WO2012009853A1 - 一种发射白光的玻璃陶瓷及其制备方法 - Google Patents
一种发射白光的玻璃陶瓷及其制备方法 Download PDFInfo
- Publication number
- WO2012009853A1 WO2012009853A1 PCT/CN2010/075380 CN2010075380W WO2012009853A1 WO 2012009853 A1 WO2012009853 A1 WO 2012009853A1 CN 2010075380 W CN2010075380 W CN 2010075380W WO 2012009853 A1 WO2012009853 A1 WO 2012009853A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- glass
- white light
- glass ceramic
- emitting
- white
- Prior art date
Links
- 239000002241 glass-ceramic Substances 0.000 title claims abstract description 46
- 238000004519 manufacturing process Methods 0.000 title abstract description 3
- 238000000137 annealing Methods 0.000 claims abstract description 28
- 239000000126 substance Substances 0.000 claims abstract description 21
- 230000009467 reduction Effects 0.000 claims abstract description 11
- 239000011521 glass Substances 0.000 claims description 35
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 34
- 239000001257 hydrogen Substances 0.000 claims description 20
- 229910052739 hydrogen Inorganic materials 0.000 claims description 20
- 229910052757 nitrogen Inorganic materials 0.000 claims description 17
- 239000002994 raw material Substances 0.000 claims description 17
- 101710134784 Agnoprotein Proteins 0.000 claims description 15
- 238000000034 method Methods 0.000 claims description 14
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 13
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 13
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 10
- 241000566146 Asio Species 0.000 claims description 9
- 239000000919 ceramic Substances 0.000 claims description 8
- 238000001354 calcination Methods 0.000 claims description 6
- 239000002243 precursor Substances 0.000 claims description 6
- 239000011812 mixed powder Substances 0.000 claims description 4
- 229910020156 CeF Inorganic materials 0.000 claims description 3
- PUZPDOWCWNUUKD-UHFFFAOYSA-M sodium fluoride Inorganic materials [F-].[Na+] PUZPDOWCWNUUKD-UHFFFAOYSA-M 0.000 claims description 3
- 230000008569 process Effects 0.000 claims description 2
- 238000011084 recovery Methods 0.000 claims 1
- 229910052761 rare earth metal Inorganic materials 0.000 abstract description 14
- -1 rare earth ion Chemical class 0.000 abstract description 13
- 238000004020 luminiscence type Methods 0.000 abstract description 8
- 239000002245 particle Substances 0.000 abstract description 5
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 abstract 1
- FOIXSVOLVBLSDH-UHFFFAOYSA-N Silver ion Chemical compound [Ag+] FOIXSVOLVBLSDH-UHFFFAOYSA-N 0.000 abstract 1
- 229910052709 silver Inorganic materials 0.000 abstract 1
- 239000004332 silver Substances 0.000 abstract 1
- 238000005245 sintering Methods 0.000 abstract 1
- 229910052593 corundum Inorganic materials 0.000 description 19
- 239000010431 corundum Substances 0.000 description 19
- 229910001018 Cast iron Inorganic materials 0.000 description 10
- 239000007789 gas Substances 0.000 description 10
- 239000000156 glass melt Substances 0.000 description 10
- 239000004570 mortar (masonry) Substances 0.000 description 10
- 239000012856 weighed raw material Substances 0.000 description 9
- 238000002360 preparation method Methods 0.000 description 8
- 150000002431 hydrogen Chemical class 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 6
- 238000005286 illumination Methods 0.000 description 6
- 238000010792 warming Methods 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 5
- 239000011159 matrix material Substances 0.000 description 5
- 230000005284 excitation Effects 0.000 description 4
- 150000002500 ions Chemical class 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 238000011534 incubation Methods 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 230000007704 transition Effects 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000005090 crystal field Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000000295 emission spectrum Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 230000006798 recombination Effects 0.000 description 2
- 238000005215 recombination Methods 0.000 description 2
- 239000005368 silicate glass Substances 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 101100274801 Caenorhabditis elegans dyf-3 gene Proteins 0.000 description 1
- 229910002601 GaN Inorganic materials 0.000 description 1
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 239000005347 annealed glass Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 150000001768 cations Chemical group 0.000 description 1
- 238000005034 decoration Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000001748 luminescence spectrum Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000010309 melting process Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000002923 metal particle Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002667 nucleating agent Substances 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000006064 precursor glass Substances 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000002198 surface plasmon resonance spectroscopy Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B32/00—Thermal after-treatment of glass products not provided for in groups C03B19/00, C03B25/00 - C03B31/00 or C03B37/00, e.g. crystallisation, eliminating gas inclusions or other impurities; Hot-pressing vitrified, non-porous, shaped glass products
