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01F—COMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
- C01F17/00—Compounds of rare earth metals
- C01F17/20—Compounds containing only rare earth metals as the metal element
- C01F17/206—Compounds containing only rare earth metals as the metal element oxide or hydroxide being the only anion
- C01F17/224—Oxides or hydroxides of lanthanides
- C01F17/235—Cerium oxides or hydroxides
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21B—MANUFACTURE OF IRON OR STEEL
- C21B7/00—Blast furnaces
- C21B7/002—Evacuating and treating of exhaust gases
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/20—Metals or compounds thereof
- B01D2255/206—Rare earth metals
- B01D2255/2065—Cerium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2256/00—Main component in the product gas stream after treatment
- B01D2256/20—Carbon monoxide
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2258/00—Sources of waste gases
- B01D2258/02—Other waste gases
- B01D2258/025—Other waste gases from metallurgy plants
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/46—Removing components of defined structure
- B01D53/62—Carbon oxides
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21B—MANUFACTURE OF IRON OR STEEL
- C21B2100/00—Handling of exhaust gases produced during the manufacture of iron or steel
- C21B2100/20—Increasing the gas reduction potential of recycled exhaust gases
- C21B2100/28—Increasing the gas reduction potential of recycled exhaust gases by separation
- C21B2100/282—Increasing the gas reduction potential of recycled exhaust gases by separation of carbon dioxide
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21B—MANUFACTURE OF IRON OR STEEL
- C21B2100/00—Handling of exhaust gases produced during the manufacture of iron or steel
- C21B2100/60—Process control or energy utilisation in the manufacture of iron or steel
- C21B2100/66—Heat exchange
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C2100/00—Exhaust gas
- C21C2100/02—Treatment of the exhaust gas
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C2100/00—Exhaust gas
- C21C2100/06—Energy from waste gas used in other processes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/20—Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/10—Reduction of greenhouse gas [GHG] emissions
- Y02P10/122—Reduction of greenhouse gas [GHG] emissions by capturing or storing CO2
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/25—Process efficiency
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/10—Process efficiency
- Y02P20/129—Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/151—Reduction of greenhouse gas [GHG] emissions, e.g. CO2
Definitions
- the present invention is a system for converting carbon dioxide to carbon monoxide at a steel mill, A metal oxide having oxygen ion conductivity and having reversible oxygen vacancies and a blast furnace gas or converter gas are brought into direct contact under heating, and the stoichiometric amount of carbon dioxide in the blast furnace gas or converter gas. It provides a conversion system that generates carbon monoxide by reduction through stochastic reactions and uses waste heat generated from steelworks as a heat source for heating.
- the present invention is a method in which a metal oxide having oxygen ion conductivity and having a reversible oxygen deficiency is brought into direct contact with carbon dioxide separated from a blast furnace gas or converter gas of a steel mill under heating, A method for producing carbon monoxide in which carbon dioxide is reduced by a stoichiometric reaction to produce carbon monoxide, and a method for producing carbon monoxide using waste heat generated from a steel mill as a heat source for heating is provided. To do.
- the conversion system of the present invention By introducing the conversion system of the present invention into the steelworks, the amount of carbon dioxide emitted from the steelworks is reduced and the burden on the environment is reduced.
- carbon dioxide can be converted to carbon monoxide, which is a raw material such as C1 chemical material, and can be effectively reused.
- the energy efficiency of a steelworks can be improved by utilizing the waste heat generated from the steelworks.
- FIG. 1 is a conceptual diagram of the conversion system of the present invention.
- FIG. 2 is a schematic diagram showing an apparatus suitably used in the conversion system of the present invention.
- FIG. 3 is a schematic diagram showing another apparatus suitably used in the conversion system of the present invention.
- FIG. 4 is a schematic view showing still another apparatus suitably used in the conversion system of the present invention.
- FIG. 5 is a schematic view showing an apparatus for generating carbon monoxide gas from blast furnace gas used in the examples.
- FIG. 6 is a schematic diagram showing an apparatus for synthesizing cerium oxide having oxygen deficiency used in the examples.
- carbon dioxide contained in the blast furnace gas or converter gas is converted into a specific metal oxide (hereinafter, this metal oxide is referred to as “converter of carbon dioxide to carbon monoxide” or simply “
- the carbon dioxide gas contained in these gases is converted into carbon monoxide gas by contacting with a heating agent.
- the reaction between the conversion agent and carbon dioxide gas is a stoichiometric reaction utilizing the reducing power of the conversion agent. That is, the conversion agent made of this metal oxide is not used as a catalyst, but as a reactant itself.
- the conversion agent comprising the metal oxide used in the present invention has oxygen ion conductivity as described above.
- the oxygen ion conductivity may be developed at a temperature at which the production method of the present invention is performed. Since this conversion agent has oxygen ion conductivity, almost all of the reversible oxygen vacancies present in this conversion agent can be effectively utilized for the reaction with carbon dioxide.
- the reason is as follows. That is, since the production method of the present invention is a reaction between a solid metal oxide and a gaseous carbon dioxide gas, the reaction mainly proceeds on the solid surface. And the oxygen deficiency which exists in the surface of a metal oxide couple
- the conversion agent comprising the metal oxide used in the present invention has oxygen ion conductivity and has the following advantages. That is, in this conversion agent, the reversible oxygen deficiency present in the converter can also contribute to the reaction with carbon dioxide, so that the reactivity with carbon dioxide can be achieved without excessively increasing the specific surface area of this conversion agent. Is hard to decline. Therefore, this conversion agent has a degree of freedom that it can be formed into a desired shape such as a granular shape, a pellet shape, a plate shape, or a cylindrical shape.
- a metal oxide that does not have oxygen ion conductivity for example, an iron oxide having an oxygen vacancy described in Patent Document 1 described in the background section, has an oxygen vacancy existing therein.
- the cerium oxide When cerium oxide is used as the conversion agent used in the present invention, the cerium oxide includes CeO 2-x (wherein Ce has a tetravalent and trivalent mixed valence, and x is 0.5 And a reversible oxygen deficiency and a fluorite-type crystal structure are preferably used.
- This cerium oxide is produced by firing a cerium-containing salt or a hydrate thereof in an oxidizing atmosphere such as air to produce cerium oxide (CeO 2 ) having a fluorite-type structure, and then strongly reducing the cerium oxide. And reversible oxygen deficiency.
- the cerium oxide is represented by CeO 2-x (wherein Ce has a trivalent and mixed valence of less than trivalent, and x represents a number of 0.5 to 0.7), and is reversible Those having a typical oxygen deficiency and having a superlattice structure similar to fluorite are also preferably used.
- Fluorite-like is a state in which the oxygen vacancies that initially exist at random are changed into ordered oxygen vacancies as oxygen escapes from the crystals of fluorite-type structures such as ordinary cerium oxide. Strictly speaking, it refers to a state that cannot be called a fluorite structure.
- the coke oven gas generated from the coke oven 3 is supplied to the conversion device 4 and brought into direct contact with the conversion agent. That is, it is not necessary to separate the hydrogen gas in the coke oven gas.
- the ability to directly use coke oven gas is economically advantageous because it eliminates the need to provide equipment and equipment for treating coke oven gas.
- FIG. 2 schematically shows a carbon monoxide converter suitably used in the present invention.
- the conversion device 10 shown in the figure is a continuous type and has a double-pipe structure.
- the conversion device 10 shown in FIG. 1 includes an outer tube 11 and an inner tube 12 disposed in the outer tube 11.
- a heating device 13 using a heat medium heated by waste heat as a heat source is disposed in the inner tube 12.
- the inner tube 12 contains the conversion agent.
- blast furnace gas is circulated in the space between the outer tube 11 and the inner tube 12. While the blast furnace gas circulates in this space, carbon dioxide in the blast furnace gas reacts with the conversion agent contained in the inner pipe 12 to generate carbon monoxide.
- the coke oven gas is circulated in the inner tube 12. .
- oxygen is extracted from the conversion agent oxidized by contact with the carbon dioxide gas in the blast furnace gas, and lost oxygen deficiency is generated again.
- the reaction between the carbon dioxide gas in the blast furnace gas and the conversion agent 24 is alternately performed by the first reaction device 21 and the second reaction device 22, so that the conversion agent 24 is regenerated and monoxide is regenerated. Carbon can be produced semi-continuously.
- the converter 20 shown in FIG. 3 although two batch type reactors were used, it may replace with this and may use three or more reactors.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Inorganic Chemistry (AREA)
- Environmental & Geological Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
A conversion system of the present invention is characterized in that a metal oxide having oxygen ion conductivity and reversible oxygen deficiency is brought into contact directly with a blast furnace gas or a converter furnace gas while heating to reduce carbon dioxide in the blast furnace gas or the converter furnace gas through a stoichiometric reaction, thereby producing carbon monoxide, and that waste heat generated in an ironworks is utilized as a heat source for the heating. This conversion system is also characterized in that a metal oxide having oxygen ion conductivity and reversible oxygen deficiency is brought into contact with carbon dioxide separated from a blast furnace gas or a converter furnace gas while heating to reduce carbon dioxide through a stoichiometric reaction, thereby producing carbon monoxide, and that waste heat generated in an ironworks is utilized as a heat source for the heating.
Description
本発明は、製鉄所における二酸化炭素からの一酸化炭素への変換システムに関する。
The present invention relates to a system for converting carbon dioxide to carbon monoxide at a steelworks.
製鉄所の操業に伴い、二酸化炭素を含む高炉ガス及び転炉ガスが多量に発生する。二酸化炭素は温室効果ガスであり、高炉ガス及び転炉ガス中の二酸化炭素を効率的に再利用することは、地球温暖化防止の観点から重要である。また、経済的な観点から、高炉ガスから二酸化炭素を分離する装置を用いず、高炉ガス中から回収し再利用することが望ましい。更に、二酸化炭素を再利用する際に、製鉄所から発生する廃熱を再利用するこが、エネルギー効率を高める観点から望ましい。以上のことから、製鉄所から発生する高炉ガス及び廃熱を再利用するシステムの確立が望ましい。
A lot of blast furnace gas and converter gas containing carbon dioxide are generated along with the operation of steelworks. Carbon dioxide is a greenhouse gas, and it is important from the viewpoint of preventing global warming to efficiently reuse carbon dioxide in the blast furnace gas and converter gas. From an economic point of view, it is desirable to recover from the blast furnace gas and reuse it without using an apparatus for separating carbon dioxide from the blast furnace gas. Furthermore, when carbon dioxide is reused, it is desirable from the viewpoint of improving energy efficiency to reuse the waste heat generated from the steelworks. From the above, it is desirable to establish a system for reusing blast furnace gas and waste heat generated from steelworks.
二酸化炭素を発生させる産業における二酸化炭素を回収し再利用する技術として、例えば酸素欠損状態の鉄の酸化物を用いて二酸化炭素ガスを一酸化炭素ガスと酸素ガスとに分解し、生成した酸素ガスによって酸素欠損状態の鉄の酸化物を元の鉄酸化物に戻し、一酸化炭素ガスのみを回収する技術が提案されている(特許文献1参照)。
As a technology to recover and reuse carbon dioxide in the industry that generates carbon dioxide, for example, oxygen gas generated by decomposing carbon dioxide gas into carbon monoxide gas and oxygen gas using iron oxide in an oxygen deficient state Thus, a technique has been proposed in which the oxygen-deficient iron oxide is returned to the original iron oxide and only the carbon monoxide gas is recovered (see Patent Document 1).
また、前記の技術とは別に、焼却炉等から排出される二酸化炭素を再利用する技術として、特許文献2には、CeO2からなる酸素イオン伝導体と触媒とを有する固体反応膜を用いて二酸化炭素を一酸化炭素と酸素に分離する方法が提案されている。
In addition to the above technique, as a technique for reusing carbon dioxide discharged from an incinerator or the like, Patent Document 2 uses a solid reaction membrane having an oxygen ion conductor made of CeO 2 and a catalyst. A method for separating carbon dioxide into carbon monoxide and oxygen has been proposed.
特許文献1に記載の技術によれば、確かに二酸化炭素ガスから一酸化炭素ガスが生成する。しかし、鉄の酸化物は、酸素イオン導電性が低く、表面が酸化されてしまうと、たとえ該酸化物の内部に酸素欠損が存在していても、該酸素欠損は二酸化炭素ガスと接触することができない。したがって二酸化炭素ガスから一酸化炭素ガスへの変換効率を高めたい場合には、酸素欠損を有する鉄の酸化物を多量に使用する必要があり、経済的に不利になる。また同文献においては、工場等から発生する廃熱の利用については提案されておらず、廃熱及び排気ガスを利用したトータルの一酸化炭素ガスの生成システムとして確立していない。
According to the technique described in Patent Document 1, carbon monoxide gas is certainly generated from carbon dioxide gas. However, iron oxide has low oxygen ion conductivity, and if the surface is oxidized, the oxygen deficiency will come into contact with carbon dioxide gas even if oxygen deficiency exists inside the oxide. I can't. Therefore, in order to increase the conversion efficiency from carbon dioxide gas to carbon monoxide gas, it is necessary to use a large amount of iron oxide having oxygen deficiency, which is economically disadvantageous. In addition, in this document, utilization of waste heat generated from a factory or the like is not proposed, and it has not been established as a total carbon monoxide gas generation system using waste heat and exhaust gas.
特許文献2に記載の技術では、二酸化炭素を一酸化炭素と酸素に分解させるために貴金属触媒を用いているので、特に多量の二酸化炭素が発生することから大規模な装置が求められる大規模な工場においては、経済的に極めて不利である。また、排気ガスを直接反応装置に供給することができるかも明らかではなく、廃熱及び排気ガスを利用した一酸化炭素ガスの生成システムとして確立していない。
In the technique described in Patent Document 2, since a noble metal catalyst is used to decompose carbon dioxide into carbon monoxide and oxygen, a large amount of carbon dioxide is generated. The factory is extremely disadvantageous economically. Further, it is not clear whether exhaust gas can be directly supplied to the reactor, and it has not been established as a carbon monoxide gas generation system using waste heat and exhaust gas.
したがって本発明の課題は、前述した従来技術が有する種々の欠点を解消し得る製鉄所における二酸化炭素からの一酸化炭素への変換システムを提供することにある。
Therefore, an object of the present invention is to provide a system for converting carbon dioxide to carbon monoxide in an ironworks that can eliminate the various disadvantages of the prior art described above.
本発明は、製鉄所における二酸化炭素からの一酸化炭素への変換システムであって、
酸素イオン伝導性を有し、かつ可逆的な酸素欠損を有する金属酸化物と、高炉ガス又は転炉ガスとを加熱下に直接接触させ、該高炉ガス又は転炉ガス中の二酸化炭素を化学量論反応によって還元して一酸化炭素を生成させ、かつ
加熱の熱源として製鉄所から発生した廃熱を利用する変換システムを提供するものである。 The present invention is a system for converting carbon dioxide to carbon monoxide at a steel mill,
A metal oxide having oxygen ion conductivity and having reversible oxygen vacancies and a blast furnace gas or converter gas are brought into direct contact under heating, and the stoichiometric amount of carbon dioxide in the blast furnace gas or converter gas. It provides a conversion system that generates carbon monoxide by reduction through stochastic reactions and uses waste heat generated from steelworks as a heat source for heating.
酸素イオン伝導性を有し、かつ可逆的な酸素欠損を有する金属酸化物と、高炉ガス又は転炉ガスとを加熱下に直接接触させ、該高炉ガス又は転炉ガス中の二酸化炭素を化学量論反応によって還元して一酸化炭素を生成させ、かつ
加熱の熱源として製鉄所から発生した廃熱を利用する変換システムを提供するものである。 The present invention is a system for converting carbon dioxide to carbon monoxide at a steel mill,
A metal oxide having oxygen ion conductivity and having reversible oxygen vacancies and a blast furnace gas or converter gas are brought into direct contact under heating, and the stoichiometric amount of carbon dioxide in the blast furnace gas or converter gas. It provides a conversion system that generates carbon monoxide by reduction through stochastic reactions and uses waste heat generated from steelworks as a heat source for heating.
また本発明は、製鉄所における二酸化炭素からの一酸化炭素への変換システムであって、
酸素イオン伝導性を有し、かつ可逆的な酸素欠損を有する金属酸化物と、高炉ガス又は転炉ガスから分離した二酸化炭素とを加熱下に接触させ、この二酸化炭素を化学量論反応によって還元して一酸化炭素を生成させ、かつ
加熱の熱源として製鉄所から発生した廃熱を利用する変換システムを提供するものである。 Further, the present invention is a system for converting carbon dioxide to carbon monoxide at a steel mill,
A metal oxide having oxygen ion conductivity and reversible oxygen deficiency is brought into contact with carbon dioxide separated from blast furnace gas or converter gas under heating, and this carbon dioxide is reduced by a stoichiometric reaction. Thus, the present invention provides a conversion system that generates carbon monoxide and uses waste heat generated from a steelworks as a heat source for heating.
酸素イオン伝導性を有し、かつ可逆的な酸素欠損を有する金属酸化物と、高炉ガス又は転炉ガスから分離した二酸化炭素とを加熱下に接触させ、この二酸化炭素を化学量論反応によって還元して一酸化炭素を生成させ、かつ
加熱の熱源として製鉄所から発生した廃熱を利用する変換システムを提供するものである。 Further, the present invention is a system for converting carbon dioxide to carbon monoxide at a steel mill,
A metal oxide having oxygen ion conductivity and reversible oxygen deficiency is brought into contact with carbon dioxide separated from blast furnace gas or converter gas under heating, and this carbon dioxide is reduced by a stoichiometric reaction. Thus, the present invention provides a conversion system that generates carbon monoxide and uses waste heat generated from a steelworks as a heat source for heating.
また、本発明は、酸素イオン伝導性を有し、かつ可逆的な酸素欠損を有する金属酸化物と、製鉄所の高炉ガス又は転炉ガスとを加熱下に直接接触させ、該高炉ガス又は該転炉ガス中の二酸化炭素を化学量論反応によって還元して一酸化炭素を生成させる一酸化炭素の製造方法であって、加熱の熱源として製鉄所から発生した廃熱を利用する一酸化炭素の製造方法を提供するものである。
Further, the present invention provides a metal oxide having oxygen ion conductivity and having reversible oxygen deficiency and a blast furnace gas or converter gas of an ironworks directly in contact with the blast furnace gas or the A method for producing carbon monoxide in which carbon dioxide in a converter gas is reduced by a stoichiometric reaction to produce carbon monoxide, and the carbon monoxide that uses waste heat generated from a steel works as a heat source for heating. A manufacturing method is provided.
また、本発明は、酸素イオン伝導性を有し、かつ可逆的な酸素欠損を有する金属酸化物と、製鉄所の高炉ガス又は転炉ガスから分離した二酸化炭素とを加熱下に直接接触させ、この二酸化炭素を化学量論反応によって還元して一酸化炭素を生成させる一酸化炭素の製造方法であって、加熱の熱源として製鉄所から発生した廃熱を利用する一酸化炭素の製造方法を提供するものである。
Further, the present invention is a method in which a metal oxide having oxygen ion conductivity and having a reversible oxygen deficiency is brought into direct contact with carbon dioxide separated from a blast furnace gas or converter gas of a steel mill under heating, A method for producing carbon monoxide in which carbon dioxide is reduced by a stoichiometric reaction to produce carbon monoxide, and a method for producing carbon monoxide using waste heat generated from a steel mill as a heat source for heating is provided. To do.
本発明の変換システムを製鉄所に導入することにより、製鉄所からの二酸化炭素の排出量が低減され、環境への負担が低減する。また、二酸化炭素をC1化学の材料等の原料である一酸化炭素に変換して有効に再利用することができ、経済的に利益を得ることができる。更に、製鉄所から発生する廃熱を利用することにより、製鉄所のエネルギー効率を高めることができる。
導入 By introducing the conversion system of the present invention into the steelworks, the amount of carbon dioxide emitted from the steelworks is reduced and the burden on the environment is reduced. In addition, carbon dioxide can be converted to carbon monoxide, which is a raw material such as C1 chemical material, and can be effectively reused. Furthermore, the energy efficiency of a steelworks can be improved by utilizing the waste heat generated from the steelworks.
以下本発明を、その好ましい実施形態に基づき図面を参照しながら説明する。図1には銑鉄一貫製鉄所が模式的に示されている。製鉄所では、高炉1において、鉄鉱石、コークス等を用いて銑鉄を製造する。製造された銑鉄は転炉2に供給され、転炉2において鋼が生産される。銑鉄の製造に用いられるコークスは、コークス炉3で石炭を乾留することにより製造される。
Hereinafter, the present invention will be described based on preferred embodiments with reference to the drawings. FIG. 1 schematically shows an integrated iron and steel works. In the steelworks, pig iron is produced in the blast furnace 1 using iron ore, coke and the like. The manufactured pig iron is supplied to the converter 2, and steel is produced in the converter 2. The coke used for the production of pig iron is produced by dry distillation of coal in the coke oven 3.
高炉1で銑鉄を製造するときには高炉ガスが発生する。また転炉2で鋼を製造するときには転炉ガスが発生する。高炉ガスの主成分は窒素、一酸化炭素及び二酸化炭素である。そして、高炉ガスには、窒素が52~53体積%、一酸化炭素が18~25体積%、二酸化炭素が20~24体積%含まれている。また、転炉ガスの主成分は一酸化炭素及び二酸化炭素である。そして、転炉ガスには、一酸化炭素が50~80体積%、二酸化炭素が15~17体積%含まれる。このように、どちらのガスも二酸化炭素を主成分として含む。本発明においては、高炉ガス又は転炉ガスに含まれている二酸化炭素を、特定の金属酸化物(以下、この金属酸化物のことを「二酸化炭素の一酸化炭素への変換剤」又は単に「変換剤」ともいう。)と加熱下に接触させて、これらのガス中に含まれている二酸化炭素ガスを一酸化炭素ガスに変換する。この変換剤と二酸化炭素ガスとの反応は、この変換剤の還元力を利用した化学量論反応である。つまり、この金属酸化物からなる変換剤は、触媒として用いられるものではなく、反応物そのものとして用いられるものである。
When producing pig iron in the blast furnace 1, blast furnace gas is generated. Further, when steel is produced in the converter 2, converter gas is generated. The main components of blast furnace gas are nitrogen, carbon monoxide and carbon dioxide. The blast furnace gas contains 52 to 53% by volume of nitrogen, 18 to 25% by volume of carbon monoxide, and 20 to 24% by volume of carbon dioxide. The main components of the converter gas are carbon monoxide and carbon dioxide. The converter gas contains 50 to 80% by volume of carbon monoxide and 15 to 17% by volume of carbon dioxide. Thus, both gases contain carbon dioxide as the main component. In the present invention, carbon dioxide contained in the blast furnace gas or converter gas is converted into a specific metal oxide (hereinafter, this metal oxide is referred to as “converter of carbon dioxide to carbon monoxide” or simply “ The carbon dioxide gas contained in these gases is converted into carbon monoxide gas by contacting with a heating agent. The reaction between the conversion agent and carbon dioxide gas is a stoichiometric reaction utilizing the reducing power of the conversion agent. That is, the conversion agent made of this metal oxide is not used as a catalyst, but as a reactant itself.
具体的には、本発明においては、図1に示すように、製鉄所から発生する高炉ガス又は転炉ガスを変換装置4に直接供給し、該変換装置4内に配されている変換剤と加熱下に直接接触させて、高炉ガス又は転炉ガス中の二酸化炭素ガスを一酸化炭素ガスに変換する。この方法では、高炉ガス又は転炉ガスを直接変換装置4に供給するので、高炉ガス又は転炉ガスから二酸化炭素を分離するための装置を設ける必要がなく、経済的に有利である。
Specifically, in the present invention, as shown in FIG. 1, a blast furnace gas or a converter gas generated from an ironworks is directly supplied to the conversion device 4, and a conversion agent disposed in the conversion device 4 The carbon dioxide gas in the blast furnace gas or converter gas is converted into carbon monoxide gas by direct contact under heating. In this method, since the blast furnace gas or converter gas is directly supplied to the conversion device 4, it is not necessary to provide an apparatus for separating carbon dioxide from the blast furnace gas or converter gas, which is economically advantageous.
上述の方法に加えて、本発明の変換システムにおいては、高炉ガス又は転炉ガスを二酸化炭素分離回収装置5に供給して二酸化炭素を分離し、この二酸化炭素ガスを変換装置4に供給し、変換剤と加熱下に接触させて、二酸化炭素ガスを一酸化炭素ガスに変換する方法を採用してもよい。この場合、二酸化炭素ガスが、二酸化炭素100体積%からなる場合、後工程で他のガスを分離する必要がないため理想的であるが、その他のガスを少量含んでいてもよい。二酸化炭素ガスが他のガスを含む場合、二酸化炭素を80体積%以上含む二酸化炭素ガスを用いることが好ましい。ただし、その他のガスが酸素ガス又は水蒸気等の含酸素ガスである場合、供給するガス全量に対する割合は極力少量であることが望ましい。二酸化炭素分離装置5においては、混合ガス中の二酸化炭素を分離するために用いられる公知の方法、例えば化学吸収法、固体化学吸収法、物理吸収法等の吸収法、PSA(Pressure Swing Adsorption)、TSA(Thermal Swing Adsorption)、PTSA(Pressure and Temperature Swing Adsorption)等の吸着法、高分子膜、無機膜、膜-吸収液ハイブリット等を用いた膜分離法、深冷分離法等を用いて、二酸化炭素を分離する。
In addition to the above-described method, in the conversion system of the present invention, blast furnace gas or converter gas is supplied to the carbon dioxide separation and recovery device 5 to separate carbon dioxide, and this carbon dioxide gas is supplied to the conversion device 4. You may employ | adopt the method of making it contact with a conversion agent under a heating and converting carbon dioxide gas into carbon monoxide gas. In this case, when the carbon dioxide gas is composed of 100% by volume of carbon dioxide, it is ideal because it is not necessary to separate other gas in a subsequent process, but it may contain a small amount of other gas. When carbon dioxide gas contains other gas, it is preferable to use carbon dioxide gas containing 80% by volume or more of carbon dioxide. However, when the other gas is an oxygen-containing gas such as oxygen gas or water vapor, the ratio to the total amount of the supplied gas is preferably as small as possible. In the carbon dioxide separator 5, a known method used for separating carbon dioxide in the mixed gas, for example, an absorption method such as a chemical absorption method, a solid chemical absorption method, a physical absorption method, PSA (Pressure Swing Adsorption), Using TSA (Thermal Swing Adsorption), PTSA (Pressure and Temperature Swing Adsorption), etc., membrane separation method using polymer membrane, inorganic membrane, membrane-absorbing liquid hybrid, etc., cryogenic separation method, etc. Separate the carbon.
上述のいずれの方法を採用する場合であっても、本発明においては、二酸化炭素ガス源として、高炉ガスのみを用いてもよく、転炉ガスのみを用いてもよく、あるいは高炉ガスと転炉ガスの両方を用いてもよい。
Even if any of the above-described methods is adopted, in the present invention, as the carbon dioxide gas source, only the blast furnace gas may be used, only the converter gas may be used, or the blast furnace gas and the converter are used. Both gases may be used.
前記の特定の金属酸化物からなる変換剤としては、酸素イオン伝導性を有し、かつ可逆的な酸素欠損を有するものが用いられる。この変換剤が、可逆的な酸素欠損を有することによって、該変換剤は二酸化炭素の還元性を獲得する。可逆的な欠損とは、強力な還元条件下の処理によって金属酸化物から酸素が強制的に引き抜かれることで生成するものである。可逆的な欠損は、欠損したサイトに酸素が取り込まれることが可能な欠損である。例えば金属酸化物が、後述する酸化セリウムである場合、可逆的な欠損を有する酸化セリウムにおいては、酸素不足に起因する電荷のアンバランスな状態を、四価のセリウムの一部が三価に還元されることで補償している。三価のセリウムは不安定であり、四価に戻りやすいものである。したがって、欠損したサイトに酸素が取り込まれることで、三価となっているセリウムが四価に戻り、電荷のバランスが常にゼロに保たれる。欠損したサイトに酸素が取り込まれることで、該欠損は消失するが、再び強力な還元条件下の処理によって酸素欠損が生成する。「可逆的な酸素欠損」とは、この意味で用いられる。
As the conversion agent comprising the specific metal oxide, one having oxygen ion conductivity and having reversible oxygen vacancies is used. Since this conversion agent has a reversible oxygen deficiency, the conversion agent acquires the reducibility of carbon dioxide. A reversible defect | deletion is produced | generated when oxygen is forcibly extracted from a metal oxide by the process under strong reducing conditions. A reversible defect is a defect in which oxygen can be taken into a deficient site. For example, when the metal oxide is cerium oxide, which will be described later, in cerium oxide having a reversible defect, an unbalanced state of charge due to lack of oxygen is reduced to a part of tetravalent cerium to trivalent. To compensate. Trivalent cerium is unstable and easily returns to tetravalent. Therefore, by incorporating oxygen into the deficient site, trivalent cerium returns to tetravalent, and the charge balance is always kept at zero. By incorporating oxygen into the deficient site, the deficiency disappears, but oxygen deficiency is generated again by treatment under strong reducing conditions. “Reversible oxygen deficiency” is used in this sense.
本発明において用いられる前記の金属酸化物からなる変換剤は、上述のとおり酸素イオン伝導性を有している。酸素イオン伝導性は、本発明の製造方法を実施する温度において発現すればよい。この変換剤が酸素イオン伝導性を有することで、この変換剤中に存在する可逆的な酸素欠損の概ねすべてが二酸化炭素との反応に有効活用できる。その理由は次のとおりである。すなわち、本発明の製造方法は、固体である金属酸化物と、気体である二酸化炭素ガスとの反応なので、反応は主として固体表面において進行する。そして、金属酸化物の表面に存在する酸素欠損が、二酸化炭素中の酸素と結合することで、該表面における酸素欠損が消失するとともに、二酸化炭素が一酸化炭素へ変換される。この場合、該金属酸化物が酸素イオン伝導性を有することで、該金属酸化物の表面に存在する酸素欠損と結びついた酸素は、酸素イオン(O2-)の状態で該金属酸化物の内部に移動し、該金属酸化物の内部において酸素欠損が消失するとともに、該金属酸化物の表面には可逆的な酸素欠損が再び生成する。この繰り返しによって、変換剤中に存在する可逆的な酸素欠損の概ねすべてを二酸化炭素との反応に寄与させることができる。これに対して、例えば背景技術の項で述べた特許文献1に記載の酸素欠損を有する鉄の酸化物は、酸素イオン伝導性を有していないので、該酸化物の内部に酸素欠損が残存していても、該酸化物の表面に存在するすべて酸素欠損が消失した時点で、二酸化炭素との反応性が非常に低下してしまう。
The conversion agent comprising the metal oxide used in the present invention has oxygen ion conductivity as described above. The oxygen ion conductivity may be developed at a temperature at which the production method of the present invention is performed. Since this conversion agent has oxygen ion conductivity, almost all of the reversible oxygen vacancies present in this conversion agent can be effectively utilized for the reaction with carbon dioxide. The reason is as follows. That is, since the production method of the present invention is a reaction between a solid metal oxide and a gaseous carbon dioxide gas, the reaction mainly proceeds on the solid surface. And the oxygen deficiency which exists in the surface of a metal oxide couple | bonds with the oxygen in a carbon dioxide, The oxygen deficiency in this surface lose | disappears, and a carbon dioxide is converted into carbon monoxide. In this case, since the metal oxide has oxygen ion conductivity, oxygen associated with oxygen vacancies existing on the surface of the metal oxide is in the state of oxygen ions (O 2− ). The oxygen vacancies disappear inside the metal oxide, and reversible oxygen vacancies are generated again on the surface of the metal oxide. By repeating this, almost all of the reversible oxygen vacancies present in the conversion agent can contribute to the reaction with carbon dioxide. On the other hand, for example, the iron oxide having oxygen vacancies described in Patent Document 1 described in the background section does not have oxygen ion conductivity, so that oxygen vacancies remain in the oxide. Even so, when all the oxygen vacancies present on the surface of the oxide disappear, the reactivity with carbon dioxide is greatly reduced.
本発明において用いられる前記の金属酸化物からなる変換剤が酸素イオン伝導性を有することには次の利点もある。すなわち、この変換剤においては、その内部に存在する可逆的な酸素欠損も二酸化炭素との反応に寄与できるので、この変換剤の比表面積を過度に大きくしなくても、二酸化炭素との反応性は低下しづらい。したがって、この変換剤は、例えば粒状やペレット状、板状、筒状などの所望の形状に成形できるという自由度がある。これに対して、酸素イオン伝導性を有していない金属酸化物、例えば背景技術の項で述べた特許文献1に記載の酸素欠損を有する鉄の酸化物は、その内部に存在する酸素欠損は二酸化炭素との反応にほとんど寄与しないので、該酸素欠損を有効活用しようとすれば、該酸化物の比表面積を非常に大きくする必要がある。換言すれば、微粉末の状態で使用することが必須となり、それに起因して取り扱い性や、変換剤の設計の自由度が低い。
The conversion agent comprising the metal oxide used in the present invention has oxygen ion conductivity and has the following advantages. That is, in this conversion agent, the reversible oxygen deficiency present in the converter can also contribute to the reaction with carbon dioxide, so that the reactivity with carbon dioxide can be achieved without excessively increasing the specific surface area of this conversion agent. Is hard to decline. Therefore, this conversion agent has a degree of freedom that it can be formed into a desired shape such as a granular shape, a pellet shape, a plate shape, or a cylindrical shape. On the other hand, a metal oxide that does not have oxygen ion conductivity, for example, an iron oxide having an oxygen vacancy described in Patent Document 1 described in the background section, has an oxygen vacancy existing therein. Since it hardly contributes to the reaction with carbon dioxide, it is necessary to increase the specific surface area of the oxide in order to effectively utilize the oxygen deficiency. In other words, it is indispensable to use in the state of fine powder, and due to this, the handleability and the degree of freedom in designing the conversion agent are low.
以上のとおり、本発明で用いられる金属酸化物からなる前記の変換剤は、酸素イオン伝導性を有し、かつ可逆的な酸素欠損を有することが必須であるところ、そのような性質を有する金属酸化物としては、例えば酸化セリウム;安定化ジルコニア等に代表される蛍石型構造を有する金属酸化物(実質的に二酸化炭素との反応に使用する温度で立方晶系の蛍石型へと相転移するものも含まれる。)、及び該蛍石型構造を有する酸化物へ酸素イオン伝導性や酸素欠損を向上させる金属元素を置換したもの;酸化ビスマス及び酸化ビスマスへ酸素イオン伝導性や酸素欠損を向上させる金属元素を置換したもの;一般式ABO3(A及びBは金属元素)で表されるペロブスカイト型構造を有する酸化物並びに該ABO3のAサイト及びBサイトを酸素イオン伝導性や酸素欠損を向上させる金属元素を置換したもの;一般式A2B2O5(A及びBは金属元素)で表されるブラウンミラライト型構造を有する酸化物並びに該A2B2O5のAサイト及びBサイトを酸素イオン伝導性や酸素欠損を向上させる金属元素を置換したもの;一般式Ln10Si6O27(LnはLa、Pr、Nd、Sm、Gd又はDyを表す。)で表される希土類珪酸塩;La2Mo2O9等のモズナ石型構造を有する酸化物;一般式Nd2Ln2O3F6(LnはY、Ce、Eu、Sm又はGdを表す)で表される希土類金属オキシフッ化物などが挙げられる。特に、酸素イオン伝導性が高く、かつ可逆的な酸素欠損を生じさせやすい点や、経済性の点から、酸化セリウムを用いることが好ましい。
As described above, the conversion agent comprising the metal oxide used in the present invention is essential to have oxygen ion conductivity and to have reversible oxygen deficiency. As the oxide, for example, cerium oxide; a metal oxide having a fluorite structure represented by stabilized zirconia (substantially transformed into a cubic fluorite type at a temperature used for reaction with carbon dioxide). And an oxide having the fluorite structure substituted with a metal element that improves oxygen ion conductivity and oxygen deficiency; bismuth oxide and bismuth oxide with oxygen ion conductivity and oxygen deficiency those obtained by substituting a metal element that improves; general formula ABO 3 (a and B is a metal element) oxide and oxygen a site and B site of the ABO 3 has a perovskite structure represented by Those obtained by substituting a metal element that improves on conductivity and oxygen deficiency; oxide and the A 2 B formula A 2 B 2 O 5 (A and B represents a metal element) having a brownmillerite type structure represented by A metal element that improves oxygen ion conductivity and oxygen deficiency at the A site and B site of 2 O 5 ; general formula Ln 10 Si 6 O 27 (Ln is La, Pr, Nd, Sm, Gd or Dy A rare earth silicate represented by: an oxide having a moznaite structure such as La 2 Mo 2 O 9 ; a general formula Nd 2 Ln 2 O 3 F 6 (Ln is Y, Ce, Eu, Sm or Gd) Rare earth metal oxyfluoride represented by In particular, it is preferable to use cerium oxide from the viewpoints of high oxygen ion conductivity and reversible oxygen vacancies, and economical efficiency.
本発明で用いられる前記の変換剤として酸化セリウムを用いる場合、その酸化セリウムとしては、CeO2-x(式中、Ceは四価及び三価の混合価数を有し、xは0.5未満の正の数を表す。)で表され、可逆的な酸素欠損を有し、かつ蛍石型の結晶構造を有するものが好適に用いられる。この酸化セリウムは、含セリウム塩又はその水和物を大気等の酸化性雰囲気下に焼成することで蛍石型の構造の酸化セリウム(CeO2)を製造し、次いで該酸化セリウムを強還元して可逆的な酸素欠損を生成させることで得られる。焼成条件は、温度が好ましくは500~1400℃、更に好ましくは600~1300℃であり、時間は好ましくは1~20時間、更に好ましくは1~5時間である。強還元においては、還元雰囲気として、水素濃度が爆発下限以上、好ましくは20体積%以上の含水素雰囲気が用いられる。もちろん水素濃度が100体積%でもよい。温度は好ましくは700~1100℃、更に好ましくは800~1050℃であり、時間は好ましくは1~3時間、更に好ましくは1~2時間である。このような酸化セリウムの詳細は、例えば本出願人の先の出願に係るWO2010/004963に記載されている。
When cerium oxide is used as the conversion agent used in the present invention, the cerium oxide includes CeO 2-x (wherein Ce has a tetravalent and trivalent mixed valence, and x is 0.5 And a reversible oxygen deficiency and a fluorite-type crystal structure are preferably used. This cerium oxide is produced by firing a cerium-containing salt or a hydrate thereof in an oxidizing atmosphere such as air to produce cerium oxide (CeO 2 ) having a fluorite-type structure, and then strongly reducing the cerium oxide. And reversible oxygen deficiency. Regarding the firing conditions, the temperature is preferably 500 to 1400 ° C., more preferably 600 to 1300 ° C., and the time is preferably 1 to 20 hours, more preferably 1 to 5 hours. In strong reduction, a hydrogen-containing atmosphere having a hydrogen concentration of not less than the lower explosion limit, preferably not less than 20% by volume, is used as the reducing atmosphere. Of course, the hydrogen concentration may be 100% by volume. The temperature is preferably 700 to 1100 ° C., more preferably 800 to 1050 ° C., and the time is preferably 1 to 3 hours, more preferably 1 to 2 hours. Details of such cerium oxide are described, for example, in WO2010 / 004963 relating to the earlier application of the present applicant.
また、酸化セリウムとして、CeO2-x(式中、Ceは三価及び三価未満の混合価数を有し、xは0.5~0.7の数を表す。)で表され、可逆的な酸素欠損を有し、かつ蛍石類似の超格子構造を有するものも好適に用いられる。蛍石類似とは、通常の酸化セリウムのような蛍石型構造の結晶体から酸素が抜けていくにしたがって、最初ランダムに存在する酸素欠損が、規則配列の酸素欠損へと変わった状態であり、厳密には蛍石型構造と呼べない状態をいう。例えばPbFe12O19で表されるようなマグネトプランバイト型構造や、超伝導性を示すYBa2Cu3O6.9等の構造が挙げられる。また、超格子とは、複数の種類の結晶格子の重ね合わせによって、その周期構造が基本単位格子よりも長くなった結晶格子のことである。酸化セリウムが、蛍石類似の超格子構造を有することは、例えばX線構造解析によって確認できる。このような構造の酸化セリウムは、含酸素セリウム塩又はその水和物を前駆体とし、これを直接還元することで得ることができる。還元処理は、例えば水素ガスやアセチレンガスや一酸化炭素ガス等の還元性ガスの濃度が高濃度でかつ高温熱処理である強還元雰囲気中で行われる。還元性ガス濃度は好ましくは爆発下限以上~100体積%、更に好ましくは20体積%~100体積%である。処理温度は好ましくは500℃以上、更に好ましくは700℃~1200℃、一層好ましくは1000℃~1050℃である。強還元雰囲気は一般に常圧であるが、これに代えて加圧条件を用いてもよい。還元処理中、反応系内は還元性ガス雰囲気が終始維持され、反応系内が含酸素ガス雰囲気に曝されることはない。このような酸化セリウムの詳細は、例えば本出願人の先の出願に係るWO2008/140004に記載されている。
Further, the cerium oxide is represented by CeO 2-x (wherein Ce has a trivalent and mixed valence of less than trivalent, and x represents a number of 0.5 to 0.7), and is reversible Those having a typical oxygen deficiency and having a superlattice structure similar to fluorite are also preferably used. Fluorite-like is a state in which the oxygen vacancies that initially exist at random are changed into ordered oxygen vacancies as oxygen escapes from the crystals of fluorite-type structures such as ordinary cerium oxide. Strictly speaking, it refers to a state that cannot be called a fluorite structure. Examples thereof include a magnetoplumbite type structure represented by PbFe 12 O 19 and a structure such as YBa 2 Cu 3 O 6.9 exhibiting superconductivity. The superlattice is a crystal lattice whose periodic structure is longer than the basic unit lattice by superimposing a plurality of types of crystal lattices. It can be confirmed, for example, by X-ray structural analysis that cerium oxide has a superlattice structure similar to fluorite. Cerium oxide having such a structure can be obtained by using an oxygen-containing cerium salt or a hydrate thereof as a precursor and directly reducing it. The reduction treatment is performed in a strong reducing atmosphere in which the concentration of a reducing gas such as hydrogen gas, acetylene gas, or carbon monoxide gas is high and heat treatment is performed at a high temperature. The reducing gas concentration is preferably not less than the lower limit of explosion to 100% by volume, more preferably 20% to 100% by volume. The treatment temperature is preferably 500 ° C. or higher, more preferably 700 ° C. to 1200 ° C., and still more preferably 1000 ° C. to 1050 ° C. The strongly reducing atmosphere is generally atmospheric pressure, but pressure conditions may be used instead. During the reduction treatment, a reducing gas atmosphere is maintained throughout the reaction system, and the reaction system is not exposed to the oxygen-containing gas atmosphere. The details of such cerium oxide are described in, for example, WO2008 / 140004 related to the applicant's previous application.
更に、酸化セリウムとして、Ce2O3-x(式中、xは0以上で1未満の数を表す。)で表され、可逆的な酸素欠損を有し、かつ三方晶の結晶構造を有するものも好適に用いられる。ここで、式中のxが0である場合には、セリウムは三価の価数を有し、xが0以外の数である場合には、セリウムは三価及び三価未満の混合価数を有する。この酸化セリウムは、含酸セリウム塩又はその水和物を、還元雰囲気下、例えば水素雰囲気下で焼成することで得られる。焼成温度及び焼成時間は、例えば焼成温度が1000℃であれば2時間以上、焼成温度が1050℃超であれば1時間以上焼成する。また、この酸化セリウムは、前記含酸セリウムを大気雰囲気下で、例えば600℃で1時間以上焼成し、得られた蛍石型の結晶構造を有する酸化セリウムを、還元雰囲気下、例えば水素雰囲気下で、例えば1200℃で1時間以上焼成することにより得ることができる。
Further, the cerium oxide is represented by Ce 2 O 3-x (wherein x represents a number of 0 or more and less than 1), has a reversible oxygen deficiency, and has a trigonal crystal structure. Those are also preferably used. Here, when x in the formula is 0, cerium has a trivalent valence, and when x is a number other than 0, cerium is a mixed valence that is trivalent and less than trivalent. Have This cerium oxide can be obtained by baking an acid-containing cerium salt or a hydrate thereof in a reducing atmosphere, for example, in a hydrogen atmosphere. For example, if the firing temperature is 1000 ° C., the firing temperature and firing time are 2 hours or longer, and if the firing temperature is higher than 1050 ° C., firing is performed for 1 hour or longer. Further, the cerium oxide is obtained by baking the cerium oxide containing acid in an air atmosphere at, for example, 600 ° C. for 1 hour or more, and converting the obtained cerium oxide having a fluorite-type crystal structure in a reducing atmosphere, for example, in a hydrogen atmosphere. For example, it can be obtained by firing at 1200 ° C. for 1 hour or longer.
本発明においては、用いられる前記の変換剤と高炉ガス又は転炉ガスとの反応は、加熱下に行われる。加熱温度は例えば450~1000℃、特に450~800℃、とりわけ500~750℃に設定することが、二酸化炭素から一酸化炭素への変換効率を高める点、及び一旦生成した一酸化炭素の作用によって、前記の変換剤が還元されかつ二酸化炭素が再生されることを効果的に防止する点から好ましい。変換剤と高炉ガス又は転炉ガス中の二酸化炭素ガスとの量は、本変換システムの反応が化学量論反応であることから、二酸化炭素1当量に対して、該変換剤を1当量以上、特に3当量以上となるように、高炉ガス、転炉ガス、又は高炉ガス若しくは転炉ガスから分離した二酸化炭素を供給することが好ましい。ここで言う1当量とは、例えば該変換剤がCeO2-x(xは前記と同義である。)で表される酸化セリウムである場合、該酸化セリウムに対し、x/2molのCO2が反応することである。以上の反応条件は、二酸化炭素ガス源として、高炉ガス又は転炉ガスから分離した二酸化炭素を用いる場合にも同様に適用される。
In the present invention, the reaction between the conversion agent used and the blast furnace gas or converter gas is performed under heating. The heating temperature is set to, for example, 450 to 1000 ° C., particularly 450 to 800 ° C., particularly 500 to 750 ° C., to increase the conversion efficiency from carbon dioxide to carbon monoxide and to the action of carbon monoxide once generated. From the viewpoint of effectively preventing the conversion agent from being reduced and carbon dioxide from being regenerated. The amount of the conversion agent and the carbon dioxide gas in the blast furnace gas or the converter gas is such that the reaction of the conversion system is a stoichiometric reaction. In particular, it is preferable to supply carbon dioxide separated from blast furnace gas, converter gas, or blast furnace gas or converter gas so as to be 3 equivalents or more. For example, when the conversion agent is cerium oxide represented by CeO 2-x (x is as defined above), x / 2 mol of CO 2 is equivalent to x / 2 mol of CO 2. To react. The above reaction conditions are similarly applied when carbon dioxide separated from blast furnace gas or converter gas is used as the carbon dioxide gas source.
本発明においては、前記の加熱に用いられる熱源として、製鉄所から発生した廃熱を利用する。製鉄所から発生する廃熱を熱源として利用することにより、製鉄所のエネルギー効率を高めることができる。本発明においては、具体的には、以下(i)又は(ii)の方法で反応系としての変換装置を加熱する。
In the present invention, waste heat generated from a steel mill is used as a heat source used for the heating. By using the waste heat generated from the steelworks as a heat source, the energy efficiency of the steelworks can be increased. In the present invention, specifically, the conversion device as a reaction system is heated by the following method (i) or (ii).
(i)高炉1は通常1000~2000℃に、転炉2は通常1500~1800℃に加熱されていることから、高炉ガス及び転炉ガスは二酸化炭素から一酸化炭素を生成するために必要とされる熱を有する。したがって、高炉ガス又は転炉ガスが有するこの熱を熱源として利用し、該高炉ガス又は該転炉ガスを変換装置4に吹き込むことで反応系としての変換装置4を加熱する。このとき、高炉ガス又は転炉ガスを、公知の手段により、前記の加熱温度の範囲内に調節してもよい。高炉ガス又は転炉ガスを熱源として利用する場合には、他の熱源を利用する必要はないが、必要に応じて製鉄所から生じる他の熱源を利用してもよい。
(I) Since the blast furnace 1 is usually heated to 1000 to 2000 ° C. and the converter 2 is usually heated to 1500 to 1800 ° C., the blast furnace gas and the converter gas are necessary for producing carbon monoxide from carbon dioxide. Have heat to be. Accordingly, the heat of the blast furnace gas or converter gas is used as a heat source, and the blast furnace gas or converter gas is blown into the converter 4 to heat the converter 4 as a reaction system. At this time, the blast furnace gas or the converter gas may be adjusted within the range of the heating temperature by a known means. When blast furnace gas or converter gas is used as a heat source, it is not necessary to use other heat sources, but other heat sources generated from the steelworks may be used as necessary.
(ii)製鉄所では、例えば、高炉、転炉、コークス炉等は高温に加熱され、廃熱が大量に発生する。発生したこれらの廃熱を利用して、水蒸気、オイル、並びに鉛及びナトリウム等の溶融金属などの熱媒を加熱し、加熱された該熱媒によって、変換装置を加熱する。加熱温度は前記の加熱温度の範囲内になるように調節する。
(Ii) In steelworks, for example, blast furnaces, converters, coke ovens, etc. are heated to high temperatures, and a large amount of waste heat is generated. Using the generated waste heat, a heat medium such as water vapor, oil, and molten metal such as lead and sodium is heated, and the converter is heated by the heated heat medium. The heating temperature is adjusted so as to be within the range of the heating temperature.
前記の変換剤は、種々の形態で二酸化炭素ガスと接触させることができる。例えば変換装置4がバッチ式のものであれば、粉末状の前記の変換剤を静置(又は充填)して反応を行うことができる他、前記の変換剤を造粒したもの、ペレット状、塊状、板状、ハニカム状、ラシヒリング状、ベルサドル状等の形状へ成型したものも静置(又は充填)して使用することも可能である。一方、変換装置4が連続式のものであれば、筒状、板状、円盤状等の緻密膜で二酸化炭素を一酸化炭素へ変換する反応面と還元性ガスで酸素欠損を生成する再生面とが隔絶されている構造であればよい。
The conversion agent can be contacted with carbon dioxide gas in various forms. For example, if the conversion device 4 is of a batch type, the powdered conversion agent can be allowed to stand (or filled) to perform the reaction, and the conversion agent can be granulated, pelletized, It is also possible to use a product molded into a lump shape, a plate shape, a honeycomb shape, a Raschig ring shape, a Bersaddle shape, or the like by leaving (or filling). On the other hand, if the conversion device 4 is a continuous type, a reaction surface that converts carbon dioxide into carbon monoxide with a dense film such as a cylinder, plate, or disk, and a regeneration surface that generates oxygen deficiency with a reducing gas. Any structure that is isolated from each other may be used.
変換装置4中の変換剤は、変換装置4中における二酸化炭素との接触により酸化され、それに起因して変換性能が徐々に低下する。そこで、酸化された変換剤を強還元によって再生し再利用することが好ましい。該変換剤の再生は高温の高濃度の水素ガス雰囲気下での強還元によって酸素欠損を生じさせることで達成される。しかし、該変換剤を強還元するために高濃度水素ガスを用いることは、経済的に有利とはいえない。したがって、高濃度の水素ガスに代わる、経済的に有利な還元性ガスを用いることが望ましい。この観点から、発明者らは検討を重ねた結果、意外にも、高濃度の水素ガスの代わりに、コークス炉から排出されるコークス炉ガスを還元性ガスとして用いることで、該変換剤を効率的に再生できることを知見した。コークス炉ガスの主成分は水素及びメタンであり、コークス炉ガス中に水素が約50~60体積%、メタンが約25~30体積%含まれている。つまり、コークス炉ガスには前記変換剤の強還元に必要かつ十分な量の水素が含まれている。しかもコークス炉ガス中には、前記変換剤の強還元を阻害する物質である水蒸気や酸素等がほとんど含まれていない。したがって、コークス炉ガスは、酸素欠損を失った変換剤に酸素欠損を生成させるために適切なものである。そこで、本発明においては、コークス炉3から発生したコークス炉ガスを変換装置4に供給し、該コークス炉ガスと変換剤を加熱下で直接接触させることにより、酸素欠損を有する変換剤を再生することが好ましい。
The conversion agent in the conversion device 4 is oxidized by contact with carbon dioxide in the conversion device 4, and the conversion performance gradually decreases due to the oxidation. Therefore, it is preferable to regenerate and reuse the oxidized conversion agent by strong reduction. The regeneration of the conversion agent is achieved by causing oxygen deficiency by strong reduction under a high-temperature, high-concentration hydrogen gas atmosphere. However, it is not economically advantageous to use high-concentration hydrogen gas to strongly reduce the conversion agent. Therefore, it is desirable to use an economically advantageous reducing gas instead of high-concentration hydrogen gas. From this viewpoint, as a result of repeated studies, the inventors have surprisingly found that the conversion agent can be efficiently used by using the coke oven gas discharged from the coke oven as the reducing gas instead of the high concentration hydrogen gas. It was found that it can be regenerated. The main components of the coke oven gas are hydrogen and methane, and the coke oven gas contains about 50 to 60% by volume of hydrogen and about 25 to 30% by volume of methane. That is, the coke oven gas contains a sufficient amount of hydrogen necessary for the strong reduction of the conversion agent. In addition, the coke oven gas hardly contains water vapor, oxygen, or the like, which is a substance that inhibits the strong reduction of the conversion agent. Accordingly, the coke oven gas is suitable for generating oxygen deficiency in the conversion agent that has lost oxygen deficiency. Therefore, in the present invention, the coke oven gas generated from the coke oven 3 is supplied to the conversion device 4, and the coke oven gas and the conversion agent are brought into direct contact under heating to regenerate the conversion agent having oxygen deficiency. It is preferable.
上述のとおり、コークス炉3から発生したコークス炉ガスは、変換装置4に供給され、前記変換剤と直接接触させる。すなわち、コークス炉ガス中の水素ガスを分離する必要はない。コークス炉ガスを直接使用できることは、コークス炉ガスを処理するための装置や設備を設ける必要が無いことにつながるので、経済的に有利である。
As described above, the coke oven gas generated from the coke oven 3 is supplied to the conversion device 4 and brought into direct contact with the conversion agent. That is, it is not necessary to separate the hydrogen gas in the coke oven gas. The ability to directly use coke oven gas is economically advantageous because it eliminates the need to provide equipment and equipment for treating coke oven gas.
変換剤とコークス炉ガスとの反応は、加熱下に行われる。加熱温度は700~1200℃、特に800~1200℃、とりわけ900~1200℃に設定することが、コークス炉ガスに含まれる水素ガスによる還元効率を高める観点から好ましい。
The reaction between the conversion agent and the coke oven gas is performed under heating. The heating temperature is preferably set to 700 to 1200 ° C., particularly 800 to 1200 ° C., particularly 900 to 1200 ° C., from the viewpoint of increasing the reduction efficiency by the hydrogen gas contained in the coke oven gas.
加熱に用いられる熱源としては、製鉄所から発生した廃熱を利用することが有利である。製鉄所から発生する廃熱を熱源として利用することにより、製鉄所のエネルギー効率を一層高めることができる。本発明においては、以下の(a)又は(b)方法で反応系としての変換装置4を加熱することができる。
As the heat source used for heating, it is advantageous to use waste heat generated from the steelworks. By using the waste heat generated from the steelworks as a heat source, the energy efficiency of the steelworks can be further enhanced. In the present invention, the conversion device 4 as a reaction system can be heated by the following method (a) or (b).
(a)コークス炉は通常1200~1300℃に加熱されている。したがって、コークス炉から排出されるコークス炉ガスは、酸化された変換剤を強還元するために必要とされる熱を有する。そこで、コークス炉ガスが有するこの熱を熱源として利用し、該コークス炉ガスを変換装置4に吹き込むことで反応系としての変換装置4を加熱する。このとき、コークス炉ガスの温度を、公知の手段により、前記の加熱温度の範囲内に調節してもよい。コークス炉ガスを熱源として利用する場合には、他の熱源を利用する必要はないが、必要に応じて他の熱源を利用してもよい。
(A) The coke oven is usually heated to 1200-1300 ° C. Thus, the coke oven gas discharged from the coke oven has the heat required to strongly reduce the oxidized conversion agent. Therefore, the heat of the coke oven gas is used as a heat source, and the coke oven gas is blown into the converter 4 to heat the converter 4 as a reaction system. At this time, the temperature of the coke oven gas may be adjusted within the range of the heating temperature by a known means. When coke oven gas is used as a heat source, it is not necessary to use other heat sources, but other heat sources may be used as necessary.
(b)製鉄所では、例えば、高炉、転炉、コークス炉等は高温に加熱され、廃熱が大量に発生する。発生したこれらの廃熱を利用して、水蒸気、オイル、並びに鉛及びナトリウム等の溶融金属などの熱媒を加熱し、加熱された該熱媒によって、変換装置を加熱する。加熱温度は前記の加熱温度の範囲内になるように調節する。
(B) In steelworks, for example, blast furnaces, converters, coke ovens, etc. are heated to high temperatures, and a large amount of waste heat is generated. Using the generated waste heat, a heat medium such as water vapor, oil, and molten metal such as lead and sodium is heated, and the converter is heated by the heated heat medium. The heating temperature is adjusted so as to be within the range of the heating temperature.
なお、(イ)変換剤を用いた二酸化炭素から一酸化炭素の生成と、(ロ)コークス炉ガスによる、酸素欠損を失った変換剤の再生は、同時に行ってもよく、また別々に行ってもよい。以下では(イ)及び(ロ)を同時に行うことができる変換装置10,20,30についてそれぞれ説明する。なお、変換装置10,20,30を説明においては、一酸化炭素を生成するための原料として、高炉ガス、転炉ガス、又は高炉ガス若しくは転炉ガスから分離した二酸化炭素を用いることができるが、以下では高炉ガスを用いた場合について説明する。
The production of carbon monoxide from carbon dioxide using a conversion agent and (b) regeneration of the conversion agent that has lost oxygen deficiency by coke oven gas may be performed simultaneously or separately. Also good. Hereinafter, the conversion apparatuses 10, 20, and 30 that can simultaneously perform (A) and (B) will be described. In the description of converters 10, 20, and 30, blast furnace gas, converter gas, or carbon dioxide separated from blast furnace gas or converter gas can be used as a raw material for generating carbon monoxide. Hereinafter, the case where blast furnace gas is used will be described.
図2には、本発明において好適に用いられる一酸化炭素の変換装置が模式的に示されている。同図に示す変換装置10は連続式のものであり、二重管構造になっている。詳細には、同図に示す変換装置10は、外管11と、該外管11内に配置された内管12とを備えている。内管12内には廃熱により加熱された熱媒を熱源として用いた加熱装置13が配置されている。内管12は前記の変換剤を含有している。この装置においては、外管11と内管12との間の空間に高炉ガスを流通させる。この空間内を高炉ガスが流通する間に、高炉ガス中の二酸化炭素と、内管12に含まれる前記の変換剤とが反応して一酸化炭素が生成する。
FIG. 2 schematically shows a carbon monoxide converter suitably used in the present invention. The conversion device 10 shown in the figure is a continuous type and has a double-pipe structure. Specifically, the conversion device 10 shown in FIG. 1 includes an outer tube 11 and an inner tube 12 disposed in the outer tube 11. A heating device 13 using a heat medium heated by waste heat as a heat source is disposed in the inner tube 12. The inner tube 12 contains the conversion agent. In this apparatus, blast furnace gas is circulated in the space between the outer tube 11 and the inner tube 12. While the blast furnace gas circulates in this space, carbon dioxide in the blast furnace gas reacts with the conversion agent contained in the inner pipe 12 to generate carbon monoxide.
図2に示す変換装置10においては、外管11と内管12との間の空間に高炉ガスを流通させることに加えて、内管12内にコークス炉ガスを流通させるように構成されている。これによって、高炉ガス中の二酸化炭素ガスとの接触によって酸化された前記の変換剤から酸素が引き抜かれ、消失した酸素欠損が再び生成する。
In the converter 10 shown in FIG. 2, in addition to circulating the blast furnace gas in the space between the outer tube 11 and the inner tube 12, the coke oven gas is circulated in the inner tube 12. . As a result, oxygen is extracted from the conversion agent oxidized by contact with the carbon dioxide gas in the blast furnace gas, and lost oxygen deficiency is generated again.
図2に示す変換装置10において、熱源として高炉ガス、転炉ガス又はコークス炉ガスを用いる場合には、高温の高炉ガス、転炉ガス又はコークス炉ガスを前記の各空間に流通させる。ここで高温とは、二酸化炭素から一酸化炭素を生成するために十分であり、かつ酸素欠損を失った変換剤を強還元するために十分である熱エネルギーを有することをいう(以下、高温というときには、この意味で用いられる。)。このとき、加熱装置13を使用する必要はないが、必要に応じて使用してもよい。熱源として、廃熱により加熱された熱媒を用いる場合には、内管12の内部に配置された、熱源として該熱媒を利用した加熱装置13により変換装置10を加熱する。また、内管12の内部に加熱装置を設置する代わりに、外管11の周囲に加熱装置を配置し、変換装置10を加熱してもよい。尤も、一般に、二酸化炭素ガスと変換剤との反応が起こる温度に比べて、酸化された変換剤から酸素を強制的に引き抜く温度の方が高いことから、加熱装置を熱源として用いる場合には、内管12の内部に加熱装置13を配置することが、酸素の強制的な引き抜きのしやすさの点から有利である。
In the converter 10 shown in FIG. 2, when blast furnace gas, converter gas, or coke oven gas is used as a heat source, high-temperature blast furnace gas, converter gas, or coke oven gas is circulated in each of the above spaces. Here, the high temperature means having sufficient heat energy to generate carbon monoxide from carbon dioxide and sufficient to strongly reduce the conversion agent that has lost oxygen deficiency (hereinafter referred to as high temperature). Sometimes used in this sense.) At this time, it is not necessary to use the heating device 13, but it may be used as necessary. When a heat medium heated by waste heat is used as the heat source, the converter 10 is heated by a heating device 13 that is disposed inside the inner tube 12 and uses the heat medium as a heat source. Further, instead of installing a heating device inside the inner tube 12, a heating device may be arranged around the outer tube 11 to heat the conversion device 10. However, in general, since the temperature at which oxygen is forcibly extracted from the oxidized conversion agent is higher than the temperature at which the reaction between carbon dioxide gas and the conversion agent occurs, when using a heating device as a heat source, Arranging the heating device 13 inside the inner tube 12 is advantageous in terms of ease of forced extraction of oxygen.
なお図2に示す変換装置10においては、高炉ガスの流通方向とコークス炉ガスの流通方向が同方向であったが、これに代えて高炉ガスの流通方向とコークス炉ガスの流通方向を反対方向にしてもよい。また、図2に示す変換装置10の変形例として、外管11と内管12との間の空間にコークス炉ガスを流通させ、内管12内に高炉ガスを流通させるように構成することもできる。
In the converter 10 shown in FIG. 2, the flow direction of the blast furnace gas and the flow direction of the coke oven gas are the same direction, but instead, the flow direction of the blast furnace gas and the flow direction of the coke oven gas are opposite directions. It may be. As a modification of the conversion device 10 shown in FIG. 2, the coke oven gas may be circulated in the space between the outer tube 11 and the inner tube 12, and the blast furnace gas may be circulated in the inner tube 12. it can.
また、図2に示す変換装置10においては、二酸化炭素源として高炉ガスを流通させているが、高炉ガスの他に、転炉ガス、高炉ガスと転炉ガスとの混合ガス、又は高炉ガス若しくは転炉ガスから分離した二酸化炭素ガスを流通させることができる(以下に述べる、図3及び図4についても同じである。)。
Moreover, in the converter 10 shown in FIG. 2, although blast furnace gas is distribute | circulated as a carbon dioxide source, in addition to blast furnace gas, converter gas, the mixed gas of blast furnace gas and converter gas, or blast furnace gas or Carbon dioxide gas separated from the converter gas can be circulated (the same applies to FIGS. 3 and 4 described below).
図3に示す変換装置20は、二基のバッチ式反応装置21,22を備えている。更に変換装置20は、切替弁23を備えている。切替弁23は、高炉ガス源及びコークス炉ガス源にそれぞれ接続する入力部23a,23bを有している。更に切替弁23は、各反応装置21,22のそれぞれに接続する出力部23c,23dを有している。各反応装置21,22内には、前記の変換剤24の配置が可能になっている。また、各反応装置21,22の周囲には、加熱装置25が配置されている。
The conversion apparatus 20 shown in FIG. 3 includes two batch- type reaction apparatuses 21 and 22. Furthermore, the conversion device 20 includes a switching valve 23. The switching valve 23 has input parts 23a and 23b connected to a blast furnace gas source and a coke oven gas source, respectively. Furthermore, the switching valve 23 has output parts 23c and 23d connected to the reaction devices 21 and 22, respectively. The conversion agent 24 can be arranged in each of the reaction apparatuses 21 and 22. A heating device 25 is disposed around each of the reaction devices 21 and 22.
図3に示す変換装置20においては、切替弁23を介して各反応装置21,22に高炉ガス又はコークス炉ガスが択一的にかつ同時に供給されるようになっている。これに加えて、切替弁23の切り替えによって、各反応装置21,22に供給されるガスの種類を切り替えられるようになっている。
3, the blast furnace gas or the coke oven gas is alternatively and simultaneously supplied to each of the reaction apparatuses 21 and 22 via the switching valve 23. In addition to this, the type of gas supplied to each of the reactors 21 and 22 can be switched by switching the switching valve 23.
図3に示す変換装置20を運転する場合には、まず、切替弁23を図3に示す位置に設定し、高炉ガスが第2反応装置22に供給され、かつコークス炉ガスが第1反応装置21に供給されるようにする。このようにすると、第1反応装置21においては、その内部に静置された前記の変換剤24が強還元されて、酸素が強制的に引き抜かれ、可逆的な酸素欠損が変換剤24に生じる。一方、第2反応装置22においては、高炉ガス中の二酸化炭素と変換剤24の反応によって一酸化炭素が生成するとともに、該変換剤24中の酸素欠損の数が次第に減少してくる。そして、第2反応装置22における一酸化炭素の生成量が減少してきたら、切替弁23を切り替えて、高炉ガスが第1反応装置21に供給され、かつコークス炉ガスが第2反応装置22に供給されるようにする。第1反応装置21内に静置されている変換剤24は、高炉ガス中の二酸化炭素ガスと接触していない活性の高いものなので、これを高炉ガス中の二酸化炭素ガスと接触させることで、一酸化炭素の生成量が増加に転じる。一方第2反応装置22においては、酸素欠損の数が減少して活性の低下した変換剤24が強還元されて、酸素が強制的に引き抜かれ、可逆的な酸素欠損が変換剤24に再び生じる。
When the converter 20 shown in FIG. 3 is operated, first, the switching valve 23 is set to the position shown in FIG. 3, the blast furnace gas is supplied to the second reactor 22, and the coke oven gas is supplied to the first reactor. 21 to be supplied. In this way, in the first reaction device 21, the conversion agent 24 placed inside is strongly reduced, oxygen is forcibly extracted, and a reversible oxygen deficiency is generated in the conversion agent 24. . On the other hand, in the second reactor 22, carbon monoxide is generated by the reaction between carbon dioxide in the blast furnace gas and the conversion agent 24, and the number of oxygen vacancies in the conversion agent 24 gradually decreases. When the amount of carbon monoxide produced in the second reactor 22 decreases, the switching valve 23 is switched so that the blast furnace gas is supplied to the first reactor 21 and the coke oven gas is supplied to the second reactor 22. To be. Since the conversion agent 24 that is stationary in the first reactor 21 has high activity that is not in contact with the carbon dioxide gas in the blast furnace gas, by contacting it with the carbon dioxide gas in the blast furnace gas, The amount of carbon monoxide produced starts to increase. On the other hand, in the second reactor 22, the conversion agent 24 whose activity is reduced due to a decrease in the number of oxygen vacancies is strongly reduced, oxygen is forcibly extracted, and a reversible oxygen vacancy is generated again in the conversion agent 24. .
図3に示す変換装置20において、熱源として、高炉ガス、転炉ガス又はコークス炉ガスを用いる場合には、高温の高炉ガス、転炉ガス又はコークス炉ガスを前記の各反応装置に供給する。このとき、加熱装置25を使用する必要はないが、必要に応じ使用してもよい。熱源として、廃熱により加熱された熱媒を用いる場合には、該熱媒を熱源として利用した加熱装置25を用いて各反応装置21、22を加熱する。第1反応装置21と第2反応装置22の加熱温度は同じに設定してもよく、あるいは異なる温度に設定してもよい。一般に、二酸化炭素ガスと変換剤24との反応が起こる温度に比べて、酸化された変換剤24から酸素を強制的に引き抜く温度の方が高いことから、コークス炉ガスを供給する方の反応装置の加熱温度を、一酸化炭素を生成させる方の反応装置の加熱温度よりも高く設定することが好ましい。
3, when blast furnace gas, converter gas, or coke oven gas is used as a heat source, high-temperature blast furnace gas, converter gas, or coke oven gas is supplied to each of the reactors described above. At this time, although it is not necessary to use the heating apparatus 25, you may use it as needed. When a heat medium heated by waste heat is used as a heat source, each of the reaction devices 21 and 22 is heated using a heating device 25 that uses the heat medium as a heat source. The heating temperatures of the first reactor 21 and the second reactor 22 may be set to the same or different temperatures. Generally, since the temperature at which oxygen is forcibly extracted from the oxidized conversion agent 24 is higher than the temperature at which the reaction between carbon dioxide gas and the conversion agent 24 occurs, the reactor for supplying coke oven gas is used. Is preferably set higher than the heating temperature of the reactor that produces carbon monoxide.
このように、高炉ガス中の二酸化炭素ガスと変換剤24との反応を、第1反応装置21と第2反応装置22とで交互に行うことで、該変換剤24を再生しつつ、一酸化炭素の生成を半連続的に行うことが可能になる。なお、図3に示す変換装置20においてはバッチ式反応装置を二基用いたが、これに代えて三基以上の反応装置を用いてもよい。
In this way, the reaction between the carbon dioxide gas in the blast furnace gas and the conversion agent 24 is alternately performed by the first reaction device 21 and the second reaction device 22, so that the conversion agent 24 is regenerated and monoxide is regenerated. Carbon can be produced semi-continuously. In addition, in the converter 20 shown in FIG. 3, although two batch type reactors were used, it may replace with this and may use three or more reactors.
図4に示す変換装置30は、前記の変換剤を含んで構成される板状体31と、板状のセパレータ32とが交互にスタックされた構造を有している。各セパレータ32の各面には、一方向に延びる複数の凸状部33及び凹条部34が交互に配置されている。これによって、板状体31と、これを挟んで対向する一対のセパレータとの間には、凹条部34によって形成されたガスの流通が可能な空間が形成される。また図示していないが、変換装置30は、スタック構造体の周囲に配置された加熱装置を備えている。
The conversion device 30 shown in FIG. 4 has a structure in which plate-like bodies 31 including the conversion agent and plate-like separators 32 are alternately stacked. A plurality of convex portions 33 and concave portions 34 extending in one direction are alternately arranged on each surface of each separator 32. As a result, a space is formed between the plate-like body 31 and the pair of separators that are opposed to each other with the gas formed by the concave portions 34. Moreover, although not shown in figure, the converter 30 is provided with the heating apparatus arrange | positioned around the stack structure.
図4に示す変換装置30を運転する場合には、板状体31を挟んで対向する2つのセパレータ32a,32bにおける一方のセパレータ32aと板状体31との対向面に位置する凹条部34aに高炉ガスを流通させる。この凹条部34a内を高炉ガスが流通する間に、高炉ガス中の二酸化炭素ガスと、板状体31に含まれる前記の変換剤とが反応して一酸化炭素が生成する。これに加えて、かつ他方のセパレータ32bと板状体31との対向面に位置する凹条部34bにコークス炉ガスを流通させるように構成する。これによって、高炉ガス中の二酸化炭素ガスとの接触によって酸化された前記の変換剤から酸素が引き抜かれ、消失した酸素欠損が再び生成する。このように、変換装置30を用いれば、先に説明した図2に示す変換装置10と同様に、前記の変換剤を高炉ガス中の二酸化炭素ガスと接触させて一酸化炭素を生成させた後、二酸化炭素ガスとの接触によって酸化された該変換剤をコークス炉ガス中の水素と接触させて強還元を行い、該変換剤を再生することができる。
When the conversion device 30 shown in FIG. 4 is operated, the concave portion 34a located on the opposing surface between the one separator 32a and the plate-like body 31 in the two separators 32a and 32b facing each other with the plate-like body 31 interposed therebetween. Circulate blast furnace gas. While the blast furnace gas circulates in the recess 34a, the carbon dioxide gas in the blast furnace gas reacts with the conversion agent contained in the plate 31 to generate carbon monoxide. In addition to this, the coke oven gas is configured to circulate through the recess 34b located on the opposing surface of the other separator 32b and the plate-like body 31. As a result, oxygen is extracted from the conversion agent oxidized by contact with the carbon dioxide gas in the blast furnace gas, and lost oxygen deficiency is generated again. In this way, when the conversion device 30 is used, after the conversion agent is brought into contact with carbon dioxide gas in the blast furnace gas to generate carbon monoxide, as in the conversion device 10 shown in FIG. 2 described above. The conversion agent oxidized by contact with carbon dioxide gas can be brought into contact with hydrogen in coke oven gas to perform strong reduction to regenerate the conversion agent.
図4に示す変換装置30の各セパレータ32は、その一方の面と他方の面に形成されている凸状部33及び凹条部34の延びる方向が90度ずれている。しかし、セパレータ32の各面に形成されている凸状部33及び凹条部34の延びる方向は、これに限られない。例えばセパレータ32の各面に形成されている凸状部33及び凹条部34の延びる方向は、90度以外の角度で交差していてもよく、あるいは同方向でもよい。セパレータ32の各面に形成されている凸状部33及び凹条部34の延びる方向が同方向である場合、セパレータ32の一方の面側の凹条部34に流通させるガスの方向と、他方の面側の凹条部34に流通させるガスの方向とは同方向でもよく、あるいは反対方向でもよい。
In each separator 32 of the conversion device 30 shown in FIG. 4, the extending direction of the convex portion 33 and the concave portion 34 formed on one surface and the other surface is shifted by 90 degrees. However, the extending direction of the convex portion 33 and the concave strip portion 34 formed on each surface of the separator 32 is not limited to this. For example, the extending direction of the convex part 33 and the concave line part 34 formed on each surface of the separator 32 may intersect at an angle other than 90 degrees, or the same direction. When the extending direction of the convex part 33 and the concave line part 34 formed on each surface of the separator 32 is the same direction, the direction of the gas flowing through the concave line part 34 on one surface side of the separator 32 and the other The direction of the gas flowing through the groove 34 on the surface side may be the same direction or the opposite direction.
図4に示す変換装置30においては、熱源として、高炉ガス、転炉ガス又はコークス炉ガスを用いる場合には、高温の高炉ガス又は転炉ガスを凹条部34aに、高温のコークス炉ガスを凹条部34bに供給する。熱源として、廃熱により加熱された熱媒を用いる場合には、スタック構造体の周囲に配置された、加熱された熱媒を利用した加熱装置(図示せず)を用いて、変換装置30を加熱する。
In the converter 30 shown in FIG. 4, when blast furnace gas, converter gas, or coke oven gas is used as a heat source, high temperature blast furnace gas or converter gas is supplied to the recess 34 a and high temperature coke oven gas is supplied. It supplies to the concave part 34b. When a heating medium heated by waste heat is used as a heat source, a converter 30 (not shown) using a heated heating medium disposed around the stack structure is used to convert the converter 30. Heat.
なお、図3及び図4に示す変換装置30,40に関して、特に説明しない点については、図2に示す変換装置20に関する説明が適宜適用される。
Note that, regarding the conversion devices 30 and 40 shown in FIG. 3 and FIG. 4, the explanation about the conversion device 20 shown in FIG.
以下、実施例により本発明を更に詳細に説明する。しかしながら本発明の範囲は、かかる実施例に制限されない。
Hereinafter, the present invention will be described in more detail with reference to examples. However, the scope of the present invention is not limited to such examples.
可逆的な酸素欠損を有する酸化セリウムの製造
(a)酸素欠損を有しない酸化セリウムの合成
炭酸セリウム100gを加熱炉内に静置し、空気を流通させながら加熱して焼成を行った。加熱は、室温から開始し、10℃/分の昇温速度で加熱を行い、1000℃に到達したのち、この温度を1時間保持した。その後、自然放冷した。空気の流通量は1000SCCMとした。このようにして酸素欠損を有しない酸化セリウムの多孔質体を得た。XRDによる測定で、この酸化セリウムはCeO2で表され、蛍石型の結晶構造であることが確認された。この酸化セリウムをボールミルで粉砕処理した。
(b)酸素欠損を有する酸化セリウムの合成
前項(a)で得られた酸化セリウム(50g)を雰囲気制御型加熱炉内に静置し、100体積%の水素ガスを流通させながら加熱して強還元を行った。加熱は、室温から開始し、10℃/分の昇温速度で加熱を行い、1000℃に到達したのち、この温度を1時間保持した。その後、自然放冷した。水素ガスの流通量は1000SCCMとした。このようにして、可逆的な酸素欠損を有する酸化セリウムを得た。XRDによる測定の結果、この酸化セリウムは蛍石型の結晶構造であることが確認された。元素分析の結果、この酸化セリウムはCe(IV,III)O1.75で表されるものであった。 Production of cerium oxide having reversible oxygen vacancies (a) Synthesis of cerium oxide without oxygen vacancies 100 g of cerium carbonate was left standing in a heating furnace, and baked by heating while circulating air. Heating was started from room temperature, heated at a rate of temperature increase of 10 ° C./min, reached 1000 ° C., and this temperature was maintained for 1 hour. Then, it naturally left to cool. The air flow rate was 1000 SCCM. Thus, a porous body of cerium oxide having no oxygen deficiency was obtained. Measurement by XRD confirmed that this cerium oxide was represented by CeO 2 and had a fluorite-type crystal structure. This cerium oxide was pulverized by a ball mill.
(B) Synthesis of cerium oxide having oxygen vacancies The cerium oxide (50 g) obtained in (a) above is left in an atmosphere-controlled heating furnace and heated while flowing 100% by volume of hydrogen gas. Reduction was performed. Heating was started from room temperature, heated at a rate of temperature increase of 10 ° C./min, and after reaching 1000 ° C., this temperature was maintained for 1 hour. Then, it naturally left to cool. The circulation amount of hydrogen gas was 1000 SCCM. In this way, cerium oxide having reversible oxygen deficiency was obtained. As a result of measurement by XRD, it was confirmed that this cerium oxide has a fluorite-type crystal structure. As a result of elemental analysis, this cerium oxide was represented by Ce (IV, III) O 1.75 .
(a)酸素欠損を有しない酸化セリウムの合成
炭酸セリウム100gを加熱炉内に静置し、空気を流通させながら加熱して焼成を行った。加熱は、室温から開始し、10℃/分の昇温速度で加熱を行い、1000℃に到達したのち、この温度を1時間保持した。その後、自然放冷した。空気の流通量は1000SCCMとした。このようにして酸素欠損を有しない酸化セリウムの多孔質体を得た。XRDによる測定で、この酸化セリウムはCeO2で表され、蛍石型の結晶構造であることが確認された。この酸化セリウムをボールミルで粉砕処理した。
(b)酸素欠損を有する酸化セリウムの合成
前項(a)で得られた酸化セリウム(50g)を雰囲気制御型加熱炉内に静置し、100体積%の水素ガスを流通させながら加熱して強還元を行った。加熱は、室温から開始し、10℃/分の昇温速度で加熱を行い、1000℃に到達したのち、この温度を1時間保持した。その後、自然放冷した。水素ガスの流通量は1000SCCMとした。このようにして、可逆的な酸素欠損を有する酸化セリウムを得た。XRDによる測定の結果、この酸化セリウムは蛍石型の結晶構造であることが確認された。元素分析の結果、この酸化セリウムはCe(IV,III)O1.75で表されるものであった。 Production of cerium oxide having reversible oxygen vacancies (a) Synthesis of cerium oxide without oxygen vacancies 100 g of cerium carbonate was left standing in a heating furnace, and baked by heating while circulating air. Heating was started from room temperature, heated at a rate of temperature increase of 10 ° C./min, reached 1000 ° C., and this temperature was maintained for 1 hour. Then, it naturally left to cool. The air flow rate was 1000 SCCM. Thus, a porous body of cerium oxide having no oxygen deficiency was obtained. Measurement by XRD confirmed that this cerium oxide was represented by CeO 2 and had a fluorite-type crystal structure. This cerium oxide was pulverized by a ball mill.
(B) Synthesis of cerium oxide having oxygen vacancies The cerium oxide (50 g) obtained in (a) above is left in an atmosphere-controlled heating furnace and heated while flowing 100% by volume of hydrogen gas. Reduction was performed. Heating was started from room temperature, heated at a rate of temperature increase of 10 ° C./min, and after reaching 1000 ° C., this temperature was maintained for 1 hour. Then, it naturally left to cool. The circulation amount of hydrogen gas was 1000 SCCM. In this way, cerium oxide having reversible oxygen deficiency was obtained. As a result of measurement by XRD, it was confirmed that this cerium oxide has a fluorite-type crystal structure. As a result of elemental analysis, this cerium oxide was represented by Ce (IV, III) O 1.75 .
(2)高炉ガスからの一酸化炭素ガスの生成
モデル高炉ガス及び図5に示す装置を用いて実験を行った。モデル高炉ガスの組成は、窒素ガス53体積%、二酸化炭素ガス21体積%、一酸化炭素ガス24体積%、水素ガス2体積%であった。図5に示す管状炉を窒素ガス雰囲気のグローブボックス内に設置した。管状炉内には、前項(1)で得られた可逆的な酸素欠損を有する酸化セリウムの粉末8.5gが静置されている。まず、バルブV5を閉じ、他のバルブはすべて開けて、管状炉内を真空吸引した。この状態のまま、バルブV1を閉じて管状炉を750℃まで加熱した。次いでバルブV2及びV3を閉じた後に管状炉内の吸引を停止した。バルブV4を閉めて管状炉内にモデル高炉ガスを供給した。供給は、管状炉内の圧力が大気圧になるまで行った。そしてバルブV1を閉じて1時間放置した。この時点でのモデル高炉ガス中の二酸化炭素ガスと可逆的な酸素欠損を有する酸化セリウムとの量論比は1:1(すなわち、先に述べた1当量)となるようにした。その後バルブV2を開け、更にガス回収袋が少し膨らむまで窒素ガスを管状炉内に供給した。次いで、バルブV2を閉じるとともに、ガス回収袋を熱シールして管から切り離した。この状態のまま管状炉を降温し、室温になるまで冷却した。冷却完了後、バルブV1を開けて管状炉内に窒素ガスを供給した。供給は、管状炉内の圧力が大気圧になるまで行った。最後に、バルブV3及びV5を開け、窒素ガスによって管状炉内の一酸化炭素を押し出した。ガス回収袋に回収した反応後のガスは、ガスクロマトグラフィーを用いて定性と定量を行った。その結果、二酸化炭素から一酸化炭素への変換率は50%であった。この変換率は、次式で定義されるものである。 (2) Production of carbon monoxide gas from blast furnace gas An experiment was conducted using the model blast furnace gas and the apparatus shown in FIG. The composition of the model blast furnace gas was 53% by volume of nitrogen gas, 21% by volume of carbon dioxide gas, 24% by volume of carbon monoxide gas, and 2% by volume of hydrogen gas. The tubular furnace shown in FIG. 5 was installed in a glove box with a nitrogen gas atmosphere. In the tubular furnace, 8.5 g of cerium oxide powder having reversible oxygen vacancies obtained in the preceding item (1) is placed. First, the valve V5 was closed, all other valves were opened, and the inside of the tubular furnace was vacuumed. In this state, the valve V1 was closed and the tubular furnace was heated to 750 ° C. Next, after the valves V2 and V3 were closed, the suction in the tubular furnace was stopped. The valve V4 was closed and the model blast furnace gas was supplied into the tubular furnace. The supply was continued until the pressure in the tubular furnace reached atmospheric pressure. The valve V1 was closed and left for 1 hour. At this time, the stoichiometric ratio of carbon dioxide gas in the model blast furnace gas to cerium oxide having reversible oxygen deficiency was set to 1: 1 (that is, 1 equivalent as described above). Thereafter, the valve V2 was opened, and nitrogen gas was supplied into the tubular furnace until the gas recovery bag was slightly expanded. Next, the valve V2 was closed and the gas recovery bag was heat sealed and separated from the tube. In this state, the temperature of the tubular furnace was lowered and cooled to room temperature. After completion of cooling, the valve V1 was opened and nitrogen gas was supplied into the tubular furnace. The supply was continued until the pressure in the tubular furnace reached atmospheric pressure. Finally, the valves V3 and V5 were opened, and carbon monoxide in the tubular furnace was extruded with nitrogen gas. The gas after reaction collected in the gas collection bag was qualitatively and quantitatively analyzed using gas chromatography. As a result, the conversion rate from carbon dioxide to carbon monoxide was 50%. This conversion rate is defined by the following equation.
モデル高炉ガス及び図5に示す装置を用いて実験を行った。モデル高炉ガスの組成は、窒素ガス53体積%、二酸化炭素ガス21体積%、一酸化炭素ガス24体積%、水素ガス2体積%であった。図5に示す管状炉を窒素ガス雰囲気のグローブボックス内に設置した。管状炉内には、前項(1)で得られた可逆的な酸素欠損を有する酸化セリウムの粉末8.5gが静置されている。まず、バルブV5を閉じ、他のバルブはすべて開けて、管状炉内を真空吸引した。この状態のまま、バルブV1を閉じて管状炉を750℃まで加熱した。次いでバルブV2及びV3を閉じた後に管状炉内の吸引を停止した。バルブV4を閉めて管状炉内にモデル高炉ガスを供給した。供給は、管状炉内の圧力が大気圧になるまで行った。そしてバルブV1を閉じて1時間放置した。この時点でのモデル高炉ガス中の二酸化炭素ガスと可逆的な酸素欠損を有する酸化セリウムとの量論比は1:1(すなわち、先に述べた1当量)となるようにした。その後バルブV2を開け、更にガス回収袋が少し膨らむまで窒素ガスを管状炉内に供給した。次いで、バルブV2を閉じるとともに、ガス回収袋を熱シールして管から切り離した。この状態のまま管状炉を降温し、室温になるまで冷却した。冷却完了後、バルブV1を開けて管状炉内に窒素ガスを供給した。供給は、管状炉内の圧力が大気圧になるまで行った。最後に、バルブV3及びV5を開け、窒素ガスによって管状炉内の一酸化炭素を押し出した。ガス回収袋に回収した反応後のガスは、ガスクロマトグラフィーを用いて定性と定量を行った。その結果、二酸化炭素から一酸化炭素への変換率は50%であった。この変換率は、次式で定義されるものである。 (2) Production of carbon monoxide gas from blast furnace gas An experiment was conducted using the model blast furnace gas and the apparatus shown in FIG. The composition of the model blast furnace gas was 53% by volume of nitrogen gas, 21% by volume of carbon dioxide gas, 24% by volume of carbon monoxide gas, and 2% by volume of hydrogen gas. The tubular furnace shown in FIG. 5 was installed in a glove box with a nitrogen gas atmosphere. In the tubular furnace, 8.5 g of cerium oxide powder having reversible oxygen vacancies obtained in the preceding item (1) is placed. First, the valve V5 was closed, all other valves were opened, and the inside of the tubular furnace was vacuumed. In this state, the valve V1 was closed and the tubular furnace was heated to 750 ° C. Next, after the valves V2 and V3 were closed, the suction in the tubular furnace was stopped. The valve V4 was closed and the model blast furnace gas was supplied into the tubular furnace. The supply was continued until the pressure in the tubular furnace reached atmospheric pressure. The valve V1 was closed and left for 1 hour. At this time, the stoichiometric ratio of carbon dioxide gas in the model blast furnace gas to cerium oxide having reversible oxygen deficiency was set to 1: 1 (that is, 1 equivalent as described above). Thereafter, the valve V2 was opened, and nitrogen gas was supplied into the tubular furnace until the gas recovery bag was slightly expanded. Next, the valve V2 was closed and the gas recovery bag was heat sealed and separated from the tube. In this state, the temperature of the tubular furnace was lowered and cooled to room temperature. After completion of cooling, the valve V1 was opened and nitrogen gas was supplied into the tubular furnace. The supply was continued until the pressure in the tubular furnace reached atmospheric pressure. Finally, the valves V3 and V5 were opened, and carbon monoxide in the tubular furnace was extruded with nitrogen gas. The gas after reaction collected in the gas collection bag was qualitatively and quantitatively analyzed using gas chromatography. As a result, the conversion rate from carbon dioxide to carbon monoxide was 50%. This conversion rate is defined by the following equation.
(3)コークス炉ガスによる酸化セリウムの再生
モデルコークス炉ガス及び図6に示す装置を用いて実験を行った。モデルコークス炉ガスの組成は、水素ガスが56体積%、メタンガスが30体積%、アセチレンが3体積%、一酸化炭素ガスが6体積%、二酸化炭素ガスが2.5体積%、窒素ガスが2.5体積%であった。図6に示す管状炉を窒素ガス雰囲気のグローブボックス内に設置した。管状炉内には、前項(2)で生成された、酸素欠損を失った酸化セリウムの粉末8.5gが静置されている。まず、バブルV2を開き、次いでバブルV1を開き、モデルコークス炉ガスを流通させながら加熱して強還元を行った。室温から開始し、3時間で1000℃に到達するように加熱を行い、1000℃に到達したのち、この温度を2時間保持した。その後、モデルコークス炉ガスを流通させながら室温まで自然放冷した。モデルコークス炉ガスの流通量は500SCCMとした。このようにして、酸素欠損を有する酸化セリウムを再生した。XRDによる測定の結果、この酸化セリウムは蛍石型の結晶構造であることが確認された。元素分析の結果、この酸化セリウムはCe(IV,III)O1.75で表されるものであった。その後、得られた酸化セリウムに、前項(2)と同様の操作を行い、この酸化セリウムの二酸化炭素から一酸化炭素への変換率を算出した。変換率は50%であった。 (3) Regeneration of cerium oxide with coke oven gas An experiment was conducted using the model coke oven gas and the apparatus shown in FIG. The composition of the model coke oven gas is 56% by volume of hydrogen gas, 30% by volume of methane gas, 3% by volume of acetylene, 6% by volume of carbon monoxide gas, 2.5% by volume of carbon dioxide gas, and 2% of nitrogen gas. 0.5% by volume. The tubular furnace shown in FIG. 6 was installed in a glove box with a nitrogen gas atmosphere. In the tubular furnace, 8.5 g of cerium oxide powder having lost oxygen deficiency produced in the preceding item (2) is left standing. First, bubble V2 was opened, then bubble V1 was opened, and strong reduction was performed by heating while circulating the model coke oven gas. Starting from room temperature, heating was performed to reach 1000 ° C. in 3 hours. After reaching 1000 ° C., this temperature was maintained for 2 hours. Thereafter, the model coke oven gas was allowed to cool naturally to room temperature while circulating. The flow rate of model coke oven gas was 500 SCCM. In this way, cerium oxide having oxygen deficiency was regenerated. As a result of measurement by XRD, it was confirmed that this cerium oxide has a fluorite-type crystal structure. As a result of elemental analysis, this cerium oxide was represented by Ce (IV, III) O 1.75 . Thereafter, the obtained cerium oxide was subjected to the same operation as in the previous item (2), and the conversion rate of this cerium oxide from carbon dioxide to carbon monoxide was calculated. The conversion rate was 50%.
モデルコークス炉ガス及び図6に示す装置を用いて実験を行った。モデルコークス炉ガスの組成は、水素ガスが56体積%、メタンガスが30体積%、アセチレンが3体積%、一酸化炭素ガスが6体積%、二酸化炭素ガスが2.5体積%、窒素ガスが2.5体積%であった。図6に示す管状炉を窒素ガス雰囲気のグローブボックス内に設置した。管状炉内には、前項(2)で生成された、酸素欠損を失った酸化セリウムの粉末8.5gが静置されている。まず、バブルV2を開き、次いでバブルV1を開き、モデルコークス炉ガスを流通させながら加熱して強還元を行った。室温から開始し、3時間で1000℃に到達するように加熱を行い、1000℃に到達したのち、この温度を2時間保持した。その後、モデルコークス炉ガスを流通させながら室温まで自然放冷した。モデルコークス炉ガスの流通量は500SCCMとした。このようにして、酸素欠損を有する酸化セリウムを再生した。XRDによる測定の結果、この酸化セリウムは蛍石型の結晶構造であることが確認された。元素分析の結果、この酸化セリウムはCe(IV,III)O1.75で表されるものであった。その後、得られた酸化セリウムに、前項(2)と同様の操作を行い、この酸化セリウムの二酸化炭素から一酸化炭素への変換率を算出した。変換率は50%であった。 (3) Regeneration of cerium oxide with coke oven gas An experiment was conducted using the model coke oven gas and the apparatus shown in FIG. The composition of the model coke oven gas is 56% by volume of hydrogen gas, 30% by volume of methane gas, 3% by volume of acetylene, 6% by volume of carbon monoxide gas, 2.5% by volume of carbon dioxide gas, and 2% of nitrogen gas. 0.5% by volume. The tubular furnace shown in FIG. 6 was installed in a glove box with a nitrogen gas atmosphere. In the tubular furnace, 8.5 g of cerium oxide powder having lost oxygen deficiency produced in the preceding item (2) is left standing. First, bubble V2 was opened, then bubble V1 was opened, and strong reduction was performed by heating while circulating the model coke oven gas. Starting from room temperature, heating was performed to reach 1000 ° C. in 3 hours. After reaching 1000 ° C., this temperature was maintained for 2 hours. Thereafter, the model coke oven gas was allowed to cool naturally to room temperature while circulating. The flow rate of model coke oven gas was 500 SCCM. In this way, cerium oxide having oxygen deficiency was regenerated. As a result of measurement by XRD, it was confirmed that this cerium oxide has a fluorite-type crystal structure. As a result of elemental analysis, this cerium oxide was represented by Ce (IV, III) O 1.75 . Thereafter, the obtained cerium oxide was subjected to the same operation as in the previous item (2), and the conversion rate of this cerium oxide from carbon dioxide to carbon monoxide was calculated. The conversion rate was 50%.
Claims (12)
- 製鉄所における二酸化炭素からの一酸化炭素への変換システムであって、
酸素イオン伝導性を有し、かつ可逆的な酸素欠損を有する金属酸化物と、高炉ガス又は転炉ガスとを加熱下に直接接触させ、該高炉ガス又は該転炉ガス中の二酸化炭素を化学量論反応によって還元して一酸化炭素を生成させ、かつ
加熱の熱源として製鉄所から発生した廃熱を利用する変換システム。 A system for converting carbon dioxide to carbon monoxide at a steelworks,
A metal oxide having oxygen ion conductivity and having reversible oxygen vacancies is directly brought into contact with a blast furnace gas or converter gas under heating, and the carbon dioxide in the blast furnace gas or converter gas is chemically treated. A conversion system that produces carbon monoxide by reduction through a stoichiometric reaction, and uses waste heat generated from steelworks as a heat source for heating. - 製鉄所における二酸化炭素からの一酸化炭素への変換システムであって、
酸素イオン伝導性を有し、かつ可逆的な酸素欠損を有する金属酸化物と、高炉ガス又は転炉ガスから分離した二酸化炭素とを加熱下に接触させ、この二酸化炭素を化学量論反応によって還元して一酸化炭素を生成させ、かつ
加熱の熱源として製鉄所から発生した廃熱を利用する変換システム。 A system for converting carbon dioxide to carbon monoxide at a steelworks,
A metal oxide having oxygen ion conductivity and reversible oxygen deficiency is brought into contact with carbon dioxide separated from blast furnace gas or converter gas under heating, and this carbon dioxide is reduced by a stoichiometric reaction. Conversion system that produces carbon monoxide and uses waste heat generated from steelworks as a heat source for heating. - 高炉ガス又は転炉ガスに含まれる二酸化炭素との接触によって酸化された前記金属酸化物を、製鉄所から発生したコークス炉ガスと加熱下に直接接触させ、該コークス炉ガス中の水素によって強還元して該金属酸化物を再生し、かつ
加熱の熱源として製鉄所から発生した廃熱を利用する請求項1又は2に記載の変換システム。 The metal oxide oxidized by contact with carbon dioxide contained in the blast furnace gas or converter gas is brought into direct contact with the coke oven gas generated from the ironworks under heating, and is strongly reduced by hydrogen in the coke oven gas. The conversion system according to claim 1 or 2, wherein the metal oxide is regenerated and waste heat generated from the steelworks is used as a heat source for heating. - 高炉ガス又は転炉ガスが有する熱を熱源として用い、該高炉ガス又は該転炉ガスを反応系に吹き込むことで該反応系を直接加熱する請求項1に記載の変換システム。 The conversion system according to claim 1, wherein the heat of the blast furnace gas or the converter gas is used as a heat source, and the reaction system is directly heated by blowing the blast furnace gas or the converter gas into the reaction system.
- コークス炉ガスが有する熱を熱源として用い、該コークス炉ガスを反応系に吹き込むことで該反応系を直接加熱する請求項3に記載の変換システム。 The conversion system according to claim 3, wherein the heat of the coke oven gas is used as a heat source, and the reaction system is directly heated by blowing the coke oven gas into the reaction system.
- 製鉄所から発生した廃熱を利用して熱媒を加熱し、加熱された該熱媒を用いて反応系を加熱する請求項1ないし3のいずれか一項に記載の変換システム。 The conversion system according to any one of claims 1 to 3, wherein the heat medium is heated using waste heat generated from the steel works, and the reaction system is heated using the heated heat medium.
- 前記の金属酸化物が、可逆的な酸素欠損を有する酸化セリウムからなる請求項1ないし6のいずれか一項に記載の変換システム。 The conversion system according to any one of claims 1 to 6, wherein the metal oxide is made of cerium oxide having reversible oxygen vacancies.
- 前記の金属酸化物が、CeO2-x(式中、Ceは四価及び三価の混合価数を有し、xは0.5未満の正の数を表す。)で表され、可逆的な酸素欠損を有し、かつ蛍石型の結晶構造を有する酸化セリウムからなる請求項7に記載の変換システム。 The metal oxide is represented by CeO 2-x (wherein Ce has a tetravalent and trivalent mixed valence, and x represents a positive number less than 0.5) and is reversible. The conversion system according to claim 7, comprising cerium oxide having an oxygen deficiency and a fluorite-type crystal structure.
- 前記の金属酸化物が、CeO2-x(式中、Ceは三価及び三価未満の混合価数を有し、xは0.5~0.7の数を表す。)で表され、可逆的な酸素欠損を有し、かつ蛍石類似の超格子構造を有する酸化セリウムからなる請求項7に記載の変換システム。 The metal oxide is represented by CeO 2-x (wherein Ce has trivalent and mixed valences less than trivalent, x represents a number of 0.5 to 0.7), The conversion system according to claim 7, comprising cerium oxide having a reversible oxygen deficiency and a superlattice structure similar to fluorite.
- 前記の金属酸化物が、Ce2O3-x(xは0以上で1未満の数を表す。)で表され、可逆的な酸素欠損を有し、かつ三方晶の結晶構造を有する酸化セリウムからなる請求項7に記載の変換システム。 The metal oxide is represented by Ce 2 O 3-x (x represents a number of 0 or more and less than 1), has a reversible oxygen deficiency, and has a trigonal crystal structure. The conversion system according to claim 7, comprising:
- 酸素イオン伝導性を有し、かつ可逆的な酸素欠損を有する金属酸化物と、製鉄所の高炉ガス又は転炉ガスとを加熱下に直接接触させ、該高炉ガス又は該転炉ガス中の二酸化炭素を化学量論反応によって還元して一酸化炭素を生成させる一酸化炭素の製造方法であって、加熱の熱源として製鉄所から発生した廃熱を利用する一酸化炭素の製造方法。 A metal oxide having oxygen ion conductivity and having reversible oxygen vacancies is directly brought into contact with a blast furnace gas or a converter gas of a steel mill under heating, and the blast furnace gas or the dioxide gas in the converter gas is contacted. A method for producing carbon monoxide in which carbon monoxide is produced by reducing carbon by a stoichiometric reaction, and the waste heat generated from an ironworks is used as a heat source for heating.
- 酸素イオン伝導性を有し、かつ可逆的な酸素欠損を有する金属酸化物と、製鉄所の高炉ガス又は転炉ガスから分離した二酸化炭素とを加熱下に直接接触させ、この二酸化炭素を化学量論反応によって還元して一酸化炭素を生成させる一酸化炭素の製造方法であって、加熱の熱源として製鉄所から発生した廃熱を利用する一酸化炭素の製造方法。 A metal oxide having oxygen ion conductivity and having reversible oxygen deficiency is brought into direct contact with carbon dioxide separated from the blast furnace gas or converter gas of a steel mill under heating, and this carbon dioxide is stoichiometrically. A method for producing carbon monoxide, which generates carbon monoxide by reduction by a stochastic reaction, and uses waste heat generated from a steel mill as a heat source for heating.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010-175820 | 2010-08-04 | ||
JP2010175820A JP2012036029A (en) | 2010-08-04 | 2010-08-04 | System for conversion of carbon dioxide into carbon monoxide in ironworks |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012017916A1 true WO2012017916A1 (en) | 2012-02-09 |
Family
ID=45559417
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/067279 WO2012017916A1 (en) | 2010-08-04 | 2011-07-28 | System for conversion of carbon dioxide into carbon monoxide in ironworks |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2012036029A (en) |
WO (1) | WO2012017916A1 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012175368A3 (en) * | 2011-06-20 | 2013-03-07 | Siemens Aktiengesellschaft | Carbon dioxide reduction in steelworks |
EP3757064A4 (en) * | 2018-02-22 | 2021-12-01 | Sekisui Chemical Co., Ltd. | Carbon dioxide reduction system and carbon dioxide reduction method |
CN114302971A (en) * | 2020-08-04 | 2022-04-08 | 积水化学工业株式会社 | Iron making system and iron making method |
CN114302970A (en) * | 2020-08-04 | 2022-04-08 | 积水化学工业株式会社 | Gas production device, gas production system, iron-making system, chemical production system, and gas production method |
WO2022163836A1 (en) * | 2021-01-28 | 2022-08-04 | 三菱マテリアル株式会社 | Method for producing carbon material, carbon material, method for decomposing carbon dioxide, and reducing agent |
JP2022115842A (en) * | 2021-01-28 | 2022-08-09 | 三菱マテリアル株式会社 | Method for producing carbon material, carbon material, and method for decomposing carbon dioxide |
JP2022115841A (en) * | 2021-01-28 | 2022-08-09 | 三菱マテリアル株式会社 | Method for producing carbon material, carbon material, method for decomposing carbon dioxide, and reductant |
CN115818643A (en) * | 2022-12-09 | 2023-03-21 | 中南大学 | Thermochemical CO 2 Interactive double-fixed-bed device and process for chemical chain conversion |
WO2023178429A1 (en) * | 2022-03-25 | 2023-09-28 | De.Mission Inc. | Method and apparatus for transforming the thermodynamic potential of a gas |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102091689B1 (en) | 2018-05-23 | 2020-03-25 | 한국에너지기술연구원 | System for converting carbon dioxide using recycling the waste and method thereof |
JP2021075447A (en) * | 2019-09-24 | 2021-05-20 | 積水化学工業株式会社 | Gas production apparatus, gas production system and gas production method |
WO2022029882A1 (en) * | 2020-08-04 | 2022-02-10 | 積水化学工業株式会社 | Gas manufacturing apparatus, gas manufacturing system, and gas manufacturing method |
WO2022029880A1 (en) * | 2020-08-04 | 2022-02-10 | 積水化学工業株式会社 | Gas manufacturing device, gas manufacturing system, and gas manufacturing method |
WO2022029881A1 (en) * | 2020-08-04 | 2022-02-10 | 積水化学工業株式会社 | Gas production device, gas production system and gas production method |
KR102446795B1 (en) * | 2020-09-18 | 2022-09-26 | 한국에너지기술연구원 | Carbon dioxide decomposition method and carbon dioxide decomposition device using metal oxide |
KR20240137632A (en) * | 2022-03-07 | 2024-09-20 | 제이에프이 스틸 가부시키가이샤 | Method of making a dragon boat |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0446011A (en) * | 1990-06-11 | 1992-02-17 | Mitsubishi Heavy Ind Ltd | Method for reducing carbonic acid gas to carbon monoxide |
JPH0568853A (en) * | 1991-09-11 | 1993-03-23 | Nissan Motor Co Ltd | Method for decomposing and recovering gaseous co2 |
JPH05184912A (en) * | 1991-02-06 | 1993-07-27 | Yutaka Tamaura | Carbonaceous resource circulating device |
JPH0769603A (en) * | 1993-09-02 | 1995-03-14 | Sekiyu Shigen Kaihatsu Kk | Production of hydrogen and carbon monoxide from methane |
JP2001322958A (en) * | 2000-05-12 | 2001-11-20 | Mitsubishi Electric Corp | Method for fixing carbon dioxide and device for fixing carbon dioxide |
JP2004237167A (en) * | 2003-02-04 | 2004-08-26 | Nippon Steel Corp | Method for operating carbon dioxide separation recovery system using steelworks equipment |
JP2005144282A (en) * | 2003-11-13 | 2005-06-09 | Kansai Tlo Kk | Stabilization method of carbon dioxide |
WO2008140004A1 (en) * | 2007-05-10 | 2008-11-20 | Mitsui Mining & Smelting Co., Ltd. | Deoxidant and method for producing the same |
JP2009249247A (en) * | 2008-04-08 | 2009-10-29 | Sumitomo Heavy Ind Ltd | Carbon recovery apparatus and carbon recovery method |
WO2010004963A1 (en) * | 2008-07-11 | 2010-01-14 | 三井金属鉱業株式会社 | Oxygen absorber |
-
2010
- 2010-08-04 JP JP2010175820A patent/JP2012036029A/en active Pending
-
2011
- 2011-07-28 WO PCT/JP2011/067279 patent/WO2012017916A1/en active Application Filing
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0446011A (en) * | 1990-06-11 | 1992-02-17 | Mitsubishi Heavy Ind Ltd | Method for reducing carbonic acid gas to carbon monoxide |
JPH05184912A (en) * | 1991-02-06 | 1993-07-27 | Yutaka Tamaura | Carbonaceous resource circulating device |
JPH0568853A (en) * | 1991-09-11 | 1993-03-23 | Nissan Motor Co Ltd | Method for decomposing and recovering gaseous co2 |
JPH0769603A (en) * | 1993-09-02 | 1995-03-14 | Sekiyu Shigen Kaihatsu Kk | Production of hydrogen and carbon monoxide from methane |
JP2001322958A (en) * | 2000-05-12 | 2001-11-20 | Mitsubishi Electric Corp | Method for fixing carbon dioxide and device for fixing carbon dioxide |
JP2004237167A (en) * | 2003-02-04 | 2004-08-26 | Nippon Steel Corp | Method for operating carbon dioxide separation recovery system using steelworks equipment |
JP2005144282A (en) * | 2003-11-13 | 2005-06-09 | Kansai Tlo Kk | Stabilization method of carbon dioxide |
WO2008140004A1 (en) * | 2007-05-10 | 2008-11-20 | Mitsui Mining & Smelting Co., Ltd. | Deoxidant and method for producing the same |
JP2009249247A (en) * | 2008-04-08 | 2009-10-29 | Sumitomo Heavy Ind Ltd | Carbon recovery apparatus and carbon recovery method |
WO2010004963A1 (en) * | 2008-07-11 | 2010-01-14 | 三井金属鉱業株式会社 | Oxygen absorber |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012175368A3 (en) * | 2011-06-20 | 2013-03-07 | Siemens Aktiengesellschaft | Carbon dioxide reduction in steelworks |
US9322597B2 (en) | 2011-06-20 | 2016-04-26 | Siemens Aktiengesellschaft | Carbon dioxide reduction in steelworks |
EP3757064A4 (en) * | 2018-02-22 | 2021-12-01 | Sekisui Chemical Co., Ltd. | Carbon dioxide reduction system and carbon dioxide reduction method |
US11554960B2 (en) | 2018-02-22 | 2023-01-17 | Sekisui Chemical Co., Ltd. | Carbon dioxide reduction system and carbon dioxide reduction method |
EP3974543A4 (en) * | 2020-08-04 | 2022-12-21 | Sekisui Chemical Co., Ltd. | Ironmaking system and ironmaking method |
EP3978434A4 (en) * | 2020-08-04 | 2022-10-19 | Sekisui Chemical Co., Ltd. | Gas production device, gas production system, iron production system, chemical product production system, and gas production method |
CN114302970A (en) * | 2020-08-04 | 2022-04-08 | 积水化学工业株式会社 | Gas production device, gas production system, iron-making system, chemical production system, and gas production method |
CN114302971A (en) * | 2020-08-04 | 2022-04-08 | 积水化学工业株式会社 | Iron making system and iron making method |
WO2022163836A1 (en) * | 2021-01-28 | 2022-08-04 | 三菱マテリアル株式会社 | Method for producing carbon material, carbon material, method for decomposing carbon dioxide, and reducing agent |
JP2022115842A (en) * | 2021-01-28 | 2022-08-09 | 三菱マテリアル株式会社 | Method for producing carbon material, carbon material, and method for decomposing carbon dioxide |
JP2022115841A (en) * | 2021-01-28 | 2022-08-09 | 三菱マテリアル株式会社 | Method for producing carbon material, carbon material, method for decomposing carbon dioxide, and reductant |
JP7227544B2 (en) | 2021-01-28 | 2023-02-22 | 三菱マテリアル株式会社 | Method for producing carbon material, carbon material, method for decomposing carbon dioxide |
JP7313602B2 (en) | 2021-01-28 | 2023-07-25 | 三菱マテリアル株式会社 | Method for producing carbon material, method for decomposing carbon dioxide |
WO2023178429A1 (en) * | 2022-03-25 | 2023-09-28 | De.Mission Inc. | Method and apparatus for transforming the thermodynamic potential of a gas |
CN115818643A (en) * | 2022-12-09 | 2023-03-21 | 中南大学 | Thermochemical CO 2 Interactive double-fixed-bed device and process for chemical chain conversion |
Also Published As
Publication number | Publication date |
---|---|
JP2012036029A (en) | 2012-02-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2012017916A1 (en) | System for conversion of carbon dioxide into carbon monoxide in ironworks | |
JP5858926B2 (en) | Carbon monoxide production method and production apparatus | |
Al-Shankiti et al. | Isothermal redox for H2O and CO2 splitting–A review and perspective | |
US6667022B2 (en) | Process for separating synthesis gas into fuel cell quality hydrogen and sequestration ready carbon dioxide | |
TWI603779B (en) | Catalysts for thermochemical fuel production, and method of producing fuel using thermochemical fuel production | |
JP6111070B2 (en) | Carbon monoxide production method and production apparatus | |
WO2012057161A1 (en) | Method for producing carbon monoxide and production apparatus | |
CN101870455B (en) | Chain type hydrogen and oxygen production integrated method and device | |
JP5549732B2 (en) | Hydrogen production method and apparatus | |
WO2011136045A1 (en) | Method and apparatus for producing carbon monoxide | |
JP2009106812A (en) | Carbon dioxide absorber, carbon dioxide separator, reformer and producing method of carbon dioxide absorber | |
AU2003200017B2 (en) | Oxy-fuel combustion process | |
Cui et al. | A low-temperature electro-thermochemical water-splitting cycle for hydrogen production based on LiFeO2/Fe redox pair | |
Ganzoury et al. | Thermodynamic and efficiency analysis of solar thermochemical water splitting using Ce–Zr mixtures | |
Bader et al. | Solar thermochemical processes | |
Zuo et al. | Hydrogen production and CO2 capture from Linz-Donawitz converter gas via a chemical looping concept | |
EP3027713B1 (en) | Energy generation process | |
US20240067527A1 (en) | Facile co2 sequestration and fuel production from a hydrocarbon | |
US11634322B2 (en) | Integration of thermochemical water splitting with CO2 direct air capture | |
WO2023277072A1 (en) | Method for producing carbon and hydrogen, carbon material, reducing agent, and method for decomposing carbon dioxide | |
JP2003082361A (en) | Production process of hydrogen by thermochemical decomposition | |
Abad Secades et al. | Evaluation of the redox capability of manganese‑titanium mixed oxides for thermochemical energy storage and chemical looping processes | |
JP5020893B2 (en) | Carbon dioxide absorbing material, carbon dioxide absorbing / releasing method and absorption / releasing device | |
CN116685389A (en) | Method for producing carbon material, method for decomposing carbon dioxide, and reducing agent | |
JP2023008879A (en) | Method of producing carbon and hydrogen, carbon material, reducing agent, and method of decomposing carbon dioxide |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11814543 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11814543 Country of ref document: EP Kind code of ref document: A1 |