[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2012015054A1 - リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極及びリチウムイオン二次電池 - Google Patents

リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極及びリチウムイオン二次電池 Download PDF

Info

Publication number
WO2012015054A1
WO2012015054A1 PCT/JP2011/067552 JP2011067552W WO2012015054A1 WO 2012015054 A1 WO2012015054 A1 WO 2012015054A1 JP 2011067552 W JP2011067552 W JP 2011067552W WO 2012015054 A1 WO2012015054 A1 WO 2012015054A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
carbon
lithium ion
ion secondary
secondary battery
Prior art date
Application number
PCT/JP2011/067552
Other languages
English (en)
French (fr)
Inventor
喜重 中村
石井 義人
本棒 英利
圭児 岡部
百合子 井田
Original Assignee
日立化成工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成工業株式会社 filed Critical 日立化成工業株式会社
Priority to EP11812643.2A priority Critical patent/EP2600449A4/en
Priority to CA2807015A priority patent/CA2807015C/en
Priority to JP2012526605A priority patent/JP6278596B2/ja
Priority to CN2011800371843A priority patent/CN103098274A/zh
Priority to KR1020137005133A priority patent/KR101921768B1/ko
Priority to EP20162449.1A priority patent/EP3691001A1/en
Priority to US13/812,595 priority patent/US10854871B2/en
Publication of WO2012015054A1 publication Critical patent/WO2012015054A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a negative electrode material for a lithium ion secondary battery, a negative electrode for a lithium ion secondary battery, and a lithium ion secondary battery.
  • Lithium-ion secondary batteries are lighter and have higher input / output characteristics than other secondary batteries such as nickel metal hydride batteries and lead-acid batteries, so in recent years high-input / output used in electric vehicles, hybrid electric vehicles, etc. It is attracting attention as a power source.
  • Examples of the negative electrode active material used in the lithium ion secondary battery include graphite and amorphous carbon.
  • Graphite has a structure in which hexagonal network surfaces of carbon atoms are regularly stacked. Lithium ion insertion and desorption reactions proceed from the ends of the stacked network surfaces to charge and discharge.
  • amorphous carbon has irregular hexagonal network stacks or no network structure, lithium ion insertion / desorption reaction proceeds on the entire surface, and has excellent input / output characteristics. Lithium ions are easily obtained (see, for example, JP-A-4-370662 and JP-A-5-307956).
  • amorphous carbon has characteristics such as low crystallinity, low reaction with the electrolytic solution, and excellent life characteristics.
  • the present invention uses a lithium ion secondary battery having a large energy density and excellent input / output characteristics, life characteristics and thermal stability, a negative electrode material for a lithium ion secondary battery for obtaining the same, and the negative electrode material.
  • An object of the present invention is to provide a negative electrode for a lithium ion secondary battery.
  • the inventors have found that this problem can be solved. That is, according to each aspect of the present invention, the following negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery are provided.
  • the average interplanar distance d 002 determined by X-ray diffraction method is 0.335 nm to 0.340 nm, the volume average particle diameter (50% D) is 1 ⁇ m to 40 ⁇ m, the maximum particle diameter D max is 74 ⁇ m or less, and the air
  • a negative electrode material for a lithium ion secondary battery comprising a carbon material having at least two exothermic peaks in a temperature range of 300 ° C. or higher and 1000 ° C. or lower in differential thermal analysis in an air stream.
  • the at least two exothermic peaks include an exothermic peak having a peak in a temperature range of 300 ° C.
  • Negative electrode material for lithium ion secondary batteries [3] Of the at least two exothermic peaks, a peak temperature difference between an exothermic peak having a peak at the highest temperature and an exothermic peak having a peak at the lowest temperature is within 300 ° C. [1] or [2 ] The negative electrode material for lithium ion secondary batteries of description.
  • the carbon material includes a first carbon phase serving as a nucleus, and a second carbon phase present on the surface of the first carbon phase and having lower crystallinity than the first carbon phase.
  • a negative electrode for a lithium ion secondary battery comprising a negative electrode material layer comprising the negative electrode material for a lithium ion secondary battery according to any one of [1] to [9] and a current collector.
  • a lithium ion secondary battery comprising the negative electrode for a lithium ion secondary battery according to [10], a positive electrode, and an electrolyte.
  • a lithium ion secondary battery having a large energy density and excellent input / output characteristics, life characteristics and thermal stability, a negative electrode material for a lithium ion secondary battery for obtaining the same, and the negative electrode material are used. It becomes possible to provide the negative electrode for lithium ion secondary batteries which becomes.
  • the negative electrode material for a lithium ion secondary battery according to the present invention (hereinafter sometimes simply referred to as “negative electrode material”) has an average interplanar spacing d 002 of 0.335 nm to 0.340 nm and a volume determined by X-ray diffraction.
  • the average particle diameter (50% D) is 1 ⁇ m to 40 ⁇ m, the maximum particle diameter D max is 74 ⁇ m or less, and has at least two exothermic peaks in the temperature range of 300 ° C. to 1000 ° C. in the differential thermal analysis in the air stream.
  • the negative electrode material according to the present invention includes a carbon material that satisfies these physical property values, thereby providing a lithium secondary battery having a large energy density and excellent in input / output characteristics, life characteristics, and thermal stability. It becomes.
  • the term “process” is not limited to an independent process, and is included in this term if the intended action of this process is achieved even when it cannot be clearly distinguished from other processes. .
  • a numerical range indicated by using “to” indicates a range including the numerical values described before and after “to” as the minimum value and the maximum value, respectively.
  • the amount of each component in the composition when there are a plurality of substances corresponding to each component in the composition, the plurality present in the composition unless otherwise specified. Means the total amount of substances. The present invention will be described below.
  • the negative electrode material according to the present invention includes a carbon material having a predetermined average interplanar spacing d 002 , a predetermined volume average particle diameter, a predetermined maximum particle diameter, and a predetermined exothermic peak.
  • the negative electrode material (negative electrode active material) concerning this invention should just contain the said carbon material, it is preferable that the said carbon material contains 50 mass% or more in all the negative electrode materials, and it is more preferable that 80 mass% or more is included. 90 mass% or more is more preferable, and it is particularly preferable that the carbon material is made of the carbon material (100 mass%).
  • the average interplanar distance d 002 obtained by the X-ray diffraction method in the carbon material is 0.335 nm to 0.340 nm.
  • the value of the average interplanar spacing d 002 is 0.3354 nm, which is a theoretical value for graphite crystals, and the closer to this value, the energy density tends to increase, and the average interplanar spacing d 002 has a value of less than 0.335 nm. You can't get the material. On the other hand, if it exceeds 0.340 nm, it cannot be said that both the initial charge / discharge efficiency and the energy density of the lithium ion secondary battery are sufficient.
  • the average spacing d 002 is preferably 0.335 nm to 0.337 nm in terms of the energy density of the lithium ion secondary battery.
  • the average interplanar spacing d 002 tends to decrease, for example, by increasing the heat treatment temperature of the carbon material. By utilizing this property, the average interplanar spacing d 002 can be set within the above range. it can.
  • the volume average particle diameter (50% D) of the carbon material contained in the negative electrode material is 1 ⁇ m to 40 ⁇ m.
  • the volume average particle diameter is less than 1 ⁇ m, the specific surface area is increased, the initial charge / discharge efficiency of the lithium ion secondary battery is lowered, and the contact between the particles is deteriorated and the input / output characteristics are lowered.
  • the volume average particle diameter exceeds 40 ⁇ m, unevenness is generated on the electrode surface and the battery tends to be short-circuited, and the lithium diffusion distance from the particle surface to the inside increases, so that the lithium ion secondary The input / output characteristics of the battery tend to deteriorate.
  • the volume average particle diameter of the carbon material is preferably 3 ⁇ m to 35 ⁇ m, more preferably 5 ⁇ m to 25 ⁇ m, in view of initial charge / discharge capacity and input / output characteristics.
  • the volume average particle diameter (50% D) is given as a particle diameter that is 50% cumulative when a volume cumulative distribution curve is drawn from the small diameter side in the particle diameter distribution.
  • the volume average particle size (50% D) is measured by dispersing a sample in purified water containing a surfactant and measuring with a laser diffraction particle size distribution analyzer (for example, SALD-3000J manufactured by Shimadzu Corporation). Can do.
  • the maximum particle diameter Dmax in the carbon material contained in the negative electrode material is 74 ⁇ m or less. When the maximum particle diameter D max exceeds 74 ⁇ m, it is difficult to make the electrode plate thin during electrode production, and input / output characteristics and high-rate cycle characteristics are impaired.
  • the maximum particle diameter Dmax in the carbon material contained in the negative electrode material is preferably 70 ⁇ m or less, more preferably 63 ⁇ m or less, and even more preferably 45 ⁇ m or less in terms of input / output characteristics.
  • the maximum particle diameter Dmax can be generally 10 ⁇ m or more, and preferably 38 ⁇ m or more in terms of input / output characteristics.
  • the maximum particle diameter D max is, for example, reduced by sieving in order of 90 ⁇ m, 74 ⁇ m, 63 ⁇ m, 53 ⁇ m, 45 ⁇ m, and 38 ⁇ m in order of the sieve openings. It can be determined depending on the presence or absence of the sample. Specifically, the sample is sieved with the sieves of the respective openings, and the openings immediately before the sieve comes out are defined as the maximum particle diameter Dmax . However, as long as the maximum particle diameter Dmax can be specified, the opening of the sieve is not limited to these.
  • the carbon material contained in the negative electrode material has at least two DTA exothermic peaks in a temperature range of 300 ° C. or higher and 1000 ° C. or lower (in the present invention, simply “exothermic peak”). Called). If the exothermic peak is only one in the temperature range of 300 ° C. or higher and 1000 ° C. or lower, a lithium ion secondary battery having energy density, input / output characteristics, life characteristics and thermal stability cannot be obtained. For example, there is a tendency to easily obtain both high energy density due to a carbon material such as crystalline graphitic carbon and input / output characteristics, lifetime characteristics, and thermal stability due to a carbon material such as amorphous carbon.
  • a carbon material such as crystalline graphitic carbon and input / output characteristics, lifetime characteristics, and thermal stability due to a carbon material such as amorphous carbon.
  • the temperature range in which at least two exothermic peaks appear is preferably 500 ° C. or higher and 850 ° C. or lower.
  • the fact that the carbon material has at least two exothermic peaks means that the carbon material is composed of a carbon material having a plurality of characteristics that can be identified as a plurality of exothermic peaks.
  • a plurality of exothermic peaks being “identifiable” is only required to be distinguishable in terms of measurement accuracy of the apparatus, and means that the peak values of the exothermic peaks are at least 5 ° C. or more apart.
  • the differential thermal analysis can be measured with a differential thermothermal gravimetric simultaneous measurement device (for example, EXSTAR TG / DTA6200 manufactured by Seiko Instruments Inc.). Specifically, using ⁇ -alumina as a reference, measurement was performed at a heating rate of 2.5 ° C./min under a flow of dry air of 300 ml / min, and the presence or absence of a DTA exothermic peak at 300 ° C. to 1000 ° C. was determined. Check.
  • a differential thermothermal gravimetric simultaneous measurement device for example, EXSTAR TG / DTA6200 manufactured by Seiko Instruments Inc.
  • the carbon material contained in the negative electrode material may have any property or structure as long as it exhibits a plurality of distinguishable exothermic peaks within a temperature range of 300 ° C. or higher and 1000 ° C. or lower.
  • Such a carbon material may be composed of a plurality of carbon materials or may be composed of one kind of carbon material.
  • carbon materials composed of a plurality of types of carbon materials having different properties or structures, one or a plurality of types of carbon materials having surface properties that exhibit a plurality of reactivity to oxidation reactions, and lithium ion occlusion / release reactions On the other hand, one or more kinds of carbon materials having different electrochemical characteristics can be exemplified.
  • the carbon material By using such a carbon material, at least two exothermic peaks can be obtained within the temperature range.
  • the carbon material is composed of a plurality of carbon materials, as long as the carbon material exhibits an identifiable exothermic peak within a temperature range of 300 ° C. or more and 1000 ° C. or less as a whole, the carbon material contains the carbon material in the carbon material.
  • a plurality of types of carbon materials may be included in any form or in any state.
  • Examples of the plurality of types of carbon materials having different properties or structures include crystallinity, carbon materials having different properties such as N 2 specific surface area and CO 2 adsorption amount, and particle forms such as average particle diameter or particle aspect ratio are different. Examples include carbon materials, composite materials of carbon materials having different properties or structures, and carbon materials having different dispersibility and uniformity such as distribution states, and in particular, features of graphitic carbon and amorphous carbon, respectively. Therefore, a carbon material having different crystallinity is preferable.
  • the number of the exothermic peaks is not particularly limited, but a temperature range of 300 ° C. or higher and 1000 ° C. or lower, preferably 500 ° C. or higher and 850 ° C., in that it exhibits electrochemical characteristics specific to graphitic carbon and amorphous carbon. Two are preferable in the following temperature range.
  • a carbon material having at least two exothermic peaks at 300 ° C. or more and 1000 ° C. or less for example, the surface properties of the carbon material, the types or properties of a plurality of carbon materials included in the carbon material, a composite of a plurality of carbon materials It can be appropriately adjusted depending on the form, the production conditions of the carbon material, and the like.
  • the peak difference between the exothermic peaks in the at least two exothermic peaks in the temperature range of 300 ° C. or higher and 1000 ° C. or lower is not particularly limited, but the exothermic peak having a peak at the highest temperature among the at least two exothermic peaks and
  • the difference in peak temperature from the exothermic peak having a peak at the lowest temperature is preferably within 300 ° C, more preferably from 25 ° C to 300 ° C, and further preferably from 25 ° C to 200 ° C. It is more preferable, and it is especially preferable that it is 25 degreeC or more and 180 degrees C or less. This temperature difference within 300 ° C.
  • the distribution or arrangement of a plurality of carbon materials having different properties or structures corresponding to the respective exothermic peaks is uniform and uniform, resulting in a higher temperature exothermic peak.
  • the contributing carbon material is likely to react and the peak temperature is lowered, and as a result, good input / output characteristics, life characteristics and thermal stability of the negative electrode tend to be exhibited.
  • the temperature difference is preferably 25 ° C. or more in order to reliably exhibit the effect based on the carbon material having a plurality of characteristics.
  • the exothermic peak is an exothermic peak having a peak in a temperature range of 300 ° C. or higher and lower than 700 ° C. (hereinafter sometimes referred to as “low temperature region”). And an exothermic peak having a peak in a temperature range of 700 ° C. or higher and 1000 ° C. or lower (hereinafter sometimes referred to as “high temperature range”), and one exothermic peak having a peak in a low temperature range, It is more preferable to have two exothermic peaks, one exothermic peak having a peak.
  • the appearance of an exothermic peak having at least one peak in each of the high temperature region and the low temperature region is, for example, a plurality of carbon materials having different properties, such as a plurality of carbon materials having different crystallinity, N 2 specific surface area or CO 2.
  • Carbon materials having different properties such as adsorption amount, a plurality of carbon materials having different particle forms such as average particle diameter or particle aspect ratio, composite states of carbon materials having different properties or structures, and dispersibility such as distribution states Or by using carbon materials having different uniformity, or the like.
  • the use of multiple carbon materials with different crystallinity demonstrates the unique electrochemical characteristics of graphitic carbon and amorphous carbon, high energy density, high input / output characteristics, long life characteristics and excellent This is preferable in terms of achieving thermal stability.
  • the at least two exothermic peaks include an exothermic peak having a peak in a low temperature region and an exothermic peak having a peak in a high temperature region, an exothermic peak having a peak at the lowest temperature among the exothermic peaks having a peak in a low temperature region;
  • the temperature difference from the exothermic peak having the peak at the highest temperature among the exothermic peaks having a peak in the high temperature range is preferably 25 ° C. or higher and 300 ° C. or lower, more preferably 25 ° C. or higher and 200 ° C. or lower. It is particularly preferably 25 ° C. or higher and 180 ° C. or lower.
  • the distribution of the plurality of carbon materials having different properties or structures corresponding to the heat generation peaks in the low temperature region and the high temperature region in the negative electrode material and the arrangement of the other carbon material in one carbon material should be uniform and uniform. Therefore, the carbon material contributing to the exothermic peak on the high temperature side tends to react and the peak temperature tends to be lowered. For this reason, if this temperature difference is within 300 ° C., the distribution and arrangement of such a carbon material is made uniform, and as a result, good input / output characteristics, life characteristics and thermal stability of the negative electrode are easily exhibited. Tend to be. Further, the temperature difference is preferably 25 ° C. or more in order to reliably exhibit the effect based on the carbon material having the plurality of characteristics corresponding to the respective heat generation peaks in the low temperature region and the high temperature region.
  • the exothermic peak that appears in the low temperature region is a peak derived from the reaction of low crystalline carbon and oxygen in the structure of the negative electrode material, and the exothermic that appears in the high temperature region.
  • the peak is considered to be a peak derived from the reaction between crystalline carbon and oxygen in the structure of the negative electrode material. Therefore, the more uniformly the low-crystalline carbon and crystalline carbon in the negative electrode material are distributed, the more uniform the lithium occlusion and release reaction during charge and discharge is, and the negative electrode input / output characteristics, life characteristics, and thermal stability. Is considered better.
  • the differential thermal analysis (DTA analysis) is dragged by the uniformly distributed low crystalline carbon, and the reaction of crystalline carbon is likely to occur and the reaction temperature is lowered. It is thought that the temperature difference between the two exothermic peaks decreases.
  • the temperature difference of the exothermic peak can be adjusted as appropriate depending on, for example, the types or properties of the carbon materials having a plurality of properties contained in the negative electrode material, the composite form of the plurality of carbon materials, the production conditions of the carbon material, and the like.
  • the type of the crystalline carbon material, the type of the low crystalline organic material, the crystallinity Combination of carbon material and low crystalline organic material, particle diameter of crystalline carbon when crystalline carbon is the nucleus, low crystalline organic material when coated with low crystalline organic material with crystalline carbon as the nucleus The temperature difference can be adjusted by adjusting the coating amount, the firing condition of the carbon material, and the like.
  • the specific surface area (hereinafter also referred to as N 2 specific surface area) determined by nitrogen adsorption measurement at 77K of the carbon material contained in the negative electrode material is preferably 0.5 m 2 / g to 25 m 2 / g. 0.5 m 2 / g to 15 m 2 / g is more preferable, and 0.8 m 2 / g to 10 m 2 / g is more preferable. If the N 2 specific surface area is within the above range, there is a tendency that a balance between good input / output characteristics and initial efficiency can be maintained. In addition, the specific surface area by nitrogen adsorption can be calculated
  • the N 2 specific surface area is, for example, increasing the volume average particle diameter of the carbon material contained in the negative electrode material, increasing the heat treatment temperature for the carbon material contained in the negative electrode material, or carbon contained in the negative electrode material. There is a tendency that the value becomes small by modifying the surface of the material, etc., and the N 2 specific surface area can be set within the above range by utilizing this property. Further, when the N 2 specific surface area is increased, the exothermic peak tends to move to the low temperature side.
  • Said adsorption amount obtained from the carbon dioxide adsorption at 273K the carbon material contained in the negative electrode material is 0.1cm 3 /g ⁇ 5.0cm 3 / g preferably, more preferably 0.1cm 3 /g ⁇ 3.0cm 3 / g. If the CO 2 adsorption amount is 0.1 cm 3 / g or more, the input / output characteristics tend to be excellent. On the other hand, if the CO 2 adsorption amount is 5.0 cm 3 / g or less, the irreversible capacity generated by the side reaction with the electrolytic solution tends to decrease, and the decrease in the initial efficiency tends to be suppressed.
  • the amount of CO 2 adsorption is, for example, increasing the volume average particle diameter of the carbon material contained in the negative electrode material, increasing the heat treatment temperature for the carbon material contained in the negative electrode material, and having different crystallinity as the carbon material.
  • the value tends to decrease by selecting a plurality of carbon materials and reducing the amount of the low crystalline carbon material, etc., and this property can be used to set the CO 2 adsorption amount within the above range. . Further, when the CO 2 adsorption amount is increased, the exothermic peak tends to move to the low temperature side.
  • the carbon material contained in the negative electrode material preferably has a tap density of 0.3 g / cm 3 to 2.0 g / cm 3 , more preferably 0.5 g / cm 3 to 2.0 g / cm 3. 0.5 g / cm 3 to 1.3 g / cm 3 is particularly preferable.
  • the tap density is 0.3 g / cm 3 or more, many organic binders are not required when producing the negative electrode, and as a result, the energy density of the lithium ion secondary battery to be produced tends to increase.
  • the tap density is 2.0 g / cm 3 or less, the input / output characteristics tend to be good.
  • the tap density tends to increase, for example, by increasing the volume average particle diameter of the carbon material contained in the negative electrode material, and the tap density can be set within the above range using this property. it can.
  • the overall negative electrode material for example, in addition to the carbon material, by the inclusion of metal powders or the like to be described later, may be 0.3g / cm 3 ⁇ 3.0g / cm 3.
  • the tap density of the present invention a sample powder 100 cm 3 was slowly poured into a measuring cylinder of volume 100 cm 3, and the stoppered graduated cylinder, the sample powder after the measuring cylinder was dropped 250 times from a height of 5cm It means a value obtained from mass and volume.
  • the intensity of the peak appearing in the vicinity of 1360 cm -1 Id the intensity of the peak appearing in the vicinity of 1580 cm -1 and Ig
  • the intensity ratio Id / Ig between the two peaks is defined as an R value
  • the R value is preferably 0.10 to 1.5, and more preferably 0.15 to 1.0.
  • the R value is 0.10 or more, there is a tendency that the life characteristics and input / output characteristics are excellent, and when the R value is 1.5 or less, an increase in irreversible capacity is suppressed and a decrease in initial efficiency tends to be suppressed.
  • the peak appearing near 1360 cm -1 generally a peak identified as corresponding to the amorphous structure of the carbon, means a peak observed in the example 1300cm -1 ⁇ 1400cm -1.
  • a peak appearing near 1580 cm -1 generally a peak identified as corresponding to the graphite crystal structure, means a peak observed in the example 1530cm -1 ⁇ 1630cm -1.
  • the R value can be obtained by using a Raman spectrum measuring apparatus (for example, NSR-1000 model manufactured by JASCO Corporation, excitation wavelength 532 nm) and using the entire measurement range (830 cm ⁇ 1 to 1940 cm ⁇ 1 ) as a baseline. it can.
  • the negative electrode material satisfying the physical property values described above has excellent input / output characteristics, life characteristics and thermal stability in charge and discharge, it can be used as a relatively large capacity lithium ion secondary battery for electric vehicles, power tools or power storage. It is suitable for use.
  • a relatively large capacity lithium ion secondary battery for electric vehicles, power tools or power storage.
  • a relatively large capacity lithium ion secondary battery for electric vehicles, power tools or power storage. It is suitable for use.
  • EV electric vehicle
  • HEV hybrid electric vehicle
  • PHEV plug-in hybrid electric vehicle
  • charging / discharging with a large current is required to improve acceleration performance and brake regeneration performance.
  • a negative electrode material including a carbon material having the above-described physical property values in appropriate combination is preferable from the viewpoint of energy density, input / output characteristics, life characteristics, and thermal stability.
  • a negative electrode material including a carbon material having the above-described physical property values in appropriate combination is preferable from the viewpoint of energy density, input / output characteristics, life characteristics, and thermal stability.
  • the following (a) to (c) It is more preferable that each has two exothermic peaks.
  • the average interplanar distance d 002 determined by X-ray diffraction method is 0.335 nm to 0.340 nm, the volume average particle diameter (50% D) is 1 ⁇ m to 40 ⁇ m, the maximum particle diameter D max is 74 ⁇ m or less, and the air
  • at least two exothermic peaks are present in a temperature range of 300 ° C. or higher and 1000 ° C. or lower, and the at least two exothermic peaks are peaks in a temperature range of 300 ° C. or higher and lower than 700 ° C.
  • anode for lithium-ion secondary battery comprising a carbon material having an adsorption amount obtained from the carbon dioxide adsorption measurements at 273K of .
  • the negative electrode material for lithium ion secondary battery (a) above has a volume average particle diameter (50% D) of 5 ⁇ m to 25 ⁇ m, the largest particle
  • the specific surface area determined by nitrogen adsorption measurement at a diameter D max of 30 ⁇ m to 45 ⁇ m and 77 K is 0.8 m 2 / g to 10 m 2 / g, and the adsorption amount determined by carbon dioxide adsorption measurement at 273 K is 0.1 cm 3 / More preferably, it is g to 3.0 cm 3 / g.
  • An average interplanar distance d 002 determined by X-ray diffraction method is 0.335 nm to 0.340 nm, a volume average particle diameter (50% D) is 1 ⁇ m to 40 ⁇ m, a maximum particle diameter D max is 74 ⁇ m or less, and air In differential thermal analysis in an air stream, at least two exothermic peaks in a temperature range of 300 ° C. or higher and 1000 ° C.
  • a negative electrode material for a lithium ion secondary battery comprising a carbon material having an adsorption amount determined by carbon dioxide adsorption measurement at 273 K of 3 / g to 5.0 cm 3 / g.
  • the negative electrode material for lithium ion secondary battery (b) above has a volume average particle diameter (50% D) of 5 ⁇ m to 25 ⁇ m, the largest particle
  • the specific surface area determined by nitrogen adsorption measurement at 77K with a diameter D max of 45 ⁇ m or less is 0.8 m 2 / g to 10 m 2 / g, and the adsorption amount determined by carbon dioxide adsorption measurement at 273 K is 0.1 cm 3 / g. More preferably, it is ⁇ 3.0 cm 3 / g.
  • the negative electrode material for a lithium ion secondary battery of (b) has a peak at the highest temperature among the at least two exothermic peaks.
  • the peak temperature difference between the exothermic peak and the exothermic peak having the peak at the lowest temperature is within 180 ° C.
  • the volume average particle size (50% D) is 5 ⁇ m to 25 ⁇ m
  • the maximum particle size D max is 45 ⁇ m or less, 77K.
  • the average interplanar distance d 002 determined by X-ray diffraction method is 0.335 nm to 0.340 nm, the volume average particle diameter (50% D) is 1 ⁇ m to 40 ⁇ m, the maximum particle diameter D max is 74 ⁇ m or less, and the air
  • there are at least two exothermic peaks in a temperature range of 300 ° C. or higher and 1000 ° C. or lower and the two exothermic peaks have an exothermic peak having a peak in a temperature range of 300 ° C. or higher and lower than 700 ° C.
  • the negative electrode material for lithium ion secondary battery (c) above has a volume average particle diameter (50% D) of 5 ⁇ m to 25 ⁇ m, the largest particle
  • the specific surface area determined by nitrogen adsorption measurement at 77K with a diameter D max of 45 ⁇ m or less is 0.8 m 2 / g to 10 m 2 / g, and the adsorption amount determined by carbon dioxide adsorption measurement at 273 K is 0.1 cm 3 / g. More preferably, it is ⁇ 3.0 cm 3 / g.
  • the negative electrode material for a lithium ion secondary battery of (c) has a peak at the highest temperature among the at least two exothermic peaks.
  • the peak temperature difference between the exothermic peak and the exothermic peak having the peak at the lowest temperature is within 180 ° C.
  • the volume average particle size (50% D) is 5 ⁇ m to 25 ⁇ m
  • the maximum particle size D max is 45 ⁇ m or less, 77K.
  • the carbon material contained in the negative electrode material can take any kind and form as long as it includes the carbon material exhibiting the above-described physical properties.
  • the carbon material include carbon materials such as graphite (eg, artificial graphite, natural graphite, graphitized mesophase carbon, graphitized carbon fiber, etc.), low crystalline carbon, and mesophase carbon. From the viewpoint of easily increasing the charge / discharge capacity, graphite is preferable.
  • any form such as a scale, a sphere, and a lump may be used.
  • spherical graphite is preferable from the viewpoint of obtaining a high tap density.
  • a carbon material having the above-described physical properties may be appropriately selected from these carbon materials. These carbon materials can be used alone or in combination of two or more.
  • the carbon material may be a composite material composed of a carbon phase serving as a nucleus and another type of carbon phase serving as a coating layer thereof. That is, a carbon material including a first carbon phase serving as a nucleus and a second carbon phase present on the surface of the first carbon phase and having lower crystallinity than the first carbon phase is provided. it can. By setting it as the carbon material comprised from such a several carbon phase from which crystallinity differs, it can be set as the carbon material which can exhibit a desired physical property or property effectively.
  • the first carbon phase serving as a nucleus examples include carbon materials such as the above-described graphite (for example, artificial graphite, natural graphite, graphitized mesophase carbon, and graphitized carbon fiber).
  • the second carbon phase is not particularly limited as long as it has lower crystallinity than the first carbon phase, and is appropriately selected according to desired properties.
  • it is a carbon phase obtained from an organic compound (carbon precursor) that can leave carbonaceous matter by heat treatment, for example, thermal decomposition of ethylene heavy end pitch, crude oil pitch, coal tar pitch, asphalt cracking pitch, polyvinyl chloride, etc.
  • synthetic pitch produced by polymerizing pitch, naphthalene and the like produced in the presence of a super strong acid.
  • thermoplastic synthetic resins such as polyvinyl chloride, polyvinyl alcohol, polyvinyl acetate, and polyvinyl butyral can also be used as the thermoplastic polymer compound.
  • Natural products such as starch and cellulose can also be used.
  • one of the at least two exothermic peaks is derived from the first carbon phase, and the other is derived from the second carbon phase.
  • the above physical properties are easy to adjust, and it is preferable because a negative electrode having a large energy density, good input / output characteristics, life characteristics and thermal stability can be more reliably prepared.
  • the content of the second carbon phase is not particularly limited as long as the entire carbon material exhibits the above-described physical properties.
  • it is 0.1% by mass to the total mass of the carbon material. 30% by mass is preferable, 0.5% by mass to 15% by mass is preferable, and 1% by mass to 10% by mass is preferable.
  • the content of the second carbon phase with respect to the mass of the entire carbon material is the amount of the organic compound (carbon precursor) that is a carbon source alone or after heat-treating a mixture of the first carbon phase with a predetermined ratio.
  • the residual carbon ratio is measured in advance by thermogravimetric analysis, etc., and after determining the mass of the second carbon phase from the product of the carbon source usage at the time of production and the residual carbon ratio, it is determined as a ratio to the total mass. Can do.
  • the content of the second carbon phase is 0.1% by mass or more, the input / output characteristics tend to be improved.
  • content of said 2nd carbon phase is 30 mass% or less, there exists a tendency for the fall of the capacity
  • the second carbon phase may cover the entire surface of the first carbon phase to form a layer, or may be partially present on the surface of the negative electrode material.
  • a layer formed by the second carbon phase covering the whole or a part of the surface of the first carbon phase is referred to as a “low crystalline carbon layer”.
  • surface functional groups such as C—O, C ⁇ O, C—OH, and C—OOH containing oxygen exist in the low crystalline carbon layer.
  • the oxygen content of such a functional group can be determined by X-ray photoelectron spectroscopy (XPS).
  • XPS X-ray photoelectron spectroscopy
  • the ratio of the total oxygen amount in the elemental composition is 0.5 atom% to 5 atom%. Such an oxygen amount is desirable in order to develop good input / output characteristics, life characteristics, and thermal stability of the negative electrode.
  • the carbon material serving as the nucleus is preferably a graphite material having an average interplanar distance d 002 in the range of 0.335 nm to 0.340 nm, from the viewpoint of increasing the charge / discharge capacity.
  • the charge / discharge capacity is preferably as large as 330 nAh / g to 370 mAh / g.
  • the volume average particle diameter (50% D) of the graphite material serving as the nucleus is preferably 1 ⁇ m to 40 ⁇ m.
  • the raw graphite contains an appropriate amount of fine powder, suppresses the occurrence of aggregation in the step of attaching an organic compound to the core material, and tends to make low crystalline carbon and crystalline carbon uniform. There is.
  • the thickness By setting the thickness to 40 ⁇ m or less, there is a tendency that the mixing of coarse particles in the finished negative electrode material can be suppressed, and the occurrence of streaks or the like can be suppressed during negative electrode coating.
  • the specific surface area determined by nitrogen adsorption measurement at 77K of the graphite material as the core is preferably 0.1 m 2 / g to 30 m 2 / g, more preferably. Is 0.5 m 2 / g to 25 m 2 / g, and a range of 0.5 m 2 / g to 15 m 2 / g is particularly preferable.
  • the N 2 specific surface area is 0.1 m 2 / g or more, there is a tendency that aggregation does not occur in the step of attaching the organic compound to the core material.
  • the specific surface area is reduced. There is a tendency that it is easy to adhere the organic compound uniformly while maintaining it in an appropriate range.
  • the N 2 specific surface area is too large, in the differential thermal analysis (DTA analysis), the combustion reaction is promoted, the high temperature side exothermic peak shifts to the low temperature side, and deviates from the range of 700 ° C. or higher and 1000 ° C. or lower.
  • the organic compound adheres uniformly to the core material.
  • Examples of the shape of the graphite material serving as the nucleus include scales, spheres, and lumps, and spherical graphite is preferable from the viewpoint of obtaining a high tap density.
  • An index representing the degree of spheroidization includes an aspect ratio (the aspect ratio represents the maximum length vertical length / the maximum length, and the maximum value is 1).
  • the average aspect ratio can be obtained by using a flow type particle image analyzer FPIA-3000 manufactured by Sysmex Corporation.
  • the average aspect ratio of the core graphite material is 0.1 or more, more preferably 0.3 or more. If the average aspect ratio is 0.1 or more, the proportion of flake graphite is not too high, that is, the graphite edge surface can be within an appropriate range. Since the edge surface is more active than the basal surface, there is a concern that the organic compound may selectively adhere to the edge surface in the step of attaching the organic compound to the core material. There is a tendency for crystalline carbon to be uniformly dispersed. When the average aspect ratio is 0.1 or more, more preferably 0.3 or more, the organic compound adheres uniformly to the core material. As a result, the low crystalline carbon and the crystalline carbon in the negative electrode material of the present invention are uniform. Distributed.
  • the negative electrode material of the present invention is a metal powder that is alloyed with lithium such as Al, Si, Ga, Ge, In, Sn, Sb, Ag, etc.
  • a multi-element alloy powder, an lithium alloy powder, or the like containing an element that forms an alloy with lithium, such as Al, Si, Ga, Ge, In, Sn, Sb, and Ag can be included.
  • These components can be used alone or added as a composite material of the carbon material and these powders.
  • the tap density can be made larger than that of the carbon material alone.
  • the tap density of the whole negative electrode material becomes 0.3 g / cm 3 to 3.0 g / cm 3 , which is preferable because the charge / discharge reaction is promoted, the negative electrode resistance is reduced, and good input / output characteristics are obtained.
  • the amount used is not particularly limited, and for example, 1 to 50% by mass of the total amount of the negative electrode material can be used.
  • the negative electrode material is a carbon material including the first carbon phase and the second carbon phase, and one of the at least two exothermic peaks is derived from the first carbon phase, and the other is In the case of being derived from the second carbon phase, as an example, a surface of the first carbon phase serving as a nucleus is modified to form a low crystalline carbon layer by the second carbon phase.
  • the negative electrode material having the above physical properties can be obtained.
  • an organic compound (carbon precursor) that leaves carbonaceous matter by heat treatment is attached to the surface of the first carbon phase, and then the inertness at 750 ° C. to 1000 ° C. is used. It can be mentioned that firing and carbonization in an atmosphere.
  • organic compounds (carbon precursors) that leave carbonaceous matter by the heat treatment that can be the second carbon phase include those described above as they are.
  • a method for attaching the organic compound to the surface of the first carbon phase is not particularly limited.
  • carbon particles (powder) serving as a nucleus in a mixed solution in which the organic compound is dissolved or dispersed in a solvent For example, carbon particles (powder) serving as a nucleus in a mixed solution in which the organic compound is dissolved or dispersed in a solvent.
  • the method for attaching the organic compound to the surface of the first carbon phase by the dry method is not particularly limited.
  • a mixture of the first carbon particles and the organic compound (carbon precursor) is mixed and Alternatively, it can be filled in a container having a stirrable structure and mixed to perform compounding of the materials.
  • a container having a structure capable of mixing and / or stirring for example, a method of mixing and stirring in a container in which a wing, a screw or the like is arranged is preferable.
  • the mechanical energy applied to the mixture is preferably 0.360 kJ / kg to 36000 kJ / kg, more preferably 0.360 kJ / kg to 7200 kJ / kg, and 2.50 kJ / kg to 2000 kJ per kg of the mixture. / Kg is more preferable.
  • the mechanical energy applied to the mixture is expressed as a quotient of the amount of the mixed substance (kg) by multiplying the load (kW) by the time (h).
  • the negative electrode material can be produced by heating and firing an intermediate product in which an organic compound capable of becoming the second carbon phase is attached to the surface of the first carbon phase.
  • the firing temperature is preferably 750 ° C to 2000 ° C, more preferably 800 ° C to 1800 ° C, and most preferably 900 ° C to 1400 ° C.
  • the firing temperature is 750 ° C. or higher, the charge / discharge efficiency, input / output characteristics, and cycle characteristics of the battery to be produced tend to be maintained well.
  • the firing temperature is 2000 ° C. or lower, the crystal of the low crystalline carbon portion It is possible to reliably detect an exothermic peak in which the temperature difference between two DTA exothermic peaks is 25 ° C.
  • the atmosphere during firing is not particularly limited as long as the negative electrode material is difficult to oxidize.
  • a nitrogen gas atmosphere, an argon gas atmosphere, a self-decomposing gas atmosphere, or the like can be applied.
  • the type of furnace to be used is not particularly limited, but for example, a batch furnace or a continuous furnace using electricity and / or gas as a heat source is preferable.
  • the two DTA exothermic peaks of the negative electrode material for the lithium ion secondary battery to be produced can be adjusted as appropriate even at the firing temperature.
  • the DTA exothermic peak of 300 ° C. or higher and lower than 700 ° C. It is possible to shift the peak temperature to a higher temperature within the low temperature range.
  • the peak temperature of the DTA exothermic peak of 300 ° C. or higher and lower than 700 ° C. is shifted to a higher temperature within the low temperature range by increasing the amount of low crystalline carbon.
  • the peak temperature of the DTA exothermic peak can be shifted to the lower temperature side within the high temperature range, and the respective DTA exothermic peak temperatures and the difference between the two DTA exothermic peak temperatures can be adjusted.
  • the negative electrode for a lithium ion secondary battery includes a negative electrode material layer including the negative electrode material for a lithium ion secondary battery, and a current collector. Thereby, it becomes possible to constitute a lithium ion secondary battery having a large energy density and excellent in input / output characteristics, life characteristics and thermal stability.
  • the negative electrode for a lithium ion secondary battery may include other components as necessary in addition to the negative electrode material layer and the current collector including the negative electrode material described above.
  • the negative electrode for a lithium ion secondary battery is prepared by, for example, kneading the negative electrode material for a lithium ion secondary battery and an organic binder together with a solvent by a dispersing device such as a stirrer, a ball mill, a super sand mill, or a pressure kneader. Prepare the slurry and apply it to the current collector to form the negative electrode layer, or form the paste-like negative electrode material slurry into a sheet shape, pellet shape, etc., and integrate this with the current collector Can be obtained.
  • a dispersing device such as a stirrer, a ball mill, a super sand mill, or a pressure kneader.
  • the organic binder is not particularly limited, and for example, styrene-butadiene copolymer, methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, (meth) acrylonitrile, hydroxyethyl (metaethyl) )
  • Ethylenically unsaturated carboxylic acid esters such as acrylates, ethylenically unsaturated carboxylic acids such as acrylic acid, methacrylic acid, itaconic acid, fumaric acid and maleic acid, polyvinylidene fluoride, polyethylene oxide, polyepichlorohydrin, polyphosphoric acid Examples thereof include high molecular compounds having high ionic conductivity such as sphazene and polyacrylonitrile.
  • the content of the organic binder is preferably 0.5 to 20 parts by mass with respect to a total of 100 parts by mass of the negative electrode material for a lithium ion secondary battery of the
  • a thickener for adjusting the viscosity may be added to the negative electrode material slurry.
  • the thickener for example, carboxymethylcellulose, methylcellulose, hydroxymethylcellulose, ethylcellulose, polyvinyl alcohol, polyacrylic acid (salt), oxidized starch, phosphorylated starch, casein and the like can be used.
  • the conductive material may be mixed in the negative electrode material slurry.
  • the conductive auxiliary material include carbon black, graphite, acetylene black, or an oxide or nitride that exhibits conductivity.
  • the amount of the conductive aid used may be about 0.5 to 15% by mass of the negative electrode material of the present invention.
  • the material and shape of the current collector are not particularly limited, and for example, aluminum, copper, nickel, titanium, stainless steel, or the like may be used in the form of a foil, punched foil, mesh, or the like. Good.
  • a porous material such as porous metal (foamed metal) or carbon paper can also be used.
  • the method of applying the negative electrode material slurry to the current collector is not particularly limited.
  • metal mask printing method, electrostatic coating method, dip coating method, spray coating method, roll coating method, doctor blade method, comma coating Publicly known methods such as a method, a gravure coating method, and a screen printing method.
  • the solvent contained in the negative electrode material slurry is dried by a hot air dryer, an infrared dryer or a dryer combining these. Further, a rolling process using a flat plate press, a calendar roll or the like is performed as necessary.
  • the integration of the negative electrode layer formed in a sheet shape, a pellet shape, or the like and the current collector can be performed by a known method such as a roll, a press, or a combination thereof.
  • the pressure during the integration is preferably about 1 MPa to 200 MPa.
  • the negative electrode density of the negative electrode material for a lithium ion secondary battery according to the present invention is preferably 1.3 g / cm 3 to 1.8 g / cm 3 , more preferably 1.4 g / cm 3 to 1.7 g / cm 3 , Particularly preferred is 1.4 g / cm 3 to 1.6 g / cm 3 .
  • the lithium ion secondary battery according to the present invention includes the negative electrode for a lithium ion secondary battery, a positive electrode, and an electrolyte.
  • it can be obtained by arranging the negative electrode for a lithium ion secondary battery and the positive electrode facing each other with a separator interposed therebetween and injecting an electrolytic solution.
  • the positive electrode can be obtained by forming a positive electrode layer on the current collector surface in the same manner as the negative electrode.
  • the current collector may be a band-shaped material made of a metal or an alloy such as aluminum, titanium, or stainless steel in a foil shape, a punched foil shape, a mesh shape, or the like.
  • the positive electrode material used for the positive electrode layer is not particularly limited.
  • a metal compound, metal oxide, metal sulfide, or conductive polymer material that can be doped or intercalated with lithium ions may be used.
  • the separator for example, a nonwoven fabric, a cloth, a microporous film, or a combination thereof having a polyolefin as a main component such as polyethylene or polypropylene can be used.
  • a separator when it is set as the structure where the positive electrode and negative electrode of the lithium ion secondary battery to produce are not in direct contact, it is not necessary to use a separator.
  • Examples of the electrolyte include lithium salts such as LiClO 4 , LiPF 6 , LiAsF 6 , LiBF 4 , LiSO 3 CF 3 , ethylene carbonate, fluoroethylene carbonate, chloroethylene carbonate, propylene carbonate, butylene carbonate, vinylene carbonate, Cyclopentanone, cyclohexylbenzene, sulfolane, propane sultone, 3-methylsulfolane, 2,4-dimethylsulfolane, 3-methyl-1,3-oxazolidine-2-one, ⁇ -butyrolactone, dimethyl carbonate, diethyl carbonate, ethylmethyl Carbonate, methyl propyl carbonate, butyl methyl carbonate, ethyl propyl carbonate, butyl ethyl carbonate, dipropyl carbonate, 1,2- A so-called organic solvent dissolved in a non-aqueous solvent of a single substance or a mixture of two or more
  • the structure of the lithium ion secondary battery is not particularly limited. Usually, a positive electrode and a negative electrode, and a separator provided as necessary, are wound in a flat spiral shape to form a wound electrode group, In general, the electrode plates are laminated in a flat plate shape to form a laminated electrode plate group, and the electrode plate group is enclosed in an exterior body.
  • the lithium ion secondary battery is not particularly limited, the lithium ion secondary battery is used as a laminate type battery, a paper type battery, a button type battery, a coin type battery, a laminated type battery, a cylindrical type battery, a square type battery or the like.
  • the negative electrode material according to the present invention is excellent in input / output characteristics, life characteristics and thermal stability in charge / discharge, and has a high electrolyte permeability and easy battery production, and a charge / discharge cycle.
  • An advantage is that the pressure increase due to negative electrode expansion and gas generation in the battery is small when repeated.
  • the lithium ion secondary batteries of various shapes described above it is relatively difficult to inject an electrolyte solution, such as a laminate type battery, a paper type battery, a laminated type battery, or a square type battery, or a battery is charged and discharged.
  • an electrolyte solution such as a laminate type battery, a paper type battery, a laminated type battery, or a square type battery, or a battery is charged and discharged.
  • the negative electrode material of the present invention for a thin lithium ion secondary battery that easily expands. This is because oxygen-containing surface functional groups such as C—O, C ⁇ O, C—OH, C—OOH and the like that can be contained in a carbon material that generates an exothermic peak having a low peak temperature among at least two exothermic peaks of the negative electrode material.
  • the battery capacity is preferably 3.5 Ah or more, more preferably 5 Ah or more, particularly 10 Ah or more. Therefore, it is desirable to use the negative electrode material of the present invention to suppress battery expansion. Further, in a thin lithium ion battery having a battery size of length (a) ⁇ width (b) ⁇ thickness (c), thickness (c) is preferably the shorter of length (a) or width (b). / 2 or less, more preferably 1/4 or less, particularly 1/10 or less, and when flattened or thinned, the negative electrode expansion due to the charge / discharge cycle becomes relatively large. It is preferable to use it.
  • the lithium ion secondary battery according to the present invention is superior in input / output characteristics, life characteristics, and thermal stability as compared with a lithium ion secondary battery using a conventional carbon material as a negative electrode.
  • the thin lithium ion secondary battery using the negative electrode material has high input / output and low expansion, and is excellent in terms of mountability and battery cooling performance when an assembled battery is configured using a plurality of single cells. .
  • the lithium ion secondary battery according to the present invention, particularly the thin lithium ion secondary battery is used for electric vehicles, power tools, etc., particularly, electric vehicles (EV), hybrid electric vehicles (HEV), or plug-in hybrid electricity. Suitable for automotive (PHEV) applications.
  • the above mixture was sealed in an apparatus for compounding materials by placing a rotor blade in the cylinder and rubbing the material between the inner wall of the cylinder and the rotor blade.
  • a pitch graphite composite was produced by operating the apparatus for 5 minutes at a load of 24 kW (load: 1800 kJ / kg). Next, under a nitrogen flow, the temperature was raised to 900 ° C.
  • the obtained carbon layer-covered carbon particles were pulverized with a cutter mill and then sieved with a 300 mesh sieve, and the portion under the sieve was used as the negative electrode material of this example.
  • the XRD analysis, the Raman spectrum analysis, the specific surface area measurement, the volume average particle diameter (50% D) measurement, and the maximum particle diameter Dmax measurement were performed by the following method. The characteristics are shown in Table 1.
  • N 2 specific surface area measurement Using a high-speed specific surface area / pore distribution measuring device ASAP2010 (manufactured by MICRO MERITICS), nitrogen adsorption at a liquid nitrogen temperature (77K) is measured by a multipoint method, and the BET method (relative pressure range: 0.05 to 0.2). Calculated from
  • R value measurement (Raman spectrum analysis) The measurement was performed using a Raman spectrum measuring apparatus NRS-1000 type (manufactured by JASCO Corporation, excitation wavelength 532 nm). The R value is based on the entire measurement range (830 cm ⁇ 1 to 1940 cm ⁇ 1 ), the ratio of the peak height (Ig) derived from the G band to the peak height (Id) derived from the D band, and Id / Ig as R Value.
  • the average aspect ratio (the aspect ratio represents the maximum length vertical length / the maximum length, the maximum value is 1) was determined using a flow type particle image analyzer (FPIA-3000 manufactured by Sysmex Corporation).
  • An aqueous solution having a concentration of 2% by mass of CMC (carboxymethylcellulose, Serogen WS-C manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) as a thickener is 1 mass in terms of solid content of CMC with respect to 98 parts by mass of the negative electrode material of this example. And kneading for 10 minutes. Next, purified water was added and kneaded for 10 minutes so that the solid content concentration of the negative electrode material and CMC was 40 mass% to 50 mass%.
  • a 40% aqueous dispersion of SBR (BM-400B, manufactured by Nippon Zeon) as a binder is added so that the solid content of SBR is 1 part by mass and mixed for 10 minutes to obtain a paste-like negative electrode material slurry.
  • This slurry was applied to an electrolytic copper foil having a thickness of 40 ⁇ m so as to have a diameter of 9.5 mm using a mask having a thickness of 200 ⁇ m, and further dried at 105 ° C. to remove water, thereby preparing a sample electrode (negative electrode).
  • LiPF 6 was added to 1.5 mol of a mixed solvent of ethylene carbonate (EC) and methyl ethyl carbonate (MEC) (EC and MEC are in a volume ratio of 1: 3).
  • EC and MEC are in a volume ratio of 1: 3.
  • a coin battery was produced by injecting an electrolyte solution dissolved to a concentration of 1 liter / liter.
  • Metal lithium was used for the counter electrode, and a polyethylene microporous film having a thickness of 20 ⁇ m was used for the separator.
  • a negative electrode material slurry was prepared in the same manner as in the section of initial charge / discharge efficiency. This slurry was applied to an electrolytic copper foil having a thickness of 40 ⁇ m with a comma coater with a clearance adjusted so that the coating amount per unit area was 4.5 mg / cm 2 . Thereafter, the electrode density was adjusted to 1.5 g / cm 3 with a hand press. This electrode was punched into a disk shape having a diameter of 14 mm to produce a sample electrode (negative electrode).
  • LiPF 6 was added to 1.5 mol of a mixed solvent of ethylene carbonate (EC) and methyl ethyl carbonate (MEC) (EC and MEC are in a volume ratio of 1: 3).
  • EC and MEC are in a volume ratio of 1: 3.
  • a coin battery was produced by injecting an electrolyte solution dissolved to a concentration of 1 liter / liter.
  • Metal lithium was used for the counter electrode, and a polyethylene microporous film having a thickness of 20 ⁇ m was used for the separator.
  • the life characteristics were evaluated according to the following procedure.
  • a coin battery was produced by a method equivalent to the life characteristic, and the output characteristic was evaluated by the following procedure. (1) The battery was charged to 0 V (Vvs. Li / Li + ) at a constant current of 0.48 mA, and then charged at a constant voltage of 0 V until the current value reached 0.048 mA. (2) After a rest time of 30 minutes, the battery was discharged at a constant current of 0.48 mA to 1.5 V (Vvs. Li / Li + ). (3) The battery was charged to half the capacity with a constant current of 0.48 mA.
  • a coin battery was produced by a method equivalent to the life characteristics, and thermal stability was evaluated by the following procedure.
  • the battery was charged to 0 V (Vvs. Li / Li + ) with a constant current of 0.24 mA, and then charged with a constant voltage of 0 V until the current became 0.024 mA.
  • the coin battery that had been fully charged (SOC 100%) from the above (1) was disassembled under an argon gas atmosphere, and the negative electrode taken out was washed with diethyl carbonate (DEC) and then vacuum-dried for 30 minutes.
  • DEC diethyl carbonate
  • the electrolytic copper foil and the negative electrode material were separated from the negative electrode dried from (2) above, and only the negative electrode material was sealed in a SUS pan.
  • Example 2 In Example 1, a negative electrode material sample was produced in the same manner as in Example 1 except that the amount of coal tar pitch input during simple mixing was changed from 10 parts by mass to 5 parts by mass. Table 1 shows the characteristics of the obtained negative electrode material sample.
  • Example 3 The negative electrode material sample was prepared in the same manner as in Example 1, except that the average particle size of the spherical natural graphite in Example 1 was changed from 10 ⁇ m to 5 ⁇ m and the mesh size of the sieve was changed from 300 mesh to 400 mesh. Produced. Table 1 shows the characteristics of the obtained negative electrode material sample.
  • Example 4 In Example 1, the carbon precursor to be mixed was changed from coal tar pitch to polyvinyl alcohol (polymerization degree 1700, complete saponification type, carbonization rate 15%), and the mesh size of the sieve was changed from 300 mesh to 250 mesh.
  • a negative electrode material sample was produced in the same manner as in Example 1. Table 1 shows the characteristics of the obtained negative electrode material sample.
  • Example 5 The average particle size of the spherical natural graphite in Example 1 was changed from an average particle size of 10 ⁇ m to 20 ⁇ m, and the input amount of coal tar pitch upon simple mixing was changed from 10 parts by mass to 20 parts by mass.
  • the negative electrode material sample was prepared in the same manner as in Example 1 except that the treatment time was changed from 5 minutes to 10 seconds (load: 60 kJ / kg) and the mesh size of the sieve was changed from 300 mesh to 350 mesh. Table 1 shows the characteristics of the obtained negative electrode material sample.
  • Comparative Example 2 100 parts by mass of coke carbon particles having an average particle diameter of 15 ⁇ m used in Comparative Example 1 and 20 parts by mass of polyvinyl alcohol (degree of polymerization 1700, complete saponification type, carbonization rate 15%) were mixed. The mixture was made into carbon layer-coated graphite particles as in Example 1. After crushing the obtained carbon-coated carbon particles with a cutter mill, sieving with a 350 mesh sieve, and using the portion under the sieve as the negative electrode material of this example, the same method as in Example 1 A negative electrode material sample was prepared. Table 1 shows the characteristics of the obtained negative electrode material sample.
  • Comparative Example 5 The carbon particles produced in Comparative Example 1 are put in a graphite container, and heated to 2800 ° C. at a temperature rising rate of 300 ° C./hr in a nitrogen gas atmosphere using an induction heating firing furnace, and held for 1 hour. Graphitization was performed. The obtained artificial graphite powder was sieved with a 200 mesh sieve, and a negative electrode material was produced in the same manner as in Example 1 except that the sieve passage was used as the negative electrode material. The characteristics of the obtained negative electrode material are shown in Table 1.
  • Example 6 Comparative Example 5 A negative electrode material was produced in the same manner as in Example 1, except that 100 parts by mass of the obtained artificial graphite powder and 7 parts by mass of the same coal tar pitch as in Example 1 were mixed. The characteristics of the obtained negative electrode material are shown in Table 1.
  • Comparative Example 6 100 parts by mass of the carbon particles produced in Comparative Example 1, 30 parts by mass of coal tar pitch, and 5 parts by mass of iron oxide powder were mixed at 250 ° C. for 1 hour.
  • the obtained lump was pulverized with a pin mill and then molded into a block shape having a density of 1.52 g / cm 3 with a mold press.
  • the resulting block was fired in a muffle furnace at a maximum temperature of 800 ° C., and then graphitized in an atchison furnace at 2900 ° C. in a self atmosphere. Next, the graphitized block was roughly crushed with a hammer, and a graphite powder having an average particle diameter of 45 ⁇ m was obtained with a pin mill.
  • the graphite powder was treated for 10 minutes at a pulverization rotational speed of 1800 rpm and a classification rotational speed of 7000 rpm using a spheronization processing apparatus (manufactured by Hosokawa Micron, Faculty) to produce a spherical artificial graphite powder.
  • the characteristics were evaluated in the same manner as in Example 1 using the powder as a negative electrode material. The results are shown in Table 1.
  • Example 7 Comparative Example 6 The same method as in Example 1 except that 100 parts by mass of the obtained spheroidized artificial graphite powder and 4 parts by mass of the same coal tar pitch as in Example 1 were mixed, and the load was 2.5 kJ / kg. A negative electrode material was prepared. The characteristics of the obtained negative electrode material are shown in Table 1.
  • Example 8 A negative electrode material was produced in the same manner as in Example 7 except that the spherical natural graphite of Example 5 was used and the firing temperature was changed from 900 ° C. to 1050 ° C. A negative electrode material was produced in the same manner as in Example 1. The characteristics of the obtained negative electrode material are shown in Table 1.
  • Example 9 A negative electrode material was produced in the same manner as in Example 7 except that the spherical natural graphite of Example 5 was used and the firing temperature was changed from 900 ° C. to 820 ° C. A negative electrode material was produced in the same manner as in Example 1. The characteristics of the obtained negative electrode material are shown in Table 1.
  • Example 10 A negative electrode material was produced in the same manner as in Example 7 except that the spherical natural graphite of Example 5 was used and the firing temperature was changed from 900 ° C. to 777 ° C. A negative electrode material was produced in the same manner as in Example 1. The characteristics of the obtained negative electrode material are shown in Table 1.
  • the lithium ion secondary batteries using the negative electrode materials for lithium ion secondary batteries of Examples 1 to 10 have high input / output characteristics, life characteristics, and thermal stability while maintaining high charge / discharge efficiency. Excellent in properties.
  • the lithium ion secondary battery having a negative electrode to which the negative electrode material for a lithium ion secondary battery of the present invention is applied is excellent in charge / discharge efficiency, life characteristics, input / output characteristics, thermal stability, and balance thereof.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

 X線回折法より求めた平均面間隔d002が0.335nm~0.340nm、体積平均粒子径(50%D)が1μm~40μm、最大粒子径Dmaxが74μm以下、及び、空気気流中における示差熱分析において、300℃以上1000℃以下の温度範囲に少なくとも二つの発熱ピークを有する炭素材料を含むリチウムイオン二次電池用負極材。

Description

リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極及びリチウムイオン二次電池
 本発明は、リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極及びリチウムイオン二次電池に関する。
 リチウムイオン二次電池は、ニッケル水素電池、鉛蓄電池等の他の二次電池に比べて軽量で高い入出力特性を有することから、近年、電気自動車、ハイブリッド型電気自動車等に用いられる高入出力用電源として注目されている。
リチウムイオン二次電池に用いられる負極活物質としては、例えば、黒鉛、非晶質炭素が挙げられる。
 黒鉛は炭素原子の六角網面が規則正しく積層した構造を有し、積層した網面の端部よりリチウムイオンの挿入・脱離反応が進行し充放電を行う。
 また、非晶質炭素は、六角網面の積層が不規則であるか、網目構造を有しないため、リチウムイオンの挿入・脱離反応は全表面で進行することとなり、入出力特性に優れたリチウムイオンが得られやすい(例えば、特開平4-370662号公報及び特開平5-307956号公報、参照)。また、非晶質炭素は、黒鉛とは対照的に、結晶性が低く、電解液との反応を低く抑えることができ、寿命特性に優れるといった特徴を有する。
 しかしながら黒鉛は、リチウムイオンの挿入脱離反応が端部でのみ進行するため入出力性能が充分とは言えない。また、結晶性が高く表面の反応性が高いために、特に高温において、電解液との反応性が高くなることがあり、リチウムイオン二次電池の寿命特性の点で改善の余地がある。
 一方、非晶質炭素は、黒鉛よりも結晶性が低いことにより、結晶構造が不規則であり、エネルギー密度が充分とは言えない。
 このように、エネルギー密度が大きく、入出力特性及び寿命特性及び熱安定性に優れたリチウムイオン二次電池と、それを得るための負極材が依然として要求されている。
 本発明は、エネルギー密度が大きく、入出力特性、寿命特性及び熱安定性に優れたリチウムイオン二次電池、並びにそれを得るためのリチウムイオン二次電池用負極材、及び該負極材を用いてなるリチウムイオン二次電池用負極を提供することを目的とするものである。
 発明者らは鋭意検討の結果、本課題を解決できることを見出した。
 すなわち本発明の各態様によれば、下記のリチウムイオン二次電池用負極材、リチウムイオン二次電池用負極、及びリチウムイオン二次電池が提供される。
[1] X線回折法より求めた平均面間隔d002が0.335nm~0.340nm、体積平均粒子径(50%D)が1μm~40μm、最大粒子径Dmaxが74μm以下、及び、空気気流中における示差熱分析において、300℃以上1000℃以下の温度範囲に少なくとも二つの発熱ピークを有する炭素材料を含むリチウムイオン二次電池用負極材。
[2] 前記少なくとも二つの発熱ピークが、300℃以上700℃未満の温度範囲にピークを有する発熱ピークと、700℃以上1000℃以下の温度範囲にピークを有する発熱ピークとを含む[1]記載のリチウムイオン二次電池用負極材。
[3] 前記少なくとも二つの発熱ピークのうち、最も高い温度にピークを有する発熱ピークと、最も低い温度にピークを有する発熱ピークとのピーク温度差が、300℃以内である[1]又は[2]記載のリチウムイオン二次電池用負極材。
[4] 前記炭素材料の77Kでの窒素吸着測定より求めた比表面積が0.5m/g~25m/gである[1]~[3]のいずれかに記載のリチウムイオン二次電池用負極材。
[5] 前記炭素材料の273Kでの二酸化炭素吸着測定より求めた吸着量が0.1cm/g~5.0cm/gである[1]~[4]のいずれかに記載のリチウムイオン二次電池用負極材。
[6] 前記炭素材料のタップ密度が0.3g/cm~2.0g/cmである[1]~[5]のいずれかに記載のリチウムイオン二次電池用負極材。
[7] 前記炭素材料のラマンスペクトル解析から得られるR値が0.10~1.5である[1]~[6]のいずれかに記載のリチウムイオン二次電池用負極材。
[8] 前記炭素材料が、核となる第一の炭素相と、該第一の炭素相の表面に存在し、該第一の炭素相よりも結晶性が低い第二の炭素相と、を含む[1]~[7]のいずれかに記載のリチウムイオン二次電池用負極材。
[9] 前記第二の炭素相の含有率が、前記炭素材料の全質量の0.1質量%~30質量%である[8]に記載のリチウムイオン二次電池用負極材。
[10] [1]~[9]のいずれかに記載のリチウムイオン二次電池用負極材を含む負極材層と、集電体と、を含むリチウムイオン二次電池用負極。
[11] [10]に記載のリチウムイオン二次電池用負極と、正極と、電解質とを含むリチウムイオン二次電池。
 本発明によれば、エネルギー密度が大きく入出力特性、寿命特性及び熱安定性に優れたリチウムイオン二次電池、並びにそれを得るためのリチウムイオン二次電池負極材、及び該負極材を用いてなるリチウムイオン二次電池用負極を提供することが可能となる。
 本発明にかかるリチウムイオン二次電池用負極材(以下、単に「負極材」と呼ぶ場合がある)は、X線回折法より求めた平均面間隔d002が0.335nm~0.340nm、体積平均粒子径(50%D)が1μm~40μm、最大粒子径Dmaxが74μm以下、及び、空気気流中における示差熱分析において、300℃以上1000℃以下の温度範囲に少なくとも二つの発熱ピークを有する炭素材料を含む。
 本発明にかかる前記負極材は、これらの各物性値を満たす炭素材料を含むことにより、エネルギー密度が大きく、入出力特性、寿命特性及び熱安定性に優れたリチウム二次電池を提供できる負極材となる。
 本明細書において「工程」との語は、独立した工程だけでなく、他の工程と明確に区別できない場合であっても本工程の所期の作用が達成されれば、本用語に含まれる。
 また、本明細書において「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。
 また、本発明において、組成物中の各成分の量について言及する場合、組成物中に各成分に該当する物質が複数存在する場合には、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。
 以下、本発明について説明する。
<負極材>
 本発明にかかる負極材は、所定の平均面間隔d002、所定の体積平均粒子径、所定の最大粒子径、所定の発熱ピークを有する炭素材料を含む。本発明にかかる負極材(負極活物質)は前記炭素材料を含むものであればよいが、前記炭素材料は全負極材中50質量%以上含むことが好ましく、80質量%以上含むことがより好ましく、90質量%以上含むことがさらに好ましく、前記炭素材料からなる(100質量%)のものであることが特に好ましい。
 前記炭素材料におけるX線回折法による求めた平均面間隔d002は、0.335nm~0.340nmである。平均面間隔d002の値は、0.3354nmが黒鉛結晶の理論値であり、この値に近いほどエネルギー密度が大きくなる傾向があり、前記平均面間隔d002の値が0.335nm未満の炭素材料を得ることはできない。一方、0.340nmを超えると、リチウムイオン二次電池の初回充放電効率及びエネルギー密度の双方が充分とは言えない。前記平均面間隔d002は、リチウムイオン二次電池のエネルギー密度の点で、0.335nm~0.337nmであることが好ましい。
 前記平均面間隔d002は、X線(CuKα線)を炭素粒子粉末試料に照射し、回折線をゴニオメーターにより測定し得た回折プロファイルより、回折角2θ=24°~27°付近に現れる炭素002面に対応した回折ピークより、ブラッグの式を用い算出することができる。
 前記平均面間隔d002は、例えば、前記炭素材料への熱処理温度を高くすることで値が小さくなる傾向があり、この性質を利用して平均面間隔d002を上記範囲内に設定することができる。
 前記負極材に含まれる炭素材料の体積平均粒子径(50%D)は、1μm~40μmである。体積平均粒子径が1μm未満の場合、比表面積が大きくなり、リチウムイオン二次電池の初回充放電効率が低下すると共に、粒子同士の接触が悪くなり入出力特性が低下する。一方、体積平均粒子径が40μmを超える場合、電極面に凸凹が発生して電池の短絡が生じやすくなる傾向があると共に、粒子表面から内部へのLiの拡散距離が長くなるためリチウムイオン二次電池の入出力特性が低下する傾向がある。前記炭素材料の体積平均粒子径は、初回充放電容量及び入出力特性の点で、3μm~35μmであることが好ましく、5μm~25μmがより好ましい。
 前記体積平均粒径(50%D)は、粒子径分布において、小径側から体積累積分布曲線を描いた場合に、累積50%となる粒子径として与えられる。前記体積平均粒子径(50%D)は、界面活性剤を含んだ精製水に試料を分散させ、レーザー回折式粒度分布測定装置(例えば、(株)島津製作所製SALD-3000J)で測定することができる。 
 前記負極材に含まれる炭素材料における最大粒子径Dmaxは、74μm以下である。前記最大粒子径Dmaxが74μmを超えると、電極作製の際に極板の薄膜化が困難となり、入出力特性やハイレートサイクル特性が損なわれる。前記負極材に含まれる炭素材料における最大粒子径Dmaxは、入出力特性の点で、70μm以下であることが好ましく、63μm以下であることがより好ましく、45μm以下であることが更により好ましい。また、前記最大粒子径Dmaxは、一般に10μm以上とすることができ、入出力特性の点で、好ましくは38μm以上とすることができる。
 前記最大粒子径Dmaxは、例えば、篩の目開きを90μm、74μm、63μm、53μm、45μm、及び38μmと順に小さくして篩分けを行い、各目開きでの篩における篩上(篩を通過しない試料)の有無によって決定することができる。具体的には、試料を上記各目開きの篩で篩い分けをし、篩上が出る直前の目開きを最大粒子径Dmaxとする。
但し、前記最大粒子径Dmaxを特定できる限り、篩の目開きはこれらに限定されるものではない。
 前記負極材に含まれる炭素材料は、空気気流中における示差熱分析(DTA分析)において、300℃以上1000℃以下の温度範囲に少なくとも二つのDTAの発熱ピーク(本発明において、単に「発熱ピーク」と称する)を有する。前記発熱ピークが300℃以上1000℃以下の温度範囲内に一つのみでは、エネルギー密度、入出力特性、寿命特性及び熱安定性を兼ね備えたリチウムイオン二次電池を得ることができない。例えば結晶性の黒鉛質炭素などの炭素材料による高エネルギー密度と、例えば非晶質炭素などの炭素材料による入出力特性、寿命特性、及び熱安定性とを共に得られやすい傾向があることから、少なくとも二つの発熱ピークが出現する温度範囲は、500℃以上850℃以下であることが好ましい。
 前記炭素材料が少なくとも二つの発熱ピークを有するということは、前記炭素材料が、複数の発熱ピークとして識別可能な複数の特性を有する炭素材料で構成されていることを意味する。ここで、複数の発熱ピークが「識別可能」であるとは、装置の測定精度上、区別可能であればよく、発熱ピークのピーク値が少なくとも5℃以上離れていることを意味する。
 前記示差熱分析(DTA分析)は、示差熱熱重量同時測定装置(例えば、セイコーインスツル(株)製EXSTAR TG/DTA6200)で測定することができる。具体的には、α-アルミナをリファレンスとして、乾燥空気300ml/minの流通下、昇温速度2.5℃/minで測定を行い、300℃以上1000℃以下でのDTAの発熱ピークの有無を確認する。
 前記負極材に含まれる炭素材料は、300℃以上1000℃以下の温度範囲内において複数の識別可能な発熱ピークを示す限り、如何なる性質又は構造のものであってもよい。このような炭素材料としては、複数の炭素材料で構成していてもよく、1種の炭素材料で構成していてもよい。例えば、性質又は構造の異なる複数種の炭素材料で構成された炭素材料、酸化反応に対して複数の反応性を示す表面性状を有する1種又は複数種の炭素材料、リチウムイオンの吸蔵放出反応に対して異なる電気化学特性を有する1種又は複数種の炭素材料等を挙げることができる。このような炭素材料を用いることにより、前記温度範囲内に発熱ピークを少なくとも二つ得ることができる。
 前記炭素材料が、複数の炭素材料で構成されている場合には、前記炭素材料が全体として300℃以上1000℃以下の温度範囲内において識別可能な発熱ピークを示す限り、前記炭素材料中において前記複数種の炭素材料が、如何なる形態又は如何なる状態で含まれていてもよい。
 前記性質又は構造の異なる複数種の炭素材料の例としては、結晶性又は、N比表面積やCO吸着量等の性質が異なる炭素材料、平均粒子径又は粒子アスペクト比等の粒子形態が異なる炭素材料、前記性質又は構造の異なる炭素材料の複合状態、及び、分布状態等の分散性や均一性が異なる炭素材料等を挙げることができ、特に、黒鉛質炭素と非晶質炭素それぞれの特長を兼ね備えることができるため、結晶性の異なる炭素材料であることが好ましい。
 前記発熱ピークの数は、特に制限はないが、黒鉛質炭素と非晶質炭素のそれぞれ特有の電気化学特性を発揮する点で300℃以上1000℃以下の温度範囲、好ましくは500℃以上850℃以下の温度範囲において、二つであることが好ましい。
 300℃以上1000℃以下に少なくとも二つの発熱ピークを有する炭素材料とするには、例えば、炭素材料の表面性状、炭素材料に包含される複数の炭素材料の種類又は性質、複数の炭素材料の複合形態、炭素材料の作製条件等によって適宜調整することができる。
 また、前記300℃以上1000℃以下の温度範囲の少なくとも二つの発熱ピークにおける発熱ピークのピーク差について特に制限はないが、前記少なくとも二つの発熱ピークのうち、最も高い温度にピークを有する発熱ピークと、最も低い温度にピークを有する発熱ピークとのピーク温度差が、300℃以内であることが好ましく、25℃以上300℃以下であることがより好ましく、25℃以上200℃以下であることが更により好ましく、25℃以上180℃以下であることが特に好ましい。この温度差が300℃以内であることは、それぞれの発熱ピークに対応する前記性質又は構造が異なる複数の炭素材料の分布又は配置に関して、ムラがなく均一になって、より高い温度の発熱ピークに寄与する炭素材料が反応しやすくなってピーク温度が低温化し、その結果、良好な負極の入出力特性、寿命特性及び熱安定性を発揮しやすくなる傾向がある。また、前記温度差は25℃以上であることが、複数の特性を有する炭素材料に基づく効果を確実に発揮させるために好ましい。
 入出力特性、寿命特性及び熱安定性の向上の点で、前記発熱ピークは、300℃以上700℃未満の温度範囲(以下、「低温域」と称する場合がある)にピークを有する発熱ピークと、700℃以上1000℃以下の温度範囲(以下、「高温域」と称する場合がある)にピークを有する発熱ピークとを含むことが好ましく、低温域にピークを有する一つの発熱ピークと、高温域にピークを有する一つの発熱ピークとの、二つの発熱ピークを有することがより好ましい。
 このような高温域と低温域のそれぞれに少なくとも一つのピークを有する発熱ピークの出現は、前記複数の特性を有する炭素材料として、例えば、結晶性の異なる複数の炭素材料、N比表面積やCO吸着量等の性質が異なる炭素材料、平均粒子径又は、粒子アスペクト比等の粒子形態の異なる複数の炭素材料、前記性質又は構造の異なる炭素材料の複合状態、及び、分布状態等の分散性や均一性が異なる炭素材料等を用いること等を選択することにより得ることができる。なかでも、結晶性の異なる複数の炭素材料を用いることが、黒鉛質炭素と非晶質炭素のそれぞれ特有の電気化学特性を発揮し、高エネルギー密度、高入出力特性、長寿命特性及び優れた熱安定性を達成する点で好ましい。
 前記少なくとも二つの発熱ピークが、低温域にピークを有する発熱ピークと、高温域にピークを有する発熱ピークとを含む場合、低温域にピークを有する発熱ピークうち最も低い温度にピークを有する発熱ピークと、高温域にピークを有する発熱ピークのうち最も高い温度にピークを有する発熱ピークとの温度差が、25℃以上300℃以下であることが好ましく、25℃以上200℃以下であることがより好ましく、25℃以上180℃以下であることが特に好ましい。
 低温域及び高温域それぞれの発熱ピークに対応する前記性質又は構造が異なる複数の炭素材料の負極材における分布や、一方の炭素材料中における他方の炭素材料の配置に関して、ムラがなく均一になることにより、高温域側の発熱ピークに寄与する炭素材料が反応しやすくなってピーク温度が低温化する傾向がある。このため、この温度差が300℃以内であることは、このような炭素材料の分布や配置が均一化して、その結果、良好な負極の入出力特性、寿命特性及び熱安定性を発揮しやすくなる傾向がある。また、前記温度差は25℃以上であることが、低温域及び高温域のそれぞれの発熱ピークに対応した前記複数の特性を有する炭素材料に基づく効果を確実に発揮させるために好ましい。
 例えば、結晶性の異なる複数の炭素材料を選択した場合、低温域に出現する発熱ピークは負極材の構造中の低結晶性炭素と酸素の反応に由来するピークであり、高温域に出現する発熱ピークは負極材の構造中の結晶性炭素と酸素の反応に由来するピークと考えられる。このことから、負極材中の低結晶炭素と結晶性炭素が均一に分布しているほど充放電におけるリチウムイオンの吸蔵放出反応も均一で安定し、負極の入出力特性、寿命特性及び熱安定性がより優れると考えられる。このような場合、示差熱分析(DTA分析)では、均一に分布した低結晶性炭素に引きずられて、結晶性炭素の反応が起き易くなりその反応が低温化するため、上述の通り、DTAの2つの発熱ピークの温度差が減少すると考えられる。
 発熱ピークの温度差は、例えば、負極材に含まれる複数の性質の炭素材料それぞれの種類又は性質、複数の炭素材料の複合形態、炭素材料の作製条件等によって適宜調整することができる。具体的には、結晶性炭素材料と該結晶性炭素材料よりも低結晶性の有機材料との複合材料を用いる場合には、結晶性炭素材料の種類、低結晶性有機材料の種類、結晶性炭素材料と低結晶性有機材料との組み合わせ、結晶性炭素を核としたときの結晶性炭素の粒子径、結晶性炭素を核として低結晶性有機材料を被覆したときの低結晶性有機材料の被覆量、前記炭素材料の焼成条件等を調整することにより、上記温度差に調整することができる。
 前記負極材に含まれる炭素材料の77Kでの窒素吸着測定より求めた比表面積(以下、N比表面積と呼ぶ場合がある)が0.5m/g~25m/gであることが好ましく、0.5m/g~15m/gがより好ましく、0.8m/g~10m/gであることがさらに好ましい。N比表面積が上記範囲内であれば、良好な入出力特性と初回効率のバランスを維持することができる傾向がある。なお、窒素吸着での比表面積は、77Kでの窒素吸着測定より得た吸着等温線からBET法を用いて求めることができる。N比表面積は、例えば、前記負極材に含まれる炭素材料の体積平均粒子径を大きくすること、前記負極材に含まれる炭素材料への熱処理温度を高くすること、前記負極材に含まれる炭素材料の表面を改質すること等で値が小さくなる傾向があり、この性質を利用してN比表面積を上記範囲内に設定することができる。またN比表面積を大きくすると、発熱ピークが低温側に移動する傾向がある。
 前記負極材に含まれる炭素材料の273Kでの二酸化炭素吸着より求めた吸着量(以下、CO吸着量と呼ぶ場合がある)が0.1cm/g~5.0cm/gであることが好ましく、0.1cm/g~3.0cm/gであることがより好ましい。CO吸着量が0.1cm/g以上であれば、入出力特性に優れる傾向がある。一方、CO吸着量が5.0cm/g以下であれば、電解液との副反応により生じる不可逆容量が減少し初回効率の低下が抑えられる傾向がある。なお、二酸化炭素吸着での吸着量は、測定温度273K、相対圧P/P=3.0×10-2(P=平衡圧、P=26142mmHg(3.49MPa))での値を用いた。CO吸着量は、例えば、前記負極材に含まれる炭素材料の体積平均粒子径を大きくすること、前記負極材に含まれる炭素材料への熱処理温度を高くすること、炭素材料として結晶性の異なる複数の炭素材料を選択して且つ低結晶性炭素材料の量を少なくすること等で値が小さくなる傾向があり、この性質を利用してCO吸着量を上記範囲内に設定することができる。またCO吸着量を大きくすると、発熱ピークが低温側に移動する傾向がある。
 前記負極材に含まれる炭素材料のタップ密度が0.3g/cm~2.0g/cmであることが好ましく、0.5g/cm~2.0g/cmであることがより好ましく、0.5g/cm~1.3g/cmであることが特に好ましい。タップ密度が0.3g/cm以上の場合、負極を作製する際に多くの有機系結着剤を必要とせず、その結果作製するリチウムイオン二次電池のエネルギー密度が大きくなる傾向があり、タップ密度が2.0g/cm以下の場合、入出力特性が良好となる傾向がある。また、前記複数の異なる性質又は構造の炭素材料として、結晶性の異なる炭素材料を用いた場合、上記範囲内のタップ密度であれば、低結晶炭素と結晶性炭素が分散した負極材中に電解液が浸透する適度な細孔が存在し、これによって充放電反応が促進され負極抵抗が減少し良好な入出力特性が得られるため、好ましい。
 タップ密度は、例えば、負極材に含まれる炭素材料の体積平均粒子径を大きくすること等によって、値が高くなる傾向があり、この性質を利用してタップ密度を上記範囲内に設定することができる。
 なおタップ密度は、前記負極材全体としては、例えば、前記炭素材料に加えて、後述する金属粉末等を含有させることにより、0.3g/cm~3.0g/cmとしてもよい。
 本発明におけるタップ密度とは、容量100cmのメスシリンダーに試料粉末100cmをゆっくり投入し、メスシリンダーに栓をし、このメスシリンダーを5cmの高さから250回落下させた後の試料粉末の質量及び容積から求められる値を意味する。
 前記負極材に含まれる炭素材料の励起波長532nmのレーザーラマン分光測定により求めたプロファイルの中で、1360cm-1付近に現れるピークの強度をId、1580cm-1付近に現れるピークの強度をIgとし、その両ピークの強度比Id/IgをR値とした際、そのR値が、0.10~1.5であることが好ましく、0.15~1.0であることがより好ましい。R値が、0.10以上であると寿命特性及び入出力特性に優れる傾向があり、1.5以下であると不可逆容量の増大を抑制して初回効率の低下が抑えられる傾向がある。
 ここで、1360cm-1付近に現れるピークとは、通常、炭素の非晶質構造に対応すると同定されるピークであり、例えば1300cm-1~1400cm-1に観測されるピークを意味する。また1580cm-1付近に現れるピークとは、通常、黒鉛結晶構造に対応すると同定されるピークであり、例えば1530cm-1~1630cm-1に観測されるピークを意味する。
 なお、R値は、ラマンスペクトル測定装置(例えば、日本分光(株)製NSR-1000型、励起波長532nm)を用い、測定範囲(830cm-1~1940cm-1)全体をベースラインとし求めることができる。
 以上に述べた物性値を満たす負極材は充放電での入出力特性、寿命特性及び熱安定性が優れるため、電気自動車、パワーツールあるいは電力貯蔵用など比較的大容量のリチウムイオン二次電池に用いるに好適である。特に、電気自動車(EV)、ハイブリッド電気自動車(HEV)あるいはプラグインハイブリッド電気自動車(PHEV)の用途では、加速性能およびブレーキ回生性能を向上させるため大電流での充放電が求められており、このような要求を満足する上で、高入出力である本発明の負極材を用いることが望ましい。
 特に、上述した物性値を適宜組み合わせて兼ね備えた炭素材料を含む負極材であることが、エネルギー密度、入出力特性、寿命特性及び熱安定性の観点から好ましく、例えば、下記(a)~(c)を挙げることができ、それぞれにおいて更に、発熱ピークが二つであることがより好ましい。
 (a) X線回折法より求めた平均面間隔d002が0.335nm~0.340nm、体積平均粒子径(50%D)が1μm~40μm、最大粒子径Dmaxが74μm以下、及び、空気気流中における示差熱分析において、300℃以上1000℃以下の温度範囲に少なくとも二つの発熱ピークを有し、該少なくとも二つの発熱ピークが、300℃以上700℃未満の温度範囲にピークを有する発熱ピークと、700℃以上1000℃以下の温度範囲にピークを有する発熱ピークとを含み、更に、0.5m/g~25m/gの77Kでの窒素吸着測定より求めた比表面積及び/又は0.1cm/g~5.0cm/gの273Kでの二酸化炭素吸着測定より求めた吸着量を有する炭素材料を含むリチウムイオン二次電池用負極材。
 また、エネルギー密度、入出力特性、寿命特性及び熱安定性の観点から、上記(a)のリチウムイオン二次電池用負極材において、体積平均粒子径(50%D)が5μm~25μm、最大粒子径Dmaxが30μm~45μm、77Kでの窒素吸着測定より求めた比表面積が0.8m/g~10m/g、273Kでの二酸化炭素吸着測定より求めた吸着量が0.1cm/g~3.0cm/gであることがより好ましい。
 (b) X線回折法より求めた平均面間隔d002が0.335nm~0.340nm、体積平均粒子径(50%D)が1μm~40μm、最大粒子径Dmaxが74μm以下、及び、空気気流中における示差熱分析において、300℃以上1000℃以下の温度範囲に少なくとも二つの発熱ピークを有し、該少なくとも二つの発熱ピークのうち、最も高い温度にピークを有する発熱ピークと、最も低い温度にピークを有する発熱ピークとのピーク温度差が、300℃以内であり、更に、0.5m/g~25m/gの77Kでの窒素吸着測定より求めた比表面積及び/又は0.1cm/g~5.0cm/gの273Kでの二酸化炭素吸着測定より求めた吸着量を有する炭素材料を含むリチウムイオン二次電池用負極材。
 また、エネルギー密度、入出力特性、寿命特性及び熱安定性の観点から、上記(b)のリチウムイオン二次電池用負極材において、体積平均粒子径(50%D)が5μm~25μm、最大粒子径Dmaxが45μm以下、77Kでの窒素吸着測定より求めた比表面積が0.8m/g~10m/g、273Kでの二酸化炭素吸着測定より求めた吸着量が0.1cm/g~3.0cm/gであることがより好ましい。
 また、エネルギー密度、入出力特性、寿命特性及び熱安定性の観点から、上記(b)のリチウムイオン二次電池用負極材において、前記少なくとも二つの発熱ピークのうち、最も高い温度にピークを有する発熱ピークと、最も低い温度にピークを有する発熱ピークとのピーク温度差が、180℃以内であり、体積平均粒子径(50%D)が5μm~25μm、最大粒子径Dmaxが45μm以下、77Kでの窒素吸着測定より求めた比表面積が0.8m/g~10m/g、273Kでの二酸化炭素吸着測定より求めた吸着量が0.1cm/g~3.0cm/gであることがより好ましい。
 (c) X線回折法より求めた平均面間隔d002が0.335nm~0.340nm、体積平均粒子径(50%D)が1μm~40μm、最大粒子径Dmaxが74μm以下、及び、空気気流中における示差熱分析において、300℃以上1000℃以下の温度範囲に少なくとも二つの発熱ピークを有し、該二つの発熱ピークが、300℃以上700℃未満の温度範囲にピークを有する発熱ピークと、700℃以上1000℃以下の温度範囲にピークを有する発熱ピークとを含み、且つ、該少なくとも二つの発熱ピークのうち、最も高い温度にピークを有する発熱ピークと、最も低い温度にピークを有する発熱ピークとのピーク温度差が、300℃以内であり、更に、0.5m/g~25m/gの77Kでの窒素吸着測定より求めた比表面積及び/又は0.1cm/g~5.0cm/gの273Kでの二酸化炭素吸着測定より求めた吸着量を有する炭素材料を含むリチウムイオン二次電池用負極材。
 また、エネルギー密度、入出力特性、寿命特性及び熱安定性の観点から、上記(c)のリチウムイオン二次電池用負極材において、体積平均粒子径(50%D)が5μm~25μm、最大粒子径Dmaxが45μm以下、77Kでの窒素吸着測定より求めた比表面積が0.8m/g~10m/g、273Kでの二酸化炭素吸着測定より求めた吸着量が0.1cm/g~3.0cm/gであることがより好ましい。
 また、エネルギー密度、入出力特性、寿命特性及び熱安定性の観点から、上記(c)のリチウムイオン二次電池用負極材において、前記少なくとも二つの発熱ピークのうち、最も高い温度にピークを有する発熱ピークと、最も低い温度にピークを有する発熱ピークとのピーク温度差が、180℃以内であり、体積平均粒子径(50%D)が5μm~25μm、最大粒子径Dmaxが45μm以下、77Kでの窒素吸着測定より求めた比表面積が0.8m/g~10m/g、273Kでの二酸化炭素吸着測定より求めた吸着量が0.1cm/g~3.0cm/gであることがより好ましい。
 前記負極材に含まれる炭素材料は、前述した各物性を示す炭素材料を含む限り、如何なる種類及び形態も採り得る。
 前記炭素材料としては、黒鉛(例えば、人造黒鉛、天然黒鉛、黒鉛化メゾフェーズカーボン、黒鉛化炭素繊維等)、低結晶性炭素、及びメゾフェーズカーボン等の炭素材料を挙げることができる。充放電容量が大きくしやすいことから、黒鉛であることが好ましい。黒鉛の場合には、鱗片状、球状、塊状等、いずれの形態であってもよい。中でも球形の黒鉛が高タップ密度を得られる点から好ましい。これらの炭素材料から前述した物性を備えた炭素材料を適宜選択すればよい。これらの炭素材料は1種単独で、又は2以上を組み合わせて用いることができる。
 また、上記炭素材料は、核となる炭素相とその被覆層となる別種の炭素相で構成された複合材料としてもよい。すなわち、核となる第一の炭素相と、該第一の炭素相の表面に存在し、該第一の炭素相よりも結晶性が低い第二の炭素相とを含む炭素材料とすることができる。このような結晶性の異なる複数の炭素相から構成された炭素材料とすることにより、所望の物性又は性質を効果的に発揮可能な炭素材料とすることができる。
 核となる前記第一の炭素相としては、前述した黒鉛(例えば、人造黒鉛、天然黒鉛、黒鉛化メゾフェーズカーボン、黒鉛化炭素繊維)等の炭素材料を挙げることができる。
 前記第二の炭素相としては、第一の炭素相よりも結晶性が低いものであれば特に制限はなく、所望の性質に応じて適宜選択される。好ましくは、熱処理により炭素質を残し得る有機化合物(炭素前駆体)から得られる炭素相であり、例えば、エチレンヘビーエンドピッチ、原油ピッチ、コールタールピッチ、アスファルト分解ピッチ、ポリ塩化ビニル等を熱分解して生成するピッチ、ナフタレン等を超強酸存在下で重合させて作製される合成ピッチ等が挙げられる。また、熱可塑性の高分子化合物として、ポリ塩化ビニル、ポリビニルアルコール、ポリ酢酸ビニル、ポリビニルブチラール等の熱可塑性合成樹脂を用いることもできる。また、デンプンやセルロース等の天然物を用いることもできる。
 ここで、前記負極材における炭素材料としては、前記少なくとも二つの発熱ピークの一方が、前記第一の炭素相に由来するものであり、他方が第二の炭素相に由来するものであることが、前記各物性の調整が容易であり、エネルギー密度が大きく、入出力特性、寿命特性及び熱安定性が良好な負極をより確実に調製することができるため、好ましい。
 前記第一の炭素相と第二の炭素相とを有する炭素材料において、該第二の炭素相の含有量は、炭素材料全体として前述した物性を示す限り特に制限はないが、前記少なくとも二つの発熱ピークの一方が前記第一の炭素相に由来するものであり、他方が第二の炭素相に由来するものである場合には、炭素材料全体の質量に対して、0.1質量%~30質量%であることが好ましく、0.5質量%~15質量%であることが好ましく、1質量%~10質量%であることが好ましい。
 前記炭素材料全体の質量に対する前記第二の炭素相の含有率は、炭素源である前記有機化合物(炭素前駆体)の単独ないし所定割合の前記第一の炭素相との混合物を熱処理した後の残炭率を熱重量分析などにより予め測定しておき、作製時の炭素源使用量及びその残炭率の積から前記第二の炭素相の質量を求めた後、全体質量に対する割合として求めることができる。前記第二の炭素相の含有率が0.1質量%以上であれば、入出力特性の向上が得られる傾向にある。また、前記第二の炭素相の含有量が30質量%以下であれば、低結晶性成分に起因する容量の低下が抑えられる傾向がある。
 前記第二の炭素相は、前記第一の炭素相の表面全体を被覆して層を形成していてもよく、負極材表面に部分的に存在している状態でも構わない。ここで、第一の炭素相の表面全体又は一部を被覆する第二の炭素相により形成された層を、「低結晶性炭素層」と称する。
 前記低結晶性炭素層には、酸素を含むC-O、C=O、C-OH、C-OOHなどの表面官能基が存在することが好ましい。このような官能基の酸素量はX線光電子分光法(XPS)によって求めることが可能である。負極材の酸素量は、前記第二の炭素相の量、すなわち低結晶性炭素量に関連し、上述の通り表面に0.1質量%~30質量%の低結晶性炭素層を有する場合、元素組成での全酸素量の割合は0.5atom%~5atom%となる。このような酸素量とすることは、負極の良好な入出力特性、寿命特性及び熱安定性を発現する上で望ましい。
 前記負極材の好ましい形態の一例としては、第一の炭素相としての核となる黒鉛材料と、該黒鉛材料の表面に配置された第二の炭素相としての低結晶性炭素層を有する複合化した炭素材料を含む。
 核となる炭素材料は、平均面間隔d002が0.335nm~0.340nmの範囲の黒鉛材料であることが、充放電容量が大きくなる点で好ましい。d002が0.335nm~0.338nmの範囲、特に0.335nm~0.337nmの範囲の黒鉛材料を用いた場合、充放電容量が330nAh/g~370mAh/gと大きく望ましい。
 前記核となる黒鉛材料の体積平均粒子径(50%D)は、1μm~40μmであることが好ましい。1μm以上とすることにより、原料黒鉛中に微粉が適度な量で含まれ、核材に有機化合物を付着させる工程での凝集の発生を抑制して、低結晶炭素と結晶炭素が均一になる傾向がある。40μm以下とすることにより、仕上がりの負極材中での粗大粒子の混在を抑制して、負極塗工の際に筋引きなどの発生を抑制できる傾向がある。
 前記核となる黒鉛材料の77Kでの窒素吸着測定により求めた比表面積、即ちBET比表面積(N比表面積)は、0.1m/g~30m/gとすることが好ましく、より好ましくは0.5m/g~25m/gであり、0.5m/g~15m/gの範囲が特に好ましい。N比表面積が0.1m/g以上とすることにより、核材に有機化合物を付着させる工程で凝集が生じない傾向があり、逆に30m/g以下とすることにより、比表面積を適度な範囲に維持して、均一に有機化合物を付着させることが容易になる傾向がある。
 また、N比表面積が大きすぎる場合、示差熱分析(DTA分析)において、燃焼反応が促進され高温側の発熱ピークが低温側へシフトし、700℃以上1000℃以下の範囲から逸脱してしまう傾向があるため、0.1m/g~30m/gの範囲にすることで、有機化合物を核材に付着させることが容易であり望ましく、特に0.5m/g~15m/gの範囲の場合は、有機化合物が核材に均一に付着するためより好ましい。
 前記核となる黒鉛材料の形状は、例えば、鱗片状、球状、塊状等が挙げられ、中でも球形の黒鉛が高タップ密度を得られる点から好ましい。球形化度を表す指標としては、アスペクト比が挙げられる(アスペクト比は最大長垂直長/最大長を表し、その最大値は1である)。なお、平均アスペクト比はフロー式粒子像分析装置のシスメックス(株)製FPIA-3000を用いて求めることができる。
 前記核となる黒鉛材料の平均アスペクト比が0.1以上、より好ましくは0.3以上であることが望ましい。平均アスペクト比が0.1以上であれば、鱗片状黒鉛の割合が多すぎず、つまり黒鉛エッジ面を適切な範囲内にすることができる。エッジ面はベイサル面に比べて活性であることから、核材に有機化合物を付着させる工程において、有機化合物がエッジ面に選択的付着することが懸念されるが、上記範囲内であれば、低結晶炭素が均一に分散する傾向がある。平均アスペクト比が0.1以上、より好ましくは0.3以上の場合、核材への有機化合物の付着が均一となり、結果として、本発明の負極材中の低結晶炭素と結晶炭素が均一に分布される。
 本発明の負極材は、前記炭素材料の他に、高容量化のため必要に応じて、Al、Si、Ga、Ge、In、Sn、Sb、Ag等のリチウムと合金化する金属粉末、少なくともAl、Si、Ga、Ge、In、Sn、Sb、Ag等のリチウムと合金化する元素を含む多元系合金粉末、リチウム合金粉末などを含むことができる。これらの成分は、単独で又は、前記炭素材料とこれらの粉末との複合材料として添加して使用することができる。負極材にこれらの金属粉末や複合材料を併用することにより、前記炭素材料単独よりタップ密度を大きくすることができる。これにより、前記負極材全体のタップ密度が0.3g/cm~3.0g/cmとなって、充放電反応が促進され負極抵抗が減少し良好な入出力特性が得られるため、好ましい。併用量は特に制限はなく、例えば負極材総量の1~50質量%併用することができる。
<負極材の製造方法>
 前記負極材の製造方法に特に制限はなく、通常行われている公知の方法のいずれを適用してもよい。
 前記負極材が、前記第一の炭素相と第二の炭素相とを含む炭素材料であって、該少なくとも二つの発熱ピークの一方が前記第一の炭素相に由来するものであり、他方が第二の炭素相に由来するものである場合には、一例として、核となる第一の炭素相の表面を改質することにより、前記第二の炭素相による低結晶性炭素層を形成し、前記各物性を有する負極材とすることができる。
 前記低結晶性炭素層を形成する方法としては、例えば、熱処理により炭素質を残す有機化合物(炭素前駆体)を第一の炭素相の表面に付着させた後、750℃~1000℃の不活性雰囲気中で焼成・炭素化することを挙げることができる。
 前記第二の炭素相となる得る前記熱処理により炭素質を残す有機化合物(炭素前駆体)の例としては、前述したものをそのまま挙げることができる。
 前記第一の炭素相の表面に前記有機化合物を付着させる方法としては、特に制限はないが、例えば、前記有機化合物を溶媒に溶解、又は分散させた混合溶液に核となる炭素粒子(粉末)を分散・混合した後、溶媒を除去する湿式方式や、炭素粒子と有機化合物を固体同士で混合し、その混合物に力学的エネルギーを加えることで付着させる乾式方式、CVD法などの気相方式等が挙げられるが、比表面積の制御の観点から、上記乾式方式によって付着させることが好ましい。
 前記乾式方法により第一の炭素相の表面に前記有機化合物を付着させる方法としては特に制限はないが、例えば、前記第一の炭素粒子と前記有機化合物(炭素前駆体)の混合物を、混合及び又は攪拌可能な構造の容器中に充填し、混合して、材料の複合化を行なうことができる。混合及び又は攪拌可能な構造の容器として、例えば羽やスクリューなどが配置された容器中で混合、撹拌する方法などが好ましい。ここで該混合物に加える力学的エネルギーとしては、該混合物1kg当たり0.360kJ/kg~36000kJ/kgが好ましく、0.360kJ/kg~7200kJ/kgであればより好ましく、2.50kJ/kg~2000kJ/kgであればさらに好ましい。
 ここで混合物に加える力学的エネルギーは、負荷(kW)に時間(h)を乗じ、充填した混合物質量(kg)の商で表したものである。該混合物に加える力学的エネルギーを上記範囲することで、炭素粒子と有機化合物が均一に分散し、焼成後の負極材において低結晶炭素と結晶性炭素が均一に分布させることができ、2本のDTA発熱ピークの温度差を小さくすることができ、好ましい。
 また、前記負極材は、前記第一の炭素相の表面に前記第二の炭素相となり得る有機化合物を付着させた中間製造物を加熱焼成することにより作製することができる。焼成温度は750℃~2000℃であることが好ましく、800℃~1800℃であればより好ましく、900℃~1400℃であれば最も好ましい。焼成温度が750℃以上の場合では、作製する電池の充放電効率、入出力特性、サイクル特性を良好に維持できる傾向があり、焼成温度が2000℃以下の場合では、低結晶性炭素部分の結晶性が高くなりすぎることが抑制される傾向があり、また、2本のDTA発熱ピークの温度差が25℃以上の発熱ピーク又は300℃以上700℃未満に出現するDTA発熱ピークを確実に検出できる傾向がある。その結果、急速充電特性、低温充電特性、過充電安全性などを良好に維持できる傾向がある。焼成時の雰囲気は、負極材が酸化し難い雰囲気であれば特に制限はなく、例えば窒素ガス雰囲気、アルゴンガス雰囲気、自己分解ガス雰囲気などが適用できる。使用する炉の形式は特に制限はないが、例えば電気及び又はガスを熱源としたバッチ炉や連続炉が好ましい。
 作製するリチウムイオン二次電池用負極材の2本のDTA発熱ピークは、前記焼成温度でも適宜調整することが可能であり、焼成温度を高くすることで300℃以上700℃未満のDTA発熱ピークのピーク温度を低温域の範囲内でより高温側へシフトさせることが可能である。
 結晶性の異なる複数の炭素材料を用いた場合、低結晶炭素の量を多くすることで300℃以上700℃未満のDTA発熱ピークのピーク温度を低温域の範囲内でより高温側へシフトさせることが可能であり、かつ焼成温度を高くすることで、300℃以上700℃未満のDTA発熱ピークのピーク温度を低温域の範囲内でより高温側へシフトすると同時に700℃以上1,000℃以下のDTA発熱ピークのピーク温度を高温域の範囲内でより低温側にシフトさせることができ、それぞれのDTA発熱ピーク温度及び2本のDTA発熱ピーク温度差を調整することも可能である。
<リチウムイオン二次電池用負極>
 前記リチウムイオン二次電池用負極は、前記リチウムイオン二次電池用負極材を含む負極材層と、集電体と、を含む。これにより、エネルギー密度が大きく、入出力特性、寿命特性及び熱安定性に優れたリチウムイオン二次電池を構成することが可能となる。前記リチウムイオン二次電池用負極は、前述した負極材を含む負極材層及び集電体の他、必要に応じて他の構成要素を含んでもよい。
 前記リチウムイオン二次電池用負極は、例えば、前記リチウムイオン二次電池用負極材及び有機結着剤を溶剤とともに撹拌機、ボールミル、スーパーサンドミル、加圧ニーダー等の分散装置により混練し、負極材スラリーを調製し、これを集電体に塗布して負極層を形成する、または、ペースト状の負極材スラリーをシート状、ペレット状等の形状に成形し、これを集電体と一体化することで得ることができる。
 前記有機系結着剤としては、特に限定されないが、例えば、スチレン-ブタジエン共重合体、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、(メタ)アクリロニトリル、ヒドロキシエチル(メタ)アクリレート等のエチレン性不飽和カルボン酸エステル、アクリル酸、メタクリル酸、イタコン酸、フマル酸、マレイン酸等のエチレン性不飽和カルボン酸、ポリ弗化ビニリデン、ポリエチレンオキサイド、ポリエピクロヒドリン、ポリフォスファゼン、ポリアクリロニトリル等のイオン導電性の大きな高分子化合物などが挙げられる。この有機系結着剤の含有量は、本発明のリチウムイオン二次電池用負極材と有機系結着剤の合計100質量部に対して0.5質量部~20質量部含有することが好ましい。
 前記負極材スラリーには、粘度を調整するための増粘剤を添加してもよい。増粘剤としては、例えば、カルボキシメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコール、ポリアクリル酸(塩)、酸化スターチ、リン酸化スターチ、カゼインなどを使用することができる。
 前記負極材スラリーには、導電補助材を混合してもよい。導電補助材としては、例えば、カーボンブラック、グラファイト、アセチレンブラック、あるいは導電性を示す酸化物や窒化物等が挙げられる。導電助剤の使用量は、本発明の負極材の0.5質量%~15質量%程度とすればよい。 
 前記集電体の材質および形状については、特に限定されず、例えば、アルミニウム、銅、ニッケル、チタン、ステンレス鋼等を、箔状、穴開け箔状、メッシュ状等にした帯状のものを用いればよい。また、多孔性材料、例えばポーラスメタル(発泡メタル)やカーボンペーパーなども使用可能である。 
 前記負極材スラリーを集電体に塗布する方法としては、特に限定されないが、例えば、メタルマスク印刷法、静電塗装法、ディップコート法、スプレーコート法、ロールコート法、ドクターブレード法、コンマコート法、グラビアコート法、スクリーン印刷法など公知の方法が挙げられる。塗布後は負極材スラリーに含まれる溶剤を熱風乾燥機、赤外線乾燥機又はこれらを組合せた乾燥機により乾燥させる。さらに必要に応じて平板プレス、カレンダーロール等による圧延処理を行う。また、シート状、ペレット状等の形状に成形された負極層と集電体との一体化は、例えば、ロール、プレス、もしくはこれらの組み合わせ等、公知の方法により行うことができる。この一体化する際の圧力は1MPa~200MPa程度が好ましい。
 本発明にかかるリチウムイオン二次電池用負極材の負極密度は、好ましくは1.3g/cm~1.8g/cm、より好ましくは1.4g/cm~1.7g/cm、特に好ましくは1.4g/cm~1.6g/cmである。1.3g/cm以上とすることにより抵抗値を低下させることがなく、容量を高くできる傾向があり、1.8g/cm以下とすることにより、レート特性及びサイクル特性の低下を抑制できる傾向がある。
<リチウムイオン二次電池>
 本発明にかかるリチウムイオン二次電池は、前記リチウムイオン二次電池用負極と、正極と、電解質とを含む。例えば、前記リチウムイオン二次電池用負極と正極とをセパレータを介して対向して配置し、電解液を注入することにより得ることができる。
 前記正極は、前記負極と同様にして、集電体表面上に正極層を形成することで得ることができる。この場合の集電体はアルミニウム、チタン、ステンレス鋼等の金属や合金を、箔状、穴開け箔状、メッシュ状等にした帯状のものを用いることができる。 
 前記正極層に用いる正極材料としては、特に制限はなく、例えば、リチウムイオンをドーピングまたはインターカレーション可能な金属化合物、金属酸化物、金属硫化物、または導電性高分子材料を用いればよく、特に限定されないが、例えば、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、マンガン酸リチウム(LiMnO)、これらの複酸化物(LiCoNiMn、x+y+z=1)、および添加元素M’を含む複酸化物(LiCoNiMnM’、a+b+c+d=1、M’:Al、Mg、Ti、Zr又はGe)、リチウムマンガンスピネル(LiMn)、リチウムバナジウム化合物、V、V13、VO、MnO、TiO、MoV、TiS、V、VS、MoS、MoS、Cr、Cr、オリビン型LiMPO(M:Co、Ni、Mn、Fe)、ポリアセチレン、ポリアニリン、ポリピロール、ポリチオフェン、ポリアセン等の導電性ポリマー、多孔質炭素等などを単独或いは混合して使用することができる。 
 前記セパレータとしては、例えば、ポリエチレン、ポリプロピレン等のポリオレフィンを主成分とした不織布、クロス、微孔フィルム又はそれらを組み合わせたものを使用することができる。なお、作製するリチウムイオン二次電池の正極と負極が直接接触しない構造にした場合は、セパレータを使用する必要はない。 
 前記電解液としては、例えば、LiClO、LiPF、LiAsF、LiBF、LiSOCF等のリチウム塩を、エチレンカーボネート、フルオロエチレンカーボネート、クロロエチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネート、シクロペンタノン、シクロヘキシルベンゼン、スルホラン、プロパンスルトン、3-メチルスルホラン、2,4-ジメチルスルホラン、3-メチル-1,3-オキサゾリジン-2-オン、γ-ブチロラクトン、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、メチルプロピルカーボネート、ブチルメチルカーボネート、エチルプロピルカーボネート、ブチルエチルカーボネート、ジプロピルカーボネート、1,2-ジメトキシエタン、テトラヒドロフラン、2-メチルテトラヒドロフラン、1,3-ジオキソラン、酢酸メチル、酢酸エチル、トリメチルリン酸エステル、トリエチルリン酸エステル等の単体もしくは2成分以上の混合物の非水系溶剤に溶解した、いわゆる有機電解液を使用することができる。
 前記リチウムイオン二次電池の構造は、特に限定されないが、通常、正極および負極と、必要に応じて設けられるセパレータとを、扁平渦巻状に巻回して巻回式極板群としたり、これらを平板状として積層して積層式極板群としたりし、これら極板群を外装体中に封入した構造とするのが一般的である。
 前記リチウムイオン二次電池は、特に限定されないが、ラミネート型電池、ペーパー型電池、ボタン型電池、コイン型電池、積層型電池、円筒型電池、角型電池などとして使用される。 
 ここで、本発明にかかる負極材は、充放電での入出力特性、寿命特性及び熱安定性が優れることに加え、電解液の浸透性が速く電池製造が容易であるとともに、充放電サイクルを繰り返した場合の負極膨張や電池内のガス発生による圧力上昇が小さいことが利点として挙げられる。そのため上述した種々の形状のリチウムイオン二次電池の中で、ラミネート型電池、ペーパー型電池、積層型電池、あるいは角型電池など、比較的電解液の注液が難しい、あるいは充放電で電池が膨張し易い、薄型のリチウムイオン二次電池に本発明の負極材を用いることが好適である。
 これは、前記負極材の少なくとも二つの発熱ピークのうちピーク温度が低い発熱ピークを生じる炭素材料中に含まれ得るC-O、C=O、C-OH、C-OOHなど酸素含有表面官能基の化学的、静電的効果によって、負極材と電解液の親和性が増すことで浸透性が向上し、これによって負極の充放電反応の電流分布や反応分布が減少し、結果として負極膨張やガス発生が抑制されると推測されるが、この推測に限定されない。
 前記薄型のリチウムイオン二次電池において、電池容量が好ましくは3.5Ah以上、より好ましくは5Ah以上、特に10Ah以上と、電池サイズが大きくなる場合は、電解液を均一かつ速やかに注液しこれによって電池膨張を抑制する上で、本発明の負極材を用いることが望ましい。
 また、電池寸法が縦(a)×横(b)×厚み(c)の薄型リチウムイオン電池において、厚み(c)が縦(a)または横(b)のいずれかの短い方の好ましくは1/2以下、より好ましくは1/4以下、特に1/10以下と、扁平、薄型化した場合は、充放電サイクルによる負極膨張の影響が相対的に大きくなることから、本発明の負極材を用いることが好適である。
 本発明にかかるリチウムイオン二次電池は、従来の炭素材料を負極に用いたリチウムイオン二次電池と比較して、入出力特性、寿命特性及び熱安定性に優れる。特に、前記負極材用いた薄型リチウムイオン二次電池は、高入出力、低膨張であるともに、複数の単電池を用いて組電池を構成した場合、実装性や電池の冷却性の点で優れる。
 このため、本発明にかかるリチウムイオン二次電池、特に薄型リチウムイオン二次電池は、電気自動車、パワーツール等の用途、特に、電気自動車(EV)、ハイブリッド電気自動車(HEV)あるいはプラグインハイブリッド電気自動車(PHEV)の用途に好適である。
 以下、実施例により本発明を更に具体的に説明するが、本発明は以下の実施例に限定されるものではない。
[実施例1]
(負極材の作製)
 平均粒子径10μmの球形天然黒鉛(d002=0.336nm、平均アスペクト比=0.7)100質量部とコールタールピッチ(軟化点98℃、残炭率(炭化率)50%)10質量部を混合した。上記混合物を、シリンダー内に回転翼を配置し、シリンダー内壁と回転翼の間で材料を擦り合わせることにより、材料の複合化を行う装置中に密閉した。24kWの負荷で5分間装置を運転することによりピッチ黒鉛複合体を作製した(負荷:1800kJ/kg)。次いで窒素流通下、20℃/時間の昇温速度で900℃まで昇温し、1時間保持して炭素層被覆黒鉛粒子とした。得られた炭素層被覆炭素粒子をカッターミルで解砕した後、300メッシュ篩で篩分けを行い、その篩下分を本実施例の負極材とした。得られた負極材については、下記方法により、XRD解析、ラマンスペクトル解析、比表面積測定、体積平均粒子径(50%D)測定、及び最大粒子径Dmax測定を行った。その特性を表1に示す。
[XRD解析(平均面間隔d002の測定)]
 負極材試料を石英製の試料ホルダーの凹部分に充填し、測定ステージにセットした。以下の測定条件において広角X線回折装置((株)リガク製)で測定を行った。
  線源:CuKα線(波長=0.15418nm)
  出力:40kV、20mA
  サンプリング幅:0.010°
  走査範囲:10~35°
  スキャンスピード:0.5°/min
[体積平均粒子径(50%D)測定]
 負極材試料を界面活性剤と共に精製水中に分散させた溶液を、レーザー回折式粒度分布測定装置SALD-3000J((株)島津製作所製)の試料水槽に入れ、超音波をかけながらポンプで循環させながら、レーザー回折式で測定した。得られた粒度分布の体積累積50%粒径(50%D)を平均粒子径とした。
[最大粒子径Dmax測定]
 該当する篩を用いて篩分けを行い、その篩上分の有無を確認する。篩の目開きを90μm、74μm、63μm、53μm、45μm、及び38μmの順に小さくしていき、篩上が出る直前の目開きを最大粒子径Dmaxとした。
[示差熱測定]
 示差熱熱重量同時測定装置EXSTAR TG/DTA6200(セイコーインスツル(株)製)を用い、以下の測定条件で測定した。
  参照試料:α-アルミナ
  温度範囲:30~1000℃
  昇温速度:2.5℃/min(30~300℃間は20℃/min)
  雰囲気・流量:乾燥空気・300ml/min
[N比表面積測定]
 高速比表面積/細孔分布測定装置ASAP2010(MICRO MERITICS製)を用い、液体窒素温度(77K)での窒素吸着を多点法で測定しBET法(相対圧範囲:0.05~0.2)より算出した。
[CO吸着量測定]
 全自動ガス吸着量測定装置AUTOSORB-1(Quantachrome社製)を用い、243KでのCO吸着量は相対圧P/P=3.0×10-2のときの値を用いた。 (P=平衡圧、P=26142mmHg)
[タップ密度測定]
 容量100cmのメスシリンダーに試料粉末100cmをゆっくり投入し、メスシリンダーに栓をする。このメスシリンダーを5cmの高さから250回落下させた後の試料粉末の重量及び容積から求められる値をタップ密度とした。
[R値測定(ラマンスペクトル解析)]
 ラマンスペクトル測定装置NRS-1000型(日本分光(株)製、励起波長532nm)を用いて測定した。R値は、測定範囲(830cm-1~1940cm-1)全体をベースラインとし、Gバンド由来のピーク高さ(Ig)とDバンド由来のピーク高さ(Id)の比、Id/IgをR値とした。
[平均アスペクト比]
 平均アスペクト比(アスペクト比は最大長垂直長/最大長を表し、その最大値は1である。)はフロー式粒子像分析装置(シスメックス(株)製FPIA-3000)を用いて求めた。
(初回充放電効率の測定)
 本実施例の負極材98質量部に対し、増粘剤としてCMC(カルボキシメチルセルロース、第一工業製薬(株)製セロゲンWS-C)の濃度が2質量%の水溶液をCMCの固形分で1質量部となるように加え、10分間混練を行った。ついで負極材とCMCを合わせた固形分濃度が40質量%~50質量%となるように精製水を加え10分間混練を行った。続いて結着剤としてSBR(BM-400B、日本ゼオン製)の濃度が40%水分散液をSBRの固形分で1質量部となるように加え10分間混合してペースト状の負極材スラリーを作製した。このスラリーを厚さ40μmの電解銅箔に厚さ200μmのマスクを用い直径9.5mmとなるよう塗布し、さらに、105℃で乾燥して水を除去し、試料電極(負極)を作製した。
 次いで、上記試料電極、セパレータ、対極の順に積層した後、LiPFをエチレンカーボネート(EC)及びメチルエチルカーボネート(MEC)(ECとMECは体積比で1:3)の混合溶媒に1.5モル/リットルの濃度になるように溶解した電解液溶液を注入し、コイン電池を作製した。対極には金属リチウムを使用し、セパレータには厚み20μmのポリエチレン微孔膜を使用した。
 得られたコイン電池の試料電極と対極の間に、0.2mA/cmの定電流で0V(Vvs.Li/Li)まで充電し、次いで0Vの定電圧で電流が0.02mAになるまで充電した。次に30分の休止時間後に0.2mA/cmの定電流で2.5V(Vvs.Li/Li)まで放電する1サイクル試験を行い、初回充放電効率を測定した。初回充放電効率は、(放電容量)/(充電容量)×100として算出した。ここでは、負極材の試料電極にリチウムイオンが吸蔵される場合を充電、逆に試料電極からリチウムイオンが放出される場合を放電とする。
(寿命特性の評価)
 初回充放電効率の項と同様の方法で負極材スラリーを作製した。このスラリーを厚さ40μmの電解銅箔に単位面積当りの塗布量が4.5mg/cmとなるようにクリアランスを調整したコンマコーターで塗工した。その後、ハンドプレスで1.5g/cmに電極密度を調整した。この電極を直径14mmの円盤状に打ち抜き、試料電極(負極)を作製した。
 次いで、上記試料電極、セパレータ、対極の順に積層した後、LiPFをエチレンカーボネート(EC)及びメチルエチルカーボネート(MEC)(ECとMECは体積比で1:3)の混合溶媒に1.5モル/リットルの濃度になるように溶解した電解液溶液を注入し、コイン電池を作製した。対極には金属リチウムを使用し、セパレータには厚み20μmのポリエチレン微孔膜を使用した。
 上記で作製したコイン電池を用い、下記手順で寿命特性の評価を行った。
(1)0.24mAの定電流で0V(Vvs.Li/Li)まで充電し、次いで0Vの定電圧で電流が0.024mAになるまで充電した。
(2)30分の休止時間後に、0.24mAの定電流で1.5V(Vvs.Li/Li)まで放電する1サイクル試験を行い、放電容量を測定した。
(3)2.4mAの定電流で0V(Vvs.Li/Li)まで充電し、0Vの定電圧で電流が0.24mAになるまで充電した。
(4)30分の休止時間後に、2.4mAの定電流で1.5V(Vvs.Li/Li)まで放電した。
(5)上記(3)及び(4)の充放電サイクル試験を50サイクル行った。
 このサイクルを50サイクル繰り返したときの1サイクル目からの放電容量維持率(=50サイクル目放電容量/1サイクル目放電容量×100)を測定し、寿命特性評価を行った。この放電容量維持率が高いほど寿命特性に優れた材料であることを示す。
(入出力特性の評価)
 寿命特性と同等の方法でコイン電池を作製し、下記手順で出力特性の評価を行った。
(1)0.48mAの定電流で0V(Vvs.Li/Li)まで充電し、次いで電流値が0.048mAになるまで0Vで定電圧充電を行った。
(2)30分の休止時間後に、0.48mAの定電流で1.5V(Vvs.Li/Li)まで放電した。
(3)0.48mAの定電流で容量の半分まで充電を行った。
(4)2.4mA、7.2mA、12mAの電流値で10秒間放電を行い、その際の電圧降下(ΔV)を確認した。それぞれの電流値での試験の間には30分間の休止時間を置いた。
各電流値に対してΔVをプロットしその傾きを抵抗値(Ω)とした。この値が小さいほど入出力特性に優れると判断することができる。
(熱安定性の評価)
 寿命特性と同等の方法でコイン電池を作製し、下記手順で熱安定性の評価を行った。
(1)0.24mAの定電流で0V(Vvs.Li/Li)まで充電し、次いで0Vの定電圧で電流が0.024mAになるまで充電した。
(2)上記(1)より満充電状態(SOC100%)となったコイン電池をアルゴンガス雰囲気下で解体し、取り出した負極をジエチルカーボネート(DEC)で洗浄した後、30分間真空乾燥した。
(3)上記(2)より乾燥した負極から電解銅箔と負極材を取り分け、負極材のみをSUSパンに封入した。また、リファレンスとしてアルゴンガスのみを封入したアルミパンも作製した。
(4)上記(3)より作製した評価用のSUSパンを示差走査熱量測定装置EXSTAR DSC6200(エスアイアイ・ナノテクノロジーズ(株)製)を用い、アルゴンガスを50ml/min導入し、100℃から400℃まで10℃/minで昇温した。
 発熱ピーク温度は高いほど安全性(熱安定性)に優れるといえる。
[実施例2]
 実施例1において、単純混合した際のコールタールピッチの投入量を10質量部から5質量部に変更した以外は、実施例1と同様の方法で負極材試料を作製した。得られた負極材試料の特性を表1に示す。
[実施例3]
 実施例1における球形天然黒鉛の平均粒子径を平均粒子径10μmから5μmに変更し、篩のメッシュサイズを300メッシュから400メッシュへ変更した以外は、実施例1と同様の方法で負極材試料を作製した。得られた負極材試料の特性を表1に示す。
[実施例4]
 実施例1において、混合する炭素前駆体をコールタールピッチからポリビニルアルコール(重合度1700、完全けん化型、炭化率15%)に変更し、篩のメッシュサイズを300メッシュから250メッシュへ変更した以外は、実施例1と同様の方法で負極材試料を作製した。得られた負極材試料の特性を表1に示す。
[実施例5]
 実施例1における球形天然黒鉛の平均粒子径を平均粒子径10μmから20μmに変更し、単純混合した際のコールタールピッチの投入量を10質量部から20質量部に変更し、シリンダー内での複合化処理時間を5分から10秒へ変更し(負荷:60kJ/kg)、篩のメッシュサイズを300メッシュから350メッシュへ変更した以外は、実施例1と同様の方法で負極材試料を作製した。得られた負極材試料の特性を表1に示す。
[比較例1]
 石炭系コールタールをオートクレーブにより400℃で熱処理し、生コークスを得た。この生コークスを粉砕した後、1200℃の不活性雰囲気中でカ焼を行い、コークス塊を得た。このコークス塊を分級機付きの衝撃粉砕機を用いて平均粒子径15μmに粉砕後、200メッシュの篩に通した炭素粒子を負極材試料(d002=0.342nm)として用いた。得られた負極材試料の特性を表1に示す。
[比較例2]
 比較例1で用いた平均粒子径15μmのコークス炭素粒子100質量部とポリビニルアルコール(重合度1700、完全けん化型、炭化率15%)20質量部を混合した。上記混合物を、実施例1同様に炭素層被覆黒鉛粒子とした。得られた炭素被覆炭素粒子をカッターミルで解砕した後、350メッシュ篩で篩分けを行い、その篩下分を本実施例の負極材として用いた以外は、実施例1と同様の方法で負極材試料を作製した。得られた負極材試料の特性を表1に示す。
[比較例3]
 鱗片状黒鉛(d002=0.337nm、平均アスペクト比=0.2)を200メッシュの篩に通し、負極材試料として用いた。得られた負極材試料の特性を表1に示す。
[比較例4]
 平均粒子径20μmの球状天然黒鉛(d002=0.336nm、平均アスペクト比=0.7)を300メッシュの篩に通し、負極材試料として用いた。得られた負極材試料の特性を表1に示す。
[比較例5]
 比較例1で作製した炭素粒子を、黒鉛容器に入れ、誘導加熱焼成炉を使用して、窒素ガス雰囲気下、300℃/hrの昇温速度で2800℃まで昇温し、1時間保持して黒鉛化処理を行った。得られた人造黒鉛粉末を200メッシュ篩で篩分けを行い、その篩通過分を負極材として使用した以外は、実施例1と同様の方法で負極材を作製した。得られた負極材の特性を表1に示す。
[実施例6]
 比較例5得られた人造黒鉛粉末100質量部と、実施例1と同じコールタールピッチを7質量部の量で混合した以外は、実施例1と同様の方法で負極材を作製した。得られた負極材の特性を表1に示す。
[比較例6]
  比較例1で作製した炭素粒子100質量部とコールタールピッチ30質量部と酸化鉄粉末5質量部を250℃で1時間混合した。得られた塊状物をピンミルで粉砕した後、型込みプレスで、密度1.52g/cmのブロック状に成形加工した。得られたブロックをマッフル炉で最高温度800℃にて焼成したのち、アチソン炉で自己雰囲気下、2900℃にて黒鉛化を行った。次いで、黒鉛化したブロックを、ハンマーで粗砕した後、ピンミルで平均粒子径45μmの黒鉛粉末を得た。さらに、該黒鉛粉末を、球形化処理装置(ホソカワミクロン製、ファカルティ)を使用し、粉砕回転数1800rpm、分級回転数7000rpm、で10分間処理を行い、球形化人造黒鉛粉末を作製した。該粉末を負極材として、実施例1と同様の方法で特性を評価した。その結果を表1に示す。
[実施例7]
 比較例6得られた球状化人造黒鉛粉末100質量部と、実施例1と同じコールタールピッチを4質量部の量で混合し、負荷を2.5kJ/kgとして、実施例1と同様の方法で負極材を作製した。得られた負極材の特性を表1に示す。
[実施例8]
 実施例5の球形天然黒鉛を用い、焼成温度を900℃から1050℃に変更した以外は、実施例7と同様の方法で負極材を作製した。実施例1と同様の方法で負極材を作製した。得られた負極材の特性を表1に示す。
[実施例9]
 実施例5の球形天然黒鉛を用い、焼成温度を900℃から820℃に変更した以外は、実施例7と同様の方法で負極材を作製した。実施例1と同様の方法で負極材を作製した。得られた負極材の特性を表1に示す。
[実施例10]
 実施例5の球形天然黒鉛を用い、焼成温度を900℃から777℃に変更した以外は、実施例7と同様の方法で負極材を作製した。実施例1と同様の方法で負極材を作製した。得られた負極材の特性を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1から明らかなように、実施例1~10のリチウムイオン二次電池用負極材を用いたリチウムイオン二次電池は、高い充放電効率を維持しながら、入出力特性、寿命特性及び熱安定性に優れる。
 以上より、本発明のリチウムイオン二次電池用負極材を適用した負極を有するリチウムイオン二次電池は、充放電効率、寿命特性、入出力特性及び熱安定性、ならびにこれらのバランスに優れる。
 2010年7月30日に出願された日本国特許出願第2010-171912号の開示及び2010年12月21日に出願された日本国特許出願第2010-284422号の開示は、その全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に援用されて取り込まれる。

Claims (11)

  1.  X線回折法より求めた平均面間隔d002が0.335nm~0.340nm、体積平均粒子径(50%D)が1μm~40μm、最大粒子径Dmaxが74μm以下、及び、空気気流中における示差熱分析において、300℃以上1000℃以下の温度範囲に少なくとも二つの発熱ピークを有する炭素材料を含むリチウムイオン二次電池用負極材。
  2.  前記少なくとも二つの発熱ピークが、300℃以上700℃未満の温度範囲にピークを有する発熱ピークと、700℃以上1000℃以下の温度範囲にピークを有する発熱ピークとを含む請求項1記載のリチウムイオン二次電池用負極材。
  3.  前記少なくとも二つの発熱ピークのうち、最も高い温度にピークを有する発熱ピークと、最も低い温度にピークを有する発熱ピークとのピーク温度差が、300℃以内である請求項1又は請求項2記載のリチウムイオン二次電池用負極材。
  4.  前記炭素材料の77Kでの窒素吸着測定より求めた比表面積が0.5m/g~25m/gである請求項1~請求項3のいずれか1項に記載のリチウムイオン二次電池用負極材。
  5.  前記炭素材料の273Kでの二酸化炭素吸着測定より求めた吸着量が0.1cm/g~5.0cm/gである請求項1~請求項4のいずれか1項に記載のリチウムイオン二次電池用負極材。
  6.  前記炭素材料のタップ密度が0.3g/cm~2.0g/cmである請求項1~請求項5のいずれか1項に記載のリチウムイオン二次電池用負極材。
  7.  前記炭素材料のラマンスペクトル解析から得られるR値が0.10~1.5である請求項1~請求項6のいずれか1項に記載のリチウムイオン二次電池用負極材。
  8.  前記炭素材料が、核となる第一の炭素相と、該第一の炭素相の表面に存在し、該第一の炭素相よりも結晶性が低い第二の炭素相と、
    を含む請求項1~請求項7のいずれか1項記載のリチウムイオン二次電池用負極材。
  9.  前記第二の炭素相の含有率が、前記炭素材料の全質量の0.1質量%~30質量%である請求項8記載のリチウムイオン二次電池用負極材。
  10.  請求項1~請求項9のいずれか1項に記載のリチウムイオン二次電池用負極材を含む負極材層と、
     集電体と、
     を含むリチウムイオン二次電池用負極。
  11.  請求項10に記載のリチウムイオン二次電池用負極と、正極と、電解質と、を含むリチウムイオン二次電池。
PCT/JP2011/067552 2010-07-30 2011-07-29 リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極及びリチウムイオン二次電池 WO2012015054A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP11812643.2A EP2600449A4 (en) 2010-07-30 2011-07-29 MINUS POLYMER FOR A LITHIUMION SECONDARY BATTERY, MINUS POLICE FOR A LITHIUMION SECONDARY BATTERY, AND A LITHIUMION SECONDARY BATTERY
CA2807015A CA2807015C (en) 2010-07-30 2011-07-29 Anode material for lithium ion secondary battery, anode for lithium ion secondary battery, and lithium ion secondary battery
JP2012526605A JP6278596B2 (ja) 2010-07-30 2011-07-29 炭素材料、リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極及びリチウムイオン二次電池
CN2011800371843A CN103098274A (zh) 2010-07-30 2011-07-29 锂离子二次电池用负极材料、锂离子二次电池用负极以及锂离子二次电池
KR1020137005133A KR101921768B1 (ko) 2010-07-30 2011-07-29 리튬이온 이차전지용 음극재, 리튬이온 이차전지용 음극 및 리튬이온 이차전지
EP20162449.1A EP3691001A1 (en) 2010-07-30 2011-07-29 Anode material for lithium ion secondary battery, anode for lithium ion secondary battery, and lithium ion secondary battery
US13/812,595 US10854871B2 (en) 2010-07-30 2011-07-29 Anode material for lithium ion secondary battery, anode for lithium ion secondary battery, and lithium ion secondary battery

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010-171912 2010-07-30
JP2010171912 2010-07-30
JP2010284422 2010-12-21
JP2010-284422 2010-12-21

Publications (1)

Publication Number Publication Date
WO2012015054A1 true WO2012015054A1 (ja) 2012-02-02

Family

ID=45530252

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/067552 WO2012015054A1 (ja) 2010-07-30 2011-07-29 リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極及びリチウムイオン二次電池

Country Status (8)

Country Link
US (1) US10854871B2 (ja)
EP (2) EP2600449A4 (ja)
JP (2) JP6278596B2 (ja)
KR (1) KR101921768B1 (ja)
CN (2) CN107528053B (ja)
CA (1) CA2807015C (ja)
TW (1) TWI620372B (ja)
WO (1) WO2012015054A1 (ja)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012090728A1 (ja) * 2010-12-29 2012-07-05 三洋電機株式会社 非水電解質二次電池
JP2013191302A (ja) * 2012-03-12 2013-09-26 Toyota Motor Corp 非水電解質二次電池用の負極活物質、及び非水電解質二次電池
CN104737336A (zh) * 2012-10-26 2015-06-24 日立化成株式会社 锂离子二次电池用负极材料、锂离子二次电池用负极和锂离子二次电池
KR20150070971A (ko) 2013-12-17 2015-06-25 히다치 막셀 가부시키가이샤 리튬 이온 2차 전지
JP2016100208A (ja) * 2014-11-21 2016-05-30 日立化成株式会社 リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極及びリチウムイオン二次電池
WO2016104024A1 (ja) * 2014-12-26 2016-06-30 日立化成株式会社 リチウムイオン電池
JP2016186913A (ja) * 2015-03-27 2016-10-27 三菱化学株式会社 炭素材、及び、非水系二次電池
JP2017162588A (ja) * 2016-03-08 2017-09-14 オートモーティブエナジーサプライ株式会社 リチウムイオン二次電池用負極
JP2017183205A (ja) * 2016-03-31 2017-10-05 大阪ガスケミカル株式会社 リチウム二次電池負極用材料及びその製造方法
JP2018060805A (ja) * 2012-08-23 2018-04-12 三菱ケミカル株式会社 非水系電解液二次電池用炭素材、非水系電解液二次電池用負極、非水系電解液二次電池、及び非水系電解液二次電池用炭素材の製造方法
WO2018207333A1 (ja) * 2017-05-11 2018-11-15 日立化成株式会社 リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極材の製造方法、リチウムイオン二次電池用負極及びリチウムイオン二次電池
JP2018185931A (ja) * 2017-04-25 2018-11-22 トヨタ自動車株式会社 リチウムイオン二次電池用負極活物質粒子およびその製造方法
JP2019046705A (ja) * 2017-09-05 2019-03-22 オートモーティブエナジーサプライ株式会社 リチウムイオン二次電池
JP2021500707A (ja) * 2017-11-06 2021-01-07 三星エスディアイ株式会社Samsung SDI Co., Ltd. リチウム二次電池用負極活物質およびこれを含むリチウム二次電池
WO2021059444A1 (ja) * 2019-09-26 2021-04-01 昭和電工マテリアルズ株式会社 リチウムイオン二次電池用負極材及びその製造方法、リチウムイオン二次電池用負極、並びにリチウムイオン二次電池
WO2022215126A1 (ja) 2021-04-05 2022-10-13 昭和電工マテリアルズ株式会社 リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極及びリチウムイオン二次電池
WO2022264384A1 (ja) 2021-06-17 2022-12-22 昭和電工マテリアルズ株式会社 リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極及びリチウムイオン二次電池
JP7444322B1 (ja) 2023-07-12 2024-03-06 株式会社レゾナック リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極及びリチウムイオン二次電池

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102055822B1 (ko) 2012-04-05 2019-12-13 이머리스 그래파이트 앤드 카본 스위춰랜드 리미티드 표면―개질된 낮은 표면적 흑연, 그의 제조방법 및 그의 응용
US20160204441A1 (en) * 2014-09-02 2016-07-14 Panisolar, Inc. Wall Mounted Zinc Batteries
CN104362299B (zh) * 2014-10-24 2017-09-05 中海油天津化工研究设计院有限公司 一种人造石墨负极材料的制备方法
KR101913902B1 (ko) * 2015-04-15 2018-10-31 주식회사 엘지화학 음극 활물질 및 이의 제조방법
US20190097218A1 (en) * 2016-05-02 2019-03-28 Hitachi Chemical Company, Ltd. Anode material for lithium ion secondary battery, method of producing anode material for lithium ion secondary battery, anode for lithium ion secondary battery, and lithium ion secondary battery
CN114883558A (zh) * 2016-11-14 2022-08-09 昭和电工材料株式会社 锂离子二次电池用负极材、锂离子二次电池用负极和锂离子二次电池
EP3694033B1 (en) * 2017-10-05 2022-07-13 Umicore Negative electrode material for lithium ion secondary cell, method for producing same, paste for negative electrode, negative electrode sheet, and lithium ion secondary cell
KR102608550B1 (ko) * 2018-02-19 2023-12-01 가부시끼가이샤 레조낙 탄소질 입자, 리튬 이온 이차 전지용 음극재, 리튬 이온 이차 전지용 음극, 및 리튬 이온 이차 전지
CN113614950A (zh) 2019-01-14 2021-11-05 株式会社Lg新能源 负极和包含所述负极的二次电池
KR102588545B1 (ko) * 2019-01-18 2023-10-12 주식회사 엘지에너지솔루션 이차전지용 음극 활물질의 제조방법, 이차전지용 음극 및 이를 포함하는 리튬 이차전지
KR20200099872A (ko) * 2019-02-15 2020-08-25 에스케이이노베이션 주식회사 리튬 이차 전지
DK3968416T3 (da) * 2020-06-04 2024-06-10 Ningde Amperex Technology Ltd Negativelektrode-aktivmateriale og elektrokemisk indretning og elektronisk indretning, der anvender negativelektrode-aktivmateriale
KR20220120240A (ko) * 2021-02-23 2022-08-30 에스케이온 주식회사 이차전지용 음극 및 이를 포함하는 이차전지
CN118139814B (zh) * 2022-06-29 2024-10-29 杰富意化学株式会社 碳包覆难石墨化碳、锂离子二次电池用负极、以及锂离子二次电池
CN117882209A (zh) * 2022-09-30 2024-04-12 宁德新能源科技有限公司 负极材料、二次电池和电子装置

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04370662A (ja) 1991-06-20 1992-12-24 Mitsubishi Petrochem Co Ltd 二次電池用電極
JPH05307956A (ja) 1992-04-28 1993-11-19 Sanyo Electric Co Ltd 非水系二次電池
JPH1036108A (ja) * 1996-07-25 1998-02-10 Osaka Gas Co Ltd リチウム二次電池負極用炭素材及びその製造方法
JPH1154123A (ja) * 1997-05-30 1999-02-26 Matsushita Electric Ind Co Ltd 非水電解質二次電池
JPH11354122A (ja) * 1998-05-21 1999-12-24 Samsung Display Devices Co Ltd リチウム二次電池用負極活物質及びリチウム二次電池
JP2001035493A (ja) * 1991-06-20 2001-02-09 Mitsubishi Chemicals Corp 二次電池用電極用担持体の製造方法
JP2004207252A (ja) * 2004-03-05 2004-07-22 Mitsubishi Chemicals Corp 非水溶媒二次電池用負極材料
JP2004273424A (ja) * 2003-02-20 2004-09-30 Mitsubishi Chemicals Corp リチウム二次電池負極及びリチウム二次電池
JP2007042571A (ja) * 2005-06-28 2007-02-15 Hitachi Chem Co Ltd リチウム二次電池負極用炭素粒子及びそれを用いたリチウム二次電池用炭素負極、リチウム二次電池
JP2010171912A (ja) 2009-01-24 2010-08-05 Riichi Tomoyose ヘッドホン
JP2010284422A (ja) 2009-06-15 2010-12-24 Sophia Co Ltd 遊技機

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3556270B2 (ja) * 1994-06-15 2004-08-18 株式会社東芝 リチウム二次電池
US5753387A (en) * 1995-11-24 1998-05-19 Kabushiki Kaisha Toshiba Lithium secondary battery
US6403259B1 (en) 1997-05-30 2002-06-11 Matsushita Electric Industrial Co., Ltd. Nonaqueous electrolyte secondary battery comprising carbon particles with a plural-layer structure
KR100277792B1 (ko) 1998-09-08 2001-02-01 김순택 리튬 계열 전지용 음극 활물질 및 그 제조 방법
US6632569B1 (en) * 1998-11-27 2003-10-14 Mitsubishi Chemical Corporation Carbonaceous material for electrode and non-aqueous solvent secondary battery using this material
JP4448279B2 (ja) 2001-01-25 2010-04-07 日立化成工業株式会社 人造黒鉛質粒子及びその製造方法、非水電解液二次電池負極及びその製造方法、並びにリチウム二次電池
JP4170006B2 (ja) * 2002-03-29 2008-10-22 住友ベークライト株式会社 炭素材およびこれを用いた二次電池用負極材
CN100377393C (zh) 2003-02-20 2008-03-26 三菱化学株式会社 用于锂二次电池的负极和锂二次电池
JP4529445B2 (ja) * 2004-01-13 2010-08-25 日立化成工業株式会社 リチウムイオン二次電池用負極材料及びリチウムイオン二次電池
JP5439701B2 (ja) * 2005-04-21 2014-03-12 日立化成株式会社 リチウムイオン二次電池用負極材、該負極材を用いたリチウムイオン二次電池用負極およびリチウムイオン二次電池
JP4840449B2 (ja) * 2007-01-31 2011-12-21 中央電気工業株式会社 炭素材料およびその製造方法
JP2013515349A (ja) * 2009-12-21 2013-05-02 エー123 システムズ, インコーポレイテッド アノード材料

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04370662A (ja) 1991-06-20 1992-12-24 Mitsubishi Petrochem Co Ltd 二次電池用電極
JP2001035493A (ja) * 1991-06-20 2001-02-09 Mitsubishi Chemicals Corp 二次電池用電極用担持体の製造方法
JPH05307956A (ja) 1992-04-28 1993-11-19 Sanyo Electric Co Ltd 非水系二次電池
JPH1036108A (ja) * 1996-07-25 1998-02-10 Osaka Gas Co Ltd リチウム二次電池負極用炭素材及びその製造方法
JPH1154123A (ja) * 1997-05-30 1999-02-26 Matsushita Electric Ind Co Ltd 非水電解質二次電池
JPH11354122A (ja) * 1998-05-21 1999-12-24 Samsung Display Devices Co Ltd リチウム二次電池用負極活物質及びリチウム二次電池
JP2004273424A (ja) * 2003-02-20 2004-09-30 Mitsubishi Chemicals Corp リチウム二次電池負極及びリチウム二次電池
JP2004207252A (ja) * 2004-03-05 2004-07-22 Mitsubishi Chemicals Corp 非水溶媒二次電池用負極材料
JP2007042571A (ja) * 2005-06-28 2007-02-15 Hitachi Chem Co Ltd リチウム二次電池負極用炭素粒子及びそれを用いたリチウム二次電池用炭素負極、リチウム二次電池
JP2010171912A (ja) 2009-01-24 2010-08-05 Riichi Tomoyose ヘッドホン
JP2010284422A (ja) 2009-06-15 2010-12-24 Sophia Co Ltd 遊技機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2600449A4

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012090728A1 (ja) * 2010-12-29 2012-07-05 三洋電機株式会社 非水電解質二次電池
JP2013191302A (ja) * 2012-03-12 2013-09-26 Toyota Motor Corp 非水電解質二次電池用の負極活物質、及び非水電解質二次電池
JP2018060805A (ja) * 2012-08-23 2018-04-12 三菱ケミカル株式会社 非水系電解液二次電池用炭素材、非水系電解液二次電池用負極、非水系電解液二次電池、及び非水系電解液二次電池用炭素材の製造方法
JP7118926B2 (ja) 2012-08-23 2022-08-16 三菱ケミカル株式会社 非水系電解液二次電池用炭素材、非水系電解液二次電池用負極、非水系電解液二次電池、及び非水系電解液二次電池用炭素材の製造方法
US10720645B2 (en) 2012-08-23 2020-07-21 Mitsubishi Chemical Corporation Carbon material for non-aqueous electrolyte secondary battery, negative electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and manufacturing method for carbon material for non-aqueous electrolyte secondary battery
JP2019165020A (ja) * 2012-08-23 2019-09-26 三菱ケミカル株式会社 非水系電解液二次電池用炭素材、非水系電解液二次電池用負極、非水系電解液二次電池、及び非水系電解液二次電池用炭素材の製造方法
CN110635123A (zh) * 2012-10-26 2019-12-31 日立化成株式会社 锂离子二次电池用负极材料、锂离子二次电池用负极和锂离子二次电池
CN104737336A (zh) * 2012-10-26 2015-06-24 日立化成株式会社 锂离子二次电池用负极材料、锂离子二次电池用负极和锂离子二次电池
US10892482B2 (en) 2012-10-26 2021-01-12 Showa Denko Materials Co., Ltd. Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
CN110635124A (zh) * 2012-10-26 2019-12-31 日立化成株式会社 锂离子二次电池用负极材料、锂离子二次电池用负极和锂离子二次电池
KR20150070971A (ko) 2013-12-17 2015-06-25 히다치 막셀 가부시키가이샤 리튬 이온 2차 전지
JP2016100208A (ja) * 2014-11-21 2016-05-30 日立化成株式会社 リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極及びリチウムイオン二次電池
JPWO2016104024A1 (ja) * 2014-12-26 2017-09-14 日立化成株式会社 リチウムイオン電池
WO2016104024A1 (ja) * 2014-12-26 2016-06-30 日立化成株式会社 リチウムイオン電池
JP2016186913A (ja) * 2015-03-27 2016-10-27 三菱化学株式会社 炭素材、及び、非水系二次電池
JP2017162588A (ja) * 2016-03-08 2017-09-14 オートモーティブエナジーサプライ株式会社 リチウムイオン二次電池用負極
JP2017183205A (ja) * 2016-03-31 2017-10-05 大阪ガスケミカル株式会社 リチウム二次電池負極用材料及びその製造方法
JP2018185931A (ja) * 2017-04-25 2018-11-22 トヨタ自動車株式会社 リチウムイオン二次電池用負極活物質粒子およびその製造方法
WO2018207896A1 (ja) * 2017-05-11 2018-11-15 日立化成株式会社 リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極材の製造方法、リチウムイオン二次電池用負極及びリチウムイオン二次電池
JPWO2018207896A1 (ja) * 2017-05-11 2020-05-14 日立化成株式会社 リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極材の製造方法、リチウムイオン二次電池用負極及びリチウムイオン二次電池
KR20190141172A (ko) 2017-05-11 2019-12-23 히타치가세이가부시끼가이샤 리튬이온 이차전지용 음극재, 리튬이온 이차전지용 음극재의 제조 방법, 리튬이온 이차전지용 음극 및 리튬이온 이차전지
JP2020177931A (ja) * 2017-05-11 2020-10-29 日立化成株式会社 リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極材の製造方法、リチウムイオン二次電池用負極及びリチウムイオン二次電池
JP2020177932A (ja) * 2017-05-11 2020-10-29 日立化成株式会社 リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極材の製造方法、リチウムイオン二次電池用負極及びリチウムイオン二次電池
CN115939379B (zh) * 2017-05-11 2024-02-02 日立化成株式会社 锂离子二次电池用负极材料及其制造方法、锂离子二次电池用负极及锂离子二次电池
US11605818B2 (en) 2017-05-11 2023-03-14 Showa Denko Materials Co., Ltd. Anode material for lithium ion secondary battery, method of producing anode material for lithium ion secondary battery, anode for lithium ion secondary battery, and lithium ion secondary battery
KR20230140595A (ko) 2017-05-11 2023-10-06 가부시끼가이샤 레조낙 리튬이온 이차전지용 음극재, 리튬이온 이차전지용 음극재의 제조 방법, 리튬이온 이차전지용 음극 및 리튬이온 이차전지
CN115939379A (zh) * 2017-05-11 2023-04-07 日立化成株式会社 锂离子二次电池用负极材料及其制造方法、锂离子二次电池用负极及锂离子二次电池
WO2018207333A1 (ja) * 2017-05-11 2018-11-15 日立化成株式会社 リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極材の製造方法、リチウムイオン二次電池用負極及びリチウムイオン二次電池
JP2019046705A (ja) * 2017-09-05 2019-03-22 オートモーティブエナジーサプライ株式会社 リチウムイオン二次電池
US11594731B2 (en) 2017-11-06 2023-02-28 Samsung Sdi Co., Ltd. Anode active material for lithium secondary battery and lithium secondary battery comprising same
JP7025092B2 (ja) 2017-11-06 2022-02-24 三星エスディアイ株式会社 リチウム二次電池用負極活物質およびこれを含むリチウム二次電池
JP2021500707A (ja) * 2017-11-06 2021-01-07 三星エスディアイ株式会社Samsung SDI Co., Ltd. リチウム二次電池用負極活物質およびこれを含むリチウム二次電池
WO2021059444A1 (ja) * 2019-09-26 2021-04-01 昭和電工マテリアルズ株式会社 リチウムイオン二次電池用負極材及びその製造方法、リチウムイオン二次電池用負極、並びにリチウムイオン二次電池
WO2022215126A1 (ja) 2021-04-05 2022-10-13 昭和電工マテリアルズ株式会社 リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極及びリチウムイオン二次電池
WO2022264384A1 (ja) 2021-06-17 2022-12-22 昭和電工マテリアルズ株式会社 リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極及びリチウムイオン二次電池
JP7444322B1 (ja) 2023-07-12 2024-03-06 株式会社レゾナック リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極及びリチウムイオン二次電池

Also Published As

Publication number Publication date
EP3691001A1 (en) 2020-08-05
CN107528053A (zh) 2017-12-29
KR101921768B1 (ko) 2018-11-23
US20130143127A1 (en) 2013-06-06
KR20130101002A (ko) 2013-09-12
JP6365580B2 (ja) 2018-08-01
JP6278596B2 (ja) 2018-02-14
CN107528053B (zh) 2021-07-02
US10854871B2 (en) 2020-12-01
TW201220583A (en) 2012-05-16
CN103098274A (zh) 2013-05-08
TWI620372B (zh) 2018-04-01
CA2807015A1 (en) 2012-02-02
EP2600449A4 (en) 2016-09-28
CA2807015C (en) 2019-06-11
JPWO2012015054A1 (ja) 2013-09-12
EP2600449A1 (en) 2013-06-05
JP2016131159A (ja) 2016-07-21

Similar Documents

Publication Publication Date Title
JP6365580B2 (ja) 炭素材料、リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極及びリチウムイオン二次電池
US11605818B2 (en) Anode material for lithium ion secondary battery, method of producing anode material for lithium ion secondary battery, anode for lithium ion secondary battery, and lithium ion secondary battery
JP6201425B2 (ja) リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極及びリチウムイオン二次電池
JP7156468B2 (ja) リチウムイオン二次電池用負極材の製造方法、及びリチウムイオン二次電池用負極材
KR101809766B1 (ko) 리튬 이온 2차 전지용 음극재, 그 음극재를 이용한 리튬 이온 2차 전지용 음극 및 리튬 이온 2차 전지
WO2020141573A1 (ja) リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極、及びリチウムイオン二次電池
TWI752112B (zh) 鋰離子二次電池用負極材料、鋰離子二次電池用負極及鋰離子二次電池
US20220085370A1 (en) Negative electrode material for lithium ion secondary battery, method of producing negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP6524647B2 (ja) リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極及びリチウムイオン二次電池
TW202343856A (zh) 鋰離子二次電池用負極材料、鋰離子二次電池用負極材料的製造方法、鋰離子二次電池用負極及鋰離子二次電池
JP7416077B2 (ja) リチウムイオン二次電池用負極材及びその製造方法、リチウムイオン二次電池用負極、並びにリチウムイオン二次電池
JP7521693B2 (ja) リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極及びリチウムイオン二次電池
WO2024195012A1 (ja) リチウムイオン二次電池負極用黒鉛質炭素材、リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極及びリチウムイオン二次電池
WO2024028994A1 (ja) リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極、及びリチウムイオン二次電池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180037184.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11812643

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012526605

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2807015

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13812595

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20137005133

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011812643

Country of ref document: EP