WO2012011160A1 - シリコンインゴットの電磁鋳造装置 - Google Patents
シリコンインゴットの電磁鋳造装置 Download PDFInfo
- Publication number
- WO2012011160A1 WO2012011160A1 PCT/JP2010/006739 JP2010006739W WO2012011160A1 WO 2012011160 A1 WO2012011160 A1 WO 2012011160A1 JP 2010006739 W JP2010006739 W JP 2010006739W WO 2012011160 A1 WO2012011160 A1 WO 2012011160A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- chamber
- cooling crucible
- electromagnetic casting
- silicon
- casting apparatus
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B33/00—Silicon; Compounds thereof
- C01B33/02—Silicon
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/10—Supplying or treating molten metal
- B22D11/11—Treating the molten metal
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/14—Plants for continuous casting
- B22D11/141—Plants for continuous casting for vertical casting
Definitions
- the present invention relates to an electromagnetic casting apparatus for continuously casting a silicon ingot that is a material of a substrate for a solar cell.
- Photovoltaic power generation is a power generation method in which solar energy is directly converted into electric power using a solar cell, and a polycrystalline silicon wafer is mainly used as a substrate of the solar cell.
- a polycrystalline silicon wafer for solar cells is manufactured by slicing a unidirectionally solidified silicon ingot. For this reason, in order to promote the spread of solar cells, it is necessary to secure the quality of the silicon wafer and reduce the cost, and it is required to manufacture a high-quality silicon ingot at a low cost in the previous stage.
- a continuous casting method using electromagnetic induction hereinafter also referred to as “electromagnetic casting method” has been put into practical use.
- FIG. 6 is a diagram schematically showing a configuration of a conventional typical electromagnetic casting apparatus used in the electromagnetic casting method.
- the electromagnetic casting apparatus includes a chamber 1.
- the chamber 1 is a water-cooled container having a double wall structure in which the inside is isolated from the outside air and maintained in an inert gas atmosphere suitable for casting.
- a raw material supply device (not shown) is connected to the upper wall of the chamber 1 via an openable / closable shutter 2.
- the chamber 1 is provided with an inert gas introduction port 5, and an exhaust port 6 is provided in a lower side wall.
- a bottomless cooling crucible 7, an induction coil 8, and an after heater 9 are arranged in the chamber 1.
- the cooling crucible 7 functions not only as a melting vessel but also as a mold and is a rectangular tube made of metal (for example, copper) excellent in thermal conductivity and conductivity, and is suspended in the chamber 1.
- the cooling crucible 7 is divided into a plurality of strip-shaped pieces in the circumferential direction, leaving the upper part, and is forcibly cooled by cooling water flowing through the inside.
- the induction coil 8 is provided concentrically with the cooling crucible 7 so as to surround the cooling crucible 7 and is connected to a power supply device (not shown).
- a plurality of after-heaters 9 are concentrically connected to the cooling crucible 7 below the cooling crucible 7 and heat the silicon ingot 3 pulled down from the cooling crucible 7 to provide an appropriate temperature gradient in the axial direction thereof.
- a raw material introduction pipe 10 is attached below the shutter 2 connected to the raw material supply device. Along with opening and closing of the shutter 2, granular or lump silicon raw material 11 is supplied from the raw material supply device into the raw material introduction pipe 10 and charged into the cooling crucible 7.
- an outlet 4 for extracting the ingot 3 is provided directly under the after heater 9, and this outlet 4 is sealed with gas.
- the ingot 3 is pulled down while being supported by a support base 14 that descends through the drawer opening 4.
- a plasma torch 13 is provided directly above the cooling crucible 7 so as to be movable up and down.
- the plasma torch 13 is connected to one pole of a plasma power supply device (not shown), and the other pole is connected to the ingot 3 side.
- the plasma torch 13 is inserted into the cooling crucible 7 while being lowered.
- the silicon raw material 11 is inserted into the cooling crucible 7, an alternating current is applied to the induction coil 8, and the lowered plasma torch 13 is energized.
- an eddy current is generated in each piece due to electromagnetic induction by the induction coil 8, and the cooling crucible 7
- the eddy current on the inner wall side generates a magnetic field in the cooling crucible 7.
- the silicon raw material 11 in the cooling crucible 7 is melted by electromagnetic induction heating to form molten silicon 12.
- a plasma arc is generated between the plasma torch 13 and the silicon raw material 11 and further the molten silicon 12, and the silicon raw material 11 is also heated and melted by the Joule heat, thereby reducing the burden of electromagnetic induction heating.
- the molten silicon 12 is efficiently formed.
- the molten silicon 12 has a force (pinch force) in the inner normal direction of the surface of the molten silicon 12 due to the interaction between the magnetic field generated along with the eddy current on the inner wall of the cooling crucible 7 and the current generated on the surface of the molten silicon 12. ) Is held in a non-contact state with the cooling crucible 7.
- the support 14 supporting the molten silicon 12 is gradually lowered while melting the silicon raw material 11 in the cooling crucible 7, the induction magnetic field decreases as the distance from the lower end of the induction coil 8 decreases. Further, the molten silicon 12 is solidified from the outer peripheral portion by cooling from the cooling crucible 7. Then, the silicon raw material 11 is continuously charged as the support base 14 is lowered, and the melting and solidification are continued, whereby the molten silicon 12 is solidified in one direction, and the ingot 3 can be continuously cast.
- the inert gas is sequentially supplied from the inert gas inlet 5 at the top of the chamber 1 to fill the chamber 1.
- the inert gas in the chamber 1 is sequentially discharged from the exhaust port 6 on the lower side wall of the chamber 1.
- SiO silicon oxide
- the atmospheric temperature in the chamber 1 is high at the central portion where the ingot 3 exists, decreases as the side wall of the chamber 1 is approached, and increases toward the upper portion where the molten silicon 12 exists even at the same central portion. Due to this temperature difference, natural convection of the atmospheric gas occurs in the chamber 1 as shown by the solid line arrow in FIG. Specifically, it rises between the outer periphery of the ingot 3 and the inner periphery of the after heater 9, passes through the gap between the upper end of the uppermost after heater 9 and the lower end of the cooling crucible 7, further outside the cooling crucible 7. After rising, convection of the atmospheric gas descending near the side wall of the chamber 1 occurs. A part of the atmospheric gas that convects and rises outside the cooling crucible 7 also flows directly above the cooling crucible 7 as indicated by a dotted arrow in FIG.
- the impurity is carried to a position just above the cooling crucible 7 along with the flow of the atmosphere gas, falls into the cooling crucible 7 and falls into the molten silicon 12. May be mixed.
- the molten silicon 12 is contaminated with metal impurities, the quality of the ingot 3 cast from the molten silicon 12 is deteriorated.
- the metal impurities are easily taken into the atmosphere gas in the process in which the atmosphere gas rises along the after heater 9.
- the present invention has been made in view of the above problems, and when silicon ingots are continuously cast by an electromagnetic casting method, molten silicon is contaminated with metal impurities due to the atmospheric gas that naturally convects in the chamber.
- An object of the present invention is to provide an electromagnetic casting apparatus for a silicon ingot that can prevent this.
- the present inventors made extensive studies by paying attention to the flow of atmospheric gas that naturally convects in the chamber during casting, and conducted various tests.
- the metal impurities are removed from the atmosphere gas that has reached the upper side of the cooling crucible due to natural convection, or the atmosphere gas containing the metal impurities is forcibly exhausted, resulting in the convection atmosphere gas.
- impurity contamination of the molten silicon was prevented, and the present invention was completed.
- the gist of the present invention resides in a silicon ingot electromagnetic casting apparatus shown in the following (1) and (2).
- a silicon raw material is charged into a conductive bottomless cooling crucible disposed in the chamber, and the silicon raw material is melted by electromagnetic induction heating from an induction coil surrounding the bottomless cooling crucible.
- an electromagnetic casting apparatus that continuously solidifies a silicon ingot by pulling it down from the bottom cooling crucible, it is connected to the upper and lower portions of the side wall of the chamber, and the atmosphere gas above the bottomless cooling crucible is introduced to the bottom of the bottomless cooling crucible.
- the silicon ingot electromagnetic casting apparatus is characterized in that a vent pipe for feeding out to the pipe is provided, and a dust collector is provided in the path of the vent pipe.
- a magnetic separator is provided in the path of the vent pipe or a blower is provided in the path of the vent pipe.
- a silicon raw material is charged into a conductive bottomless cooling crucible disposed in the chamber, and the silicon raw material is melted by electromagnetic induction heating from an induction coil surrounding the bottomless cooling crucible.
- an electromagnetic casting apparatus for continuously casting a silicon ingot by solidifying while pulling down from the bottom cooling crucible it is connected to the upper part of the side wall of the chamber, and has an upper exhaust pipe for introducing and discharging the atmospheric gas above the bottomless cooling crucible
- a silicon ingot electromagnetic casting apparatus comprising a lower exhaust pipe connected to a lower portion of a side wall of a chamber and introducing and discharging an atmospheric gas below a bottomless cooling crucible.
- the electromagnetic casting apparatus for a silicon ingot of the present invention even if the atmospheric gas is convected under the cooling crucible and the metallic gas is contained in the atmospheric gas, the metallic impurity is removed from the atmospheric gas and reduced. Since the atmospheric gas containing the metal impurities can be forcibly exhausted, it is possible to prevent the impurity contamination of the molten silicon due to the convective atmospheric gas.
- FIG. 1 is a diagram schematically showing the configuration of the electromagnetic casting apparatus of the first embodiment.
- FIG. 2 is a diagram schematically illustrating a configuration of a modified example of the electromagnetic casting apparatus according to the first embodiment.
- FIG. 3 is a diagram schematically showing the configuration of the electromagnetic casting apparatus of the second embodiment.
- FIG. 4 is a diagram schematically showing a configuration of an electromagnetic casting apparatus used for comparison.
- FIG. 5 is a diagram showing the measurement results of the Fe concentration in the silicon ingots in the present invention example and the comparative example.
- FIG. 6 is a diagram schematically showing a configuration of a typical representative electromagnetic casting apparatus used in the electromagnetic casting method.
- FIG. 1 is a diagram schematically showing the configuration of the electromagnetic casting apparatus of the first embodiment.
- the electromagnetic casting apparatus according to the first embodiment of the present invention shown in the figure is based on the configuration of the electromagnetic casting apparatus shown in FIG. 6, and the same components are denoted by the same reference numerals, and repeated description is omitted as appropriate. .
- the electromagnetic casting apparatus of the first embodiment has a vent pipe 15 connected to the upper and lower portions of the side wall of the chamber 1.
- the upper and lower ends of the ventilation pipe 15 are opened at positions corresponding to the upper side of the cooling crucible 7 and positions corresponding to the lower side of the cooling crucible 7, respectively.
- FIG. 1 shows an example in which the ventilation pipes 15 are provided on both sides sandwiching the central axis of the chamber 1, the ventilation pipe 15 may be installed only at one place or at three or more places.
- a dust collector 20 is provided in the path of each vent pipe 15.
- a dust collector such as a cyclone method, a filter method, or an electric dust collection method can be adopted.
- a magnetic separator 21 is provided along with a dust collector 20 in the path of each vent pipe 15.
- a magnetic separator using a magnet filter, a magnet bar, an electromagnet, or the like can be employed.
- An inert gas inlet 5 for introducing an inert gas into the chamber 1 is provided on the upper wall of the chamber 1, and an inert gas inlet pipe 17 is connected to the inert gas inlet 5.
- the exhaust port 6 for exhausting the atmospheric gas in the chamber 1 is provided in the lower side wall of the chamber 1 as in the electromagnetic casting apparatus shown in FIG. 6, and an exhaust pipe 16 is connected to the exhaust port 6. Yes.
- an exhaust port 6 is shown in the bottom wall of the chamber 1. The exhaust amount of the atmospheric gas from the exhaust port 6 through the exhaust pipe 16 is adjusted by a flow rate adjusting valve (not shown) installed in the exhaust pipe 16.
- the atmospheric gas existing above the cooling crucible 7 in the chamber 1 is a part thereof as shown by the solid line arrow in FIG. Is introduced into the vent pipe 15 from the upper end of the vent pipe 15 that opens here, and after descending the vent pipe 15, it is fed into the lower portion of the chamber 1 corresponding to the lower part of the cooling crucible 7, and into the vent pipe 15. The remainder that has not been introduced descends near the side wall of the chamber 1.
- the atmospheric gas introduced into the lower portion of the chamber 1 through the vent pipe 15 and the atmospheric gas descending in the vicinity of the side wall of the chamber 1 are finally discharged from the exhaust port 6 to the outside of the chamber 1.
- the metal impurities are captured and removed by the dust collector 20 in the process of passing through the dust collector 20 and the purified atmosphere gas is removed. It is sent out to the lower part of the chamber 1.
- the atmospheric gas that has passed through the dust collector 20 further passes through the magnetic separator 21 so that the metal impurities are selectively captured by the magnetic separator 21, so that the metal impurities are effectively removed. Can be removed.
- the electromagnetic casting apparatus of the first embodiment of the present invention even when the convection atmosphere gas contains metal impurities, the atmosphere gas reaching the upper side of the magnetic cooling crucible 7 is introduced into the vent pipe 15. Since the dust collector 20 and possibly the magnetic separator 21 remove metal impurities from the atmospheric gas and the purified atmospheric gas is sent out to the lower part of the chamber 1, the circulation is repeated. As a result, the amount of metal impurities carried directly above the cooling crucible 7 can be remarkably suppressed. As a result, impurity contamination of the molten silicon 12 due to the convection atmosphere gas can be prevented, and the ingot 3 having excellent quality can be manufactured.
- FIG. 2 is a diagram schematically showing a configuration of a modified example of the electromagnetic casting apparatus of the first embodiment.
- the electromagnetic casting apparatus shown in the figure has a configuration in which a blower 22 is added to the path of each ventilation pipe 15 in the electromagnetic casting apparatus shown in FIG. A fan or a blower can be adopted as the blower 22.
- the flow of the atmospheric gas in the ventilation pipe 15 relies on natural convection, but in the electromagnetic casting apparatus shown in FIG. 2, the gas flow is forced by the installation of the blower 22.
- metal impurities can be efficiently removed by the dust collector 20 and the magnetic separator 21.
- FIG. 3 is a diagram schematically showing the configuration of the electromagnetic casting apparatus of the second embodiment.
- the electromagnetic casting apparatus according to the second embodiment of the present invention shown in the figure is different from the electromagnetic casting apparatus according to the first embodiment shown in FIG. 1 in the following points.
- the electromagnetic casting apparatus of the second embodiment has an upper exhaust pipe 23 connected to the upper side wall of the chamber 1 instead of the vent pipe 15 in the electromagnetic casting apparatus shown in FIG.
- a lower exhaust pipe 24 connected to the lower side wall of the chamber 1 is provided.
- the upper exhaust pipe 23 is opened at a position corresponding to the upper side of the cooling crucible 7, and introduces and discharges the atmospheric gas existing in the upper part of the chamber 1.
- the lower exhaust pipe 24 opens at a position corresponding to the lower side of the cooling crucible 7, and introduces and discharges the atmospheric gas existing in the lower part of the chamber 1.
- the exhaust amount of the atmospheric gas through each of the upper exhaust pipe 23 and the lower exhaust pipe 24 is adjusted by a flow rate adjusting valve (not shown) installed in each.
- FIG. 3 shows an example in which the upper exhaust pipe 23 and the lower exhaust pipe 24 are provided on both sides sandwiching the central axis of the chamber 1, but the exhaust pipes 23 and 24 may be installed at only one place. And it does not matter even if it is three or more places.
- the atmospheric gas existing above the cooling crucible 7 in the chamber 1 is partially a part as shown by the solid line arrow in FIG. However, it is introduced into the upper exhaust pipe 23 opened here and discharged to the outside, and the remainder not introduced into the upper exhaust pipe 23 descends in the vicinity of the side wall of the chamber 1.
- the atmospheric gas that descends near the side wall of the chamber 1 and reaches the lower portion of the chamber 1 is finally discharged to the outside also from the exhaust port 6 on the bottom wall of the chamber 1, but most of it naturally convects in the chamber 1. . That is, as indicated by the solid line arrow in FIG. 3, a part of the atmospheric gas existing in the lower part in the chamber 1 is introduced into the lower exhaust pipe 24 opened here and discharged to the outside, and the lower exhaust The remainder that was not introduced into the pipe 24 entered the inside of the after heater 9 through the gap between the adjacent upper and lower after heaters 9 and ascended between the outer periphery of the ingot 3 and the inner periphery of the after heater 9 as it was.
- the atmosphere gas reaching the upper side of the cooling crucible 7 is forced through the upper exhaust pipe 23 even when the convection atmosphere gas contains metal impurities. Since the exhaust gas is exhausted, the metal impurities contained in the atmospheric gas in the chamber 1 can be reduced, and accordingly, the amount of metal impurities carried directly above the cooling crucible 7 can be remarkably suppressed. As a result, impurity contamination of the molten silicon 12 due to the convection atmosphere gas can be prevented, and the ingot 3 having excellent quality can be manufactured.
- the electromagnetic casting apparatus used in the present invention example 1 is the apparatus shown in FIG. 1 provided with only the dust collector of the dust collector and magnetic separator, in the present invention example 2, the apparatus shown in FIG. 1 and in the present invention example 3.
- the apparatus shown in FIG. 2 and the apparatus shown in FIG. A cyclone type dust collector was adopted, a magnetic separator using a magnet filter was adopted, and a fan was adopted as a blower.
- sample wafers are taken from the corresponding positions when the solidification rate is 0%, 10%, 30%, 50%, 70% and 90%, and the Fe concentration in each sample wafer is measured.
- the solidification rate here represents the ratio of the weight of the solidified ingot to the total weight of the charged silicon raw material, and corresponds to the length from the lower end of the ingot (the first position of continuous casting).
- a silicon ingot was continuously cast using the electromagnetic casting apparatus shown in FIG. 4 below, and a sample wafer was similarly collected from this ingot to measure the Fe concentration.
- FIG. 4 is a diagram schematically showing the configuration of an electromagnetic casting apparatus used for comparison.
- the electromagnetic casting apparatus used in the comparative example shown in the same drawing is compared with the electromagnetic casting apparatus used in the inventive examples 1 to 3 shown in FIG.
- the vent pipe 15 is different in that it does not include any of a dust collector, a magnetic separator, and a blower.
- FIG. 5 is a diagram showing the measurement results of the Fe concentration in the silicon ingot in the present invention example and the comparative example.
- the Fe concentration shown in the same figure is a relative value indexed with the minimum Fe concentration of 10 (reference) among the Fe concentrations obtained in the test of the comparative example. From the results shown in the figure, it is clear that the Fe concentration is reduced in all of the inventive examples 1 to 4 and the impurity contamination of the molten silicon can be prevented as compared with the comparative example using the electromagnetic casting apparatus having only the vent pipe. became.
- the electromagnetic casting apparatus of the silicon ingot of the present invention even if the metal gas is contained in the atmospheric gas convection below the cooling crucible, it can be reduced by removing the metal impurity from the atmospheric gas, Alternatively, the atmospheric gas containing the metal impurities can be forcibly exhausted, and it is possible to prevent the molten silicon from being contaminated with the metal impurities due to the convective atmospheric gas. Therefore, the continuous casting method of the present invention is extremely useful in that a silicon ingot for a solar cell excellent in quality can be produced.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Silicon Compounds (AREA)
- Continuous Casting (AREA)
Abstract
チャンバー内に配置した無底冷却ルツボにシリコン原料を装入し、誘導コイルからの電磁誘導加熱によりシリコン原料を融解させ、この溶融シリコンを冷却ルツボから引き下げながら凝固させてシリコンインゴットを連続鋳造する電磁鋳造装置において、チャンバーの側壁の上部と下部に連結され、冷却ルツボの上方の雰囲気ガスを導入して冷却ルツボの下方に送り出す通気管を備え、この通気管の経路に集塵機および磁選機を設ける。これにより、連続鋳造の際に、チャンバー内で自然対流する雰囲気ガスに起因して、溶融シリコンが金属不純物で汚染されることを防止できる。
Description
本発明は、太陽電池用基板の素材であるシリコンインゴットを連続鋳造するための電磁鋳造装置に関する。
近年、CO2排出による地球温暖化問題やエネルギー資源の枯渇問題が深刻化しており、それらの問題の対応策の一つとして、無尽蔵に降りそそぐ太陽光エネルギーを活用する太陽光発電が注目されている。太陽光発電は、太陽電池を使用して太陽光エネルギーを直接電力に変換する発電方式であり、太陽電池の基板には、多結晶のシリコンウェーハを用いるのが主流である。
太陽電池用の多結晶シリコンウェーハは、一方向性凝固のシリコンインゴットを素材とし、このインゴットをスライスして製造される。このため、太陽電池の普及を図るには、シリコンウェーハの品質を確保するとともに、コストを低減する必要があり、その前段階で、高品質のシリコンインゴットを安価に製造することが要求される。この要求に対応できる方法として、例えば、特許文献1に開示されるように、電磁誘導を利用した連続鋳造方法(以下、「電磁鋳造法」ともいう)が実用化されている。
図6は、電磁鋳造法で用いられる従来の代表的な電磁鋳造装置の構成を模式的に示す図である。同図に示すように、電磁鋳造装置はチャンバー1を備える。チャンバー1は、内部を外気から隔離し鋳造に適した不活性ガス雰囲気に維持する二重壁構造の水冷容器である。チャンバー1の上壁には、開閉可能なシャッター2を介し、図示しない原料供給装置が連結されている。チャンバー1は、不活性ガス導入口5が設けられ、下部の側壁に排気口6が設けられている。
チャンバー1内には、無底冷却ルツボ7、誘導コイル8およびアフターヒーター9が配置されている。冷却ルツボ7は、融解容器としてのみならず、鋳型としても機能し、熱伝導性および導電性に優れた金属(例えば、銅)製の角筒体で、チャンバー1内に吊り下げられている。この冷却ルツボ7は、上部を残して周方向で複数の短冊状の素片に分割され、内部を流通する冷却水によって強制冷却される。
誘導コイル8は、冷却ルツボ7を囲繞するように、冷却ルツボ7と同芯に周設され、図示しない電源装置に接続されている。アフターヒーター9は、冷却ルツボ7の下方に冷却ルツボ7と同芯に複数連設され、冷却ルツボ7から引き下げられるシリコンインゴット3を加熱して、その軸方向に適切な温度勾配を与える。
また、チャンバー1内には、原料供給装置に連結されたシャッター2の下方に原料導入管10が取り付けられている。シャッター2の開閉に伴って、粒状や塊状のシリコン原料11が原料供給装置から原料導入管10内に供給され、冷却ルツボ7内に装入される。
チャンバー1の底壁には、アフターヒーター9の真下に、インゴット3を抜き出すための引出し口4が設けられ、この引出し口4はガスでシールされている。インゴット3は、引出し口4を貫通して下降する支持台14によって支えられながら引き下げられる。
冷却ルツボ7の真上には、プラズマトーチ13が昇降可能に設けられている。プラズマトーチ13は、図示しないプラズマ電源装置の一方の極に接続され、他方の極は、インゴット3側に接続されている。このプラズマトーチ13は、下降させた状態で冷却ルツボ7内に挿入される。
このような電磁鋳造装置を用いた電磁鋳造法では、冷却ルツボ7にシリコン原料11を装入し、誘導コイル8に交流電流を印加するとともに、下降させたプラズマトーチ13に通電を行う。このとき、冷却ルツボ7を構成する短冊状の各素片が互いに電気的に分割されていることから、誘導コイル8による電磁誘導に伴って各素片内で渦電流が発生し、冷却ルツボ7の内壁側の渦電流が冷却ルツボ7内に磁界を発生させる。これにより、冷却ルツボ7内のシリコン原料11は電磁誘導加熱されて融解し、溶融シリコン12が形成される。また、プラズマトーチ13とシリコン原料11、さらには溶融シリコン12との間にプラズマアークが発生し、そのジュール熱によっても、シリコン原料11が加熱されて融解し、電磁誘導加熱の負担を軽減して効率良く溶融シリコン12が形成される。
溶融シリコン12は、冷却ルツボ7の内壁の渦電流に伴って生じる磁界と、溶融シリコン12の表面に発生する電流との相互作用により、溶融シリコン12の表面の内側法線方向に力(ピンチ力)を受けるため、冷却ルツボ7と非接触の状態に保持される。冷却ルツボ7内でシリコン原料11を融解させながら、溶融シリコン12を支える支持台14を徐々に下降させると、誘導コイル8の下端から遠ざかるにつれて誘導磁界が小さくなることから、発熱量およびピンチ力が減少し、さらに冷却ルツボ7からの冷却により、溶融シリコン12は外周部から凝固が進行する。そして、支持台14の下降に伴ってシリコン原料11を連続的に装入し、融解および凝固を継続することにより、溶融シリコン12が一方向に凝固し、インゴット3を連続鋳造することができる。
鋳造中は、チャンバー1内を不活性ガス雰囲気に維持するため、チャンバー1の上部の不活性ガス導入口5から不活性ガスが逐次供給され、チャンバー1内に充満する。チャンバー1内の不活性ガスは、チャンバー1の下部側壁の排気口6から逐次排出される。このとき、プラズマトーチ13からのプラズマアークにより溶融シリコン12からSiO(シリコン酸化物)が激しく蒸発しており、このSiOガスは不活性ガスとともに排気口6から排出される。
このような電磁鋳造装置によれば、溶融シリコン12と冷却ルツボ7との接触が軽減されるため、その接触に伴う冷却ルツボ7からの不純物汚染が防止され、高品質のインゴット3を得ることができる。しかも、連続鋳造であることから、安価にインゴット3を製造することが可能になる。
上述した電磁鋳造装置では、チャンバー1内の雰囲気温度は、インゴット3が存在する中心部で高く、チャンバー1の側壁に近づくほど低くなり、同じ中心部でも溶融シリコン12が存在する上方ほど高くなる。この温度差に起因し、チャンバー1内には、図6中の実線矢印で示すように、雰囲気ガスの自然対流が発生する。具体的には、インゴット3の外周とアフターヒーター9の内周との間を上昇し、最上段のアフターヒーター9の上端と冷却ルツボ7の下端との隙間を抜けて冷却ルツボ7の外側をさらに上昇した後、チャンバー1の側壁近傍を下降する雰囲気ガスの対流が発生する。このように対流して冷却ルツボ7の外側を上昇する雰囲気ガスの一部は、図6中の点線矢印で示すように、冷却ルツボ7の真上にも流入する。
すると、対流する雰囲気ガス中に金属不純物が含まれていた場合、その不純物が雰囲気ガスの流れに伴って冷却ルツボ7の真上まで運ばれ、冷却ルツボ7内に落下して溶融シリコン12中に混入することがある。この場合、溶融シリコン12が金属不純物で汚染されることから、この溶融シリコン12から鋳造されたインゴット3は品質が低下する。金属不純物は、例えば、アフターヒーター9の構成部材にFeやCrを含有する耐熱合金を採用する場合に、雰囲気ガスがアフターヒーター9に沿って上昇する過程で雰囲気ガス中に取り込まれ易い。
本発明は、上記の問題に鑑みてなされたものであり、電磁鋳造法によりシリコンインゴットを連続鋳造する際に、チャンバー内で自然対流する雰囲気ガスに起因して、溶融シリコンが金属不純物で汚染されることを防止できるシリコンインゴットの電磁鋳造装置を提供することを目的とする。
本発明者らは、上記目的を達成するため、鋳造時にチャンバー内で自然対流する雰囲気ガスの流れに着目して鋭意検討を重ね、種々の試験を行った。その結果、自然対流に伴い金属不純物を含んで冷却ルツボの上方に達した雰囲気ガスから金属不純物を除去するか、またはその金属不純物を含む雰囲気ガスを強制排気することにより、対流する雰囲気ガスに起因した溶融シリコンの不純物汚染を防止できることを知見し、本発明を完成させた。
本発明の要旨は、下記の(1)および(2)に示すシリコンインゴットの電磁鋳造装置にある。
(1)チャンバー内に配置した導電性を有する無底冷却ルツボにシリコン原料を装入し、無底冷却ルツボを囲繞する誘導コイルからの電磁誘導加熱によりシリコン原料を融解させ、この溶融シリコンを無底冷却ルツボから引き下げながら凝固させてシリコンインゴットを連続鋳造する電磁鋳造装置において、チャンバーの側壁の上部と下部に連結され、無底冷却ルツボの上方の雰囲気ガスを導入して無底冷却ルツボの下方に送り出す通気管を備え、この通気管の経路に集塵機を設けたことを特徴とするシリコンインゴットの電磁鋳造装置である。
上記(1)の電磁鋳造装置では、さらに、前記通気管の経路に磁選機を設けたり、前記通気管の経路に送風機を設ける構成とすることが好ましい。
(2)チャンバー内に配置した導電性を有する無底冷却ルツボにシリコン原料を装入し、無底冷却ルツボを囲繞する誘導コイルからの電磁誘導加熱によりシリコン原料を融解させ、この溶融シリコンを無底冷却ルツボから引き下げながら凝固させてシリコンインゴットを連続鋳造する電磁鋳造装置において、チャンバーの側壁の上部に連結され、無底冷却ルツボの上方の雰囲気ガスを導入して排出する上部排気管を備え、チャンバーの側壁の下部に連結され、無底冷却ルツボの下方の雰囲気ガスを導入して排出する下部排気管を備えたことを特徴とするシリコンインゴットの電磁鋳造装置である。
本発明のシリコンインゴットの電磁鋳造装置によれば、冷却ルツボの下方で雰囲気ガスが対流し、この雰囲気ガスに金属不純物が含まれる場合であっても、その雰囲気ガスから金属不純物を除去して低減することができ、またはその金属不純物を含む雰囲気ガスを強制排気することができるため、対流する雰囲気ガスに起因した溶融シリコンの不純物汚染を防止することが可能になる。
以下に、本発明のシリコンインゴットの電磁鋳造装置について、その実施形態を第1実施形態と第2実施形態に区分して詳述する。
<第1実施形態>
図1は、第1実施形態の電磁鋳造装置の構成を模式的に示す図である。同図に示す本発明の第1実施形態の電磁鋳造装置は、前記図6に示す電磁鋳造装置の構成を基本とし、それと同じ構成には同一の符号を付し、重複する説明は適宜省略する。
図1は、第1実施形態の電磁鋳造装置の構成を模式的に示す図である。同図に示す本発明の第1実施形態の電磁鋳造装置は、前記図6に示す電磁鋳造装置の構成を基本とし、それと同じ構成には同一の符号を付し、重複する説明は適宜省略する。
図1に示すように、第1実施形態の電磁鋳造装置は、チャンバー1の側壁の上部と下部に連結された通気管15を有する。この通気管15の上下の各端は、冷却ルツボ7の上方に相当する位置と、冷却ルツボ7の下方に相当する位置にそれぞれ開口している。図1では、チャンバー1の中心軸を間に挟む両側にそれぞれ通気管15を設けた例を示しているが、通気管15の設置は1箇所のみでもよいし、3箇所以上でも構わない。
第1実施形態の電磁鋳造装置では、各通気管15の経路に集塵機20が設けられている。集塵機20としては、サイクロン方式やフィルター方式や電気集塵方式などの集塵機を採用できる。さらに各通気管15の経路には、集塵機20とともに磁選機21が併設されている。磁選機21としては、マグネットフィルターやマグネットバーや電磁石などを用いた磁選機を採用できる。
なお、チャンバー1内に不活性ガスを導入するための不活性ガス導入口5は、チャンバー1の上壁に設けられ、この不活性ガス導入口5には不活性ガス導入管17が接続されている。チャンバー1内の雰囲気ガスを排出するための排気口6は、前記図6に示す電磁鋳造装置と同様にチャンバー1の下部の側壁に設けられ、この排気口6には排気管16が接続されている。図1では、便宜上、排気口6をチャンバー1の底壁に設けた状態を示している。排気管16を通じた排気口6からの雰囲気ガスの排気量は、排気管16に設置した図示しない流量調整弁によって調整される。
このような構成の第1実施形態の電磁鋳造装置を用いた電磁鋳造において、チャンバー1内で冷却ルツボ7の上方に存在する雰囲気ガスは、図1中の実線矢印で示すように、その一部が、ここに開口する通気管15の上端から通気管15内に導入され、通気管15内を下降した後、冷却ルツボ7の下方に相当するチャンバー1の下部内に送り出され、通気管15に導入されなかった残りが、チャンバー1の側壁近傍を下降する。
通気管15を通じてチャンバー1の下部内に導入された雰囲気ガス、およびチャンバー1の側壁近傍を下降した雰囲気ガスは、最終的には排気口6からチャンバー1の外部に排出されるが、大半はチャンバー1内で自然対流する。すなわち、チャンバー1内の下部に存在する雰囲気ガスは、図1中の実線矢印で示すように、上下に隣接するアフターヒーター9同士の隙間を抜けてアフターヒーター9の内側に進入し、そのままインゴット3の外周とアフターヒーター9の内周との間を上昇した後、最上段のアフターヒーター9の上端と冷却ルツボ7の下端との隙間を抜けて冷却ルツボ7の外側に到達する。そして、冷却ルツボ7の外側に到達した雰囲気ガスは、さらに上昇し、その一部が通気管15に導入され、残りがチャンバー1の側壁近傍を再び下降する。このような雰囲気ガスの自然対流が発生する。
その際、対流する雰囲気ガスに金属不純物が含まれる場合、通気管15に導入された雰囲気ガスが集塵機20を経る過程で金属不純物が集塵機20に捕捉されて除去され、この浄化された雰囲気ガスがチャンバー1の下部に送り出される。このとき、集塵機20による不純物除去が完全でない場合でも、集塵機20を経た雰囲気ガスがさらに磁選機21を経ることにより、金属不純物が磁選機21に選択的に捕捉されるため、効果的に金属不純物を除去することができる。
したがって、本発明の第1実施形態の電磁鋳造装置によれば、対流する雰囲気ガスに金属不純物が含まれる場合であっても、磁冷却ルツボ7の上方に達した雰囲気ガスが通気管15に導入され、集塵機20により、場合によってはさらには磁選機21により、その雰囲気ガスから金属不純物が除去され、この浄化された雰囲気ガスがチャンバー1の下部に送り出されるという循環が繰り返されるため、チャンバー1内の雰囲気ガスに含まれる金属不純物を低減することができ、これに伴い、冷却ルツボ7の真上に運ばれる金属不純物の量を著しく抑制することが可能になる。その結果、対流する雰囲気ガスに起因した溶融シリコン12の不純物汚染を防止することができ、品質に優れたインゴット3を製造することができる。
図2は、第1実施形態の電磁鋳造装置の変形例の構成を模式的に示す図である。同図に示す電磁鋳造装置は、前記図1に示す電磁鋳造装置において、各通気管15の経路に送風機22を付加した構成である。送風機22としては、ファンやブロアを採用できる。前記図1に示す電磁鋳造装置では、通気管15での雰囲気ガスの流れを自然対流に頼っているが、図2に示す電磁鋳造装置では、送風機22の設置により、そのガス流れを強制的に形成することができ、その結果として集塵機20や磁選機21による金属不純物の除去を効率良く行える。
<第2実施形態>
図3は、第2実施形態の電磁鋳造装置の構成を模式的に示す図である。同図に示す本発明の第2実施形態の電磁鋳造装置は、前記図1に示す第1実施形態の電磁鋳造装置と比較し、以下の点で構成が相違する。
図3は、第2実施形態の電磁鋳造装置の構成を模式的に示す図である。同図に示す本発明の第2実施形態の電磁鋳造装置は、前記図1に示す第1実施形態の電磁鋳造装置と比較し、以下の点で構成が相違する。
図3に示すように、第2実施形態の電磁鋳造装置は、前記図1に示す電磁鋳造装置における通気管15に代え、チャンバー1の上部の側壁に連結された上部排気管23を有し、チャンバー1の下部の側壁に連結された下部排気管24を有する。上部排気管23は冷却ルツボ7の上方に相当する位置に開口し、チャンバー1の上部に存在する雰囲気ガスを導入して排出する。一方、下部排気管24は冷却ルツボ7の下方に相当する位置に開口し、チャンバー1の下部に存在する雰囲気ガスを導入して排出する。上部排気管23および下部排気管24のそれぞれを通じた雰囲気ガスの排気量は、それぞれに設置した図示しない流量調整弁によって調整される。
図3では、チャンバー1の中心軸を間に挟む両側にそれぞれ上部排気管23および下部排気管24を設けた例を示しているが、これらの排気管23、24の設置は1箇所のみでもよいし、3箇所以上でも構わない。
このような構成の第2実施形態の電磁鋳造装置を用いた電磁鋳造において、チャンバー1内で冷却ルツボ7の上方に存在する雰囲気ガスは、図3中の実線矢印で示すように、その一部が、ここに開口する上部排気管23内に導入されて外部に排出され、上部排気管23に導入されなかった残りが、チャンバー1の側壁近傍を下降する。
チャンバー1の側壁近傍を下降しチャンバー1の下部に達した雰囲気ガスは、最終的にはチャンバー1の底壁の排気口6からも外部に排出されるが、大半はチャンバー1内で自然対流する。すなわち、チャンバー1内の下部に存在する雰囲気ガスは、図3中の実線矢印で示すように、その一部が、ここに開口する下部排気管24内に導入されて外部に排出され、下部排気管24に導入されなかった残りが、上下に隣接するアフターヒーター9同士の隙間を抜けてアフターヒーター9の内側に進入し、そのままインゴット3の外周とアフターヒーター9の内周との間を上昇した後、最上段のアフターヒーター9の上端と冷却ルツボ7の下端との隙間を抜けて冷却ルツボ7の外側に到達する。そして、冷却ルツボ7の外側に到達した雰囲気ガスは、さらに上昇し、その一部が上部排気管23から排出され、残りがチャンバー1の側壁近傍を再び下降する。このような雰囲気ガスの自然対流が発生する。
したがって、本発明の第1実施形態の電磁鋳造装置によれば、対流する雰囲気ガスに金属不純物が含まれる場合であっても、冷却ルツボ7の上方に達した雰囲気ガスが上部排気管23を通じて強制排気されるため、チャンバー1内の雰囲気ガスに含まれる金属不純物を低減することができ、これに伴い、冷却ルツボ7の真上に運ばれる金属不純物の量を著しく抑制することが可能になる。その結果、対流する雰囲気ガスに起因した溶融シリコン12の不純物汚染を防止することができ、品質に優れたインゴット3を製造することができる。
本発明の電磁鋳造装置による効果を確認するため、構成の異なる種々の電磁鋳造装置を用いてシリコンインゴットを電磁鋳造した。用いた電磁鋳造装置は、本発明例1では前記図1に示す装置で集塵機および磁選機のうちの集塵機のみを設けたもの、本発明例2では前記図1に示す装置、本発明例3では前記図2に示す装置、本発明例4では前記図3に示す装置とした。集塵機としてはサイクロン方式のものを採用し、磁選機としてはマグネットフィルターを用いたものを採用し、送風機としてはファンを採用した。
製造した各インゴットにおいて、固化率が0%、10%、30%、50%、70%および90%のときに対応する位置からそれぞれサンプルウェーハを採取し、各サンプルウェーハ中のFe濃度を測定する試験を行った。ここでいう固化率とは、装入したシリコン原料の総重量に対する固化したインゴットの重量の比率を表わし、インゴットの下端(連続鋳造の最初の位置)からの長さに対応する。また、比較のために、下記の図4に示す電磁鋳造装置を用いてシリコンインゴットを連続鋳造し、このインゴットからも同様にサンプルウェーハを採取してFe濃度を測定した。
図4は、比較のために用いた電磁鋳造装置の構成を模式的に示す図である。同図に示す比較例で用いた電磁鋳造装置は、前記図1に示す本発明例1~3で用いた電磁鋳造装置と比較し、チャンバー1の側壁の上部と下部に連結された通気管15を有する点で共通するが、その通気管15に集塵機、磁選機および送風機のいずれも有しない点で相違する。
図5は、本発明例および比較例でのシリコンインゴットにおけるFe濃度の測定結果を示す図である。同図に示すFe濃度は、比較例の試験で得られたFe濃度のうちで最小のFe濃度を10(基準)として指数化した相対値である。同図に示す結果から、単に通気管のみを有する電磁鋳造装置を用いた比較例と比べ、本発明例1~4のいずれもFe濃度が低減し、溶融シリコンの不純物汚染を防止できることが明らかになった。
本発明のシリコンインゴットの電磁鋳造装置によれば、冷却ルツボの下方で対流する雰囲気ガスに金属不純物が含まれる場合であっても、その雰囲気ガスから金属不純物を除去して低減することができ、またはその金属不純物を含む雰囲気ガスを強制排気することができ、対流する雰囲気ガスに起因して溶融シリコンが金属不純物で汚染されるのを防止することが可能になる。したがって、本発明の連続鋳造方法は、品質に優れた太陽電池用のシリコンインゴットを製造することができる点で極めて有用である。
1:チャンバー、 2:シャッター、 3:シリコンインゴット、
4:引出し口、 5:不活性ガス導入口、 6:排気口、
7:無底冷却ルツボ、 8:誘導コイル、
9:アフターヒーター、 10:原料導入管、
11:シリコン原料、 12:溶融シリコン、
13:プラズマトーチ、 14:支持台、 15:通気管、
16:排気管、 17:不活性ガス導入管、
20:集塵機、 21:磁選機、 22:送風機、
23:上部排気管、 24:下部排気管
4:引出し口、 5:不活性ガス導入口、 6:排気口、
7:無底冷却ルツボ、 8:誘導コイル、
9:アフターヒーター、 10:原料導入管、
11:シリコン原料、 12:溶融シリコン、
13:プラズマトーチ、 14:支持台、 15:通気管、
16:排気管、 17:不活性ガス導入管、
20:集塵機、 21:磁選機、 22:送風機、
23:上部排気管、 24:下部排気管
Claims (4)
- チャンバー内に配置した導電性を有する無底冷却ルツボにシリコン原料を装入し、無底冷却ルツボを囲繞する誘導コイルからの電磁誘導加熱によりシリコン原料を融解させ、この溶融シリコンを無底冷却ルツボから引き下げながら凝固させてシリコンインゴットを連続鋳造する電磁鋳造装置において、
チャンバーの側壁の上部と下部に連結され、無底冷却ルツボの上方の雰囲気ガスを導入して無底冷却ルツボの下方に送り出す通気管を備え、
この通気管の経路に集塵機を設けたことを特徴とするシリコンインゴットの電磁鋳造装置。 - さらに、前記通気管の経路に磁選機を設けたことを特徴とする請求項1に記載のシリコンインゴットの電磁鋳造装置。
- さらに、前記通気管の経路に送風機を設けたことを特徴とする請求項1または2に記載のシリコンインゴットの電磁鋳造装置。
- チャンバー内に配置した導電性を有する無底冷却ルツボにシリコン原料を装入し、無底冷却ルツボを囲繞する誘導コイルからの電磁誘導加熱によりシリコン原料を融解させ、この溶融シリコンを無底冷却ルツボから引き下げながら凝固させてシリコンインゴットを連続鋳造する電磁鋳造装置において、
チャンバーの側壁の上部に連結され、無底冷却ルツボの上方の雰囲気ガスを導入して排出する上部排気管を備え、
チャンバーの側壁の下部に連結され、無底冷却ルツボの下方の雰囲気ガスを導入して排出する下部排気管を備えたことを特徴とするシリコンインゴットの電磁鋳造装置。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010163751A JP2012025600A (ja) | 2010-07-21 | 2010-07-21 | シリコンインゴットの電磁鋳造装置 |
JP2010-163751 | 2010-07-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012011160A1 true WO2012011160A1 (ja) | 2012-01-26 |
Family
ID=45496601
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/006739 WO2012011160A1 (ja) | 2010-07-21 | 2010-11-17 | シリコンインゴットの電磁鋳造装置 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP2012025600A (ja) |
TW (1) | TW201204884A (ja) |
WO (1) | WO2012011160A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102797039A (zh) * | 2012-08-21 | 2012-11-28 | 北京科技大学 | 一种利用电磁法生产超纯多晶硅锭的装置及方法 |
WO2015089959A1 (zh) * | 2013-12-18 | 2015-06-25 | 陕西同心连铸管业科技有限公司 | 空心铸铁管材及其垂直连铸方法和专用设备 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01264920A (ja) * | 1988-04-15 | 1989-10-23 | Osaka Titanium Co Ltd | シリコン鋳造装置 |
JPH0251493A (ja) * | 1988-08-11 | 1990-02-21 | Osaka Titanium Co Ltd | シリコン鋳造装置 |
JPH04342496A (ja) * | 1991-05-16 | 1992-11-27 | Osaka Titanium Co Ltd | 太陽電池用多結晶シリコン鋳塊の製造方法 |
WO2007020706A1 (ja) * | 2005-08-19 | 2007-02-22 | Sumco Solar Corporation | シリコン電磁鋳造装置およびその操作方法 |
JP2008156166A (ja) * | 2006-12-25 | 2008-07-10 | Sumco Solar Corp | シリコンインゴットの鋳造方法および切断方法 |
JP2009046339A (ja) * | 2007-08-17 | 2009-03-05 | Sumco Solar Corp | シリコン鋳造装置 |
-
2010
- 2010-07-21 JP JP2010163751A patent/JP2012025600A/ja active Pending
- 2010-11-17 WO PCT/JP2010/006739 patent/WO2012011160A1/ja active Application Filing
- 2010-11-24 TW TW99140572A patent/TW201204884A/zh unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01264920A (ja) * | 1988-04-15 | 1989-10-23 | Osaka Titanium Co Ltd | シリコン鋳造装置 |
JPH0251493A (ja) * | 1988-08-11 | 1990-02-21 | Osaka Titanium Co Ltd | シリコン鋳造装置 |
JPH04342496A (ja) * | 1991-05-16 | 1992-11-27 | Osaka Titanium Co Ltd | 太陽電池用多結晶シリコン鋳塊の製造方法 |
WO2007020706A1 (ja) * | 2005-08-19 | 2007-02-22 | Sumco Solar Corporation | シリコン電磁鋳造装置およびその操作方法 |
JP2008156166A (ja) * | 2006-12-25 | 2008-07-10 | Sumco Solar Corp | シリコンインゴットの鋳造方法および切断方法 |
JP2009046339A (ja) * | 2007-08-17 | 2009-03-05 | Sumco Solar Corp | シリコン鋳造装置 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102797039A (zh) * | 2012-08-21 | 2012-11-28 | 北京科技大学 | 一种利用电磁法生产超纯多晶硅锭的装置及方法 |
WO2015089959A1 (zh) * | 2013-12-18 | 2015-06-25 | 陕西同心连铸管业科技有限公司 | 空心铸铁管材及其垂直连铸方法和专用设备 |
Also Published As
Publication number | Publication date |
---|---|
JP2012025600A (ja) | 2012-02-09 |
TW201204884A (en) | 2012-02-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5040521B2 (ja) | シリコン鋳造装置 | |
US8242420B2 (en) | Directional solidification of silicon by electric induction susceptor heating in a controlled environment | |
US9724755B2 (en) | Controlled directional solidification of silicon | |
WO2012011160A1 (ja) | シリコンインゴットの電磁鋳造装置 | |
JP4664967B2 (ja) | シリコン鋳造装置およびシリコン基板の製造方法 | |
US20130247618A1 (en) | Continuous casting method of silicon ingot | |
TW201341602A (zh) | 多晶矽及其鑄造方法 | |
WO2012011159A1 (ja) | シリコンインゴットの連続鋳造方法 | |
WO2011104799A1 (ja) | シリコンインゴットの連続鋳造方法 | |
JP2012056826A (ja) | シリコンインゴットの電磁鋳造方法 | |
JP2012066970A (ja) | シリコンインゴットの電磁鋳造方法 | |
JP2012056798A (ja) | シリコンインゴットの電磁鋳造方法 | |
JP2012041197A (ja) | シリコンインゴットの連続鋳造装置および連続鋳造方法 | |
KR20120023487A (ko) | 실리콘 잉곳의 연속 주조 장치 및 연속 주조 방법 | |
JP2012051739A (ja) | シリコンインゴットの電磁鋳造装置 | |
JP2012036067A (ja) | シリコンインゴットの電磁鋳造装置 | |
KR20120074217A (ko) | 실리콘 잉곳의 전자 주조 방법 | |
JP2012046394A (ja) | シリコンインゴットの電磁鋳造装置 | |
JP2012041211A (ja) | 多結晶シリコンウェーハ及びその鋳造方法 | |
JP5945601B2 (ja) | 消耗電極真空アーク再溶解法によるメタロイドの精製 | |
WO2011104795A1 (ja) | 多結晶シリコンウェーハ | |
JP2012121743A (ja) | シリコンインゴットの電磁鋳造方法 | |
JP2013112539A (ja) | シリコンインゴットの連続鋳造方法 | |
JP2013049586A (ja) | シリコンインゴットの連続鋳造方法 | |
KR20120005925A (ko) | 실리콘 잉곳의 연속 주조 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10854997 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10854997 Country of ref document: EP Kind code of ref document: A1 |