WO2012017893A1 - Waste processing system - Google Patents
Waste processing system Download PDFInfo
- Publication number
- WO2012017893A1 WO2012017893A1 PCT/JP2011/067104 JP2011067104W WO2012017893A1 WO 2012017893 A1 WO2012017893 A1 WO 2012017893A1 JP 2011067104 W JP2011067104 W JP 2011067104W WO 2012017893 A1 WO2012017893 A1 WO 2012017893A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- carbon dioxide
- methanol
- waste
- hydrogen
- gasification
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C29/00—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
- C07C29/15—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively
- C07C29/151—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases
- C07C29/1516—Multisteps
- C07C29/1518—Multisteps one step being the formation of initial mixture of carbon oxides and hydrogen for synthesis
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J3/00—Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
- C10J3/72—Other features
- C10J3/86—Other features combined with waste-heat boilers
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/02—Liquid carbonaceous fuels essentially based on components consisting of carbon, hydrogen, and oxygen only
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/09—Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
- C10J2300/0913—Carbonaceous raw material
- C10J2300/0916—Biomass
- C10J2300/092—Wood, cellulose
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/09—Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
- C10J2300/0913—Carbonaceous raw material
- C10J2300/0946—Waste, e.g. MSW, tires, glass, tar sand, peat, paper, lignite, oil shale
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/09—Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
- C10J2300/0953—Gasifying agents
- C10J2300/0969—Carbon dioxide
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/16—Integration of gasification processes with another plant or parts within the plant
- C10J2300/164—Integration of gasification processes with another plant or parts within the plant with conversion of synthesis gas
- C10J2300/1656—Conversion of synthesis gas to chemicals
- C10J2300/1665—Conversion of synthesis gas to chemicals to alcohols, e.g. methanol or ethanol
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/16—Integration of gasification processes with another plant or parts within the plant
- C10J2300/1671—Integration of gasification processes with another plant or parts within the plant with the production of electricity
- C10J2300/1675—Integration of gasification processes with another plant or parts within the plant with the production of electricity making use of a steam turbine
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/16—Integration of gasification processes with another plant or parts within the plant
- C10J2300/1687—Integration of gasification processes with another plant or parts within the plant with steam generation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E50/00—Technologies for the production of fuel of non-fossil origin
- Y02E50/10—Biofuels, e.g. bio-diesel
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E50/00—Technologies for the production of fuel of non-fossil origin
- Y02E50/30—Fuel from waste, e.g. synthetic alcohol or diesel
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/40—Valorisation of by-products of wastewater, sewage or sludge processing
Definitions
- the present invention relates to a waste processing system for processing methanol to produce methanol.
- Carbon dioxide fixation methods have attracted attention from the viewpoint of global environmental issues such as global warming countermeasures.
- Carbon dioxide assimilation by photosynthesis is a well-known immobilization method of carbon dioxide, and other methods using light energy are also known, but light energy utilization efficiency is generally low, and at present only light energy is used. Therefore, it is difficult to fundamentally solve the current global environmental problems.
- Waste that can be incinerated is often incinerated, but this involves the emission of carbon dioxide and heat, which goes against global warming prevention.
- electricity is basically unstorable, so advanced control is necessary, and initial capital investment and running costs may become excessive.
- waste containing a lot of water such as household waste is used for combustion as it is, energy is lost due to evaporation of water and the like, resulting in a decrease in power generation efficiency. For this reason, such waste often undergoes a process of once drying before combustion, which also involves problems of energy loss and complicated processes.
- Patent Document 1 JP-A-2003-171675
- Patent Document 2 Japanese Patent Application Laid-Open No. 2005-146056
- Patent Document 3 Japanese Patent Application Laid-Open No. 2006-205135
- These documents describe the conversion of waste to gas and steam reforming to hydrogen and carbon monoxide.
- methanol a method using carbon monoxide and hydrogen as raw materials is disclosed, and a mode in which carbon dioxide is used not as a reaction raw material but as a fluidizing gas is disclosed.
- Hydrogen is industrially produced by steam reforming of natural gas and is actually derived from general fossil fuels.
- an object of the present invention is to provide a system that suppresses the burden on the global environment as much as possible and converts carbon dioxide into methanol, which is a useful organic compound. It is another object of the present invention to provide a system that effectively uses it.
- the present inventors examined an effective utilization method of carbon dioxide using waste that is usually incinerated or landfilled.
- waste containing much water such as household waste (hereinafter also referred to as low-calorie waste) can be used for steam reforming, waste gasification, steam reforming, A method for obtaining hydrogen and carbon dioxide or carbon monoxide is effective.
- the moisture in the waste is not constant, the gas obtained by gasification may contain a considerable amount of moisture.
- high-calorie waste such as plastic waste mainly has a saturated hydrocarbon structure, so when gasification, steam reforming, or methanol production is performed using this, excess hydrogen is present. It is thought that it may occur. Therefore, if this hydrogen is used in the reaction for converting carbon dioxide to methanol, it is considered that waste reduction and effective utilization of carbon dioxide can be simultaneously performed.
- methanol is produced using hydrogen and carbon dioxide obtained by gasification and steam reforming of waste as main raw materials, and part or all of the methanol is used as fuel for transportation vehicles such as waste collection trucks, CO2 A cycle of carbon utilization can be formed.
- methanol is considered to be useful as an energy source for fuel cells, which are considered to have high power generation efficiency. From this point of view, the above method is compared to conventional methods such as generating electricity by directly burning waste The present invention was completed by considering that this is an effective method for immobilizing carbon dioxide.
- the waste treatment system of the present invention includes a gasification step for obtaining a gas containing hydrogen and carbon dioxide and a residue from waste, carbon dioxide, and part or all of the hydrogen obtained in the gasification step. And a methanol production step of synthesizing methanol from the above.
- part or all of carbon dioxide used in the methanol production process is carbon dioxide obtained in the gasification process.
- the gasification step is a step of obtaining a gas containing hydrogen, carbon dioxide and carbon monoxide and a residue from waste, and carbon dioxide per 100 mol% of the total of carbon dioxide and carbon monoxide obtained in the step Is preferably 30 mol% or more.
- the methanol production step is a step of synthesizing methanol from carbon dioxide, carbon monoxide, and part or all of the hydrogen obtained in the gasification step, and carbon dioxide and carbon monoxide used in the step It is preferable that carbon dioxide is 30 mol% or more per 100 mol% in total.
- an incineration heat recovery boiler is used, and further includes a power generation step using steam generated from the boiler.
- the electric power obtained in the power generation process is used as a power source for at least one process selected from the gasification process and the methanol production process.
- carbon dioxide can be converted into methanol using waste materials that have been used in the past such as incineration and landfilling.
- FIG. 1 is a flowchart showing an example of the waste treatment system of the present invention.
- FIG. 2 is a flowchart showing an example of the waste treatment system of the present invention.
- the waste treatment system of the present invention comprises a gasification step for obtaining a gas containing hydrogen and carbon dioxide from a waste and a residue, carbon dioxide, and a part or all of hydrogen obtained in the gasification step. And a methanol production process for synthesizing methanol.
- the waste used in the present invention is not particularly limited as long as it is a waste from which a gas containing hydrogen and carbon dioxide can be obtained by a gasification step described later, that is, a waste containing organic matter.
- Food waste such as wood; woody biomass such as waste wood, thinned wood, sawdust; paper waste; fiber waste; plastic waste; sewage sludge; human waste; livestock waste; waste oil; rubber tire; black liquor; .
- the waste may be a mixture of these.
- high-calorie waste consisting of general waste such as paper waste and industrial waste such as waste plastic and waste oil is preferable.
- food waste, woody biomass, etc. Even low-calorie wastes that often contain a large amount of water can be suitably used, and are also useful from the viewpoint of sustainable chemistry.
- the main component of the high-calorie waste is plastic, and contains a large amount of polyolefins, typically polyethylene (Polyethylene (C 2 H 4 )) and polypropylene (Polypropylene (C 3 H 6 )). It is expected that Such as polyethylene and polypropylene, it believed that has it been known to use hydrogen for molecular weight control at the time of manufacture, in most cases, the saturated hydrocarbon structure (composition can be represented by C n C 2n + 2) It is done. Therefore, it is considered that the high-calorie waste includes those having a large amount of saturated hydrocarbon structure.
- the catalyst used in the present invention for producing methanol from carbon dioxide and hydrogen tends to be hardly affected by water. For this reason, when excess water is used to efficiently obtain hydrogen from high-calorie waste, it is expected that the process of removing water from the obtained hydrogen and carbon dioxide will have a small effect on the reaction to obtain methanol. Is done.
- the low-calorie waste is considered to contain mainly organic substances of natural origin (biomass).
- the reaction represented by the following (Formula 4) and the reaction represented by the following (Formula 5) Is thought to occur.
- reaction of Formula 5 will be advantageous when hydrogen is obtained by completely decomposing the natural organic material. At this time, it is expected that the use of equimolar water or more with respect to carbon is advantageous in completing the decomposition reaction.
- the catalyst used in the present invention for producing methanol from carbon dioxide and hydrogen tends to be hardly affected by water. For this reason, when excess water is used to efficiently obtain hydrogen from low-calorie waste, it is expected that the process of removing water from the obtained hydrogen and carbon dioxide will have a small effect on the reaction to obtain methanol. Is done.
- the reaction for obtaining carbon monoxide and hydrogen from the organic matter as described above may require a higher temperature than the reaction for obtaining carbon dioxide and hydrogen. It is expected that the method of obtaining carbon and hydrogen is more advantageous.
- polyethylene and polypropylene alone which are representative polyolefins and the five largest general-purpose resins, have a production volume exceeding 100 million tons per year.
- high-calorie waste such as polyolefin is expected to become a considerable amount of hydrogen supply source.
- carbon dioxide and hydrogen are used.
- hydrogen used in the methanol production process part or all of the hydrogen obtained in the gasification process is used.
- carbon dioxide used in the methanol production process carbon dioxide obtained in the gasification process may be used, and other carbon dioxide, for example, carbon dioxide obtained when the residue is incinerated, fossil fuel Carbon dioxide or the like obtained when the gas is burned for power generation may be used.
- carbon dioxide carbon dioxide obtained by various methods (processes) may be used in combination.
- the waste treatment system of the present invention usually comprises a gasification step in which waste collected by a transport vehicle such as a garbage truck is gasified by a known method to obtain a gas containing hydrogen and a residue, and carbon dioxide. And a methanol production step of synthesizing methanol from part or all of the hydrogen obtained in the gasification step.
- the waste treatment system of the present invention includes a methanol production step in which methanol is obtained by reacting carbon dioxide and hydrogen, preferably in the presence of a copper-based catalyst.
- Conventional catalysts employed for obtaining methanol from carbon monoxide and hydrogen generally tend to be reduced in reaction activity by water.
- water is by-produced as represented by the following (formula 6). For this reason, when the catalyst used when obtaining methanol from carbon monoxide and hydrogen is used in the methanol production process, the reaction activity of the catalyst is lowered, and the productivity of methanol is lowered. There is a risk of being connected.
- a catalyst that gives methanol from carbon dioxide and hydrogen generally tends to give methanol even when carbon monoxide and hydrogen are used as raw materials.
- a catalyst in which the decrease in activity due to water hardly occurs for example, the copper-based catalyst described in Patent Document 4.
- the catalyst which contains copper, zinc, aluminum, and silicon of the said patent document 4 as an essential component, and contains zirconium, palladium, and a gallium as an arbitrary component is mentioned as a preferable example.
- the catalyst containing a component such as copper described in Patent Document 4 is active in both the reaction between carbon dioxide and hydrogen and the reaction between carbon monoxide and hydrogen, and also exhibits durability in by-product water. For these reasons, it can be suitably used in the waste treatment system of the present invention.
