[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2012005494A2 - 무선 통신 시스템에서 머신형 통신 장치를 위한 무선 자원 할당 방법 및 장치 - Google Patents

무선 통신 시스템에서 머신형 통신 장치를 위한 무선 자원 할당 방법 및 장치 Download PDF

Info

Publication number
WO2012005494A2
WO2012005494A2 PCT/KR2011/004907 KR2011004907W WO2012005494A2 WO 2012005494 A2 WO2012005494 A2 WO 2012005494A2 KR 2011004907 W KR2011004907 W KR 2011004907W WO 2012005494 A2 WO2012005494 A2 WO 2012005494A2
Authority
WO
WIPO (PCT)
Prior art keywords
mtc
radio resource
dedicated
subframe
mtc dedicated
Prior art date
Application number
PCT/KR2011/004907
Other languages
English (en)
French (fr)
Other versions
WO2012005494A3 (ko
Inventor
박규진
조한규
임동국
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to US13/808,133 priority Critical patent/US8902844B2/en
Publication of WO2012005494A2 publication Critical patent/WO2012005494A2/ko
Publication of WO2012005494A3 publication Critical patent/WO2012005494A3/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • H04W72/563Allocation or scheduling criteria for wireless resources based on priority criteria of the wireless resources
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal

Definitions

  • the present invention relates to wireless communication, and more particularly, to a method and apparatus for allocating a radio resource for a machine type communication (MTC) device in a wireless communication system.
  • MTC machine type communication
  • MTC Machine Type Communication
  • MTC is a form of data communication that includes one or more entities that do not require human interaction. That is, the MTC is a mechanical device other than a mobile station (MS), which is used by a human, but is a conventional GSM / EDGE Radio Access Network (GERAN), Universal Mobile Telecommunications System (UMTS), or 3rd Generation Partnership Project (3GPP).
  • GERAN GSM / EDGE Radio Access Network
  • UMTS Universal Mobile Telecommunications System
  • 3GPP 3rd Generation Partnership Project
  • Term Evolution refers to the concept of communicating using a network.
  • Mechanical devices used in the MTC can be referred to as MTC device (MTC device), MTC device is a variety of vending machines, machines for measuring the water level of the dam. That is, MTC can be widely applied to various fields.
  • MTC Mobility Management Entities
  • HTC human type communication
  • MTC is characterized by different market scenarios, data communication, low cost and effort, potentially very large number of communication terminals, large service area and low traffic per terminal. Can be.
  • MTC devices When MTC devices are introduced, it is likely that a large number of MTC devices having the same function and the same traffic characteristics are introduced into a cell by one user or a service provider.
  • the MTC device has a high probability of generating and transmitting a relatively small amount of data periodically, and once deployed, the MTC device has a high probability of being fixedly operated without being moved later.
  • the current cell-based wireless communication system is designed for efficient support for the HTC device.
  • the physical layer (PHY) and media access control (MAC) layers are HTC with mobility. It is designed for transmitting and receiving randomly generated data between devices. Therefore, the existing wireless communication system may be very inefficient in supporting a large amount of MTC devices.
  • An object of the present invention is to provide a radio resource allocation method and apparatus for a Machine Type Communication (MTC) device in a wireless communication system.
  • MTC Machine Type Communication
  • the present invention provides a method for allocating radio resources for an MTC device separately from radio resources for a human type communication (HTC) device.
  • HTC human type communication
  • a method for allocating a radio resource in a wireless communication system may include allocating a machine-type communication (MTC) dedicated radio resource and a general radio resource and communicating with at least one MTC device through the MTC dedicated radio resource.
  • MTC machine-type communication
  • the MTC dedicated radio resource supports only communication with the at least one MTC device, and the MTC dedicated radio resource and the general radio resource are different radio resources.
  • the MTC dedicated radio resource may include at least one MTC component carrier (CC), and the general radio resource may include at least one general CC.
  • CC MTC component carrier
  • Information on the at least one MTC dedicated CC may be transmitted through a higher layer.
  • At least one of a physical downlink control channel (PDCCH) transmission scheme, a channel state information reference signal (CSI-RS) transmission period, or a transmission time interval (TTI) in the at least one MTC dedicated CC may be associated with the at least one general CC. It can be set separately.
  • a physical downlink control channel (PDCCH) transmission scheme a channel state information reference signal (CSI-RS) transmission period, or a transmission time interval (TTI) in the at least one MTC dedicated CC may be associated with the at least one general CC. It can be set separately.
  • CSI-RS channel state information reference signal
  • TTI transmission time interval
  • an interleaving PDCCH and a non-interleaving scheme may be multiplexed and transmitted.
  • the TTI in the at least one MTC dedicated CC may be longer than 1 ms.
  • the MTC dedicated radio resource and the general radio resource may be multiplexed by a time division multiplexing (TDM) scheme, and the MTC dedicated radio resource may include at least one MTC dedicated subframe.
  • TDM time division multiplexing
  • the at least one MTC dedicated subframe may be a multicast broadcast single frequency network (MBSFN) subframe.
  • MMSFN multicast broadcast single frequency network
  • Information on the at least one MTC dedicated subframe may be transmitted through a broadcast channel (BCH) configured only for a higher layer or the MTC device.
  • BCH broadcast channel
  • the MTC dedicated radio resource and the general radio resource may be multiplexed by a frequency division multiplexing (FDM) scheme, and the MTC dedicated radio resource may include an MTC dedicated frequency region.
  • FDM frequency division multiplexing
  • the MTC dedicated frequency domain may include at least one physical resource block (PRB) or at least one PRB group including a plurality of PRBs.
  • PRB physical resource block
  • the MTC dedicated frequency domain may include a specific frequency partition.
  • a Radio Frequency (RF) unit for transmitting or receiving a radio signal in a wireless communication system
  • a processor connected to the RF unit, the processor allocates MTC dedicated radio resources and general radio resources
  • the MTC dedicated radio resource is configured to communicate with at least one MTC device, wherein the MTC dedicated radio resource supports communication with the at least one MTC device only, and the MTC dedicated radio resource and the general radio resource are different from each other.
  • An apparatus is provided which is a radio resource.
  • MTC Machine Type Communication
  • 1 is a wireless communication system.
  • FIG. 2 shows a structure of a radio frame in 3GPP LTE.
  • FIG 3 shows an example of a resource grid for one downlink slot.
  • 5 shows a structure of an uplink subframe.
  • FIG. 6 shows an example of a radio frame structure in IEEE 802.16m.
  • FIG. 7 is an example of a transmitter and a receiver constituting a carrier aggregation system.
  • FIG. 8 and 9 illustrate still another example of a transmitter and a receiver configuring a carrier aggregation system.
  • 10 is an example of a communication scenario for MTC.
  • 11 shows an embodiment of the proposed resource allocation method.
  • FIG. 12 is a block diagram of a wireless communication system in which an embodiment of the present invention is implemented.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • CDMA may be implemented with a radio technology such as Universal Terrestrial Radio Access (UTRA) or CDMA2000.
  • TDMA may be implemented with wireless technologies such as Global System for Mobile communications (GSM) / General Packet Radio Service (GPRS) / Enhanced Data Rates for GSM Evolution (EDGE).
  • GSM Global System for Mobile communications
  • GPRS General Packet Radio Service
  • EDGE Enhanced Data Rates for GSM Evolution
  • OFDMA may be implemented in a wireless technology such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, Evolved UTRA (E-UTRA), or the like.
  • IEEE 802.16m is an evolution of IEEE 802.16e and provides backward compatibility with systems based on IEEE 802.16e.
  • UTRA is part of the Universal Mobile Telecommunications System (UMTS).
  • 3rd Generation Partnership Project (3GPP) Long Term Evolution (LTE) is part of Evolved UMTS (E-UMTS) using Evolved-UMTS Terrestrial Radio Access (E-UTRA), which employs OFDMA in downlink and SC in uplink -FDMA is adopted.
  • LTE-A Advanced
  • 3GPP LTE Advanced
  • 1 is a wireless communication system.
  • the wireless communication system 10 includes at least one base station (BS) 11.
  • Each base station 11 provides a communication service for a particular geographic area (generally called a cell) 15a, 15b, 15c.
  • the cell can in turn be divided into a number of regions (called sectors).
  • the UE 12 may be fixed or mobile, and may include a mobile station (MS), a mobile terminal (MT), a user terminal (UT), a subscriber station (SS), a wireless device, and a PDA. (Personal Digital Assistant), a wireless modem (wireless modem), a handheld device (handheld device) may be called other terms.
  • the base station 11 generally refers to a fixed station communicating with the terminal 12, and may be referred to as other terms such as an evolved-NodeB (eNB), a base transceiver system (BTS), an access point, and the like. have.
  • eNB evolved-NodeB
  • BTS base transceiver system
  • access point and the like. have.
  • a terminal typically belongs to one cell, and a cell to which the terminal belongs is called a serving cell.
  • a base station that provides a communication service for a serving cell is called a serving BS. Since the wireless communication system is a cellular system, there are other cells adjacent to the serving cell. Another cell adjacent to the serving cell is called a neighbor cell.
  • a base station that provides communication service for a neighbor cell is called a neighbor BS. The serving cell and the neighbor cell are relatively determined based on the terminal.
  • downlink means communication from the base station 11 to the terminal 12
  • uplink means communication from the terminal 12 to the base station 11.
  • the transmitter may be part of the base station 11 and the receiver may be part of the terminal 12.
  • the transmitter may be part of the terminal 12 and the receiver may be part of the base station 11.
  • the wireless communication system is any one of a multiple-input multiple-output (MIMO) system, a multiple-input single-output (MIS) system, a single-input single-output (SISO) system, and a single-input multiple-output (SIMO) system.
  • MIMO multiple-input multiple-output
  • MIS multiple-input single-output
  • SISO single-input single-output
  • SIMO single-input multiple-output
  • the MIMO system uses a plurality of transmit antennas and a plurality of receive antennas.
  • the MISO system uses multiple transmit antennas and one receive antenna.
  • the SISO system uses one transmit antenna and one receive antenna.
  • the SIMO system uses one transmit antenna and multiple receive antennas.
  • a transmit antenna means a physical or logical antenna used to transmit one signal or stream
  • a receive antenna means a physical or logical antenna used to receive one signal or stream.
  • FIG. 2 shows a structure of a radio frame in 3GPP LTE.
  • a radio frame consists of 10 subframes, and one subframe consists of two slots. Slots in a radio frame are numbered with slots # 0 through # 19. The time taken for one subframe to be transmitted is called a Transmission Time Interval (TTI). TTI may be referred to as a scheduling unit for data transmission. For example, one radio frame may have a length of 10 ms, one subframe may have a length of 1 ms, and one slot may have a length of 0.5 ms.
  • One slot includes a plurality of Orthogonal Frequency Division Multiplexing (OFDM) symbols in the time domain and a plurality of subcarriers in the frequency domain.
  • the OFDM symbol is used to represent one symbol period since 3GPP LTE uses OFDMA in downlink, and may be called a different name according to a multiple access scheme.
  • SC-FDMA when SC-FDMA is used as an uplink multiple access scheme, it may be referred to as an SC-FDMA symbol.
  • a resource block (RB) includes a plurality of consecutive subcarriers in one slot in resource allocation units.
  • the structure of the radio frame is merely an example. Accordingly, the number of subframes included in the radio frame, the number of slots included in the subframe, or the number of OFDM symbols included in the slot may be variously changed.
  • 3GPP LTE defines that one slot includes 7 OFDM symbols in a normal cyclic prefix (CP), and one slot includes 6 OFDM symbols in an extended CP. .
  • CP normal cyclic prefix
  • a wireless communication system can be largely divided into a frequency division duplex (FDD) system and a time division duplex (TDD) system.
  • FDD frequency division duplex
  • TDD time division duplex
  • uplink transmission and downlink transmission are performed while occupying different frequency bands.
  • uplink transmission and downlink transmission are performed at different times while occupying the same frequency band.
  • the channel response of the TDD scheme is substantially reciprocal. This means that the downlink channel response and the uplink channel response are almost the same in a given frequency domain. Therefore, in a TDD based wireless communication system, the downlink channel response can be obtained from the uplink channel response.
  • the uplink transmission and the downlink transmission are time-divided in the entire frequency band, and thus the downlink transmission by the base station and the uplink transmission by the terminal cannot be simultaneously performed.
  • uplink transmission and downlink transmission are performed in different subframes.
  • FIG 3 shows an example of a resource grid for one downlink slot.
  • the downlink slot includes a plurality of OFDM symbols in the time domain and N RB resource blocks in the frequency domain.
  • the number N RB of resource blocks included in the downlink slot depends on the downlink transmission bandwidth set in the cell. For example, in the LTE system, N RB may be any one of 60 to 110.
  • One resource block includes a plurality of subcarriers in the frequency domain.
  • the structure of the uplink slot may also be the same as that of the downlink slot.
  • Each element on the resource grid is called a resource element.
  • an exemplary resource block includes 7 ⁇ 12 resource elements including 7 OFDM symbols in the time domain and 12 subcarriers in the frequency domain, but the number of OFDM symbols and the number of subcarriers in the resource block is equal to this. It is not limited. The number of OFDM symbols and the number of subcarriers can be variously changed according to the length of the CP, frequency spacing, and the like. For example, the number of OFDM symbols is 7 for a normal CP and the number of OFDM symbols is 6 for an extended CP. The number of subcarriers in one OFDM symbol may be selected and used among 128, 256, 512, 1024, 1536 and 2048.
  • the downlink subframe includes two slots in the time domain, and each slot includes seven OFDM symbols in the normal CP.
  • the leading up to 3 OFDM symbols (up to 4 OFDM symbols for 1.4Mhz bandwidth) of the first slot in the subframe are the control regions to which control channels are allocated, and the remaining OFDM symbols are the PDSCH (Physical Downlink Shared Channel). Becomes the data area to be allocated.
  • PDCCH includes resource allocation and transmission format of downlink-shared channel (DL-SCH), resource allocation information of uplink shared channel (UL-SCH), paging information on PCH, system information on DL-SCH, random access transmitted on PDSCH Resource allocation of upper layer control messages such as responses, sets of transmit power control commands for individual UEs in any UE group, activation of Voice over Internet Protocol (VoIP), and the like.
  • a plurality of PDCCHs may be transmitted in the control region, and the terminal may monitor the plurality of PDCCHs.
  • the PDCCH is transmitted on an aggregation of one or several consecutive CCEs.
  • CCE is a logical allocation unit used to provide a PDCCH with a coding rate according to a state of a radio channel.
  • the CCE corresponds to a plurality of resource element groups.
  • the format of the PDCCH and the number of bits of the PDCCH are determined according to the correlation between the number of CCEs and the coding rate provided by the CCEs.
  • the base station determines the PDCCH format according to the DCI to be sent to the terminal, and attaches a CRC (Cyclic Redundancy Check) to the control information.
  • a unique identifier (RNTI: Radio Network Temporary Identifier) is masked according to an owner or a purpose of the PDCCH.
  • RNTI Radio Network Temporary Identifier
  • the PDCCH is for a specific terminal, a unique identifier of the terminal, for example, a C-RNTI (Cell-RNTI) may be masked to the CRC.
  • a paging indication identifier for example, P-RNTI (P-RNTI) may be masked to the CRC.
  • the system information identifier and the System Information-RNTI may be masked to the CRC.
  • SI-RNTI System Information-RNTI
  • a random access-RNTI RA-RNTI
  • RA-RNTI may be masked to the CRC to indicate a random access response that is a response to the transmission of the random access preamble of the UE.
  • 5 shows a structure of an uplink subframe.
  • the uplink subframe may be divided into a control region and a data region in the frequency domain.
  • the control region is allocated a Physical Uplink Control Channel (PUCCH) for transmitting uplink control information.
  • the data region is allocated a physical uplink shared channel (PUSCH) for transmitting data.
  • the terminal may support simultaneous transmission of the PUSCH and the PUCCH.
  • PUCCH for one UE is allocated to an RB pair in a subframe.
  • Resource blocks belonging to a resource block pair occupy different subcarriers in each of the first slot and the second slot.
  • the frequency occupied by the resource block belonging to the resource block pair allocated to the PUCCH is changed based on a slot boundary. This is called that the RB pair allocated to the PUCCH is frequency-hopped at the slot boundary.
  • the terminal may obtain a frequency diversity gain by transmitting uplink control information through different subcarriers over time.
  • m is a location index indicating a logical frequency domain location of a resource block pair allocated to a PUCCH in a subframe.
  • the uplink control information transmitted on the PUCCH includes a hybrid automatic repeat request (HARQ) acknowledgment (ACK) / non-acknowledgement (NACK), a channel quality indicator (CQI) indicating a downlink channel state, and an SR that is an uplink radio resource allocation request.
  • HARQ hybrid automatic repeat request
  • ACK acknowledgment
  • NACK non-acknowledgement
  • CQI channel quality indicator
  • SR scheduling request
  • the uplink data transmitted on the PUSCH may be a transport block which is a data block for the UL-SCH transmitted during the TTI.
  • the transport block may be user information.
  • the uplink data may be multiplexed data.
  • the multiplexed data may be a multiplexed transport block and control information for the UL-SCH.
  • control information multiplexed with data may include CQI, PMI (Precoding Matrix Indicator), HARQ, RI (Rank Indicator), and the like.
  • the uplink data may consist of control information only.
  • FIG. 6 shows an example of a radio frame structure in IEEE 802.16m.
  • a superframe includes a superframe header (SFH) and four frames (frames, F0, F1, F2, and F3).
  • Each frame in the superframe may have the same length.
  • the size of each superframe is 20ms and the size of each frame is illustrated as 5ms, but is not limited thereto.
  • the length of the superframe, the number of frames included in the superframe, the number of subframes included in the frame, and the like may be variously changed.
  • the number of subframes included in the frame may be variously changed according to the channel bandwidth and the length of the cyclic prefix (CP).
  • CP cyclic prefix
  • One frame includes a plurality of subframes (subframe, SF0, SF1, SF2, SF3, SF4, SF5, SF6, SF7). Each subframe may be used for uplink or downlink transmission.
  • One subframe includes a plurality of orthogonal frequency division multiplexing (OFDM) symbols or an orthogonal frequency division multiple access (OFDMA) in a time domain, and includes a plurality of subcarriers in the frequency domain. do.
  • the OFDM symbol is used to represent one symbol period, and may be called another name such as an OFDMA symbol or an SC-FDMA symbol according to a multiple access scheme.
  • the subframe may be composed of 5, 6, 7 or 9 OFDMA symbols, but this is only an example and the number of OFDMA symbols included in the subframe is not limited.
  • the number of OFDMA symbols included in the subframe may be variously changed according to the channel bandwidth and the length of the CP.
  • a type of a subframe may be defined according to the number of OFDMA symbols included in the subframe.
  • the type-1 subframe may be defined to include 6 OFDMA symbols
  • the type-2 subframe includes 7 OFDMA symbols
  • the type-3 subframe includes 5 OFDMA symbols
  • the type-4 subframe includes 9 OFDMA symbols.
  • One frame may include subframes of the same type. Alternatively, one frame may include different types of subframes.
  • the number of OFDMA symbols included in each subframe in one frame may be the same or different.
  • the number of OFDMA symbols of at least one subframe in one frame may be different from the number of OFDMA symbols of the remaining subframes in the frame.
  • the SFH may carry essential system parameters and system configuration information.
  • the SFH may be located in the first subframe in the superframe.
  • SFH may occupy the last five OFDMA symbols of the first subframe.
  • the superframe header may be classified into primary SFH (P-SFH) and secondary SFH (S-SFH; secondary-SFH).
  • P-SFH primary SFH
  • S-SFH secondary SFH
  • the P-SFH may be transmitted every superframe.
  • Information transmitted to the S-SFH can be divided into three subpackets (S-SFH SP1, S-SFH SP2, S-SFH SP3). Each subpacket may be transmitted periodically with a different period. The importance of information transmitted through S-SFH SP1, S-SFH SP2, and S-SFH SP3 may be different from each other.
  • S-SFH SP1 may be transmitted in the shortest period, and S-SFH SP3 may be transmitted in the longest period.
  • S-SFH SP1 includes information on network re-entry, and the transmission period of S-SFH SP1 may be 40 ms.
  • S-SFH SP2 includes information about initial network entry and network discovery, and the transmission period of S-SFH SP2 may be 80 ms.
  • S-SFH SP3 includes the remaining important system information, and the transmission period of S-SFH SP3 may be either 160 ms or 320 ms.
  • Carrier Aggregation (CA) system refers to a system in which one or more carriers having a smaller bandwidth than a target broadband are configured to configure the broadband when the wireless communication system attempts to support the broadband.
  • the carrier aggregation system may be called another name such as a bandwidth aggregation system.
  • the carrier aggregation system may be classified into a contiguous carrier aggregation system in which each carrier is continuous and a non-contiguous carrier aggregation system in which each carrier is separated from each other. In a continuous carrier aggregation system, frequency spacing may exist between each carrier.
  • a target carrier may use the bandwidth used by the existing system as it is for backward compatibility with the existing system.
  • the 3GPP LTE system supports bandwidths of 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz, and 20 MHz, and the 3GPP LTE-A system may configure a bandwidth of 20 MHz or more using only the bandwidth of the 3GPP LTE system.
  • broadband can be configured by defining new bandwidth without using the bandwidth of the existing system.
  • the UE may simultaneously transmit or receive one or a plurality of carriers according to its capacity.
  • the LTE-A terminal may transmit or receive a plurality of carriers at the same time.
  • the LTE Rel-8 terminal may transmit or receive only one carrier when each carrier constituting the carrier aggregation system is compatible with the LTE Rel-8 system. Therefore, when at least the same number of carriers used in uplink and downlink, all component carriers (CC) need to be configured to be compatible with the LTE Rel-8 system.
  • the plurality of carriers may be managed by a media access control (MAC).
  • MAC media access control
  • both the transmitter and the receiver should be able to transmit / receive the plurality of carriers.
  • FIG. 7 is an example of a transmitter and a receiver constituting a carrier aggregation system.
  • one MAC manages and operates all n carriers to transmit and receive data.
  • the same is true of the receiver of Fig. 7- (b).
  • There may be one transport block and one HARQ entity per component carrier from the receiver's point of view.
  • the terminal may be scheduled for a plurality of carriers at the same time.
  • the carrier aggregation system of FIG. 7 may be applied to both a continuous carrier aggregation system and a discontinuous carrier aggregation system.
  • Each carrier managed by one MAC does not need to be adjacent to each other, and thus has an advantage in that it is flexible in terms of resource management.
  • FIG. 8 and 9 illustrate still another example of a transmitter and a receiver configuring a carrier aggregation system.
  • one MAC manages only one carrier. That is, MAC and carrier correspond one-to-one.
  • MAC and carrier correspond to one-to-one for some carriers, and one MAC controls a plurality of carriers for the remaining carriers. That is, various combinations are possible due to the correspondence between the MAC and the carrier.
  • the carrier aggregation system of FIGS. 7 to 9 includes n carriers, and each carrier may be adjacent to or separated from each other.
  • the carrier aggregation system may be applied to both uplink and downlink.
  • each carrier is configured to perform uplink transmission and downlink transmission.
  • a plurality of carriers may be divided into uplink and downlink.
  • the number of component carriers used in uplink and downlink and the bandwidth of each carrier are the same.
  • an asymmetric carrier aggregation system may be configured by varying the number and bandwidth of carriers used in uplink and downlink.
  • a cell is an entity composed of a combination of at least one unit of downlink resources and an optional uplink resource from the viewpoint of the terminal. That is, one cell must include at least one unit of downlink resources, but may not include uplink resources.
  • the downlink resource of one unit may be one DL CC.
  • the linkage between the carrier frequency of the downlink resource and the carrier frequency of the uplink resource may be indicated by SIB2 transmitted through the downlink resource.
  • Types of cells can be distinguished by the method in which they are allocated.
  • the number of cells allocated to the entire system may be fixed. For example, the number of cells allocated to the entire system may be eight. All or part of the cells allocated to the entire system may be allocated by radio resource control (RRC) signaling of a higher layer.
  • RRC radio resource control
  • a cell allocated by RRC signaling is called a configured cell. That is, the component cell may mean a cell allocated to be available to the system among cells allocated to the entire system. All or some of the configuration cells may be allocated by Media Access Control (MAC) signaling.
  • a cell allocated by MAC signaling may be referred to as an activated cell. The remaining cells except the active cells of the constituent cells may be referred to as deactivated cells.
  • All or some of the active cells are allocated to the terminal by L1 / L2 signaling.
  • a cell allocated by L1 / L2 signaling may be referred to as a scheduled cell.
  • the scheduling cell may receive data through the PDSCH using downlink resources in the cell and transmit data through the PUSCH using uplink resources in the cell.
  • Machine-Type Communication is a form of data communication that includes one or more entities that do not require human interaction.
  • the MTC device refers to a terminal installed for MTC.
  • the MTC device may communicate with an MTC server or with another MTC device.
  • MTC feature refers to a network function that optimizes the network used by a Machine to Machine (M2M) device.
  • MTC server is an entity that communicates with the network and communicates with the MTC device over the network.
  • the MTC server may have an interface that can be accessed by an MTC user.
  • the MTC Server provides a service for MTC users.
  • the MTC user uses the services provided by the MTC server.
  • An MTC subscriber is an entity that has a contractual relationship with a network operator to provide services to one or more MTC devices.
  • An MTC group refers to a group of MTC devices that share one or more MTC characteristics and belong to the same MTC subscriber. MTC subscriber and MTC group can be used interchangeably.
  • 10 is an example of a communication scenario for MTC.
  • the MTC device 110 is connected to the network 130 together with the existing terminal 120.
  • the MTC server 140 receives the information of the MTC device 110 through the network 130 and provides the information to the MTC user 150.
  • the MTC server 140 may be directly connected to the network 130, but may also be connected to the network 130 through an Internet Protocol (IP).
  • IP Internet Protocol
  • the structure is merely an example, and may be changed in various forms.
  • the MTC device 110 may communicate with another MTC device directly without the MTC server 140.
  • the traffic load may be increased on the network 130 according to the traffic characteristics of the MTC device 110. This may cause a problem that may worsen the service for the existing terminal 120. Therefore, in order to reduce the traffic load caused by the MTC device 110, it is necessary to flexibly manage resource allocation of the MTC device 110 according to the traffic characteristics of the MTC device 110 and / or the current network congestion.
  • MTC may be introduced in 3GPP LTE-A or IEEE 802.16.
  • Service requirements include common service requirements and specific service requirements.
  • MTC details of the service request of the 3GPP LTE-A is 3GPP TS 22.368 V10.0.0 (2010-03) " 3 rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Service requirements for Machine-Type Communications (MTC); See Chapter 7 of “Stage 1 (Release 10)”.
  • the service requirements of MTC in IEEE 802.16 are discussed in IEEE 802.16p.
  • the description will be made based on MTC introduced in 3GPP LTE-A, but is not limited thereto.
  • MTC devices of various fields may exist, not all MTC devices need to have the same characteristics. In other words, not all system optimizations need to be suitable for all MTC devices.
  • the MTC feature is defined to provide a structure for the different system optimization possibilities that may occur. This MTC characteristic may be provided on a subscription basis. In addition, the MTC characteristic can be activated separately. Individual service requirements of the MTC characteristics include low mobility, time controlled, time tolerant, MTC monitoring, offline indication, and priority alert message (PAM). Alarm Message, Extra Low Power Consumption, Secure Connection, etc. may be included.
  • PAM priority alert message
  • the MTC device has different characteristics from a human type communication (HTC) device, and an existing wireless communication system optimized for the HTC device may be inefficient in supporting the MTC device. Accordingly, there is a need for a method of allocating a dedicated radio resource different from a radio resource allocated to the HTC device for the MTC device.
  • HTC human type communication
  • the base station may allocate at least one CC as an MTC dedicated radio resource. That is, when downlink or uplink is composed of two or more CCs, any cell or base station may allocate one or more CCs as radio resources that can be used only by the MTC device.
  • the CC supports only MTC devices, and existing HTC resources cannot access the CC.
  • Any MTC device may be directly connected to the base station through the assigned MTC dedicated CC. That is, the MTC device may enter or reenter a network through an MTC dedicated CC.
  • the base station may block the access of the HTC device using a Primary / Secondary Synchronization Channel (P / S-SCH) only for the MTC device.
  • P / S-SCH Primary / Secondary Synchronization Channel
  • CRC cyclic redundancy check
  • only the MTC device can decode the PBCH.
  • the HTC device cannot access the base station through the MTC dedicated CC because it cannot decode the PBCH.
  • the PBCH may be SFH.
  • the MTC device may be connected to the base station through a general CC instead of the MTC dedicated CC, and then connected to the MTC dedicated CC by carrier switching.
  • the base station does not transmit the P / S-SCH through the MTC dedicated CC, so that all terminals cannot enter or reenter the network through the MTC dedicated CC, or transmit the P / S-SCH through the MTC dedicated CC but transmit the PBCH. By not doing so, it is possible to block access of all terminals.
  • the MTC device may perform network entry through another CC and receive information on the corresponding MTC dedicated CC through UE-specific higher layer signaling.
  • information about the corresponding MTC dedicated CC may be received through cell-specific higher layer signaling for the MTC device only.
  • the MTC device may request the base station to the carrier switching to the MTC dedicated CC, or the base station may request a specific MTC device to switch the carrier to the MTC dedicated CC.
  • the base station and the MTC device may communicate with each other through a CA method in which an MTC dedicated CC is added to the general CC.
  • a PDCCH MAP for IEEE 802.16 transmission scheme in the MTC dedicated CC
  • CSI-RS channel state information reference signal
  • a pilot for IEEE 802.16
  • the transmission period or the TTI size of the pilot or midamble may be set separately from the general CC.
  • interleaving based PDCCH and non-interleaving based PDCCH may be multiplexed and transmitted by time division multiplexing (TDM) or frequency division multiplexing (FDM).
  • TDM time division multiplexing
  • FDM frequency division multiplexing
  • a specific subframe may be interleaved in the existing REG (Resource Element Group) unit to transmit the PDCCH, and other specific subframes may transmit the PDCCH without being interleaved in the REG unit.
  • REG Resource Element Group
  • the interleaving PDCCH may be transmitted in a specific frequency domain (or a group of physical resource blocks (PRBs)), and the noninterleaving scheme in another frequency domain.
  • PDCCH may be transmitted.
  • UE-specifically determines whether to interleave the PDCCH, and thus the base station can transmit the PDCCH.
  • Non-interleaving PDCCH transmission is set based on the size of the payload of the PDCCH, based on the PRB or a part of the PRB (a set of 12 subcarriers including 6 subcarriers or 4 subcarriers). Can be performed.
  • the transmission period of the CSI-RS of the MTC dedicated CC may be set longer than the transmission period of the CSI-RS transmitted from the general CC.
  • the TTI of the MTC dedicated CC may be set longer to 2 subframes (2 ms) or 3 subframes (3 ms), etc., rather than 1 subframe (1 ms), which is the TTI of the general CC.
  • the transmission period or the TTI of the CSI-RS of the MTC dedicated CC may be cell-specifically signaled or terminal-specifically signaled to the MTC device.
  • the MTC device performs blind decoding of the PDCCH based on the configured TTI, and may transmit a PUSCH based on the configured TTI.
  • the TTI of the MTC dedicated CC when the TTI of the MTC dedicated CC is set to 2 ms, 28 OFDM symbols may configure one subframe based on a general cyclic prefix (CP).
  • the TTI may be set in any unit. For example, 2.5 ms can be set to 1 TTI.
  • DMRS demodulation reference signal
  • a DMRS overhead may be reduced by puncturing a DMRS located in a specific OFDM symbol in an existing DMRS pattern, or a new DMRS pattern May be defined.
  • the nature of the MTC device may be frequently received and decoded the control signal.
  • the complexity of blind decoding of the PDCCH received by the MTC device may increase.
  • a new PDCCH transmission scheme may be applied instead of the conventional PDCCH transmission scheme in order to reduce the reception frequency and the complexity of decoding of the control signal of the MTC device. That is, a new PDCCH transmission scheme may be applied instead of blind decoding.
  • the base station and the MTC device may explicitly or implicitly share the PDCCH location or decoding method.
  • a control signal is transmitted at the time of network entry without transmitting a PDCCH or a control signal is transmitted through system information such as PBCH. Can be. Alternatively, an initial PDCCH transmission may be performed, and then no additional PDCCH may be transmitted.
  • the base station may allocate a specific subframe as an MTC dedicated subframe in the time domain. If any subframe is allocated to the MTC dedicated subframe, the structure of the corresponding subframe may be changed to a structure different from the existing subframe, and the HTC device cannot communicate with the base station through the corresponding subframe. However, in case of a subframe in which RS or P / S-SCH or PBCH exists, transmission of the corresponding RS or corresponding channel may be supported to support backward compatibility with the HTC device. In addition, transmission of an ACK / NACK signal may be supported to minimize the effect on the timing of a hybrid automatic repeat request (HARQ).
  • HARQ hybrid automatic repeat request
  • a subframe in which RS or P / S-SCH or PBCH exists may not be configured as an MTC dedicated subframe, and MTC dedicated subframes may be configured among the remaining subframes.
  • MBSFN multicast broadcast single frequency network
  • Configuration information of the MTC dedicated subframe may be transmitted to each MTC device through higher layer signaling and may be transmitted through a P / S-SCH or PBCH configured only for the MTC device.
  • the MTC device may receive the P / S-SCH or PBCH through the MTC dedicated subframe, or receive the P / S-SCH or PBCH in common with the HTC device through the general subframe, and only control signals and data are dedicated to the MTC. It may be received through a subframe.
  • additional system information may be transmitted through the MTC dedicated subframe.
  • the allocation of the MTC dedicated subframe may be changed periodically or aperiodically, and information on this may be transmitted to the MTC device through higher layer signaling.
  • the HTC device may operate based on the existing frame structure and the MTC device may operate based on the virtual structure.
  • the virtual structure includes whether to allow connection of only the MTC device in a specific subframe, whether to transmit and receive control signals of a specific subframe, whether to transmit and receive data of a specific subframe, and the like. can do.
  • Information on the virtual structure may be transmitted to each MTC device through higher layer signaling or may be transmitted through a PBCH configured only for the MTC device.
  • the base station may allocate a specific frequency region to the MTC dedicated frequency region.
  • the MTC dedicated frequency domain may be allocated as a unit of a PRB or a PRB group including a plurality of PRBs. Or, if the entire system bandwidth is divided into a plurality of frequency partitions for the same reason as FFR (Fractional Frequency Reuse), a specific frequency partition may be allocated to the MTC dedicated frequency domain.
  • FFR Fractional Frequency Reuse
  • the PDCCH may be transmitted in the same manner as the conventional scheme.
  • a DMRS overhead may be reduced by puncturing a DMRS located in a specific OFDM symbol in an existing DMRS pattern, or a new DMRS pattern may be defined.
  • the MTC dedicated PDCCH for the MTC device can be multiplexed by a mixed method of the existing PDCCH and TDM, FDM or TDM / FDM.
  • radio resources for the MTC device may be allocated.
  • the proposed resource allocation method can be applied differently to downlink and uplink.
  • TDM-based MTC dedicated resources may be allocated in downlink
  • FDM-based MTC dedicated resources may be allocated in uplink.
  • the proposed resource allocation method has been described as being applied to the allocation of radio resources for the MTC device, but is not limited thereto. That is, the present invention can be applied to terminals having other characteristics in addition to the MTC device. For example, the present invention can be applied to allocate dedicated radio resources for fixed terminals with no mobility at all. Alternatively, the present invention can be applied to allocate dedicated radio resources for low-power consumption terminals.
  • 11 shows an embodiment of the proposed resource allocation method.
  • step S100 the base station allocates an MTC dedicated radio resource and a general radio resource.
  • step S110 the base station communicates with at least one MTC device through the MTC dedicated radio resource.
  • the MTC dedicated radio resource supports only communication with the at least one MTC device, and the MTC dedicated radio resource and the general radio resource may be different radio resources.
  • FIG. 12 is a block diagram of a wireless communication system in which an embodiment of the present invention is implemented.
  • the base station 800 includes a processor 810, a memory 820, and a radio frequency unit (RF) 830.
  • Processor 810 implements the proposed functions, processes, and / or methods. Layers of the air interface protocol may be implemented by the processor 810.
  • the memory 820 is connected to the processor 810 and stores various information for driving the processor 810.
  • the RF unit 830 is connected to the processor 810 to transmit and / or receive a radio signal.
  • the terminal 900 includes a processor 910, a memory 920, and an RF unit 930.
  • Processor 910 implements the proposed functions, processes, and / or methods. Layers of the air interface protocol may be implemented by the processor 910.
  • the memory 920 is connected to the processor 910 and stores various information for driving the processor 910.
  • the RF unit 930 is connected to the processor 910 to transmit and / or receive a radio signal.
  • Processors 810 and 910 may include application-specific integrated circuits (ASICs), other chipsets, logic circuits, and / or data processing devices.
  • the memory 820, 920 may include read-only memory (ROM), random access memory (RAM), flash memory, memory card, storage medium, and / or other storage device.
  • the RF unit 830 and 930 may include a baseband circuit for processing a radio signal.
  • the above-described technique may be implemented as a module (process, function, etc.) for performing the above-described function.
  • the module may be stored in the memory 820, 920 and executed by the processor 810, 910.
  • the memories 820 and 920 may be inside or outside the processors 810 and 910, and may be connected to the processors 810 and 910 by various well-known means.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

무선 통신 시스템에서 무선 자원 할당 방법 및 장치가 제공된다. 상기 무선 자원 할당 방법은 머신형 통신(MTC; Machine Type Communication) 전용 무선 자원(radio resource)과 일반 무선 자원을 할당하고, 상기 MTC 전용 무선 자원을 통해 적어도 하나의 MTC 장치와 통신하는 것을 포함한다. 이때 상기 MTC 전용 무선 자원은 상기 적어도 하나의 MTC 장치와의 통신만을 지원하며, 상기 MTC 전용 무선 자원과 상기 일반 무선 자원은 서로 다른 무선 자원일 수 있다.

Description

무선 통신 시스템에서 머신형 통신 장치를 위한 무선 자원 할당 방법 및 장치
본 발명은 무선 통신에 관한 것으로, 보다 상세하게는 무선 통신 시스템에서 머신형 통신(MTC; Machine Type Communication) 장치를 위한 무선 자원 할당 방법 및 장치에 관한 것이다.
최근 머신형 통신(MTC; Machine Type Communication)의 도입이 이 다양한 시나리오로 요구되고 있다. MTC는 사람의 상호 작용(interaction)이 필요하지 않은 하나 이상의 개체(entity)를 포함하는 데이터 통신의 한 형태이다. 즉, MTC는 사람이 사용하는 단말(MS; Mobile Station)이 아닌 기계 장치가 기존 GERAN(GSM/EDGE Radio Access Network), UMTS(Universal Mobile Telecommunications System) 또는 3GPP(3rd Generation Partnership Project) LTE(Long-Term Evolution) 등의 망을 이용하여 통신하는 개념을 일컫는다. MTC에 사용되는 기계 장치를 MTC 장치(MTC device)라 할 수 있으며, MTC 장치는 자동 판매기, 댐의 수위를 측정하는 기계 등으로 다양하다. 즉, MTC는 다양한 분야에 폭넓게 적용될 수 있다. MTC 장치는 특성이 일반적인 단말과 다르므로, MTC에 최적화된 서비스는 인간형(HTC; Human Type Communication) 통신에 최적화된 서비스와 다를 수 있다. MTC는 현재의 모바일 네트워크 통신 서비스와 비교하여, 서로 다른 마켓 시나리오(market scenario), 데이터 통신, 적은 비용과 노력, 잠재적으로 매우 많은 수의 통신 단말들, 넓은 서비스 영역 및 단말당 낮은 트래픽 등으로 특징될 수 있다. MTC 장치가 도입되는 경우 하나의 사용자 또는 서비스 공급자(service provider)에 의하여 동일한 기능을 가지고 동일한 트래픽 특성을 가지는 많은 수의 MTC 장치들이 셀 내에 한꺼번에 도입될 가능성이 높다. 또한, MTC 장치는 비교적 적은 양의 데이터를 주기적으로 생성하여 전송할 가능성이 높고, 한번 배치된 경우 추후에 움직이지 않고 고정되어 운용될 확률이 높다.
한편, 현재 셀 기반의 무선 통신 시스템은 HTC 장치에 대한 효율적인 지원을 목적으로 설계되었다. 예를 들어 3GPP LTE/LTE-A(advanced) 또는 IEEE(Institute of Electrical and Electronics Engineers) 802.16 계열의 무선 통신 시스템의 물리 계층(PHY)과 MAC(Media Access Control) 계층은 이동성(mobility)을 가진 HTC 장치 간의 임의로(randomly) 생성되는 데이터 송수신을 위하여 설계되었다. 따라서 기존의 무선 통신 시스템은 다량의 MTC 장치를 지원함에 있어서 매우 비효율적일 수 있다.
이에 기존의 무선 통신 시스템과의 호환성을 최대한 유지하면서 MTC 장치에 효율적으로 무선 자원을 할당하기 위한 방법이 요구된다.
본 발명의 기술적 과제는 무선 통신 시스템에서 머신형 통신(MTC; Machine Type Communication) 장치를 위한 무선 자원 할당 방법 및 장치를 제공하는 데에 있다. 특히 본 발명은 MTC 장치를 위한 무선 자원을 인간형 통신(HTC; Human Type Communication) 장치를 위한 무선 자원과 별도로 할당하는 방법을 제공한다.
일 양태에 있어서, 무선 통신 시스템에서 무선 자원 할당 방법이 제공된다. 상기 무선 자원 할당 방법은 머신형 통신(MTC; Machine Type Communication) 전용 무선 자원(radio resource)과 일반 무선 자원을 할당하고, 상기 MTC 전용 무선 자원을 통해 적어도 하나의 MTC 장치와 통신하는 것을 포함하되, 상기 MTC 전용 무선 자원은 상기 적어도 하나의 MTC 장치와의 통신만을 지원하며, 상기 MTC 전용 무선 자원과 상기 일반 무선 자원은 서로 다른 무선 자원이다.
상기 MTC 전용 무선 자원은 적어도 하나의 MTC 전용 구성 반송파(CC; Component Carrier)를 포함하며, 상기 일반 무선 자원은 적어도 하나의 일반 CC를 포함할 수 있다.
상기 적어도 하나의 MTC 전용 CC에 대한 정보는 상위 계층(higher layer)을 통해 전송될 수 있다.
상기 적어도 하나의 MTC 전용 CC에서의 PDCCH(Physical Downlink Control Channel) 전송 방식, CSI-RS(Channel State Information Reference Signal) 전송 주기 또는 TTI(Transmission Time Interval) 중 적어도 어느 하나는 상기 적어도 하나의 일반 CC와 별도로 설정될 수 있다.
상기 적어도 하나의 MTC 전용 CC에서의 PDCCH 전송 방식은 인터리빙(interleaving) 방식의 PDCCH와 논인터리빙(non-interleaving) 방식의 PDCCH가 다중화되어 전송될 수 있다.
상기 적어도 하나의 MTC 전용 CC에서의 TTI는 1ms보다 길 수 있다.
상기 MTC 전용 무선 자원과 상기 일반 무선 자원은 시분할 다중(TDM; Time Division Multiplexing) 방식으로 다중화 되며, 상기 MTC 전용 무선 자원은 적어도 하나의 MTC 전용 서브프레임(subframe)을 포함할 수 있다.
상기 적어도 하나의 MTC 전용 서브프레임은 MBSFN(Multicast Broadcast Single Frequency Network) 서브프레임일 수 있다.
상기 적어도 하나의 MTC 전용 서브프레임에 대한 정보는 상위 계층 또는 상기 MTC 장치만을 위하여 설정된 브로드캐스트 채널(BCH; Broadcast Channel)을 통해 전송될 수 있다.
상기 MTC 전용 무선 자원과 상기 일반 무선 자원은 주파수 분할 다중(FDM; Frequency Division Multiplexing) 방식으로 다중화 되며, 상기 MTC 전용 무선 자원은 MTC 전용 주파수 영역을 포함할 수 있다.
상기 MTC 전용 주파수 영역은 적어도 하나의 물리 자원 블록(PRB; Physical Resource Block) 또는 복수의 PRB를 포함하는 적어도 하나의 PRB 그룹을 포함할 수 있다.
상기 MTC 전용 주파수 영역은 특정 주파수 파티션(frequency partition)을 포함할 수 있다.
다른 양태에 있어서, 무선 통신 시스템에서 무선 신호를 전송 또는 수신하는 RF(Radio Frequency)부, 및 상기 RF부와 연결되는 프로세서를 포함하되, 상기 프로세서는 MTC 전용 무선 자원과 일반 무선 자원을 할당하고, 상기 MTC 전용 무선 자원을 통해 적어도 하나의 MTC 장치와 통신하도록 구성되며, 상기 MTC 전용 무선 자원은 상기 적어도 하나의 MTC 장치와의 통신만을 지원하며, 상기 MTC 전용 무선 자원과 상기 일반 무선 자원은 서로 다른 무선 자원인 것을 특징으로 하는 장치가 제공된다.
머신형 통신(MTC; Machine Type Communication) 장치를 위하여 무선 자원으로 효율적으로 할당할 수 있다.
도 1은 무선 통신 시스템이다.
도 2는 3GPP LTE에서 무선 프레임(radio frame)의 구조를 나타낸다.
도 3은 하나의 하향링크 슬롯에 대한 자원 그리드(resource grid)의 일 예를 나타낸다.
도 4는 하향링크 서브프레임의 구조를 나타낸다.
도 5는 상향링크 서브프레임의 구조를 나타낸다.
도 6은 IEEE 802.16m에서 무선 프레임 구조의 일 예를 나타낸다.
도 7은 반송파 집합 시스템을 구성하는 송신기와 수신기의 일 예이다.
도 8 및 도 9는 반송파 집합 시스템을 구성하는 송신기와 수신기의 또 다른 예이다.
도 10은 MTC를 위한 통신 시나리오의 일 예이다.
도 11은 제안된 자원 할당 방법의 일 실시예를 나타낸다.
도 12는 본 발명의 실시예가 구현되는 무선 통신 시스템의 블록도이다.
이하의 기술은 CDMA(Code Division Multiple Access), FDMA(Frequency Division Multiple Access), TDMA(Time Division Multiple Access), OFDMA(Orthogonal Frequency Division Multiple Access), SC-FDMA (Single Carrier Frequency Division Multiple Access) 등과 같은 다양한 무선 통신 시스템에 사용될 수 있다. CDMA는 UTRA(Universal Terrestrial Radio Access)나 CDMA2000과 같은 무선 기술(radio technology)로 구현될 수 있다. TDMA는 GSM(Global System for Mobile communications)/GPRS(General Packet Radio Service)/EDGE(Enhanced Data Rates for GSM Evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE 802.11(Wi-Fi), IEEE 802.16(WiMAX), IEEE 802-20, E-UTRA(Evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. IEEE 802.16m은 IEEE 802.16e의 진화로, IEEE 802.16e에 기반한 시스템과의 하위 호환성(backward compatibility)를 제공한다. UTRA는 UMTS(Universal Mobile Telecommunications System)의 일부이다. 3GPP(3rd Generation Partnership Project) LTE(Long Term Evolution)은 E-UTRA(Evolved-UMTS Terrestrial Radio Access)를 사용하는 E-UMTS(Evolved UMTS)의 일부로써, 하향링크에서 OFDMA를 채용하고 상향링크에서 SC-FDMA를 채용한다. LTE-A(Advanced)는 3GPP LTE의 진화이다.
설명을 명확하게 하기 위해, LTE-A 또는 IEEE 802.16을 위주로 기술하지만 본 발명의 기술적 사상이 이에 제한되는 것은 아니다.
도 1은 무선 통신 시스템이다.
무선 통신 시스템(10)은 적어도 하나의 기지국(11; Base Station, BS)을 포함한다. 각 기지국(11)은 특정한 지리적 영역(일반적으로 셀이라고 함)(15a, 15b, 15c)에 대해 통신 서비스를 제공한다. 셀은 다시 다수의 영역(섹터라고 함)으로 나누어질 수 있다. 단말(12; User Equipment, UE)은 고정되거나 이동성을 가질 수 있으며, MS(Mobile Station), MT(Mobile Terminal), UT(User Terminal), SS(Subscriber Station), 무선기기(wireless device), PDA(Personal Digital Assistant), 무선 모뎀(wireless modem), 휴대기기(handheld device) 등 다른 용어로 불릴 수 있다. 기지국(11)은 일반적으로 단말(12)과 통신하는 고정된 지점(fixed station)을 말하며, eNB(evolved-NodeB), BTS(Base Transceiver System), 액세스 포인트(Access Point) 등 다른 용어로 불릴 수 있다.
단말은 통상적으로 하나의 셀에 속하는데, 단말이 속한 셀을 서빙 셀(serving cell)이라 한다. 서빙 셀에 대해 통신 서비스를 제공하는 기지국을 서빙 기지국(serving BS)이라 한다. 무선통신 시스템은 셀룰러 시스템(cellular system)이므로, 서빙 셀에 인접하는 다른 셀이 존재한다. 서빙 셀에 인접하는 다른 셀을 인접 셀(neighbor cell)이라 한다. 인접 셀에 대해 통신 서비스를 제공하는 기지국을 인접 기지국(neighbor BS)이라 한다. 서빙 셀 및 인접 셀은 단말을 기준으로 상대적으로 결정된다.
이 기술은 하향링크(downlink) 또는 상향링크(uplink)에 사용될 수 있다. 일반적으로 하향링크는 기지국(11)에서 단말(12)로의 통신을 의미하며, 상향링크는 단말(12)에서 기지국(11)으로의 통신을 의미한다. 하향링크에서 송신기는 기지국(11)의 일부분이고, 수신기는 단말(12)의 일부분일 수 있다. 상향링크에서 송신기는 단말(12)의 일부분이고, 수신기는 기지국(11)의 일부분일 수 있다.
무선 통신 시스템은 MIMO(Multiple-Input Multiple-Output) 시스템, MISO(Multiple-Input Single-Output) 시스템, SISO(Single-Input Single-Output) 시스템 및 SIMO(Single-Input Multiple-Output) 시스템 중 어느 하나일 수 있다. MIMO 시스템은 다수의 전송 안테나(transmit antenna)와 다수의 수신 안테나(receive antenna)를 사용한다. MISO 시스템은 다수의 전송 안테나와 하나의 수신 안테나를 사용한다. SISO 시스템은 하나의 전송 안테나와 하나의 수신 안테나를 사용한다. SIMO 시스템은 하나의 전송 안테나와 다수의 수신 안테나를 사용한다. 이하에서, 전송 안테나는 하나의 신호 또는 스트림을 전송하는 데 사용되는 물리적 또는 논리적 안테나를 의미하고, 수신 안테나는 하나의 신호 또는 스트림을 수신하는 데 사용되는 물리적 또는 논리적 안테나를 의미한다.
도 2는 3GPP LTE에서 무선 프레임(radio frame)의 구조를 나타낸다.
이는 3GPP(3rd Generation Partnership Project) TS 36.211 V8.2.0 (2008-03) "Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Physical channels and modulation (Release 8)"의 5절을 참조할 수 있다. 도 2를 참조하면, 무선 프레임은 10개의 서브프레임(subframe)으로 구성되고, 하나의 서브프레임은 2개의 슬롯(slot)으로 구성된다. 무선 프레임 내 슬롯은 #0부터 #19까지 슬롯 번호가 매겨진다. 하나의 서브프레임이 전송되는 데 걸리는 시간을 TTI(Transmission Time Interval)라 한다. TTI는 데이터 전송을 위한 스케줄링 단위라 할 수 있다. 예를 들어, 하나의 무선 프레임의 길이는 10ms이고, 하나의 서브프레임의 길이는 1ms이고, 하나의 슬롯의 길이는 0.5ms 일 수 있다.
하나의 슬롯은 시간 영역(time domain)에서 복수의 OFDM(Orthogonal Frequency Division Multiplexing) 심벌을 포함하고, 주파수 영역에서 복수의 부반송파를 포함한다. OFDM 심벌은 3GPP LTE가 하향링크에서 OFDMA를 사용하므로 하나의 심벌 구간(symbol period)을 표현하기 위한 것으로, 다중 접속 방식에 따라 다른 명칭으로 불리울 수 있다. 예를 들어, 상향링크 다중 접속 방식으로 SC-FDMA가 사용될 경우 SC-FDMA 심벌이라고 할 수 있다. 자원블록(RB; Resource Block)는 자원 할당 단위로 하나의 슬롯에서 복수의 연속하는 부반송파를 포함한다. 상기 무선 프레임의 구조는 일 예에 불과한 것이다. 따라서 무선 프레임에 포함되는 서브프레임의 개수나 서브프레임에 포함되는 슬롯의 개수, 또는 슬롯에 포함되는 OFDM 심벌의 개수는 다양하게 변경될 수 있다.
3GPP LTE는 노멀(normal) 사이클릭 프리픽스(CP; Cyclic Prefix)에서 하나의 슬롯은 7개의 OFDM 심벌을 포함하고, 확장(extended) CP에서 하나의 슬롯은 6개의 OFDM 심벌을 포함하는 것으로 정의하고 있다.
무선 통신 시스템은 크게 FDD(Frequency Division Duplex) 방식과 TDD(Time Division Duplex) 방식으로 나눌 수 있다. FDD 방식에 의하면 상향링크 전송과 하향링크 전송이 서로 다른 주파수 대역을 차지하면서 이루어진다. TDD 방식에 의하면 상향링크 전송과 하향링크 전송이 같은 주파수 대역을 차지하면서 서로 다른 시간에 이루어진다. TDD 방식의 채널 응답은 실질적으로 상호적(reciprocal)이다. 이는 주어진 주파수 영역에서 하향링크 채널 응답과 상향링크 채널 응답이 거의 동일하다는 것이다. 따라서, TDD에 기반한 무선통신 시스템에서 하향링크 채널 응답은 상향링크 채널 응답으로부터 얻어질 수 있는 장점이 있다. TDD 방식은 전체 주파수 대역을 상향링크 전송과 하향링크 전송이 시분할되므로 기지국에 의한 하향링크 전송과 단말에 의한 상향링크 전송이 동시에 수행될 수 없다. 상향링크 전송과 하향링크 전송이 서브프레임 단위로 구분되는 TDD 시스템에서, 상향링크 전송과 하향링크 전송은 서로 다른 서브프레임에서 수행된다.
도 3은 하나의 하향링크 슬롯에 대한 자원 그리드(resource grid)의 일 예를 나타낸다.
하향링크 슬롯은 시간 영역에서 복수의 OFDM 심벌을 포함하고, 주파수 영역에서 NRB개의 자원 블록을 포함한다. 하향링크 슬롯에 포함되는 자원 블록의 수 NRB은 셀에서 설정되는 하향링크 전송 대역폭(bandwidth)에 종속한다. 예를 들어, LTE 시스템에서 NRB은 60 내지 110 중 어느 하나일 수 있다. 하나의 자원 블록은 주파수 영역에서 복수의 부반송파를 포함한다. 상향링크 슬롯의 구조도 상기 하향링크 슬롯의 구조와 동일할 수 있다.
자원 그리드 상의 각 요소(element)를 자원 요소(resource element)라 한다. 자원 그리드 상의 자원 요소는 슬롯 내 인덱스 쌍(pair) (k,l)에 의해 식별될 수 있다. 여기서, k(k=0,...,NRB×12-1)는 주파수 영역 내 부반송파 인덱스이고, l(l=0,...,6)은 시간 영역 내 OFDM 심벌 인덱스이다.
여기서, 하나의 자원 블록은 시간 영역에서 7 OFDM 심벌, 주파수 영역에서 12 부반송파로 구성되는 7×12 자원 요소를 포함하는 것을 예시적으로 기술하나, 자원 블록 내 OFDM 심벌의 수와 부반송파의 수는 이에 제한되는 것은 아니다. OFDM 심벌의 수와 부반송파의 수는 CP의 길이, 주파수 간격(frequency spacing) 등에 따라 다양하게 변경될 수 있다. 예를 들어, 노멀 CP의 경우 OFDM 심벌의 수는 7이고, 확장된 CP의 경우 OFDM 심벌의 수는 6이다. 하나의 OFDM 심벌에서 부반송파의 수는 128, 256, 512, 1024, 1536 및 2048 중 하나를 선정하여 사용할 수 있다.
도 4는 하향링크 서브프레임의 구조를 나타낸다.
하향링크 서브프레임은 시간 영역에서 2개의 슬롯을 포함하고, 각 슬롯은 노멀 CP에서 7개의 OFDM 심벌을 포함한다. 서브프레임 내의 첫 번째 슬롯의 앞선 최대 3 OFDM 심벌들(1.4Mhz 대역폭에 대해서는 최대 4 OFDM 심벌들)이 제어 채널들이 할당되는 제어 영역(control region)이고, 나머지 OFDM 심벌들은 PDSCH(Physical Downlink Shared Channel)가 할당되는 데이터 영역이 된다.
PDCCH는 DL-SCH(Downlink-Shared Channel)의 자원 할당 및 전송 포맷, UL-SCH(Uplink Shared Channel)의 자원 할당 정보, PCH 상의 페이징 정보, DL-SCH 상의 시스템 정보, PDSCH 상으로 전송되는 랜덤 액세스 응답과 같은 상위 계층 제어 메시지의 자원 할당, 임의의 UE 그룹 내 개별 UE들에 대한 전송 파워 제어 명령의 집합 및 VoIP(Voice over Internet Protocol)의 활성화 등을 나를 수 있다. 복수의 PDCCH가 제어 영역 내에서 전송될 수 있으며, 단말은 복수의 PDCCH를 모니터링 할 수 있다. PDCCH는 하나 또는 몇몇 연속적인 CCE(Control Channel Elements)의 집합(aggregation) 상으로 전송된다. CCE는 무선채널의 상태에 따른 부호화율을 PDCCH에게 제공하기 위해 사용되는 논리적 할당 단위이다. CCE는 복수의 자원 요소 그룹(resource element group)에 대응된다. CCE의 수와 CCE들에 의해 제공되는 부호화율의 연관 관계에 따라 PDCCH의 포맷 및 가능한 PDCCH의 비트수가 결정된다.
기지국은 단말에게 보내려는 DCI에 따라 PDCCH 포맷을 결정하고, 제어 정보에 CRC(Cyclic Redundancy Check)를 붙인다. CRC에는 PDCCH의 소유자(owner)나 용도에 따라 고유한 식별자(RNTI; Radio Network Temporary Identifier)가 마스킹된다. 특정 단말을 위한 PDCCH라면 단말의 고유 식별자, 예를 들어 C-RNTI(Cell-RNTI)가 CRC에 마스킹될 수 있다. 또는, 페이징 메시지를 위한 PDCCH라면 페이징 지시 식별자, 예를 들어 P-RNTI(Paging-RNTI)가 CRC에 마스킹될 수 있다. 시스템 정보(SIB; System Information Block)를 위한 PDCCH라면 시스템 정보 식별자, SI-RNTI(System Information-RNTI)가 CRC에 마스킹될 수 있다. 단말의 랜덤 액세스 프리앰블의 전송에 대한 응답인 랜덤 액세스 응답을 지시하기 위해 RA-RNTI(Random Access-RNTI)가 CRC에 마스킹될 수 있다.
도 5는 상향링크 서브프레임의 구조를 나타낸다.
상향링크 서브프레임은 주파수 영역에서 제어 영역과 데이터 영역으로 나뉠 수 있다. 상기 제어 영역은 상향링크 제어 정보가 전송되기 위한 PUCCH(Physical Uplink Control Channel)이 할당된다. 상기 데이터 영역은 데이터가 전송되기 위한 PUSCH(Physical Uplink Shared Channel)이 할당된다. 상위 계층에서 지시되는 경우, 단말은 PUSCH와 PUCCH의 동시 전송을 지원할 수 있다.
하나의 단말에 대한 PUCCH는 서브프레임에서 자원 블록 쌍(RB pair)으로 할당된다. 자원 블록 쌍에 속하는 자원 블록들은 제1 슬롯과 제2 슬롯 각각에서 서로 다른 부반송파를 차지한다. PUCCH에 할당되는 자원 블록 쌍에 속하는 자원 블록이 차지하는 주파수는 슬롯 경계(slot boundary)를 기준으로 변경된다. 이를 PUCCH에 할당되는 RB 쌍이 슬롯 경계에서 주파수가 홉핑(frequency-hopped)되었다고 한다. 단말이 상향링크 제어 정보를 시간에 따라 서로 다른 부반송파를 통해 전송함으로써, 주파수 다이버시티 이득을 얻을 수 있다. m은 서브프레임 내에서 PUCCH에 할당된 자원블록 쌍의 논리적인 주파수 영역 위치를 나타내는 위치 인덱스이다.
PUCCH 상으로 전송되는 상향링크 제어정보에는 HARQ(Hybrid Automatic Repeat reQuest) ACK(Acknowledgement)/NACK(Non-acknowledgement), 하향링크 채널 상태를 나타내는 CQI(Channel Quality Indicator), 상향링크 무선 자원 할당 요청인 SR(Scheduling Request) 등이 있다.
PUSCH는 전송 채널(transport channel)인 UL-SCH(Uplink Shared Channel)에 맵핑된다. PUSCH 상으로 전송되는 상향링크 데이터는 TTI 동안 전송되는 UL-SCH를 위한 데이터 블록인 전송 블록(transport block)일 수 있다. 상기 전송 블록은 사용자 정보일 수 있다. 또는, 상향링크 데이터는 다중화된(multiplexed) 데이터일 수 있다. 다중화된 데이터는 UL-SCH를 위한 전송 블록과 제어정보가 다중화된 것일 수 있다. 예를 들어, 데이터에 다중화되는 제어정보에는 CQI, PMI(Precoding Matrix Indicator), HARQ, RI(Rank Indicator) 등이 있을 수 있다. 또는 상향링크 데이터는 제어정보만으로 구성될 수도 있다.
도 6은 IEEE 802.16m에서 무선 프레임 구조의 일 예를 나타낸다.
도 6을 참조하면, 슈퍼프레임(SF; Superframe)은 슈퍼프레임 헤더(SFH; Superframe Header)와 4개의 프레임(frame, F0, F1, F2, F3)을 포함한다. 슈퍼프레임 내 각 프레임의 길이는 모두 동일할 수 있다. 각 슈퍼프레임의 크기는 20ms이고, 각 프레임의 크기는 5ms인 것으로 예시하고 있으나, 이에 한정되는 것은 아니다. 슈퍼프레임의 길이, 슈퍼프레임에 포함되는 프레임의 수, 프레임에 포함되는 서브프레임의 수 등은 다양하게 변경될 수 있다. 프레임에 포함되는 서브프레임의 수는 채널 대역폭(channel bandwidth), CP(Cyclic Prefix)의 길이에 따라 다양하게 변경될 수 있다.
하나의 프레임은 다수의 서브프레임(subframe, SF0, SF1, SF2, SF3, SF4, SF5, SF6, SF7)을 포함한다. 각 서브프레임은 상향링크 또는 하향링크 전송을 위하여 사용될 수 있다. 하나의 서브프레임은 시간 영역(time domain)에서 복수의 OFDM(orthogonal frequency division multiplexing) 심벌 또는 OFDMA(Orthogonal Frequency Division Multiple Access)을 포함하고, 주파수 영역(frequency domain)에서 복수의 부반송파(subcarrier)를 포함한다. OFDM 심벌은 하나의 심벌 구간(symbol period)을 표현하기 위한 것으로, 다중 접속 방식에 따라 OFDMA 심벌, SC-FDMA 심벌 등 다른 명칭으로 불릴 수 있다. 서브프레임은 5, 6, 7 또는 9개의 OFDMA 심벌로 구성될 수 있으나, 이는 예시에 불과하며 서브프레임에 포함되는 OFDMA 심벌의 수는 제한되지 않는다. 서브프레임에 포함되는 OFDMA 심벌의 수는 채널 대역폭, CP의 길이에 따라 다양하게 변경될 수 있다. 서브프레임이 포함하는 OFDMA 심벌의 수에 따라 서브프레임의 타입(type)이 정의될 수 있다. 예를 들어, 타입-1 서브프레임은 6 OFDMA 심벌, 타입-2 서브프레임은 7 OFDMA 심벌, 타입-3 서브프레임은 5 OFDMA 심벌, 타입-4 서브프레임은 9 OFDMA 심벌을 포함하는 것으로 정의될 수 있다. 하나의 프레임은 모두 동일한 타입의 서브프레임을 포함할 수 있다. 또는 하나의 프레임은 서로 다른 타입의 서브프레임을 포함할 수 있다. 즉, 하나의 프레임 내 각 서브프레임마다 포함하는 OFDMA 심벌의 개수는 모두 동일하거나, 각각 다를 수 있다. 또는, 하나의 프레임 내 적어도 하나의 서브프레임의 OFDMA 심벌의 개수는 상기 프레임 내 나머지 서브프레임의 OFDMA 심벌의 개수와 다를 수 있다.
SFH는 필수 시스템 파라미터(essential system parameter) 및 시스템 설정 정보(system configuration information)를 나를 수 있다. SFH는 슈퍼프레임 내 첫 번째 서브프레임 안에 위치할 수 있다. SFH는 상기 첫 번째 서브프레임의 마지막 5개의 OFDMA 심벌을 차지할 수 있다. 슈퍼프레임 헤더는 1차 SFH(P-SFH; primary-SFH) 및 2차 SFH(S-SFH; secondary-SFH)로 분류될 수 있다. P-SFH는 매 슈퍼프레임마다 전송될 수 있다. S-SFH로 전송되는 정보는 S-SFH SP1, S-SFH SP2, S-SFH SP3의 3개의 서브패킷(sub-packet)으로 나뉠 수 있다. 각 서브패킷은 서로 다른 주기를 가지고 주기적으로 전송될 수 있다. S-SFH SP1, S-SFH SP2 및 S-SFH SP3을 통해 전송되는 정보의 중요도는 서로 다를 수 있으며, S-SFH SP1이 가장 짧은 주기로, S-SFH SP3이 가장 긴 주기로 전송될 수 있다. S-SFH SP1은 네트워크 재진입(network re-entry)에 관한 정보를 포함하며, S-SFH SP1의 전송 주기는 40 ms일 수 있다. S-SFH SP2는 초기 네트워크 진입(initial network entry) 및 네트워크 탐색(network discovery)에 관한 정보를 포함하며, S-SFH SP2의 전송 주기는 80 ms일 수 있다. S-SFH SP3는 나머지 중요한 시스템 정보를 포함하며, S-SFH SP3의 전송 주기는 160 ms 또는 320 ms 중 어느 하나일 수 있다.
반송파 집합(CA; Carrier Aggregation) 시스템은 무선 통신 시스템이 광대역을 지원하려고 할 때 목표로 하는 광대역보다 작은 대역폭을 가지는 1개 이상의 반송파를 모아서 광대역을 구성하는 시스템을 의미한다. 반송파 집합 시스템은 대역폭 집합(bandwidth aggregation) 시스템 등의 다른 명칭으로 불릴 수 있다. 반송파 집합 시스템은 각 반송파가 연속한 연속(contiguous) 반송파 집합 시스템과 각 반송파가 서로 떨어져 있는 불연속(non-contiguous) 반송파 집합 시스템으로 구분될 수 있다. 연속 반송파 집합 시스템에서 각 반송파 사이에 주파수 간격(frequency spacing)이 존재할 수 있다. 1개 이상의 반송파를 모을 때 대상이 되는 반송파는 기존 시스템과의 하위 호환성(backward compatibility)을 위하여 기존 시스템에서 사용하는 대역폭을 그대로 사용할 수 있다. 예를 들어 3GPP LTE 시스템에서는 1.4MHz, 3MHz, 5MHz, 10MHz, 15MHz 및 20MHz의 대역폭을 지원하며, 3GPP LTE-A 시스템에서는 상기 3GPP LTE 시스템의 대역폭만을 이용하여 20MHz 이상의 광대역을 구성할 수 있다. 또는 기존 시스템의 대역폭을 그대로 사용하지 않고 새로운 대역폭을 정의하여 광대역을 구성할 수도 있다.
반송파 집합 시스템에서 단말은 용량에 따라서 하나 또는 복수의 반송파를 동시에 전송 또는 수신할 수 있다. LTE-A 단말은 복수의 반송파를 동시에 전송 또는 수신할 수 있다. LTE Rel-8 단말은 반송파 집합 시스템을 구성하는 각 반송파가 LTE Rel-8 시스템과 호환될 때 하나의 반송파만을 송신 또는 수신할 수 있다. 따라서 적어도 상향링크와 하향링크에서 사용되는 반송파의 개수가 같은 경우, 모든 구성 반송파(CC; Component Carrier)가 LTE Rel-8 시스템과 호환되도록 구성될 필요가 있다.
복수의 반송파를 효율적으로 사용하기 위하여 복수의 반송파를 MAC(Media Access Control)에서 관리할 수 있다. 복수의 반송파를 송/수신하기 위해서 송신기 및 수신기가 모두 복수의 반송파를 송/수신할 수 있어야 한다.
도 7은 반송파 집합 시스템을 구성하는 송신기와 수신기의 일 예이다.
도 7-(a)의 송신기에서는 하나의 MAC이 n개의 반송파를 모두 관리 및 운영하여 데이터를 송수신한다. 이는 도 7-(b)의 수신기에서도 마찬가지이다. 수신기의 입장에서 구성 반송파 당 하나의 전송 블록(transport block)과 하나의 HARQ 엔티티(entity)가 존재할 수 있다. 단말은 복수의 반송파에 대하여 동시에 스케줄링 될 수 있다. 도 7의 반송파 집합 시스템은 연속 반송파 집합 시스템 또는 불연속 반송파 집합 시스템에 모두 적용될 수 있다. 하나의 MAC에서 관리하는 각각의 반송파는 서로 인접할 필요가 없으며, 따라서 자원 관리 측면에서 유연하다는 장점이 있다.
도 8 및 도 9는 반송파 집합 시스템을 구성하는 송신기와 수신기의 또 다른 예이다.
도 8-(a)의 송신기 및 도 8-(b)의 수신기에서는 하나의 MAC이 하나의 반송파만을 관리한다. 즉, MAC와 반송파가 1대1로 대응된다. 도 9-(a)의 송신기 및 도 9-(b)의 수신기에서는 일부 반송파에 대해서는 MAC과 반송파가 1대1로 대응되고, 나머지 반송파에 대해서는 하나의 MAC이 복수의 반송파를 제어한다. 즉, MAC과 반송파의 대응 관계로 다양한 조합이 가능하다.
도 7 내지 도 9의 반송파 집합 시스템은 n개의 반송파를 포함하며, 각 반송파는 서로 인접할 수도 있고 떨어져 있을 수도 있다. 반송파 집합 시스템은 상향링크 또는 하향링크에 모두 적용될 수 있다. TDD 시스템에서는 각각의 반송파가 상향링크 전송과 하향링크 전송을 수행할 수 있도록 구성되며, FDD 시스템에서는 복수의 반송파를 상향링크 용과 하향링크 용으로 구분하여 사용할 수 있다. 일반적인 TDD 시스템에서 상향링크와 하향링크에서 사용되는 구성 반송파의 개수와 각 반송파의 대역폭은 동일하다. FDD 시스템에서는 상향링크와 하향링크에서 사용하는 반송파의 수와 대역폭을 각각 달리 함으로써 비대칭(asymmetric) 반송파 집합 시스템을 구성하는 것도 가능하다.
한편, LTE-A 시스템에서 셀의 개념이 적용될 수 있다. 셀은 단말의 입장에서 적어도 한 단위의 하향링크 자원과 선택적으로 포함되는 상향링크 자원의 결합으로 구성되는 엔티티이다. 즉, 하나의 셀은 적어도 한 단위의 하향링크 자원을 반드시 포함하나, 상향링크 자원은 포함하지 않을 수 있다. 상기 한 단위의 하향링크 자원은 하나의 DL CC일 수 있다. 하향링크 자원의 반송파 주파수(carrier frequency)와 상향링크 자원의 반송파 주파수 사이의 연결(linkage)은 하향링크 자원을 통해 전송되는 SIB2에 의해서 지시될 수 있다.
셀의 종류는 할당되는 방법에 의해서 구분될 수 있다. 먼저 시스템 전체에 할당된 셀의 개수는 고정될 수 있다. 예를 들어 시스템 전체에 할당된 셀의 개수는 8개일 수 있다. 시스템 전체에 할당된 셀 중 전부 또는 일부가 상위 계층의 RRC(Radio Resource Control) 시그널링에 의해서 할당될 수 있다. RRC 시그널링에 의해 할당된 셀을 구성 셀(configured cell)이라 한다. 즉, 구성 셀은 시스템 전체에 할당된 셀 중 시스템이 사용 가능하도록 할당한 셀을 의미할 수 있다. 구성 셀 중 전부 또는 일부는 MAC(Media Access Control) 시그널링에 의해서 할당될 수 있다. MAC 시그널링에 의해 할당된 셀을 활성 셀(activated cell)이라 할 수 있다. 구성 셀 중 활성 셀을 제외한 나머지 셀은 비활성(deactivated cell)이라 할 수 있다. 활성 셀 중 전부 또는 일부는 L1/L2 시그널링에 의해서 단말에 할당된다. L1/L2 시그널링에 의해 할당된 셀을 스케줄링 셀(scheduled cell)이라 할 수 있다. 스케줄링 셀은 셀 내의 하향링크 자원을 이용하여 PDSCH를 통해 데이터를 수신할 수 있고, 셀 내의 상향링크 자원을 이용하여 PUSCH를 통해 데이터를 전송할 수 있다.
MTC(Machine-Type Communication)는 사람의 상호 작용(interaction)이 필요하지 않은 하나 이상의 개체(entity)를 포함하는 데이터 통신의 한 형태이다. MTC 장치(device)는 MTC를 위하여 설치된 단말을 말한다. MTC 장치는 MTC 서버(server)와 통신하거나 다른 MTC 장치와 통신할 수 있다. MTC 특성(feature)은 M2M(Machine to Machine) 장치에 의해 사용되는 네트워크를 최적화하는 네트워크 기능을 의미한다. MTC 서버는 네트워크와 통신하고, 상기 네트워크를 통해 MTC 장치와 통신하는 개체이다. MTC서버는 MTC 사용자(user)에 의해 접속될 수 있는 인터페이스를 가질 수 있다. MTC 서버는 MTC 사용자를 위한 서비스를 제공한다. MTC 사용자는 MTC 서버에 의해 제공되는 서비스를 사용한다. MTC 가입자(subscriber)는 하나 이상의 MTC 장치에 서비스를 제공하기 위하여 네트워크 오퍼레이터(network operator)와 계약적(contractual) 관계를 가지는 개체이다. MTC 그룹은 하나 이상의 MTC 특성을 공유하며 같은 MTC 가입자에 속한 MTC 장치의 그룹을 말한다. MTC 가입자와 MTC 그룹은 혼용하여 사용될 수 있다.
도 10은 MTC를 위한 통신 시나리오의 일 예이다.
도 10을 참조하면, MTC 장치(110)는 기존 단말(120)과 더불어 네트워크(130)에 연결되어 있다. MTC 서버(140)는 네트워크(130)를 통해 MTC 장치(110)의 정보를 수신하고, MTC 사용자(150)에게 상기 정보를 제공한다. MTC 서버(140)는 네트워크(130)와 직접 연결되어 있을 수도 있지만, IP(Internet Protocol)을 통해 네트워크(130)와 연결될 수도 있다. 상기 구조는 예시에 불과하고, 다양한 형태로 변경될 수 있다. 예를 들어, MTC 장치(110)는 MTC 서버(140) 없이 직접 다른 MTC 장치와 통신할 수 있다. 네트워크(130)에 MTC 장치(110)가 배치될 경우, MTC 장치(110)의 트래픽 특성에 따라 네트워크(130)에 트래픽 부하가 가중될 수 있다. 이는 기존 단말(120)에 대한 서비스를 악화시킬 수 있는 문제점을 야기할 수 있다. 따라서, MTC 장치(110)로 인한 트래픽 부하를 줄이기 위해 MTC 장치(110)의 자원 할당을 MTC 장치(110)의 트래픽 특성 및/또는 현재 네트워크 혼잡(congestion)에 따라 유연하게 관리할 필요가 있다.
MTC가 3GPP LTE-A 또는 IEEE 802.16에 도입될 수 있다. MTC 장치가 기존의 네트워크에서 동작하기 위해서는 레거시(legacy) 단말과는 다른 서비스 요구 사항(service requirements)이 요구된다. 서비스 요구 사항은 공통(common) 서비스 요구 사항과 개별(specific) 서비스 요구 사항을 포함한다. 3GPP LTE-A의 MTC의 서비스 요구 사항은 3GPP TS 22.368 V10.0.0 (2010-03) “3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Service requirements for Machine-Type Communications (MTC); Stage 1 (Release 10)”의 7장을 참조할 수 있다. IEEE 802.16의 MTC의 서비스 요구 사항은 IEEE 802.16p에서 논의되고 있다. 이하에서 3GPP LTE-A에 도입되는 MTC를 중심으로 설명하나, 이에 제한되는 것은 아니다.
다양한 분야의 MTC 장치가 존재할 수 있으므로 모든 MTC 장치가 동일한 특성을 가질 필요는 없다. 즉, 모든 시스템 최적화가 모든 MTC 장치에 적합할 필요는 없다. MTC 특성은 일어날 수 있는 서로 다른 시스템 최적화 가능성을 위한 구조를 제공하기 위한 것으로 정의된다. 이러한 MTC 특성은 가입(subscription) 기반으로 제공될 수 있다. 또한, MTC 특성은 개별적으로 활성화될 수 있다. MTC 특성 중 개별 서비스 요구 사항은 적은 이동성(low mobility), 시간 제어(time controlled), 시간 관용(time tolerant), MTC 모니터링(MTC monitoring), 오프라인 지시(offline indication), 우선 경보 메시지(PAM; Priority Alarm Message), 초저전력 소비(extra low power consumption), 안전 연결(secure connection) 등의 특성을 포함할 수 있다.
MTC 장치는 인간형 통신(HTC; Human Type Communication) 장치와 서로 다른 특성을 가지며, HTC 장치에 최적화된 기존의 무선 통신 시스템은 MTC 장치를 지원하는 데 있어서 비효율적일 수 있다. 이에 따라 MTC 장치를 위하여 HTC 장치에 할당되는 무선 자원과 다른 전용(dedicated) 무선 자원을 할당하는 방법이 요구된다.
이하, 제안된 MTC 장치를 위한 자원 할당 방법을 설명하도록 한다.
1) 구성 반송파(CC; Component Carrier)를 기반으로 하는 전용 자원 할당
시스템 대역폭이 복수의 CC를 포함하는 경우 기지국은 적어도 하나의 CC를 MTC 전용 무선 자원으로 할당할 수 있다. 즉, 하향링크 또는 상향링크가 2개 이상의 복수의 CC로 구성되는 경우 임의의 셀 또는 기지국은 하나 이상의 CC를 MTC 장치만이 사용할 수 있는 무선 자원으로 할당할 수 있다. 해당 CC는 오직 MTC 장치만을 지원하며, 기존의 HTC 자원은 해당 CC에 접속할 수 없다. 임의의 MTC 장치는 할당된 MTC 전용 CC를 통해 기지국과 직접 연결될 수 있다. 즉, MTC 전용 CC를 통해 MTC 장치는 네트워크 진입/재진입(network entry/re-entry)이 가능하다.
MTC 전용 CC를 할당하는 경우, MTC 장치만이 MTC 전용 CC에 접속할 수 있도록 하기 위하여 다양한 방법이 적용될 수 있다. 기지국은 MTC 장치만을 위한 P/S-SCH(Primary/Secondary Synchronization Channel)을 이용하여 HTC 장치의 접속을 차단할 수 있다. 또는, PBCH(Physical Broadcast Channel)의 CRC(Cyclic Redundancy Check) 마스킹 비트(masking bit)들을 MTC 특정(specific)하게 설정하여 MTC 장치만 PBCH를 디코딩 할 수 있게 할 수 있다. HTC 장치는 PBCH를 디코딩하지 못하여 MTC 전용 CC를 통하여 기지국에 접속할 수 없다. IEEE 802.16에서 PBCH는 SFH일 수 있다.
또는, MTC 장치는 MTC 전용 CC가 아닌 일반 CC를 통해 기지국와 연결된 후, 반송파 스위칭(carrier switching)에 의하여 MTC 전용 CC와 연결될 수 있다. 기지국은 MTC 전용 CC를 통해 P/S-SCH를 전송하지 않음으로써 모든 단말이 MTC 전용 CC를 통해 네트워크 진입/재진입이 불가능하게 하거나, MTC 전용 CC를 통해 P/S-SCH는 전송하되 PBCH를 전송하지 않음으로써 모든 단말의 접속을 차단할 수 있다. 이때 MTC 장치는 다른 CC를 통해 네트워크 진입을 수행하고, 단말 특정(UE-specific)한 상위 계층 시그널링(higher layer signaling)을 통해 해당 MTC 전용 CC에 대한 정보를 수신할 수 있다. 또는, MTC 장치만을 위한 셀 특정(cell-specific) 상위 계층 시그널링을 통해 해당 MTC 전용 CC에 대한 정보를 수신할 수 있다. 이와 같이 MTC 전용 CC가 존재하는 경우, MTC 장치는 상기 MTC 전용 CC로 반송파 스위칭을 기지국에 요청하거나, 또는 기지국이 특정 MTC 장치에게 상기 MTC 전용 CC로 반송파 스위칭을 요청할 수 있다. 또는, 일반 CC에 MTC 전용 CC가 추가된 CA 방식을 통해 기지국과 MTC 장치는 서로 통신할 수 있다.
MTC 전용 CC가 할당되는 경우, 해당 MTC 전용 CC 내의 PDCCH(IEEE 802.16의 경우 MAP) 전송 방식, 채널 추정을 위한 채널 상태 정보 참조 신호(CSI-RS; Channel State Information Reference Signal, IEEE 802.16의 경우 파일럿(pilot) 또는 미드앰블(midamble))의 전송 주기 또는 TTI 크기 등은 일반 CC와는 별도로 설정될 수 있다.
PDCCH 전송의 경우 인터리빙(interleaving) 기반 PDCCH와 논인터리빙(non-interleaving) 기반 PDCCH가 시분할 다중(TDM; Time Division Multiplexing) 방식 또는 주파수 분할 다중(FDM; Frequency Division Multiplexing) 방식으로 다중화되어 전송될 수 있다. TDM 방식에 의하여 PDCCH의 인터리빙 여부가 결정되는 경우, 특정 서브프레임은 기존의 REG(Resource Element Group) 단위로 인터리빙 되어 PDCCH를 전송하고, 다른 특정 서브프레임은 REG 단위로 인터리빙 되지 않고 PDCCH를 전송할 수 있다. FDM 방식에 의하여 PDCCH의 인터리빙 여부가 결정되는 경우, 특정 주파수 영역(또는, 물리 자원 블록(PRB; Physical Resource Block)의 그룹)에서는 인터리빙 방식의 PDCCH가 전송될 수 있고, 다른 주파수 영역에서는 논인터리빙 방식의 PDCCH가 전송될 수 있다. 또는, 단말 특정하게 PDCCH의 인터리빙 여부를 결정하여 이에 따라 기지국이 PDCCH를 전송할 수 있다. 논인터리빙 방식의 PDCCH 전송은 PDCCH의 페이로드(payload)의 크기에 따라 PRB 또는 PRB의 일부(6개의 부반송파 또는 4개의 부반송파 등 12의 약수의 개수로 이루어진 부반송파의 집합)를 기본 단위로 하여 이를 집합하여 수행될 수 있다.
MTC 전용 CC의 CSI-RS의 전송 주기는 일반 CC에서 전송되는 CSI-RS의 전송 주기보다 더 길게 설정될 수 있다. 또한, MTC 전용 CC의 TTI도 일반 CC의 TTI인 1 서브프레임(1 ms)이 아닌 2 서브프레임(2 ms) 또는 3 서브프레임(3 ms) 등으로 더욱 길게 설정될 수 있다. MTC 전용 CC의 CSI-RS의 전송 주기 또는 TTI는 MTC 장치로 셀 특정하게 시그널링 되거나 단말 특정하게 시그널링 될 수 있다. MTC 장치는 설정된 TTI를 기반으로 PDCCH의 블라인드 디코딩(blind decoding)을 수행하며, 설정된 TTI를 기반으로 PUSCH를 전송할 수도 있다. 예를 들어 MTC 전용 CC의 TTI가 2 ms으로 설정되는 경우, 일반 CP(Cyclic Prefix)를 기준으로 28개의 OFDM 심벌이 1개의 서브프레임을 구성할 수 있다. 이때 N(=1,2,3 또는 4)개의 OFDM 심벌을 통해 PDCCH가 전송되고, 28-N개의 OFDM 심벌을 통해 PDSCH가 전송될 수 있다. 또는, 임의의 단위로 TTI를 설정할 수 있다. 예를 들어 2.5 ms가 1 TTI로 설정될 수 있다. 또한, 복조 참조 신호(DMRS; Demodulation Reference Signal)의 전송에 있어서, 기존의 DMRS 패턴에서 특정 OFDM 심벌에 위치한 DMRS를 펑처링(puncturing)하여 DMRS 오버헤드(overhead)를 줄일 수 있고, 또는 새로운 DMRS 패턴이 정의될 수도 있다.
한편, MTC 장치의 특성상 제어 신호의 수신 및 디코딩의 빈도가 잦을 수 있다. 특히 MTC 장치가 수신하는 PDCCH의 블라인드 디코딩의 복잡도가 증가할 수 있다. 이와 같이 MTC 장치의 제어 신호의 수신 빈도 및 디코딩의 복잡도를 줄이기 위하여 기존의 PDCCH 전송 방식이 아닌 새로운 PDCCH 전송 방식이 적용될 수 있다. 즉, 블라인드 디코딩이 아닌 새로운 PDCCH 전송 방식이 적용될 수 있다. 예를 들어 기지국과 MTC 장치가 PDCCH 위치 또는 디코딩 방법을 명시적으로(explicitly) 또는 암묵적으로(implicitly) 공유할 수 있다. 또는 MTC 장치로 전송되는 데이터의 종류가 시간 제어(time-controlled) 트래픽과 같은 고정된 형태인 경우, PDCCH의 전송 없이 네트워크 진입 시에 제어 신호를 전송하거나 PBCH 등의 시스템 정보를 통해 제어 신호가 전송될 수 있다. 또는, 초기 한 번의 PDCCH 전송을 수행하고 이후에는 추가적인 PDCCH를 전송하지 않을 수도 있다.
2) TDM을 기반으로 하는 전용 자원 할당
기지국은 시간 영역(time domain)에서 특정 서브프레임을 MTC 전용 서브프레임으로 할당할 수 있다. 임의의 서브프레임이 MTC 전용 서브프레임으로 할당되는 경우 해당 서브프레임의 구조는 기존의 서브프레임과 다른 구조로 변경될 수 있으며, HTC 장치는 해당 서브프레임으로 통해 기지국과 통신할 수 없다. 그러나 RS 또는 P/S-SCH 또는 PBCH가 존재하는 서브프레임의 경우, HTC 장치와의 하위 호환성(backward compatibility)을 지원하기 위하여 해당 RS 또는 해당 채널의 전송은 지원될 수 있다. 또한, HARQ(Hybrid Automatic Repeat request)의 타이밍에 미치는 영향을 최소화 하기 위하여 ACK/NACK 신호의 전송도 지원될 수 있다. 또는, RS 또는 P/S-SCH 또는 PBCH가 존재하는 서브프레임은 MTC 전용 서브프레임으로 설정될 수 없으며, 나머지 서브프레임 중 MTC 전용 서브프레임이 설정되도록 할 수 있다. 한편, HTC 장치에 대한 하위 호환성을 위해 HTC 장치의 MBSFN(Multicast Broadcast Single Frequency Network) 서브프레임이 MTC 전용 서브프레임으로 설정될 수 있다.
MTC 전용 서브프레임의 설정 정보는 상위 계층 시그널링을 통해 각각의 MTC 장치로 전송될 수 있으며, MTC 장치만을 위하여 설정된 P/S-SCH 또는 PBCH를 통해 전송될 수 있다. 이때 MTC 장치는 MTC 전용 서브프레임을 통해 P/S-SCH 또는 PBCH를 수신할 수도 있고, 일반 서브프레임을 통해 P/S-SCH 또는 PBCH를 HTC 장치와 공통적으로 수신하고 제어 신호 및 데이터만을 MTC 전용 서브프레임을 통해 수신할 수도 있다. 제어 신호 및 데이터만을 MTC 전용 서브프레임을 통해 수신하는 경우 추가적인 시스템 정보가 MTC 전용 서브프레임을 통하여 전송될 수 있다. MTC 전용 서브프레임의 할당은 주기적 또는 비주기적으로 변할 수 있으며, 이에 대한 정보는 상위 계층 시그널링을 통해 MTC 장치로 전송될 수 있다.
또는, 기존의 HTC 장치에 대한 영향을 최소화 하기 위하여, HTC 장치는 기존의 프레임 구조를 기반으로 동작하고 MTC 장치는 가상 구조(virtual structure)를 기반으로 동작할 수 있다. 가상 구조는 앞서 설명한 바와 같이 특정 서브프레임에서 MTC 장치만의 접속을 허용하는지 여부, 특정 서브프레임의 제어 신호의 전송 및 수신의 수행 여부, 특정 서브프레임의 데이터의 전송 및 수신의 수행 여부 등을 포함할 수 있다. 가상 구조에 대한 정보는 각 MTC 장치로 상위 계층 시그널링을 통해 전송되거나, MTC 장치만을 위하여 설정된 PBCH를 통해 전송될 수 있다.
3) FDM을 기반으로 하는 전용 자원 할당
기지국은 특정 주파수 영역을 MTC 전용 주파수 영역으로 할당할 수 있다. MTC 전용 주파수 영역은 PRB 또는 복수의 PRB를 포함하는 PRB 그룹을 단위로 할당될 수 있다. 또는, FFR(Fractional Frequency Reuse)와 같은 이유로 전체 시스템 대역폭이 복수의 주파수 파티션(frequency partition)으로 분할된 경우, 특정 주파수 파티션을 MTC 전용 주파수 영역으로 할당할 수 있다. FDM 방식으로 MTC 전용 무선 자원이 할당되는 경우, PDCCH는 기존의 방식과 동일한 방식으로 전송될 수 있다. 그러나 PDSCH 또는 PUSCH의 전송을 위한 DMRS의 전송에 있어서, 기존의 DMRS 패턴에서 특정 OFDM 심벌에 위치한 DMRS를 펑처링하여 DMRS 오버헤드를 줄일 수 있고, 또는 새로운 DMRS 패턴이 정의될 수도 있다. 또한, MTC 장치를 위한 MTC 전용 PDCCH를 기존의 PDCCH와 TDM, FDM 또는 TDM/FDM의 혼합 방식으로 다중화할 수 있다.
지금까지 설명한 방법에 의하여 MTC 장치만을 위한 무선 자원이 할당될 수 있다. 제안된 자원 할당 방법은 하향링크와 상향링크에 서로 다르게 적용될 수 있다. 예를 들어 하향링크에서는 TDM 기반 MTC 전용 자원이 할당될 수 있고, 상향링크에서는 FDM 기반 MTC 전용 자원이 할당될 수 있다. 한편, 제안된 자원 할당 방법이 MTC 장치를 위한 무선 자원을 할당하는 데에 적용되는 것으로 설명되었으나, 이에 제한되는 것은 아니다. 즉, MTC 장치 이외에 다른 특성을 가진 단말들을 위하여 본 발명이 적용될 수 있다. 예를 들어 이동성이 전혀 없는 고정된 단말을 위한 전용 무선 자원을 할당하기 위하여 본 발명이 적용될 수 있다. 또는, 저전력 소비(low-power consumption) 단말을 위한 전용 무선 자원을 할당하기 위하여 본 발명이 적용될 수 있다.
도 11은 제안된 자원 할당 방법의 일 실시예를 나타낸다.
단계 S100에서 기지국은 MTC 전용 무선 자원과 일반 무선 자원을 할당한다. 단계 S110에서 기지국은 상기 MTC 전용 무선 자원을 통해 적어도 하나의 MTC 장치와 통신한다. 이때 상기 MTC 전용 무선 자원은 상기 적어도 하나의 MTC 장치와의 통신만을 지원하며, 상기 MTC 전용 무선 자원과 상기 일반 무선 자원은 서로 다른 무선 자원일 수 있다.
도 12는 본 발명의 실시예가 구현되는 무선 통신 시스템의 블록도이다.
기지국(800)은 프로세서(810; processor), 메모리(820; memory) 및 RF부(830; Radio Frequency unit)을 포함한다. 프로세서(810)는 제안된 기능, 과정 및/또는 방법을 구현한다. 무선 인터페이스 프로토콜의 계층들은 프로세서(810)에 의해 구현될 수 있다. 메모리(820)는 프로세서(810)와 연결되어, 프로세서(810)를 구동하기 위한 다양한 정보를 저장한다. RF부(830)는 프로세서(810)와 연결되어, 무선 신호를 전송 및/또는 수신한다.
단말(900)은 프로세서(910), 메모리(920) 및 RF부(930)을 포함한다. 프로세서(910)는 제안된 기능, 과정 및/또는 방법을 구현한다. 무선 인터페이스 프로토콜의 계층들은 프로세서(910)에 의해 구현될 수 있다. 메모리(920)는 프로세서(910)와 연결되어, 프로세서(910)를 구동하기 위한 다양한 정보를 저장한다. RF부(930)는 프로세서(910)와 연결되어, 무선 신호를 전송 및/또는 수신한다.
프로세서(810, 910)은 ASIC(application-specific integrated circuit), 다른 칩셋, 논리 회로 및/또는 데이터 처리 장치를 포함할 수 있다. 메모리(820, 920)는 ROM(read-only memory), RAM(random access memory), 플래쉬 메모리, 메모리 카드, 저장 매체 및/또는 다른 저장 장치를 포함할 수 있다. RF부(830, 930)은 무선 신호를 처리하기 위한 베이스밴드 회로를 포함할 수 있다. 실시예가 소프트웨어로 구현될 때, 상술한 기법은 상술한 기능을 수행하는 모듈(과정, 기능 등)로 구현될 수 있다. 모듈은 메모리(820, 920)에 저장되고, 프로세서(810, 910)에 의해 실행될 수 있다. 메모리(820, 920)는 프로세서(810, 910) 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 프로세서(810, 910)와 연결될 수 있다.
상술한 예시적인 시스템에서, 방법들은 일련의 단계 또는 블록으로써 순서도를 기초로 설명되고 있지만, 본 발명은 단계들의 순서에 한정되는 것은 아니며, 어떤 단계는 상술한 바와 다른 단계와 다른 순서로 또는 동시에 발생할 수 있다. 또한, 당업자라면 순서도에 나타낸 단계들이 배타적이지 않고, 다른 단계가 포함되거나 순서도의 하나 또는 그 이상의 단계가 본 발명의 범위에 영향을 미치지 않고 삭제될 수 있음을 이해할 수 있을 것이다.
상술한 실시예들은 다양한 양태의 예시들을 포함한다. 다양한 양태들을 나타내기 위한 모든 가능한 조합을 기술할 수는 없지만, 해당 기술 분야의 통상의 지식을 가진 자는 다른 조합이 가능함을 인식할 수 있을 것이다. 따라서, 본 발명은 이하의 특허청구범위 내에 속하는 모든 다른 교체, 수정 및 변경을 포함한다고 할 것이다.

Claims (13)

  1. 무선 통신 시스템에서 무선 자원 할당 방법에 있어서,
    머신형 통신(MTC; Machine Type Communication) 전용 무선 자원(radio resource)과 일반 무선 자원을 할당하고,
    상기 MTC 전용 무선 자원을 통해 적어도 하나의 MTC 장치와 통신하는 것을 포함하되,
    상기 MTC 전용 무선 자원은 상기 적어도 하나의 MTC 장치와의 통신만을 지원하며,
    상기 MTC 전용 무선 자원과 상기 일반 무선 자원은 서로 다른 무선 자원인 것을 특징으로 하는 무선 자원 할당 방법.
  2. 제 1 항에 있어서,
    상기 MTC 전용 무선 자원은 적어도 하나의 MTC 전용 구성 반송파(CC; Component Carrier)를 포함하며,
    상기 일반 무선 자원은 적어도 하나의 일반 CC를 포함하는 것을 특징으로 하는 무선 자원 할당 방법.
  3. 제 2 항에 있어서,
    상기 적어도 하나의 MTC 전용 CC에 대한 정보는 상위 계층(higher layer)을 통해 전송되는 것을 특징으로 하는 무선 자원 할당 방법.
  4. 제 2 항에 있어서,
    상기 적어도 하나의 MTC 전용 CC에서의 PDCCH(Physical Downlink Control Channel) 전송 방식, CSI-RS(Channel State Information Reference Signal) 전송 주기 또는 TTI(Transmission Time Interval) 중 적어도 어느 하나는 상기 적어도 하나의 일반 CC와 별도로 설정되는 것을 특징으로 하는 무선 자원 할당 방법.
  5. 제 4 항에 있어서,
    상기 적어도 하나의 MTC 전용 CC에서의 PDCCH 전송 방식은 인터리빙(interleaving) 방식의 PDCCH와 논인터리빙(non-interleaving) 방식의 PDCCH가 다중화되어 전송되는 것을 특징으로 하는 무선 자원 할당 방법.
  6. 제 4 항에 있어서,
    상기 적어도 하나의 MTC 전용 CC에서의 TTI는 1ms보다 긴 것을 특징으로 하는 무선 자원 할당 방법.
  7. 제 1 항에 있어서,
    상기 MTC 전용 무선 자원과 상기 일반 무선 자원은 시분할 다중(TDM; Time Division Multiplexing) 방식으로 다중화 되며,
    상기 MTC 전용 무선 자원은 적어도 하나의 MTC 전용 서브프레임(subframe)을 포함하는 것을 특징으로 하는 무선 자원 할당 방법.
  8. 제 7 항에 있어서,
    상기 적어도 하나의 MTC 전용 서브프레임은 MBSFN(Multicast Broadcast Single Frequency Network) 서브프레임인 것을 특징으로 하는 무선 자원 할당 방법.
  9. 제 7 항에 있어서,
    상기 적어도 하나의 MTC 전용 서브프레임에 대한 정보는 상위 계층 또는 상기 MTC 장치만을 위하여 설정된 브로드캐스트 채널(BCH; Broadcast Channel)을 통해 전송되는 것을 특징으로 하는 무선 자원 할당 방법.
  10. 제 1 항에 있어서,
    상기 MTC 전용 무선 자원과 상기 일반 무선 자원은 주파수 분할 다중(FDM; Frequency Division Multiplexing) 방식으로 다중화 되며,
    상기 MTC 전용 무선 자원은 MTC 전용 주파수 영역을 포함하는 것을 특징으로 하는 무선 자원 할당 방법.
  11. 제 10 항에 있어서,
    상기 MTC 전용 주파수 영역은 적어도 하나의 물리 자원 블록(PRB; Physical Resource Block) 또는 복수의 PRB를 포함하는 적어도 하나의 PRB 그룹을 포함하는 것을 특징으로 하는 무선 자원 할당 방법.
  12. 제 10 항에 있어서,
    상기 MTC 전용 주파수 영역은 특정 주파수 파티션(frequency partition)을 포함하는 것을 특징으로 하는 무선 자원 할당 방법.
  13. 무선 통신 시스템에서,
    무선 신호를 전송 또는 수신하는 RF(Radio Frequency)부; 및
    상기 RF부와 연결되는 프로세서를 포함하되,
    상기 프로세서는,
    머신형 통신(MTC; Machine Type Communication) 전용 무선 자원(radio resource)과 일반 무선 자원을 할당하고,
    상기 MTC 전용 무선 자원을 통해 적어도 하나의 MTC 장치와 통신하도록 구성되며,
    상기 MTC 전용 무선 자원은 상기 적어도 하나의 MTC 장치와의 통신만을 지원하며,
    상기 MTC 전용 무선 자원과 상기 일반 무선 자원은 서로 다른 무선 자원인 것을 특징으로 하는 장치.
PCT/KR2011/004907 2010-07-06 2011-07-05 무선 통신 시스템에서 머신형 통신 장치를 위한 무선 자원 할당 방법 및 장치 WO2012005494A2 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/808,133 US8902844B2 (en) 2010-07-06 2011-07-05 Method and device for allocating wireless resources for a machine type communication device in a wireless communication system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US36189410P 2010-07-06 2010-07-06
US61/361,894 2010-07-06

Publications (2)

Publication Number Publication Date
WO2012005494A2 true WO2012005494A2 (ko) 2012-01-12
WO2012005494A3 WO2012005494A3 (ko) 2012-05-03

Family

ID=45441640

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/004907 WO2012005494A2 (ko) 2010-07-06 2011-07-05 무선 통신 시스템에서 머신형 통신 장치를 위한 무선 자원 할당 방법 및 장치

Country Status (2)

Country Link
US (1) US8902844B2 (ko)
WO (1) WO2012005494A2 (ko)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2497743A (en) * 2011-12-19 2013-06-26 Sca Ipla Holdings Inc Enabling MTC devices to communicate using LTE-type networks
WO2013137699A1 (ko) * 2012-03-16 2013-09-19 엘지전자 주식회사 상향 링크 전송 방법 및 장치
WO2013165183A1 (ko) * 2012-05-02 2013-11-07 엘지전자 주식회사 저비용 기계 타입 통신을 위한 제어정보전송방법 및 이를 지원하는 장치
WO2013185591A1 (zh) * 2012-06-13 2013-12-19 中国移动通信集团公司 一种控制信道传输方法、装置及基站设备
US20140004895A1 (en) * 2012-06-27 2014-01-02 Electronics & Telecommunications Research Institute Data transmitting method for machine type communication (mtc) service and communication apparatus using the same
WO2014126395A1 (ko) * 2013-02-13 2014-08-21 엘지전자 주식회사 기계 타입 통신을 지원하는 무선 접속 시스템에서 시스템 대역폭 할당 방법 및 이를 지원하는 장치
EP2822328A1 (en) * 2013-07-04 2015-01-07 Alcatel Lucent Apparatuses, methods, and computer programs for a mobile transceiver and for a base station transceiver
WO2015012507A1 (ko) * 2013-07-26 2015-01-29 엘지전자 주식회사 Mtc 기기의 송수신 방법
US9001946B2 (en) 2012-07-03 2015-04-07 Electronics And Telecommunications Research Institute Method of receiving downlink data, and machine type communication device using the method
US9493511B2 (en) 2010-10-12 2016-11-15 Allergan, Inc. Cyclosporin analogs
KR20170051427A (ko) * 2014-09-02 2017-05-11 퀄컴 인코포레이티드 무선 통신 시스템에서의 낮은-레이턴시, 낮은-대역폭, 및 낮은 듀티 사이클 동작
WO2017185295A1 (zh) * 2016-04-28 2017-11-02 华为技术有限公司 通信方法、网络侧设备和车辆终端设备

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101873698B (zh) * 2009-04-23 2012-12-26 中国移动通信集团公司 信号传送方法及其相关设备
RU2562059C2 (ru) * 2010-07-22 2015-09-10 Эл Джи Электроникс Инк. Способ и устройство для передачи и приема данных нисходящей линии связи для мобильной станции без мобильности в состоянии бездействия
US20130121300A1 (en) * 2010-07-22 2013-05-16 Lg Electronics Inc. Method for reentering network of no-mobility mobile station in idle state and method for supporting same
HUE061949T2 (hu) 2010-12-03 2023-09-28 Interdigital Patent Holdings Inc Eljárások, berendezések és rendszerek multi-rádió hozzáférési technológiás vivõaggregáció megvalósítására
CN103518415B (zh) 2011-02-11 2017-05-24 交互数字专利控股公司 用于增强型控制信道的系统和方法
KR102039714B1 (ko) 2011-10-28 2019-11-29 삼성전자주식회사 통신 시스템에서의 물리 하향링크 제어 채널 검색 방법
WO2013073924A1 (en) 2011-11-18 2013-05-23 Samsung Electronics Co., Ltd. Low bandwidth machine type communication in a long term evolution network
KR102524731B1 (ko) * 2012-01-27 2023-04-21 인터디지탈 패튼 홀딩스, 인크 다중 캐리어 기반형 및/또는 의사 조합형 네트워크에서 epdcch를 제공하는 시스템 및/또는 방법
CN102665230B (zh) * 2012-04-23 2014-07-09 电信科学技术研究院 一种e-pdcch传输及盲检的方法及装置
KR20140022669A (ko) * 2012-08-14 2014-02-25 한국전자통신연구원 다중 전송경로를 제공하는 사물지능통신 시스템 및 그 구동 방법
RU2603626C2 (ru) 2012-08-23 2016-11-27 Интердиджитал Пэйтент Холдингз, Инк. Работа с множеством планировщиков в беспроводной системе
US9088332B2 (en) * 2012-10-05 2015-07-21 Telefonaktiebolaget L M Ericsson (Publ) Mitigation of interference from a mobile relay node to heterogeneous networks
US9432797B2 (en) 2013-01-14 2016-08-30 Qualcomm Incorporated Broadcast and system information for machine type communication
US9497733B2 (en) * 2013-02-13 2016-11-15 Qualcomm Incorporated Single-frequency network (SFN) operation for machine-type communications (MTC) coverage enhancements
WO2015026392A1 (en) * 2013-08-22 2015-02-26 Fujitsu Limited System information broadcast in machine-to-machine radio access systems
BR112016013114A2 (pt) * 2013-12-20 2017-08-08 Ericsson Telefon Ab L M Métodos e aparelhos para reduzir a sobrecarga usando reciprocidade de canal
CN106664175B (zh) * 2014-06-27 2020-11-06 苹果公司 用于具有窄带部署的MTC的UE和eNB的方法和装置
WO2016003360A1 (en) * 2014-07-04 2016-01-07 Telefonaktiebolaget L M Ericsson (Publ) Managing operation of multiple radio access technologies
US10834558B2 (en) * 2014-10-21 2020-11-10 Lg Electronics Inc. Method for transmitting and receiving D2D signal in wireless communication system, and apparatus therefor
US20160127936A1 (en) * 2014-11-05 2016-05-05 Debdeep CHATTERJEE User equipment and methods for csi measurements with reduced bandwidth support
US9602953B2 (en) * 2014-12-08 2017-03-21 Intel Corporation Techniques and configurations associated with partitioning of a communication band
EP3032772A1 (en) * 2014-12-10 2016-06-15 Gemalto M2M GmbH Method for data transmission in a cellular network to low-capability devices
US10469222B2 (en) * 2014-12-16 2019-11-05 Lg Electronics Inc. Method and MTC device for transmitting DMRS for uplink data demodulation
JP2018500840A (ja) 2014-12-31 2018-01-11 ホアウェイ・テクノロジーズ・カンパニー・リミテッド 通信方法、通信システム及び装置
CN107210881B (zh) 2015-01-30 2021-01-29 瑞典爱立信有限公司 配置无线通信资源的方法、基站和通信装置
WO2016144075A1 (en) * 2015-03-06 2016-09-15 Lg Electronics Inc. Method and apparatus for handling starting subframe of control channel for mtc ue in wireless communication system
CN107113796A (zh) * 2015-08-21 2017-08-29 华为技术有限公司 资源分配、指示及识别资源类型、接收数据的方法及装置
CN109803413B (zh) * 2017-11-17 2023-04-18 中兴通讯股份有限公司 资源确定、信息发送方法及装置,存储介质,处理器
WO2019213941A1 (en) 2018-05-11 2019-11-14 Qualcomm Incorporated Aperiodic channel state information computation for cross-carrier scheduling

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2680655A1 (en) * 2008-10-31 2014-01-01 Interdigital Patent Holdings, Inc. Providing control information for multi-carrier uplink transmission
EP2200208A1 (en) * 2008-12-19 2010-06-23 Panasonic Corporation HARQ ACK/NACK for dynamic PDSCH
US8325685B2 (en) * 2010-02-12 2012-12-04 Research In Motion Limited System and method for improved control channel transmit diversity
US8660082B2 (en) * 2010-02-26 2014-02-25 Telefonaktiebolaget L M Ericsson Method and arrangement in a radio-access network
WO2011128725A1 (en) * 2010-04-13 2011-10-20 Nokia Corporation Method and apparatus for providing machine initial access procedure for machine to machine communication
US9258807B2 (en) * 2010-05-03 2016-02-09 Intel Deutschland Gmbh Communication network device, communication terminal, and communication resource allocation methods
US20110310854A1 (en) * 2010-06-17 2011-12-22 Jialin Zou Method of determining access times for wireless communication devices

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
'3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Service Improvements for machine-type communication; (Release 10)' 3GPP TS 23.888 V0.1.0 December 2009, *
'3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Service requirements for machine-type communications; Stage 1 (Release 10)' 3GPP TS 22.368. V1.1.1 November 2009, *
'3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Study on Facilitating Machine to Machine Communication in 3GPP Systems; (Release 10)' 3GPP TS 22.868 V8.0.0 March 2007, *

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9493511B2 (en) 2010-10-12 2016-11-15 Allergan, Inc. Cyclosporin analogs
US11129153B2 (en) 2011-12-19 2021-09-21 Sca Ipla Holdings Inc. Telecommunications systems and methods for machine type communication
GB2497743A (en) * 2011-12-19 2013-06-26 Sca Ipla Holdings Inc Enabling MTC devices to communicate using LTE-type networks
US10178662B2 (en) 2011-12-19 2019-01-08 Sca Ipla Holdings Inc. Telecommunications systems and methods for machine type communication
US9949253B2 (en) 2011-12-19 2018-04-17 Sca Ipla Holdings Inc Telecommunications systems and methods for machine type communication
GB2497743B (en) * 2011-12-19 2017-09-27 Sca Ipla Holdings Inc Telecommunications systems and methods
US9572147B2 (en) 2011-12-19 2017-02-14 Sca Ipla Holdings Inc Telecommunications systems and methods for machine type communication
US10219275B2 (en) 2012-03-16 2019-02-26 Lg Electronics Inc. Method and apparatus for uplink transmission
WO2013137699A1 (ko) * 2012-03-16 2013-09-19 엘지전자 주식회사 상향 링크 전송 방법 및 장치
US9485758B2 (en) 2012-03-16 2016-11-01 Lg Electronics Inc. Method and apparatus for uplink transmission
WO2013165183A1 (ko) * 2012-05-02 2013-11-07 엘지전자 주식회사 저비용 기계 타입 통신을 위한 제어정보전송방법 및 이를 지원하는 장치
US9491741B2 (en) 2012-05-02 2016-11-08 Lg Electronics Inc. Method for transmitting control information on low-cost machine-type communication, and apparatus for supporting same
WO2013185591A1 (zh) * 2012-06-13 2013-12-19 中国移动通信集团公司 一种控制信道传输方法、装置及基站设备
CN103491042B (zh) * 2012-06-13 2016-09-07 中国移动通信集团公司 一种控制信道传输方法、装置及基站设备
CN103491042A (zh) * 2012-06-13 2014-01-01 中国移动通信集团公司 一种控制信道传输方法、装置及基站设备
US20140004895A1 (en) * 2012-06-27 2014-01-02 Electronics & Telecommunications Research Institute Data transmitting method for machine type communication (mtc) service and communication apparatus using the same
US9001946B2 (en) 2012-07-03 2015-04-07 Electronics And Telecommunications Research Institute Method of receiving downlink data, and machine type communication device using the method
WO2014126395A1 (ko) * 2013-02-13 2014-08-21 엘지전자 주식회사 기계 타입 통신을 지원하는 무선 접속 시스템에서 시스템 대역폭 할당 방법 및 이를 지원하는 장치
US10244535B2 (en) 2013-02-13 2019-03-26 Lg Electronics Inc. Method for allotting system bandwidth in wireless access system supporting machine-type communication and apparatus for supporting same
WO2015000611A1 (en) * 2013-07-04 2015-01-08 Alcatel Lucent Apparatuses, methods, and computer programs for a mobile transceiver and for a base station transceiver
EP2822328A1 (en) * 2013-07-04 2015-01-07 Alcatel Lucent Apparatuses, methods, and computer programs for a mobile transceiver and for a base station transceiver
US10375529B2 (en) 2013-07-26 2019-08-06 Lg Electronics Inc. Transmission/reception method for MTC apparatus
US10863320B2 (en) 2013-07-26 2020-12-08 Lg Electronics Inc. Transmission/reception method for MTC apparatus
WO2015012507A1 (ko) * 2013-07-26 2015-01-29 엘지전자 주식회사 Mtc 기기의 송수신 방법
KR20170051427A (ko) * 2014-09-02 2017-05-11 퀄컴 인코포레이티드 무선 통신 시스템에서의 낮은-레이턴시, 낮은-대역폭, 및 낮은 듀티 사이클 동작
KR102438053B1 (ko) * 2014-09-02 2022-08-29 퀄컴 인코포레이티드 무선 통신 시스템에서의 낮은-레이턴시, 낮은-대역폭, 및 낮은 듀티 사이클 동작
US11683790B2 (en) 2014-09-02 2023-06-20 Qualcomm Incorporated Low-latency, low-bandwidth and low duty cycle operation in a wireless communication system
WO2017185295A1 (zh) * 2016-04-28 2017-11-02 华为技术有限公司 通信方法、网络侧设备和车辆终端设备

Also Published As

Publication number Publication date
WO2012005494A3 (ko) 2012-05-03
US8902844B2 (en) 2014-12-02
US20130176995A1 (en) 2013-07-11

Similar Documents

Publication Publication Date Title
WO2012005494A2 (ko) 무선 통신 시스템에서 머신형 통신 장치를 위한 무선 자원 할당 방법 및 장치
US11038660B2 (en) Method and apparatus for configuring frame structure and frequency hopping for MTC UE in wireless communication system
US10644860B2 (en) Method and apparatus for transmitting control information in wireless communication system
EP2683098B1 (en) Method and apparatus for searching control information by terminal in multinode system
KR101925031B1 (ko) 상향링크 제어정보 전송방법 및 사용자기기와, 상향링크 제어정보 수신방법 및 기지국
KR102127535B1 (ko) 무선통신시스템에서 제어정보 전송/획득 방법 및 장치
EP2675085B1 (en) Method and device for transmitting control information in wireless communication system
EP2763338B1 (en) Method and apparatus for transmitting channel state information in wireless communication system
US8867441B2 (en) Wireless apparatus for a multi-carrier system
US20150334695A1 (en) Method for transmitting an srs-triggering-based srs in a wireless communication system
WO2012074318A2 (ko) 무선 통신 시스템에서 하향링크 제어 신호 전송 방법 및 장치
KR101588750B1 (ko) 저비용 기계 타입 통신을 위한 제어정보전송방법 및 이를 지원하는 장치
KR101789814B1 (ko) 반송파 집성 시스템에서 단말의 제어정보 디코딩 방법 및 단말
WO2012008812A2 (ko) 무선 통신 시스템에서 비주기적 사운딩 참조 신호 전송 방법 및 장치
KR20100096035A (ko) 다중 반송파 시스템에서 제어채널을 모니터링하는 장치 및 방법
KR20110093720A (ko) 무선 통신 시스템에서 데이터 전송 방법 및 장치
KR102031095B1 (ko) 무선 통신 시스템에서 단말이 하향링크 제어 채널을 수신하는 방법 및 이를 위한 장치
US9350510B2 (en) Method and apparatus for acquiring control information in a wireless communication system
KR20140082769A (ko) 무선통신시스템에서 제어정보 송수신 방법 및 장치
WO2015065151A1 (ko) Mtc를 위한 신호 처리 방법 및 이를 위한 장치
US9661621B2 (en) Method and device for obtaining control information in a wireless communication system
KR20130020645A (ko) 제어 채널의 할당 방법 및 이를 위한 장치
KR20120008473A (ko) 무선 통신 시스템에서 비주기적 사운딩 참조 신호 전송 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11803780

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 13808133

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11803780

Country of ref document: EP

Kind code of ref document: A2