[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2012008497A1 - 微小液滴の製造装置 - Google Patents

微小液滴の製造装置 Download PDF

Info

Publication number
WO2012008497A1
WO2012008497A1 PCT/JP2011/066004 JP2011066004W WO2012008497A1 WO 2012008497 A1 WO2012008497 A1 WO 2012008497A1 JP 2011066004 W JP2011066004 W JP 2011066004W WO 2012008497 A1 WO2012008497 A1 WO 2012008497A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
droplet
liquid
dispersed phase
holder
Prior art date
Application number
PCT/JP2011/066004
Other languages
English (en)
French (fr)
Inventor
西迫 貴志
Original Assignee
国立大学法人東京工業大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京工業大学 filed Critical 国立大学法人東京工業大学
Priority to EP11806827.9A priority Critical patent/EP2594332B1/en
Priority to CA 2805217 priority patent/CA2805217C/en
Priority to US13/261,564 priority patent/US9200938B2/en
Priority to JP2012524579A priority patent/JP5665061B2/ja
Publication of WO2012008497A1 publication Critical patent/WO2012008497A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F11/00Apparatus requiring external operation adapted at each repeated and identical operation to measure and separate a predetermined volume of fluid or fluent solid material from a supply or container, without regard to weight, and to deliver it
    • G01F11/28Apparatus requiring external operation adapted at each repeated and identical operation to measure and separate a predetermined volume of fluid or fluent solid material from a supply or container, without regard to weight, and to deliver it with stationary measuring chambers having constant volume during measurement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/40Mixing liquids with liquids; Emulsifying
    • B01F23/41Emulsifying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/30Micromixers
    • B01F33/301Micromixers using specific means for arranging the streams to be mixed, e.g. channel geometries or dispositions
    • B01F33/3011Micromixers using specific means for arranging the streams to be mixed, e.g. channel geometries or dispositions using a sheathing stream of a fluid surrounding a central stream of a different fluid, e.g. for reducing the cross-section of the central stream or to produce droplets from the central stream
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/71Feed mechanisms
    • B01F35/717Feed mechanisms characterised by the means for feeding the components to the mixer
    • B01F35/71755Feed mechanisms characterised by the means for feeding the components to the mixer using means for feeding components in a pulsating or intermittent manner
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/04Making microcapsules or microballoons by physical processes, e.g. drying, spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00783Laminate assemblies, i.e. the reactor comprising a stack of plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00783Laminate assemblies, i.e. the reactor comprising a stack of plates
    • B01J2219/00786Geometry of the plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00891Feeding or evacuation
    • B01J2219/00903Segmented flow

Definitions

  • the present invention relates to an apparatus for producing microdroplets, and more particularly to an apparatus for producing microdroplets (emulsions) using a microchannel and having excellent monodispersibility.
  • the present inventors have developed a method for producing an emulsion using the cross shape of fine channels as a method for producing fine droplets (emulsion) having excellent size uniformity (monodispersity) (WO02 / 068104).
  • This technology makes it possible to produce an emulsion of uniform size, and to control the droplet size and production speed of the emulsion flexibly by manipulating the flow speed in the flow path. Then, this technique includes the generation of a multiphase emulsion (JP 2004-237177 A), the preparation of spherical solid fine particles (JP 2004-059802 A, JP 2004-067953 A), and the preparation of colored solid fine particles ( Japanese Patent Application Laid-Open No. 2004-197083).
  • the above-described technique has a problem that there is an upper limit on the flow rate at which droplets can be generated in one fine channel crossing structure, and the amount that can be processed is small.
  • several development examples of a device in which a large number of micro flow paths are arranged in parallel have been reported. For example, a total of three layers, (a) a dispersed-phase distribution microchannel layer, (a) a continuous-phase liquid distribution microchannel layer, and (c) a droplet-generating Y-shaped microchannel layer are pasted.
  • a combined fine channel substrate has been reported (Japanese Patent Laid-Open No. 2004-243308).
  • the inventors of the present invention have disclosed a microchannel having a microchannel substrate in which a large number of microchannels for generating droplets are arranged and a hierarchical structure for controlling the distribution of liquid to each microchannel.
  • An apparatus consisting of a holder for holding a substrate is being developed (WO2007 / 026564, Lab Chip, 2008, 8, 287-293).
  • a microfluidic flow path corresponding to a plurality of inlets (liquid supply ports) for supplying a dispersed phase and a continuous phase from the outside of the substrate to each channel of the microchannel substrate is provided. It is necessary to provide a plurality of liquid supply paths in the path substrate holding holder. This structure has the following problems.
  • the holder for holding the microchannel substrate is manufactured by machining, but the processing of a large number of microholes is technically difficult, leading to high costs.
  • fine hole processing is performed densely in the holder for holding the fine flow path substrate, it becomes difficult to process the supply port of the dispersed phase or the continuous phase from the side surface of each layer passing through the gap of the vertical hole.
  • one holder for holding a microchannel substrate cannot be used for microchannel substrates having different liquid supply port arrangements, and it is difficult to be versatile.
  • an object of the present invention is to provide a microdroplet manufacturing apparatus using microchannels that can efficiently produce microdroplets at lower cost, efficiently, and in large quantities. Furthermore, an object of the present invention is to obtain fine particles by curing the obtained fine droplets.
  • the apparatus includes a microchannel substrate and a holder for holding the microchannel substrate, and the microchannel substrate is formed in a central portion.
  • M (where M is an integer of 1 or more) circles or polygons around the outlet of the micro droplets, which are connected to the outlet of the micro droplets by a fine channel.
  • a plurality of microdroplet generators arranged on the circumference of the first to Mth circles or polygons from the inside, and a circle or a polygon around the microdroplet outlet from the inside.
  • a microchannel for supplying the first to Nth liquids to the plurality of microdroplet generation units,
  • the plate holding holder has N circular rings for distributing the flow of the first to Nth liquids evenly to the liquid inlets of the microchannel substrate, with the microdroplet outlet being the central axis, or
  • An apparatus for producing microdroplets characterized by having a multi-tube structure having a polygonal annular channel.
  • the holder for holding the micro-channel structure is provided with a third part disposed at the lower part of the micro-channel substrate and having an inlet to the continuous phase holder, and an inlet to the dispersed phase holder.
  • a second part that forms an annular or polygonal annular flow path for supplying a continuous phase to the fine flow path substrate by combining with the third part, and a fine flow of the dispersed phase by combining with the second part.
  • the above-described (2) or (3) which includes a first part that includes an annular path for supplying to the road substrate and includes a cylinder having a discharge port for the fine liquid droplets from the fine flow path substrate at the center.
  • a micro-channel structure holding holder is disposed at a lower part of the micro-channel substrate, and includes a third component having an inlet to the dispersed phase holder and an inlet to the continuous phase holder.
  • a second part that forms an annular or polygonal annular channel for supplying the dispersed phase to the fine channel substrate by combining with the third component, and a discharge port from the holder of the generated droplets
  • a cylinder having an annular or polygonal annular channel for supplying a continuous phase to the microchannel substrate by combining with the second part, and a discharge port for microdroplets from the microchannel substrate at the center.
  • the apparatus for producing microdroplets according to the above (1) which is composed of a second dispersed phase.
  • N 3
  • the first liquid is the continuous phase
  • the second liquid is the first dispersed phase
  • the third liquid is the second dispersed phase
  • the generated droplets are the first dispersed phase.
  • the apparatus for producing microdroplets according to the above (1) which is composed of a second dispersed phase.
  • the apparatus for producing microdroplets according to (9), wherein M 2, and the generated droplet is a double emulsion having the first dispersed phase as an innermost phase and the second dispersed phase as an intermediate phase.
  • the plurality of innermost phase droplet generation units alternately merge the innermost phase from both sides with respect to the intermediate phase, thereby generating the plurality of intermediate phase droplets.
  • the unit (first micro droplet generating unit) is the micro droplet manufacturing apparatus according to (10), wherein the continuous phase joins from both sides to the intermediate phase including the innermost phase droplet.
  • (12) The apparatus for producing fine droplets according to (9), wherein M 2, and the generated droplet is a double emulsion having the first dispersed phase as an intermediate phase and the second dispersed phase as an innermost phase.
  • the plurality of innermost phase droplet generation units join the intermediate phase from both sides to the innermost phase, and the plurality of intermediate phase droplet generation units (
  • the first microdroplet generation unit is the microdroplet manufacturing apparatus according to (12), in which the continuous phase joins from both sides to the intermediate phase including the innermost phase droplet.
  • a fourth part having a holder for the second dispersed phase, the holder for holding the fine channel structure disposed at a lower part of the fine channel substrate, and a holder for the first dispersed phase
  • a third part forming an annular or polygonal annular flow path for supplying the second dispersed phase to the fine flow path substrate by combining with the fourth part, and a continuous phase holder
  • a second part having an inlet and forming an annular or polygonal annular channel for supplying the first dispersed phase to the fine channel substrate by being combined with the third part;
  • An annular or polygonal annular channel for supplying a continuous phase to the fine channel substrate is formed by combining with the second part, and a discharge port is provided.
  • N 4
  • the first liquid is a continuous phase
  • the second liquid is a first dispersed phase
  • the third liquid is a second dispersed phase
  • the fourth liquid is a third dispersed phase.
  • a first intermediate phase from both sides with respect to the first intermediate phase including the innermost phase droplet, and a plurality of second intermediate phase droplet generation units includes the liquid liquid according to (16), wherein the continuous phase merges from both sides with respect to the second intermediate phase containing the first medium phase droplet including the innermost phase liquid droplet.
  • the plurality of innermost phase droplet generation units alternately join the innermost phase from both sides with respect to the second intermediate phase, and the plurality of first intermediate phase droplets
  • the first intermediate phase joins the first intermediate phase including the innermost phase droplet from both sides to generate the plurality of second intermediate phase droplets.
  • the unit (first micro droplet generation unit) is characterized in that the continuous phase joins from both sides with respect to the second intermediate phase containing the first intermediate phase droplet including the innermost phase droplet ( The apparatus for producing microdroplets according to 18).
  • a fifth part having a holder for the third dispersed phase, wherein the holder for holding the microchannel structure is disposed below the microchannel substrate, and the holder for the second dispersed phase.
  • a fourth component forming an annular or polygonal annular channel for supplying the third dispersed phase to the fine channel substrate by combining with the fifth component, and a holder for the first dispersed phase
  • a third part forming an annular or polygonal annular channel for supplying the second dispersed phase to the fine channel substrate by combining with the fourth component, and a continuous phase holder.
  • the apparatus includes a microchannel substrate and a holder for holding the microchannel substrate, and the microchannel substrate is a microdroplet formed in a row.
  • the microchannel substrate holding holder includes a microchannel for supplying the first and second liquids, and the microchannel substrate holding holder includes the microdroplet discharge port array and the first and second liquid introduction port arrays.
  • An apparatus for producing microdroplets characterized by having a hierarchical structure.
  • the fine liquid droplets can be produced efficiently and mass-produced at a lower cost. It is possible to provide an apparatus for producing microdroplets using flow paths and fine particles obtained therefrom.
  • FIG. 3 is an exploded view (cross-sectional view) of the holder for holding a fine channel structure according to the present invention. The procedure of setting the fine channel structure (chip) to the holder for holding the fine channel structure of the present invention is shown.
  • the state immediately before setting the alignment component, the fine channel structure (chip), and the window cover is shown by (b).
  • generation in this invention is shown.
  • maintenance of the microdroplet manufacturing apparatus which show another example of this invention.
  • FIG. 12 is a top view showing an example of a fine channel structure (chip) of the microdroplet manufacturing apparatus of FIG. 11.
  • FIG. 13 is a top view showing an example of a holder for holding a microchannel structure in the microdroplet manufacturing apparatus of FIG. 12.
  • the top view which shows another example of the microchannel structure (chip) of the manufacturing apparatus of the microdroplet of this invention.
  • 15 shows a procedure for setting the fine channel structure (chip) shown in FIG. 14 to a stainless steel (SUS 304) holder.
  • SUS 304 stainless steel
  • an apparatus for producing microdroplets includes a microchannel substrate and a microchannel substrate holding holder, and the microchannel substrate discharges microdroplets formed at the center. Connected to the outlet and the outlet of this microdroplet by a fine channel, on each circumference of M (M is an integer of 1 or more) circular or polygonal center around the outlet of this microdroplet. A plurality of microdroplet generating portions on the circumference of the first to Mth circles or polygons from the inside, and a circle or a polygon around the microdroplet outlet are arranged.
  • a first liquid introduction port, and liquid introduction ports up to Nth (N is an integer of 2 or more, M ⁇ N ⁇ 1) sequentially arranged on the outer circumference of the circle or polygon;
  • the holder for holding the micro-channel substrate has an outlet for discharging micro droplets as a central axis, and N for distributing the flow rates of the first to Nth liquids evenly to the liquid inlets of the micro-channel substrate. It has a multi-tube structure having a single annular or polygonal annular channel. The integer N is preferably 2-5.
  • FIG. 1 is a top view showing an example of a fine channel structure (chip) of a microdroplet production apparatus according to the second aspect of the present invention (1 is a dispersed phase, 2 is a continuous phase, and 3 is a discharge phase). Exit).
  • FIG. 2 is a schematic partial enlarged view showing an example of generation of microdroplets in a microchannel, where 1 is a dispersed phase, 2 is a continuous phase, and after the continuous phase liquid and the dispersed phase liquid merge, Drops are generated by the micro droplet generator.
  • FIG. 1 is a fine channel structure (chip) of a microdroplet production apparatus according to the second aspect of the present invention
  • 1 is a dispersed phase
  • 2 is a continuous phase
  • Drops are generated by the micro droplet generator.
  • 211 and 212 are outlets of the continuous phase liquid
  • 261 and 262 are branch portions of the continuous phase liquid delivered from the outlets 211 and 212
  • 311 to 314 are branched by the branch portions 261 and 262.
  • the fine flow path of a continuous phase liquid is shown.
  • Reference numerals 221 to 224 denote outlets of the dispersed phase liquid
  • 271 to 274 denote branch parts of the dispersed phase liquid sent from the outlets 221 to 224.
  • the dispersed phase liquid branches 271 to 274 are branched dispersed phases. Liquid fine flow paths 321 to 328 are branched and formed.
  • FIG. 3 is a schematic diagram showing an example of micro droplet generation in the cross flow path of the micro droplet manufacturing apparatus in the third embodiment of the present invention, where 1 is a dispersed phase and 2 is a continuous phase.
  • the microdroplet manufacturing apparatus is a continuous phase in which the holder for holding the microchannel structure is disposed below the microchannel substrate.
  • a third part having an inlet to the holder and an annular or polygonal ring having an inlet to the holder of the dispersed phase and supplying the continuous phase to the microchannel substrate in combination with the third part
  • Combining the second part forming the flow path and the second part forms an annular path for supplying the dispersed phase to the fine flow path substrate, and discharges a fine droplet from the fine flow path substrate in the center.
  • a first part comprising a cylinder having an outlet is provided.
  • FIGS. 5A to 5C are diagrams for holding the microchannel structure of the present invention. An exploded view of the holder is shown.
  • a plurality of microdroplet generation units join the continuous phase from both sides to the dispersed phase. This is a mode in which the dispersed phase and the continuous phase are exchanged in FIG.
  • the microdroplet manufacturing apparatus is a dispersed phase holder in which a holder for holding a microchannel structure is disposed below the microchannel substrate.
  • An annular or polygonal annular flow for supplying a disperse phase to a fine flow path substrate by combining a third part with an inlet to the inlet and a inlet for a continuous phase holder and combining with the third part
  • An annular or polygonal annular channel for supplying a continuous phase to the fine channel substrate by combining the second component forming the path and a discharge port from the holder of the generated droplet and combining with the second component.
  • a first part includes a cylinder that is formed and has a discharge port from a fine flow path substrate for fine droplets in the center. This is a mode in which the dispersed phase and the continuous phase are exchanged in FIG. 4 and FIGS. 5 (a) to 5 (c).
  • N 3
  • the first liquid is a continuous phase
  • the second liquid is a first dispersed phase
  • the third liquid is the second dispersed phase
  • the generated droplet is composed of the first dispersed phase and the second dispersed phase.
  • FIG. 6 is a top view of a fine channel structure (chip) of a microdroplet producing apparatus showing an example of the ninth aspect of the present invention.
  • a plurality of innermost phase droplet generation units (second microdroplet generation units)
  • the innermost phase alternately merges from both sides
  • the plurality of intermediate phase droplet generation units (first micro droplet generation units) have a continuous phase from both sides with respect to the intermediate phase including the innermost phase droplets.
  • FIG. 7 shows a schematic diagram of microdroplet generation in this embodiment.
  • the generated liquid droplets have the first dispersed phase as the intermediate phase and the second dispersed phase as the innermost. It is a double emulsion used as a phase. This corresponds to the case where the positions of the first dispersed phase and the second dispersed phase are exchanged in FIG.
  • a plurality of innermost phase droplet generation units are arranged in the innermost phase.
  • the intermediate phase merges from both sides, and the plurality of intermediate phase droplet generation units (first micro droplet generation units) merge the continuous phase from both sides with respect to the intermediate phase including the innermost phase droplets.
  • the microchannel structure holding holder is disposed below the microchannel substrate.
  • a fourth component having an inlet to the holder of the dispersed phase; an inlet to the holder of the first dispersed phase; and for supplying the second dispersed phase to the microchannel substrate by combining with the fourth component A third part for forming an annular or polygonal annular flow path; a circle for providing a first dispersed phase to the fine flow path substrate by being combined with the third part and having an inlet to the continuous phase holder A second part forming an annular or polygonal annular flow path; and an annular shape for supplying a continuous phase to the fine flow path substrate by combining with the second part, and a discharge port from the holder of the generated droplets Forms a polygonal annular channel and is in the center
  • First component comprising a cylindrical or polygonal tube having an outlet from the fine channel substrate microdroplets comprises a.
  • N 4
  • the first liquid is a continuous phase
  • the second liquid is a first dispersed phase
  • the third liquid is the second dispersed phase
  • the fourth liquid is the third dispersed phase
  • the generated droplets are composed of three phases, the first dispersed phase, the second dispersed phase, and the third dispersed phase.
  • FIG. 8 is a top view of a fine channel structure (chip) of a microdroplet producing apparatus showing an example of the fifteenth aspect of the present invention.
  • a plurality of innermost phase droplet generation units (third microdroplet generation units)
  • the second intermediate phase merges from both sides
  • a plurality of first intermediate phase droplet generation units (second micro droplet generation units) are formed from both sides with respect to the first intermediate phase including the innermost phase droplets.
  • the first intermediate phase merges
  • the plurality of second intermediate phase droplet generation units include a second intermediate phase droplet including the innermost phase droplet.
  • the continuous phase merges from both sides with respect to the intermediate phase.
  • FIG. 8 is also a top view of a fine channel structure (chip) of a micro droplet manufacturing apparatus showing an example of the seventeenth aspect of the present invention.
  • a plurality of innermost phase droplet generation units are provided in the second intermediate phase.
  • the innermost phase alternately joins from both sides, and the plurality of first intermediate phase droplet generation units (second micro droplet generation units) are connected to the first intermediate phase including the innermost phase droplets.
  • the first intermediate phase merges from both sides, and the plurality of second intermediate phase droplet generation units (first micro droplet generation units) contain the first intermediate phase droplets including the innermost phase droplets.
  • the continuous phase merges from both sides with respect to the second intermediate phase.
  • a microchannel structure holding holder is disposed below the microchannel substrate.
  • a fifth component having an inlet to the holder of the dispersed phase; an inlet to the holder of the second dispersed phase, and supplying the third dispersed phase to the microchannel substrate by combining with the fifth component
  • a fourth part forming an annular or polygonal annular flow path; including an inlet for the holder of the first dispersed phase and supplying the second dispersed phase to the fine flow path substrate by combining with the fourth part
  • a second part forming an annular or polygonal annular channel;
  • it has a discharge port from the holder of the generated droplets and is combined with the second part to form an annular
  • an apparatus for producing microdroplets using a microchannel includes the microchannel substrate and a holder for holding the microchannel substrate, and the microchannel substrates are formed in a line.
  • a plurality of micro-droplet outlets, and micro-droplet generators connected to the micro-droplet outlets by a micro-channel and arranged in a row in parallel to the micro-droplet outlets;
  • the holder for holding the fine channel substrate forms slit portions corresponding to the rows of the outlets of the microdroplets and the rows of the inlets of the first and second liquids.
  • the discharge layer having the outlet, and the first and second liquid introduction layers having the first and second liquid introduction ports introduce the first and second liquids into the respective liquids of the microchannel substrate. It has a hierarchical structure so that the flow rate is evenly distributed to the mouth.
  • the microchannel substrate and the holder for holding the microchannel substrate have a matrix type arrangement instead of the circumferential type, but have the same advantages as the circumferential type.
  • a plurality of liquids are also provided in the holder for holding the microchannel substrate.
  • the slit portion is provided so as to be connected to the discharge port and the liquid introduction port.
  • FIG. 13 to be described later shows an example of such a slit portion (each slit portion is independent).
  • a U-shape in which two slit portions 10 and 11 are coupled at the end may be used. it can.
  • the fine channel structure (chip) of the microdroplet manufacturing apparatus of the present invention will be described in more detail with reference to FIG. 1 described above.
  • 36 continuous-phase liquid inlets on the outermost side and 72 dispersed-phase liquid inlets on the inner side are arranged at positions on concentric circles centered on the outlet of the fine liquid droplets.
  • a micro-droplet generating section consisting of a branch flow path of the dispersed phase liquid and 72 cross-flow paths (i.e., 144 T-shaped paths) where micro-droplets are generated is formed on the innermost side.
  • a structure is configured. That is, the continuous phase liquid and the disperse phase liquid are crossed from the peripheral portion in a cross shape, and microdroplets are generated at 72 crossroads (144 T-junctions). It will be led to the discharge port of the minute droplets and discharged.
  • FIG. 5 (c).
  • a discharge layer having a discharge port 7 around the discharge port 3 for the fine liquid droplets located at the center of the fine flow path substrate at the bottom of the alignment component 6 of the cover 4 with window and the fine flow path substrate 5.
  • a disperse phase 1 (first liquid) introduction layer having an annular flow path for supplying a disperse phase on the outside of the discharge layer 7 ′ with a circular wall separated from the tubular wall of the discharge layer 7 ′.
  • a third part which is a continuous phase 2 (second liquid) introduction layer provided with a second part 1 ′ and further having an annular flow path for supplying a continuous phase outside the annular wall.
  • a multi-pipe structure arranged so that 2 'is provided is provided in such a manner that a plurality of cylindrical parts are fitted together.
  • FIG. 5C shows a state in which the components are combined in the procedure shown in FIG. 5B (FIG. 4 and a state immediately before the alignment component 6, the fine channel structure (chip) 5 and the windowed cover 4 are set.
  • the dispersed phase liquid or continuous phase is formed by the dispersed phase flow path I and the continuous phase flow path II formed in the clearance.
  • the liquid can pass through.
  • the dispersed phase flow path I which is an annular flow path through which the dispersed phase liquid flows
  • the continuous phase flow path II which is an annular flow path through which the continuous phase liquid flows, reach the fine flow path substrate, and are different concentric circles on the fine flow path substrate. Connected to the inlet of the dispersed phase liquid or the continuous phase liquid.
  • the flow rate is evenly distributed to the dispersed phase liquid inlet or the continuous phase liquid inlet on the fine channel substrate without subjecting the holder for holding the fine channel structure to many fine holes. It becomes possible to distribute. Thereby, a micro droplet manufacturing apparatus can be provided more easily and at low cost.
  • the liquid inlets on the microchannel substrate may be arranged so as to be aligned with the annular channel of the holder for holding the microchannel substrate, and the number of liquid inlets on the microchannel substrate is not limited. Absent. That is, if the circle where the liquid inlet is arranged and the position of the annular channel of the holder match, one holder can be used for various fine channel substrates having different channel shapes and different numbers of liquid inlets. It can be expected to greatly improve versatility.
  • FIG. 11 shows a top view (a) and a side view (b) of the fine channel structure (chip) and the holder for holding the fine channel structure
  • FIG. 12 shows the fine channel structure (chip).
  • FIG. 13 is a top view showing an example of the holder for holding the fine channel structure.
  • the discharge port of the micro droplet located at the center of the fine channel substrate is used as the central axis.
  • 8 and 9 show the inlet of the 1st and 2nd liquid, respectively.
  • the holder for holding the microchannel substrate is the row of the microdroplet outlets 7 and the first and second in FIGS. 11B and 12.
  • a slit portion corresponding to the row of the liquid inlets 8 and 9 is formed, and as described above, the discharge layer 7 ′ having the microdroplet outlet and the introduction of the first and second liquids
  • the first introduction layer and the second liquid introduction layers 1 ′ and 2 ′ having the openings have a hierarchical structure so that the flow rates of the first and second liquids are evenly distributed to the introduction openings of the respective liquids of the microchannel substrate.
  • reference numerals 10 to 12 denote slit portions corresponding to the discharge port 7, the first liquid introduction port 8, and the second liquid introduction port 9 and the discharge port 7, respectively.
  • the branch structure of the fine channel is not particularly limited, but is preferably selected from a cross road, a T-junction or a Y-junction.
  • the size of the fine channel can be determined according to the purpose, but is usually selected from about 0.1 to 1000 ⁇ m, preferably from about 10 to 500 ⁇ m.
  • the material of the material forming the fine channel may be any of, for example, plastic, ceramic, metal, etc.
  • the wall surface of the fine channel is made hydrophobic, acrylic resin, silicone resin, etc. are suitable, In the case of making it hydrophilic, quartz glass, silicon, borosilicate glass (for example, “Pyrex” (trademark)) and the like are suitable.
  • the shape and size of the material forming the fine channel can be appropriately selected depending on the intended use and the like, and examples thereof include a plate-like body (for example, several centimeters square) having a processed channel.
  • the liquid forming the continuous phase is an organic compound or water, while the liquid forming the dispersed phase is a curable liquid.
  • the organic compound is not particularly limited, but is preferably alkanes such as decane and octane, halogenated hydrocarbons such as chloroform, aromatic hydrocarbons such as toluene, and fatty acids such as oleic acid. Etc.
  • the curable liquid is not particularly limited as long as it is a liquid that can be cured by heat or light.
  • a known polymerizable monomer, oligomer, or polymer can be mentioned, and preferably an acrylate monomer, a styrene monomer, etc. as described later.
  • a plurality of dispersed phases such as the first dispersed phase and the second dispersed phase are used, different colorants are contained as will be described later, and the curable liquids constituting these dispersed phases are the same or different. It may be.
  • the combination of the dispersed phase and the continuous phase can be generally O / W, O / O type, and W / O type.
  • the dispersed phase merges with the continuous phase in a laminar flow and is sequentially transformed into spherical microdroplets, and the microdroplets are cured simultaneously or with a time difference to form fine particles.
  • the flow rate of the dispersed phase and the continuous phase is usually selected from about 1 ⁇ m to about 1000 mL / hour, although it depends on the type and the like.
  • the dispersed phase in the present invention can be divided into two colors, for example, as a first dispersed phase and a second dispersed phase.
  • different colorants are added to one or both, and charging is performed as necessary.
  • an additive for magnetism may be used.
  • the colorant include two-color phase separation hues selected from achromatic white and black, or chromatic red, blue, green, purple, yellow, and the like.
  • the dye / pigment for forming such a hue is not particularly limited, and various dyes such as oil solubility or various inorganic / organic pigments can be used. These dyes and pigments can be appropriately selected and used according to the dispersibility in the curable component and the color tone desired in the intended use of the resulting dichroic fine particles.
  • the colorant can also be used in only one dispersed phase.
  • the amount of the dye / pigment added as the colorant is not particularly limited, but it is usually suitably used in the range of about 0.1 to 10 parts by weight per 100 parts by weight of the curing component.
  • the curable components that have been phase-separated into these two colors can be formed of components that are charged positively and negatively different from each other using a charge imparting agent.
  • the chargeability in the present invention described above may be a monomer species that tends to exhibit ( ⁇ ) chargeability and (+) chargeability, respectively. it can.
  • (-) chargeable polymerizable monomers include (meth) acrylic acid aryl esters such as phenyl (meth) acrylate, epoxy group-containing polymerizable compounds such as glycidyl (meth) acrylate, ( And hydroxy group-containing polymerizable compounds such as 2-hydroxyethyl (meth) acrylate, and styrene monomers such as methylstyrene.
  • examples of the (+) chargeable polymerizable monomer include amide group-containing vinyl monomers such as methacrylamide.
  • the present invention by dispersing the magnetic powder, it is possible to magnetize the fine liquid droplets divided into two hues in different positive and negative directions.
  • the fine droplets obtained by the method of the present invention can be cured by heat, light such as UV, etc. to obtain fine particles.
  • a photopolymerization initiator such as acetophenone can be used.
  • thermal decomposition type polymerization of organic peroxides or the like is initiated. Agents can also be used.
  • a microchannel chip as shown in FIG. 1 was fabricated by processing into a glass substrate (synthetic quartz). A fine groove (width 100 ⁇ m, depth is 100 ⁇ m in all areas) having a rectangular cross section was processed on the substrate by dry etching and cut into 15 mm ⁇ 15 mm. Fine channel chip by bonding by heat welding to another substrate of the same area with through holes drilled for liquid supply port (diameter 0.25mm, 108 locations) and discharge port (diameter 4.5mm, 1 location) Formed. This was used by setting it in a stainless steel (SUS 304) holder produced by machining as shown in FIG.
  • SUS 304 stainless steel
  • 1,6 hexanediol diacrylate (Shin Nakamura Chemical Co., Ltd.) was used as the dispersed phase, and a 2% aqueous solution of polyvinyl alcohol (GL-03 manufactured by Nippon Gosei Kagaku) was used as the continuous phase.
  • one syringe pump KDScientific, KDS200 was used for each of the dispersed phase and the continuous phase.
  • the flow rate of the disperse phase was 180 mL / hr and the flow rate of the continuous phase was 270 mL / hr
  • the liquid was fed at regular intervals in all 72 crossroads (144 T-junctions) inside the chip.
  • T-shaped paths (100 ⁇ m in both width and depth) for generating colored droplets were arranged.
  • 10 is a fine channel chip
  • 11 to 20 are outlets for the continuous phase liquid
  • 61 to 70 are branch portions of the continuous phase liquid delivered from the outlets 11 to 20
  • 111 to 130 are branch portions 61 to The fine flow path of the continuous phase liquid branched by 70 is shown.
  • 21 to 40 are outlets for the second dispersed phase liquid
  • 71 to 90 are branch portions of the second dispersed phase liquid sent from the outlets 21 to 40
  • 41 to 60 are outlets for the first dispersed phase liquid
  • 91 to Reference numeral 110 denotes a branch portion of the first dispersed phase liquid delivered from the outlets 41 to 60.
  • the branch portions 71 to 90 of the second dispersed phase liquid and the branch portions 91 to 110 of the first dispersed phase liquid are branched.
  • the second dispersed phase liquid fine flow path and the branched first dispersed phase liquid fine flow path are respectively formed by branching in the same manner as the continuous phase liquid fine flow paths 111 to 130.
  • Acrylic monomer colored red
  • silicone oil colorless
  • 0.3 wt% aqueous solution of SDS sodium dodecyl sulfate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Accessories For Mixers (AREA)
  • Colloid Chemistry (AREA)

Abstract

 本発明は、微小液滴をより低コストで、効率的に、しかも大量生産することができる微細流路を用いた微小液滴の製造装置を提供する。 本発明の微小液滴の製造装置は、微細流路基板と微細流路基板保持用ホルダーを備え、微細流路基板が、中央部に形成される微小液滴の排出口と、この微小液滴の排出口に微細流路によって接続され、この微小液滴の排出口を中心としたM個の円形または多角形のそれぞれの周上に複数配置される微小液滴生成部と、微小液滴の排出口を中心とした円形または多角形の周上に配置される第1の液体の導入口と、さらにその外側の円形または多角形の周上に順次配置される第N(ただしNは2以上の整数、M≦N-1)までの液体の導入口と、複数の微小液滴の生成部に第1~第Nの液体を供給する微細流路を有し、微細流路基板保持用ホルダーが、第1~第Nの液体を微細流路基板の各液体の導入口に均等に流量配分するためのN個の環状流路を有する多重管構造を有する。

Description

微小液滴の製造装置
 本発明は微小液滴の製造装置に関し、さらに詳しくは微細流路を用いた、単分散性に優れる微小液滴(エマルション)の製造装置に関する。
 本発明者らは、サイズの均一性(単分散性)に優れた微小液滴(エマルション)の生成手法として、微細流路の交差形状を利用したエマルションの生成手法を開発している(WO02/068104)。
 この技術により、均一サイズのエマルションを生成することができ、またエマルションの液滴径や生成速度を流路内の流れの速さを操作することで柔軟に制御できるようになった。そして、この技術は、多相エマルションの生成(特開2004-237177号公報)、球状固体微粒子の調製(特開2004-059802号公報、特開2004-067953号公報)、着色固体微粒子の調製(特開2004-197083号公報)などに応用されている。
 しかしながら、上記の技術には、1つの微細流路交差構造では液滴を生成できる流量に上限があり、処理できる量が少ないという問題がある。この問題を解決するために、微細流路を多数並列化させた装置の開発例がいくつか報告されている。例えば、(a)分散相分配用微細流路の層、(a)連続相液体分配用微細流路の層および(c)液滴生成用Y字微細流路の層、の計3層を貼り合わせた微細流路基板が報告されている(特開2004-243308号公報)。
 一方、本発明者らは、液滴生成用の微細流路の交差形状を多数並べた微細流路基板と各微細流路への液体の分配を制御するための階層構造を備えた微細流路基板保持用ホルダーから成る装置を開発している(WO2007/026564,Lab Chip,2008,8,287-293)。
 しかしながら、上記の微小液滴の製造装置では、微細流路基板の各流路に基板外部から分散相および連続相を供給するための複数の導入口(液体供給口)に対応して、微細流路基板保持用ホルダーにも複数の液体供給経路を設ける必要がある。この構造は以下のような問題を有する。
 まず、微細流路基板に並列化させる流路の数の増大に伴い、微細流路基板の液体供給口の数も増加させる必要があるが、それに応じて、微細流路基板保持用ホルダーの各階層にも対応する位置に多数の液体供給経路を設ける必要がある。また、微細流路基板により密に流路を並べて単位面積あたりの流路数を増加させることが基板面積の有効利用の観点から望ましいが、これには微細流路基板に加工する液体供給口のサイズ、および対応する微細流路基板保持用ホルダーの液体供給経路の穴サイズをより小さくする必要がある。通常、微細流路基板保持用ホルダーの作製は機械加工によって行うが、多数の微細穴の加工は技術的に困難であり、高コストにつながる。また、微細流路基板保持用ホルダーに密に微細穴加工を行った場合には、縦穴の隙間を通る、各階層の側面からの分散相あるいは連続相の供給口の加工が困難となる。
 また、1つの微細流路基板保持用ホルダーは、液体供給口の配置が異なる微細流路基板に対して用いることができず、汎用性に欠けるのが難点である。
WO02/068104 特開2004-237177号公報 特開2004-059802号公報 特開2004-067953号公報 特開2004-197083号公報 特開2004-243308号公報 WO2007/026564
Lab Chip,2008,8,287-293
 本発明は、上記状況に鑑みて、微小液滴をより低コストで、効率的に、しかも大量生産することができる微細流路を用いた微小液滴の製造装置を提供することを目的とする。さらに、本発明の目的は、得られる微小液滴を硬化させて微粒子を得ることである。
 本願発明は、上記の課題を解決するために以下の発明を提供する。
 (1)微細流路を用いた微小液滴の製造装置において、該装置が微細流路基板と微細流路基板保持用ホルダーを備え、微細流路基板が、中央部に形成される微小液滴の排出口と、この微小液滴の排出口に微細流路によって接続され、この微小液滴の排出口を中心としたM個(Mは1以上の整数)の円形または多角形のそれぞれの周上に複数配置される、内側から第1~第Mの円形または多角形の周上の微小液滴生成部と、前記微小液滴の排出口を中心とした円形または多角形の周上に配置される第1の液体の導入口と、さらにその外側の円形または多角形の周上に順次配置される第N(ただしNは2以上の整数、M≦N-1)までの液体の導入口と、前記複数の微小液滴の生成部に前記第1~第Nの液体を供給する微細流路を有し、微細流路基板保持用ホルダーが、微小液滴の排出口を中心軸とし、前記第1~第Nの液体を微細流路基板の各液体の導入口に均等に流量配分するためのN個の円環状または多角環状流路を有する多重管構造を有することを特徴とする微小液滴の製造装置。
 (2)N=2(このときM=1)であり、且つ第1の液体が分散相、第2の液体が連続相である上記(1)に記載の微小液滴の製造装置。
 (3)複数の微小液滴の生成部は、連続相液体に対して両側から分散相液体が交互に合流する上記(2)に記載の微小液滴の製造装置。
 (4)微細流路構造体保持用ホルダーが、微細流路基板の下部に配置される、連続相のホルダーへの導入口を備えた第3部品と、分散相のホルダーへの導入口を備え、且つ前記第3部品と組み合わせることで連続相を微細流路基板に供給するための円環状または多角環状流路を形成する第2部品と、前記第2部品と組み合わせることで分散相を微細流路基板に供給するための円環状経路を形成し且つ中央に微小液滴の微細流路基板からの排出口を有する円筒を備える第1部品を具備する上記(2)または(3)に記載の微小液滴の製造装置。
 (5)N=2(このときM=1)であり、且つ第1の液体が連続相、第2の液体が分散相である上記(1)に記載の微小液滴の製造装置。
 (6)複数の微小液滴の生成部は、前記分散相に対して両側から連続相が合流する上記(5)に記載の微小液滴の製造装置。
 (7)微細流路構造体保持用ホルダーが、前記微細流路基板の下部に配置される、分散相のホルダーへの導入口を備えた第3部品と、連続相のホルダーへの導入口を備え、且つ前記第3部品と組み合わせることで分散相を微細流路基板に供給するための円環状または多角環状流路を形成する第2部品と、生成液滴のホルダーからの排出口を備え、且つ前記第2部品と組み合わせることで連続相を微細流路基板に供給するための円環状または多角環状流路を形成し、且つ中央に微小液滴の微細流路基板からの排出口を有する円筒を備える第1部品を具備する上記(5)または(6)に記載の微小液滴の製造装置。
 (8)N=3であり、且つ第1の液体が第1分散相であり、第2の液体が第2分散相、第3の液体が連続相であり、生成液滴が第1分散相と第2分散相から構成される上記(1)に記載の微小液滴の製造装置。
 (9)N=3であり、且つ第1の液体が連続相であり、第2の液体が第1分散相、第3の液体が第2分散相であり、生成液滴が第1分散相と第2分散相から構成される上記(1)に記載の微小液滴の製造装置。
 (10)M=2であり、生成液滴が、第1分散相を最内相、第2分散相を中間相とするダブルエマルションである上記(9)に記載の微小液滴の製造装置。
 (11)複数の最内相液滴の生成部(第2微小液滴生成部)は、前記中間相に対して両側から最内相が交互に合流し、前記複数の中間相液滴の生成部(第1微小液滴生成部)は、最内相液滴を含む中間相に対して両側から連続相が合流する上記(10)に記載の微小液滴の製造装置。
 (12)M=2であり、生成液滴が、第1分散相を中間相、第2分散相を最内相とするダブルエマルションである上記(9)に記載の微小液滴の製造装置。
 (13)複数の最内相液滴の生成部(第2微小液滴生成部)は、前記最内相に対して両側から中間相が合流し、前記複数の中間相液滴の生成部(第1微小液滴生成部)は、前記最内相液滴を含む中間相に対して両側から連続相が合流する上記(12)に記載の微小液滴の製造装置。
 (14)微細流路構造体保持用ホルダーが、前記微細流路基板の下部に配置される、第2分散相のホルダーへの導入口を備えた第4部品と、第1分散相のホルダーへの導入口を備え、且つ前記第4部品と組み合わせることで第2分散相を微細流路基板に供給するための円環状または多角環状流路を形成する第3部品と、連続相のホルダーへの導入口を備え、且つ前記第3部品と組み合わせることで第1分散相を微細流路基板に供給するための円環状または多角環状流路を形成する第2部品と、生成液滴のホルダーからの排出口を備え、且つ前記第2部品と組み合わせることで連続相を微細流路基板に供給するための円環状または多角環状流路を形成し、且つ中央に微小液滴の微細流路基板からの排出口を有する円筒または多角筒を備える第1部品を具備する上記(9)~(13)のいずれかに記載の微小液滴の製造装置。
 (15)N=4であり、且つ第1の液体が連続相であり、第2の液体が第1分散相、第3の液体が第2分散相、第4の液体が第3分散相であり、生成液滴が第1分散相、第2分散相、および第3分散相の三相から構成される上記(1)に記載の微小液滴の製造装置。
 (16)M=3であり、生成液滴が第1分散相を第1中間相(連続相と接する相)、第2分散相を第2中間相(第1中間相の内側に位置する相)、第3分散相を最内相とするトリプルエマルションである上記(15)に記載の微小液滴の製造装置。
 (17)複数の最内相液滴の生成部(第3微小液滴生成部)は、最内相に対して両側から第2中間相が合流し、複数の第1中間相液滴の生成部(第2微小液滴生成部)は、前記最内相液滴を含む第1中間相に対して両側から第1中間相が合流し、前記複数の第2中間相液滴の生成部(第1微小液滴生成部)は、前記最内相液滴を含む第1中間相液滴を内包する第2中間相に対して両側から連続相が合流する上記(16)に記載の微小液滴の製造装置。
 (18)M=3であり、生成液滴が第1分散相を第1中間相、第2分散相を最内相、および第3分散相を第2中間相とするトリプルエマルションである上記(15)に記載の微小液滴の製造装置。
 (19)複数の最内相液滴の生成部(第3微小液滴生成部)は、第2中間相に対して両側から交互に最内相が合流し、複数の第1中間相液滴の生成部(第2微小液滴生成部)は、前記最内相液滴を含む第1中間相に対して両側から第1中間相が合流し、前記複数の第2中間相液滴の生成部(第1微小液滴生成部)は、前記最内相液滴を含む第1中間相液滴を内包する第2中間相に対して両側から連続相が合流することを特徴とする上記(18)に記載の微小液滴の製造装置。
 (20)微細流路構造体保持用ホルダーが、前記微細流路基板の下部に配置される、第3分散相のホルダーへの導入口を備えた第5部品と、第2分散相のホルダーへの導入口を備え、且つ前記第5部品と組み合わせることで第3分散相を微細流路基板に供給するための円環状または多角環状流路を形成する第4部品と、第1分散相のホルダーへの導入口を備え、且つ前記第4部品と組み合わせることで第2分散相を微細流路基板に供給するための円環状または多角環状流路を形成する第3部品と、連続相のホルダーへの導入口を備え、且つ前記第3部品と組み合わせることで第1分散相を微細流路基板に供給するための円環状または多角環状流路を形成する第2部品と、生成液滴のホルダーからの排出口を備え、且つ前記第2部品と組み合わせることで連続相を微細流路基板に供給するための円環状または多角環状流路を形成し、且つ中央に微小液滴の微細流路基板からの排出口を有する円筒または多角筒を備える第1部品を具備する上記(15)~(19)のいずれかに記載の微小液滴の製造装置。
 (21)微細流路を用いた微小液滴の製造装置において、該装置が微細流路基板と微細流路基板保持用ホルダーを備え、微細流路基板が、一列に形成される微小液滴の複数の排出口と、この微小液滴の排出口に微細流路によって接続され、この微小液滴の排出口に平行に一列に複数配置される微小液滴生成部と、前記微小液滴の排出口に平行に一列に配置される第1の液体の複数の導入口と、さらにその外側に同様に配置される第2の液体の複数の導入口と、前記複数の微小液滴の生成部に前記第1および第2の液体を供給する微細流路を有し、微細流路基板保持用ホルダーが、該微小液滴の排出口の列ならびに該第1および第2の液体の導入口の列に対応するスリット部を形成してなり、微小液滴の排出口を有する排出層、ならびに第1および第2の液体の各導入口を有する第1液体導入層および第2液体導入層が、第1および第2の液体を微細流路基板の各液体の導入口に均等に流量配分するように階層構造を有することを特徴とする微小液滴の製造装置。
 本発明によれば、微細孔加工を必要としないで、チップの孔、流路間隔を自由に設定できるので、微小液滴をより低コストで、効率的に、しかも大量生産することができる微細流路を用いた微小液滴およびこれから得られる微粒子、の製造装置を提供し得る。
本発明の1例を示す微小液滴の製造装置の微細流路構造体(チップ)の上面図。 微細流路における微小液滴生成の1例を示す模式部分拡大図。 本発明の微小液滴の製造装置の十字流路における微小液滴生成の模式図。 本発明の微小液滴の製造装置の微細流路構造体保持用ホルダーの断面図。 本発明の微細流路構造体保持用ホルダーの分解図(断面図)。 本発明の微細流路構造体保持用ホルダーへの微細流路構造体(チップ)のセットの手順を示す。 上記(b)により位置合わせ部品、微細流路構造体(チップ)および窓付きカバーをセットする直前の状態を示す。 本発明の1例を示す微小液滴の製造装置の微細流路構造体(チップ)の上面図。 本発明における微小液滴生成の1例の模式図を示す。 本発明の1例を示す微小液滴の製造装置の微細流路構造体(チップ)の上面図。 微小液滴が生成される様子を示す図。 微小液滴が生成される様子を示す図。 本発明のもう1つの1例を示す微小液滴の製造装置の微細流路構造体(チップ)および微細流路構造体保持用ホルダーの上面図(a)および側面図(b)。 図11の微小液滴の製造装置の微細流路構造体(チップ)の1例を示す上面図。 図12の微小液滴の製造装置の微細流路構造体保持用ホルダーの1例を示す上面図。 本発明の微小液滴の製造装置の微細流路構造体(チップ)のもう1つの1例を示す上面図。 図14に示す微細流路構造体(チップ)をステンレス(SUS 304)製のホルダーにセットする手順を示す。 図14のA部の拡大図。 図14のB部の拡大図。
 本発明の第1の態様において、微小液滴の製造装置は、微細流路基板と微細流路基板保持用ホルダーを備え、その微細流路基板は、中央部に形成される微小液滴の排出口と、この微小液滴の排出口に微細流路によって接続され、この微小液滴の排出口を中心としたM個(Mは1以上の整数)の円形または多角形のそれぞれの周上に複数配置される、内側から第1~第Mの円形または多角形の周上の微小液滴生成部と、前記微小液滴の排出口を中心とした円形または多角形の周上に配置される第1の液体の導入口と、さらにその外側の円形または多角形の周上に順次配置される第N(ただしNは2以上の整数、M≦N-1)までの液体の導入口と、前記複数の微小液滴の生成部に前記第1~第Nの液体を供給する微細流路を有する。
 一方、微細流路基板保持用ホルダーは、微小液滴の排出口を中心軸とし、前記第1~第Nの液体を微細流路基板の各液体の導入口に均等に流量配分するためのN個の円環状または多角環状流路を有する多重管構造を有する。整数Nは、好適には2~5である。
 本発明の第2の態様において、上記の第1の態様の微小液滴の製造装置は、N=2(このときM=1)であり、かつ第1の液体が分散相、第2の液体が連続相である。図1は、本発明の第2の態様の微小液滴の製造装置の微細流路構造体(チップ)の1例を示す上面図である(1は分散相、2は連続相、3は排出口)。図2は、微細流路における微小液滴生成の1例を示す模式部分拡大図であり、1は分散相、2は連続相であり、連続相液体と分散相液体が合流した後に、微小液滴が微小液滴生成部で生成されている。図2において、211、212は連続相液体の送出口、261、262は送出口211、212から送出される連続相液体の分岐部、311~314は分岐部261、262で分岐される分岐される連続相液体の微細流路を示す。221~224は分散相液体の送出口、271~274は送出口221~224から送出される分散相液体の分岐部を示し、分散相液体の分岐部271~274においては、分岐される分散相液体の微細流路321~328が分岐して形成される。
 さらに、本発明の第3の態様において、上記の第2の態様の微小液滴の製造装置は、複数の微小液滴の生成部は、連続相液体に対して両側から分散相液体が交互に合流する。図3は、本発明の第3の態様において、微小液滴の製造装置の十字流路における微小液滴生成の1例の模式図を示し、1は分散相、2は連続相である。
 さらに、本発明の第4の態様において、上記の第2の態様の微小液滴の製造装置は、微細流路構造体保持用ホルダーが、微細流路基板の下部に配置される、連続相のホルダーへの導入口を備えた第3部品と、分散相のホルダーへの導入口を備え、且つ前記第3部品と組み合わせることで連続相を微細流路基板に供給するための円環状または多角環状流路を形成する第2部品と、前記第2部品と組み合わせることで分散相を微細流路基板に供給するための円環状経路を形成し且つ中央に微小液滴の微細流路基板からの排出口を有する円筒を備える第1部品を具備する。図4は、本発明の微小液滴の製造装置の微細流路御構造体保持用ホルダーの断面図、そして図5(a)~図5(c)は本発明の微細流路構造体保持用ホルダーの分解図を示す。
 本発明の第5の態様において、上記の第1の態様の微小液滴の製造装置は、N=2(このときM=1)であり、且つ第1の液体が連続相、第2の液体が分散相である。これは、図1において、分散相と連続相を交換した態様である。
 本発明の第6の態様において、上記の第5の態様の微小液滴の製造装置は、複数の微小液滴の生成部が、前記分散相に対して両側から連続相が合流する。これは、図3において、分散相と連続相を交換した態様である。
 本発明の第7の態様において、上記の第5の態様の微小液滴の製造装置は、微細流路構造体保持用ホルダーが、前記微細流路基板の下部に配置される、分散相のホルダーへの導入口を備えた第3部品と、連続相のホルダーへの導入口を備え、且つ前記第3部品と組み合わせることで分散相を微細流路基板に供給するための円環状または多角環状流路を形成する第2部品と、生成液滴のホルダーからの排出口を備え、且つ前記第2部品と組み合わせることで連続相を微細流路基板に供給するための円環状または多角環状流路を形成し、且つ中央に微小液滴の微細流路基板からの排出口を有する円筒を備える第1部品を具備する。これは、図4および図5(a)~図5(c)において、分散相と連続相を交換した態様である。
 本発明の第8の態様において、上記の第1の態様の微小液滴の製造装置は、N=3であり、かつ第1の液体が連続相であり、第2の液体が第1分散相、第3の液体が第2分散相であり、生成液滴が第1分散相と第2分散相から構成される。
 本発明の第9の態様において、上記の第8の態様の微小液滴の製造装置は、M=2であり、生成液滴が、第1分散相を最内相、第2分散相を中間相とするダブルエマルションである。図6は、本発明の第9の態様の1例を示す微小液滴の製造装置の微細流路構造体(チップ)の上面図である。
 本発明の第10の態様において、上記の第9の態様の微小液滴の製造装置は、複数の最内相液滴の生成部(第2微小液滴生成部)が、前記中間相に対して両側から最内相が交互に合流し、前記複数の中間相液滴の生成部(第1微小液滴生成部)は、最内相液滴を含む中間相に対して両側から連続相が合流する。図7は、この態様における微小液滴生成の模式図を示す。
 本発明の第11の態様において、上記の第8の態様の微小液滴の製造装置は、M=2であり、生成液滴が、第1分散相を中間相、第2分散相を最内相とするダブルエマルションである。これは、図6において、第1分散相、第2分散相の位置を交換した場合にあたる。
 本発明の第12の態様において、上記の第11の態様の微小液滴の製造装置は、複数の最内相液滴の生成部(第2微小液滴生成部)が、前記最内相に対して両側から中間相が合流し、前記複数の中間相液滴の生成部(第1微小液滴生成部)は、前記最内相液滴を含む中間相に対して両側から連続相が合流する。
 本発明の第13の態様において、上記の第8~12の態様の微小液滴の製造装置は、微細流路構造体保持用ホルダーが、前記微細流路基板の下部に配置される、第2分散相のホルダーへの導入口を備えた第4部品;第1分散相のホルダーへの導入口を備え、且つ前記第4部品と組み合わせることで第2分散相を微細流路基板に供給するための円環状または多角環状流路を形成する第3部品;連続相のホルダーへの導入口を備え、且つ前記第3部品と組み合わせることで第1分散相を微細流路基板に供給するための円環状または多角環状流路を形成する第2部品;ならびに生成液滴のホルダーからの排出口を備え、且つ前記第2部品と組み合わせることで連続相を微細流路基板に供給するための円環状または多角環状流路を形成し、且つ中央に微小液滴の微細流路基板からの排出口を有する円筒または多角筒を備える第1部品、を具備する。
 本発明の第14の態様において、上記の第1の態様の微小液滴の製造装置は、N=4であり、且つ第1の液体が連続相であり、第2の液体が第1分散相、第3の液体が第2分散相、第4の液体が第3分散相であり、生成液滴が第1分散相、第2分散相、および第3分散相の三相から構成される。
 本発明の第15の態様において、上記の第14の態様の微小液滴の製造装置は、M=3であり、生成液滴が第1分散相を第1中間相(連続相と接する相)、第2分散相を第2中間相(第1中間相の内側に位置する相)、第3分散相を最内相とするトリプルエマルションである。図8は、本発明の第15の態様の1例を示す微小液滴の製造装置の微細流路構造体(チップ)の上面図である。
 本発明の第16の態様において、上記の第15の態様の微小液滴の製造装置は、複数の最内相液滴の生成部(第3微小液滴生成部)は、最内相に対して両側から第2中間相が合流し、複数の第1中間相液滴の生成部(第2微小液滴生成部)は、前記最内相液滴を含む第1中間相に対して両側から第1中間相が合流し、前記複数の第2中間相液滴の生成部(第1微小液滴生成部)は、前記最内相液滴を含む第1中間相液滴を内包する第2中間相に対して両側から連続相が合流する。
 本発明の第17の態様において、上記の第14の態様の微小液滴の製造装置は、M=3であり、生成液滴が第1分散相を第1中間相、第2分散相を最内相、および第3分散相を第2中間相とするトリプルエマルションである。図8は、本発明の第17の態様の1例を示す微小液滴の製造装置の微細流路構造体(チップ)の上面図でもある。
 本発明の第18の態様において、上記の第17の態様の微小液滴の製造装置は、複数の最内相液滴の生成部(第3微小液滴生成部)が、第2中間相に対して両側から交互に最内相が合流し、複数の第1中間相液滴の生成部(第2微小液滴生成部)は、前記最内相液滴を含む第1中間相に対して両側から第1中間相が合流し、前記複数の第2中間相液滴の生成部(第1微小液滴生成部)は、前記最内相液滴を含む第1中間相液滴を内包する第2中間相に対して両側から連続相が合流する。
 本発明の第19の態様において、上記の第14~18の態様の微小液滴の製造装置は、微細流路構造体保持用ホルダーが、前記微細流路基板の下部に配置される、第3分散相のホルダーへの導入口を備えた第5部品;第2分散相のホルダーへの導入口を備え、且つ前記第5部品と組み合わせることで第3分散相を微細流路基板に供給するための円環状または多角環状流路を形成する第4部品;第1分散相のホルダーへの導入口を備え、且つ前記第4部品と組み合わせることで第2分散相を微細流路基板に供給するための円環状または多角環状流路を形成する第3部品;連続相のホルダーへの導入口を備え、且つ前記第3部品と組み合わせることで第1分散相を微細流路基板に供給するための円環状または多角環状流路を形成する第2部品;ならびに生成液滴のホルダーからの排出口を備え、且つ前記第2部品と組み合わせることで連続相を微細流路基板に供給するための円環状または多角環状流路を形成し、且つ中央に微小液滴の微細流路基板からの排出口を有する円筒または多角筒を備える第1部品、を具備する。
 本発明の第20の態様において、微細流路を用いた微小液滴の製造装置は、該装置が微細流路基板と微細流路基板保持用ホルダーを備え、微細流路基板が、一列に形成される微小液滴の複数の排出口と、この微小液滴の排出口に微細流路によって接続され、この微小液滴の排出口に平行に一列に複数配置される微小液滴生成部と、前記微小液滴の排出口に平行に一列に配置される第1の液体の複数の導入口と、さらにその外側に同様に配置される第2の液体の複数の導入口と、前記複数の微小液滴の生成部に前記第1および第2の液体を供給する微細流路を有する。一方、微細流路基板保持用ホルダーが、該微小液滴の排出口の列ならびに該第1および第2の液体の導入口の列に対応するスリット部を形成してなり、微小液滴の排出口を有する排出層、ならびに第1および第2の液体の各導入口を有する第1液体導入層および第2液体導入層が、第1および第2の液体を微細流路基板の各液体の導入口に均等に流量配分するように階層構造を有する。この態様においては、微細流路基板と微細流路基板保持用ホルダーは、円周型ではなく、行列型の配置を有するが、円周型と同様な利点を有する。すなわち、微細流路基板の各流路に基板外部から分散相および連続相を供給するための複数の導入口(液体供給口)に対応して、微細流路基板保持用ホルダーにも複数の液体供給流路を設ける必要はない。上記スリット部は、後述するように上記排出口および液体の導入口に接続するように対応して設けられる。後述する図13は、このようなスリット部の例(各スリット部は独立している。)を示すが、たとえば2つのスリット部10および11が端で結合したコの字型等とすることもできる。
 本発明の微小液滴の製造装置の微細流路構造体(チップ)を、前述の図1により、さらに詳しく説明すると、その微細流路チップには、微小液滴の排出口3を中心として、最も外側に36箇所の連続相液体の導入口を、その内側に72箇所の分散相液体の導入口を、微小液滴の排出口を中心とした同心円上の位置にそれぞれ配置し、連続相液体および分散相液体の分岐流路と、微小液滴が生成される72箇所の十字流路(すなわち144箇所のT字路)からなる微小液滴生成部を最も内側に形成して、微細流路構造体が構成されている。すなわち、周縁部から連続相液体と分散相液体とを十字に交差させて、72箇所の十字路(144箇所のT字路)で微小液滴を生成し、その生成された微小液滴は、中心の微小液滴の排出口に導かれ、排出されることになる。
 次に、本発明の1つの実施例を示す、微細流路を用いた微小液滴の製造装置の、微細流路構造体保持用ホルダーの多重管構造について、前述の図4および図5(a)~図5(c)とともにさらに詳しく説明する。ここでは、窓付カバー4および微細流路基板5の位置合わせ部品6の下部に、微細流路基板の中心に位置する微小液滴の排出口3を中心軸として、排出口7を有する排出層である第1部品7’が設けられ、その排出層7’の円管状の壁を隔てたその外側に分散相供給用の円環状流路を有する分散相1(第1の液体)導入層である第2部品1’が設けられ、さらにその円環状の壁を隔てたその外側に、連続相供給用の円環状流路を有する連続相2(第2の液体)導入層である第3部品2’が設けられるように配置された多重管構造を、複数の円筒部品を互いにはめ合わせる形で設けている。図5(b)に示す手順で部品を組み合わせた状態(図4、ならびに位置合わせ部品6、微細流路構造体(チップ)5および窓付きカバー4をセットする直前の状態を示す図5(c))では、分散相1の液体および連続相2の液体の供給部品の中心に位置する円筒の内壁と、その円筒の内側に位置し、下層部品から伸びている円筒の外壁の間には、円環状のすきまが生じるように設計されており、図4および図5(c)に示されるように上記すきまに形成された分散相流路Iおよび連続相流路IIによって分散相液体あるいは連続相液体が通れるようになっている。分散相液体が流れる円環状流路である分散相流路I、および連続相液体が流れる円環状流路である連続相流路IIは微細流路基板まで達し、微細流路基板上の異なる同心円状に設けられた、分散相液体あるいは連続相液体の導入口に接続するように構成されている。
 このような多重管構造により、微細流路構造体保持用ホルダーに微細穴加工を多数施すことなく、微細流路基板上の分散相液体導入口あるいは連続相液体導入口に、それぞれ均等に流量を分配することが可能となる。これにより、より容易かつ低コストに微小液滴製造装置を提供することができる。また、微細流路基板上の液体導入口は、微細流路基板保持用ホルダーの円環状流路に位置が合うよう配置されていれば良く、微細流路基板上の液体導入口の個数は問わない。すなわち、液体導入口が配置されている円とホルダーの円環流路の位置が合えば、1つのホルダーを異なる流路形状および異なる液体導入口個数を有するさまざまな微細流路基板に使用することができ、汎用性の大幅な向上が見込まれる。
 つぎに、図11~13とともに、本発明の第20の態様について、さらに詳細に説明する。図11は、この微細流路構造体(チップ)および微細流路御構造体保持用ホルダーの上面図(a)および側面図(b)を示し、図12は、その微細流路構造体(チップ)の1例を示す上面図、図13は、その微細流路御構造体保持用ホルダーの1例を示す上面ずである。
 図11(b)に示されるように、窓付カバー4および微細流路基板5の位置合わせ部品6の下部に、微細流路基板の中心に位置する微小液滴の排出口を中心軸として、排出口7を有する排出層7’、その排出層7’の上の分散相(第1の液体)1の導入層1’、そしてその上に連続相(第2の液体)2の導入層2’が設けられるように配置されている。図11(b)において、8および9は、それぞれ第1および第2の液体の導入口を示す。図11(a)および図13に示されるように、微細流路基板保持用ホルダーは、図11(b)および図12における、該微小液滴の排出口7の列ならびに該第1および第2の液体の導入口8および9の列に対応するスリット部を形成してなり、上記のように、微小液滴の排出口を有する排出層7’、ならびに第1および第2の液体の各導入口を有する第1導入層および第2液体導入層1’および2’が、第1および第2の液体を微細流路基板の各液体の導入口に均等に流量配分するように階層構造を有する。図13において、10~12は、それぞれ排出口7、第1液体の導入口8、および第2の液体の導入口9および排出口7に対応するスリット部を示す。
 本発明において、微細流路の分岐構造としては、特に制限されないが、好適には十字路、T字路もしくはY字路から選ばれる。微細流路の大きさは、目的に応じて決定しうるが、通常0.1~1000μm程度、好ましくは10~500μm程度から選ばれる。微細流路を形成する材料の材質は、たとえばプラスチック、セラミック、金属等のいずれでもよく、たとえば微細流路の壁面を疎水性とする場合にはアクリル樹脂、シリコーン樹脂等が好適であり、一方、親水性にする場合には石英ガラス、シリコン、ホウケイ酸ガラス(たとえば「パイレックス」(商標))等が好適である。微細流路を形成する材料の形状、大きさは目的とする用途等により適宜選定し得、たとえば、加工した流路を有する板状体(たとえば~数センチ角)が挙げられる。
 本発明方法において、連続相を形成する液体は、有機化合物または水であり、一方分散相を形成する液体は、硬化性液体である。有機化合物としては、有機相としては、特に制限されないが、好適にはデカン、オクタン等のアルカン類、クロロホルム等のハロゲン化炭化水素類、トルエン等の芳香族炭化水素類、オレイン酸等の脂肪酸類等が挙げられる。
 硬化性液体としては、熱または光等で硬化し得る液体であれば特に制限されない。たとえば、公知の重合性モノマー、オリゴマーまたはポリマーが挙げられ、好適には後述するようなアクリレート系モノマー、スチレン系モノマー、等が挙げられる。第1分散相と第2分散相等の複数の分散相を用いる場合には、後述するように相異なる着色剤を含有し、それらの分散相を構成する硬化性液体は、同一であっても異なっていてもよい。
 分散相および連続相の組み合わせは、通常O/W、O/O型、W/O型とすることができる。流路中で、分散相は層流で連続相と合流し、順次球状の微小液滴に変形され、同時または時間差で微小液滴が硬化されて微粒子が形成される。
 分散相および連続相の流速は、その種類等にもよるが、通常1μm~1000mL/時間程度から選ばれる。
 本発明における分散相は、たとえば第1分散相および第2分散相として、2色に色相を分相させることができ、たとえば一方に、または両方に異なる着色剤が添加され、必要に応じて帯電または帯磁のための添加剤を用い得る。着色剤としては、無彩色の白および黒、又は有彩色の赤、青、緑、紫、黄等から選ばれる、2色の分相色相を挙げることができる。このような色相を形成させる染顔料としては、特に制限されず、油溶性等の各種染料、または各種の無機・有機顔料等を使用することができる。これらの染料及び顔料は、硬化性成分への分散性、得られる2色性微粒子の用途で所望する色調等に応じて適宜選んで使用することができる。着色剤は、一方の分散相のみに使用することもできる。
 これら着色剤としての染顔料の添加量は、特に限定されるものではないが、通常、硬化成分100重量部当たり、0.1~10重量部程度の範囲で適宜使用される。
 また、本発明において、この2色に分相させた硬化性成分に、帯電付与剤を用いて、互いに異なる正負に帯電する成分で形成させることができる。あるいは、重合性モノマーとして、その官能基又は置換基の種類によって、既に上述する本発明における帯電性は、それぞれ(-)帯電性と(+)帯電性を示す傾向にあるモノマー種を挙げることができる。たとえば、(-)帯電性の傾向にある重合性モノマーとして、(メタ)アクリル酸フェニル等の(メタ)アクリル酸アリールエステル類、(メタ)アクリル酸グリシジル等のエポキシ基含有重合性化合物類、(メタ)アクリル酸-2-ヒドロキシエチル等のヒドロキシ基含有重合性化合物類、メチルスチレン等のスチレン系モノマー、等が挙げられる。一方、(+)帯電性の傾向にある重合性モノマーとして、例えば、メタクリルアミド等のアミド基含有ビニル単量体類等が挙げられる。
 また、本発明においては、磁性体粉を分散させることにより、2色相に分相させた微小液滴を、互いに異なる正負に帯磁させることができる。
 本発明方法により得られる微小液滴は、熱、UV等の光、等により硬化させて微粒子を得ることができる。
 本発明において、UV照射下に重合硬化させる場合には、アセトフェノン類等の光重合開始剤を使用することができ、加熱下に重合硬化させる場合、有機パーオキサイド類等の熱分解型の重合開始剤も使用することができる。
 以下に、本発明を実施例により説明するが、本発明はこれらの実施例に限定されるものではない。
(具体例1)
 図1に示すような微細流路チップを、ガラス基板(合成石英)への加工により作製した。ドライエッチングにより基板上に矩形断面を有する微細溝(幅100μm、深さは全域100μm)を加工し、15mm×15mmに切断した。液体供給口(直径0.25mm、108箇所)および排出口(直径4.5mm、1箇所)用に貫通穴加工をほどこした同一面積の別基板と熱溶着による貼り合わせを行い、微細流路チップを形成した。これを機械加工によって作製したステンレス(SUS 304)製のホルダーに図4のようにセットして用いた。分散相として1、6ヘキサンジオールジアクリレート(新中村化学工業)を、連続相としてポリビニルアルコール(日本合成化学製GL-03)2%水溶液を用いた。送液にはシリンジポンプ(KDScientific社、KDS200)を分散相、連続相にそれぞれ1台ずつ用いた。分散相の流量を180mL/hr、連続相の流量を270mL/hrとして送液を行ったところ、チップ内部の72箇所の十字路(144箇所のT字路)全てにおいて均一なサイズの液滴が規則正しい時間周期で連続生成される様子を図9のように観察することができた。得られた液滴の平均径は95.4μm、変動係数は1.3%であった。
(具体例2)
 分散相の流量を144mL/hrとする以外は具体例1と同様に行ったところ、同様に全ての流路において均一なサイズの液滴が規則正しい時間周期で連続生成される様子を確認することができた(図10)。得られた液滴の平均径は95.2μm、変動係数は1.7%であった。
(具体例3)
 具体例1と同様にして、図14に示すような微細流路チップを形成し、これを機械加工によって作製したステンレス(SUS 304)製のホルダーに図15に示すようにセットして用い、2色液滴を生成するT字路(幅、深さともに100μm)を40個配置した。図14において、10は微細流路チップ、11~20は連続相液体の送出口、61~70は送出口11~20から送出される連続相液体の分岐部、111~130は分岐部61~70で分岐される分岐される連続相液体の微細流路を示す。21~40は第2分散相液体の送出口、71~90は送出口21~40から送出される第2分散相液体の分岐部、41~60は第1分散相液体の送出口、91~110は送出口41~60から送出される第1分散相液体の分岐部を示し、第2分散相液体の分岐部71~90および第1分散相液体の分岐部91~110においては、分岐される第2分散相液体の微細流路、分岐される第1分散相液体の微細流路が、連続相液体の微細流路111~130と同様にそれぞれ分岐して形成される。
 第2分散相としてアクリルモノマー(赤色に着色)、第1分散相としてシリコンオイル(無色)および連続相としてSDS(ドデシル硫酸ナトリウム)0.3wt%水溶液を用いた。第1分散相および第2分散相の流量を10mL/hr、連続相の流量を40mL/hrとして送液を行ったところ、チップ内部の40箇所のT字路全てにおいて均一なサイズの2色液滴が規則正しい時間周期で連続生成されることが観察された(図16および17)。図16および17は、それぞれ図14のA部およびB部の拡大図である。
 本発明によれば、微小液滴をより低コストで、効率的に、しかも大量生産することができる微細流路を用いた微小液滴、およびこれから得られる微粒子、の製造装置を提供し得る。
 1  分散相
 2  連続相
 3  排出口
 4  窓付カバー
 5  微細流路基板

Claims (21)

  1.  微細流路を用いた微小液滴の製造装置において、
     該装置が微細流路基板と微細流路基板保持用ホルダーを備え、
     微細流路基板が、中央部に形成される微小液滴の排出口と、この微小液滴の排出口に微細流路によって接続され、この微小液滴の排出口を中心としたM個(Mは1以上の整数)の円形または多角形のそれぞれの周上に複数配置される、内側から第1~第Mの円形または多角形の周上の微小液滴生成部と、前記微小液滴の排出口を中心とした円形または多角形の周上に配置される第1の液体の導入口と、さらにその外側の円形または多角形の周上に順次配置される第N(ただしNは2以上の整数、M≦N-1)までの液体の導入口と、前記複数の微小液滴の生成部に前記第1~第Nの液体を供給する微細流路を有し、
     微細流路基板保持用ホルダーが、微小液滴の排出口を中心軸とし、前記第1~第Nの液体を微細流路基板の各液体の導入口に均等に流量配分するためのN個の円環状または多角環状流路を有する多重管構造を有することを特徴とする微小液滴の製造装置。
  2.  N=2(このときM=1)であり、且つ第1の液体が分散相、第2の液体が連続相である請求項1に記載の微小液滴の製造装置。
  3.  複数の微小液滴の生成部は、連続相液体に対して両側から分散相液体が交互に合流する請求項2に記載の微小液滴の製造装置。
  4.  微細流路構造体保持用ホルダーが、微細流路基板の下部に配置される、連続相のホルダーへの導入口を備えた第3部品と、分散相のホルダーへの導入口を備え、且つ前記第3部品と組み合わせることで連続相を微細流路基板に供給するための円環状または多角環状流路を形成する第2部品と、前記第2部品と組み合わせることで分散相を微細流路基板に供給するための円環状経路を形成し且つ中央に微小液滴の微細流路基板からの排出口を有する円筒を備える第1部品を具備する請求項2または3に記載の微小液滴の製造装置。
  5.  N=2(このときM=1)であり、且つ第1の液体が連続相、第2の液体が分散相である請求項1に記載の微小液滴の製造装置。
  6.  複数の微小液滴の生成部は、前記分散相に対して両側から連続相が合流する請求項5に記載の微小液滴の製造装置。
  7.  微細流路構造体保持用ホルダーが、前記微細流路基板の下部に配置される、分散相のホルダーへの導入口を備えた第3部品と、連続相のホルダーへの導入口を備え、且つ前記第3部品と組み合わせることで分散相を微細流路基板に供給するための円環状または多角環状流路を形成する第2部品と、生成液滴のホルダーからの排出口を備え、且つ前記第2部品と組み合わせることで連続相を微細流路基板に供給するための円環状または多角環状流路を形成し、且つ中央に微小液滴の微細流路基板からの排出口を有する円筒を備える第1部品を具備する請求項5または6に記載の微小液滴の製造装置。
  8.  N=3であり、且つ第1の液体が第1分散相であり、第2の液体が第2分散相、第3の液体が連続相であり、生成液滴が第1分散相と第2分散相から構成される上記(1)に記載の微小液滴の製造装置。
  9.  N=3であり、且つ第1の液体が連続相であり、第2の液体が第1分散相、第3の液体が第2分散相であり、生成液滴が第1分散相と第2分散相から構成される請求項1に記載の微小液滴の製造装置。
  10.  M=2であり、生成液滴が、第1分散相を最内相、第2分散相を中間相とするダブルエマルションである請求項9に記載の微小液滴の製造装置。
  11.  複数の最内相液滴の生成部(第2微小液滴生成部)は、前記中間相に対して両側から最内相が交互に合流し、前記複数の中間相液滴の生成部(第1微小液滴生成部)は、最内相液滴を含む中間相に対して両側から連続相が合流する請求項10に記載の微小液滴の製造装置。
  12.  M=2であり、生成液滴が、第1分散相を中間相、第2分散相を最内相とするダブルエマルションである請求項9に記載の微小液滴の製造装置。
  13.  複数の最内相液滴の生成部(第2微小液滴生成部)は、前記最内相に対して両側から中間相が合流し、前記複数の中間相液滴の生成部(第1微小液滴生成部)は、前記最内相液滴を含む中間相に対して両側から連続相が合流する請求項12に記載の微小液滴の製造装置。
  14.  微細流路構造体保持用ホルダーが、
     前記微細流路基板の下部に配置される、第2分散相のホルダーへの導入口を備えた第4部品と、
     第1分散相のホルダーへの導入口を備え、且つ前記第4部品と組み合わせることで第2分散相を微細流路基板に供給するための円環状または多角環状流路を形成する第3部品と、
     連続相のホルダーへの導入口を備え、且つ前記第3部品と組み合わせることで第1分散相を微細流路基板に供給するための円環状または多角環状流路を形成する第2部品と、
     生成液滴のホルダーからの排出口を備え、且つ前記第2部品と組み合わせることで連続相を微細流路基板に供給するための円環状または多角環状流路を形成し、且つ中央に微小液滴の微細流路基板からの排出口を有する円筒または多角筒を備える第1部品を具備する請求項9~13のいずれかに記載の微小液滴の製造装置。
  15.  N=4であり、且つ第1の液体が連続相であり、第2の液体が第1分散相、第3の液体が第2分散相、第4の液体が第3分散相であり、生成液滴が第1分散相、第2分散相、および第3分散相の三相から構成される請求項1に記載の微小液滴の製造装置。
  16.  M=3であり、生成液滴が第1分散相を第1中間相(連続相と接する相)、第2分散相を第2中間相(第1中間相の内側に位置する相)、第3分散相を最内相とするトリプルエマルションである請求項15に記載の微小液滴の製造装置。
  17.  複数の最内相液滴の生成部(第3微小液滴生成部)は、最内相に対して両側から第2中間相が合流し、複数の第1中間相液滴の生成部(第2微小液滴生成部)は、前記最内相液滴を含む第1中間相に対して両側から第1中間相が合流し、前記複数の第2中間相液滴の生成部(第1微小液滴生成部)は、前記最内相液滴を含む第1中間相液滴を内包する第2中間相に対して両側から連続相が合流する請求項16に記載の微小液滴の製造装置。
  18.  M=3であり、生成液滴が第1分散相を第1中間相、第2分散相を最内相、および第3分散相を第2中間相とするトリプルエマルションである請求項15に記載の微小液滴の製造装置。
  19.  複数の最内相液滴の生成部(第3微小液滴生成部)は、第2中間相に対して両側から交互に最内相が合流し、複数の第1中間相液滴の生成部(第2微小液滴生成部)は、前記最内相液滴を含む第1中間相に対して両側から第1中間相が合流し、
     前記複数の第2中間相液滴の生成部(第1微小液滴生成部)は、前記最内相液滴を含む第1中間相液滴を内包する第2中間相に対して両側から連続相が合流することを特徴とする請求項18に記載の微小液滴の製造装置。
  20.  微細流路構造体保持用ホルダーが、
     前記微細流路基板の下部に配置される、第3分散相のホルダーへの導入口を備えた第5部品と、
     第2分散相のホルダーへの導入口を備え、且つ前記第5部品と組み合わせることで第3分散相を微細流路基板に供給するための円環状または多角環状流路を形成する第4部品と、
     第1分散相のホルダーへの導入口を備え、且つ前記第4部品と組み合わせることで第2分散相を微細流路基板に供給するための円環状または多角環状流路を形成する第3部品と、
     連続相のホルダーへの導入口を備え、且つ前記第3部品と組み合わせることで第1分散相を微細流路基板に供給するための円環状または多角環状流路を形成する第2部品と、
     生成液滴のホルダーからの排出口を備え、且つ前記第2部品と組み合わせることで連続相を微細流路基板に供給するための円環状または多角環状流路を形成し、且つ中央に微小液滴の微細流路基板からの排出口を有する円筒または多角筒を備える第1部品を具備する請求項15~19のいずれかに記載の微小液滴の製造装置。
  21.  微細流路を用いた微小液滴の製造装置において、該装置が微細流路基板と微細流路基板保持用ホルダーを備え、
     微細流路基板が、一列に形成される微小液滴の複数の排出口と、この微小液滴の排出口に微細流路によって接続され、この微小液滴の排出口に平行に一列に複数配置される微小液滴生成部と、前記微小液滴の排出口に平行に一列に配置される第1の液体の複数の導入口と、さらにその外側に同様に配置される第2の液体の複数の導入口と、前記複数の微小液滴の生成部に前記第1および第2の液体を供給する微細流路を有し、
     微細流路基板保持用ホルダーが、該微小液滴の排出口の列ならびに該第1および第2の液体の導入口の列に対応するスリット部を形成してなり、微小液滴の排出口を有する排出層、ならびに第1および第2の液体の各導入口を有する第1液体導入層および第2液体導入層が、第1および第2の液体を微細流路基板の各液体の導入口に均等に流量配分するように階層構造を有することを特徴とする微小液滴の製造装置。
PCT/JP2011/066004 2010-07-13 2011-07-13 微小液滴の製造装置 WO2012008497A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP11806827.9A EP2594332B1 (en) 2010-07-13 2011-07-13 Apparatus for producing micro liquid drops
CA 2805217 CA2805217C (en) 2010-07-13 2011-07-13 Microdroplet-producing apparatus
US13/261,564 US9200938B2 (en) 2010-07-13 2011-07-13 Microdroplet-producing apparatus
JP2012524579A JP5665061B2 (ja) 2010-07-13 2011-07-13 微小液滴の製造装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-158988 2010-07-13
JP2010158988 2010-07-13

Publications (1)

Publication Number Publication Date
WO2012008497A1 true WO2012008497A1 (ja) 2012-01-19

Family

ID=45469494

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/066004 WO2012008497A1 (ja) 2010-07-13 2011-07-13 微小液滴の製造装置

Country Status (5)

Country Link
US (1) US9200938B2 (ja)
EP (1) EP2594332B1 (ja)
JP (1) JP5665061B2 (ja)
CA (1) CA2805217C (ja)
WO (1) WO2012008497A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101466770B1 (ko) 2013-04-17 2014-11-28 충남대학교산학협력단 다중 에멀전의 제조방법
KR101466771B1 (ko) * 2013-04-23 2014-12-02 충남대학교산학협력단 야누스 에멀전의 제조방법
WO2019168130A1 (ja) * 2018-02-28 2019-09-06 国立大学法人東京工業大学 マイクロ液滴・気泡生成デバイス
WO2021060052A1 (ja) * 2019-09-26 2021-04-01 パナソニックIpマネジメント株式会社 ミスト発生装置
JPWO2021182632A1 (ja) * 2020-03-13 2021-09-16
JP2022519200A (ja) * 2019-01-31 2022-03-22 サンプリックス エーピーエス マイクロ流体デバイスおよびダブルエマルション液滴の提供のための方法
WO2022107898A1 (ja) * 2020-11-20 2022-05-27 国立大学法人東京工業大学 マイクロ二相液滴生成デバイス

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6700173B2 (ja) 2013-09-24 2020-05-27 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア ターゲット検出方法及びシステム
EP3068526B1 (en) * 2013-11-11 2021-05-05 King Abdullah University Of Science And Technology Microfluidic device for high-volume production and processing of monodisperse emulsions and method
GB201622024D0 (en) 2016-11-14 2017-02-08 Inventage Lab Inc Apparatus and method for large scale production of monodisperse, microsheric and biodegradable polymer-based drug delivery
CN107433213B (zh) * 2017-07-11 2020-01-03 东南大学 一种三维并联式多重乳液快速制备装置
CN107583693A (zh) * 2017-08-30 2018-01-16 武汉科技大学 一种t型微通道集成微滴生成芯片
CN107661782B (zh) * 2017-08-30 2020-09-15 武汉科技大学 一种十字交叉型微通道集成微滴生成芯片
KR102232562B1 (ko) 2019-08-14 2021-03-26 (주)인벤티지랩 대량 생산용 다채널 미소구체 제조부

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002068104A1 (en) 2001-02-23 2002-09-06 Japan Science And Technology Corporation Process for producing emulsion and microcapsules and apparatus therefor
JP2003103152A (ja) * 2001-09-28 2003-04-08 Fuji Photo Film Co Ltd 液体又は溶液の混合方法及び装置
JP2004059802A (ja) 2002-07-30 2004-02-26 Japan Science & Technology Corp 固体微粒子の製造方法およびその装置
JP2004067953A (ja) 2002-08-09 2004-03-04 Toshiro Higuchi 単分散樹脂粒子の製造方法および製造装置
JP2004197083A (ja) 2002-12-06 2004-07-15 Soken Chem & Eng Co Ltd 着色球状粒子のマイクロチャンネル製造方法及びそれに用いるマイクロチャンネル式製造装置
JP2004237177A (ja) 2003-02-04 2004-08-26 Japan Science & Technology Agency ダブルエマルション・マイクロカプセル生成装置
JP2004243308A (ja) 2002-08-01 2004-09-02 Tosoh Corp 微小流路構造体、構成されるデスクサイズ型化学プラント及びそれらを用いた微粒子製造装置
JP2004344877A (ja) * 2003-04-28 2004-12-09 Fuji Photo Film Co Ltd 流体混合装置、流体混合システム、流体分離装置、及び、流体混合・分離装置
WO2005089921A1 (ja) * 2004-03-23 2005-09-29 Japan Science And Technology Agency 微小液滴の生成方法及び装置
JP2006320772A (ja) * 2005-05-17 2006-11-30 Hitachi Plant Technologies Ltd マイクロ流体デバイス
WO2007026564A1 (ja) 2005-08-31 2007-03-08 The University Of Tokyo 微細流路を用いた微小液滴の製造装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5358614A (en) * 1993-09-03 1994-10-25 Martin Marietta Energy Systems, Inc. Method and apparatus for the removal of bioconversion of constituents of organic liquids
JP3030364B1 (ja) * 1999-03-24 2000-04-10 農林水産省食品総合研究所長 単分散固体脂質マイクロスフィアの製造方法
DE10041823C2 (de) * 2000-08-25 2002-12-19 Inst Mikrotechnik Mainz Gmbh Verfahren und statischer Mikrovermischer zum Mischen mindestens zweier Fluide
DE10123093A1 (de) * 2001-05-07 2002-11-21 Inst Mikrotechnik Mainz Gmbh Verfahren und statischer Mikrovermischer zum Mischen mindestens zweier Fluide
EP1391237B1 (en) 2002-08-01 2011-09-21 Tosoh Corporation Fine channel device, desksize chemical plant and fine particle producing apparatus employing them
JP2006055770A (ja) * 2004-08-20 2006-03-02 Tosoh Corp 微小流路構造体
CN101224402B (zh) * 2006-09-01 2012-06-27 东曹株式会社 微小流路结构及采用它的微小颗粒制造方法
FR2931141B1 (fr) * 2008-05-13 2011-07-01 Commissariat Energie Atomique Systeme microfluidique et procede pour le tri d'amas de cellules et de preference pour leur encapsulation en continu suite a leur tri

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002068104A1 (en) 2001-02-23 2002-09-06 Japan Science And Technology Corporation Process for producing emulsion and microcapsules and apparatus therefor
JP2003103152A (ja) * 2001-09-28 2003-04-08 Fuji Photo Film Co Ltd 液体又は溶液の混合方法及び装置
JP2004059802A (ja) 2002-07-30 2004-02-26 Japan Science & Technology Corp 固体微粒子の製造方法およびその装置
JP2004243308A (ja) 2002-08-01 2004-09-02 Tosoh Corp 微小流路構造体、構成されるデスクサイズ型化学プラント及びそれらを用いた微粒子製造装置
JP2004067953A (ja) 2002-08-09 2004-03-04 Toshiro Higuchi 単分散樹脂粒子の製造方法および製造装置
JP2004197083A (ja) 2002-12-06 2004-07-15 Soken Chem & Eng Co Ltd 着色球状粒子のマイクロチャンネル製造方法及びそれに用いるマイクロチャンネル式製造装置
JP2004237177A (ja) 2003-02-04 2004-08-26 Japan Science & Technology Agency ダブルエマルション・マイクロカプセル生成装置
JP2004344877A (ja) * 2003-04-28 2004-12-09 Fuji Photo Film Co Ltd 流体混合装置、流体混合システム、流体分離装置、及び、流体混合・分離装置
WO2005089921A1 (ja) * 2004-03-23 2005-09-29 Japan Science And Technology Agency 微小液滴の生成方法及び装置
JP2006320772A (ja) * 2005-05-17 2006-11-30 Hitachi Plant Technologies Ltd マイクロ流体デバイス
WO2007026564A1 (ja) 2005-08-31 2007-03-08 The University Of Tokyo 微細流路を用いた微小液滴の製造装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LAB CHIP, vol. 8, 2008, pages 287 - 293
See also references of EP2594332A4

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101466770B1 (ko) 2013-04-17 2014-11-28 충남대학교산학협력단 다중 에멀전의 제조방법
KR101466771B1 (ko) * 2013-04-23 2014-12-02 충남대학교산학협력단 야누스 에멀전의 제조방법
WO2019168130A1 (ja) * 2018-02-28 2019-09-06 国立大学法人東京工業大学 マイクロ液滴・気泡生成デバイス
JPWO2019168130A1 (ja) * 2018-02-28 2021-03-04 国立大学法人東京工業大学 マイクロ液滴・気泡生成デバイス
US12168230B2 (en) 2018-02-28 2024-12-17 Japan Science And Technology Agency Microdroplet/bubble-producing device
JP7568312B2 (ja) 2018-02-28 2024-10-16 国立研究開発法人科学技術振興機構 マイクロ液滴・気泡生成デバイス
JP7254365B2 (ja) 2018-02-28 2023-04-10 国立研究開発法人科学技術振興機構 マイクロ液滴・気泡生成デバイス
JP7231748B2 (ja) 2019-01-31 2023-03-01 サンプリックス エーピーエス マイクロ流体デバイスおよびダブルエマルション液滴の提供のための方法
JP2022519200A (ja) * 2019-01-31 2022-03-22 サンプリックス エーピーエス マイクロ流体デバイスおよびダブルエマルション液滴の提供のための方法
WO2021060052A1 (ja) * 2019-09-26 2021-04-01 パナソニックIpマネジメント株式会社 ミスト発生装置
JP7236679B2 (ja) 2019-09-26 2023-03-10 パナソニックIpマネジメント株式会社 ミスト発生装置
JPWO2021060052A1 (ja) * 2019-09-26 2021-04-01
WO2021182632A1 (ja) * 2020-03-13 2021-09-16 国立大学法人東京工業大学 マイクロ液滴・気泡生成デバイス
JP7390078B2 (ja) 2020-03-13 2023-12-01 国立研究開発法人科学技術振興機構 マイクロ液滴・気泡生成デバイス
JPWO2021182632A1 (ja) * 2020-03-13 2021-09-16
JPWO2022107898A1 (ja) * 2020-11-20 2022-05-27
WO2022107898A1 (ja) * 2020-11-20 2022-05-27 国立大学法人東京工業大学 マイクロ二相液滴生成デバイス

Also Published As

Publication number Publication date
EP2594332A4 (en) 2017-06-14
US20130129581A1 (en) 2013-05-23
EP2594332B1 (en) 2020-03-04
EP2594332A1 (en) 2013-05-22
JPWO2012008497A1 (ja) 2013-09-09
JP5665061B2 (ja) 2015-02-04
CA2805217C (en) 2015-04-14
US9200938B2 (en) 2015-12-01
CA2805217A1 (en) 2012-01-19

Similar Documents

Publication Publication Date Title
JP5665061B2 (ja) 微小液滴の製造装置
RU2444399C2 (ru) Устройство для теплообменной и смешивающей обработки текучих сред
Yao et al. Review of the applications of microreactors
CN101224402B (zh) 微小流路结构及采用它的微小颗粒制造方法
US20040125689A1 (en) Method and statistical micromixer for mixing at least two liquids
JP2007039643A (ja) 有機顔料分散液の製造方法、およびそれにより得られる有機顔料微粒子
JP2004197083A (ja) 着色球状粒子のマイクロチャンネル製造方法及びそれに用いるマイクロチャンネル式製造装置
CN107405633A (zh) 基于高深宽比诱导生成液滴的液滴发生器
CN110038656A (zh) 一种用于乳化的双水相系统及其液滴生成模块
JP2012020217A (ja) 2色性微小液滴の製造方法
JP7568312B2 (ja) マイクロ液滴・気泡生成デバイス
CN106423315B (zh) 一种基于微流控芯片的多物质梯度混合液滴形成装置
CN101146606A (zh) 用于生产化学药品的方法
JP2008050407A (ja) 有機顔料微粒子を含む光重合性組成物
WO2017164636A1 (ko) 미세 입자 제조 장치
JP2008093564A (ja) 混合装置および色材分散物の製造装置
Morimoto et al. A hybrid axisymmetric flow-focusing device for monodisperse picoliter droplets
JP4892743B2 (ja) 微細流路を用いた微小液滴の製造装置
US20240017224A1 (en) Micro two-phase liquid droplet generation device
JP2012166125A (ja) 2色性微小液滴の製造方法およびその装置
JP2008201914A (ja) 有機顔料混合微粒子分散物、その固形物、及びその製造方法
CN106466578B (zh) 全分散被动式多级聚焦微混合器及其混合方法和应用
CN210206901U (zh) 一种用于乳化的双水相系统及其液滴生成模块
US12064759B2 (en) Microfluidic device with embedded cell culture chambers for high throughput biological assays
JP2005255987A (ja) 非球状ポリマー定形粒子のマイクロチャンネル式製造方法及びその非球状ポリマー定形粒子。

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11806827

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2012524579

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13261564

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2805217

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011806827

Country of ref document: EP