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B32/00—Thermal after-treatment of glass products not provided for in groups C03B19/00, C03B25/00 - C03B31/00 or C03B37/00, e.g. crystallisation, eliminating gas inclusions or other impurities; Hot-pressing vitrified, non-porous, shaped glass products
- C03B32/02—Thermal crystallisation, e.g. for crystallising glass bodies into glass-ceramic articles
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C10/00—Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
- C03C10/0009—Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing silica as main constituent
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C10/00—Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
- C03C10/16—Halogen containing crystalline phase
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/076—Glass compositions containing silica with 40% to 90% silica, by weight
- C03C3/11—Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen
- C03C3/112—Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen containing fluorine
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C4/00—Compositions for glass with special properties
- C03C4/12—Compositions for glass with special properties for luminescent glass; for fluorescent glass
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/77—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
- C09K11/7766—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/77—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
- C09K11/7766—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
- C09K11/77746—Aluminium Nitrides or Aluminium Oxynitrides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/48—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
- H01L33/50—Wavelength conversion elements
- H01L33/501—Wavelength conversion elements characterised by the materials, e.g. binder
- H01L33/502—Wavelength conversion materials
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B20/00—Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
Definitions
- the invention belongs to the technical field of luminescent materials, and in particular relates to a glass ceramic emitting white light and a preparation method thereof.
- LED semiconductor lighting technology
- gallium nitride gallium nitride
- the power consumption is only 1/10 of that of ordinary incandescent lamps under the same brightness, and the lifetime can reach more than 100,000 hours.
- LED has many advantages such as energy saving, environmental protection, and flexible application. It can be widely used in various fields such as indication, display, decoration, backlight and general illumination.
- Most of the commercial white LED lighting devices use blue LED chips with phosphors that emit yellow or green and orange light when excited by blue light. Such phosphors have high luminous efficiency and the preparation method is mature.
- the light source device fabricated by this method has the following defects: (1) The epoxy resin used for packaging is easily aged and yellowed under the illumination of blue light, violet light or ultraviolet light, resulting in a decrease in device life; (2) complicated process and cost High; (3) Due to the different light decay rates of the phosphor and the chip, the color coordinates are unstable, and the white light is easily drifted.
- glass ceramics that can achieve luminescence under violet or ultraviolet excitation have significant advantages: (1) good light transmission; (2) good chemical stability and thermal stability; The preparation process is simple and the cost is low; (4) it is easy to make large pieces and different shapes; (5) can replace epoxy resin. Due to these characteristics, glass ceramics capable of achieving high-performance illumination are very suitable as a luminescent medium material in the field of LED illumination. Therefore, finding a suitable glass-ceramic substrate and rare earth ions makes it suitable for emitting white light under the excitation of blue light or ultraviolet light.
- the solid solubility of rare earth ions in the glass network is low; in addition, the phonon energy of the commonly used silicate glass is higher, resulting in a large probability of non-radiative recombination of the doped rare earth ions.
- the radiation recombination probability of the rare earth ions is greatly reduced, thereby causing the rare earth ions to have weak luminescence intensity in the glass, or even no luminescence.
- the present invention provides a white ceramic that emits white light with high luminous efficiency.
- a glass-ceramic emitting white light having a chemical formula of:
- aSiO 2 •bAl 2 O 3 •cNaF•dCeF 3 •nDyF 3 •mAg, where a, b, c, d, n, m are the number of moles, and their values are: a 25 to 50, b It is 15 ⁇ 30, c is 10 ⁇ 30, d is 10 ⁇ 25, n is 0.01 ⁇ 1, m is 0.01 ⁇ 1, and a + b + c + d 100.
- the raw materials SiO 2 , Al 2 O 3 , NaF, CeF 3 , DyF 3 , AgNO 3 are selected according to stoichiometric ratio, and the stoichiometric ratio is according to the chemical formula aSiO 2 •bAl 2 O 3 •cNaF•dCeF 3 •nDyF 3 •
- the molar ratio of the corresponding elements in mAg, where a, b, c, d, n, m are the number of moles, and their values are: a is 25 ⁇ 50, b is 15 ⁇ 30, c is 10 ⁇ 30, d is 10 ⁇ 25, n is 0.01 ⁇ 1, m is 0.01 ⁇ 1, and a + b + c + d 100.
- the mixed powder is subjected to calcination treatment to obtain a glass precursor
- the glass precursor is subjected to a reduction annealing treatment under a reducing atmosphere, and cooled to obtain the white-emitting glass ceramic having a chemical formula of aSiO 2 •bAl 2 O 3 •cNaF•dCeF 3 •nDyF 3 •mAg.
- the white-emitting glass ceramic is suitable as a luminescent medium for white LEDs excited by ultraviolet light, and has great application potential in the field of illumination and display.
- FIG. 1 is a flow chart of a method for preparing a white-light-emitting glass ceramic according to an embodiment of the present invention
- Example 2 is an emission spectrum of the glass ceramics prepared in Example 5 and Comparative Example 1 at 250 nm excitation; wherein A is the raw material of Comparative Example 1 containing no AgNO 3 , and B is 0.1 in the raw material of Example 5. Sample of mol% AgNO 3 .
- aSiO 2 •bAl 2 O 3 •cNaF•dCeF 3 •nDyF 3 •mAg, where a, b, c, d, n, m are the number of moles, and their values are: a is 25 to 50, b is 15 ⁇ 30, c is 10 ⁇ 30, d is 10 ⁇ 25, n is 0.01 ⁇ 1, m is 0.01 ⁇ 1, and a + b + c + d 100. Further, a is preferably 35 to 50, b is preferably 20 to 30, c is preferably 10 to 20, d is preferably 10 to 20, n is preferably 0.1 to 1, and m is preferably 0.01 to 0.5.
- the white-light-emitting glass ceramic is doped with Dy 3+ by using Al 2 O 3 -SiO 2 -NaF-CeF 3 as a matrix.
- Dy 3+ is a strong fluorescent rare earth ion with a 4f 9 electronic configuration. The two strongest fluorescence emission peaks are located at 470 - 500 nm blue ultrasensitive transition ( 4 F 9/2- 6 H 15/2 ) and located 570 – 600 nm is a yellow ultrasensitive transition ( 4 F 9/2- 6 H 13/2 ).
- the yellow emission is strongly affected by the crystal field.
- the yellow-blue ratio can be adjusted by changing the crystal field environment where Dy 3+ is located. When the yellow-blue ratio is appropriate, Dy 3+ will emit white light.
- the rare earth luminescent ions act as a nucleating agent when the fluoride crystals in the oxyfluoride glass are precipitated, and can enter the fluoride crystals by the substitution of the cations.
- fluoride has a lower phonon energy, and the probability of no radiation transition is reduced compared to silicate glass, and energy loss is low.
- the glass matrix component has adjustability in a certain range, it is also possible to achieve an improvement in the luminous intensity of the glass ceramic by adjusting the glass matrix component.
- FIG. 1 illustrates a flow of a method for preparing a white-light-emitting glass ceramic according to an embodiment of the present invention.
- the preparation method includes the following steps:
- the glass precursor is subjected to a reduction annealing treatment under a reducing atmosphere, and cooled to obtain the white light-emitting glass having the chemical formula of aSiO 2 •bAl 2 O 3 •cNaF•dCeF 3 •nDyF 3 •mAg. ceramics.
- a 35-50
- b 20-30
- c 10-20
- d It is 10 ⁇ 20
- n 0.1 ⁇ 1
- m 0.01 ⁇ 0.5.
- step S02 the lidded crucible is melted in a high temperature box furnace, and then the glass melt is poured onto a cast iron mold and pressed into a transparent glass.
- a melting temperature of 1200 ⁇ 1500 o C the calcination time is 0.5 ⁇ 3 h.
- the reduction annealing treatment comprises two stages: a reduction annealing treatment and a pure annealing treatment, wherein the reduction annealing treatment is to place the formed glass in an annealing furnace, and a nitrogen-hydrogen mixture having a N 2 and H 2 volume ratio of 95:5;
- the temperature is raised in the reducing atmosphere at 300-550 o C for 0.5 to 5 h, and the reduction annealing treatment is performed to reduce the Ag ions to the Ag element, and the high temperature can eliminate the internal stress of the glass.
- an annealing treatment warmed to incubation continued 1 ⁇ 5 h at 550 ⁇ 800 o C.
- Annealing heat treatment makes the morphology and size of Ag single particles interact with rare earth ions.
- the luminescence intensity of rare earth ions doped in the glass ceramic matrix is greatly enhanced, and the rare earth fluoride in the mother glass can be fully nucleated, which is beneficial to The improvement of the luminous intensity of glass ceramics.
- the annealed glass ceramic is further cooled to room temperature with an annealing furnace to obtain a white-emitting glass ceramic having a predetermined number of moles.
- compositions of the white-light-emitting glass ceramics and their preparation methods, as well as their properties and the like, are exemplified below by way of various embodiments.
- the temperature is raised to 300 o C in the atmosphere, and after 1 h of incubation, the nitrogen-hydrogen reducing gas is turned off, and then the temperature is raised to 550 o C and maintained at this temperature for 4 h.
- the annealing furnace is turned off and naturally cooled to room temperature to obtain a chemical formula of 35 SiO. 2 • 15Al 2 O 3 • 30NaF • 20CeF 3 • 1DyF 3 • 0.01Ag luminescent glass ceramic.
- Example 5 the luminescence spectrum of the glass ceramic having white light color obtained by the above Example 5 and Comparative Example 1 is shown, which is the corresponding emission spectrum at 250 nm excitation, as shown in the figure.
- the fluorescence emission peaks of Example 5 containing 0.1 mol% of AgNO 3 in the raw material and Comparative Example 1 containing no AgNO 3 in the raw materials were all at 480 nm and 572 nm, but the emission intensity of the sample doped with Ag was shown.
- the integrated emission intensity of the sample compared to the undoped Ag was increased by about 190%.
- Ag ions are introduced during the melting process of the precursor glass, and the subsequent reduction heat treatment reduces the Ag ions to the metal Ag elemental particles; and the morphology and size of the Ag single particles are allowed to interact with the rare earth ions by a suitable heat treatment, thereby A glass ceramic having a high intensity of white light is obtained.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Geochemistry & Mineralogy (AREA)
- Ceramic Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Dispersion Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Luminescent Compositions (AREA)
- Glass Compositions (AREA)
Description
Claims (9)
- 一种发射白光的玻璃陶瓷,其化学通式为:aSiO2•bAl2O3•cNaF•dCeF3•nDyF3•mAg,式中,a,b,c,d,n,m为摩尔数,取值范围分别为:a为25~50,b为15~30,c为10~30,d为10~25, n为0.01~1, m为0.01~1,并且,a + b + c + d = 100。
- 如权利要求1所述的发射白光的玻璃陶瓷,其特征在于,所述a、b、c、d、n、m的取值分别为:a为35~50,b为20~30,c为10~20,d为10~20,n为0.1~1。
- 如权利要求1所述的发射白光的玻璃陶瓷,其特征在于,所述m为0.01~0.5。
- 一种发射白光的玻璃陶瓷的制备方法,其包括如下步骤:按照化学通式aSiO2•bAl2O3•cNaF•dCeF3•nDyF3•mAg中的化学计量比,称取原料SiO2、Al2O3、NaF、CeF3、DyF3和AgNO3,研磨、混合成混合粉体;式中,a,b,c,d,n,m为摩尔数,取值范围分别为:a为25~50,b为15~30,c为10~30,d为10~25,n为0.01~1, m为0.01~1,并且,a + b + c + d = 100;将所述混合粉体进行煅烧处理,制得玻璃前躯体;将所述玻璃前躯体置于还原气氛下进行还原退火处理,冷却,制得化学通式为aSiO2•bAl2O3•cNaF•dCeF3•nDyF3•mAg的所述发射白光的玻璃陶瓷。
- 如权利要求4所述的发射白光的玻璃陶瓷的制备方法,其特征在于,所述a、b、c、d、n、m的取值分别如下:a为35~50,b为20~30,c为10~20,d为10~20,n为0.1~1。
- 如权利要求4所述的发射白光的玻璃陶瓷的制备方法,其特征在于,所述m为0.01~0.5。
- 如权利要求4所述的发射白光的玻璃陶瓷的制备方法,其特征在于,所述煅烧处理温度为1200~1500oC,所述煅烧处理保温时间为0.5~3 h。
- 如权利要求4所述的发射白光的玻璃陶瓷的制备方法,其特征在于,所述还原退火处理还包括如下处理过程:还原气氛下,于300~550oC中所述还原退火处理0.5~5 h;然后关闭还原气氛,升温至550~800oC下,继续退火处理1~5 h。
- 如权利要求4所述的发射白光的玻璃陶瓷的制备方法,其特征在于,所述还原气氛为氮气和氢气组成的混合还原气氛。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2010/075380 WO2012009853A1 (zh) | 2010-07-22 | 2010-07-22 | 一种发射白光的玻璃陶瓷及其制备方法 |
CN201080066840.8A CN102906043B (zh) | 2010-07-22 | 2010-07-22 | 一种发射白光的玻璃陶瓷及其制备方法 |
US13/809,679 US8936732B2 (en) | 2010-07-22 | 2010-07-22 | White light emitting glass-ceramic and production method thereof |
EP10854883.5A EP2597071B1 (en) | 2010-07-22 | 2010-07-22 | White light emitting glass-ceramic and production method thereof |
JP2013519932A JP5715252B2 (ja) | 2010-07-22 | 2010-07-22 | 白色発光ガラスセラミックス及びその製造方法、並びにledデバイス |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2010/075380 WO2012009853A1 (zh) | 2010-07-22 | 2010-07-22 | 一种发射白光的玻璃陶瓷及其制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012009853A1 true WO2012009853A1 (zh) | 2012-01-26 |
Family
ID=45496445
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2010/075380 WO2012009853A1 (zh) | 2010-07-22 | 2010-07-22 | 一种发射白光的玻璃陶瓷及其制备方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US8936732B2 (zh) |
EP (1) | EP2597071B1 (zh) |
JP (1) | JP5715252B2 (zh) |
CN (1) | CN102906043B (zh) |
WO (1) | WO2012009853A1 (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103274598A (zh) * | 2013-06-06 | 2013-09-04 | 昆明理工大学 | 一种高效白光发射含银纳米颗粒的玻璃及其制备方法 |
JP2015514829A (ja) * | 2012-03-29 | 2015-05-21 | オーシャンズ キング ライティング サイエンスアンドテクノロジー カンパニー リミテッド | 金属ナノ粒子含有の珪酸塩発光材料及びその調製方法 |
CN106277799A (zh) * | 2016-07-27 | 2017-01-04 | 福建省德化县腾兴陶瓷有限公司 | 一种微晶玻璃及其制备工艺以及远程暖白光led器件 |
CN112456796A (zh) * | 2020-12-21 | 2021-03-09 | 中国计量大学 | 一种金属粒子增强稀土掺杂宽色域荧光玻璃及其制备方法 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7250342B2 (ja) | 2020-01-16 | 2023-04-03 | 株式会社弘樹 | ソファーベッド |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101092282A (zh) * | 2007-06-19 | 2007-12-26 | 浙江大学 | 应用于半导体照明的玻璃陶瓷及其制备方法 |
CN101456675A (zh) * | 2007-12-11 | 2009-06-17 | 中国科学院福建物质结构研究所 | 通过上转换发射明亮白光的玻璃陶瓷 |
CN101723593A (zh) * | 2009-11-30 | 2010-06-09 | 浙江大学 | 一种用于led白光照明的发光玻璃陶瓷及其制备方法 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6132643A (en) * | 1998-01-06 | 2000-10-17 | Pavel; Eugen | Fluorescent photosensitive vitroceramics and process for the production thereof |
US20130069005A1 (en) * | 2010-06-08 | 2013-03-21 | Ocean's King Lighting Science & Technology Co., Ltd. | Transparent glass ceramic emitting white light and preparation method thereof |
-
2010
- 2010-07-22 US US13/809,679 patent/US8936732B2/en active Active
- 2010-07-22 WO PCT/CN2010/075380 patent/WO2012009853A1/zh active Application Filing
- 2010-07-22 JP JP2013519932A patent/JP5715252B2/ja not_active Expired - Fee Related
- 2010-07-22 EP EP10854883.5A patent/EP2597071B1/en active Active
- 2010-07-22 CN CN201080066840.8A patent/CN102906043B/zh active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101092282A (zh) * | 2007-06-19 | 2007-12-26 | 浙江大学 | 应用于半导体照明的玻璃陶瓷及其制备方法 |
CN101456675A (zh) * | 2007-12-11 | 2009-06-17 | 中国科学院福建物质结构研究所 | 通过上转换发射明亮白光的玻璃陶瓷 |
CN101723593A (zh) * | 2009-11-30 | 2010-06-09 | 浙江大学 | 一种用于led白光照明的发光玻璃陶瓷及其制备方法 |
Non-Patent Citations (3)
Title |
---|
HAYAKAWA, TOMOKATSU ET AL.: "Enhanced Fluorescence from Eu3+ Owing to Surface Plasma Oscillation of Silver Particles in Glass.", JOURNAL OF NON-CRYSTALLINE SOLIDS., vol. 259, no. 1-3, November 1999 (1999-11-01), pages 16 - 22, XP004364362 * |
See also references of EP2597071A4 * |
WANG, YUEHUI ET AL.: "Fluorescence Enhancement of Dysprosium Complex by Binding to Silver Nanoparticles.", CHINESE JOURNAL OF INORGANIC CHEMISTRY., vol. 24, no. 3, March 2008 (2008-03-01), pages 409 - 414, XP008167268 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015514829A (ja) * | 2012-03-29 | 2015-05-21 | オーシャンズ キング ライティング サイエンスアンドテクノロジー カンパニー リミテッド | 金属ナノ粒子含有の珪酸塩発光材料及びその調製方法 |
CN103274598A (zh) * | 2013-06-06 | 2013-09-04 | 昆明理工大学 | 一种高效白光发射含银纳米颗粒的玻璃及其制备方法 |
CN106277799A (zh) * | 2016-07-27 | 2017-01-04 | 福建省德化县腾兴陶瓷有限公司 | 一种微晶玻璃及其制备工艺以及远程暖白光led器件 |
CN112456796A (zh) * | 2020-12-21 | 2021-03-09 | 中国计量大学 | 一种金属粒子增强稀土掺杂宽色域荧光玻璃及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
EP2597071B1 (en) | 2016-10-19 |
JP5715252B2 (ja) | 2015-05-07 |
JP2013535533A (ja) | 2013-09-12 |
EP2597071A4 (en) | 2014-01-22 |
US8936732B2 (en) | 2015-01-20 |
EP2597071A1 (en) | 2013-05-29 |
CN102906043A (zh) | 2013-01-30 |
CN102906043B (zh) | 2015-07-15 |
US20130112919A1 (en) | 2013-05-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107056070B (zh) | 一种透明Ce:YAG玻璃陶瓷及其制备方法 | |
JP5529296B2 (ja) | 白光led光源に用いられる発光ナノ微結晶ガラス及びその製造方法 | |
WO2018010233A1 (zh) | 一种led芯片发光灯条基板材料及led球泡灯 | |
WO2012009853A1 (zh) | 一种发射白光的玻璃陶瓷及其制备方法 | |
JP5616446B2 (ja) | 緑色発光ガラス | |
WO2014134854A1 (zh) | 一种稀土掺杂硅酸盐发光玻璃及其制备方法 | |
WO2012019359A1 (zh) | 硅酸盐发光材料及其制备方法 | |
WO2011153686A1 (zh) | 发射白光的透明玻璃陶瓷及其制备方法 | |
CN106277799B (zh) | 一种微晶玻璃及其制备工艺以及远程暖白光led器件 | |
CN102381841B (zh) | 一种黄绿色发光玻璃陶瓷材料及其制备方法 | |
CN109370588B (zh) | 半导体发光用的氮化物荧光粉及其制备方法和发光装置 | |
CN111099826A (zh) | 一种蓝光激发的黄绿色全光谱荧光玻璃及其制备方法 | |
CN115124247A (zh) | 一种全无机钙钛矿量子点微晶玻璃材料及制备方法 | |
CN114671608A (zh) | CsPbBr3量子点镶嵌氟磷酸盐玻璃及制备方法和应用 | |
CN113549454A (zh) | 一种Eu(II)离子掺杂的单相全光谱发射荧光粉及其制备方法和应用 | |
CN115893858B (zh) | 荧光玻璃陶瓷及其制备方法以及led灯 | |
CN111057547B (zh) | 一种碳化硅改性的YAG:Ce荧光粉及其制备方法 | |
CN112225450B (zh) | 一种镧系掺杂宽色域荧光玻璃及其制备方法 | |
JP5696966B2 (ja) | 青色発光ガラスおよびその調製方法 | |
CN112574740A (zh) | 一种Sm3+掺杂的硅酸钙钠橙色荧光粉及其制备方法 | |
CN118255516A (zh) | 一种led用发白光玻璃及其制备方法 | |
CN104529170A (zh) | 一种透明Ce:YAG微晶玻璃及其在白光LED中的应用 | |
CN115716707A (zh) | 一种用于led照明的紫光激发玻璃陶瓷及其制备方法 | |
CN116693201A (zh) | 一种Bi3+掺杂的蓝光微晶玻璃及其制备方法和应用 | |
CN115261017A (zh) | 一种能够被紫光激发的蓝光发光材料及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080066840.8 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10854883 Country of ref document: EP Kind code of ref document: A1 |
|
REEP | Request for entry into the european phase |
Ref document number: 2010854883 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010854883 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13809679 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 2013519932 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |