WO2012008797A2 - Method for preparing an organic phase change material by means of a hydrotreating reaction of animal and plant oils - Google Patents
Method for preparing an organic phase change material by means of a hydrotreating reaction of animal and plant oils Download PDFInfo
- Publication number
- WO2012008797A2 WO2012008797A2 PCT/KR2011/005232 KR2011005232W WO2012008797A2 WO 2012008797 A2 WO2012008797 A2 WO 2012008797A2 KR 2011005232 W KR2011005232 W KR 2011005232W WO 2012008797 A2 WO2012008797 A2 WO 2012008797A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- phase change
- organic phase
- change material
- oil
- producing
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K5/00—Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
- C09K5/02—Materials undergoing a change of physical state when used
- C09K5/06—Materials undergoing a change of physical state when used the change of state being from liquid to solid or vice versa
- C09K5/063—Materials absorbing or liberating heat during crystallisation; Heat storage materials
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11B—PRODUCING, e.g. BY PRESSING RAW MATERIALS OR BY EXTRACTION FROM WASTE MATERIALS, REFINING OR PRESERVING FATS, FATTY SUBSTANCES, e.g. LANOLIN, FATTY OILS OR WAXES; ESSENTIAL OILS; PERFUMES
- C11B3/00—Refining fats or fatty oils
- C11B3/12—Refining fats or fatty oils by distillation
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11C—FATTY ACIDS FROM FATS, OILS OR WAXES; CANDLES; FATS, OILS OR FATTY ACIDS BY CHEMICAL MODIFICATION OF FATS, OILS, OR FATTY ACIDS OBTAINED THEREFROM
- C11C3/00—Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom
- C11C3/12—Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom by hydrogenation
- C11C3/123—Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom by hydrogenation using catalysts based principally on nickel or derivates
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11C—FATTY ACIDS FROM FATS, OILS OR WAXES; CANDLES; FATS, OILS OR FATTY ACIDS BY CHEMICAL MODIFICATION OF FATS, OILS, OR FATTY ACIDS OBTAINED THEREFROM
- C11C3/00—Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom
- C11C3/12—Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom by hydrogenation
- C11C3/126—Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom by hydrogenation using catalysts based principally on other metals or derivates
Definitions
- the present invention relates to a method for producing an organic phase change material (PCM) through the hydrotreating reaction of animal and vegetable oil, and more particularly, to a mixture of the organic phase change substance through the hydrotreating reaction of animal and vegetable oil in the presence of a catalyst. It relates to a method for preparing an organic phase change material by separating the mixture of the organic phase change material obtained after the preparation.
- PCM organic phase change material
- phase change material can absorb or release a lot of heat (latent heat) as the phase changes at a certain temperature without changing the temperature so that it stores its surrounding heat and releases it when needed It is a substance.
- latent heats have tens to hundreds of times more energy storage and release capacity than sensible heat, which is why they are superior to conventional sensible energy storage materials.
- phase-change materials have an energy industry and eco-friendly housing systems (interior materials, heating and cooling, air conditioning systems, solar systems, low cost energy utilization systems), sports clothing and jewelry (climbing, hiking backpacks, motorcycle clothing, in-line skates).
- Sleeping bag functional clothing (special military uniform), footwear (sneakers, shoes, specialization, specialization, work shoes), military industry facilities and munitions, automotive industry (interior materials, sheet), heat protection system of various digital and electric equipment, medical equipment
- Phase change materials are classified into organic phase change materials and inorganic phase change materials according to constituent materials.
- organic materials are normally used as normal-paraffins and inorganic materials are calcium chloride.
- organic phase change materials are not corrosive, chemically and thermally stable, and have no sub-cooling, while the disadvantages are low phase change enthalpy, density and thermal conductivity.
- inorganic phase change materials have advantages of high phase change enthalpy and density, but disadvantages include overcooling, corrosiveness, phase separation, and lack of cycle stability.
- organic phase change materials are known to be superior to inorganic phase change materials.
- Normal-paraffin a representative organic phase change material, is produced from kerosene, one of the crude oil refined products.
- Kerosene generally contains 1-5% by weight of normal-paraffins, and the carbon number of the normal-paraffins is present in a wide range.
- the production of normal-paraffins from kerosene involves the steps of 1) separating the mixture of the desired carbon number using the boiling point 2) removing impurities such as sulfur, nitrogen, and oxygen in the mixture acting as a poison of the adsorbent used at the end 3) adsorbent Normal-paraffin adsorption process in the mixture using 4) adsorbed normal-paraffin desorption process using desorption material 5) It is a very complicated and expensive process to go through the desorption material and each normal-paraffin separation process using a boiling point. Moreover, since kerosene contains components having various carbon numbers and various normal-paraffin derivatives, the concentration of normal-paraffins that we need is not high, so it is difficult to effectively separate normal-paraffins from kerosene.
- animal oils include fish oil, tallow, pork and confined fat.
- animal and vegetable oil is composed of triglyceride (triglyceride) in which three fatty acids are bonded to one molecule of glycerol, and the fatty acids constituting each chain are mainly 4 carbon atoms (butyric acid) to 28 carbon atoms (octacoseno).
- Iksan up to fatty acids.
- the types of fatty acids that make up one species of animal or vegetable oil are generally simple, with most fatty acids in the three species being the majority.
- palm oil is composed of 1% by weight of C14 fatty acid, 43% of C16 fatty acid, and 55% by weight of C18 fatty acid.
- triglyceride When the triglyceride is hydrogenated, a mixture composed of a high concentration of normal-paraffin material is obtained, and then a normal-paraffin having each phase change material property can be obtained simply and inexpensively through a separation method such as distillation. Hydrogenation of triglyceride is performed by 1) separating triglyceride into 3 molecules of fatty acid and 1 molecule of glycerol, 2) olefin saturation reaction in fatty acid, and 3) converting fatty acid into normal-paraffin through dehydration and decarboxylation reaction. This results in the production of normal-paraffins with the same carbon number as the fatty acids in triglycerides or with normal-paraffins with one carbon less than fatty acids.
- phase change material in the range of melting point ⁇ 188 ° C. (C3 propane melting point) to 65 ° C. (C28 octacosene melting point) through a hydrogenation process of a main animal or vegetable oil composed of fatty acids having 4 to 28 carbon atoms. .
- US Patent No. 6,574,971 discusses triglycerides of animal and vegetable oil and methods of using fatty acids in triglycerides as phase change materials. Although this method is also a method of preparing a phase change material using animal and vegetable oil, the oxidation stability is lower than that of the present patent for preparing a phase change material using normal-paraffin which has undergone the hydrogenation process of animal and vegetable oil. It has a disadvantage.
- a relatively inexpensive organic phase change material is prepared through a method of preparing an organic phase change material by preparing a mixture of organic phase change materials through a hydrogenation reaction of animal and vegetable oil in the presence of a catalyst and then separating the outputs thereof.
- the present invention provides a method for preparing an organic phase change material by separating a mixture of organic phase change materials obtained after preparing a mixture of organic phase change materials through a hydrogenation reaction of animal and vegetable oil in the presence of a catalyst. To provide.
- One embodiment of the present invention for achieving the above object is a method for producing an organic phase change material through a hydrogenation reaction of animal and vegetable oil,
- step (b) separating the organic phase change material from the mixture of step (a); to prepare an organic phase change material.
- the animal and vegetable oil is not particularly limited, but coconut oil, corn oil, cottonseed oil, peanuts, olive oil, palm oil, palm kernel oil, rapeseed oil, canola oil, sesame oil, soybean oil, sunflower oil, castor oil, linseed oil, safflower oil, jatropha oil It may be any one or a mixture of two or more selected from the group consisting of fish oil, tallow, pork, poultry fat and fatty acids or waste oil thereof.
- the number of carbons constituting each chain of the triglyceride is 4 to 36 fats, and in the case of the fatty acid, it is preferable to use fatty acids having 4 to 36 carbons, but is not limited thereto.
- the animal and vegetable oil used in the present invention may further include a step of removing impurities contained therein.
- the step of removing the impurities may be performed using a conventional method, but the pore size is 0.1. It is preferable to use a filter of ⁇ 100 ⁇ m.
- the present invention uses a catalyst having a high durability and durability in the step (a) to produce an organic phase change material through a simple process.
- Such catalysts may comprise any one or two or more mixtures selected from the group consisting of VIB, VIIB, VIIIB, VIII, IB or IIB metals as active ingredients in the carrier, more specifically the metal VIB group is Mo or W,
- the metal group VIII may be Ni, Pd, or Pt, and the group VIIIB may be Fe, Co, Ru, Rh, or Ir, but is not limited thereto.
- Group VIB, VIIB, VIIIB, VIII, IB or IIB metal of the present invention is included in 0.1 to 70% by weight with respect to the carrier, when supported by 0.1% by weight or less, the activity of the catalyst is very low and does not act as a catalyst, This is because it is difficult to support at 70% by weight or more. Preferably it is supported by 1 to 40% by weight.
- Carriers used in the present invention are not particularly limited, but aluminum oxide, zirconium oxide, silica-alumina, titanium oxide, carbon, alkaline earth metal oxide, alkali metal oxide, aluminum phosphate, niobia, ceria, lantania, zirconium phosphate, Titanium phosphate, silicon carbide or mixtures thereof can be used.
- the method for producing an organic phase change material of the present invention is more preferably the carrier is zirconium oxide, aluminum oxide or titanium oxide, the active ingredient of the catalyst is a mixture of Ni and Mo and the hydrogenation reaction is a temperature of 250 ⁇ 410 °C It can be carried out at 10-150 bar air pressure.
- step (b) of the present invention may be carried out using fractional distillation, but it is preferable to use four or more distillation columns to produce a higher purity organic phase change material.
- animal and vegetable oil is mainly composed of triglycerides (Triglyceride), in the general hydrotreating reaction conditions, triglycerides are produced by the hydrogen-propane, H 2 O, CO, CO 2 and the like as a by-paraffin and by-products.
- triglycerides are produced by the hydrogen-propane, H 2 O, CO, CO 2 and the like as a by-paraffin and by-products.
- the organic phase change material produced according to the present invention may be composed of normal-paraffins having 13 to 22 carbon atoms, preferably composed of normal-paraffins having 15 to 18 carbon atoms, and having a purity of 98% or more. Can be.
- the organic phase change material may be composed of normal-paraffin having a melting point at a temperature of -5 °C to 42 °C and preferably composed of normal-paraffin having a melting point at a temperature of 9 °C 31 °C.
- a mixture of organic phase change materials may be prepared through a hydrogenation reaction of animal and vegetable oil, and then, the output may be separated to prepare an organic phase change material. It is a high process, simple process, and low cost process, so it can be applied to various industrial fields to achieve generalization of organic phase change materials.
- 1 is a flowchart of an organic phase change material production process in the case of using a hydroprocessing reaction of animal and vegetable oil.
- Figure 2 is a graph of DSC analysis of octadecane (C18) prepared and separated from palm oil in Example 7.
- the organic phase change material manufacturing process includes removing impurities contained in the feed, pretreating the feed through hydrogenation, separating the unreacted hydrogen after the hydrodeoxidation, and cooling and separating the produced hydrocarbon. It can be included as a step to add a step to, but can be added or subtracted one or two steps according to any purpose, of course.
- a catalyst having about 10 wt% molybdenum and about 3 wt% Ni was prepared using 200 g of ZrO 2 having a diameter of 1 mm as a carrier.
- Ammonium heptamolybdate tetrahydrate (hereinafter referred to as "AHM") was used as the Mo precursor used in the preparation, and Nickel nitrate hexahydrate (hereinafter referred to as "NNH”) was used as the Ni precursor.
- AHM Ammonium heptamolybdate tetrahydrate
- NNH Nickel nitrate hexahydrate
- various precursors may be used, and the present invention is not limited thereto.
- NiMo / ZrO2 catalysts were prepared in the following order.
- an aqueous solution prepared by dissolving AHM in distilled water was impregnated in a ZrO2 carrier, and then dried at 150 ° C. for 2 hours, and subsequently calcined at 500 ° C. for 2 hours to prepare Mo / ZrO2.
- the Mo / ZrO2 catalyst was impregnated, dried at 150 ° C. for 2 hours, and subsequently calcined at 500 ° C. for 2 hours to prepare a NiMo / ZrO2 catalyst.
- a catalyst having about 10 wt% Mo and about 3 wt% Ni was prepared using 200 g of TiO 2 having a diameter of 1 mm as a carrier.
- AHM was used as the Mo precursor used in the preparation and NNH was used as the Ni precursor.
- a catalyst was prepared and pretreated in the same manner as in Example 1.
- Palm oil containing 1% by weight of di-Methyl Disulfide (DMDS), which is a feed of NiMo / ZrO2 and NiMo / TiO2 catalysts prepared by the above method at a reaction temperature of 300 ° C., reaction pressure of 30 bar, and 100 cc / min of hydrogen. Were each reacted at a rate of 0.1 cc / min (LHSV 1).
- DMDS di-Methyl Disulfide
- impurities contained in the feed may lower the activity of the catalyst or cause unwanted reactions.
- a step of removing impurities contained in animal and vegetable oils before the hydrogenation reaction of animal and vegetable oils should be further included. Impurities in animal and vegetable oils were filtered using a filter having a pore size of 0.1-100 ⁇ m. In the case of removing impurities, any conventionally known removal method may be used, and the present invention is not limited thereto.
- the reaction was carried out in the same manner as in Example 3 except that the reaction temperature was changed to 280, 290, 300, 310, 320, 350, and 380 ° C. at a reaction pressure of 30 bar. Table 3 shows.
- phase change material mixture having a composition of 1 wt% C14, 24 wt% C15, 19 wt% C16, 31 wt% C17, 23 wt% C18 and 2 wt% unconverted oil, obtained by the same reaction as in Example 3
- the phase separation material was separated by the method.
- Octadecane (C18) having a purity of 99% in each normal-paraffin (C15-C18) prepared and isolated from palm oil was analyzed using DSC, and the results are shown in FIG. 2.
- DSC experiments were carried out in a nitrogen atmosphere at a temperature of minus 10 degrees to 60 degrees at a rate of 5 K / min and then maintained for 5 minutes, after which the temperature was lowered to the same rate at minus 10 degrees and then maintained for 5 minutes. The same experiment was repeated 10 times in order to evaluate the stability of the phase change material during the temperature change.
- the octadecane (C18) obtained from palm oil started melting at 27.7 degrees in the case of temperature rise, and the melting proceeded mainly around 30 degrees, and the latent heat absorbed at this time was 212.6 J / g.
- solidification started at 26.6 ° C, and solidification proceeded mainly at 26 ° C, and the latent heat released at this time was 212.3 J / g. Melting point, freezing point and latent heat amount at that time did not change even in 10 repeated evaluations.
- phase change material prepared and separated from palm oil has properties suitable for the phase change material such as phase change in a narrow temperature range, high latent heat and high stability.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Wood Science & Technology (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- General Chemical & Material Sciences (AREA)
- Microbiology (AREA)
- Physics & Mathematics (AREA)
- Combustion & Propulsion (AREA)
- Thermal Sciences (AREA)
- Materials Engineering (AREA)
- Fats And Perfumes (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
Abstract
The present invention relates to a method for preparing an organic phase-change material (PCM) by means of a hydrotreating reaction of animal and plant oils. The method for preparing an organic phase-change material according to the present invention can enable the preparation of a high-purity organic phase-change material in an inexpensive manner as compared to conventional preparation methods in which organic phase-change materials are obtained from kerosene through absorption and desorption processes.
Description
본 발명은 동식물유의 수소화처리 반응을 통한 유기 상변화물질(phase change material(PCM))의 제조방법에 관한 것으로, 더욱 상세하게는 촉매의 존재 하에서 동식물유의 수소화처리 반응을 통해 유기 상변화물질의 혼합물을 제조한 후 수득된 유기 상변화물질의 혼합물을 분리하여 유기 상변화물질을 제조하는 방법에 관한 것이다.The present invention relates to a method for producing an organic phase change material (PCM) through the hydrotreating reaction of animal and vegetable oil, and more particularly, to a mixture of the organic phase change substance through the hydrotreating reaction of animal and vegetable oil in the presence of a catalyst. It relates to a method for preparing an organic phase change material by separating the mixture of the organic phase change material obtained after the preparation.
상변화물질(phase change material(PCM))은 특정한 온도에서 온도의 변화 없이 상(phase)이 변하면서 많은 열(잠열)을 흡수 또는 방출할 수 있어서 자체적으로 주위의 열을 저장하였다가 필요할 때 방출하는 물질이다. 이러한 잠열은 현열에 비해 수십 배에서 수백 배의 에너지 저장 능력과 방출 능력을 가지기 때문에 기존 현열을 이용하는 에너지 저장 소재들보다 탁월한 기능을 가진다.A phase change material (PCM) can absorb or release a lot of heat (latent heat) as the phase changes at a certain temperature without changing the temperature so that it stores its surrounding heat and releases it when needed It is a substance. These latent heats have tens to hundreds of times more energy storage and release capacity than sensible heat, which is why they are superior to conventional sensible energy storage materials.
이러한 상변화물질은 그 자체의 우수한 특성 때문에 에너지산업 및 친환경 주택시스템(내장재, 냉난방, 공조시스템, 태양열시스템, 저비용 에너지 활용시스템), 스포츠 의류 및 장신구류 (등산화, 등산 배낭, 오토바이복, 인라인 스케이트, 침낭), 기능성 의류(특수 군복), 신발류 (운동화, 구두, 전문화, 특수화, 작업화), 군수 산업 시설 및 군수품, 자동차 산업(내장재, 시트), 각종 디지털 및 전열 기기의 발열 보호시스템, 의료 용구 (장기 입원환자의 욕창방지 침대, 혈액 운반 시스템) 등 여러 다양한 산업에 적용이 가능한 에너지 절약형 친환경 소재이다.Because of its excellent properties, these phase-change materials have an energy industry and eco-friendly housing systems (interior materials, heating and cooling, air conditioning systems, solar systems, low cost energy utilization systems), sports clothing and jewelry (climbing, hiking backpacks, motorcycle clothing, in-line skates). , Sleeping bag), functional clothing (special military uniform), footwear (sneakers, shoes, specialization, specialization, work shoes), military industry facilities and munitions, automotive industry (interior materials, sheet), heat protection system of various digital and electric equipment, medical equipment It is an energy-saving and eco-friendly material that can be applied to various industries such as bed restraint beds for long-term inpatients and blood transportation systems.
상변화물질은 구성 물질에 따라 유기 상변화물질과 무기 상변화물질로 분류되는데, 현재 유기물은 노말-파라핀, 무기물은 염화칼슘이 대표적으로 사용되고 있다. 물성 측면에서, 유기 상변화물질은 부식성이 없고 화학 및 열적으로 안정하며 과랭(sub-cooling)이 없는 장점이 있는 반면에, 단점은 상변화 엔탈피, 밀도 및 열전도율이 낮은 것이다. 그에 반해서, 무기 상변화물질은 상변화 엔탈피와 밀도가 높은 것이 장점이지만, 단점은 과랭, 부식성, 상분리, 사이클 안정성의 결핍 등이다. 결과적으로 물성 측면에서는 유기 상변화물질이 무기 상변화물질에 비해서 우수하다고 알려져 있다.Phase change materials are classified into organic phase change materials and inorganic phase change materials according to constituent materials. Currently, organic materials are normally used as normal-paraffins and inorganic materials are calcium chloride. In terms of physical properties, organic phase change materials are not corrosive, chemically and thermally stable, and have no sub-cooling, while the disadvantages are low phase change enthalpy, density and thermal conductivity. In contrast, inorganic phase change materials have advantages of high phase change enthalpy and density, but disadvantages include overcooling, corrosiveness, phase separation, and lack of cycle stability. As a result, in terms of physical properties, organic phase change materials are known to be superior to inorganic phase change materials.
대표적인 유기 상변화물질인 노말-파라핀은 현재 원유 정제제품의 하나인 등유(kerosene)로부터 생산된다. 등유는 일반적으로 1-5 중량%의 노말-파라핀을 함유하고 있으며, 그 노말-파라핀의 탄소수는 넓은 범위로 존재한다. 등유로부터 노말-파라핀의 제조는 1)끓는점을 이용하여 원하는 탄소수의 혼합물 분리과정 2)후단에 사용되는 흡착제의 독(poison)으로 작용하는 혼합물 내의 황, 질소, 산소 등의 불순물 제거공정 3) 흡착제를 이용하여 혼합물 중 노말-파라핀 흡착공정 4) 탈착물질을 이용한 흡착된 노말-파라핀 탈착공정 5) 끓는점을 이용하여 탈착물질 및 각각의 노말-파라핀 분리공정을 거치는 매우 복잡하고 고가인 공정이다. 더욱이, 등유는 다양한 탄소수를 가진 성분들 및 다양한 노말-파라핀 유도체들을 포함하고 있기 때문에 우리가 필요로 하는 노말-파라핀의 농도가 높지 않으므로, 등유에서 노말-파라핀을 효과적으로 분리하는 것은 쉽지 않은 공정이다. 미국 공개특허 2010/0125162 등에서 이러한 노말-파라핀 분리 공정을 개선하기 위한 방안을 논의하고 있지만, 기본적으로 등유로부터 노말-파라핀을 분리하는 방식은 고가의 공정이기 때문에 유기 상변화물질의 범용화를 가로막고 있는 실정이다.Normal-paraffin, a representative organic phase change material, is produced from kerosene, one of the crude oil refined products. Kerosene generally contains 1-5% by weight of normal-paraffins, and the carbon number of the normal-paraffins is present in a wide range. The production of normal-paraffins from kerosene involves the steps of 1) separating the mixture of the desired carbon number using the boiling point 2) removing impurities such as sulfur, nitrogen, and oxygen in the mixture acting as a poison of the adsorbent used at the end 3) adsorbent Normal-paraffin adsorption process in the mixture using 4) adsorbed normal-paraffin desorption process using desorption material 5) It is a very complicated and expensive process to go through the desorption material and each normal-paraffin separation process using a boiling point. Moreover, since kerosene contains components having various carbon numbers and various normal-paraffin derivatives, the concentration of normal-paraffins that we need is not high, so it is difficult to effectively separate normal-paraffins from kerosene. Although U.S. Patent Application Publication No. 2010/0125162 discusses a method for improving such a normal-paraffin separation process, the method of separating normal-paraffins from kerosene is basically an expensive process, preventing the generalization of organic phase change materials. to be.
한편, 주위에서 흔히 접할 수 있는 식물유로는 코코넛유, 옥수수유, 면실유, 땅콩유, 올리브유, 팜유, 팜핵유, 유채유, 캐놀라유, 참깨유, 대두유, 해바라기유, 피마자유, 아마인유, 홍화유, 자트로파유 등이 있으며 동물유로는 어유, 우지, 돈지, 감금지방 등이 있다. 일반적으로 상기 동식물유는 지방산 3분자가 글리세롤 1분자와 결합하고 있는 트리글리세라이드(triglyceride)로 구성되어 있으며, 각 체인을 구성하는 지방산은 주로 탄소수 4개 (부티릭산)부터 탄소수 28개 (옥타코세노익산)까지의 지방산으로 구성되어 있다. 한 종류의 동식물유를 구성하는 지방산의 종류는 대체로 단순하여 보통 3가지 종류 내의 지방산이 대부분을 차지한다. 예로, 팜유의 경우에는 C14 지방산 1 중량%, C16 지방산 43 %, C18 지방산 55 중량%로 구성되어, 대부분 C16과 C18의 지방산이 차지하고 있다.On the other hand, commonly encountered vegetable oils include coconut oil, corn oil, cottonseed oil, peanut oil, olive oil, palm oil, palm kernel oil, rapeseed oil, canola oil, sesame oil, soybean oil, sunflower oil, castor oil, linseed oil, safflower oil, Jatropha oil is used, and animal oils include fish oil, tallow, pork and confined fat. In general, the animal and vegetable oil is composed of triglyceride (triglyceride) in which three fatty acids are bonded to one molecule of glycerol, and the fatty acids constituting each chain are mainly 4 carbon atoms (butyric acid) to 28 carbon atoms (octacoseno). Iksan) up to fatty acids. The types of fatty acids that make up one species of animal or vegetable oil are generally simple, with most fatty acids in the three species being the majority. For example, palm oil is composed of 1% by weight of C14 fatty acid, 43% of C16 fatty acid, and 55% by weight of C18 fatty acid.
이러한 트리글리세라이드를 수소화 처리를 하게 되면 고농도의 노말-파라핀물질로 구성된 혼합물을 얻게 되며 그 후 증류 등과 같은 분리 방법을 통해 간단하고 저렴하게 각각의 상변화물질 특성을 지닌 노말-파라핀들을 얻을 수 있다. 트리글리세라이드의 수소화 처리는 1) 트리글리세라이드를 지방산 3분자와 글리세롤 1분자로 분리하는 반응 2) 지방산 내의 올레핀 포화 반응 3) 탈수 반응 및 카르복시이탈 반응을 통해 지방산을 노말-파라핀으로 전환하는 반응을 동시에 수반하므로 결과적으로 트리글리세라이드 내의 지방산과 같은 탄소수를 가진 노말-파라핀 또는 지방산보다 탄소수가 하나 작은 노말-파라핀을 생산하게 된다. 그러므로, 탄소수 4개부터 탄소수 28개까지의 지방산으로 구성된 주요 동식물유의 수소화 처리 공정을 거쳐 융점 -188℃(C3 프로판 융점)부터 65℃ (C28 옥타코센 융점) 범위의 상변화 물질을 제조할 수 있다.When the triglyceride is hydrogenated, a mixture composed of a high concentration of normal-paraffin material is obtained, and then a normal-paraffin having each phase change material property can be obtained simply and inexpensively through a separation method such as distillation. Hydrogenation of triglyceride is performed by 1) separating triglyceride into 3 molecules of fatty acid and 1 molecule of glycerol, 2) olefin saturation reaction in fatty acid, and 3) converting fatty acid into normal-paraffin through dehydration and decarboxylation reaction. This results in the production of normal-paraffins with the same carbon number as the fatty acids in triglycerides or with normal-paraffins with one carbon less than fatty acids. Therefore, it is possible to produce a phase change material in the range of melting point −188 ° C. (C3 propane melting point) to 65 ° C. (C28 octacosene melting point) through a hydrogenation process of a main animal or vegetable oil composed of fatty acids having 4 to 28 carbon atoms. .
미국 등록특허 6,574,971에서는 동식물유의 트리글리세라이드 자체 및 트리글리세라이드 내의 지방산을 상변화물질로 이용하는 방법을 논의하고 있다. 이러한 방법 또한 동식물유를 이용하여 상변화물질을 제조하는 방법이기는 하나, 동식물유의 수소화 처리 공정을 거친 노말-파라핀을 이용하여 상변화물질을 제조하는 본 특허의 경우와 비교했을 때, 산화안정성이 낮은 단점을 가지고 있다.US Patent No. 6,574,971 discusses triglycerides of animal and vegetable oil and methods of using fatty acids in triglycerides as phase change materials. Although this method is also a method of preparing a phase change material using animal and vegetable oil, the oxidation stability is lower than that of the present patent for preparing a phase change material using normal-paraffin which has undergone the hydrogenation process of animal and vegetable oil. It has a disadvantage.
따라서, 본 발명에서는 촉매의 존재 하에서 동식물유의 수소화처리 반응을 통해 유기 상변화물질의 혼합물을 제조한 후 그 산출물을 분리하여 유기 상변화물질을 제조하는 방법을 통해 비교적 저렴한 유기 상변화물질을 제조함으로써, 다양한 산업 분야에 적용되는 상변화물질의 범용화가 가능하다는 것을 확인하였다.Therefore, in the present invention, a relatively inexpensive organic phase change material is prepared through a method of preparing an organic phase change material by preparing a mixture of organic phase change materials through a hydrogenation reaction of animal and vegetable oil in the presence of a catalyst and then separating the outputs thereof. In addition, it was confirmed that it is possible to generalize the phase change material applied to various industries.
상기한 문제점을 극복하기 위해 본 발명은 촉매의 존재 하에서 동식물유의 수소화 처리 반응을 통해 유기 상변화물질의 혼합물을 제조한 후 수득된 유기 상변화물질의 혼합물을 분리하여 유기 상변화물질을 제조하는 방법을 제공한다.In order to overcome the above problems, the present invention provides a method for preparing an organic phase change material by separating a mixture of organic phase change materials obtained after preparing a mixture of organic phase change materials through a hydrogenation reaction of animal and vegetable oil in the presence of a catalyst. To provide.
상기 목적을 달성하기 위한 본 발명의 일 구현예는 동식물유의 수소화처리 반응을 통한 유기 상변화물질의 제조방법으로서, One embodiment of the present invention for achieving the above object is a method for producing an organic phase change material through a hydrogenation reaction of animal and vegetable oil,
(a) 촉매 존재 하에, 동식물유의 수소화처리 반응을 통해 유기 상변화물질의 혼합물을 제조하는 단계;(a) preparing a mixture of organic phase change materials in the presence of a catalyst through a hydrotreating reaction of animal or vegetable oils;
(b) 상기 (a)단계의 혼합물로부터 유기 상변화물질을 분리하는 단계;를 포함하여 유기 상변화물질을 제조한다.(b) separating the organic phase change material from the mixture of step (a); to prepare an organic phase change material.
상기 동식물유는 특별히 한정이 있는 것은 아니나 코코넛유, 옥수수유, 면실유, 땅콩류, 올리브유, 팜유, 팜핵유, 유채유, 캐놀라유, 참깨유, 대두유, 해바라기유, 피마자유, 아마인유, 홍화유, 자트로파유, 어유, 우지, 돈지, 가금지방 및 이들의 지방산 또는 폐유로 이루어진 군으로부터 선택되는 어느 하나 또는 둘이상의 혼합물일 수 있다.The animal and vegetable oil is not particularly limited, but coconut oil, corn oil, cottonseed oil, peanuts, olive oil, palm oil, palm kernel oil, rapeseed oil, canola oil, sesame oil, soybean oil, sunflower oil, castor oil, linseed oil, safflower oil, jatropha oil It may be any one or a mixture of two or more selected from the group consisting of fish oil, tallow, pork, poultry fat and fatty acids or waste oil thereof.
상기 지방의 경우 트리글리세라이드의 각 체인을 구성하는 탄소의 개수가 4 내지 36개인 지방이고, 상기 지방산의 경우, 탄소의 개수가4 내지 36개인 지방산을 사용하는 것이 바람직하지만 이에 한정되는 것은 아니다. In the case of the fat, the number of carbons constituting each chain of the triglyceride is 4 to 36 fats, and in the case of the fatty acid, it is preferable to use fatty acids having 4 to 36 carbons, but is not limited thereto.
또한 (a)단계 전, 본 발명에 이용되는 동식물유는 이에 함유된 불순물을 제거하는 단계를 더 포함할 수 있으며 상기 불순물을 제거하는 단계는 통상의 방법을 사용하여 수행될 수 있으나 기공크기가 0.1~100 μm 인 필터를 사용하는 것이 바람직하다.In addition, before step (a), the animal and vegetable oil used in the present invention may further include a step of removing impurities contained therein. The step of removing the impurities may be performed using a conventional method, but the pore size is 0.1. It is preferable to use a filter of ˜100 μm.
본원 발명은 간단한 공정을 통해 유기 상변화물질을 제조하기 위해, 상기 (a) 단계에서 내구성 및 높은 활성을 가지는 촉매를 이용한다. The present invention uses a catalyst having a high durability and durability in the step (a) to produce an organic phase change material through a simple process.
이러한 촉매는 담체에 활성성분으로 VIB, VIIB, VIIIB, VIII, IB 또는 IIB족 금속으로 이루어진 군으로부터 선택되는 어느 하나 또는 둘이상의 혼합물을 포함할 수 있으며 보다 구체적으로 금속 VIB족은 Mo 또는 W이며, 금속 VIII족은 Ni, Pd, 또는 Pt이며 VIIIB족은 Fe, Co, Ru, Rh, 또는 Ir일 수 있으나 이에 한정이 있는 것은 아니다.Such catalysts may comprise any one or two or more mixtures selected from the group consisting of VIB, VIIB, VIIIB, VIII, IB or IIB metals as active ingredients in the carrier, more specifically the metal VIB group is Mo or W, The metal group VIII may be Ni, Pd, or Pt, and the group VIIIB may be Fe, Co, Ru, Rh, or Ir, but is not limited thereto.
본 발명의 VIB, VIIB, VIIIB, VIII, IB 또는 IIB족 금속은 담체에 대하여 0.1~70 중량%로 포함되는데, 0.1 중량% 이하로 담지 될 경우 촉매의 활성이 매우 낮아 촉매로서 작용을 하지 못하고, 70 중량%이상으로는 담지하기 어렵기 때문이다. 바람직하게는 1~40 중량%로 담지 된다.Group VIB, VIIB, VIIIB, VIII, IB or IIB metal of the present invention is included in 0.1 to 70% by weight with respect to the carrier, when supported by 0.1% by weight or less, the activity of the catalyst is very low and does not act as a catalyst, This is because it is difficult to support at 70% by weight or more. Preferably it is supported by 1 to 40% by weight.
본 발명의 사용되는 담체는 특별히 한정이 있는 것은 아니나 알루미늄 산화물, 지르코늄 산화물, 실리카-알루미나, 티타늄 산화물, 카본, 알카리토금속산화물, 알칼리금속산화물, 알루미늄 포스페이트, 니오비아, 세리아, 란타니아, 지르코늄 포스페이트, 타이타늄 포스페이트, 실리콘 카바이드 또는 이들의 혼합물을 사용할 수 있다.Carriers used in the present invention are not particularly limited, but aluminum oxide, zirconium oxide, silica-alumina, titanium oxide, carbon, alkaline earth metal oxide, alkali metal oxide, aluminum phosphate, niobia, ceria, lantania, zirconium phosphate, Titanium phosphate, silicon carbide or mixtures thereof can be used.
또한 본 발명의 유기 상변화물질의 제조방법은 보다 바람직하게 상기 담체는 지르코늄 산화물, 알루미늄 산화물 또는 티타늄 산화물이며, 촉매의 활성성분은 Ni과 Mo의 혼합물이며 상기 수소화처리 반응은 250~410℃의 온도, 10~150bar의 기압에서 수행될 수 있다.In addition, the method for producing an organic phase change material of the present invention is more preferably the carrier is zirconium oxide, aluminum oxide or titanium oxide, the active ingredient of the catalyst is a mixture of Ni and Mo and the hydrogenation reaction is a temperature of 250 ~ 410 ℃ It can be carried out at 10-150 bar air pressure.
또한 본 발명의 (b)단계는 분별증류를 이용하여 수행될 수 있으나 보다 순도가 높은 유기 상변화물질을 제조하기 위해서 4개 이상의 증류탑을 사용하는 것이 바람직하다. In addition, step (b) of the present invention may be carried out using fractional distillation, but it is preferable to use four or more distillation columns to produce a higher purity organic phase change material.
한편 동식물유는 주로 트리글리세라이드(Triglyceride)로 구성되는데, 일반적인 수소화처리 반응 조건에서, 수소에 의해서 트리글리세라이드가 노말-파라핀과 부산물로서 프로판, H2O, CO, CO2 등이 생성된다. On the other hand, animal and vegetable oil is mainly composed of triglycerides (Triglyceride), in the general hydrotreating reaction conditions, triglycerides are produced by the hydrogen-propane, H 2 O, CO, CO 2 and the like as a by-paraffin and by-products.
이 때 생성되는 본 발명에 따라 제조된 유기 상변화물질은 탄소수 13에서 22까지의 노말-파라핀으로 구성될 수 있으며 바람직하게 탄소수 15서 18까지의 노말-파라핀으로 구성될 수 있으며 순도가 98%이상일 수 있다.The organic phase change material produced according to the present invention may be composed of normal-paraffins having 13 to 22 carbon atoms, preferably composed of normal-paraffins having 15 to 18 carbon atoms, and having a purity of 98% or more. Can be.
또한 상기 유기 상변화물질은 -5℃에서 42℃의 온도에서 융점을 가지는 노말-파라핀으로 구성될 수 있으며 바람직하게 9℃에서 31℃의 온도에서 융점을 가지는 노말-파라핀으로 구성될 수 있다.In addition, the organic phase change material may be composed of normal-paraffin having a melting point at a temperature of -5 ℃ to 42 ℃ and preferably composed of normal-paraffin having a melting point at a temperature of 9 ℃ 31 ℃.
본 발명에 따른 촉매의 존재 하에서 동식물유의 수소화처리 반응을 통해 유기 상변화물질의 혼합물을 제조한 후 그 산출물을 분리하여 유기 상변화물질을 제조할 수 있으며, 이로부터 제조된 유기 상변화물질은 순도가 높고 공정이 단순할 뿐만 아니라 저가의 공정이므로 다양한 산업 분야에 적용되어 유기 상변화물질의 범용화를 이룰 수 있다.In the presence of a catalyst according to the present invention, a mixture of organic phase change materials may be prepared through a hydrogenation reaction of animal and vegetable oil, and then, the output may be separated to prepare an organic phase change material. It is a high process, simple process, and low cost process, so it can be applied to various industrial fields to achieve generalization of organic phase change materials.
도1은 동식물유의 수소화처리 반응을 사용하는 경우의 유기 상변화물질 제조 공정의 흐름도이다.1 is a flowchart of an organic phase change material production process in the case of using a hydroprocessing reaction of animal and vegetable oil.
도2는 실시예 7에서 실시한 팜유로부터 제조 분리된 옥타데칸(C18)을 DSC로 분석한 그래프이다.Figure 2 is a graph of DSC analysis of octadecane (C18) prepared and separated from palm oil in Example 7.
이하, 본 발명의 기술을 이용하여 제조된 촉매를 이용하여 동식물유의 수소화처리 반응을 통해 유기 상변화물질의 혼합물을 제조하고, 이를 증류하여 유기 상변화물질을 제조하는 방법을 다음과 같이 구체적으로 설명하고자 한다.Hereinafter, a method of preparing a mixture of organic phase change materials through a hydrogenation reaction of animal and vegetable oil using a catalyst prepared using the technique of the present invention, and distilling the same will be described in detail as follows. I would like to.
유기 상변화물질 제조 공정은 피드 내에 함유된 불순물을 제거하는 공정, 피드를 수소화 처리를 통해 전처리하는 공정, 수첨 탈산화반응 후의 미반응 수소를 분리하는 공정, 생성된 탄화수소(hydrocarbon)를 냉각, 분리하는 공정을 부가하는 공정으로 포함할 수 있지만, 임의의 목적에 따라 한 두 단계의 공정을 가감할 수 있음은 물론이다. The organic phase change material manufacturing process includes removing impurities contained in the feed, pretreating the feed through hydrogenation, separating the unreacted hydrogen after the hydrodeoxidation, and cooling and separating the produced hydrocarbon. It can be included as a step to add a step to, but can be added or subtracted one or two steps according to any purpose, of course.
피드로써 동식물유의 수소화처리 반응을 사용하는 공정을 도 1에 예시적으로 기재하였지만, 본 발명이 이에 한정되는 것은 아니다. Although the process of using the hydroprocessing reaction of animal and vegetable oil as a feed is illustrated by way of example in FIG. 1, this invention is not limited to this.
실시예 1: NiMo/ZrO₂촉매의 제조Example 1 Preparation of NiMo / ZrO 2 Catalyst
지름 1mm 크기의 ZrO₂200g을 담체로 사용하여 몰리브데늄이 약 10 중량%, Ni이 약 3 중량%인 촉매를 제조하였다. 제조에 사용된 Mo 전구체로는 Ammonium heptamolybdate tetrahydrate (이후 "AHM")를 사용하였으며, Ni 전구체로는 Nickel nitrate hexahydrate (이후 "NNH")를 사용하였다. Mo, Ni 금속의 경우 다양한 전구체를 사용할 수 있으며, 상기 전구체로만 한정하는 것은 아니다.A catalyst having about 10 wt% molybdenum and about 3 wt% Ni was prepared using 200 g of ZrO 2 having a diameter of 1 mm as a carrier. Ammonium heptamolybdate tetrahydrate (hereinafter referred to as "AHM") was used as the Mo precursor used in the preparation, and Nickel nitrate hexahydrate (hereinafter referred to as "NNH") was used as the Ni precursor. In the case of Mo and Ni metals, various precursors may be used, and the present invention is not limited thereto.
NiMo/ZrO₂ 촉매는 다음과 같은 순서로 제조되었다.NiMo / ZrO₂ catalysts were prepared in the following order.
먼저 AHM을 증류수에 녹여 제조한 수용액을 ZrO₂담체에 함침 시킨 다음, 150 ℃ 2시간 동안 건조한 뒤, 500 ℃에서 2시간 동안 연속으로 소성하여 Mo/ZrO₂를 제조하였다.First, an aqueous solution prepared by dissolving AHM in distilled water was impregnated in a ZrO₂ carrier, and then dried at 150 ° C. for 2 hours, and subsequently calcined at 500 ° C. for 2 hours to prepare Mo / ZrO₂.
NNH을 증류수에 녹인 다음, 상기 Mo/ZrO₂촉매를 함침 시킨 다음, 150 ℃ 2시간 동안 건조한 뒤, 500 ℃에서 2시간 동안 연속으로 소성하여 NiMo/ZrO₂ 촉매를 제조하였다.After NNH was dissolved in distilled water, the Mo / ZrO₂ catalyst was impregnated, dried at 150 ° C. for 2 hours, and subsequently calcined at 500 ° C. for 2 hours to prepare a NiMo / ZrO₂ catalyst.
상기 절차에 따라 제조한 촉매 6 cc를 원통형 반응기에 충진 한 다음, 상온 조건에서 R-LGO를 feed로 하여, 0.08 cc/min의 속도로 도입하고, 압력45 bar, H₂ flow를 16 cc/min의 속도로 흘리면서 320 ℃까지 승온하고 320 ℃ 에서 도달하면 3시간 동안 전처리하였다. 6 cc of catalyst prepared according to the above procedure was charged into a cylindrical reactor, and then fed at a rate of 0.08 cc / min with R-LGO as a feed at room temperature, and a pressure of 45 bar and a H₂ flow of 16 cc / min. The temperature was raised to 320 ° C. while flowing at a rate, and pretreated for 3 hours when reached at 320 ° C.
실시예 2: NiMo/TiO₂촉매의 제조 Example 2: Preparation of NiMo / TiO 2 Catalyst
지름 1mm 크기의 TiO₂200g을 담체로 사용하여 Mo가 약 10 중량%, Ni이 약 3중량%인 촉매를 제조하였다. 제조에 사용된 Mo전구체로는 AHM를, Ni 전구체로는 NNH를 사용하였다. A catalyst having about 10 wt% Mo and about 3 wt% Ni was prepared using 200 g of TiO 2 having a diameter of 1 mm as a carrier. AHM was used as the Mo precursor used in the preparation and NNH was used as the Ni precursor.
Mo, Ni 금속의 경우 다양한 전구체를 사용할 수 있으며, 상기 전구체로만 한정하는 것은 아니다. 이외에는 실시예 1과 동일한 방법으로 촉매를 제조하고 전처리하였다.In the case of Mo and Ni metals, various precursors may be used, and the present invention is not limited thereto. A catalyst was prepared and pretreated in the same manner as in Example 1.
실시예 3: 팜유 수소화처리 반응을 통한 유기 상변화물질 혼합물의 제조Example 3: Preparation of Organic Phase Change Material Mixture through Palm Oil Hydrotreating
상기 방법으로 제조한 NiMo/ZrO₂및 NiMo/TiO₂촉매를 반응온도 300 ℃, 반응압력 30 bar, 수소 100 cc/min의 도입 조건에서, feed인 1 중량% DMDS(di-Methyl Disulfide)가 포함된 팜유를 0.1 cc/min (LHSV = 1)의 속도로 각각 반응시켰다. 피드의 경우, 모든 동식물유 및 이들의 지방산 또는 폐유 중 어느 하나 이상을 사용할 수 있으며, 상기 팜유로만 한정하는 것은 아니다. Palm oil containing 1% by weight of di-Methyl Disulfide (DMDS), which is a feed of NiMo / ZrO₂ and NiMo / TiO₂ catalysts prepared by the above method at a reaction temperature of 300 ° C., reaction pressure of 30 bar, and 100 cc / min of hydrogen. Were each reacted at a rate of 0.1 cc / min (LHSV = 1). In the case of feed, any one or more of all animal and vegetable oils and fatty acids or waste oils thereof may be used, but is not limited to the palm oil.
피드로서 정제 전의 동식물유나 특히 폐유를 사용하는 경우에는 피드 내에 포함된 불순물이 촉매의 활성을 저하 시키거나 혹은 원하지 않은 반응을 야기할 수가 있다. 이러한 문제를 해결하기 위해서는 동식물유의 수소화 처리 반응 전에 동식물유에 함유된 불순물을 제거하는 단계를 더 포함하여야 한다. 기공크기가 0.1-100 μm인 필터를 사용하여 동식물유 내의 불순물을 걸러 주었다. 불순물을 제거의 경우, 통상적으로 알려진 모든 제거 방법을 사용할 수 있으며, 상기 필터링 방법으로만 한정하는 것은 아니다. In the case of using animal or vegetable oil before purification or particularly waste oil as a feed, impurities contained in the feed may lower the activity of the catalyst or cause unwanted reactions. In order to solve this problem, a step of removing impurities contained in animal and vegetable oils before the hydrogenation reaction of animal and vegetable oils should be further included. Impurities in animal and vegetable oils were filtered using a filter having a pore size of 0.1-100 μm. In the case of removing impurities, any conventionally known removal method may be used, and the present invention is not limited thereto.
원유 정제를 목적으로 하는 수소화처리 반응의 경우, 피드 자체에 황이 포함되어 있기 때문에 따로 황화합물을 혼합하지 않아도 촉매의 활성이 유지된다. 그러나, 동식물유의 수소화처리 반응의 경우, 피드로 사용하는 동식물유에는 황이 포함되어 있지 않고, 오히려 황과 같은 족인 산소가 포함되어 있어 촉매가 산소와의 반응으로 쉽게 비활성화 되는 단점이 있었다. 이를 극복하기 위해서, 1 중량%의DMDS(di-Methyl Disulfide) 황화합물을 피드와 혼합하여 처리하였다. In the hydrotreating reaction for the purpose of refining crude oil, since the sulfur itself is contained in the feed itself, the activity of the catalyst is maintained without mixing sulfur compounds separately. However, in the case of the hydroprocessing reaction of animal and vegetable oils, animal and vegetable oils used as feeds do not contain sulfur, but rather have oxygen, which is a group such as sulfur, so that the catalyst is easily deactivated by reaction with oxygen. To overcome this, 1% by weight of di-Methyl Disulfide (DMDS) sulfur compound was mixed with the feed and treated.
8시간마다 시료 채취(sampling)를 하였고, 얻어진 생성물(product)의 반응 성상은 simdist 분석을 통해 확인하였으며, 그 결과는 표 1에 도시하였다.Sampling was performed every 8 hours, and the reaction properties of the obtained product were confirmed by simdist analysis, and the results are shown in Table 1.
표 1에 나타난 결과를 보면, NiMo/ZrO₂및 NiMo/TiO₂두 촉매 모두에 대해서 팜유 내 트리글리세라이드의 노말-파라핀(C15-C18)으로의 전환율은 98%이었다. 또한, NiMo/TiO2 촉매를 사용한 경우에는 NiMo/ZrO2 경우에 비해서, 탈수 반응이 카르복시 이탈 반응에 비해 우세하여 C16과 C18 성분이 C15와 C17 성분에 비해서 상대적으로 많이 생성된다는 것을 알 수 있었다. In the results shown in Table 1, the conversion of triglyceride in palm oil to normal-paraffin (C15-C18) was 98% for both NiMo / ZrO₂ and NiMo / TiO₂ catalysts. In addition, when the NiMo / TiO 2 catalyst was used, the dehydration reaction was superior to the carboxylization reaction compared to the NiMo / ZrO 2 case, and it was found that the C16 and C18 components were generated relatively more than the C15 and C17 components.
실시예 4: 반응압력에 따른 유기 상변화물질 혼합물의 조성변화Example 4 Composition Change of the Organic Phase Change Material Mixture According to Reaction Pressure
반응압력을 20, 30, 70, 100 bar로 변경하는 것을 제외하고는, NiMo/ZrO₂촉매에 대해서 실시예 3과 동일하게 반응을 실시하였으며, 그 결과는 표 2에 도시하였다.Except for changing the reaction pressure to 20, 30, 70, 100 bar, the reaction was carried out in the same manner as in Example 3 for the NiMo / ZrO 2 catalyst, the results are shown in Table 2.
표 2에 나타난 결과를 보면, 동일한 반응온도에서 반응압력이 높을수록 탈수 반응이 카르복시 이탈 반응에 비해 우세하여 C16과 C18 성분이 C15와 C17 성분에 비해서 상대적으로 많이 생성된다는 것을 알 수 있었다.From the results shown in Table 2, the higher the reaction pressure at the same reaction temperature, it was found that the dehydration reaction is superior to the carboxylization reaction to generate more C16 and C18 components than the C15 and C17 components.
실시예 5: 반응온도에 따른 유기 상변화물질 혼합물의 조성변화Example 5 Composition Change of Organic Phase Change Material Mixture with Different Reaction Temperatures
반응압력 30 bar에서 반응온도를 280, 290, 300, 310, 320, 350, 380 ℃로 변경하는 것을 제외하고는, NiMo/ZrO₂촉매에 대해서 실시예 3과 동일하게 반응을 실시하였으며, 그 결과는 표 3에 도시하였다.The reaction was carried out in the same manner as in Example 3 except that the reaction temperature was changed to 280, 290, 300, 310, 320, 350, and 380 ° C. at a reaction pressure of 30 bar. Table 3 shows.
표 3에 나타난 결과를 보면, NiMo/ZrO₂촉매 하에서 동일한 반응 압력에서 반응 온도가 높을수록 탈수 반응이 카르복시 이탈 반응에 비해 우세하여 C16과 C18 성분이 C15와 C17 성분에 비해서 상대적으로 많이 생성된다는 것을 알 수 있었다.The results shown in Table 3 show that the higher the reaction temperature at the same reaction pressure under the NiMo / ZrO₂ catalyst, the more the dehydration reaction is superior to the decarboxylation reaction, resulting in the generation of more C16 and C18 components than the C15 and C17 components. Could.
상기 표 1 내지 3의 결과들로부터, 상기 제조된 촉매의 존재 하에서 팜유 내 트리글리세라이드의 노말-파라핀(C15-C18)으로의 전환율은 98%로 높은 수준이었으며, 또한 반응 온도, 반응 압력 및 촉매의 담체와 같이 비교적 조절이 용이한 인자를 제어하여 상변화물질의 혼합물 중 필요로 하는 특성(융점)의 상변화물질을 보다 선택적으로 제조할 수 있다는 것을 알 수 있었다. From the results of Tables 1 to 3, the conversion rate of triglyceride to normal-paraffin (C15-C18) in palm oil in the presence of the prepared catalyst was a high level of 98%, and also the reaction temperature, reaction pressure and catalyst It was found that a phase change material having a desired property (melting point) in a mixture of phase change materials can be prepared more selectively by controlling a relatively easy control factor such as a carrier.
실시예 6: 유기 상변화물질 혼합물의 분리Example 6 Separation of Organic Phase Change Material Mixture
실시예 3과 동일한 반응을 실시하여 얻은, 1 중량% C14, 24 중량% C15, 19 중량% C16, 31 중량% C17, 23 중량% C18 및 2 중량% 미전환유의 조성을 가지는 상변화물질 혼합물을 증류 방법을 통해 각각의 상변화물질로 분리를 실시하였다. Distilling a phase change material mixture having a composition of 1 wt% C14, 24 wt% C15, 19 wt% C16, 31 wt% C17, 23 wt% C18 and 2 wt% unconverted oil, obtained by the same reaction as in Example 3 The phase separation material was separated by the method.
피드10,000 kg/hr 조건에서, 각 성분을 93% 순도로 분리한 경우의 결과를 표 4에 나타내었고, 99% 순도로 분리한 경우의 결과를 표 5에 각각 나타내었다. In the case of a feed of 10,000 kg / hr, the results of the separation of each component in 93% purity is shown in Table 4, and the results of the separation in 99% purity is shown in Table 5, respectively.
생성물 분리의 경우, 통상적으로 알려진 모든 분리 방법을 사용할 수 있으며, 상기 증류 방법으로만 한정하는 것은 아니다.In the case of product separation, all conventionally known separation methods can be used and are not limited to the above distillation methods.
표 4 내지 5의 결과를 보면, 93% 순도로 분리한 경우에는 4개의 증류탑을 이용하고 99% 순도로 분리한 경우에는 5개의 증류탑을 이용하여, 비교적 간단한 방법으로 고순도의 상변화물질을 제조할 수 있다는 것을 알 수 있었다. In the results of Tables 4 to 5, four distillation towers were used for separation of 93% purity and five distillation towers for separation of 99% purity to prepare phase change materials of high purity in a relatively simple manner. Could see.
실시예 7: 유기 상변화물질의 특성 분석Example 7 Characterization of Organic Phase Change Materials
상기에서 팜유로부터 제조, 분리한 각각의 노말-파라핀(C15-C18) 중 순도 99%의 옥타데칸 (C18)을 DSC를 이용하여 분석하였으며 그 결과를 도 2에 나타내었다. DSC 실험은 질소 분위기 하에서 영하 10도부터 60도까지 5 K/min 속도로 온도 상승한 후 5분간 유지하였으며 그 후 영하 10도까지 동일한 속도로 온도 하강한 후 5분간 유지하는 방법으로 수행되었다. 온도 변화 동안 상변화물질의 안정성을 평가하기 위해서 위와 동일한 실험을 10회 반복 실시하였다. Octadecane (C18) having a purity of 99% in each normal-paraffin (C15-C18) prepared and isolated from palm oil was analyzed using DSC, and the results are shown in FIG. 2. DSC experiments were carried out in a nitrogen atmosphere at a temperature of minus 10 degrees to 60 degrees at a rate of 5 K / min and then maintained for 5 minutes, after which the temperature was lowered to the same rate at minus 10 degrees and then maintained for 5 minutes. The same experiment was repeated 10 times in order to evaluate the stability of the phase change material during the temperature change.
도 2의 결과를 보면, 팜유로부터 얻어진 옥타데칸(C18)은 온도 상승의 경우에 27.7도부터 용융을 시작하여 주로 30도 부근에서 용융이 진행되었으며 이 때 흡수한 잠열량은 212.6 J/g 이었다. 반면에, 온도 하강의 경우에는 26.6도부터 응고를 시작하여 주로 26도 부근에서 응고가 진행되었으며 이 때 방출한 잠열량은 212.3 J/g 이었다. 10회 반복 평가에서도 녹는점, 어는점 및 그 때의 잠열량은 변화가 없었다. 2, the octadecane (C18) obtained from palm oil started melting at 27.7 degrees in the case of temperature rise, and the melting proceeded mainly around 30 degrees, and the latent heat absorbed at this time was 212.6 J / g. On the other hand, in the case of temperature drop, solidification started at 26.6 ° C, and solidification proceeded mainly at 26 ° C, and the latent heat released at this time was 212.3 J / g. Melting point, freezing point and latent heat amount at that time did not change even in 10 repeated evaluations.
이상에서 팜유로부터 제조, 분리한 상변화물질은 좁은 온도 영역에서의 상변화, 높은 잠열량 및 높은 안정성 등과 같이 상변화물질에 적합한 물성들을 지니고 있다는 것을 확인하였다.As described above, it was confirmed that the phase change material prepared and separated from palm oil has properties suitable for the phase change material such as phase change in a narrow temperature range, high latent heat and high stability.
Claims (15)
- 동식물유의 수소화처리 반응을 통한 유기 상변화물질의 제조 시,In the preparation of organic phase change material through hydrogenation of animal and vegetable oils,(a) 촉매 존재 하에, 동식물유의 수소화처리 반응을 통해 유기 상변화물질의 혼합물을 제조하는 단계;(a) preparing a mixture of organic phase change materials in the presence of a catalyst through a hydrotreating reaction of animal or vegetable oils;(b) 상기 (a)단계의 혼합물로부터 유기 상변화물질을 분리하는 단계;를 포함하는 유기 상변화물질의 제조방법.(b) separating the organic phase change material from the mixture of step (a).
- 제 1항에 있어서, The method of claim 1,상기 동식물유는 코코넛유, 옥수수유, 면실유, 땅콩류, 올리브유, 팜유, 팜핵유, 유채유, 캐놀라유, 참깨유, 대두유, 해바라기유, 피마자유, 아마인유, 홍화유, 자트로파유, 어유, 우지, 돈지, 가금지방 및 이들의 지방산 또는 폐유로 이루어진 군으로부터 선택되는 어느 하나 또는 둘이상의 혼합물인 것을 특징으로 하는 유기물 상변화물질의 제조방법.The animal and vegetable oils are coconut oil, corn oil, cottonseed oil, peanuts, olive oil, palm oil, palm kernel oil, rapeseed oil, canola oil, sesame oil, soybean oil, sunflower oil, castor oil, linseed oil, safflower oil, jatropha oil, fish oil, tallow oil, pork Method for producing an organic phase change material, characterized in that any one or two or more selected from the group consisting of poultry fat and fatty acids or waste oil thereof.
- 제 1항에 있어서,The method of claim 1,상기 촉매는 담체에 활성성분으로 VIB, VIIB, VIIIB, VIII, IB 또는 IIB족 금속으로 이루어진 군으로부터 선택되는 어느 하나 또는 둘이상의 혼합물을 포함하는 것을 특징으로 하는 유기 상변화물질의 제조방법.The catalyst is a method for producing an organic phase change material, characterized in that it comprises any one or two or more mixtures selected from the group consisting of VIB, VIIB, VIIIB, VIII, IB or group IIB metal as an active ingredient in the carrier.
- 제 3항에 있어서The method of claim 3상기 금속 VIB족은 Mo 또는 W이며, 금속 VIII족은 Ni, Pd, 또는 Pt이며 VIIIB족은 Fe, Co, Ru, Rh, 또는 Ir인 것을 특징으로 하는 유기 상변화물질의 제조방법.The metal group VIB is Mo or W, the metal group VIII is Ni, Pd, or Pt and the group VIIIB is Fe, Co, Ru, Rh, or Ir manufacturing method of an organic phase change material.
- 제 3항에 있어서,The method of claim 3, wherein상기 VIB, VIIB, VIIIB, VIII, IB 또는 IIB족 금속은 담체에 대하여 0.1~70중량%로 함유하는 것을 특징으로 하는 유기 상변화물질의 제조방법.The VIB, VIIB, VIIIB, VIII, IB or group IIB metal is prepared in an organic phase change material, characterized in that containing 0.1 to 70% by weight based on the carrier.
- 제 3항에 있어서,The method of claim 3, wherein상기 담체는 알루미늄 산화물, 지르코늄 산화물, 실리카-알루미나, 티타늄 산화물, 카본, 알카리토금속산화물, 알칼리금속산화물, 알루미늄 포스페이트, 니오비아, 세리아, 란타니아, 지르코늄 포스페이트, 타이타늄 포스페이트, 실리콘 카바이드 또는 이들의 혼합물인 것을 특징으로 하는 유기 상변화물질의 제조방법.The carrier is aluminum oxide, zirconium oxide, silica-alumina, titanium oxide, carbon, alkali metal oxide, alkali metal oxide, aluminum phosphate, niobia, ceria, lanthania, zirconium phosphate, titanium phosphate, silicon carbide or mixtures thereof Method for producing an organic phase change material, characterized in that.
- 제 1항에 있어서,The method of claim 1,상기 담체는 지르코늄 산화물, 알루미늄 산화물 또는 티타늄 산화물이며, 촉매의 활성성분은 Ni과 Mo의 혼합물이며 상기 수소화처리 반응은 250~410℃의 온도 10~150bar의 기압에서 수행되는 것을 특징으로 하는 유기 상변화물질의 제조방법.The carrier is zirconium oxide, aluminum oxide or titanium oxide, the active ingredient of the catalyst is a mixture of Ni and Mo and the hydroprocessing reaction is carried out at an atmospheric pressure of 10 ~ 150 bar temperature of 250 ~ 410 ℃ Method of preparation of the substance.
- 제 1항에 있어서,The method of claim 1,(a)단계 전, 동식물유에 함유된 불순물을 제거하는 단계를 더 포함하는 것을 특징으로 하는 유기 상변화물질의 제조방법.Before the step (a), further comprising the step of removing impurities contained in animal and vegetable oil.
- 제 8항에 있어서,The method of claim 8,상기 불순물을 제거하는 단계는 기공크기가 0.1~100 μm 인 필터를 이용하는 것을 특징으로 하는 유기 상변화 물질의 제조방법. Removing the impurities is a method of producing an organic phase change material, characterized in that using a filter having a pore size of 0.1 ~ 100 μm.
- 제 1항에 있어서,The method of claim 1,(b)단계는 분별증류를 이용하여 수행되는 유기 상변화 물질의 제조방법.Step (b) is a method for producing an organic phase change material is carried out using fractional distillation.
- 제 1항에 있어서,The method of claim 1,(b)단계에서 분리된 유기 상변화 물질은 순도가 98%이상인 것을 특징으로 하는 유기 상변화물질의 제조방법.The organic phase change material separated in step (b) is a method for producing an organic phase change material, characterized in that the purity is 98% or more.
- 제 1항에 있어서,The method of claim 1,상기 유기 상변화물질은 탄소수 13에서 22까지의 노말-파라핀으로 구성된 것을 특징으로 하는 유기 상변화물질의 제조방법.The organic phase change material is a method for producing an organic phase change material, characterized in that consisting of normal-paraffins having 13 to 22 carbon atoms.
- 제 12항에 있어서,The method of claim 12,상기 유기 상변화물질은 탄소수 15에서 18까지의 노말-파라핀으로 구성된 것을 특징으로 하는 유기 상변화물질의 제조방법.The organic phase change material is a method for producing an organic phase change material, characterized in that consisting of normal-paraffins having from 15 to 18 carbon atoms.
- 제 1항에 있어서,The method of claim 1,상기 유기 상변화물질은 -5℃에서 42℃의 온도에서 융점을 가지는 노말-파라핀으로 구성된 것을 특징으로 하는 유기 상변화물질의 제조방법.The organic phase change material is a method for producing an organic phase change material, characterized in that consisting of normal-paraffins having a melting point at a temperature of -5 ℃ to 42 ℃.
- 제 14항에 있어서,The method of claim 14,상기 유기 상변화물질은 9℃에서 31℃의 온도에서 융점을 가지는 노말-파라핀으로 구성된 것을 특징으로 하는 유기 상변화물질의 제조방법.The organic phase change material is a method for producing an organic phase change material, characterized in that consisting of normal-paraffins having a melting point at a temperature of 9 ℃ to 31 ℃.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2010-0069128 | 2010-07-16 | ||
KR20100069128 | 2010-07-16 | ||
KR10-2011-0070255 | 2011-07-15 | ||
KR1020110070255A KR101234121B1 (en) | 2010-07-16 | 2011-07-15 | Preparing method of organic phase change material from animal and vegetable oil |
Publications (3)
Publication Number | Publication Date |
---|---|
WO2012008797A2 true WO2012008797A2 (en) | 2012-01-19 |
WO2012008797A9 WO2012008797A9 (en) | 2012-05-03 |
WO2012008797A3 WO2012008797A3 (en) | 2012-06-28 |
Family
ID=45469954
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2011/005232 WO2012008797A2 (en) | 2010-07-16 | 2011-07-15 | Method for preparing an organic phase change material by means of a hydrotreating reaction of animal and plant oils |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2012008797A2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017221025A1 (en) * | 2016-06-23 | 2017-12-28 | Sunamp Limited | Phase change material-based enhancement for reversed-cycle defrosting in vapour compression refrigeration systems |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020011587A1 (en) * | 2000-07-03 | 2002-01-31 | Suppes Galen J. | Fatty-acid thermal storage devices, cycle, and chemicals |
US20070260102A1 (en) * | 2006-04-17 | 2007-11-08 | Petroleo Brasileiro S.A.-Petrobras | Process to obtain N-paraffins from vegetable oil |
US20080308457A1 (en) * | 2007-06-15 | 2008-12-18 | E. I. Du Pont De Nemours And Company | Catalytic process for converting renewable resources into paraffins for use as diesel blending stocks |
US20100145114A1 (en) * | 2008-12-10 | 2010-06-10 | Ramin Abhari | Even carbon number paraffin composition and method of manufacturing same |
-
2011
- 2011-07-15 WO PCT/KR2011/005232 patent/WO2012008797A2/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020011587A1 (en) * | 2000-07-03 | 2002-01-31 | Suppes Galen J. | Fatty-acid thermal storage devices, cycle, and chemicals |
US20070260102A1 (en) * | 2006-04-17 | 2007-11-08 | Petroleo Brasileiro S.A.-Petrobras | Process to obtain N-paraffins from vegetable oil |
US20080308457A1 (en) * | 2007-06-15 | 2008-12-18 | E. I. Du Pont De Nemours And Company | Catalytic process for converting renewable resources into paraffins for use as diesel blending stocks |
US20100145114A1 (en) * | 2008-12-10 | 2010-06-10 | Ramin Abhari | Even carbon number paraffin composition and method of manufacturing same |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017221025A1 (en) * | 2016-06-23 | 2017-12-28 | Sunamp Limited | Phase change material-based enhancement for reversed-cycle defrosting in vapour compression refrigeration systems |
US11193702B2 (en) | 2016-06-23 | 2021-12-07 | Sunamp Limited | Phase change material-based enhancement for reversed-cycle defrosting in vapour compression refrigeration systems |
Also Published As
Publication number | Publication date |
---|---|
WO2012008797A3 (en) | 2012-06-28 |
WO2012008797A9 (en) | 2012-05-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US12049434B2 (en) | Even carbon number paraffin composition and method of manufacturing same | |
Dehkordi et al. | Transesterification of waste cooking oil to biodiesel using Ca and Zr mixed oxides as heterogeneous base catalysts | |
Wen et al. | Preparation of KF/CaO nanocatalyst and its application in biodiesel production from Chinese tallow seed oil | |
Liu et al. | One-step hydrodeoxygenation of palm oil to isomerized hydrocarbon fuels over Ni supported on nano-sized SAPO-11 catalysts | |
CN102807483B (en) | Method for preparing cyclopentanone and/or cyclopentanol by furfural or furfuryl alcohol | |
JP5771192B2 (en) | Process for producing fatty alcohols by hydrogenating fatty acid triglycerides over a copper-containing heterogeneous catalyst | |
KR20120008460A (en) | Process for preparing organic phase change material through hydrogenation of animal and vegetable oils | |
CN108586181A (en) | Grease decarbonylation is the method for long chain alkane under a kind of hydrogen-free condition | |
CN105061140A (en) | Method for preparing fatty alcohol from fatty acid or fatty acid ester under H-free condition and catalyst applied to method | |
JP2011148909A (en) | Biohydrocarbon, method for manufacturing biohydrocarbon and apparatus for manufacturing biohydrocarbon | |
WO2012008797A2 (en) | Method for preparing an organic phase change material by means of a hydrotreating reaction of animal and plant oils | |
TW201503956A (en) | Method for regenerating catalyst for hydrogenation reaction, and method for producing hydride of polyhydric alcohol | |
WO2012008795A2 (en) | Method for preparing an organic phase-change material from animal and plant oils | |
CN104084232B (en) | A kind of preparation method of catalyst of biological fatty alcohol deoxidation | |
Piloni et al. | Chemical properties of biosilica and bio-oil derived from fast pyrolysis of Melosira varians | |
RU2652986C1 (en) | Catalyst and process for producing a fraction of aromatic and aliphatic hydrocarbons from vegetable oil | |
CN112403499B (en) | Preparation method and application of vanadium phosphorus oxide catalyst | |
WO2009147816A1 (en) | Heteropoly acid decomposition catalyst and method for manufacturing diesel fuel oil using said catalyst | |
Liu et al. | Catalytic hydrotreatment of triglycerides and various renewable oils into green diesel over metal–organic frameworks derived Ni@ C catalyst | |
CN115028524A (en) | Method for preparing isooctyl aldehyde by crotonaldehyde one-step method | |
CN102794204B (en) | Reduction method of palladium catalyst | |
CN108315051B (en) | A method for producing hydrocarbons using biological materials, hydrocarbons and fuels thereof | |
KR101511449B1 (en) | Preparation method of catalyst for producing methacrolein or methacrylic acid and catalyst using the same | |
EA031553B1 (en) | Methods for improving higher alcohol yields from syngas by altering flow regimes within a reactor | |
CN113604247A (en) | A kind of preparation method of bio-based n-alkane phase change material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11807082 Country of ref document: EP Kind code of ref document: A2 |
|
NENP | Non-entry into the national phase in: |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11807082 Country of ref document: EP Kind code of ref document: A2 |