- the copper-containing catalyst preferably has a particle size of 1 to 20 mm, more preferably 2 to 20 mm, further preferably 3 to 20 mm, particularly preferably 3 to 15 mm, and 3 to 10 mm. Is particularly preferred.
- the particle size of the catalyst containing copper is within the above range, not only is the catalyst easy to handle, but the catalyst layer is formed by, for example, increasing the strength of the catalyst or loading it on a fixed bed. It is suitable for.
- a method for producing the catalyst having the above particle diameter a known method can be used without limitation. A tableting method is preferably used.
- methanol is usually obtained as a liquid mixture with water.
- methanol can be obtained by dehydrating the mixture by a known method.
- hydrogen does not need to be 3 mol per 1 mol of carbon dioxide, and may be a reaction in the presence of hydrogen exceeding 3 mol.
- the waste treatment system of the present invention in the methanol production process, it is difficult for the activity to be reduced by water, and the activity is exhibited in both the reaction between carbon dioxide and hydrogen and the reaction between carbon monoxide and hydrogen to obtain methanol.
- the gasification step there is no need for highly controlled only in the reaction of (Formula 2) or (Formula 5), that is, only the reaction for obtaining hydrogen and carbon dioxide.
- the reaction may be performed under conditions in which the reaction of 1) or (Formula 4) and the reaction of (Formula 2) or (Formula 5) occur. Therefore, the waste treatment system of the present invention is expected to be a system that allows a wide range of operating conditions for the gasification step and is easy to commercialize.
- DME dimethyl ether
- the DME synthesis step is a step of synthesizing DME by dehydration reaction of methanol obtained in the methanol production step.
- a DME synthesis apparatus is usually used, and in this apparatus, methanol heated to a temperature suitable for DME synthesis (240 to 320 ° C.) is filled with a catalyst for DME synthesis (for example, alumina system or the like).
- DME is synthesized by feeding to the reaction tower.
- the apparatus may be further connected to distillation for obtaining purified DME (product DME) by distilling the produced crude DME.
- An apparatus in which the methanol synthesizer and the DME synthesizer are integrated can also be used.
- the gasification gas is obtained by treating the waste in the gasification step.
- the waste pretreatment step Processing may be performed before supplying the waste to the gasification step.
- the pretreatment process varies depending on the type of waste, and is not particularly limited. However, the separation process for separating the type of waste, the drying process performed according to the amount of water in the waste, the size of the waste, etc. The crushing process etc. performed according to are mentioned. A plurality of these steps may be performed.
- the gasification gas and the residue are usually separately taken out from the outlet of the gasification furnace in which the gasification step has been performed. May be included.
- reaction impurities such as sulfur and nitrogen may be contained as other impurities.
- the gasification gas is preferably purified by the gasification gas purification step before being used in the methanol production step.
- the gasification gas purification step is usually performed according to the solid content contained in the gasification gas and the reaction-inhibiting component, and is performed by a conventionally known method.
- an incineration exhaust gas purification step may be performed before being released into the atmosphere, depending on the components contained in the incineration exhaust gas obtained by combustion.
- the incineration exhaust gas purification step is included in the incineration gas and varies depending on the components to be removed, the incineration exhaust gas purification step is performed by a conventionally known method as in the gasification gas purification step.
- Carbon dioxide in the combustion exhaust gas may be used in the methanol production process as described in Example 2 described later. In such a case, a carbon dioxide concentration separation process for separating carbon dioxide from the incineration exhaust gas is performed. This step is performed by a conventionally known method.
- the three components can be supplied to the methanol production step.
- some or all of carbon dioxide and carbon monoxide may be removed and used for other applications.
- carbon dioxide and carbon monoxide may be removed and used for other applications.
- hydrogen can be separated by further processing a gas containing hydrogen and carbon monoxide by a PSA (Pressure Swing Adsorption) method which is a kind of physical adsorption method.
- carbon dioxide having the highest boiling point among the three components can be separated by treatment by a cryogenic separation method to obtain a gas containing hydrogen and carbon monoxide. it can. Moreover, you may isolate
- carbon dioxide is removed by the chemical adsorption method, moisture derived from the chemical adsorption method may be mixed in the gas containing hydrogen and carbon monoxide obtained. Even in such a case, methanol can be suitably produced by using the above-described catalyst in which the activity is hardly reduced by water in the methanol production process.
- the liquid fuel when carbon monoxide is separated from the gasification gas, the liquid fuel can be obtained, for example, by supplying it to the liquid fuel production apparatus.
- the liquid fuel production apparatus include an FT (Fischer-Tropsch) production apparatus.
- a tank for storing the methanol, DME, or liquid fuel may be provided.
- the system according to the present embodiment uses a waste material to obtain a raw material such as hydrogen by a gasification process described later, and generates methanol by reacting carbon dioxide and hydrogen obtained in the gasification process.
- a waste treatment system uses the methanol as a fuel for a transportation vehicle such as a waste collection vehicle to form a carbon dioxide utilization cycle.
- the methanol may be used as a power source such as fuel for other transportation means.
- the transportation means include public transportation means such as a public bus. An example of this system is shown in FIGS.
- Example 1 which is a preferred embodiment of the present invention will be described with reference to FIG.
- waste (10) collected by a transport vehicle such as a garbage truck is gasified (20) by a known method, and a gas (30) containing hydrogen and carbon dioxide and a residue (21) are collected. And a methanol production step (40) for synthesizing methanol from hydrogen obtained in the gasification step and carbon dioxide.
- the residue (21) is incinerated (22), and the generated heat is used for power generation (23).
- methanol (50) obtained in the methanol production process (40) is used as a waste collection vehicle (for example, combustible garbage collection vehicle) (60) or public transportation (public bus etc.). ) (70)
- a waste collection vehicle for example, combustible garbage collection vehicle
- public transportation public bus etc.
- the waste treatment system of the present invention has a gasification furnace in which waste is supplied and gasification (20) is performed, and includes at least hydrogen and carbon dioxide, and carbon monoxide generated by gasification. It is preferable to provide a gas purification device into which a gas that may be discharged is introduced.
- the gas obtained by gasification (20) should just contain hydrogen and a carbon dioxide, normally carbon monoxide is also contained.
- the carbon dioxide is preferably 30 mol% or more, more preferably 50 mol% per 100 mol% of the total of carbon dioxide and carbon monoxide. As mentioned above, More preferably, it is 70 mol% or more.
- the gasification furnace is an apparatus that generates gas containing at least hydrogen and carbon dioxide by heating waste to gasify.
- the structure of the gasification furnace is not particularly limited, but a fixed bed gasification furnace, a fluidized bed gasification furnace, a circulating fluidized bed gasification furnace, a rotary furnace, a moving bed gasification furnace, a spouted bed gasification furnace, an indirect heating gasification A spouted bed gasification furnace is particularly preferable.
- a gasification melting furnace can be employed depending on the contents of the waste.
- the gasification melting furnace there are an updraft type, a downdraft type, a fluidized bed type and the like, but any type can be adopted as long as it meets the object of the present invention. If importance is attached to gasification and residue reduction, the downdraft type is preferred.
- the gasification furnace may be supplied with a gasifying agent such as steam or oxygen for steam reforming reaction according to the amount of water contained in the waste.
- a reaction occurs in a temperature range of 800 to 1100 ° C., and includes a gas (gasification gas) that contains at least hydrogen and carbon dioxide, and may contain carbon monoxide, and a residue such as tar and soot. , Fly ash and incombustible material are obtained.
- a gasified gas mainly composed of carbon monoxide and hydrogen can be generated from a by-product hydrocarbon such as methane, ethane, and tar and unburned solid content such as soot by a reforming reaction.
- the gasification gas and the residue are usually taken out separately from the outlet of the gasification furnace.
- the obtained gasification gas may contain solids such as soot and fly ash as impurities.
- the aforementioned gasification gas purification step may be further performed.
- the residue (21) can be gasified by a more powerful reforming method. However, in view of energy efficiency, the residue (21) is incinerated (22), and the generated heat is converted into steam generation means such as an incineration heat recovery boiler. It is preferable to convert the energy into the form of power generation using generated steam (23) or the like.
- the electric power obtained in this step can be sold to, for example, an electric power company. Moreover, it is also possible to use for the electric power (power) required for the above-mentioned gasification process (20) and the methanol production process (40) described later, which is necessary for the waste treatment system of the present invention.
- heat generated during incineration (22) or power generation (23) may be used in other processes.
- it is preferably used as a heat source for the above-described drying step, gasification step, methanol production step described later, and the like.
- the gasification gas obtained in the gasification step contains at least hydrogen and carbon dioxide as described above, and may contain carbon monoxide.
- methanol is produced using the gasification gas.
- the methanol production step (40) is carried out in the presence of a methanol synthesis catalyst, and it is preferable to use a catalyst in which the aforementioned activity is hardly reduced by water, for example, the copper-based catalyst described in Patent Document 4.
- the methanol production process is usually performed by supplying the gasification gas to a methanol synthesizer.
- the methanol synthesizer is an apparatus for producing methanol by raising the temperature to a normal methanol synthesis reaction pressure (for example, a pressure of 3 to 15 MPa) and a methanol synthesis temperature (for example, 180 to 500 ° C.).
- the methanol synthesizer is preferably provided with a distillation column. It is preferable to distill crude methanol in the distillation column to separate low-boiling components and paraffins, purify the crude methanol, and obtain purified methanol.
- the carbon monoxide obtained in the above gasification step is usually supplied to the methanol production step (40) together with hydrogen and carbon dioxide, but part or all of the carbon monoxide is used as a raw material for other chemical reactions. Also good.
- the methanol production step (40) is a step of synthesizing methanol from carbon dioxide, carbon monoxide and hydrogen, per 100 mol% of carbon dioxide and carbon monoxide used in the step, It is preferable that carbon is 30 mol% or more, More preferably, it is 50 mol% or more, More preferably, it is 70 mol% or more.
- the carbon dioxide obtained in the gasification step is usually supplied to the methanol production step (40) together with hydrogen, but part or all of the carbon dioxide obtained in the gasification step is used for other applications. Also good. Other uses include compression and use as dry ice.
- a tank for storing methanol may be provided.
- the methanol stored in the tank is transported to various places where methanol is used by transportation means such as a transportation vehicle.
- transportation means such as a transportation vehicle.
- the methanol or liquid fuel can be used as a transportation fuel for the transportation means.
- Methanol (50) obtained in the methanol production process (40) should be used as a transportation fuel for waste collection vehicles (combustible garbage collection vehicles) (60) and public transportation (public buses) (70) described later. You can also. Methanol can be used as a raw material for a wide variety of organic chemical reactions.
- the waste (10) as a raw material of the waste treatment system is usually transported to a facility that performs the gasification step (20) by a transport vehicle such as a garbage truck, which is a methanol vehicle.
- a transport vehicle such as a garbage truck, which is a methanol vehicle.
- a vehicle using methanol as an energy source such as a methanol / gasoline mixed fuel vehicle, a methanol / light oil mixed fuel vehicle (for example, a diesel engine vehicle), or a methanol fuel cell vehicle, is preferred.
- methanol obtained by the waste treatment system of the present invention is used as fuel for the garbage truck.
- methanol obtained by the waste treatment system of the present invention as a waste collecting means, a waste treatment cycle is formed.
- the waste treatment system of the present invention is considered to be a technology that greatly contributes to environmental problems such as global warming.
- Example 2 which is a preferred embodiment of the present invention will be described with reference to FIG.
- Example 2 the carbon dioxide (24) generated in the incineration (22) is supplied to the methanol production step (40) and reacted with the gas (30) containing hydrogen and carbon dioxide to obtain methanol (50). Except for this feature, the second embodiment is the same as the first embodiment.
- Example 2 since carbon dioxide (24) generated in incineration (22) is used as a raw material for methanol, it is preferable because the amount of carbon dioxide discharged into the atmosphere can be reduced.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Processing Of Solid Wastes (AREA)
Abstract
The purpose of the present invention is to provide a system for converting carbon dioxide to methanol which limits the burden placed on the global environment as much as possible. This waste processing system is characterised by including: a gasification process for obtaining a hydrogen and carbon dioxide-containing gas and residue from waste; and a methanol production process for synthesising methanol from part or all of the hydrogen obtained in the gasification process. This waste processing system preferably includes waste conveyance and collection processes using a conveyance vehicle having methanol as a fuel.
Description
本発明は、廃棄物を処理してメタノールの製造を行う廃棄物処理システムに関する。
The present invention relates to a waste processing system for processing methanol to produce methanol.
近年、地球温暖化対策等の地球環境問題の観点から二酸化炭素の固定化方法が注目されている。二酸化炭素の周知の固定化方法としては、光合成による炭酸同化作用があり、その他の光エネルギーを利用した方法も知られているが、光エネルギーの利用効率は一般的に低く、現時点では光エネルギーのみで現在の地球環境問題を根本的に解決するのは困難との考えがある。
In recent years, carbon dioxide fixation methods have attracted attention from the viewpoint of global environmental issues such as global warming countermeasures. Carbon dioxide assimilation by photosynthesis is a well-known immobilization method of carbon dioxide, and other methods using light energy are also known, but light energy utilization efficiency is generally low, and at present only light energy is used. Therefore, it is difficult to fundamentally solve the current global environmental problems.
地球環境問題の他の面として廃棄物の問題がある。焼却が可能な廃棄物は、焼却処理されることが多いが、これは二酸化炭素と熱の排出を伴い、地球温暖化防止には逆行する。
廃棄物の燃焼を利用した発電を行う例もあるが、電気は基本的に貯蔵が利かないので高度な制御が必要であり、初期の設備投資やランニングコストが過大になる場合がある。また、例えば家庭ごみなどの水分を多く含む廃棄物は、そのまま燃焼に用いると水分の蒸発などにエネルギーを奪われるため発電効率が低下する。このため、このような廃棄物は、燃焼を行う前に一旦乾燥させる工程を経ることが多く、やはりエネルギーロスや工程が煩雑になる問題を含んでいる。 Another aspect of global environmental problems is the problem of waste. Waste that can be incinerated is often incinerated, but this involves the emission of carbon dioxide and heat, which goes against global warming prevention.
There is an example of generating power using combustion of waste, but electricity is basically unstorable, so advanced control is necessary, and initial capital investment and running costs may become excessive. Further, for example, when waste containing a lot of water such as household waste is used for combustion as it is, energy is lost due to evaporation of water and the like, resulting in a decrease in power generation efficiency. For this reason, such waste often undergoes a process of once drying before combustion, which also involves problems of energy loss and complicated processes.
廃棄物の燃焼を利用した発電を行う例もあるが、電気は基本的に貯蔵が利かないので高度な制御が必要であり、初期の設備投資やランニングコストが過大になる場合がある。また、例えば家庭ごみなどの水分を多く含む廃棄物は、そのまま燃焼に用いると水分の蒸発などにエネルギーを奪われるため発電効率が低下する。このため、このような廃棄物は、燃焼を行う前に一旦乾燥させる工程を経ることが多く、やはりエネルギーロスや工程が煩雑になる問題を含んでいる。 Another aspect of global environmental problems is the problem of waste. Waste that can be incinerated is often incinerated, but this involves the emission of carbon dioxide and heat, which goes against global warming prevention.
There is an example of generating power using combustion of waste, but electricity is basically unstorable, so advanced control is necessary, and initial capital investment and running costs may become excessive. Further, for example, when waste containing a lot of water such as household waste is used for combustion as it is, energy is lost due to evaporation of water and the like, resulting in a decrease in power generation efficiency. For this reason, such waste often undergoes a process of once drying before combustion, which also involves problems of energy loss and complicated processes.
廃棄物を有効に利用するため、廃棄物を高エネルギー物質である水素や、最も基本的な有機物質の一つであるメタノールやジメチルエーテルに変換する方法が特開2003-171675号公報(特許文献1)、特開2005-146056号公報(特許文献2)、特開2006-205135号公報(特許文献3)等に開示されている。これらの文献には、廃棄物のガス化や水蒸気改質による水素と一酸化炭素への変換が記載されている。更にメタノールの合成にはもっぱら一酸化炭素と水素を原料とする方法が開示されており、二酸化炭素は反応原料ではなく流動化ガス等に利用される態様が開示されている。
In order to effectively use waste, a method for converting waste into hydrogen, which is a high-energy substance, or methanol or dimethyl ether, which is one of the most basic organic substances, is disclosed in JP-A-2003-171675 (Patent Document 1). ), Japanese Patent Application Laid-Open No. 2005-146056 (Patent Document 2), Japanese Patent Application Laid-Open No. 2006-205135 (Patent Document 3), and the like. These documents describe the conversion of waste to gas and steam reforming to hydrogen and carbon monoxide. Furthermore, for the synthesis of methanol, a method using carbon monoxide and hydrogen as raw materials is disclosed, and a mode in which carbon dioxide is used not as a reaction raw material but as a fluidizing gas is disclosed.
メタノールを製造する方法は、二酸化炭素を含んでいてもよい一酸化炭素と水素とを原料とする方法が多数開示されている。一方で、二酸化炭素と水素とからメタノールを製造する方法が特開平10-309466号公報(特許文献4)等に開示されているが、当該文献には、水素源に関する記載が無い。
As a method for producing methanol, a number of methods using carbon monoxide and hydrogen which may contain carbon dioxide as raw materials are disclosed. On the other hand, although a method for producing methanol from carbon dioxide and hydrogen is disclosed in Japanese Patent Application Laid-Open No. 10-309466 (Patent Document 4) and the like, there is no description regarding a hydrogen source.
水素は工業的には天然ガスの水蒸気改質で生産されており、実質的には一般的な化石燃料に由来するのが現状である。
Hydrogen is industrially produced by steam reforming of natural gas and is actually derived from general fossil fuels.
上記の通り、二酸化炭素を有機化合物に変換する方法は報告されているものの、地球環境問題の観点から二酸化炭素の固定化方法として有効な、二酸化炭素を有機化合物に変換する方法は報告されていないのが現状である。従って、本発明は、地球環境への負荷をできる限り抑制し、二酸化炭素を有用有機化合物であるメタノールへ変換するシステムを提供することを課題とする。更にそれを有効利用するシステムを提供することを課題とする。
As described above, although a method for converting carbon dioxide to an organic compound has been reported, a method for converting carbon dioxide to an organic compound that is effective as a method for fixing carbon dioxide from the viewpoint of global environmental problems has not been reported. is the current situation. Therefore, an object of the present invention is to provide a system that suppresses the burden on the global environment as much as possible and converts carbon dioxide into methanol, which is a useful organic compound. It is another object of the present invention to provide a system that effectively uses it.
本発明者らは、このような状況を鑑み、通常は焼却されたり埋め立てられたりする廃棄物を利用した二酸化炭素の有効活用方法について検討した。
In view of such a situation, the present inventors examined an effective utilization method of carbon dioxide using waste that is usually incinerated or landfilled.
家庭ごみなどの水分を多く含む廃棄物(以下、低カロリー廃棄物とも記す。)中の、水分は水蒸気改質に利用することができることを鑑みると、廃棄物のガス化、水蒸気改質により、水素と二酸化炭素や一酸化炭素とを得る方法は有効である。しかしながら、廃棄物中の水分は一定ではないため、ガス化により得られるガスには水分が相当量含まれる場合があり得る。
In view of the fact that water in waste containing much water such as household waste (hereinafter also referred to as low-calorie waste) can be used for steam reforming, waste gasification, steam reforming, A method for obtaining hydrogen and carbon dioxide or carbon monoxide is effective. However, since the moisture in the waste is not constant, the gas obtained by gasification may contain a considerable amount of moisture.
一般に一酸化炭素と水素とから、メタノールやジメチルエーテルを製造し得る触媒は、水によって活性低下することが知られている。このため、原料である一酸化炭素や、水素中の水分を除去する工程や、水分量を管理する工程が必要と考えられる。
Generally, it is known that a catalyst capable of producing methanol or dimethyl ether from carbon monoxide and hydrogen is reduced in activity by water. For this reason, it is thought that the process which removes the water | moisture content in the carbon monoxide which is a raw material and hydrogen, and the process of managing a water content are considered necessary.
二酸化炭素と水素とから、メタノールやジメチルエーテルを製造する場合は、水の発生を伴う。このため上記反応に優れた活性を示す触媒は、水の影響を受け難く、前記のガスが水分を含む場合でも反応活性の低下を伴うことなくメタノールやジメチルエーテルの製造を行うことができると推測される。
When producing methanol or dimethyl ether from carbon dioxide and hydrogen, water is generated. For this reason, it is presumed that a catalyst exhibiting excellent activity in the above reaction is not easily affected by water and can produce methanol and dimethyl ether without reducing the reaction activity even when the gas contains water. The
一方、プラスチックゴミ等に代表される高カロリー廃棄物は、飽和炭化水素構造が主であることから、これを用いたガス化、水蒸気改質、メタノール製造を行った場合には、水素が余剰に発生する可能性があると考えられる。従って、二酸化炭素をメタノールに変換する反応にこの水素を活用すれば、廃棄物低減と二酸化炭素の有効利用が同時に可能になると考えられる。
On the other hand, high-calorie waste such as plastic waste mainly has a saturated hydrocarbon structure, so when gasification, steam reforming, or methanol production is performed using this, excess hydrogen is present. It is thought that it may occur. Therefore, if this hydrogen is used in the reaction for converting carbon dioxide to methanol, it is considered that waste reduction and effective utilization of carbon dioxide can be simultaneously performed.
廃棄物のガス化、水蒸気改質によって得た水素および二酸化炭素を主原料としてメタノールを製造し、そのメタノールの一部または全部を廃棄物収集トラック等の運搬用車両の燃料等として用いれば、二酸化炭素活用のサイクルが形成できる。また、メタノールは発電効率が高いとされる燃料電池のエネルギー源として有用とされており、その観点からも上記の方法は、廃棄物を直接燃焼させて発電する等の従来の方法に比して、有効な二酸化炭素の固定化方法であると考え、本発明を完成させた。
If methanol is produced using hydrogen and carbon dioxide obtained by gasification and steam reforming of waste as main raw materials, and part or all of the methanol is used as fuel for transportation vehicles such as waste collection trucks, CO2 A cycle of carbon utilization can be formed. In addition, methanol is considered to be useful as an energy source for fuel cells, which are considered to have high power generation efficiency. From this point of view, the above method is compared to conventional methods such as generating electricity by directly burning waste The present invention was completed by considering that this is an effective method for immobilizing carbon dioxide.
すなわち、本発明の廃棄物処理システムは、廃棄物から水素および二酸化炭素を含むガスと、残渣とを得るガス化工程と、二酸化炭素と、前記ガス化工程で得られた水素の一部または全部とからメタノールを合成するメタノール製造工程とを含むことを特徴とする。
That is, the waste treatment system of the present invention includes a gasification step for obtaining a gas containing hydrogen and carbon dioxide and a residue from waste, carbon dioxide, and part or all of the hydrogen obtained in the gasification step. And a methanol production step of synthesizing methanol from the above.
前記メタノール製造工程で用いられる二酸化炭素の一部または全部が、前記ガス化工程で得られた二酸化炭素であることが好ましい。
It is preferable that part or all of carbon dioxide used in the methanol production process is carbon dioxide obtained in the gasification process.
前記ガス化工程が、廃棄物から水素、二酸化炭素および一酸化炭素を含むガスと、残渣とを得る工程であり、該工程で得られる二酸化炭素および一酸化炭素の合計100モル%あたり、二酸化炭素が30モル%以上であることが好ましい。
The gasification step is a step of obtaining a gas containing hydrogen, carbon dioxide and carbon monoxide and a residue from waste, and carbon dioxide per 100 mol% of the total of carbon dioxide and carbon monoxide obtained in the step Is preferably 30 mol% or more.
前記メタノール製造工程が、二酸化炭素と、一酸化炭素と、前記ガス化工程で得られた水素の一部または全部とからメタノールを合成する工程であり、該工程に用いられる二酸化炭素および一酸化炭素の合計100モル%あたり、二酸化炭素が30モル%以上であることが好ましい。
The methanol production step is a step of synthesizing methanol from carbon dioxide, carbon monoxide, and part or all of the hydrogen obtained in the gasification step, and carbon dioxide and carbon monoxide used in the step It is preferable that carbon dioxide is 30 mol% or more per 100 mol% in total.
前記メタノールを燃料とする運搬用車両を用いた廃棄物の運搬、収集工程を更に含むことが好ましい。
It is preferable to further include a transporting and collecting step of waste using the transport vehicle using methanol as a fuel.
前記残渣の焼却工程を更に含むことが好ましい。
It is preferable to further include an incineration step of the residue.
前記焼却工程において、焼却熱回収ボイラーが用いられ、前記ボイラーから発生する水蒸気を用いる発電工程を更に含むことが好ましい。
In the incineration step, it is preferable that an incineration heat recovery boiler is used, and further includes a power generation step using steam generated from the boiler.
前記発電工程で得られる電力を、前記ガス化工程、メタノール製造工程から選択される少なくとも一つの工程の動力源とすることが好ましい。
It is preferable that the electric power obtained in the power generation process is used as a power source for at least one process selected from the gasification process and the methanol production process.
本発明によれば、これまで焼却処理や埋め立て処理などの方法が用いられていた廃棄物を利用して、二酸化炭素をメタノールに変換することができる。
According to the present invention, carbon dioxide can be converted into methanol using waste materials that have been used in the past such as incineration and landfilling.
また、そのメタノールを、廃棄物の運搬、収集等に用いる運搬用車両の燃料として用いることにより、二酸化炭素有効利用のサイクルを構築することができる。
In addition, by using the methanol as fuel for a transportation vehicle used for transporting and collecting waste, a cycle for effectively using carbon dioxide can be constructed.
地球温暖化問題の現状を鑑みると、二酸化炭素の増加を抑制する技術として、本技術の価値は大きい。
Considering the current situation of global warming, the value of this technology is great as a technology that suppresses the increase in carbon dioxide.
本発明の廃棄物処理システムは、廃棄物から水素および二酸化炭素を含むガスと、残渣とを得るガス化工程と、二酸化炭素と、前記ガス化工程で得られた水素の一部または全部とからメタノールを合成するメタノール製造工程とを含むことを特徴とする。
The waste treatment system of the present invention comprises a gasification step for obtaining a gas containing hydrogen and carbon dioxide from a waste and a residue, carbon dioxide, and a part or all of hydrogen obtained in the gasification step. And a methanol production process for synthesizing methanol.
本発明に用いられる廃棄物としては、後述のガス化工程により水素および二酸化炭素を含むガスが得られる廃棄物、すなわち有機物を含む廃棄物であればよく、特に限定はないが、例えば厨芥、草木類などの生ごみ;廃木材、間伐材、製材くずなどの木質系バイオマス;紙ごみ;繊維ごみ;プラスチックごみ;下水汚泥;し尿;畜産廃棄物;廃油;ゴムタイヤ;黒液;廃糖蜜が挙げられる。廃棄物としてはこれらの混合物であってもよい。
The waste used in the present invention is not particularly limited as long as it is a waste from which a gas containing hydrogen and carbon dioxide can be obtained by a gasification step described later, that is, a waste containing organic matter. Food waste such as wood; woody biomass such as waste wood, thinned wood, sawdust; paper waste; fiber waste; plastic waste; sewage sludge; human waste; livestock waste; waste oil; rubber tire; black liquor; . The waste may be a mixture of these.
エネルギー効率の観点からは、紙ごみ等の一般廃棄物、廃プラスチック、廃油等の産業廃棄物からなる高カロリー廃棄物が好ましいが、本発明の廃棄物処理システムでは、生ごみ、木質系バイオマス等の水分を含有することが多い低カロリー廃棄物であっても、好適に用いることができるため、サスティナブルケミストリーの観点からも有用である。
From the viewpoint of energy efficiency, high-calorie waste consisting of general waste such as paper waste and industrial waste such as waste plastic and waste oil is preferable. However, in the waste treatment system of the present invention, food waste, woody biomass, etc. Even low-calorie wastes that often contain a large amount of water can be suitably used, and are also useful from the viewpoint of sustainable chemistry.
後述のガス化工程においては、廃棄物から水素および二酸化炭素を含むガスを得る。
In the gasification process described later, a gas containing hydrogen and carbon dioxide is obtained from waste.
前記高カロリー廃棄物の主成分はプラスチックであり、エチレン(C2H4)の重合体であるポリエチレンやプロピレン(C3H6)の重合体であるポリプロピレンを代表例とする多量のポリオレフィンが含まれている事が予想される。ポリエチレンやポリプロピレンなどは、その製造時に分子量調節のため水素を使用する事が知られており、殆どの場合、飽和炭化水素構造(組成はCnC2n+2で表すことが出来る)になると考えられる。従って、前記高カロリー廃棄物は、多量の飽和炭化水素構造を有するものが含まれると考えられる。
The main component of the high-calorie waste is plastic, and contains a large amount of polyolefins, typically polyethylene (Polyethylene (C 2 H 4 )) and polypropylene (Polypropylene (C 3 H 6 )). It is expected that Such as polyethylene and polypropylene, it believed that has it been known to use hydrogen for molecular weight control at the time of manufacture, in most cases, the saturated hydrocarbon structure (composition can be represented by C n C 2n + 2) It is done. Therefore, it is considered that the high-calorie waste includes those having a large amount of saturated hydrocarbon structure.
この飽和炭化水素のガス化工程においては、例えば下記(式1)で表わされる反応や下記(式2)で表わされる反応が起こると考えられる。
In this saturated hydrocarbon gasification step, for example, the reaction represented by the following (formula 1) and the reaction represented by the following (formula 2) are considered to occur.
CnH2n+2+nH2O→nCO+(2n+1)H2 (式1)
CnH2n+2+2nH2O→nCO2+(3n+1)H2 (式2)
なお、前記(式1)では、水素と共に一酸化炭素が生成するが、該一酸化炭素および水を原料とし、下記(式3)の反応により、二酸化炭素および水素を得てもよい。 C n H 2n + 2 + nH 2 O → nCO + (2n + 1) H 2 (Formula 1)
C n H 2n + 2 + 2nH 2 O → nCO 2 + (3n + 1) H 2 (Formula 2)
In (Formula 1), carbon monoxide is generated together with hydrogen. Carbon dioxide and hydrogen may be obtained by the reaction of the following (Formula 3) using the carbon monoxide and water as raw materials.
CnH2n+2+2nH2O→nCO2+(3n+1)H2 (式2)
なお、前記(式1)では、水素と共に一酸化炭素が生成するが、該一酸化炭素および水を原料とし、下記(式3)の反応により、二酸化炭素および水素を得てもよい。 C n H 2n + 2 + nH 2 O → nCO + (2n + 1) H 2 (Formula 1)
C n H 2n + 2 + 2nH 2 O → nCO 2 + (3n + 1) H 2 (Formula 2)
In (Formula 1), carbon monoxide is generated together with hydrogen. Carbon dioxide and hydrogen may be obtained by the reaction of the following (Formula 3) using the carbon monoxide and water as raw materials.
CO+H2O→CO2+H2 (式3)
前記(式1)では、炭素原子1モルあたり、2モル以上の水素が得られ、前記(式2)では炭素原子1モルあたり、3モル以上の水素が得られ、前記(式1)に続いて、前記(式3)の反応が起こる場合には、合計(式1および式3)で、炭素原子1モルあたり、3モル以上の水素が得られる。 CO + H 2 O → CO 2 + H 2 (Formula 3)
In (Formula 1), 2 moles or more of hydrogen are obtained per mole of carbon atoms, and in (Formula 2), 3 moles or more of hydrogen are obtained per mole of carbon atoms, following (Formula 1). When the reaction of (Formula 3) occurs, 3 moles or more of hydrogen per mole of carbon atoms is obtained in total (Formula 1 and Formula 3).
前記(式1)では、炭素原子1モルあたり、2モル以上の水素が得られ、前記(式2)では炭素原子1モルあたり、3モル以上の水素が得られ、前記(式1)に続いて、前記(式3)の反応が起こる場合には、合計(式1および式3)で、炭素原子1モルあたり、3モル以上の水素が得られる。 CO + H 2 O → CO 2 + H 2 (Formula 3)
In (Formula 1), 2 moles or more of hydrogen are obtained per mole of carbon atoms, and in (Formula 2), 3 moles or more of hydrogen are obtained per mole of carbon atoms, following (Formula 1). When the reaction of (Formula 3) occurs, 3 moles or more of hydrogen per mole of carbon atoms is obtained in total (Formula 1 and Formula 3).
上記の様な飽和炭化水素を完全に分解して水素を得るには、式2の反応の方が有利であることが予想される。この際、炭素に対して2モル倍以上の水を用いると前記分解反応を完遂するのに有利であることも予想される。
It is expected that the reaction of Formula 2 is more advantageous for completely decomposing the saturated hydrocarbon as described above to obtain hydrogen. At this time, it is expected that the use of water at 2 mol times or more with respect to carbon is advantageous for completing the decomposition reaction.
また後述する様に、本発明で行う二酸化炭素と水素とからメタノールを製造するのに用いる触媒は、通常、水の影響を受け難い傾向がある。このため高カロリー廃棄物から効率良く水素を得る為に過剰の水を用いる場合、得られる水素や二酸化炭素から水を除去する工程を簡略化しても、メタノールを得る反応に影響が少ないことが期待される。
As will be described later, the catalyst used in the present invention for producing methanol from carbon dioxide and hydrogen tends to be hardly affected by water. For this reason, when excess water is used to efficiently obtain hydrogen from high-calorie waste, it is expected that the process of removing water from the obtained hydrogen and carbon dioxide will have a small effect on the reaction to obtain methanol. Is done.
一方、前記低カロリー廃棄物は、天然由来(バイオマス)の有機物を主として含むと考えられ、ガス化工程においては、例えば、下記(式4)で表わされる反応や下記(式5)で表わされる反応が起こると考えられる。
On the other hand, the low-calorie waste is considered to contain mainly organic substances of natural origin (biomass). In the gasification step, for example, the reaction represented by the following (Formula 4) and the reaction represented by the following (Formula 5) Is thought to occur.
(C6H12O6)n→6nCO+6nH2 (式4)
(C6H12O6)n+6nH2O→6nCO2+12nH2 (式5)
なお、前記(式4)では、水素と共に一酸化炭素が生成するが、該一酸化炭素および水を原料とし、前述の(式3)の反応により、二酸化炭素および水素を得てもよい。 (C 6 H 12 O 6 ) n → 6 nCO + 6 nH 2 (Formula 4)
(C 6 H 12 O 6) n + 6nH 2 O → 6nCO 2 + 12nH 2 ( Equation 5)
In the above (Formula 4), carbon monoxide is generated together with hydrogen. However, carbon dioxide and hydrogen may be obtained by the reaction of the above (Formula 3) using the carbon monoxide and water as raw materials.
(C6H12O6)n+6nH2O→6nCO2+12nH2 (式5)
なお、前記(式4)では、水素と共に一酸化炭素が生成するが、該一酸化炭素および水を原料とし、前述の(式3)の反応により、二酸化炭素および水素を得てもよい。 (C 6 H 12 O 6 ) n → 6 nCO + 6 nH 2 (Formula 4)
(C 6 H 12 O 6) n + 6nH 2 O → 6nCO 2 + 12nH 2 ( Equation 5)
In the above (Formula 4), carbon monoxide is generated together with hydrogen. However, carbon dioxide and hydrogen may be obtained by the reaction of the above (Formula 3) using the carbon monoxide and water as raw materials.
前記(式4)では、炭素原子1モルあたり、1モルの水素が得られ、前記(式5)では炭素原子1モルあたり、2モルの水素が得られ、前記(式4)に続いて、前記(式3)の反応が起こる場合には、合計(式4および式3)で、炭素原子1モルあたり、2モルの水素が得られる。
In (Formula 4), 1 mole of hydrogen is obtained per mole of carbon atoms, and in (Formula 5), 2 moles of hydrogen is obtained per mole of carbon atoms. Following (Formula 4), When the reaction of (Formula 3) occurs, 2 moles of hydrogen per mole of carbon atoms is obtained in total (Formula 4 and Formula 3).
前記天然由来の有機物を完全に分解して水素を得る場合は、式5の反応が有利であろう事も予想される。この際、炭素に対して等モル倍以上の水を用いると前記分解反応を完遂するのに有利であることも予想される。
It is expected that the reaction of Formula 5 will be advantageous when hydrogen is obtained by completely decomposing the natural organic material. At this time, it is expected that the use of equimolar water or more with respect to carbon is advantageous in completing the decomposition reaction.
また後述する様に、本発明で行う二酸化炭素と水素とからメタノールを製造するのに用いる触媒は、通常、水の影響を受け難い傾向がある。このため低カロリー廃棄物から効率良く水素を得る為に過剰の水を用いる場合、得られる水素や二酸化炭素から水を除去する工程を簡略化しても、メタノールを得る反応に影響が少ないことが期待される。
As will be described later, the catalyst used in the present invention for producing methanol from carbon dioxide and hydrogen tends to be hardly affected by water. For this reason, when excess water is used to efficiently obtain hydrogen from low-calorie waste, it is expected that the process of removing water from the obtained hydrogen and carbon dioxide will have a small effect on the reaction to obtain methanol. Is done.
更に、天然由来の有機物を含む廃棄物から得られる水素は、化石燃料由来ではないことも本発明においては魅力の一つである。
Furthermore, it is also attractive in the present invention that hydrogen obtained from waste containing natural organic substances is not derived from fossil fuels.
前記のような有機物から一酸化炭素と水素とを得る反応は、二酸化炭素と水素とを得る反応に比して高温が必要な場合があり、昇温に係るエネルギーコストを鑑みても、やはり二酸化炭素と水素とを得る方法の方が有利ではないかと期待される。
The reaction for obtaining carbon monoxide and hydrogen from the organic matter as described above may require a higher temperature than the reaction for obtaining carbon dioxide and hydrogen. It is expected that the method of obtaining carbon and hydrogen is more advantageous.
メタノールの製造に必要な水素は、一酸化炭素(CO)1モルあたり2モル、二酸化炭素(CO2)1モルあたり3モルであるので、廃棄物としてポリオレフィンのような高カロリー廃棄物を用いた場合には、(式1)の一酸化炭素や(式2)または(式3)の二酸化炭素を全てメタノールの製造に用いたとしても、水素が余剰になる。
Since hydrogen required for the production of methanol is 2 mol per mol of carbon monoxide (CO) and 3 mol per mol of carbon dioxide (CO 2 ), high-calorie waste such as polyolefin was used as waste. In some cases, even if all of the carbon monoxide of (Formula 1) and the carbon dioxide of (Formula 2) or (Formula 3) are used for the production of methanol, hydrogen is surplus.
最近では代表的なポリオレフィンであり、5大汎用樹脂とも言われるポリエチレンとポリプロピレンだけでも年間1億トンを越える生産量がある事が知られている。これから予想される昨今の莫大な廃棄物量を鑑みると、ポリオレフィンなどの高カロリー廃棄物は、相当な量の水素供給源になることが期待される。
Recently, it is known that polyethylene and polypropylene alone, which are representative polyolefins and the five largest general-purpose resins, have a production volume exceeding 100 million tons per year. In view of the enormous amount of waste that is expected in the future, high-calorie waste such as polyolefin is expected to become a considerable amount of hydrogen supply source.
また、前記メタノール製造工程では、二酸化炭素および水素が用いられる。メタノール製造工程で用いられる水素としては、ガス化工程で得られた水素の一部または全部を用いる。一方、メタノール製造工程で用いられる二酸化炭素としては、ガス化工程で得られた二酸化炭素を用いてもよく、それ以外の二酸化炭素、例えば、残渣を焼却処分した際に得られる二酸化炭素、化石燃料を発電のために燃焼した際に得られる二酸化炭素等を用いてもよい。二酸化炭素としては、様々な方法(工程)で得られた二酸化炭素を併用してもよい。
In the methanol production process, carbon dioxide and hydrogen are used. As the hydrogen used in the methanol production process, part or all of the hydrogen obtained in the gasification process is used. On the other hand, as the carbon dioxide used in the methanol production process, carbon dioxide obtained in the gasification process may be used, and other carbon dioxide, for example, carbon dioxide obtained when the residue is incinerated, fossil fuel Carbon dioxide or the like obtained when the gas is burned for power generation may be used. As carbon dioxide, carbon dioxide obtained by various methods (processes) may be used in combination.
本発明の廃棄物処理システムは通常、ゴミ収集車等の運搬用車両によって集められた廃棄物を、公知の方法でガス化し、水素を含むガスと残渣とを得るガス化工程および、二酸化炭素と、ガス化工程で得られた水素の一部または全部とからメタノールを合成するメタノール製造工程とを含むものである。
The waste treatment system of the present invention usually comprises a gasification step in which waste collected by a transport vehicle such as a garbage truck is gasified by a known method to obtain a gas containing hydrogen and a residue, and carbon dioxide. And a methanol production step of synthesizing methanol from part or all of the hydrogen obtained in the gasification step.
本発明の廃棄物処理システムは、二酸化炭素と水素とを、好ましくは銅系の触媒の存在下で反応させてメタノールを得るメタノール製造工程を含む。従来の一酸化炭素と水素とからメタノールを得る際に採用されていた触媒は、一般的に水によって反応活性が低下しやすい傾向がある。一方、二酸化炭素と水素との反応によりメタノールを得る際には、下記(式6)で表わされるように水が副生する。このため、従来の一酸化炭素と水素とからメタノールを得る際に採用されていた触媒を、前記メタノール製造工程に用いた場合には、触媒の反応活性が低下し、メタノールの生産性の低下等に繋がる恐れがある。
The waste treatment system of the present invention includes a methanol production step in which methanol is obtained by reacting carbon dioxide and hydrogen, preferably in the presence of a copper-based catalyst. Conventional catalysts employed for obtaining methanol from carbon monoxide and hydrogen generally tend to be reduced in reaction activity by water. On the other hand, when methanol is obtained by the reaction of carbon dioxide and hydrogen, water is by-produced as represented by the following (formula 6). For this reason, when the catalyst used when obtaining methanol from carbon monoxide and hydrogen is used in the methanol production process, the reaction activity of the catalyst is lowered, and the productivity of methanol is lowered. There is a risk of being connected.
CO2+3H2→CH3OH+H2O (式6)
一方、一般に二酸化炭素と水素とからメタノールを与える触媒は、一酸化炭素と水素とを原料としてもメタノールを与える傾向がある。このため、本発明においては、水による活性低下が起こりづらい触媒、例えば前記特許文献4に記載の銅系触媒を用いることが好ましい。なお、触媒としては、前記特許文献4に記載の銅、亜鉛、アルミニウム、およびケイ素を必須成分とし、ジルコニウム、パラジウム、ガリウムを任意成分として含む触媒が好ましい例として挙げられる。特許文献4に記載の銅などの成分を含む触媒は、二酸化炭素と水素との反応、一酸化炭素と水素との反応の何れにも活性を示し、また副生する水にも耐久性を示す等の理由で、本願発明の廃棄物処理システムに好適に用いることができる。 CO 2 + 3H 2 → CH 3 OH + H 2 O (Formula 6)
On the other hand, a catalyst that gives methanol from carbon dioxide and hydrogen generally tends to give methanol even when carbon monoxide and hydrogen are used as raw materials. For this reason, in the present invention, it is preferable to use a catalyst in which the decrease in activity due to water hardly occurs, for example, the copper-based catalyst described in Patent Document 4. In addition, as a catalyst, the catalyst which contains copper, zinc, aluminum, and silicon of the said patent document 4 as an essential component, and contains zirconium, palladium, and a gallium as an arbitrary component is mentioned as a preferable example. The catalyst containing a component such as copper described in Patent Document 4 is active in both the reaction between carbon dioxide and hydrogen and the reaction between carbon monoxide and hydrogen, and also exhibits durability in by-product water. For these reasons, it can be suitably used in the waste treatment system of the present invention.
一方、一般に二酸化炭素と水素とからメタノールを与える触媒は、一酸化炭素と水素とを原料としてもメタノールを与える傾向がある。このため、本発明においては、水による活性低下が起こりづらい触媒、例えば前記特許文献4に記載の銅系触媒を用いることが好ましい。なお、触媒としては、前記特許文献4に記載の銅、亜鉛、アルミニウム、およびケイ素を必須成分とし、ジルコニウム、パラジウム、ガリウムを任意成分として含む触媒が好ましい例として挙げられる。特許文献4に記載の銅などの成分を含む触媒は、二酸化炭素と水素との反応、一酸化炭素と水素との反応の何れにも活性を示し、また副生する水にも耐久性を示す等の理由で、本願発明の廃棄物処理システムに好適に用いることができる。 CO 2 + 3H 2 → CH 3 OH + H 2 O (Formula 6)
On the other hand, a catalyst that gives methanol from carbon dioxide and hydrogen generally tends to give methanol even when carbon monoxide and hydrogen are used as raw materials. For this reason, in the present invention, it is preferable to use a catalyst in which the decrease in activity due to water hardly occurs, for example, the copper-based catalyst described in Patent Document 4. In addition, as a catalyst, the catalyst which contains copper, zinc, aluminum, and silicon of the said patent document 4 as an essential component, and contains zirconium, palladium, and a gallium as an arbitrary component is mentioned as a preferable example. The catalyst containing a component such as copper described in Patent Document 4 is active in both the reaction between carbon dioxide and hydrogen and the reaction between carbon monoxide and hydrogen, and also exhibits durability in by-product water. For these reasons, it can be suitably used in the waste treatment system of the present invention.
前記銅を含む触媒は、その粒径が1~20mmが好ましく、2~20mmがより好ましく、3~20mmであることが更に好ましく、3~15mmであることが特に好ましく、3~10mmであることが殊に好ましい。銅を含む触媒の粒径が前記範囲内にあると、該触媒のハンドリングが容易であるだけでなく、例えば該触媒の強度を高めたり、これを固定床に装填することで触媒層を形成するのに好適である。上記の粒径の触媒を製造する方法は、公知の方法を制限無く用いることができる。好適には打錠法が用いられる。
The copper-containing catalyst preferably has a particle size of 1 to 20 mm, more preferably 2 to 20 mm, further preferably 3 to 20 mm, particularly preferably 3 to 15 mm, and 3 to 10 mm. Is particularly preferred. When the particle size of the catalyst containing copper is within the above range, not only is the catalyst easy to handle, but the catalyst layer is formed by, for example, increasing the strength of the catalyst or loading it on a fixed bed. It is suitable for. As a method for producing the catalyst having the above particle diameter, a known method can be used without limitation. A tableting method is preferably used.
メタノール製造工程では、二酸化炭素と水素とを前記触媒の存在下に反応させることが好ましい。この反応工程で、未反応の二酸化炭素や水素は回収して反応工程にリサイクルすることもできる。また、この反応は、前述の(式6)で示す様に水が発生する。このため、該反応では、メタノールは水との液状混合物として通常は得られる。この混合物を例えば公知の方法で脱水処理することによりメタノールが得られる。なお、実際の反応では、二酸化炭素1モルに対して水素が3モルである必要はなく3モルを越える水素の存在下での反応であっても良い。また、上記の反応にも触媒の活性低下にも関与しないような、いわゆる不活性ガスの存在下で上記反応を行っても良い。
In the methanol production process, it is preferable to react carbon dioxide and hydrogen in the presence of the catalyst. In this reaction step, unreacted carbon dioxide and hydrogen can be recovered and recycled to the reaction step. Further, this reaction generates water as shown in the above (Formula 6). For this reason, in the reaction, methanol is usually obtained as a liquid mixture with water. For example, methanol can be obtained by dehydrating the mixture by a known method. In an actual reaction, hydrogen does not need to be 3 mol per 1 mol of carbon dioxide, and may be a reaction in the presence of hydrogen exceeding 3 mol. Moreover, you may perform the said reaction in presence of what is called an inert gas which does not participate in said reaction and catalyst activity fall.
本発明の廃棄物処理システムでは、メタノール製造工程において、水による活性低下が起こりづらく、二酸化炭素と水素との反応、一酸化炭素と水素との反応の何れにも活性を示し、メタノールを得ることができる触媒を用いることにより、ガス化工程において、(式2)や(式5)の反応のみ、すなわち、水素と二酸化炭素とを得る反応のみに、高度に制御する必要性はなく、(式1)や(式4)の反応と、(式2)や(式5)の反応とが起きる条件で行われてもよい。従って、本発明の廃棄物処理システムは、このガス化工程の運転条件の許容幅が広く、事業化し易いシステムであると期待される。
In the waste treatment system of the present invention, in the methanol production process, it is difficult for the activity to be reduced by water, and the activity is exhibited in both the reaction between carbon dioxide and hydrogen and the reaction between carbon monoxide and hydrogen to obtain methanol. In the gasification step, there is no need for highly controlled only in the reaction of (Formula 2) or (Formula 5), that is, only the reaction for obtaining hydrogen and carbon dioxide. The reaction may be performed under conditions in which the reaction of 1) or (Formula 4) and the reaction of (Formula 2) or (Formula 5) occur. Therefore, the waste treatment system of the present invention is expected to be a system that allows a wide range of operating conditions for the gasification step and is easy to commercialize.
本発明の廃棄物処理システムには、他の工程を設けてもよい。他の工程としては、ジメチルエーテル(DME)合成工程、廃棄物前処理工程、ガス化ガス精製工程、焼却排ガス精製工程等が挙げられる。
Other processes may be provided in the waste treatment system of the present invention. Examples of other processes include a dimethyl ether (DME) synthesis process, a waste pretreatment process, a gasification gas purification process, an incineration exhaust gas purification process, and the like.
前記DME合成工程とは、メタノール製造工程で得られたメタノールの脱水反応により、DMEを合成する工程である。該工程には、DME合成装置が通常用いられ、該装置では、DMEの合成に適した温度(240~320℃)に昇温したメタノールを、DME合成用触媒(例えばアルミナ系等)を充填した反応塔に供給することによりDMEを合成する。該装置には、さらに製造した粗DMEを蒸留して、精製されたDME(製品DME)を得るための蒸留等が接続されていてもよい。また、前記メタノール合成装置と前記DME合成装置とが一体型となった装置を用いることもできる。
The DME synthesis step is a step of synthesizing DME by dehydration reaction of methanol obtained in the methanol production step. In this process, a DME synthesis apparatus is usually used, and in this apparatus, methanol heated to a temperature suitable for DME synthesis (240 to 320 ° C.) is filled with a catalyst for DME synthesis (for example, alumina system or the like). DME is synthesized by feeding to the reaction tower. The apparatus may be further connected to distillation for obtaining purified DME (product DME) by distilling the produced crude DME. An apparatus in which the methanol synthesizer and the DME synthesizer are integrated can also be used.
本発明の廃棄物処理システムでは、廃棄物をガス化工程で処理することにより、前記ガス化ガスを得るが、廃棄物をガス化工程に供給する前に、前記廃棄物前処理工程により、前処理を行ってもよい。前処理工程としては、その廃棄物の種類によっても異なり、特に限定はされないが、廃棄物の種類を分別する分別工程、廃棄物の水分量に応じて行われる乾燥工程、廃棄物の大きさ等に応じて行われる破砕工程等が挙げられる。またこれらの工程は複数行われてもよい。
In the waste treatment system of the present invention, the gasification gas is obtained by treating the waste in the gasification step. Before supplying the waste to the gasification step, the waste pretreatment step Processing may be performed. The pretreatment process varies depending on the type of waste, and is not particularly limited. However, the separation process for separating the type of waste, the drying process performed according to the amount of water in the waste, the size of the waste, etc. The crushing process etc. performed according to are mentioned. A plurality of these steps may be performed.
前述のように、ガス化工程を行ったガス化炉の出口より通常、ガス化ガスと、残渣とが別に取り出されるが、得られたガス化ガスには、不純物として、後述の煤や飛灰等の固形分が含まれることがある。また、他の不純物として硫黄分や窒素分等の反応阻害成分が含まれることがある。このような場合には、ガス化ガスを、メタノールの製造工程に用いる前に、ガス化ガス精製工程により、精製を行うことが好ましい。ガス化ガス精製工程は通常、ガス化ガスに含まれる前記固形分や、反応阻害成分に応じて行われ、従来公知方法により行われる。
As described above, the gasification gas and the residue are usually separately taken out from the outlet of the gasification furnace in which the gasification step has been performed. May be included. In addition, reaction impurities such as sulfur and nitrogen may be contained as other impurities. In such a case, the gasification gas is preferably purified by the gasification gas purification step before being used in the methanol production step. The gasification gas purification step is usually performed according to the solid content contained in the gasification gas and the reaction-inhibiting component, and is performed by a conventionally known method.
また、前記残渣を燃焼した場合には、燃焼により得られた焼却排ガス中に含まれる成分に応じて、大気中に放出する前に焼却排ガス精製工程を行ってもよい。焼却排ガス精製工程は、焼却ガス中に含まれ、除去を行う成分によっても異なるが、ガス化ガス精製工程と同様に、従来公知の方法により行われる。また、燃焼排ガス中の二酸化炭素は、後述の実施例2で記載するように、メタノール製造工程に用いてもよい。このような場合には、焼却排ガスから二酸化炭素を分離するための、二酸化炭素濃縮分離工程が行われる。該工程においては、従来公知の方法により行われる。
In addition, when the residue is burned, an incineration exhaust gas purification step may be performed before being released into the atmosphere, depending on the components contained in the incineration exhaust gas obtained by combustion. Although the incineration exhaust gas purification step is included in the incineration gas and varies depending on the components to be removed, the incineration exhaust gas purification step is performed by a conventionally known method as in the gasification gas purification step. Carbon dioxide in the combustion exhaust gas may be used in the methanol production process as described in Example 2 described later. In such a case, a carbon dioxide concentration separation process for separating carbon dioxide from the incineration exhaust gas is performed. This step is performed by a conventionally known method.
また、本発明の廃棄物処理システムでは、ガス化工程で得られるガス化ガスが、水素、二酸化炭素および一酸化炭素を含む場合には、該三成分をメタノール製造工程に供給することが可能であるが、二酸化炭素、一酸化炭素それぞれの一部または全部を取り除き、別の用途に用いてもよい。例えば、ガス化ガスを、アミン溶液を用いる化学的吸着法で処理することにより、酸性ガスである二酸化炭素を除去し、水素と一酸化炭素とを含むガス得ることができる。また、水素と一酸化炭素とを含むガスを更に、物理吸着法の一種であるPSA(Pressure Swing Adsorption;圧力スイング吸着)法で処理することにより、水素を分離することができる。また、前記化学的吸着法以外にも、深冷分離法で処理することにより、前記三成分の中で最も沸点の高い二酸化炭素を分離し、水素と一酸化炭素とを含むガスを得ることができる。また、膜分離法により分離してもよい。なお、前記化学吸着法により二酸化炭素を除去した場合には、得られる水素と一酸化炭素とを含むガスには、前記化学吸着法に由来する水分が混入することがある。このような場合でも、メタノールの製造工程において前述の水による活性低下が起こりづらい触媒を用いることにより、好適にメタノールを製造することができる。
In the waste treatment system of the present invention, when the gasification gas obtained in the gasification step contains hydrogen, carbon dioxide, and carbon monoxide, the three components can be supplied to the methanol production step. However, some or all of carbon dioxide and carbon monoxide may be removed and used for other applications. For example, by treating the gasification gas by a chemical adsorption method using an amine solution, carbon dioxide that is an acidic gas can be removed, and a gas containing hydrogen and carbon monoxide can be obtained. Further, hydrogen can be separated by further processing a gas containing hydrogen and carbon monoxide by a PSA (Pressure Swing Adsorption) method which is a kind of physical adsorption method. In addition to the chemical adsorption method, carbon dioxide having the highest boiling point among the three components can be separated by treatment by a cryogenic separation method to obtain a gas containing hydrogen and carbon monoxide. it can. Moreover, you may isolate | separate by a membrane separation method. In addition, when carbon dioxide is removed by the chemical adsorption method, moisture derived from the chemical adsorption method may be mixed in the gas containing hydrogen and carbon monoxide obtained. Even in such a case, methanol can be suitably produced by using the above-described catalyst in which the activity is hardly reduced by water in the methanol production process.
なお、一酸化炭素を、ガス化ガスより分離した場合には、例えば液体燃料製造装置に供給することにより、液体燃料を得ることができる。液体燃料製造装置としては、例えば、FT(Fischer-Tropsch)製造装置が挙げられる。
In addition, when carbon monoxide is separated from the gasification gas, the liquid fuel can be obtained, for example, by supplying it to the liquid fuel production apparatus. Examples of the liquid fuel production apparatus include an FT (Fischer-Tropsch) production apparatus.
また、前記メタノールや、DME、液体燃料を貯蔵するタンクを併設してもよい。
Also, a tank for storing the methanol, DME, or liquid fuel may be provided.
以下、図面を参照して本発明の好適な実施例を例示的に詳しく説明する。但しこの実施例に記載されている工程等は、特に限定的に記載した場合を除いて、この発明の範囲をそれに限定する趣旨ではなく、単なる説明例に過ぎない。
Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the drawings. However, the steps and the like described in this embodiment are merely illustrative examples, and are not intended to limit the scope of the present invention unless otherwise specifically described.
本実施例に係るシステムは、後述のガス化工程により、廃棄物を利用して水素などの原料を得て、二酸化炭素と、ガス化工程で得られた水素とを反応させて、メタノールを生成する廃棄物処理システムである。また好ましくは、前記メタノールを廃棄物収集車等の運搬用車両の燃料などに利用して二酸化炭素利用のサイクルを形成する廃棄物処理システムである。更に、前記メタノールは、他の交通手段の燃料などの動力源に用いられてもよく、交通手段としては例えば、公共バスなどの公共交通手段が挙げられる。このシステムの例を図1および図2に示した。
The system according to the present embodiment uses a waste material to obtain a raw material such as hydrogen by a gasification process described later, and generates methanol by reacting carbon dioxide and hydrogen obtained in the gasification process. This is a waste treatment system. Preferably, the waste treatment system uses the methanol as a fuel for a transportation vehicle such as a waste collection vehicle to form a carbon dioxide utilization cycle. Further, the methanol may be used as a power source such as fuel for other transportation means. Examples of the transportation means include public transportation means such as a public bus. An example of this system is shown in FIGS.
〔実施例1〕
図1を参照しながら、本発明の好適な実施態様である実施例1について説明する。 [Example 1]
Example 1 which is a preferred embodiment of the present invention will be described with reference to FIG.
図1を参照しながら、本発明の好適な実施態様である実施例1について説明する。 [Example 1]
Example 1 which is a preferred embodiment of the present invention will be described with reference to FIG.
実施例1は、ゴミ収集車等の運搬用車両によって集められた廃棄物(10)を、公知の方法でガス化(20)し、水素および二酸化炭素を含むガス(30)と残渣(21)とを得るガス化工程および、ガス化工程で得られた水素と、二酸化炭素とからメタノールを合成するメタノール製造工程(40)とを含む。また、前記残渣(21)を、焼却(22)し、発生する熱を、発電(23)に用いる。
In the first embodiment, waste (10) collected by a transport vehicle such as a garbage truck is gasified (20) by a known method, and a gas (30) containing hydrogen and carbon dioxide and a residue (21) are collected. And a methanol production step (40) for synthesizing methanol from hydrogen obtained in the gasification step and carbon dioxide. The residue (21) is incinerated (22), and the generated heat is used for power generation (23).
また、図1では、メタノールの利用態様として、メタノール製造工程(40)で得られたメタノール(50)を、廃棄物収集車(例えば可燃ゴミ収集車)(60)や公共交通機関(公共バス等)(70)の輸送用燃料として用いる態様を図示している。
Moreover, in FIG. 1, as a utilization mode of methanol, methanol (50) obtained in the methanol production process (40) is used as a waste collection vehicle (for example, combustible garbage collection vehicle) (60) or public transportation (public bus etc.). ) (70) The mode used as a transportation fuel is illustrated.
前記廃棄物(10)のガス化(20)を行う処理装置は公知の物を制限無く用いることができる。本発明の廃棄物処理システムでは、廃棄物が供給され、ガス化(20)が行われるガス化炉を有し、ガス化により生成した、少なくとも水素と二酸化炭素とを含み、一酸化炭素を含んでいてもよいガスが導入されるガス精製装置を備えていることが好ましい。なお、ガス化(20)で得られるガスには、水素と二酸化炭素とが含まれていればよいが、通常は、一酸化炭素も含まれている。該ガスに水素、二酸化炭素および一酸化炭素が含まれる場合には、二酸化炭素および一酸化炭素の合計100モル%あたり、二酸化炭素が30モル%以上であることが好ましく、より好ましくは50モル%以上、更に好ましくは70モル%以上である。
As the treatment apparatus for gasifying (20) the waste (10), a known material can be used without limitation. The waste treatment system of the present invention has a gasification furnace in which waste is supplied and gasification (20) is performed, and includes at least hydrogen and carbon dioxide, and carbon monoxide generated by gasification. It is preferable to provide a gas purification device into which a gas that may be discharged is introduced. In addition, although the gas obtained by gasification (20) should just contain hydrogen and a carbon dioxide, normally carbon monoxide is also contained. When the gas contains hydrogen, carbon dioxide, and carbon monoxide, the carbon dioxide is preferably 30 mol% or more, more preferably 50 mol% per 100 mol% of the total of carbon dioxide and carbon monoxide. As mentioned above, More preferably, it is 70 mol% or more.
前記ガス化炉は、廃棄物を加熱することによりガス化し、少なくとも水素と二酸化炭素とを含むガスを生成する装置である。該ガス化炉の構造は特に限定されないが、固定層ガス化炉、流動層ガス化炉、循環流動層ガス化炉、回転炉、移動層ガス化炉、噴流床ガス化炉、間接加熱ガス化炉等があげられ、特に噴流床ガス化炉が好ましい。また、廃棄物の内容によっては残渣が多くなったりするケースがあるが、このような場合はガス化溶融炉を採用することも出来る。ガス化溶融炉としては、アップドラフト型、ダウンドラフト型、流動床型などがあるが、本発明の目的に合致していれば、どの様な形式を採用しても差し支えはない。ガス化、残渣低減を重視する場合はダウンドラフト型が好ましい。
The gasification furnace is an apparatus that generates gas containing at least hydrogen and carbon dioxide by heating waste to gasify. The structure of the gasification furnace is not particularly limited, but a fixed bed gasification furnace, a fluidized bed gasification furnace, a circulating fluidized bed gasification furnace, a rotary furnace, a moving bed gasification furnace, a spouted bed gasification furnace, an indirect heating gasification A spouted bed gasification furnace is particularly preferable. Also, depending on the contents of the waste, there are cases where the residue increases, but in such a case, a gasification melting furnace can be employed. As the gasification melting furnace, there are an updraft type, a downdraft type, a fluidized bed type and the like, but any type can be adopted as long as it meets the object of the present invention. If importance is attached to gasification and residue reduction, the downdraft type is preferred.
該ガス化炉には、廃棄物中に含まれる水分量等に応じて、水蒸気改質反応のための水蒸気や酸素等のガス化剤が供給されてもよい。ガス化工程では、800~1100℃の温度域で反応を起こし、少なくとも水素と二酸化炭素とを含み、一酸化炭素を含んでいてもよいガス(ガス化ガス)と、タールや煤などの残渣と、飛灰と、不燃物とが得られる。また、副生するメタン、エタン、タールなどの炭化水素や煤などの未燃固形分から、更に改質反応により、一酸化炭素および水素を主成分とするガス化ガスを生成することもできる。
The gasification furnace may be supplied with a gasifying agent such as steam or oxygen for steam reforming reaction according to the amount of water contained in the waste. In the gasification step, a reaction occurs in a temperature range of 800 to 1100 ° C., and includes a gas (gasification gas) that contains at least hydrogen and carbon dioxide, and may contain carbon monoxide, and a residue such as tar and soot. , Fly ash and incombustible material are obtained. Further, a gasified gas mainly composed of carbon monoxide and hydrogen can be generated from a by-product hydrocarbon such as methane, ethane, and tar and unburned solid content such as soot by a reforming reaction.
前記ガス化炉の出口より通常、ガス化ガスと、残渣とが別に取り出される。得られたガス化ガスには、不純物として、前記煤や飛灰等の固形分が含まれることがある。このような場合には、さらに前述のガス化ガス精製工程を行ってもよい。
The gasification gas and the residue are usually taken out separately from the outlet of the gasification furnace. The obtained gasification gas may contain solids such as soot and fly ash as impurities. In such a case, the aforementioned gasification gas purification step may be further performed.
前記残渣(21)は、更に強力な改質方法でガス化することも可能であるが、エネルギー効率を考えると、焼却(22)し、発生する熱を、焼却熱回収ボイラーなどの水蒸気発生手段を用い、発生する水蒸気を用いた発電(23)等の形でエネルギー化するのが好適である。この工程で得られる電力は、例えば電力会社に売電することも可能である。また、本発明の廃棄物処理システムに必要な、例えば、前述のガス化工程(20)、後述のメタノール製造工程(40)に必要な電力(動力)に利用することも可能である。
The residue (21) can be gasified by a more powerful reforming method. However, in view of energy efficiency, the residue (21) is incinerated (22), and the generated heat is converted into steam generation means such as an incineration heat recovery boiler. It is preferable to convert the energy into the form of power generation using generated steam (23) or the like. The electric power obtained in this step can be sold to, for example, an electric power company. Moreover, it is also possible to use for the electric power (power) required for the above-mentioned gasification process (20) and the methanol production process (40) described later, which is necessary for the waste treatment system of the present invention.
また、焼却(22)や、発電(23)の際に発生した熱を他の工程で利用してもよい。熱の利用としては、例えば、前述の乾燥工程、ガス化工程、後述のメタノール製造工程等の熱源として用いることが好ましい。
Also, heat generated during incineration (22) or power generation (23) may be used in other processes. As the utilization of heat, for example, it is preferably used as a heat source for the above-described drying step, gasification step, methanol production step described later, and the like.
前記ガス化工程で得られるガス化ガスは、前述のように少なくとも水素と二酸化炭素とを含み、一酸化炭素を含んでいてもよい。メタノール製造工程(40)では、該ガス化ガスを用い、メタノールの製造を行う。該メタノール製造工程(40)は、メタノール合成触媒の存在下で行われ、前述の水による活性低下が起こりづらい触媒、例えば前記特許文献4に記載の銅系触媒用いることが好ましい。
The gasification gas obtained in the gasification step contains at least hydrogen and carbon dioxide as described above, and may contain carbon monoxide. In the methanol production step (40), methanol is produced using the gasification gas. The methanol production step (40) is carried out in the presence of a methanol synthesis catalyst, and it is preferable to use a catalyst in which the aforementioned activity is hardly reduced by water, for example, the copper-based catalyst described in Patent Document 4.
メタノール製造工程は、通常前記ガス化ガスを、メタノール合成装置に供給することにより行われる。該メタノール合成装置とは、通常メタノール合成反応圧(例えば圧力3~15MPa)かつ、メタノール合成温度(例えば180~500℃)まで昇温昇圧してメタノールを製造する装置である。なお、メタノール合成装置には、蒸留塔が設けられていることが好ましい。該蒸留塔にて粗メタノールを蒸留して低沸点成分およびパラフィン類を分離し、粗メタノールを精製し、精製されたメタノールを得ることが好ましい。
The methanol production process is usually performed by supplying the gasification gas to a methanol synthesizer. The methanol synthesizer is an apparatus for producing methanol by raising the temperature to a normal methanol synthesis reaction pressure (for example, a pressure of 3 to 15 MPa) and a methanol synthesis temperature (for example, 180 to 500 ° C.). The methanol synthesizer is preferably provided with a distillation column. It is preferable to distill crude methanol in the distillation column to separate low-boiling components and paraffins, purify the crude methanol, and obtain purified methanol.
なお、前述のガス化工程で得られた一酸化炭素は、通常水素および二酸化炭素と共に、メタノール製造工程(40)に供給されるが、その一部または全部を他の化学反応の原料として用いてもよい。メタノール製造工程(40)が、二酸化炭素と、一酸化炭素と、水素とからメタノールを合成する工程である場合には、該工程に用いられる二酸化炭素および一酸化炭素の合計100モル%あたり、二酸化炭素が30モル%以上であることが好ましく、より好ましくは50モル%以上、更に好ましくは70モル%以上である。
The carbon monoxide obtained in the above gasification step is usually supplied to the methanol production step (40) together with hydrogen and carbon dioxide, but part or all of the carbon monoxide is used as a raw material for other chemical reactions. Also good. In the case where the methanol production step (40) is a step of synthesizing methanol from carbon dioxide, carbon monoxide and hydrogen, per 100 mol% of carbon dioxide and carbon monoxide used in the step, It is preferable that carbon is 30 mol% or more, More preferably, it is 50 mol% or more, More preferably, it is 70 mol% or more.
また。前述のガス化工程で得られた二酸化炭素は、通常水素と共に、メタノール製造工程(40)に供給されるが、ガス化工程で得られた二酸化炭素の一部または全部を他の用途に用いてもよい。他の用途としては、圧縮してドライアイスとして用いることが挙げられる。
Also. The carbon dioxide obtained in the gasification step is usually supplied to the methanol production step (40) together with hydrogen, but part or all of the carbon dioxide obtained in the gasification step is used for other applications. Also good. Other uses include compression and use as dry ice.
前記メタノール製造工程(40)では、メタノールを貯留するタンクを併設することも可能である。このタンクに貯留されたメタノールは、輸送車等の輸送手段により各地のメタノール利用先に輸送されるが、このとき、該輸送手段の輸送用燃料としてこのメタノールや液体燃料を利用することもできる。
In the methanol production process (40), a tank for storing methanol may be provided. The methanol stored in the tank is transported to various places where methanol is used by transportation means such as a transportation vehicle. At this time, the methanol or liquid fuel can be used as a transportation fuel for the transportation means.
メタノール製造工程(40)で得られたメタノール(50)は、後述する廃棄物収集車(可燃ゴミ収集車)(60)や公共交通機関(公共バス等)(70)の輸送用燃料として用いることもできる。また、メタノールは多岐に渡る有機化学反応の原料として使用することができる。
Methanol (50) obtained in the methanol production process (40) should be used as a transportation fuel for waste collection vehicles (combustible garbage collection vehicles) (60) and public transportation (public buses) (70) described later. You can also. Methanol can be used as a raw material for a wide variety of organic chemical reactions.
また、廃棄物処理システムの原料となる廃棄物(10)は、通常、ごみ収集車等の運搬用車両によってガス化工程(20)を行う設備に運搬されるが、このごみ収集車はメタノール車やメタノール/ガソリン混合燃料車、メタノール/軽油混合燃料車(例えば、ディーゼルエンジン車)、メタノール燃料電池車等のメタノールをエネルギー源とする車両であることが好ましい。
In addition, the waste (10) as a raw material of the waste treatment system is usually transported to a facility that performs the gasification step (20) by a transport vehicle such as a garbage truck, which is a methanol vehicle. A vehicle using methanol as an energy source, such as a methanol / gasoline mixed fuel vehicle, a methanol / light oil mixed fuel vehicle (for example, a diesel engine vehicle), or a methanol fuel cell vehicle, is preferred.
また、本発明の廃棄物処理システムで得られるメタノールを該ごみ収集車の燃料にすることが好ましい。この様に廃棄物の収集手段として本発明の廃棄物処理システムで得られるメタノールを使用することにより、廃棄物処理のサイクルが形成される。これにより廃棄物処理に投入する火力発電電力やガソリンなどの化石燃料由来のエネルギーを大幅に低減することができると考えられる。従って、本発明の廃棄物処理システムは、地球温暖化などの環境問題に大きく寄与する技術であると考えられる。
Further, it is preferable to use methanol obtained by the waste treatment system of the present invention as fuel for the garbage truck. Thus, by using methanol obtained by the waste treatment system of the present invention as a waste collecting means, a waste treatment cycle is formed. As a result, it is considered that the energy derived from fossil fuels such as thermal power generation and gasoline input to the waste treatment can be greatly reduced. Therefore, the waste treatment system of the present invention is considered to be a technology that greatly contributes to environmental problems such as global warming.
〔実施例2〕
図2を参照しながら、本発明の好適な実施態様である実施例2について説明する。 [Example 2]
Example 2 which is a preferred embodiment of the present invention will be described with reference to FIG.
図2を参照しながら、本発明の好適な実施態様である実施例2について説明する。 [Example 2]
Example 2 which is a preferred embodiment of the present invention will be described with reference to FIG.
実施例2は、焼却(22)で発生した二酸化炭素(24)を、メタノール製造工程(40)に供給し、水素および二酸化炭素を含むガス(30)とともに反応を行い、メタノール(50)を得ることを特徴とする以外は、実施例1と同様である。
In Example 2, the carbon dioxide (24) generated in the incineration (22) is supplied to the methanol production step (40) and reacted with the gas (30) containing hydrogen and carbon dioxide to obtain methanol (50). Except for this feature, the second embodiment is the same as the first embodiment.
実施例2では、焼却(22)で発生する二酸化炭素(24)をメタノールの原料として利用するため、大気中に排出される二酸化炭素の量を低減することができるため好ましい。
In Example 2, since carbon dioxide (24) generated in incineration (22) is used as a raw material for methanol, it is preferable because the amount of carbon dioxide discharged into the atmosphere can be reduced.
Claims (8)
- 廃棄物から水素および二酸化炭素を含むガスと、残渣とを得るガス化工程と、
二酸化炭素と、前記ガス化工程で得られた水素の一部または全部とからメタノールを合成するメタノール製造工程とを含むことを特徴とする廃棄物処理システム。 A gasification step for obtaining a gas containing hydrogen and carbon dioxide and a residue from waste;
A waste treatment system comprising a methanol production step of synthesizing methanol from carbon dioxide and part or all of hydrogen obtained in the gasification step. - 前記メタノール製造工程で用いられる二酸化炭素の一部または全部が、前記ガス化工程で得られた二酸化炭素であることを特徴とする請求項1に記載の廃棄物処理システム。 The waste treatment system according to claim 1, wherein a part or all of carbon dioxide used in the methanol production process is carbon dioxide obtained in the gasification process.
- 前記ガス化工程が、廃棄物から水素、二酸化炭素および一酸化炭素を含むガスと、残渣とを得る工程であり、
該工程で得られる二酸化炭素および一酸化炭素の合計100モル%あたり、二酸化炭素が30モル%以上であることを特徴とする請求項1または2に記載の廃棄物処理システム。 The gasification step is a step of obtaining a gas containing hydrogen, carbon dioxide and carbon monoxide, and a residue from waste,
The waste treatment system according to claim 1 or 2, wherein carbon dioxide is 30 mol% or more per 100 mol% of carbon dioxide and carbon monoxide obtained in the step. - 前記メタノール製造工程が、二酸化炭素と、一酸化炭素と、前記ガス化工程で得られた水素の一部または全部とからメタノールを合成する工程であり、
該工程に用いられる二酸化炭素および一酸化炭素の合計100モル%あたり、二酸化炭素が30モル%以上であることを特徴とする請求項1~3のいずれか一項に記載の廃棄物処理システム。 The methanol production step is a step of synthesizing methanol from carbon dioxide, carbon monoxide, and part or all of the hydrogen obtained in the gasification step;
The waste treatment system according to any one of claims 1 to 3, wherein carbon dioxide is 30 mol% or more per 100 mol% of carbon dioxide and carbon monoxide used in the step. - 前記メタノールを燃料とする運搬用車両を用いた廃棄物の運搬、収集工程を更に含むことを特徴とする請求項1~4のいずれか一項に記載の廃棄物処理システム。 The waste treatment system according to any one of claims 1 to 4, further comprising a step of transporting and collecting waste using a transport vehicle using methanol as a fuel.
- 前記残渣の焼却工程を更に含むことを特徴とする請求項1~5のいずれか一項に記載の廃棄物処理システム。 The waste treatment system according to any one of claims 1 to 5, further comprising an incineration step of the residue.
- 前記焼却工程において、焼却熱回収ボイラーが用いられ、前記ボイラーから発生する水蒸気を用いる発電工程を更に含む請求項6に記載の廃棄物処理システム。 The waste treatment system according to claim 6, further comprising a power generation step using an incineration heat recovery boiler in the incineration step and using water vapor generated from the boiler.
- 前記発電工程で得られる電力を、前記ガス化工程、メタノール製造工程から選択される少なくとも一つの工程の動力源とする請求項7に記載の廃棄物処理システム。 The waste treatment system according to claim 7, wherein the electric power obtained in the power generation step is used as a power source for at least one step selected from the gasification step and the methanol production step.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010-173660 | 2010-08-02 | ||
JP2010173660 | 2010-08-02 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012017893A1 true WO2012017893A1 (en) | 2012-02-09 |
Family
ID=45559394
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/067104 WO2012017893A1 (en) | 2010-08-02 | 2011-07-27 | Waste processing system |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2012017893A1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105668892A (en) * | 2016-02-02 | 2016-06-15 | 南京林业大学 | Straw pulp black liquor processing device and method thereof |
JP2019202863A (en) * | 2018-05-24 | 2019-11-28 | トヨタ自動車株式会社 | Physical distribution system |
WO2022045328A1 (en) | 2020-08-31 | 2022-03-03 | 住友化学株式会社 | Method for producing methanol |
WO2022102210A1 (en) * | 2020-11-13 | 2022-05-19 | 住友化学株式会社 | Methanol production method |
JP2022143792A (en) * | 2021-03-18 | 2022-10-03 | 本田技研工業株式会社 | Fuel synthesis equipment |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04356433A (en) * | 1991-01-28 | 1992-12-10 | Mitsubishi Heavy Ind Ltd | Synthesis of methanol from organic waste |
JPH08308587A (en) * | 1995-03-13 | 1996-11-26 | Osaka Gas Co Ltd | Hydrogen supply system and cogeneration system |
JP2003214615A (en) * | 2002-01-25 | 2003-07-30 | Mitsui Eng & Shipbuild Co Ltd | Waste disposal plant |
-
2011
- 2011-07-27 WO PCT/JP2011/067104 patent/WO2012017893A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04356433A (en) * | 1991-01-28 | 1992-12-10 | Mitsubishi Heavy Ind Ltd | Synthesis of methanol from organic waste |
JPH08308587A (en) * | 1995-03-13 | 1996-11-26 | Osaka Gas Co Ltd | Hydrogen supply system and cogeneration system |
JP2003214615A (en) * | 2002-01-25 | 2003-07-30 | Mitsui Eng & Shipbuild Co Ltd | Waste disposal plant |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105668892A (en) * | 2016-02-02 | 2016-06-15 | 南京林业大学 | Straw pulp black liquor processing device and method thereof |
CN105668892B (en) * | 2016-02-02 | 2018-02-02 | 南京林业大学 | Straw pulp black liquor processing unit and its method |
JP2019202863A (en) * | 2018-05-24 | 2019-11-28 | トヨタ自動車株式会社 | Physical distribution system |
WO2022045328A1 (en) | 2020-08-31 | 2022-03-03 | 住友化学株式会社 | Method for producing methanol |
WO2022102210A1 (en) * | 2020-11-13 | 2022-05-19 | 住友化学株式会社 | Methanol production method |
JP2022143792A (en) * | 2021-03-18 | 2022-10-03 | 本田技研工業株式会社 | Fuel synthesis equipment |
JP7228613B2 (en) | 2021-03-18 | 2023-02-24 | 本田技研工業株式会社 | fuel synthesizer |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2007275752B2 (en) | Controlling the synthesis gas composition of a steam methane reformer | |
AU2010222913B2 (en) | Controlling the synthesis gas composition of a steam methane reformer | |
US20230382821A1 (en) | Gasification process | |
JP2012523422A (en) | Making natural gas an environmentally carbon-neutral fuel and a renewable carbon source | |
EP2569397A1 (en) | Method of producing a hydrocarbon composition | |
JP2012523420A (en) | Making coal an environmentally carbon-neutral fuel and renewable carbon source | |
US8445548B2 (en) | Process for the preparation of syngas and methanol from organic wastes | |
TW200837043A (en) | A process for enhancing the operability of hot gas cleanup for the production of synthesis gas from steam-hydrogasification producer gas | |
Bhaskar et al. | Thermochemical route for biohydrogen production | |
WO2012017893A1 (en) | Waste processing system | |
KR20120005447A (en) | Rendering petroleum oil as an environmentally carbon dioxide neutral source material for fuels, derived products and as a regenerative carbon source | |
JP2006205135A (en) | Complex waste disposal system | |
RU2221863C2 (en) | Device to produce carbon using biomass | |
US9738569B2 (en) | Production of acrylic acid and ethanol from carbonaceous materials | |
Marie-Rose et al. | From biomass-rich residues into fuels and green chemicals via gasification and catalytic synthesis | |
CN113272410B (en) | Method and apparatus for producing biomethane from waste | |
WO2017134691A1 (en) | A carbon neutral process and relating apparatus to produce urea from municipal or industrial wastes with zero emissions | |
US20240247202A1 (en) | Process for producing synthetic hydrocarbons from biomass | |
US20230312444A1 (en) | Method for producing methanol | |
US9150488B2 (en) | Production of acrylic acid and ethanol from carbonaceous materials | |
JPS6235440B2 (en) | ||
Bhaskar et al. | Biohydrogen: Chapter 12. Thermochemical Route for Biohydrogen Production | |
JP2023011306A (en) | Method for producing synthetic fuel | |
JP2023011307A (en) | Method for producing synthetic fuel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11814520 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11814520 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |