[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2012011303A1 - 画像処理装置及び画像処理方法 - Google Patents

画像処理装置及び画像処理方法 Download PDF

Info

Publication number
WO2012011303A1
WO2012011303A1 PCT/JP2011/058315 JP2011058315W WO2012011303A1 WO 2012011303 A1 WO2012011303 A1 WO 2012011303A1 JP 2011058315 W JP2011058315 W JP 2011058315W WO 2012011303 A1 WO2012011303 A1 WO 2012011303A1
Authority
WO
WIPO (PCT)
Prior art keywords
pixel
value
predetermined
region
feature amount
Prior art date
Application number
PCT/JP2011/058315
Other languages
English (en)
French (fr)
Inventor
田中 健一
Original Assignee
オリンパスメディカルシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパスメディカルシステムズ株式会社 filed Critical オリンパスメディカルシステムズ株式会社
Priority to CN201180004436.2A priority Critical patent/CN102596001B/zh
Priority to JP2011538774A priority patent/JP4971525B2/ja
Priority to EP11809477.0A priority patent/EP2476363A4/en
Priority to US13/237,113 priority patent/US8306301B2/en
Publication of WO2012011303A1 publication Critical patent/WO2012011303A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/05Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances characterised by the image sensor, e.g. camera, being in the distal end portion
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00004Operational features of endoscopes characterised by electronic signal processing
    • A61B1/00009Operational features of endoscopes characterised by electronic signal processing of image signals during a use of endoscope
    • A61B1/000094Operational features of endoscopes characterised by electronic signal processing of image signals during a use of endoscope extracting biological structures
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0638Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements providing two or more wavelengths
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0646Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements with illumination filters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0655Control therefor
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/12Edge-based segmentation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/063Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements for monochromatic or narrow-band illumination
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4887Locating particular structures in or on the body
    • A61B5/489Blood vessels
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10068Endoscopic image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30101Blood vessel; Artery; Vein; Vascular

Definitions

  • the present invention relates to an image processing apparatus and an image processing method, and more particularly to an image processing apparatus and an image processing method used for diagnosis of a living tissue.
  • Japanese Patent Laid-Open No. 10-143648 discloses an image that uses a smoothed image obtained by smoothing a digital image and forms a skeleton of a band-like structure such as a blood vessel included in the digital image. A process is disclosed.
  • an original detection target such as an edge of a step on a surface of a living tissue and a shadow caused by the step.
  • the processing result may be obtained as if the region where something different from the region exists and the region where the band-like structure such as a blood vessel exists are mixed, resulting in the original detection target.
  • the detection accuracy of blood vessels and the like is lowered.
  • the present invention has been made in view of the above-described circumstances, and provides an image processing apparatus and an image processing method capable of improving the detection accuracy of a predetermined structure included in an image obtained by imaging a living tissue. It is intended to provide.
  • An image processing apparatus includes an area detection unit that detects a candidate area estimated to have a structure of a predetermined shape from an image obtained by imaging a biological tissue, and a boundary corresponding to the boundary of the candidate area
  • a boundary pixel detection unit that detects pixels; a region setting unit that sets at least one local region having an area of one pixel or more in two neighboring regions near and on both sides of the boundary pixel; and the region A feature amount calculation unit that calculates a predetermined feature amount based on a predetermined value obtained for each pixel of each local region set by the setting unit, and is set in a neighboring region on one side as viewed from the boundary pixel
  • the calculation result of the predetermined feature amount in the first local region group and the calculation result of the predetermined feature amount in the second local region group set in the neighboring region on the other side when viewed from the boundary pixel.
  • a discriminant value calculation unit that calculates a discriminant value for enabling discrimination between the two calculation results of the predetermined feature amount, and the region detection unit based
  • the image processing apparatus includes one or more pixels in a pixel selection unit that selects a target pixel from an image obtained by imaging a biological tissue, and in two neighboring regions that are present on both sides of the target pixel.
  • a region setting unit that sets at least one local region having an area, and a feature that calculates a predetermined feature amount based on a predetermined value obtained for each pixel unit of each local region set by the region setting unit.
  • a discriminant value calculation for calculating a discriminant value for making it possible to discriminate a difference between the two predetermined feature value calculation results based on the calculated result of the predetermined feature value in the second local region group.
  • An image processing method includes an area detection step for detecting a candidate area where a structure of a predetermined shape is estimated from an image obtained by imaging a living tissue, and a boundary corresponding to the boundary of the candidate area
  • a boundary pixel detecting step for detecting a pixel
  • a region setting step for setting at least one local region having an area of one pixel or more in two neighboring regions in the vicinity and on both sides of the boundary pixel
  • the region A feature amount calculating step for calculating a predetermined feature amount based on a predetermined value obtained for each pixel of each local region set by the setting step, and a neighboring region on one side as viewed from the boundary pixel
  • a determination value calculation step for calculating a determination value for enabling the difference between the calculation results of the two predetermined feature values to be
  • the image processing method of the present invention includes a pixel selection step of selecting a pixel of interest from an image obtained by imaging a biological tissue, and at least one pixel in two neighboring regions existing on both sides of the pixel of interest.
  • a region setting step for setting at least one local region having an area, and a feature for calculating a predetermined feature amount based on a predetermined value obtained for each pixel unit of each local region set by the region setting step An amount calculation step; a calculation result of the predetermined feature amount in the first local region group set in a neighboring region on one side as viewed from the target pixel; and a neighboring region on the other side as viewed from the target pixel
  • a discriminant value for enabling discrimination of the difference between the two calculation results of the predetermined feature value is calculated That has a discriminant value calculating step, and a candidate region detection step of detecting from the basis of the calculation result of the discrimination value, estimated candidate region the image structure having
  • region AR1 and AR2 in 1st Example of this invention The graph which shows an example of the fluctuation
  • the schematic diagram which shows an example of the detection result of the blood vessel candidate area
  • the flowchart which shows an example of the process performed in the modification of the 1st Example of this invention.
  • region AR1 and AR2 in the modification of the 1st Example of this invention The flowchart which shows an example of the process performed in 2nd Example of this invention.
  • (First embodiment) 1 to 11 relate to a first embodiment of the present invention.
  • an endoscope apparatus 1 is inserted into a body cavity of a subject, and an endoscope 2 that outputs a signal of an image obtained by imaging a subject such as a living tissue 101 in the body cavity.
  • the light source device 3 that emits illumination light for illuminating the living tissue 101
  • the processor 4 that performs various processes on the output signal from the endoscope 2, and the image corresponding to the video signal from the processor 4 are displayed.
  • Display device 5 and an external storage device 6 for storing an output signal corresponding to a processing result in the processor 4.
  • the endoscope 2 includes an insertion portion 21a having a shape and a size that can be inserted into a body cavity of a subject, a distal end portion 21b provided on the distal end side of the insertion portion 21a, and a proximal end side of the insertion portion 21a. And an operating portion 21c provided. Further, a light guide 7 for transmitting illumination light emitted from the light source device 3 to the distal end portion 21b is inserted into the insertion portion 21a.
  • One end surface (light incident end surface) of the light guide 7 is detachably connected to the light source device 3.
  • the other end face (light emission end face) of the light guide 7 is disposed in the vicinity of an illumination optical system (not shown) provided at the distal end portion 21 b of the endoscope 2.
  • an illumination optical system not shown
  • the illumination light emitted from the light source device 3 passes through the light guide 7 in a state connected to the light source device 3 and the illumination optical system (not shown) provided at the distal end portion 21b. The light is emitted to the living tissue 101.
  • the distal end portion 21b of the endoscope 2 is provided with an objective optical system 22 that forms an optical image of the subject, and a CCD 23 that captures the optical image formed by the objective optical system 22 and acquires the image.
  • the operation unit 21c of the endoscope 2 is provided with an observation mode switching switch 24 capable of giving an instruction to switch the observation mode to either the normal light observation mode or the narrow band light observation mode. .
  • the light source device 3 includes a white light source 31 composed of a xenon lamp or the like, a rotary filter 32 that uses white light emitted from the white light source 31 as field sequential illumination light, a motor 33 that rotationally drives the rotary filter 32, and a rotary filter
  • the motor 34 moves the motor 32 and the motor 33 in a direction perpendicular to the emission light path of the white light source 31, the rotary filter drive unit 35 that drives the motors 33 and 34 based on the control of the processor 4, and the rotary filter 32.
  • a condensing optical system 36 that condenses the illumination light and supplies it to the incident end face of the light guide 7.
  • the rotary filter 32 is configured in a disc shape with the center as a rotation axis, and includes a first filter group including a plurality of filters provided along the circumferential direction on the inner peripheral side. 32A, and a second filter group 32B including a plurality of filters provided along the circumferential direction on the outer peripheral side. Then, when the driving force of the motor 33 is transmitted to the rotating shaft, the rotary filter 32 rotates.
  • the rotary filter 32 it shall be comprised with the light shielding member except the part by which each filter of 32 A of 1st filter groups and the 2nd filter group 32B is arrange
  • the first filter group 32A is provided along the circumferential direction on the inner peripheral side of the rotary filter 32, and transmits an R filter 32r that transmits light in the red wavelength band, and transmits light in the green wavelength band.
  • the G filter 32g and the B filter 32b that transmits light in the blue wavelength band are included.
  • the R filter 32r has a configuration that mainly transmits light (R light) from 600 nm to 700 nm, for example, as shown in FIG.
  • the G filter 32g has a configuration that mainly transmits light (G light) from 500 nm to 600 nm as shown in FIG. 3, for example.
  • the B filter 32 b has a configuration that mainly transmits light (B light) from 400 nm to 500 nm.
  • the second filter group 32B includes a Bn filter 321b that transmits blue and narrow band light, and a Gn that transmits green and narrow band light, which are provided along the circumferential direction on the outer peripheral side of the rotary filter 32. And a filter 321g.
  • the Bn filter 321b has a center wavelength set near 415 nm and is configured to transmit light in a narrow band (Bn light) compared to the B light.
  • the Gn filter 321g has a center wavelength set near 540 nm and is configured to transmit light in a narrow band (Gn light) compared to G light.
  • the white light emitted from the white light source 31 is discretized through the second filter group 32B, thereby generating a plurality of bands of narrowband light for the narrowband light observation mode.
  • the processor 4 has a function as an image processing apparatus. Specifically, the processor 4 includes an image processing unit 41 and a control unit 42.
  • the image processing unit 41 includes an image data generation unit 41a, a calculation unit 41b, and a video signal generation unit 41c.
  • the image data generation unit 41 a of the image processing unit 41 is obtained in the CCD 23 by performing processing such as noise removal and A / D conversion on the output signal from the endoscope 2 based on the control of the control unit 42. Image data corresponding to the obtained image is generated.
  • the calculation unit 41b of the image processing unit 41 performs a predetermined process using the image data generated by the image data generation unit 41a, thereby detecting a predetermined structure such as a blood vessel from the image data.
  • a predetermined structure such as a blood vessel
  • the video signal generation unit 41c of the image processing unit 41 generates and outputs a video signal by performing processing such as gamma conversion and D / A conversion on the image data generated by the image data generation unit 41a.
  • the control unit 42 is configured to cause the light source device 3 to emit broadband light for the normal light observation mode when it is detected that an instruction to switch to the normal light observation mode is performed based on the instruction of the observation mode switch 24. Control is performed on the rotary filter drive unit 35. Then, based on the control of the control unit 42, the rotary filter driving unit 35 inserts the first filter group 32A on the emission light path of the white light source 31, and the second filter from the emission light path of the white light source 31. The motor 34 is operated so as to retract the group 32B.
  • the control unit 42 has a plurality of bands of narrowband light for the narrowband light observation mode. Is controlled with respect to the rotary filter driving unit 35. Then, based on the control of the control unit 42, the rotary filter driving unit 35 inserts the second filter group 32B on the emission light path of the white light source 31, and the first filter from the emission light path of the white light source 31.
  • the motor 34 is operated so as to retract the group 32A.
  • an image (normal light image) having substantially the same color as when the object is viewed with the naked eye. Can be displayed on the display device 5 and further stored in the external storage device 6. Further, according to the configuration of the endoscope apparatus 1 described above, when the narrowband light observation mode is selected, an image (narrowband light image) in which blood vessels included in the living tissue 101 are emphasized is displayed. It can be displayed on the device 5 and further stored in the external storage device 6.
  • the operator turns on the power of each part of the endoscope apparatus 1 and then selects the normal light observation mode with the observation mode switch 24. Then, the operator looks at the endoscope 2 while viewing the image displayed on the display device 5 when the normal light observation mode is selected, that is, an image having substantially the same color as when the object is viewed with the naked eye. By inserting into the body cavity, the distal end portion 21b is brought close to the site where the biological tissue 101 to be observed exists.
  • the observation mode changeover switch 24 When the normal light observation mode is selected by the observation mode changeover switch 24, light of each color of R light, G light, and B light is sequentially emitted from the light source device 3 to the living tissue 101, and the light of each color is emitted from the endoscope 2. Images corresponding to each are acquired.
  • the image data generation unit 41a of the image processing unit 41 receives color component image data corresponding to each image. Are respectively generated (step S1 in FIG. 5).
  • a blood vessel corresponding to a predetermined structure to be detected and a non-blood vessel which is an edge of a step on the surface of a living tissue, as schematically shown in FIG. The description will be made assuming that the image data including the structure and the background mucous membrane is processed.
  • the calculation unit 41b having the function of the region detection unit performs a process using a known blood vessel detection method on the image data generated by the image data generation unit 41a, so that a candidate region estimated to have a blood vessel exists.
  • a blood vessel candidate region is detected from the image data (step S2 in FIG. 5), the detection result of the blood vessel candidate region is temporarily held.
  • the calculation unit 41b performs processing using a known blood vessel detection method on the image data schematically illustrated in FIG. 6, for example, to detect a blood vessel candidate region as illustrated in FIG. 7. Get.
  • a known blood vessel detection method for obtaining the detection result as described above for example, various methods such as a blood vessel detection method using a bandpass filter or a line segment detection method based on a vector concentration degree may be applied. Can do.
  • the calculation unit 41b having the function of the boundary pixel detection unit binarizes the detection result based on the detection result of the blood vessel candidate region obtained by the process of step S2 in FIG.
  • a boundary pixel corresponding to a pixel at the edge of the blood vessel candidate region is searched using the image (step S3 in FIG. 5).
  • the calculation unit 41b calculates the gradient direction of the boundary pixel by applying a filter such as a Sobel filter to the boundary pixel obtained by the process of step S3 in FIG. 5 (step S4 in FIG. 5).
  • a filter such as a Sobel filter
  • the calculation unit 41b performs a process of detecting two boundary pixels that are 180 ° or approximately 180 ° and that are closest to each other as one boundary pixel pair, as shown in FIG. It performs with respect to the boundary pixel obtained by the process of step S4 (step S5 of FIG. 5).
  • the calculation unit 41b Based on the boundary pixel pair detected by the process of step S5 in FIG. 5, the calculation unit 41b includes an area AR1 centered on a pixel located at a predetermined distance from the one boundary pixel in the gradient direction, and the other An area AR2 centering on a pixel at a position away from the boundary pixel in the gradient direction by the predetermined distance is set (step S6 in FIG. 5).
  • each of the areas AR1 and AR2 is a rectangular area of 3 ⁇ 3 pixels, two boundaries forming one boundary pixel pair
  • the positional relationship between the pixels and the areas AR1 and AR2 is as schematically shown in FIG.
  • regions AR1 and AR2 may be any shape region as long as both are set as regions having an area of one pixel or more.
  • a plurality of areas AR1 and AR2 may be set for each boundary pixel pair.
  • the predetermined distance may be an arbitrary distance.
  • the calculation unit 41b having the function of the region setting unit determines the regions AR1 and AR2 as local regions having an area of one pixel or more in two neighboring regions that are present near and on both sides of one boundary pixel pair. Set.
  • the calculation unit 41b having the function of the feature amount calculation unit calculates the color tone feature value Va1 in the area AR1 and the color tone feature value Va2 in the area AR2 based on the processing result of step S6 in FIG. 5 (FIG. 5). Step S7).
  • the calculation unit 41b calculates the Ga / Ra value obtained for each pixel unit set in the area AR1.
  • the average value is calculated as the color tone feature value Va1.
  • the calculation unit 41b calculates an average value of Ga / Ra values obtained for each pixel unit set in the area AR2 as the color tone feature value Va2.
  • calculation unit 41b is not limited to calculating the average value of the Ga / Ra values of each pixel as the color tone feature values Va1 and Va2, and for example, obtains the maximum value of the Ga / Ra value of each pixel.
  • Color tone feature values Va1 and Va2 may be used, or a minimum value of Ga / Ra values of each pixel may be acquired and used as color tone feature values Va1 and Va2.
  • the color tone feature values Va1 and Va2 may be calculated using luminance values (monochrome gradation values) singly or in combination.
  • the calculation unit 41b calculates the value of Ga / Ra in the central pixel of the blood vessel candidate region existing between the two boundary pixels forming the boundary pixel pair as the color tone feature amount Vs. Thereafter, the calculation unit 41b determines whether or not the color tone feature value Va1 or Va2 is equal to or less than the color tone feature value Vs (step S8 in FIG. 5).
  • the calculation unit 41b determines whether the boundary pixel on the area AR1 side and the boundary pixel on the area AR2 side are After the weighting coefficient W1 in the blood vessel candidate region is set to 1 (step S9 in FIG. 5), the processing in step S11 in FIG. 5 is continued.
  • the calculation unit 41b performs a calculation using the following formula (1) to calculate the weight coefficient W1 ( Step S10 in FIG.
  • the magnitude relationship in the determination process in step S8 in FIG. What is necessary is just to calculate W1.
  • the weighting coefficient W1 is calculated using a mathematical expression different from the following mathematical expression (1). May be calculated.
  • Ga / Ra values are calculated in order from the center C1 of the area AR1 to the center C2 of the area AR2, a variation in value as shown in the graph of FIG.
  • Ga / Ra values are calculated in order from the center C1 of the area AR1 to the center C2 of the area AR2, a variation in value as shown in the graph of FIG.
  • a non-blood vessel structure exists in the blood vessel candidate area between the boundary pixel on the area AR1 side and the boundary pixel on the area AR2 side. Estimated.
  • the calculation unit 41b having the function of the discriminant value calculation unit, based on the calculation result of the color tone feature value Va1 in the area AR1 and the calculation result of the color tone feature value Va2 in the area AR2, A weighting factor W1 is calculated as a discriminant value for making it possible to discriminate the difference between the calculation results.
  • the weight coefficient W1 cannot be calculated by the calculation using the above formula (1). Therefore, in this embodiment, when the determination condition in step S8 in FIG. 5 is satisfied, the weighting factor W1 in the blood vessel candidate region between the boundary pixel on the region AR1 side and the boundary pixel on the region AR2 side is set to 1. Thus, the detection result of the blood vessel candidate region obtained in step S2 of FIG. 5 is held.
  • the calculation unit 41b having the function of the candidate region correction unit uses the weighting coefficient W1 obtained by the processes of steps S9 and S10 of FIG. 5 and uses the weight coefficient W1 obtained by the process of step S2 of FIG.
  • the detection result is corrected (step S11 in FIG. 5).
  • a detection result that results in a uniform high evaluation value in the pixel group of the blood vessel candidate region and a uniform low evaluation value in the pixel group other than the blood vessel candidate region is shown in step S2 of FIG.
  • the evaluation value can be reduced to a magnitude that is substantially the same as the evaluation value in the pixel group other than the blood vessel candidate region.
  • the calculating part 41b can acquire the detection result of the blood vessel candidate area
  • the detection result can be corrected so as to remove the pixel group as much as possible.
  • processing of this embodiment is not limited to being applied only to blood vessels, and can be applied in a similar manner to structures other than blood vessels, such as pit patterns.
  • the processing using the reciprocal of the weighting coefficient W1 obtained through the calculation of the above formula (1) for example, the edge of the step on the surface of the living tissue and the cause of the step It is also possible to detect a portion corresponding to a shadow generated in this manner from the image. Therefore, according to the present embodiment, it is possible to improve the detection accuracy of a predetermined structure (such as a blood vessel) included in an image obtained by imaging a living tissue as compared with the conventional case.
  • the present invention is not limited to performing the process of correcting the detection result by applying the weighting coefficient W1 to the detection result of the blood vessel candidate region obtained by using a known method, for example, You may perform the process which obtains the calculation result which calculated weighting coefficient W1 for every pixel of image data as a detection result of a blood vessel candidate area
  • the image data generation unit 41a of the image processing unit 41 receives color component image data corresponding to each image. Are respectively generated (step S21 in FIG. 12).
  • the calculation unit 41b having the function of the pixel selection unit selects one pixel of interest from each pixel of the image data generated by the image data generation unit 41a (step S22 in FIG. 12).
  • the calculation unit 41b calculates a gradient direction of the target pixel by applying a filter such as a Sobel filter to the target pixel selected in the process of step S22 of FIG. 12 (step S23 of FIG. 12).
  • a filter such as a Sobel filter
  • the calculation unit 41b Based on the gradient direction calculated in step S23 of FIG. 12, the calculation unit 41b has a region AR1 centered on a pixel at a predetermined distance from the target pixel in the gradient direction, and a gradient from the target pixel. An area AR2 centered on a pixel at a position separated by the predetermined distance in the opposite direction (direction forming an angle of 180 ° or approximately 180 ° with respect to the gradient direction) is set (FIG. 12). Step S24).
  • the areas AR1 and AR2 are both rectangular areas of 3 ⁇ 3 pixels
  • the positional relationship between the target pixel and the areas AR1 and AR2 is schematically as shown in FIG. It will be a thing.
  • the calculation unit 41b having the function of the region setting unit sets the regions AR1 and AR2 as local regions having an area of one pixel or more in two neighboring regions near and on both sides of the target pixel.
  • the computing unit 41b calculates the color tone feature value Va1 in the area AR1 and the color tone feature value Va2 in the area AR2 based on the processing result in step S24 in FIG. 12 (step S25 in FIG. 12).
  • the calculation unit 41b calculates the weighting factor W1 by applying the color tone feature values Va1 and Va2 calculated in step S25 in FIG. 12 to the above equation (1) (step S26 in FIG. 12), and is then included in the image data. It is determined whether or not the weighting factor W1 has been calculated for all pixels (step S27 in FIG. 12).
  • the calculation unit 41b repeats the processing from step S22 to step S26 in FIG. 12 until there is no pixel for which the weighting coefficient W1 has not been calculated. Then, when the calculation unit 41b having the function of the candidate area detection unit completes the calculation of the weighting factor W1 for all the pixels included in the image data, the weighting factor W1 is equal to or greater than a predetermined threshold based on the calculation result of the weighting factor W1. Is detected as a blood vessel candidate region (step S28 in FIG. 12).
  • the processing of this modification is not limited to that applied only to blood vessels, and can be applied to structures other than blood vessels, such as pit patterns, in substantially the same manner.
  • the processing using the reciprocal of the weighting coefficient W1 obtained through the calculation of the above formula (1) for example, the edge of the level difference on the surface of the living tissue and the level difference It is also possible to detect a portion corresponding to a shadow generated in this manner from the image. Therefore, even when the process of this modification is used instead of the process of the above-described embodiment, the detection accuracy of a predetermined structure (such as a blood vessel) included in an image obtained by imaging a living tissue is improved. This can be improved as compared with the prior art.
  • (Second embodiment) 14 to 17 relate to a second embodiment of the present invention.
  • processing is performed using the endoscope apparatus 1 having the same configuration as that of the first embodiment. For this reason, in the present embodiment, detailed description regarding the configuration of the endoscope apparatus is omitted.
  • the image data generation unit 41a of the image processing unit 41 receives color component image data corresponding to each image. Are respectively generated (step S41 in FIG. 14).
  • a blood vessel corresponding to a predetermined structure to be detected and a non-blood vessel which is an edge of a step on the surface of a living tissue, as schematically shown in FIG. The description will be made assuming that the image data including the structure and the background mucous membrane is processed.
  • the calculation unit 41b performs processing using a known blood vessel detection method on the image data generated by the image data generation unit 41a, thereby selecting a blood vessel candidate region as a candidate region estimated to have a blood vessel. After detection from the data (step S42 in FIG. 14), the detection result of the blood vessel candidate region is temporarily held.
  • the calculation unit 41b performs processing using a known blood vessel detection method on the image data schematically illustrated in FIG. 6, for example, to detect a blood vessel candidate region as illustrated in FIG. 7. Get.
  • a known blood vessel detection method for obtaining the detection result as described above for example, various methods such as a blood vessel detection method using a bandpass filter or a line segment detection method based on a vector concentration degree may be applied. Can do.
  • the calculation unit 41b performs threshold value processing on the detection result and binarizes the image using the binarized image.
  • a boundary pixel corresponding to the edge pixel is searched (step S43 in FIG. 14).
  • the calculation unit 41b calculates the gradient direction of the boundary pixel by applying a filter such as a Sobel filter to the boundary pixel obtained by the process of step S43 in FIG. 14 (step S44 in FIG. 14).
  • a filter such as a Sobel filter
  • the computing unit 41b performs processing for detecting two boundary pixels that are 180 ° or approximately 180 ° and that are closest to each other as one boundary pixel pair, with the angle between the gradient directions being 180 ° or approximately 180 °. It performs with respect to the boundary pixel obtained by the process of step S44 (step S45 of FIG. 14).
  • the calculation unit 41b Based on the boundary pixel pair detected by the process of step S45 in FIG. 14, the calculation unit 41b includes an area AR3 centered on a pixel located at a predetermined distance from one boundary pixel in the gradient direction, and the other An area AR4 centered on a pixel at a position away from the boundary pixel in the gradient direction by the predetermined distance is set (step S46 in FIG. 14).
  • the above-mentioned predetermined distance is a distance of 1.5 pixels
  • the areas AR3 and AR4 are both rectangular areas of 3 ⁇ 3 pixels
  • a pair of boundary pixels is formed.
  • the positional relationship between one boundary pixel and the areas AR3 and AR4 is as schematically shown in FIG.
  • the regions AR3 and AR4 may be regions of any shape as long as they are set as regions having an area of one pixel or more including at least a part of the boundary pixels.
  • the areas AR3 and AR4 shown in FIG. 15 are exemplified as a case where 0.5 mm of boundary pixels are included in a 3 ⁇ 3 pixel rectangular area.
  • One boundary pixel A plurality of areas AR3 and AR4 may be set for each pair. Further, as long as the predetermined distance is set so that at least a part of one boundary pixel is included in the area AR3 and at least a part of the other boundary pixel is included in the area AR4. In, it is good also as arbitrary distances.
  • the calculation unit 41b having the function of the region setting unit sets the regions AR3 and AR4 as local regions each having an area of one pixel or more in two neighboring regions existing on both sides of the boundary pixel pair. .
  • the computing unit 41b having the function of the feature quantity calculation unit calculates the gradient feature quantity Vb1 in the area AR3 and the gradient feature quantity Vb2 in the area AR4 based on the processing result of step S46 in FIG. 14 (FIG. 14). Step S47).
  • the calculation unit 41b calculates, for example, an average value of gradient strength obtained by applying a Sobel filter for each pixel unit set in the area AR3 as the gradient feature amount Vb1. In addition, the calculation unit 41b calculates, for example, an average value of the gradient strength obtained by applying the Sobel filter for each pixel unit set in the area AR4 as the gradient feature amount Vb2.
  • calculation unit 41b is not limited to obtaining the gradient intensity by applying the Sobel filter for each pixel unit, but may obtain the gradient intensity for each pixel unit using another method.
  • a blood vessel is actually present in the blood vessel candidate region between the boundary pixel on the region AR3 side and the boundary pixel on the region AR4 side.
  • a weighting factor W2 that is a relatively large value when it is estimated to exist and a relatively small value when it is estimated that a non-vascular structure exists in the blood vessel candidate region can be obtained. it can.
  • the calculation unit 41b having the function of the discriminant value calculation unit, based on the calculation result of the gradient feature value Vb1 in the area AR3 and the calculation result of the gradient feature value Vb2 in the area AR4, A weighting coefficient W2 is calculated as a discriminant value for making it possible to discriminate the difference between the calculation results.
  • the calculation unit 41b having the function of the candidate region correction unit corrects the detection result of the blood vessel candidate region obtained by the process of step S42 of FIG. 14 using the weighting coefficient W2 obtained by the process of step S48 of FIG. (Step S49 in FIG. 14).
  • a detection result in which the evaluation value is uniformly high in the pixel group of the blood vessel candidate region and the evaluation value is uniformly low in the pixel group other than the blood vessel candidate region is shown in step S42 in FIG.
  • the evaluation value can be reduced to a magnitude that is substantially the same as the evaluation value in the pixel group other than the blood vessel candidate region.
  • the calculating part 41b can acquire the detection result of the blood vessel candidate area
  • the series of processes shown in FIG. The detection result can be corrected so as to remove the pixel group as much as possible.
  • the processing of this embodiment is not limited to being applied only to blood vessels, and can be applied in a similar manner to structures other than blood vessels, such as pit patterns.
  • the processing using the reciprocal of the weighting factor W2 obtained through the calculation of the above formula (2) for example, the edge of the step on the surface of the living tissue and the step It is also possible to detect a portion corresponding to a shadow generated in this manner from the image. Therefore, according to the present embodiment, it is possible to improve the detection accuracy of a predetermined structure (such as a blood vessel) included in an image obtained by imaging a living tissue as compared with the conventional case.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Surgery (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medical Informatics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Pathology (AREA)
  • Public Health (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Optics & Photonics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Veterinary Medicine (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Endoscopes (AREA)

Abstract

 本発明の画像処理装置は、生体組織を撮像して得た画像の中から所定の形状の構造が存在すると推定される候補領域を検出する領域検出部と、候補領域の境界を検出する境界画素検出部と、境界の近傍かつ両側において局所領域を少なくとも1つずつ設定する領域設定部と、領域設定部により設定された各局所領域の画素単位毎に得られる所定の値に基づいて所定の特徴量を算出する特徴量算出部と、境界からみて一方の側の局所領域群における所定の特徴量の算出結果と、境界からみて他方の側の局所領域群における所定の特徴量の算出結果と、に基づいて判別値を算出する判別値算出部と、判別値の算出結果に基づいて候補領域の検出結果を補正する候補領域補正部と、を有する。

Description

画像処理装置及び画像処理方法
 本発明は、画像処理装置及び画像処理方法に関し、特に、生体組織の診断等に用いられる画像処理装置及び画像処理方法に関するものである。
 内視鏡等により体腔内の生体組織を撮像して得られた画像における病変部位(異常部位)の特定を支援する目的において、生体粘膜下の血管の走行パターン、及び(または)、上皮組織の所定の構造等を該画像の中から検出する画像処理に関する研究が近年進められている。
 例えば、日本国特開平10-143648号公報には、ディジタル画像を平滑化して得られた平滑化画像を用い、該ディジタル画像に含まれる血管等の帯状の構造物のスケルトンを形成するような画像処理が開示されている。
 しかし、日本国特開平10-143648号公報に開示された画像処理によれば、例えば、生体組織表面の段差の縁、及び、該段差に起因して生じた影のような、本来の検出対象とは異なるものが存在する領域と、血管等の帯状の構造物が存在する領域と、を混同したような処理結果が得られてしまう場合があるため、結果的に、本来の検出対象である血管等の検出精度が低下してしまう、という課題が生じている。
 本発明は、前述した事情に鑑みてなされたものであり、生体組織を撮像して得られた画像に含まれる所定の構造の検出精度を向上させることが可能な画像処理装置及び画像処理方法を提供することを目的としている。
 本発明の画像処理装置は、生体組織を撮像して得た画像の中から所定の形状の構造が存在すると推定される候補領域を検出する領域検出部と、前記候補領域の境界に相当する境界画素を検出する境界画素検出部と、前記境界画素の近傍かつ両側に存在する2つの近傍領域において、1画素以上の面積を具備する局所領域を少なくとも1つずつ設定する領域設定部と、前記領域設定部により設定された各局所領域の画素単位毎に得られる所定の値に基づいて所定の特徴量を算出する特徴量算出部と、前記境界画素からみて一方の側の近傍領域に設定された第1の局所領域群における前記所定の特徴量の算出結果と、前記境界画素からみて他方の側の近傍領域に設定された第2の局所領域群における前記所定の特徴量の算出結果と、に基づき、これら2つの前記所定の特徴量の算出結果の差異を判別可能とするための判別値を算出する判別値算出部と、前記判別値の算出結果に基づき、前記領域検出部による前記候補領域の検出結果を補正する候補領域補正部と、を有する。
 本発明の画像処理装置は、生体組織を撮像して得た画像の中から注目画素を選択する画素選択部と、前記注目画素の近傍かつ両側に存在する2つの近傍領域において、1画素以上の面積を具備する局所領域を少なくとも1つずつ設定する領域設定部と、前記領域設定部により設定された各局所領域の画素単位毎に得られる所定の値に基づいて所定の特徴量を算出する特徴量算出部と、前記注目画素からみて一方の側の近傍領域に設定された第1の局所領域群における前記所定の特徴量の算出結果と、前記注目画素からみて他方の側の近傍領域に設定された第2の局所領域群における前記所定の特徴量の算出結果と、に基づき、これら2つの前記所定の特徴量の算出結果の差異を判別可能とするための判別値を算出する判別値算出部と、前記判別値の算出結果に基づき、所定の形状の構造が存在すると推定される候補領域を前記画像の中から検出する候補領域検出部と、を有する。
 本発明の画像処理方法は、生体組織を撮像して得た画像の中から所定の形状の構造が存在すると推定される候補領域を検出する領域検出ステップと、前記候補領域の境界に相当する境界画素を検出する境界画素検出ステップと、前記境界画素の近傍かつ両側に存在する2つの近傍領域において、1画素以上の面積を具備する局所領域を少なくとも1つずつ設定する領域設定ステップと、前記領域設定ステップにより設定された各局所領域の画素単位毎に得られる所定の値に基づいて所定の特徴量を算出する特徴量算出ステップと、前記境界画素からみて一方の側の近傍領域に設定された第1の局所領域群における前記所定の特徴量の算出結果と、前記境界画素からみて他方の側の近傍領域に設定された第2の局所領域群における前記所定の特徴量の算出結果と、に基づき、これら2つの前記所定の特徴量の算出結果の差異を判別可能とするための判別値を算出する判別値算出ステップと、前記判別値の算出結果に基づき、前記領域検出ステップによる前記候補領域の検出結果を補正する候補領域補正ステップと、を有する。
 本発明の画像処理方法は、生体組織を撮像して得た画像の中から注目画素を選択する画素選択ステップと、前記注目画素の近傍かつ両側に存在する2つの近傍領域において、1画素以上の面積を具備する局所領域を少なくとも1つずつ設定する領域設定ステップと、前記領域設定ステップにより設定された各局所領域の画素単位毎に得られる所定の値に基づいて所定の特徴量を算出する特徴量算出ステップと、前記注目画素からみて一方の側の近傍領域に設定された第1の局所領域群における前記所定の特徴量の算出結果と、前記注目画素からみて他方の側の近傍領域に設定された第2の局所領域群における前記所定の特徴量の算出結果と、に基づき、これら2つの前記所定の特徴量の算出結果の差異を判別可能とするための判別値を算出する判別値算出ステップと、前記判別値の算出結果に基づき、所定の形状の構造が存在すると推定される候補領域を前記画像の中から検出する候補領域検出ステップと、を有する。
本発明の実施例に係る画像処理装置を有する内視鏡装置の要部の構成の一例を示す図。 図1の光源装置が有する回転フィルタの構成の一例を示す図。 図2の第1のフィルタ群が有する各フィルタの透過特性の一例を示す図。 図2の第2のフィルタ群が有する各フィルタの透過特性の一例を示す図。 本発明の第1の実施例において行われる処理の一例を示すフローチャート。 処理対象となる画像データの一例を示す模式図。 血管候補領域の検出結果の一例を示す模式図。 本発明の第1の実施例において、2つの境界画素と、領域AR1及びAR2との間の位置関係を説明するための図。 血管候補領域に実際に血管が存在すると推定される場合の色調の変動の一例を示すグラフ。 血管候補領域に非血管構造が存在すると推定される場合の色調の変動の一例を示すグラフ。 補正後の血管候補領域の検出結果の一例を示す模式図。 本発明の第1の実施例の変形例において行われる処理の一例を示すフローチャート。 本発明の第1の実施例の変形例において、注目画素と、領域AR1及びAR2との間の位置関係を説明するための図。 本発明の第2の実施例において行われる処理の一例を示すフローチャート。 本発明の第2の実施例において、2つの境界画素と、領域AR3及びAR4との間の位置関係を説明するための図。 血管候補領域に実際に血管が存在すると推定される場合の勾配強度の変動の一例を示すグラフ。 血管候補領域に非血管構造が存在すると推定される場合の勾配強度の変動の一例を示すグラフ。
 以下、本発明の実施の形態について、図面を参照しつつ説明を行う。
(第1の実施例)
 図1から図11は、本発明の第1の実施例に係るものである。
 内視鏡装置1は、図1に示すように、被検者の体腔内に挿入され、該体腔内の生体組織101等の被写体を撮像して得た画像を信号出力する内視鏡2と、生体組織101を照明するための照明光を発する光源装置3と、内視鏡2からの出力信号に対して種々の処理を施すプロセッサ4と、プロセッサ4からの映像信号に応じた画像を表示する表示装置5と、プロセッサ4における処理結果に応じた出力信号を記憶する外部記憶装置6と、を有して構成されている。
 内視鏡2は、被検者の体腔内に挿入可能な形状及び寸法を備えた挿入部21aと、挿入部21aの先端側に設けられた先端部21bと、挿入部21aの基端側に設けられた操作部21cと、を有して構成されている。また、挿入部21aの内部には、光源装置3において発せられた照明光を先端部21bへ伝送するためのライトガイド7が挿通されている。
 ライトガイド7の一方の端面(光入射端面)は、光源装置3に着脱自在に接続される。また、ライトガイド7の他方の端面(光出射端面)は、内視鏡2の先端部21bに設けられた図示しない照明光学系の近傍に配置されている。このような構成によれば、光源装置3において発せられた照明光は、光源装置3に接続された状態のライトガイド7、及び、先端部21bに設けられた図示しない照明光学系を経た後、生体組織101に対して出射される。
 内視鏡2の先端部21bには、被写体の光学像を結像する対物光学系22と、対物光学系22により結像された光学像を撮像して画像を取得するCCD23と、が設けられている。また、内視鏡2の操作部21cには、観察モードを通常光観察モードまたは狭帯域光観察モードのいずれかに切り替えるための指示を行うことが可能な観察モード切替スイッチ24が設けられている。
 光源装置3は、キセノンランプ等からなる白色光源31と、白色光源31から発せられた白色光を面順次な照明光とする回転フィルタ32と、回転フィルタ32を回転駆動させるモータ33と、回転フィルタ32及びモータ33を白色光源31の出射光路に垂直な方向に移動させるモータ34と、プロセッサ4の制御に基づいてモータ33及び34を駆動させる回転フィルタ駆動部35と、回転フィルタ32を通過した照明光を集光してライトガイド7の入射端面に供給する集光光学系36と、を有している。
 回転フィルタ32は、図2に示すように、中心を回転軸とした円板状に構成されており、内周側の周方向に沿って設けられた複数のフィルタを具備する第1のフィルタ群32Aと、外周側の周方向に沿って設けられた複数のフィルタを具備する第2のフィルタ群32Bと、を有している。そして、モータ33の駆動力が前記回転軸に伝達されることにより、回転フィルタ32が回転する。なお、回転フィルタ32において、第1のフィルタ群32A及び第2のフィルタ群32Bの各フィルタが配置されている部分以外は、遮光部材により構成されているものとする。
 第1のフィルタ群32Aは、各々が回転フィルタ32の内周側の周方向に沿って設けられた、赤色の波長帯域の光を透過させるRフィルタ32rと、緑色の波長帯域の光を透過させるGフィルタ32gと、青色の波長帯域の光を透過させるBフィルタ32bとを有して構成されている。
 Rフィルタ32rは、例えば図3に示すように、主に600nmから700nmまでの光(R光)を透過させるような構成を有している。また、Gフィルタ32gは、例えば図3に示すように、主に500nmから600nmまでの光(G光)を透過させるような構成を有している。さらに、Bフィルタ32bは、例えば図3に示すように、主に400nmから500nmまでの光(B光)を透過させるような構成を有している。
 すなわち、白色光源31において発せられた白色光が第1のフィルタ群32Aを経ることにより、通常光観察モード用の広帯域光が生成される。
 第2のフィルタ群32Bは、各々が回転フィルタ32の外周側の周方向に沿って設けられた、青色かつ狭帯域な光を透過させるBnフィルタ321bと、緑色かつ狭帯域な光を透過させるGnフィルタ321gと、を有して構成されている。
 Bnフィルタ321bは、例えば図4に示すように、中心波長が415nm付近に設定され、かつ、B光に比べて狭い帯域の光(Bn光)を透過させるように構成されている。
 また、Gnフィルタ321gは、例えば図4に示すように、中心波長が540nm付近に設定され、かつ、G光に比べて狭い帯域の光(Gn光)を透過させるように構成されている。
 すなわち、白色光源31において発せられた白色光が第2のフィルタ群32Bを経て離散化されることにより、狭帯域光観察モード用の複数の帯域の狭帯域光が生成される。
 プロセッサ4は、画像処理装置としての機能を備えて構成されている。具体的には、プロセッサ4は、画像処理部41と、制御部42と、を有して構成されている。また、画像処理部41は、画像データ生成部41aと、演算部41bと、映像信号生成部41cと、を有して構成されている。
 画像処理部41の画像データ生成部41aは、制御部42の制御に基づき、内視鏡2からの出力信号に対してノイズ除去及びA/D変換等の処理を施すことにより、CCD23において得られた画像に応じた画像データを生成する。
 画像処理部41の演算部41bは、画像データ生成部41aにより生成された画像データを用いた所定の処理を行うことにより、血管等の所定の構造を該画像データの中から検出する。なお、前述の所定の処理の詳細については、後程詳述するものとする。
 画像処理部41の映像信号生成部41cは、画像データ生成部41aにより生成された画像データに対してガンマ変換及びD/A変換等の処理を施すことにより、映像信号を生成して出力する。
 制御部42は、観察モード切替スイッチ24の指示に基づき、通常光観察モードに切り替える指示が行われたことが検出された場合、通常光観察モード用の広帯域光を光源装置3から出射させるための制御を回転フィルタ駆動部35に対して行う。そして、回転フィルタ駆動部35は、制御部42の制御に基づき、白色光源31の出射光路上に第1のフィルタ群32Aを介挿させ、かつ、白色光源31の出射光路上から第2のフィルタ群32Bを退避させるように、モータ34を動作させる。
 また、制御部42は、観察モード切替スイッチ24の指示に基づき、狭帯域光観察モードに切り替える指示が行われたことが検出された場合、狭帯域光観察モード用の複数の帯域の狭帯域光を光源装置3から出射させるための制御を回転フィルタ駆動部35に対して行う。そして、回転フィルタ駆動部35は、制御部42の制御に基づき、白色光源31の出射光路上に第2のフィルタ群32Bを介挿させ、かつ、白色光源31の出射光路上から第1のフィルタ群32Aを退避させるように、モータ34を動作させる。
 すなわち、以上に述べた内視鏡装置1の構成によれば、通常光観察モードが選択された場合には、対象物を肉眼で見た場合と略同様の色合いを有する画像(通常光画像)を表示装置5に表示させ、さらに、外部記憶装置6に記憶させることができる。また、以上に述べた内視鏡装置1の構成によれば、狭帯域光観察モードが選択された場合には、生体組織101に含まれる血管が強調された画像(狭帯域光画像)を表示装置5に表示させ、さらに、外部記憶装置6に記憶させることができる。
 ここで、内視鏡装置1の作用について説明を行う。
 まず、術者は、内視鏡装置1の各部の電源を投入した後、観察モード切替スイッチ24において通常光観察モードを選択する。そして、術者は、通常光観察モードを選択した際に表示装置5に表示される画像、すなわち、対象物を肉眼で見た場合と略同様の色合いを有する画像を見ながら内視鏡2を体腔内に挿入してゆくことにより、観察対象の生体組織101が存在する部位に先端部21bを近接させる。
 観察モード切替スイッチ24において通常光観察モードが選択されると、R光、G光及びB光の各色の光が光源装置3から生体組織101へ順次出射され、内視鏡2において該各色の光に応じた画像がそれぞれ取得される。
 画像処理部41の画像データ生成部41aは、R光に応じた画像、G光に応じた画像、及び、B光に応じた画像が入力されると、各画像に対応する色成分の画像データをそれぞれ生成する(図5のステップS1)。なお、本実施例においては、説明の簡単のため、例えば図6に模式的に示すような、検出対象となる所定の構造に相当する血管と、生体組織表面の段差の縁等である非血管構造と、背景粘膜と、を含む画像データに対して処理を行うものとして説明を進める。
 領域検出部の機能を備えた演算部41bは、画像データ生成部41aにより生成された画像データに対して公知の血管検出手法を用いた処理を施すことにより、血管が存在すると推定される候補領域としての血管候補領域を該画像データの中から検出した(図5のステップS2)後、該血管候補領域の検出結果を一時的に保持する。
 具体的には、演算部41bは、図6に模式的に示した画像データに対して公知の血管検出手法を用いた処理を施すことにより、例えば図7に示すような血管候補領域の検出結果を得る。なお、本実施例においては、図7の斜線模様の部分を血管候補領域であるとして説明を進める。なお、前述のような検出結果を得るための公知の血管検出手法として、例えば、バンドパスフィルタを用いた血管検出手法、または、ベクトル集中度による線分検出手法等の種々の手法を適用することができる。
 一方、境界画素検出部の機能を備えた演算部41bは、図5のステップS2の処理により得られた血管候補領域の検出結果に基づき、この検出結果に閾値処理等を施して二値化した画像を用いて該血管候補領域の縁部の画素に相当する境界画素を探索する(図5のステップS3)。
 演算部41bは、図5のステップS3の処理により得られた境界画素に対してSobelフィルタ等のフィルタを適用することにより、該境界画素の勾配方向を算出する(図5のステップS4)。
 演算部41bは、互いの勾配方向のなす角度が180°または略180°であり、かつ、互いに最も近い位置に存在する2つの境界画素を1つの境界画素対として検出する処理を、図5のステップS4の処理により得られた境界画素に対して行う(図5のステップS5)。
 演算部41bは、図5のステップS5の処理により検出された境界画素対に基づき、一方の境界画素から勾配方向に向かって所定の距離だけ離れた位置の画素を中心とする領域AR1と、他方の境界画素から勾配方向に向かって該所定の距離だけ離れた位置の画素を中心とする領域AR2と、をそれぞれ設定する(図5のステップS6)。
 具体的には、例えば、前述の所定の距離を2画素分の距離とし、かつ、領域AR1及びAR2をいずれも3×3画素の矩形領域とした場合、1つの境界画素対をなす2つの境界画素と、領域AR1及びAR2との間の位置関係は、図8に模式的に示すようなものとなる。
 なお、領域AR1及びAR2は、いずれも1画素以上の面積の領域として設定される限りにおいては、どのような形状の領域であってもよい。また、1つの境界画素対に対して領域AR1及びAR2がそれぞれ複数設定されるものであってもよい。さらに、前述の所定の距離は、任意の距離としてもよい。
 すなわち、領域設定部の機能を備えた演算部41bは、1つの境界画素対の近傍かつ両側に存在する2つの近傍領域において、1画素以上の面積を具備する局所領域としての領域AR1及びAR2を設定する。
 特徴量算出部の機能を備えた演算部41bは、図5のステップS6の処理結果に基づき、領域AR1における色調特徴量Va1を算出するとともに、領域AR2における色調特徴量Va2を算出する(図5のステップS7)。
 具体的には、例えば、緑色の画素値をGaとし、かつ、赤色の画素値をRaとした場合、演算部41bは、領域AR1において設定された画素単位毎に得られるGa/Raの値の平均値を色調特徴量Va1として算出する。また、演算部41bは、領域AR2において設定された画素単位毎に得られるGa/Raの値の平均値を色調特徴量Va2として算出する。
 なお、演算部41bは、各画素のGa/Raの値の平均値を色調特徴量Va1及びVa2として算出するものに限らず、例えば、各画素のGa/Raの値の最大値を取得して色調特徴量Va1及びVa2とするものであってもよく、または、各画素のGa/Raの値の最小値を取得して色調特徴量Va1及びVa2とするものであってもよい。
 また、演算部41bは、後述の図9及び図10のような値の変動を示すものを用いる限りにおいては、例えば、Ga/Raの値と、RGBのいずれかの色成分の画素値と、輝度値(白黒の階調値)と、を単独でまたは複数組み合わせて用いて色調特徴量Va1及びVa2を算出してもよい。
 一方、演算部41bは、境界画素対をなす2つの境界画素の間に存在する、血管候補領域の中央部の画素におけるGa/Raの値を色調特徴量Vsとして算出する。その後、演算部41bは、色調特徴量Va1またはVa2が色調特徴量Vs以下であるか否かの判定を行う(図5のステップS8)。
 そして、演算部41bは、色調特徴量Va1またはVa2の少なくともいずれか一方が色調特徴量Vs以下であるとの判定結果を得た場合、領域AR1側の境界画素と領域AR2側の境界画素との間の血管候補領域における重み係数W1を1とした(図5のステップS9)後、図5のステップS11の処理を引き続き行う。また、演算部41bは、色調特徴量Va1及びVa2の両方が色調特徴量Vsよりも大きいという判定結果を得た場合、下記数式(1)を用いた演算を行って重み係数W1を算出する(図5のステップS10)。なお、色調特徴量Vsとして他の値(例えば血管候補領域の中央部の画素におけるRaの値)を算出した場合には、図5のステップS8の判定処理における大小関係を適宜逆転させて重み係数W1を算出すればよい。また、本実施例によれば、色調特徴量Va1=Va2の場合に重み係数W1が最大値となるような数式を用いる限りにおいては、下記数式(1)とは異なる数式を用いて重み係数W1を算出するものであってもよい。

Figure JPOXMLDOC01-appb-I000001

 上記数式(1)におけるThreは、例えば、Thre=0.4として予め設定される閾値であるとする。
 ここで、領域AR1の中心C1から領域AR2の中心C2に至るまでにおいてGa/Raの値を順番に算出した際に、図9のグラフに示すような値の変動が得られた場合、すなわち、領域AR1と領域AR2との間に色調の差異が略生じていない場合には、領域AR1側の境界画素と領域AR2側の境界画素との間の血管候補領域に実際に血管が存在するものと推定される。
 その一方で、領域AR1の中心C1から領域AR2の中心C2に至るまでにおいてGa/Raの値を順番に算出した際に、図10のグラフに示すような値の変動が得られた場合、すなわち、領域AR1と領域AR2との間に明らかな色調の差異が生じている場合には、領域AR1側の境界画素と領域AR2側の境界画素との間の血管候補領域に非血管構造が存在するものと推定される。
 そして、色調特徴量Va1及びVa2の比を用いて構成された上記数式(1)によれば、領域AR1側の境界画素と領域AR2側の境界画素との間の血管候補領域に実際に血管が存在すると推定される場合には相対的に大きな値となり、かつ、該血管候補領域に非血管構造が存在すると推定される場合には相対的に小さな値となるような重み係数W1を、図5のステップS8の判定処理における判定条件に適合しない場合に得ることができる。
 すなわち、判別値算出部の機能を備えた演算部41bは、領域AR1における色調特徴量Va1の算出結果と、領域AR2における色調特徴量Va2の算出結果と、に基づき、これら2つの色調特徴量の算出結果の差異を判別可能とするための判別値としての重み係数W1を算出する。
 また、例えば、領域AR1またはAR2のいずれかに血管の分岐点等に相当する画素が含まれる場合においても、領域AR1と領域AR2との間に明らかな色調の差異が生じると考えられる。そのため、領域AR1またはAR2のいずれかに血管の分岐点等に相当する画素が含まれる場合には、上記数式(1)を用いた演算により重み係数W1を算出することができない。そこで、本実施例においては、図5のステップS8の判定条件に適合した場合に、領域AR1側の境界画素と領域AR2側の境界画素との間の血管候補領域における重み係数W1を1とすることにより、図5のステップS2において得られた血管候補領域の検出結果が保持されるようにしている。
 一方、候補領域補正部の機能を備えた演算部41bは、図5のステップS9及びS10の処理により得られた重み係数W1を用い、図5のステップS2の処理により得られた血管候補領域の検出結果を補正する(図5のステップS11)。
 具体的には、例えば、血管候補領域の画素群において一様に高い評価値となり、かつ、血管候補領域以外の画素群において一様に低い評価値となるような検出結果が図5のステップS2の処理を経て得られた場合、この検出結果に対して重み係数W1を重畳する(乗じる)ことにより、各血管候補領域に属する画素群のうち、非血管構造が存在すると推定される画素群の評価値を、血管候補領域以外の画素群における評価値と略同程度の大きさまで低下させることができる。
 そして、演算部41bは、図5のステップS11の処理結果として、例えば図11に示すように補正された血管候補領域の検出結果を得ることができる。
 従って、本実施例によれば、非血管構造が存在すると推定される画素群が血管候補領域の検出結果として含まれてしまっている場合に、図5に示した一連の処理を行うことにより、該画素群を極力取り除くように該検出結果を補正することができる。
 なお、本実施例の処理は、血管に対してのみ適用されるものに限らず、例えばピットパターンのような、血管以外の構造に対しても略同様に適用することができる。また、本実施例によれば、上記数式(1)の演算を経て得られる重み係数W1の逆数を利用した処理を行うことにより、例えば、生体組織表面の段差の縁、及び、該段差に起因して生じた影に相当する部分を画像内から検出することもできる。そのため、本実施例によれば、生体組織を撮像して得られた画像に含まれる(血管等の)所定の構造の検出精度を従来に比べて向上させることができる。
 また、本実施例によれば、公知の手法を用いて得られた血管候補領域の検出結果に重み係数W1を適用して該検出結果を補正するような処理を行うものに限らず、例えば、画像データの各画素毎に重み係数W1を算出した算出結果を血管候補領域の検出結果として得るような処理を行うものであってもよい。
 ここで、図12及び図13を主に参照しつつ、本実施例の変形例に係る処理についての説明を行う。なお、以上までに既に述べたものと略同様の処理等を適用可能な部分については、適宜省略しつつ以降の説明を進めてゆくものとする。
 画像処理部41の画像データ生成部41aは、R光に応じた画像、G光に応じた画像、及び、B光に応じた画像が入力されると、各画像に対応する色成分の画像データをそれぞれ生成する(図12のステップS21)。
 画素選択部の機能を備えた演算部41bは、画像データ生成部41aにより生成された画像データの各画素の中から、注目画素を1つ選択する(図12のステップS22)。
 演算部41bは、図12のステップS22の処理において選択された注目画素に対してSobelフィルタ等のフィルタを適用することにより、該注目画素の勾配方向を算出する(図12のステップS23)。
 演算部41bは、図12のステップS23の処理において算出された勾配方向に基づき、注目画素から勾配方向に向かって所定の距離だけ離れた位置の画素を中心とする領域AR1と、注目画素から勾配方向の逆方向(勾配方向に対して180°または略180°の角度をなす方向)に向かって該所定の距離だけ離れた位置の画素を中心とする領域AR2と、をそれぞれ設定する(図12のステップS24)。
 具体的には、例えば、領域AR1及びAR2をいずれも3×3画素の矩形領域とした場合、注目画素と、領域AR1及びAR2との間の位置関係は、図13に模式的に示すようなものとなる。
 すなわち、領域設定部の機能を備えた演算部41bは、注目画素の近傍かつ両側に存在する2つの近傍領域において、1画素以上の面積を具備する局所領域としての領域AR1及びAR2を設定する。
 演算部41bは、図12のステップS24の処理結果に基づき、領域AR1における色調特徴量Va1を算出するとともに、領域AR2における色調特徴量Va2を算出する(図12のステップS25)。
 演算部41bは、図12のステップS25において算出された色調特徴量Va1及びVa2を上記数式(1)に適用して重み係数W1を算出した(図12のステップS26)後、画像データに含まれる全画素において重み係数W1を算出したか否かの判定を行う(図12のステップS27)。
 その後、演算部41bは、重み係数W1を算出していない画素がなくなるまで、図12のステップS22からステップS26までの処理を繰り返し行う。そして、候補領域検出部の機能を備えた演算部41bは、画像データに含まれる全画素における重み係数W1の算出が完了すると、重み係数W1の算出結果に基づき、重み係数W1が所定の閾値以上となる画素群を血管候補領域として検出する(図12のステップS28)。
 なお、本変形例の処理は、血管に対してのみ適用されるものに限らず、例えばピットパターンのような、血管以外の構造に対しても略同様に適用することができる。また、本変形例によれば、上記数式(1)の演算を経て得られる重み係数W1の逆数を利用した処理を行うことにより、例えば、生体組織表面の段差の縁、及び、該段差に起因して生じた影に相当する部分を画像内から検出することもできる。そのため、前述の実施例の処理の代わりに本変形例の処理を用いた場合であっても、生体組織を撮像して得られた画像に含まれる(血管等の)所定の構造の検出精度を従来に比べて向上させることができる。
(第2の実施例)
 図14から図17は、本発明の第2の実施例に係るものである。
 なお、本実施例においては、第1の実施例と同様の構成の内視鏡装置1を用いて処理を行う。そのため、本実施例においては、内視鏡装置の構成に関しての詳細な説明を省略する。
 ここで、本実施例の作用について説明を行う。なお、第1の実施例において既に述べたものと略同様の処理等を適用可能な部分については、適宜省略しつつ以降の説明を進めてゆくものとする。
 画像処理部41の画像データ生成部41aは、R光に応じた画像、G光に応じた画像、及び、B光に応じた画像が入力されると、各画像に対応する色成分の画像データをそれぞれ生成する(図14のステップS41)。なお、本実施例においては、説明の簡単のため、例えば図6に模式的に示すような、検出対象となる所定の構造に相当する血管と、生体組織表面の段差の縁等である非血管構造と、背景粘膜と、を含む画像データに対して処理を行うものとして説明を進める。
 演算部41bは、画像データ生成部41aにより生成された画像データに対して公知の血管検出手法を用いた処理を施すことにより、血管が存在すると推定される候補領域としての血管候補領域を該画像データの中から検出した(図14のステップS42)後、該血管候補領域の検出結果を一時的に保持する。
 具体的には、演算部41bは、図6に模式的に示した画像データに対して公知の血管検出手法を用いた処理を施すことにより、例えば図7に示すような血管候補領域の検出結果を得る。なお、本実施例においては、図7の斜線模様の部分を血管候補領域であるとして説明を進める。なお、前述のような検出結果を得るための公知の血管検出手法として、例えば、バンドパスフィルタを用いた血管検出手法、または、ベクトル集中度による線分検出手法等の種々の手法を適用することができる。
 一方、演算部41bは、図14のステップS42の処理により得られた血管候補領域の検出結果に基づき、この検出結果に閾値処理等を施して二値化した画像を用いて該血管候補領域の縁部の画素に相当する境界画素を探索する(図14のステップS43)。
 演算部41bは、図14のステップS43の処理により得られた境界画素に対してSobelフィルタ等のフィルタを適用することにより、該境界画素の勾配方向を算出する(図14のステップS44)。
 演算部41bは、互いの勾配方向のなす角度が180°または略180°であり、かつ、互いに最も近い位置に存在する2つの境界画素を1つの境界画素対として検出する処理を、図14のステップS44の処理により得られた境界画素に対して行う(図14のステップS45)。
 演算部41bは、図14のステップS45の処理により検出された境界画素対に基づき、一方の境界画素から勾配方向に向かって所定の距離だけ離れた位置の画素を中心とする領域AR3と、他方の境界画素から勾配方向に向かって該所定の距離だけ離れた位置の画素を中心とする領域AR4と、をそれぞれ設定する(図14のステップS46)。
 具体的には、例えば、前述の所定の距離を1.5画素分の距離とし、かつ、領域AR3及びAR4をいずれも3×3画素の矩形領域とした場合、1つの境界画素対をなす2つの境界画素と、領域AR3及びAR4との間の位置関係は、図15に模式的に示すようなものとなる。
 なお、領域AR3及びAR4は、いずれも境界画素の少なくとも一部を含む1画素以上の面積の領域として設定される限りにおいては、どのような形状の領域であってもよい。(図15に示した領域AR3及びAR4は、3×3画素の矩形領域内に境界画素を0.5画素分含むように設定される場合を例に挙げている。)また、1つの境界画素対に対して領域AR3及びAR4がそれぞれ複数設定されるものであってもよい。さらに、前述の所定の距離は、領域AR3の内部に一方の境界画素の少なくとも一部が含まれ、かつ、領域AR4の内部に他方の境界画素の少なくとも一部が含まれるように設定される限りにおいては、任意の距離としてもよい。
 すなわち、領域設定部の機能を備えた演算部41bは、境界画素対の近傍かつ両側に存在する2つの近傍領域において、1画素以上の面積を具備する局所領域としての領域AR3及びAR4を設定する。
 特徴量算出部の機能を備えた演算部41bは、図14のステップS46の処理結果に基づき、領域AR3における勾配特徴量Vb1を算出するとともに、領域AR4における勾配特徴量Vb2を算出する(図14のステップS47)。
 具体的には、演算部41bは、例えば、領域AR3において設定された画素単位毎にSobelフィルタを適用して得られる勾配強度の平均値を勾配特徴量Vb1として算出する。また、演算部41bは、例えば、領域AR4において設定された画素単位毎にSobelフィルタを適用して得られる勾配強度の平均値を勾配特徴量Vb2として算出する。
 なお、演算部41bは、画素単位毎にSobelフィルタを適用して勾配強度を得るものに限らず、他の手法を用いて画素単位毎の勾配強度を得るものであってもよい。
 一方、演算部41bは、図14のステップS47の処理により得られた勾配特徴量Vb1及びVb2を下記数式(2)に適用することにより、重み係数W2を算出する(図14のステップS48)。なお、本実施例によれば、勾配特徴量Vb1=Vb2の場合に重み係数W2が最大値となるような数式を用いる限りにおいては、下記数式(2)とは異なる数式を用いて重み係数W2を算出するものであってもよい。

Figure JPOXMLDOC01-appb-I000002

 ここで、領域AR3の中心C3から領域AR4の中心C4に至るまでにおいて勾配強度を順番に算出した際に、図16のグラフに示すような値の変動が得られた場合、すなわち、領域AR3と領域AR4との間に勾配強度の差異が略生じていない場合には、領域AR3側の境界画素と領域AR4側の境界画素との間の血管候補領域に実際に血管が存在するものと推定される。
 その一方で、領域AR3の中心C3から領域AR4の中心C4に至るまでにおいて勾配強度を順番に算出した際に、図17のグラフに示すような値の変動が得られた場合、すなわち、領域AR3と領域AR4との間に明らかな勾配強度の差異が生じている場合には、領域AR3側の境界画素と領域AR4側の境界画素との間の血管候補領域に非血管構造が存在するものと推定される。
 そして、勾配特徴量Vb1及びVb2の比を用いて構成された上記数式(2)によれば、領域AR3側の境界画素と領域AR4側の境界画素との間の血管候補領域に実際に血管が存在すると推定される場合には相対的に大きな値となり、かつ、該血管候補領域に非血管構造が存在すると推定される場合には相対的に小さな値となるような重み係数W2を得ることができる。
 すなわち、判別値算出部の機能を備えた演算部41bは、領域AR3における勾配特徴量Vb1の算出結果と、領域AR4における勾配特徴量Vb2の算出結果と、に基づき、これら2つの勾配特徴量の算出結果の差異を判別可能とするための判別値としての重み係数W2を算出する。
 候補領域補正部の機能を備えた演算部41bは、図14のステップS48の処理により得られた重み係数W2を用い、図14のステップS42の処理により得られた血管候補領域の検出結果を補正する(図14のステップS49)。
 具体的には、例えば、血管候補領域の画素群において一様に高い評価値となり、かつ、血管候補領域以外の画素群において一様に低い評価値となるような検出結果が図14のステップS42の処理を経て得られた場合、この検出結果に対して重み係数W2を重畳する(乗じる)ことにより、各血管候補領域に属する画素群のうち、非血管構造が存在すると推定される画素群の評価値を、血管候補領域以外の画素群における評価値と略同程度の大きさまで低下させることができる。
 そして、演算部41bは、図14のステップS49の処理結果として、例えば図11に示すように補正された血管候補領域の検出結果を得ることができる。
 従って、本実施例によれば、非血管構造が存在すると推定される画素群が血管候補領域の検出結果として含まれてしまっている場合に、図14に示した一連の処理を行うことにより、該画素群を極力取り除くように該検出結果を補正することができる。
 なお、本実施例の処理は、血管に対してのみ適用されるものに限らず、例えばピットパターンのような、血管以外の構造に対しても略同様に適用することができる。また、本変形例によれば、上記数式(2)の演算を経て得られる重み係数W2の逆数を利用した処理を行うことにより、例えば、生体組織表面の段差の縁、及び、該段差に起因して生じた影に相当する部分を画像内から検出することもできる。そのため、本実施例によれば、生体組織を撮像して得られた画像に含まれる(血管等の)所定の構造の検出精度を従来に比べて向上させることができる。
 本発明は、上述した各実施例に限定されるものではなく、発明の趣旨を逸脱しない範囲内において種々の変更や応用が可能であることは勿論である。
 本出願は、2010年7月21日に日本国に出願された特願2010-164238号を優先権主張の基礎として出願するものであり、上記の開示内容は、本願明細書、請求の範囲、図面に引用されたものとする。

Claims (20)

  1.  生体組織を撮像して得た画像の中から所定の形状の構造が存在すると推定される候補領域を検出する領域検出部と、
     前記候補領域の境界に相当する境界画素を検出する境界画素検出部と、
     前記境界画素の近傍かつ両側に存在する2つの近傍領域において、1画素以上の面積を具備する局所領域を少なくとも1つずつ設定する領域設定部と、
     前記領域設定部により設定された各局所領域の画素単位毎に得られる所定の値に基づいて所定の特徴量を算出する特徴量算出部と、
     前記境界画素からみて一方の側の近傍領域に設定された第1の局所領域群における前記所定の特徴量の算出結果と、前記境界画素からみて他方の側の近傍領域に設定された第2の局所領域群における前記所定の特徴量の算出結果と、に基づき、これら2つの前記所定の特徴量の算出結果の差異を判別可能とするための判別値を算出する判別値算出部と、
     前記判別値の算出結果に基づき、前記領域検出部による前記候補領域の検出結果を補正する候補領域補正部と、
     を有することを特徴とする画像処理装置。
  2.  前記第1の局所領域群及び前記第2の局所領域群は、前記境界画素の勾配方向に基づいてそれぞれ設定されることを特徴とする請求項1に記載の画像処理装置。
  3.  前記特徴量算出部は、前記領域設定部により設定された各局所領域の画素単位毎に得られる画素値、画素値の比、輝度値、及び、勾配強度のうちの少なくとも1つに基づいて前記所定の特徴量を算出することを特徴とする請求項1に記載の画像処理装置。
  4.  前記特徴量算出部は、前記所定の値の平均値、最大値、または、最小値のいずれか1つを前記所定の特徴量として算出することを特徴とする請求項1に記載の画像処理装置。
  5.  前記所定の形状は、線状であることを特徴とする請求項1に記載の画像処理装置。
  6.  生体組織を撮像して得た画像の中から注目画素を選択する画素選択部と、
     前記注目画素の近傍かつ両側に存在する2つの近傍領域において、1画素以上の面積を具備する局所領域を少なくとも1つずつ設定する領域設定部と、
     前記領域設定部により設定された各局所領域の画素単位毎に得られる所定の値に基づいて所定の特徴量を算出する特徴量算出部と、
     前記注目画素からみて一方の側の近傍領域に設定された第1の局所領域群における前記所定の特徴量の算出結果と、前記注目画素からみて他方の側の近傍領域に設定された第2の局所領域群における前記所定の特徴量の算出結果と、に基づき、これら2つの前記所定の特徴量の算出結果の差異を判別可能とするための判別値を算出する判別値算出部と、
     前記判別値の算出結果に基づき、所定の形状の構造が存在すると推定される候補領域を前記画像の中から検出する候補領域検出部と、
     を有することを特徴とする画像処理装置。
  7.  前記第1の局所領域群及び前記第2の局所領域群は、前記注目画素の勾配方向に基づいてそれぞれ設定されることを特徴とする請求項6に記載の画像処理装置。
  8.  前記特徴量算出部は、前記領域設定部により設定された各局所領域の画素単位毎に得られる画素値、画素値の比、輝度値、及び、勾配強度のうちの少なくとも1つに基づいて前記所定の特徴量を算出することを特徴とする請求項6に記載の画像処理装置。
  9.  前記特徴量算出部は、前記所定の値の平均値、最大値、または、最小値のいずれか1つを前記所定の特徴量として算出することを特徴とする請求項6に記載の画像処理装置。
  10.  前記所定の形状は、線状であることを特徴とする請求項6に記載の画像処理装置。
  11.  生体組織を撮像して得た画像の中から所定の形状の構造が存在すると推定される候補領域を検出する領域検出ステップと、
     前記候補領域の境界に相当する境界画素を検出する境界画素検出ステップと、
     前記境界画素の近傍かつ両側に存在する2つの近傍領域において、1画素以上の面積を具備する局所領域を少なくとも1つずつ設定する領域設定ステップと、
     前記領域設定ステップにより設定された各局所領域の画素単位毎に得られる所定の値に基づいて所定の特徴量を算出する特徴量算出ステップと、
     前記境界画素からみて一方の側の近傍領域に設定された第1の局所領域群における前記所定の特徴量の算出結果と、前記境界画素からみて他方の側の近傍領域に設定された第2の局所領域群における前記所定の特徴量の算出結果と、に基づき、これら2つの前記所定の特徴量の算出結果の差異を判別可能とするための判別値を算出する判別値算出ステップと、
     前記判別値の算出結果に基づき、前記領域検出ステップによる前記候補領域の検出結果を補正する候補領域補正ステップと、
     を有することを特徴とする画像処理方法。
  12.  前記第1の局所領域群及び前記第2の局所領域群は、前記境界画素の勾配方向に基づいてそれぞれ設定されることを特徴とする請求項11に記載の画像処理方法。
  13.  前記特徴量算出ステップは、前記領域設定ステップにより設定された各局所領域の画素単位毎に得られる画素値、画素値の比、輝度値、及び、勾配強度のうちの少なくとも1つに基づいて前記所定の特徴量を算出することを特徴とする請求項11に記載の画像処理方法。
  14.  前記特徴量算出ステップは、前記所定の値の平均値、最大値、または、最小値のいずれか1つを前記所定の特徴量として算出することを特徴とする請求項11に記載の画像処理方法。
  15.  前記所定の形状は、線状であることを特徴とする請求項11に記載の画像処理方法。
  16.  生体組織を撮像して得た画像の中から注目画素を選択する画素選択ステップと、
     前記注目画素の近傍かつ両側に存在する2つの近傍領域において、1画素以上の面積を具備する局所領域を少なくとも1つずつ設定する領域設定ステップと、
     前記領域設定ステップにより設定された各局所領域の画素単位毎に得られる所定の値に基づいて所定の特徴量を算出する特徴量算出ステップと、
     前記注目画素からみて一方の側の近傍領域に設定された第1の局所領域群における前記所定の特徴量の算出結果と、前記注目画素からみて他方の側の近傍領域に設定された第2の局所領域群における前記所定の特徴量の算出結果と、に基づき、これら2つの前記所定の特徴量の算出結果の差異を判別可能とするための判別値を算出する判別値算出ステップと、
     前記判別値の算出結果に基づき、所定の形状の構造が存在すると推定される候補領域を前記画像の中から検出する候補領域検出ステップと、
     を有することを特徴とする画像処理方法。
  17.  前記第1の局所領域群及び前記第2の局所領域群は、前記注目画素の勾配方向に基づいてそれぞれ設定されることを特徴とする請求項16に記載の画像処理方法。
  18.  前記特徴量算出ステップは、前記領域設定ステップにより設定された各局所領域の画素単位毎に得られる画素値、画素値の比、輝度値、及び、勾配強度のうちの少なくとも1つに基づいて前記所定の特徴量を算出することを特徴とする請求項16に記載の画像処理方法。
  19.  前記特徴量算出ステップは、前記所定の値の平均値、最大値、または、最小値のいずれか1つを前記所定の特徴量として算出することを特徴とする請求項16に記載の画像処理方法。
  20.  前記所定の形状は、線状であることを特徴とする請求項16に記載の画像処理方法。
PCT/JP2011/058315 2010-07-21 2011-03-31 画像処理装置及び画像処理方法 WO2012011303A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201180004436.2A CN102596001B (zh) 2010-07-21 2011-03-31 图像处理装置和图像处理方法
JP2011538774A JP4971525B2 (ja) 2010-07-21 2011-03-31 画像処理装置及び画像処理装置の制御方法
EP11809477.0A EP2476363A4 (en) 2010-07-21 2011-03-31 IMAGE PROCESSING DEVICE AND IMAGE PROCESSING METHOD
US13/237,113 US8306301B2 (en) 2010-07-21 2011-09-20 Image processing apparatus and image processing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-164238 2010-07-21
JP2010164238 2010-07-21

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/237,113 Continuation US8306301B2 (en) 2010-07-21 2011-09-20 Image processing apparatus and image processing method

Publications (1)

Publication Number Publication Date
WO2012011303A1 true WO2012011303A1 (ja) 2012-01-26

Family

ID=45496733

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/058315 WO2012011303A1 (ja) 2010-07-21 2011-03-31 画像処理装置及び画像処理方法

Country Status (5)

Country Link
US (1) US8306301B2 (ja)
EP (1) EP2476363A4 (ja)
JP (1) JP4971525B2 (ja)
CN (1) CN102596001B (ja)
WO (1) WO2012011303A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112020001352T5 (de) 2019-03-20 2021-12-16 Hoya Corporation Endoskopsystem

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012114600A1 (ja) * 2011-02-22 2012-08-30 オリンパスメディカルシステムズ株式会社 医用画像処理装置及び医用画像処理方法
CN103886621B (zh) * 2012-11-14 2017-06-30 上海联影医疗科技有限公司 一种自动提取床板的方法
JP6168876B2 (ja) * 2013-06-24 2017-07-26 オリンパス株式会社 検出装置、学習装置、検出方法、学習方法及びプログラム
US10117563B2 (en) * 2014-01-09 2018-11-06 Gyrus Acmi, Inc. Polyp detection from an image
JP6785237B2 (ja) * 2015-03-19 2020-11-18 ノベル バイオケア サーヴィシィズ アーゲー チャネル検出を使用する画像データ内の物体の分割
EP3316019A4 (en) * 2015-06-25 2019-03-06 Olympus Corporation DEVICE WITH ENDOSCOPE
CN109310306B (zh) * 2016-06-28 2021-09-24 索尼公司 图像处理装置、图像处理方法和医疗成像系统
WO2018105020A1 (ja) * 2016-12-05 2018-06-14 オリンパス株式会社 内視鏡装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10143648A (ja) 1996-10-16 1998-05-29 Philips Electron Nv 帯状対象を自動摘出するディジタル画像処理方法
JP2000316097A (ja) * 1999-04-30 2000-11-14 Sharp Corp 画像処理方法及び画像処理装置
JP2008194334A (ja) * 2007-02-15 2008-08-28 Fujifilm Corp 内視鏡画像表示方法および装置ならびにプログラム
JP2010164238A (ja) 2009-01-15 2010-07-29 Hitachi Cable Ltd 排気システムの構築方法及び給排気システムの構築方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5852475A (en) * 1995-06-06 1998-12-22 Compression Labs, Inc. Transform artifact reduction process
US7022073B2 (en) * 2003-04-02 2006-04-04 Siemens Medical Solutions Usa, Inc. Border detection for medical imaging
US7343032B2 (en) * 2005-09-01 2008-03-11 Fujifilm Corporation Method and apparatus for automatic and dynamic vessel detection
JP4891636B2 (ja) * 2006-03-14 2012-03-07 オリンパスメディカルシステムズ株式会社 画像解析装置
CN101706962B (zh) * 2009-11-27 2011-08-17 四川长虹电器股份有限公司 图像边缘提取方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10143648A (ja) 1996-10-16 1998-05-29 Philips Electron Nv 帯状対象を自動摘出するディジタル画像処理方法
JP2000316097A (ja) * 1999-04-30 2000-11-14 Sharp Corp 画像処理方法及び画像処理装置
JP2008194334A (ja) * 2007-02-15 2008-08-28 Fujifilm Corp 内視鏡画像表示方法および装置ならびにプログラム
JP2010164238A (ja) 2009-01-15 2010-07-29 Hitachi Cable Ltd 排気システムの構築方法及び給排気システムの構築方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2476363A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112020001352T5 (de) 2019-03-20 2021-12-16 Hoya Corporation Endoskopsystem
US11363177B2 (en) 2019-03-20 2022-06-14 Hoya Corporation Endoscope system

Also Published As

Publication number Publication date
US8306301B2 (en) 2012-11-06
CN102596001A (zh) 2012-07-18
US20120121144A1 (en) 2012-05-17
EP2476363A4 (en) 2014-06-25
JPWO2012011303A1 (ja) 2013-09-09
CN102596001B (zh) 2014-10-15
EP2476363A1 (en) 2012-07-18
JP4971525B2 (ja) 2012-07-11

Similar Documents

Publication Publication Date Title
JP4971525B2 (ja) 画像処理装置及び画像処理装置の制御方法
US9486123B2 (en) Endoscope system which enlarges an area of a captured image, and method for operating endoscope system
US9801531B2 (en) Endoscope system and method for operating endoscope system
CN110325100B (zh) 内窥镜系统及其操作方法
JP5276225B2 (ja) 医用画像処理装置及び医用画像処理装置の作動方法
JP5160343B2 (ja) 撮像システム及び内視鏡システム
US20150294463A1 (en) Image processing device, endoscope apparatus, image processing method, and information storage device
WO2016136700A1 (ja) 画像処理装置
JP5011453B2 (ja) 画像処理装置及び画像処理装置の制御方法
WO2012153568A1 (ja) 医用画像処理装置及び医用画像処理方法
JP2010184057A (ja) 画像処理方法および装置
WO2013008526A1 (ja) 画像処理装置
US20150257628A1 (en) Image processing device, information storage device, and image processing method
WO2011161993A1 (ja) 画像処理装置及び画像処理方法
JP2006166990A (ja) 医用画像処理方法
JP6196599B2 (ja) 内視鏡用のプロセッサ装置、内視鏡用のプロセッサ装置の作動方法
JP4856275B2 (ja) 医用画像処理装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180004436.2

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2011538774

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11809477

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011809477

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE