WO2012005123A1 - 通信装置およびリソース導出方法 - Google Patents
通信装置およびリソース導出方法 Download PDFInfo
- Publication number
- WO2012005123A1 WO2012005123A1 PCT/JP2011/064560 JP2011064560W WO2012005123A1 WO 2012005123 A1 WO2012005123 A1 WO 2012005123A1 JP 2011064560 W JP2011064560 W JP 2011064560W WO 2012005123 A1 WO2012005123 A1 WO 2012005123A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- predetermined information
- pusch
- transport block
- transmitted
- assigned
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/26—Systems using multi-frequency codes
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/0413—MIMO systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/12—Arrangements for detecting or preventing errors in the information received by using return channel
- H04L1/16—Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
- H04L1/18—Automatic repetition systems, e.g. Van Duuren systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/12—Arrangements for detecting or preventing errors in the information received by using return channel
- H04L1/16—Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
- H04L1/18—Automatic repetition systems, e.g. Van Duuren systems
- H04L1/1829—Arrangements specially adapted for the receiver end
- H04L1/1861—Physical mapping arrangements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0053—Allocation of signaling, i.e. of overhead other than pilot signals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0053—Allocation of signaling, i.e. of overhead other than pilot signals
- H04L5/0055—Physical resource allocation for ACK/NACK
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/004—Arrangements for detecting or preventing errors in the information received by using forward error control
- H04L1/0072—Error control for data other than payload data, e.g. control data
- H04L1/0073—Special arrangements for feedback channel
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/12—Arrangements for detecting or preventing errors in the information received by using return channel
- H04L2001/125—Arrangements for preventing errors in the return channel
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/0001—Arrangements for dividing the transmission path
- H04L5/0014—Three-dimensional division
- H04L5/0023—Time-frequency-space
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
Definitions
- the present invention relates to a technology in which a mobile device and a base station are independently derived and communicated.
- HARQ-ACK and RANK INDICATOR (hereinafter referred to as RI)
- UE User Equipment: mobile station
- eNodeB base station
- PUSCH PUSCH used for transmission.
- HARQ-ACK here is an acknowledgment indicating to the eNodeB whether or not the UE has correctly received the downlink data transmitted from the eNodeB, and has two states, positive acknowledgment and negative acknowledgment.
- RI is an index indicating the rank of the downlink MIMO communication path (from eNodeB to UE) when performing MIMO (Multiple Input Multiple Output) communication between UE and eNodeB, and is notified from UE to eNodeB. is there.
- the rank represents the number of communication channels that can be spatially multiplexed in MIMO communication, and the upper limit is the smaller of the number of transmitting antennas and the number of receiving antennas facing each other.
- Each spatially multiplexed data communication path is called a layer.
- the UE and eNodeB independently calculate the number of resources required when the UE transmits HARQ-ACK or RI to the eNodeB via PUSCH.
- the HARQ-ACK or RI is sent and received with the recognition of.
- uplink resources are managed in a two-dimensional space consisting of a virtual frequency axis and a time axis so that they can be handled in the same way as downlink resources.
- the frequency axis is divided into subcarriers (15 kHz)
- the time axis is divided into SC-FDMA symbols
- the divided areas (grids) are called resource elements (hereinafter referred to as RE). It is.
- RE resource elements
- Non-patent Document 1 In LTE Release 8, only 1 antenna transmission (that is, non-MIMO) PUSCH is supported for uplink data transmission.
- the following formula 1 is defined (Non-patent Document 1).
- the min () function on the right side is a function that selects the minimum value among the arguments, as in the general definition.
- M_sc ⁇ PUSCH-Initial represents a frequency resource allocated to data (transport block) transmitted by PUSCH in a unit equivalent to a subcarrier (ie, 15 kHz unit), and HARQ-ACK or RI Represents a resource allocated at the time of initial transmission (regardless of whether it is initial transmission or re-transmission) for a transport block transmitted by PUSCH in which is multiplexed.
- the first transmission here indicates the transmission in which the transport block is transmitted first, and the re-transmission means that the transport block (data) cannot be correctly received at the first transmission by eNodeB. Indicates that the transport block is transmitted again.
- N_symb ⁇ PUSCH-Initial indicates the number of SC-FDMA symbols when the transport block is transmitted for the first time.
- K_r indicates the number of bits included in the r-th code block (starting from 0) after being divided into C code blocks in order to turbo-code the transport block. Therefore, the denominator of the argument of the first item indicates the total number of bits after the transport block is divided into code blocks.
- Equation 1 the product of M_sc ⁇ PUSCH-Initial and N_symb ⁇ PUSCH-Initial divided by the denominator is necessary to transmit one bit of the transport block after code block division while satisfying the required quality. It can be interpreted as indicating the number of resources.
- O (O) indicates the number of HARQ-ACK or RI information bits multiplexed on PUSCH.
- ⁇ _offset ⁇ PUSCH indicates the coefficient (or offset, multiple, magnification) required to satisfy the transmission quality of HARQ-ACK transmission and RI transmission based on the transmission quality of the transport block. This value is preset according to the target type (HARQ-ACK or RI) and is shared between the eNodeB and the UE. Since required quality differs between HARQ-ACK and RI, different values can be set.
- the argument of the second item of the min () function, 4M_sc ⁇ PUSCH gives the upper limit of the number of resources that can be allocated to HARQ-ACK and RI in PUSCH where HARQ-ACK and RI are actually multiplexed. .
- LTE-Advanced the next generation communication standard of LTE, makes it possible to apply MIMO to PUSCH, which is an uplink data channel.
- MIMO is applied, depending on the rank of the MIMO communication channel, one data can be sent by PUSCH if the rank is 1, and multiple data (transport blocks) can be sent if the rank is greater than 1.
- These data are each encoded when transmitted by PUSCH, and the encoded data is called a code word.
- Equation 1 specified in Release 8 can be applied when the number of code words is 1, but when the number of code words is greater than 1, Not applicable. Therefore, in such a case, there is a problem that the number of resources necessary for transmitting HARQ-ACK or RI cannot be calculated.
- LTE-Advanced introduces a technology called carrier aggregation that handles multiple carriers together. As a result, it becomes necessary to simultaneously transmit HARQ-ACK and RI multiple times the number of carriers, and there is a problem that the number of bits of HARQ-ACK and RI increases.
- an object of the present invention is to solve the above-described problem, and multiplex the predetermined information such as HARQ-ACK or RI into a plurality of code words transmitted by PUSCH and transmit the number of HARQ-ACK resources in the carrier code.
- An object of the present invention is to provide a communication device and a resource derivation method that can be derived while alleviating an increase due to aggregation.
- the first communication device of the present invention is In the PUSCH, a communication device that transmits or receives predetermined information using one or more codewords, A communication unit for transmitting or receiving the predetermined information; A control unit, The controller is The number of information bits of the predetermined information is O, the number of subcarriers assigned to the transport block transmitted on the PUSCH at the time of initial transmission is assigned to M_sc ⁇ PUSCH-Initial, and assigned to the transport block at the time of initial transmission.
- the coefficient set in advance according to the predetermined information type is ⁇ _offset ⁇ PUSCH
- the transport block is divided into C code blocks for turbo coding
- the number of bits included in the r-th code block is K_r
- the number of resources Q′_i in the case where it is assumed that the predetermined information is transmitted using the i-th code word CW_i alone is calculated by the following equation:
- the one or more codewords are The number of resources Q ′ in the case where the predetermined information is transmitted using is calculated by the following equation.
- the second communication device of the present invention In the PUSCH, a communication device that transmits or receives predetermined information using one or more codewords, A communication unit for transmitting or receiving the predetermined information; A control unit, The controller is The number of information bits of the predetermined information is O, the number of subcarriers assigned to the transport block transmitted on the PUSCH at the time of initial transmission is assigned to M_sc ⁇ PUSCH-Initial, and assigned to the transport block at the time of initial transmission.
- the coefficient set in advance according to the predetermined information type is ⁇ _offset ⁇ PUSCH
- the transport block is divided into C code blocks for turbo coding
- the number of bits included in the r-th code block is K_r
- the number of subcarriers assigned to the transport block when transmitting the predetermined information is M_sc ⁇ PUSCH
- the i-th code word CW_i alone Use in the above place
- the number of resources Q'_i by the following equation on the assumption that transmits the information
- the number of resources Q ′ when the predetermined information is transmitted using the one or more codewords is calculated by the following equation.
- the third communication device of the present invention In the PUSCH, a communication device that transmits or receives predetermined information using one or more codewords, A communication unit for transmitting or receiving the predetermined information; A control unit, The controller is The number of information bits of the predetermined information is O, the number of subcarriers assigned to the transport block transmitted on the PUSCH at the time of initial transmission is assigned to M_sc ⁇ PUSCH-Initial, and assigned to the transport block at the time of initial transmission.
- the coefficient set in advance according to the predetermined information type is ⁇ _offset ⁇ PUSCH
- the transport block is divided into C code blocks for turbo coding
- the number of bits included in the r-th code block is K_r
- the one or more codewords are The number of resources Q ′ in the case where the predetermined information is transmitted using is calculated by the following equation.
- the fourth communication device of the present invention is In the PUSCH, a communication device that transmits or receives predetermined information using one or more codewords, A communication unit for transmitting or receiving the predetermined information; A control unit, The controller is The number of information bits of the predetermined information is O, the number of subcarriers assigned to the transport block transmitted on the PUSCH at the time of initial transmission is assigned to M_sc ⁇ PUSCH-Initial, and assigned to the transport block at the time of initial transmission.
- N_sym ⁇ PUSCH-Initial the number of symbols set in advance according to the predetermined information type is ⁇ , ⁇ _offset ⁇ PUSCH, and the transport block is divided into C code blocks for turbo coding
- the number of bits included in the r-th code block after K is assumed to be K_r
- the number of resources Q′_i in the case where it is assumed that the predetermined information is transmitted using the i-th code word CW_i alone is Calculate with
- the one or more codewords are The number of resources Q ′ in the case where the predetermined information is transmitted using is calculated by the following equation.
- the fifth communication device of the present invention In the PUSCH, a communication device that transmits or receives predetermined information using one or more codewords, A communication unit for transmitting or receiving the predetermined information; A control unit, The controller is The number of information bits of the predetermined information is O, the number of subcarriers assigned to the transport block transmitted on the PUSCH at the time of initial transmission is assigned to M_sc ⁇ PUSCH-Initial, and assigned to the transport block at the time of initial transmission.
- the number of symbols set in advance according to the predetermined information type is ⁇ , ⁇ _offset ⁇ PUSCH, and the transport block is divided into C code blocks for turbo coding
- the number of bits included in the r-th code block after the transmission is K_r and the number of subcarriers assigned when the predetermined information is transmitted to the transport block is M_sc ⁇ PUSCH
- the i-th code word CW_i Using the above alone alone
- the number of resources Q′_i when it is assumed that predetermined information is transmitted is calculated by the following equation:
- the number of resources Q ′ when the predetermined information is transmitted using the one or more codewords is calculated by the following equation.
- the sixth communication device of the present invention In the PUSCH, a communication device that transmits or receives predetermined information using one or more codewords, A communication unit for transmitting or receiving the predetermined information; A control unit, The controller is The number of information bits of the predetermined information is O, the number of subcarriers assigned to the transport block transmitted on the PUSCH at the time of initial transmission is assigned to M_sc ⁇ PUSCH-Initial, and assigned to the transport block at the time of initial transmission.
- N_sym ⁇ PUSCH-Initial the number of symbols set in advance according to the predetermined information type is ⁇ , ⁇ _offset ⁇ PUSCH, and the transport block is divided into C code blocks for turbo coding
- K_r the number of bits included in the r-th code block after K
- '_I is calculated by the following formula,
- the one or more codewords are The number of resources Q ′ in the case where the predetermined information is transmitted using is calculated by the following equation.
- the first resource derivation method of the present invention includes: A resource derivation method by a communication apparatus that transmits or receives predetermined information using one or more codewords in PUSCH,
- the number of information bits of the predetermined information is O
- the number of subcarriers assigned to the transport block transmitted on the PUSCH at the time of initial transmission is assigned to M_sc ⁇ PUSCH-Initial, and assigned to the transport block at the time of initial transmission.
- the coefficient set in advance according to the predetermined information type is ⁇ _offset ⁇ PUSCH
- the transport block is divided into C code blocks for turbo coding
- the number of bits included in the r-th code block is K_r
- the number of resources Q′_i in the case where it is assumed that the predetermined information is transmitted using the i-th code word CW_i alone is calculated by the following equation:
- the one or more codewords are The number of resources Q ′ in the case where the predetermined information is transmitted using is calculated by the following equation.
- the second resource derivation method of the present invention is: A resource derivation method by a communication apparatus that transmits or receives predetermined information using one or more codewords in PUSCH,
- the number of information bits of the predetermined information is O
- the number of subcarriers assigned to the transport block transmitted on the PUSCH at the time of initial transmission is assigned to M_sc ⁇ PUSCH-Initial, and assigned to the transport block at the time of initial transmission.
- the coefficient set in advance according to the predetermined information type is ⁇ _offset ⁇ PUSCH
- the transport block is divided into C code blocks for turbo coding
- the number of bits included in the r-th code block is K_r
- the number of subcarriers assigned to the transport block when transmitting the predetermined information is M_sc ⁇ PUSCH
- the i-th code word CW_i alone Use in the above place
- the number of resources Q'_i by the following equation on the assumption that transmits the information
- the number of resources Q ′ when the predetermined information is transmitted using the one or more codewords is calculated by the following equation.
- the third resource derivation method of the present invention is: A resource derivation method by a communication apparatus that transmits or receives predetermined information using one or more codewords in PUSCH,
- the number of information bits of the predetermined information is O
- the number of subcarriers assigned to the transport block transmitted on the PUSCH at the time of initial transmission is assigned to M_sc ⁇ PUSCH-Initial, and assigned to the transport block at the time of initial transmission.
- the coefficient set in advance according to the predetermined information type is ⁇ _offset ⁇ PUSCH
- the transport block is divided into C code blocks for turbo coding
- the number of bits included in the r-th code block is K_r
- the one or more codewords are The number of resources Q ′ in the case where the predetermined information is transmitted using is calculated by the following equation.
- the fourth resource derivation method of the present invention is as follows.
- a resource derivation method by a communication apparatus that transmits or receives predetermined information using one or more codewords in PUSCH The number of information bits of the predetermined information is O, the number of subcarriers assigned to the transport block transmitted on the PUSCH at the time of initial transmission is assigned to M_sc ⁇ PUSCH-Initial, and assigned to the transport block at the time of initial transmission.
- N_sym ⁇ PUSCH-Initial the number of symbols set in advance according to the predetermined information type is ⁇ , ⁇ _offset ⁇ PUSCH, and the transport block is divided into C code blocks for turbo coding
- the number of bits included in the r-th code block after K is assumed to be K_r
- the number of resources Q′_i in the case where it is assumed that the predetermined information is transmitted using the i-th code word CW_i alone is Calculate with
- the one or more codewords are The number of resources Q ′ in the case where the predetermined information is transmitted using is calculated by the following equation.
- the fifth resource derivation method of the present invention is: A resource derivation method by a communication apparatus that transmits or receives predetermined information using one or more codewords in PUSCH,
- the number of information bits of the predetermined information is O
- the number of subcarriers assigned to the transport block transmitted on the PUSCH at the time of initial transmission is assigned to M_sc ⁇ PUSCH-Initial, and assigned to the transport block at the time of initial transmission.
- the number of symbols set in advance according to the predetermined information type is ⁇ , ⁇ _offset ⁇ PUSCH, and the transport block is divided into C code blocks for turbo coding
- the number of bits included in the r-th code block after the transmission is K_r and the number of subcarriers assigned when the predetermined information is transmitted to the transport block is M_sc ⁇ PUSCH
- the i-th code word CW_i Using the above alone alone
- the number of resources Q′_i when it is assumed that predetermined information is transmitted is calculated by the following equation:
- the number of resources Q ′ when the predetermined information is transmitted using the one or more codewords is calculated by the following equation.
- the sixth resource derivation method of the present invention is as follows.
- a resource derivation method by a communication apparatus that transmits or receives predetermined information using one or more codewords in PUSCH The number of information bits of the predetermined information is O, the number of subcarriers assigned to the transport block transmitted on the PUSCH at the time of initial transmission is assigned to M_sc ⁇ PUSCH-Initial, and assigned to the transport block at the time of initial transmission.
- N_sym ⁇ PUSCH-Initial the number of symbols set in advance according to the predetermined information type is ⁇ , ⁇ _offset ⁇ PUSCH, and the transport block is divided into C code blocks for turbo coding
- K_r the number of bits included in the r-th code block after K
- '_I is calculated by the following formula,
- the one or more codewords are The number of resources Q ′ in the case where the predetermined information is transmitted using is calculated by the following equation.
- PUSCH which is an uplink (UE to eNodeB direction) data channel
- PUSCH which is an uplink (UE to eNodeB direction) data channel
- predetermined information such as HARQ-ACK or RI
- the predetermined transmission quality is satisfied.
- the effect is that the required number of resources can be derived.
- FIG. 1 the communication system of this embodiment has UE10 and eNodeB20.
- both the UE 10 and the eNodeB 20 correspond to the communication device of the present invention.
- the communication system of the present embodiment is an LTE-Advanced communication system in which MIMO is applied to PUSCH.
- MIMO MIMO-Advanced communication system
- UE 10 transmits HARQ-ACK or RI on PUSCH, it depends on the rank of the MIMO communication path.
- One or two code words can be used. Each code word is assigned one or more layers.
- UE 10 has a communication unit 11 and a control unit 12.
- the communication unit 11 is a part that performs wireless communication with the eNodeB 20, and for example, transmits HARQ-ACK or RI to the eNodeB 20 using PUSCH.
- the control unit 12 controls the communication unit 11.
- the HARQ calculates the number of resources required when the UE 10 transmits HARQ-ACK or RI on the PUSCH, and maps to the code word at that time. -Calculate the number of bits in the ACK sequence or RI sequence.
- the HARQ-ACK sequence indicates not the HARQ-ACK information element itself but the bit string after encoding the HARQ-ACK information element.
- the RI sequence indicates a bit string after encoding the RI information element, like the HARQ-ACK sequence.
- ENodeB 20 has a communication unit 21 and a control unit 22.
- the communication unit 21 is a part that performs radio communication with the UE 10, and receives, for example, HARQ-ACK or RI transmitted from the UE 10 via PUSCH.
- the control unit 22 controls the communication unit 21.
- the HARQ calculates the number of resources required when the UE 10 transmits HARQ-ACK or RI in PUSCH, and maps to the code word at that time. -Calculate the number of bits in the ACK sequence or RI sequence.
- Formula 26 is obtained by removing the upper limit from Formula 1 of Release 8 and is basically the same as Release 8. Since it is appropriate to apply the upper limit to the final result, the upper limit is removed in Equation 26.
- Equation 27 is an expression that gives Q_ACK, which is the number of bits of the HARQ-ACK sequence transmitted with the code word, and Q_RI, which is the number of bits of the RI sequence transmitted with the code word, where Q_m is the code Modulation order of word, L is the number of layers assigned to the code word, Q ′ is a value obtained by substituting HARQ-ACK parameters or RI parameters for the code word in Equation 26 .
- SNRs of Layer 1, Layer 2, and Layer 3 be SNR1, SNR2, and SNR3, respectively.
- the number of resources required for the layer assigned to CW1 (here, each of layer 1 and layer 2) is Q′_1.
- Q'_1 is calculated by applying the CW1 parameter to Equation 26.
- the number of resources required for the layer (here, layer 3) allocated to CW2 is assumed to be Q'_2.
- Q'_2 is calculated by applying the CW2 parameter to Equation 26, as in CW1.
- the transmission quality of HARQ-ACK is expected to satisfy the required quality, as in CW1.
- Equation 26 M_sc ⁇ PUSCH-Initial and N_symb ⁇ PUSCH-Initial are common to CW1 and CW2.
- ⁇ _offset ⁇ PUSCH may be different between CW1 and CW2, but it is necessary to use a common value between UE10 and eNodeB20.
- ⁇ _offset ⁇ PUSCH is selected according to the modulation schemes of CW1 and CW2.
- UE10 and eNodeB20 have a common recognition regarding the modulation scheme of each code word (since eNodeB20 notifies UE10). Therefore, it is only necessary that UE10 and eNodeB20 share the following table.
- ⁇ _offset ⁇ PUSCH in Equation 26 may be replaced with ⁇ ⁇ ⁇ _offset ⁇ PUSCH as in Equation 28 below.
- the range of ⁇ is 0 ⁇ ⁇ 1.
- ⁇ is selected for each code word.
- ⁇ may be selected according to any code word modulation method.
- ⁇ may be set in advance to eNode20 and UE10 as a predetermined value, or may be set from eNodeB20 to UE10. In this case, ⁇ _offset ⁇ PUSCH itself does not depend on the modulation scheme.
- ⁇ in Table 2 indicates the transmission power of the code word and the HARQ-ACK or RI when the HARQ-ACK or RI is transmitted using the outermost modulation point of each modulation scheme and modulated with QPSK.
- adopted ratio with the transmission power of is represented. You may optimize according to the required SNR of the data in each MCS.
- Table 2 shows the ratio of the average transmission power of all signal points (equal to the transmission power of code word) and the transmission power of the outermost signal points (equal to the transmission power of HARQ-ACK and RI).
- Equation 28 compared to Equation 26, the value of Q ′ is reduced to about half in the case of 16QAM and 64QAM. If RI's Q 'is reduced, each code word is rate-matched with resources excluding RI resources from all resources, so the effect of lowering the code rate of each code word (ie, the effect of improving error correction capability) There is. If Q ′ of HARQ-ACK is reduced, the number of bits of each code word that is overwritten by HARQ-ACK is reduced, which has the effect of improving the transmission quality of each code word.
- Equation 31 a lower limit is set so that the number of resources does not fall below the number of resources necessary for information transmission. Furthermore, when an upper limit similar to that in Release 8 is set, Equation 32 is obtained, which gives resources necessary for transmitting HARQ-ACK and RI using two code words.
- O (O) is the number of information bits of HARQ-ACK and RI, and is a value of 1 or more.
- Q_m ⁇ UCI indicates the modulation order of the modulation scheme of the HARQ-ACK sequence. For example, even when the code word modulation scheme is 16QAM, when only the outermost modulation point is used, it is regarded as QPSK and the modulation order is set to 2.
- the lower limit of the number of resources to be allocated to HARQ-ACK and RI is given by the argument of the second item of the max () function, and the upper limit that can be allocated is min It is given by the argument of the second item of the () function.
- Q_m ⁇ i indicates the number of bits that can be transmitted with one resource in the modulation method of code word i. It is 2 for QPSK, 4 for 16QAM, and 6 for 64QAM.
- L ⁇ i is the number of layers assigned to code word i.
- Q ′ is a value calculated by Equation 32.
- Q′_1 and Q′_2 in Expression 32 are values given by substituting the number of HARQ-ACK information bits and an offset value into O (O) and ⁇ _offset ⁇ PUSCH in Expression 26.
- RI is the same as HARQ-ACK except that the values given by substituting RI values into O (O) and ⁇ _offset ⁇ PUSCH in Equation 26 are used in Equation 32 and Equation 33.
- Formula 32 is generally represented by the following Formula 34.
- Q′_i is the number of resources given by applying Expression 26 to the code word when it is assumed that HARQ-ACK or RI is transmitted by the code word i alone. Others are the same as Expression 32.
- the UE 10 and the eNodeB 20 calculate the number of resources when HARQ-ACK or RI is transmitted in PUSCH using a plurality of code words by applying Equation 34. Can do.
- Equation 34 Can do.
- Second Embodiment the operation for calculating the number of bits of the HARQ-ACK sequence or the RI sequence using Expression 27 and Expression 33 is common as compared with the first embodiment. However, the operation of calculating the number of resources is different. Other configurations and operations are the same as those in the first embodiment.
- Q′_1 and Q′_2 are calculated as in the first embodiment. However, for calculating Q′_1 and Q′_2, Formula 1 (3GPP Release 8 Formula) or Formula 29 is used.
- Q'_12 is calculated by the following formula 35. That is, Q'_12 is the smallest of Q'_1 and Q'_2 when Q'_1 and Q'_2 are equal to or greater than the lower limit value of the number of resources.
- the transmission quality when transmitting HARQ-ACK using only CW1 satisfies the required quality by the resource of Q′_1. Therefore, by setting the number of CW2 resources to Q′_1, it is possible to further improve the transmission quality when HARQ-ACK is transmitted using only CW2.
- the transmission quality of HARQ-ACK can satisfy the required quality.
- Formula 35 is generally represented by the following Formula 36.
- Q′_i is the number of resources given by applying Formula 1 or Formula 29 to the code word when it is assumed that HARQ-ACK or RI is transmitted by code word i alone. Others are the same as Expression 35.
- the UE 10 and the eNodeB 20 calculate the number of resources when HARQ-ACK or RI is transmitted in PUSCH using a plurality of code words by applying Equation 36. Can do.
- this embodiment has the same operation for calculating the number of bits of the HARQ-ACK sequence or the RI sequence using Equation 27 and Equation 33. However, the operation of calculating the number of resources is different. Other configurations and operations are the same as those in the first embodiment.
- Q′_1 and Q′_2 are calculated using the formula 26 or 28.
- Q′_12 is calculated using Equation 37 below.
- Q′_12 is calculated using the following Expression 38.
- whether the transmission quality is good or bad can be determined by the size of the index of MCS (Modulation and Coding Scheme).
- the number of layers of CW1 and CW2 is not limited to this example, and can be applied when the number is 1 or more.
- This method is applicable when the transmission quality of the code word with the worst transmission quality is applied to all layers.
- Equation 30 ⁇ SNR1, SNR2, and SNR3 in Equation 30 are substituted with the SNR of the code word with the worst transmission quality as SNR0.
- the number of resources can be calculated in the same way for RI.
- Formula 37 and Formula 38 are generally expressed by Formula 41 below, where the worst code word is CW_i.
- Q′_i is the number of resources given by applying Equation 26 or Equation 28 to the code word when it is assumed that HARQ-ACK or RI is transmitted by code word i alone.
- Others are the same as Expression 37 and Expression 38.
- the UE 10 and the eNodeB 20 calculate the number of resources when HARQ-ACK or RI is transmitted in PUSCH using a plurality of code words by applying Equation 41. Can do.
- the second embodiment may be combined with the third embodiment, and the smaller Q′_12 may be selected.
- the number of resources in the case of transmitting HARQ-ACK or RI from the UE 10 to the eNodeB 20 is calculated.
- the present invention is not limited to this, and the data is the required quality (that is, BLER). It can be applied when transmitting different information.
- a plurality of code words are used.
- the present invention is not limited to this, and can also be applied to the case of using one code word.
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
Description
PUSCHにおいて、1以上のコードワードを使用して、所定の情報を送信または受信する通信装置であって、
前記所定の情報を送信または受信する通信部と、
制御部と、を有し、
前記制御部は、
前記所定の情報の情報ビット数をO、前記PUSCHで送信されるトランスポートブロックに対して初回送信時に割り当てられたサブキャリア数をM_sc^PUSCH-Initial、前記トランスポートブロックに対して初回送信時に割り当てられたシンボル数をN_symb^PUSCH-Initial、前記所定の情報の種別に応じて予め設定された係数をβ_offset^PUSCH、前記トランスポートブロックをターボ符号化するためにC個のコードブロックに分割した後のr番目のコードブロックに含まれるビット数をK_rとしたとき、i番目のコードワードCW_iを単独で使用して前記所定の情報を送信すると仮定した場合におけるリソース数Q’_iを次式で計算し、
PUSCHにおいて、1以上のコードワードを使用して、所定の情報を送信または受信する通信装置であって、
前記所定の情報を送信または受信する通信部と、
制御部と、を有し、
前記制御部は、
前記所定の情報の情報ビット数をO、前記PUSCHで送信されるトランスポートブロックに対して初回送信時に割り当てられたサブキャリア数をM_sc^PUSCH-Initial、前記トランスポートブロックに対して初回送信時に割り当てられたシンボル数をN_symb^PUSCH-Initial、前記所定の情報の種別に応じて予め設定された係数をβ_offset^PUSCH、前記トランスポートブロックをターボ符号化するためにC個のコードブロックに分割した後のr番目のコードブロックに含まれるビット数をK_r、前記トランスポートブロックに対して前記所定の情報の送信時に割り当てられたサブキャリア数をM_sc^PUSCHとしたとき、i番目のコードワードCW_iを単独で使用して前記所定の情報を送信すると仮定した場合におけるリソース数Q’_iを次式で計算し、
PUSCHにおいて、1以上のコードワードを使用して、所定の情報を送信または受信する通信装置であって、
前記所定の情報を送信または受信する通信部と、
制御部と、を有し、
前記制御部は、
前記所定の情報の情報ビット数をO、前記PUSCHで送信されるトランスポートブロックに対して初回送信時に割り当てられたサブキャリア数をM_sc^PUSCH-Initial、前記トランスポートブロックに対して初回送信時に割り当てられたシンボル数をN_symb^PUSCH-Initial、前記所定の情報の種別に応じて予め設定された係数をβ_offset^PUSCH、前記トランスポートブロックをターボ符号化するためにC個のコードブロックに分割した後のr番目のコードブロックに含まれるビット数をK_rとしたとき、伝送品質が最も悪いi番目のコードワードCW_iを単独で使用して前記所定の情報を送信すると仮定した場合におけるリソース数Q’_iを次式で計算し、
PUSCHにおいて、1以上のコードワードを使用して、所定の情報を送信または受信する通信装置であって、
前記所定の情報を送信または受信する通信部と、
制御部と、を有し、
前記制御部は、
前記所定の情報の情報ビット数をO、前記PUSCHで送信されるトランスポートブロックに対して初回送信時に割り当てられたサブキャリア数をM_sc^PUSCH-Initial、前記トランスポートブロックに対して初回送信時に割り当てられたシンボル数をN_symb^PUSCH-Initial、前記所定の情報の種別に応じて予め設定された係数をα、β_offset^PUSCH、前記トランスポートブロックをターボ符号化するためにC個のコードブロックに分割した後のr番目のコードブロックに含まれるビット数をK_rとしたとき、i番目のコードワードCW_iを単独で使用して前記所定の情報を送信すると仮定した場合におけるリソース数Q’_iを次式で計算し、
PUSCHにおいて、1以上のコードワードを使用して、所定の情報を送信または受信する通信装置であって、
前記所定の情報を送信または受信する通信部と、
制御部と、を有し、
前記制御部は、
前記所定の情報の情報ビット数をO、前記PUSCHで送信されるトランスポートブロックに対して初回送信時に割り当てられたサブキャリア数をM_sc^PUSCH-Initial、前記トランスポートブロックに対して初回送信時に割り当てられたシンボル数をN_symb^PUSCH-Initial、前記所定の情報の種別に応じて予め設定された係数をα、β_offset^PUSCH、前記トランスポートブロックをターボ符号化するためにC個のコードブロックに分割した後のr番目のコードブロックに含まれるビット数をK_r、前記トランスポートブロックに対して前記所定の情報の送信時に割り当てられたサブキャリア数をM_sc^PUSCHとしたとき、i番目のコードワードCW_iを単独で使用して前記所定の情報を送信すると仮定した場合におけるリソース数Q’_iを次式で計算し、
PUSCHにおいて、1以上のコードワードを使用して、所定の情報を送信または受信する通信装置であって、
前記所定の情報を送信または受信する通信部と、
制御部と、を有し、
前記制御部は、
前記所定の情報の情報ビット数をO、前記PUSCHで送信されるトランスポートブロックに対して初回送信時に割り当てられたサブキャリア数をM_sc^PUSCH-Initial、前記トランスポートブロックに対して初回送信時に割り当てられたシンボル数をN_symb^PUSCH-Initial、前記所定の情報の種別に応じて予め設定された係数をα、β_offset^PUSCH、前記トランスポートブロックをターボ符号化するためにC個のコードブロックに分割した後のr番目のコードブロックに含まれるビット数をK_rとしたとき、伝送品質が最も悪いi番目のコードワードCW_iを単独で使用して前記所定の情報を送信すると仮定した場合におけるリソース数Q’_iを次式で計算し、
PUSCHにおいて、1以上のコードワードを使用して、所定の情報を送信または受信する通信装置によるリソース導出方法であって、
前記所定の情報の情報ビット数をO、前記PUSCHで送信されるトランスポートブロックに対して初回送信時に割り当てられたサブキャリア数をM_sc^PUSCH-Initial、前記トランスポートブロックに対して初回送信時に割り当てられたシンボル数をN_symb^PUSCH-Initial、前記所定の情報の種別に応じて予め設定された係数をβ_offset^PUSCH、前記トランスポートブロックをターボ符号化するためにC個のコードブロックに分割した後のr番目のコードブロックに含まれるビット数をK_rとしたとき、i番目のコードワードCW_iを単独で使用して前記所定の情報を送信すると仮定した場合におけるリソース数Q’_iを次式で計算し、
PUSCHにおいて、1以上のコードワードを使用して、所定の情報を送信または受信する通信装置によるリソース導出方法であって、
前記所定の情報の情報ビット数をO、前記PUSCHで送信されるトランスポートブロックに対して初回送信時に割り当てられたサブキャリア数をM_sc^PUSCH-Initial、前記トランスポートブロックに対して初回送信時に割り当てられたシンボル数をN_symb^PUSCH-Initial、前記所定の情報の種別に応じて予め設定された係数をβ_offset^PUSCH、前記トランスポートブロックをターボ符号化するためにC個のコードブロックに分割した後のr番目のコードブロックに含まれるビット数をK_r、前記トランスポートブロックに対して前記所定の情報の送信時に割り当てられたサブキャリア数をM_sc^PUSCHとしたとき、i番目のコードワードCW_iを単独で使用して前記所定の情報を送信すると仮定した場合におけるリソース数Q’_iを次式で計算し、
PUSCHにおいて、1以上のコードワードを使用して、所定の情報を送信または受信する通信装置によるリソース導出方法であって、
前記所定の情報の情報ビット数をO、前記PUSCHで送信されるトランスポートブロックに対して初回送信時に割り当てられたサブキャリア数をM_sc^PUSCH-Initial、前記トランスポートブロックに対して初回送信時に割り当てられたシンボル数をN_symb^PUSCH-Initial、前記所定の情報の種別に応じて予め設定された係数をβ_offset^PUSCH、前記トランスポートブロックをターボ符号化するためにC個のコードブロックに分割した後のr番目のコードブロックに含まれるビット数をK_rとしたとき、伝送品質が最も悪いi番目のコードワードCW_iを単独で使用して前記所定の情報を送信すると仮定した場合におけるリソース数Q’_iを次式で計算し、
PUSCHにおいて、1以上のコードワードを使用して、所定の情報を送信または受信する通信装置によるリソース導出方法であって、
前記所定の情報の情報ビット数をO、前記PUSCHで送信されるトランスポートブロックに対して初回送信時に割り当てられたサブキャリア数をM_sc^PUSCH-Initial、前記トランスポートブロックに対して初回送信時に割り当てられたシンボル数をN_symb^PUSCH-Initial、前記所定の情報の種別に応じて予め設定された係数をα、β_offset^PUSCH、前記トランスポートブロックをターボ符号化するためにC個のコードブロックに分割した後のr番目のコードブロックに含まれるビット数をK_rとしたとき、i番目のコードワードCW_iを単独で使用して前記所定の情報を送信すると仮定した場合におけるリソース数Q’_iを次式で計算し、
PUSCHにおいて、1以上のコードワードを使用して、所定の情報を送信または受信する通信装置によるリソース導出方法であって、
前記所定の情報の情報ビット数をO、前記PUSCHで送信されるトランスポートブロックに対して初回送信時に割り当てられたサブキャリア数をM_sc^PUSCH-Initial、前記トランスポートブロックに対して初回送信時に割り当てられたシンボル数をN_symb^PUSCH-Initial、前記所定の情報の種別に応じて予め設定された係数をα、β_offset^PUSCH、前記トランスポートブロックをターボ符号化するためにC個のコードブロックに分割した後のr番目のコードブロックに含まれるビット数をK_r、前記トランスポートブロックに対して前記所定の情報の送信時に割り当てられたサブキャリア数をM_sc^PUSCHとしたとき、i番目のコードワードCW_iを単独で使用して前記所定の情報を送信すると仮定した場合におけるリソース数Q’_iを次式で計算し、
PUSCHにおいて、1以上のコードワードを使用して、所定の情報を送信または受信する通信装置によるリソース導出方法であって、
前記所定の情報の情報ビット数をO、前記PUSCHで送信されるトランスポートブロックに対して初回送信時に割り当てられたサブキャリア数をM_sc^PUSCH-Initial、前記トランスポートブロックに対して初回送信時に割り当てられたシンボル数をN_symb^PUSCH-Initial、前記所定の情報の種別に応じて予め設定された係数をα、β_offset^PUSCH、前記トランスポートブロックをターボ符号化するためにC個のコードブロックに分割した後のr番目のコードブロックに含まれるビット数をK_rとしたとき、伝送品質が最も悪いi番目のコードワードCW_iを単独で使用して前記所定の情報を送信すると仮定した場合におけるリソース数Q’_iを次式で計算し、
(1)第1の実施形態
図1を参照すると、本実施形態の通信システムは、UE10およびeNodeB20を有している。ここで、UE10およびeNodeB20は共に、本発明の通信装置に相当する。
code wordが1つの場合は、数式1を用いて、リソース数を計算する。
(2)第2の実施形態
本実施形態は、第1の実施形態と比較して、数式27および数式33を利用してHARQ-ACKシーケンスまたはRIシーケンスのビット数を計算する動作は共通であるが、リソース数を計算する動作が異なる。また、その他の構成および動作は第1の実施形態と同様である。
(3)第3の実施形態
本実施形態は、第1の実施形態と比較して、数式27および数式33を利用してHARQ-ACKシーケンスまたはRIシーケンスのビット数を計算する動作は共通であるが、リソース数を計算する動作が異なる。また、その他の構成および動作は第1の実施形態と同様である。
Claims (18)
- PUSCHにおいて、1以上のコードワードを使用して、所定の情報を送信または受信する通信装置であって、
前記所定の情報を送信または受信する通信部と、
制御部と、を有し、
前記制御部は、
前記所定の情報の情報ビット数をO、前記PUSCHで送信されるトランスポートブロックに対して初回送信時に割り当てられたサブキャリア数をM_sc^PUSCH-Initial、前記トランスポートブロックに対して初回送信時に割り当てられたシンボル数をN_symb^PUSCH-Initial、前記所定の情報の種別に応じて予め設定された係数をβ_offset^PUSCH、前記トランスポートブロックをターボ符号化するためにC個のコードブロックに分割した後のr番目のコードブロックに含まれるビット数をK_rとしたとき、i番目のコードワードCW_iを単独で使用して前記所定の情報を送信すると仮定した場合におけるリソース数Q’_iを次式で計算し、
- PUSCHにおいて、1以上のコードワードを使用して、所定の情報を送信または受信する通信装置であって、
前記所定の情報を送信または受信する通信部と、
制御部と、を有し、
前記制御部は、
前記所定の情報の情報ビット数をO、前記PUSCHで送信されるトランスポートブロックに対して初回送信時に割り当てられたサブキャリア数をM_sc^PUSCH-Initial、前記トランスポートブロックに対して初回送信時に割り当てられたシンボル数をN_symb^PUSCH-Initial、前記所定の情報の種別に応じて予め設定された係数をβ_offset^PUSCH、前記トランスポートブロックをターボ符号化するためにC個のコードブロックに分割した後のr番目のコードブロックに含まれるビット数をK_r、前記トランスポートブロックに対して前記所定の情報の送信時に割り当てられたサブキャリア数をM_sc^PUSCHとしたとき、i番目のコードワードCW_iを単独で使用して前記所定の情報を送信すると仮定した場合におけるリソース数Q’_iを次式で計算し、
- PUSCHにおいて、1以上のコードワードを使用して、所定の情報を送信または受信する通信装置であって、
前記所定の情報を送信または受信する通信部と、
制御部と、を有し、
前記制御部は、
前記所定の情報の情報ビット数をO、前記PUSCHで送信されるトランスポートブロックに対して初回送信時に割り当てられたサブキャリア数をM_sc^PUSCH-Initial、前記トランスポートブロックに対して初回送信時に割り当てられたシンボル数をN_symb^PUSCH-Initial、前記所定の情報の種別に応じて予め設定された係数をβ_offset^PUSCH、前記トランスポートブロックをターボ符号化するためにC個のコードブロックに分割した後のr番目のコードブロックに含まれるビット数をK_rとしたとき、伝送品質が最も悪いi番目のコードワードCW_iを単独で使用して前記所定の情報を送信すると仮定した場合におけるリソース数Q’_iを次式で計算し、
- PUSCHにおいて、1以上のコードワードを使用して、所定の情報を送信または受信する通信装置であって、
前記所定の情報を送信または受信する通信部と、
制御部と、を有し、
前記制御部は、
前記所定の情報の情報ビット数をO、前記PUSCHで送信されるトランスポートブロックに対して初回送信時に割り当てられたサブキャリア数をM_sc^PUSCH-Initial、前記トランスポートブロックに対して初回送信時に割り当てられたシンボル数をN_symb^PUSCH-Initial、前記所定の情報の種別に応じて予め設定された係数をα、β_offset^PUSCH、前記トランスポートブロックをターボ符号化するためにC個のコードブロックに分割した後のr番目のコードブロックに含まれるビット数をK_rとしたとき、i番目のコードワードCW_iを単独で使用して前記所定の情報を送信すると仮定した場合におけるリソース数Q’_iを次式で計算し、
- PUSCHにおいて、1以上のコードワードを使用して、所定の情報を送信または受信する通信装置であって、
前記所定の情報を送信または受信する通信部と、
制御部と、を有し、
前記制御部は、
前記所定の情報の情報ビット数をO、前記PUSCHで送信されるトランスポートブロックに対して初回送信時に割り当てられたサブキャリア数をM_sc^PUSCH-Initial、前記トランスポートブロックに対して初回送信時に割り当てられたシンボル数をN_symb^PUSCH-Initial、前記所定の情報の種別に応じて予め設定された係数をα、β_offset^PUSCH、前記トランスポートブロックをターボ符号化するためにC個のコードブロックに分割した後のr番目のコードブロックに含まれるビット数をK_r、前記トランスポートブロックに対して前記所定の情報の送信時に割り当てられたサブキャリア数をM_sc^PUSCHとしたとき、i番目のコードワードCW_iを単独で使用して前記所定の情報を送信すると仮定した場合におけるリソース数Q’_iを次式で計算し、
- PUSCHにおいて、1以上のコードワードを使用して、所定の情報を送信または受信する通信装置であって、
前記所定の情報を送信または受信する通信部と、
制御部と、を有し、
前記制御部は、
前記所定の情報の情報ビット数をO、前記PUSCHで送信されるトランスポートブロックに対して初回送信時に割り当てられたサブキャリア数をM_sc^PUSCH-Initial、前記トランスポートブロックに対して初回送信時に割り当てられたシンボル数をN_symb^PUSCH-Initial、前記所定の情報の種別に応じて予め設定された係数をα、β_offset^PUSCH、前記トランスポートブロックをターボ符号化するためにC個のコードブロックに分割した後のr番目のコードブロックに含まれるビット数をK_rとしたとき、伝送品質が最も悪いi番目のコードワードCW_iを単独で使用して前記所定の情報を送信すると仮定した場合におけるリソース数Q’_iを次式で計算し、
- 前記制御部は、
コードワードの変調方式に応じて、αの値を切り替える、請求項4から6のいずれか1項に記載の通信装置。 - 前記通信装置は、
移動機または基地局のいずれかであり、
αとして、予め決められた値を、前記移動機および前記基地局で共有している、請求項4から6のいずれか1項に記載の通信装置。 - PUSCHにおいて、1以上のコードワードを使用して、所定の情報を送信または受信する通信装置によるリソース導出方法であって、
前記所定の情報の情報ビット数をO、前記PUSCHで送信されるトランスポートブロックに対して初回送信時に割り当てられたサブキャリア数をM_sc^PUSCH-Initial、前記トランスポートブロックに対して初回送信時に割り当てられたシンボル数をN_symb^PUSCH-Initial、前記所定の情報の種別に応じて予め設定された係数をβ_offset^PUSCH、前記トランスポートブロックをターボ符号化するためにC個のコードブロックに分割した後のr番目のコードブロックに含まれるビット数をK_rとしたとき、i番目のコードワードCW_iを単独で使用して前記所定の情報を送信すると仮定した場合におけるリソース数Q’_iを次式で計算し、
- PUSCHにおいて、1以上のコードワードを使用して、所定の情報を送信または受信する通信装置によるリソース導出方法であって、
前記所定の情報の情報ビット数をO、前記PUSCHで送信されるトランスポートブロックに対して初回送信時に割り当てられたサブキャリア数をM_sc^PUSCH-Initial、前記トランスポートブロックに対して初回送信時に割り当てられたシンボル数をN_symb^PUSCH-Initial、前記所定の情報の種別に応じて予め設定された係数をβ_offset^PUSCH、前記トランスポートブロックをターボ符号化するためにC個のコードブロックに分割した後のr番目のコードブロックに含まれるビット数をK_r、前記トランスポートブロックに対して前記所定の情報の送信時に割り当てられたサブキャリア数をM_sc^PUSCHとしたとき、i番目のコードワードCW_iを単独で使用して前記所定の情報を送信すると仮定した場合におけるリソース数Q’_iを次式で計算し、
- PUSCHにおいて、1以上のコードワードを使用して、所定の情報を送信または受信する通信装置によるリソース導出方法であって、
前記所定の情報の情報ビット数をO、前記PUSCHで送信されるトランスポートブロックに対して初回送信時に割り当てられたサブキャリア数をM_sc^PUSCH-Initial、前記トランスポートブロックに対して初回送信時に割り当てられたシンボル数をN_symb^PUSCH-Initial、前記所定の情報の種別に応じて予め設定された係数をβ_offset^PUSCH、前記トランスポートブロックをターボ符号化するためにC個のコードブロックに分割した後のr番目のコードブロックに含まれるビット数をK_rとしたとき、伝送品質が最も悪いi番目のコードワードCW_iを単独で使用して前記所定の情報を送信すると仮定した場合におけるリソース数Q’_iを次式で計算し、
- PUSCHにおいて、1以上のコードワードを使用して、所定の情報を送信または受信する通信装置によるリソース導出方法であって、
前記所定の情報の情報ビット数をO、前記PUSCHで送信されるトランスポートブロックに対して初回送信時に割り当てられたサブキャリア数をM_sc^PUSCH-Initial、前記トランスポートブロックに対して初回送信時に割り当てられたシンボル数をN_symb^PUSCH-Initial、前記所定の情報の種別に応じて予め設定された係数をα、β_offset^PUSCH、前記トランスポートブロックをターボ符号化するためにC個のコードブロックに分割した後のr番目のコードブロックに含まれるビット数をK_rとしたとき、i番目のコードワードCW_iを単独で使用して前記所定の情報を送信すると仮定した場合におけるリソース数Q’_iを次式で計算し、
- PUSCHにおいて、1以上のコードワードを使用して、所定の情報を送信または受信する通信装置によるリソース導出方法であって、
前記所定の情報の情報ビット数をO、前記PUSCHで送信されるトランスポートブロックに対して初回送信時に割り当てられたサブキャリア数をM_sc^PUSCH-Initial、前記トランスポートブロックに対して初回送信時に割り当てられたシンボル数をN_symb^PUSCH-Initial、前記所定の情報の種別に応じて予め設定された係数をα、β_offset^PUSCH、前記トランスポートブロックをターボ符号化するためにC個のコードブロックに分割した後のr番目のコードブロックに含まれるビット数をK_r、前記トランスポートブロックに対して前記所定の情報の送信時に割り当てられたサブキャリア数をM_sc^PUSCHとしたとき、i番目のコードワードCW_iを単独で使用して前記所定の情報を送信すると仮定した場合におけるリソース数Q’_iを次式で計算し、
- PUSCHにおいて、1以上のコードワードを使用して、所定の情報を送信または受信する通信装置によるリソース導出方法であって、
前記所定の情報の情報ビット数をO、前記PUSCHで送信されるトランスポートブロックに対して初回送信時に割り当てられたサブキャリア数をM_sc^PUSCH-Initial、前記トランスポートブロックに対して初回送信時に割り当てられたシンボル数をN_symb^PUSCH-Initial、前記所定の情報の種別に応じて予め設定された係数をα、β_offset^PUSCH、前記トランスポートブロックをターボ符号化するためにC個のコードブロックに分割した後のr番目のコードブロックに含まれるビット数をK_rとしたとき、伝送品質が最も悪いi番目のコードワードCW_iを単独で使用して前記所定の情報を送信すると仮定した場合におけるリソース数Q’_iを次式で計算し、
- コードワードの変調方式に応じて、αの値を切り替える、請求項13から15のいずれか1項に記載のリソース導出方法。
- 前記通信装置は、
移動機または基地局のいずれかであり、
αとして、予め決められた値を、前記移動機および前記基地局で共有している、請求項13から15のいずれか1項に記載のリソース導出方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012523816A JP5482898B2 (ja) | 2010-07-09 | 2011-06-24 | 通信装置およびリソース導出方法 |
CN201180030118.3A CN102960039B (zh) | 2010-07-09 | 2011-06-24 | 通信设备和资源导出方法 |
EP11803459.4A EP2592886A1 (en) | 2010-07-09 | 2011-06-24 | Communication apparatus and resource derivation method |
US13/702,442 US9312932B2 (en) | 2010-07-09 | 2011-06-24 | Communication apparatus and resource derivation method |
KR1020137001102A KR101301428B1 (ko) | 2010-07-09 | 2011-06-24 | 통신 장치 및 자원 도출 방법 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010156915 | 2010-07-09 | ||
JP2010-156915 | 2010-07-09 | ||
JP2010179449 | 2010-08-10 | ||
JP2010-179449 | 2010-08-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012005123A1 true WO2012005123A1 (ja) | 2012-01-12 |
Family
ID=45441108
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/064560 WO2012005123A1 (ja) | 2010-07-09 | 2011-06-24 | 通信装置およびリソース導出方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US9312932B2 (ja) |
EP (1) | EP2592886A1 (ja) |
JP (1) | JP5482898B2 (ja) |
KR (1) | KR101301428B1 (ja) |
CN (1) | CN102960039B (ja) |
WO (1) | WO2012005123A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017179298A1 (ja) * | 2016-04-13 | 2017-10-19 | シャープ株式会社 | 端末装置、基地局装置、通信方法、および、集積回路 |
JP2021521758A (ja) * | 2018-05-11 | 2021-08-26 | 中興通訊股▲ふん▼有限公司Zte Corporation | 伝送方法、装置及びシステム |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102237985B (zh) * | 2010-05-06 | 2015-12-16 | 中兴通讯股份有限公司 | 回程链路上行控制信息的处理方法、系统及中继站 |
US10355897B2 (en) | 2015-01-30 | 2019-07-16 | Telefonaktiebolaget Lm Ericsson (Publ) | Method and apparatus for transmission of uplink control information |
US10050688B2 (en) | 2017-01-16 | 2018-08-14 | At&T Intellectual Property I, L.P. | Single codeword, multi-layer serial interference cancellation (SIC) for spatial multiplexing |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI574525B (zh) | 2005-12-29 | 2017-03-11 | 內數位科技公司 | 以多h-arq方法同時選取多傳輸格式及傳送多傳輸塊組方法及裝置 |
CA2661145C (en) | 2006-08-21 | 2014-12-23 | Interdigital Technology Corporation | Dynamic resource allocation, scheduling and signaling for variable data rate service in lte |
US7933238B2 (en) * | 2007-03-07 | 2011-04-26 | Motorola Mobility, Inc. | Method and apparatus for transmission within a multi-carrier communication system |
HUE025654T2 (en) | 2007-07-06 | 2016-04-28 | Huawei Tech Co Ltd | HARQ communication method, system, base station and mobile station |
KR101544243B1 (ko) * | 2008-12-02 | 2015-08-12 | 파나소닉 인텔렉츄얼 프로퍼티 코포레이션 오브 아메리카 | 통신 장치 및 제어 정보의 송신 방법 |
ES2475915T3 (es) * | 2010-01-08 | 2014-07-11 | Nokia Siemens Networks Oy | Transmisión de información de control de enlace ascendente |
US8514796B2 (en) * | 2010-04-01 | 2013-08-20 | Sharp Laboratories Of America, Inc. | Transmitting control data and user data on a physical uplink channel |
US8971261B2 (en) * | 2010-06-02 | 2015-03-03 | Samsung Electronics Co., Ltd. | Method and system for transmitting channel state information in wireless communication systems |
US8989156B2 (en) * | 2010-06-18 | 2015-03-24 | Sharp Kabushiki Kaisha | Selecting a codeword and determining a symbol length for uplink control information |
US8634345B2 (en) * | 2010-06-18 | 2014-01-21 | Sharp Laboratories Of America, Inc. | Uplink control information (UCI) multiplexing on the physical uplink shared channel (PUSCH) |
SG186233A1 (en) * | 2010-06-21 | 2013-01-30 | Panasonic Corp | Terminal apparatus and communication method thereof |
-
2011
- 2011-06-24 KR KR1020137001102A patent/KR101301428B1/ko active IP Right Grant
- 2011-06-24 US US13/702,442 patent/US9312932B2/en not_active Expired - Fee Related
- 2011-06-24 EP EP11803459.4A patent/EP2592886A1/en not_active Withdrawn
- 2011-06-24 WO PCT/JP2011/064560 patent/WO2012005123A1/ja active Application Filing
- 2011-06-24 JP JP2012523816A patent/JP5482898B2/ja not_active Expired - Fee Related
- 2011-06-24 CN CN201180030118.3A patent/CN102960039B/zh not_active Expired - Fee Related
Non-Patent Citations (5)
Title |
---|
"3GPP TSG RAN WGL MEETING #6LBIS R1-104163, FURTHER DISCUSSIONS ON UCI MULTIPLEXING ON PUSCH IN CASE OF SU-MIMO, ALCATEL-LUCENT "1. NUMBER OF HARQ-ACK AND TI SYMBOL PER LAYER"", 3GPP TSG RAN WG1 MEETING, 28 June 2010 (2010-06-28), XP050449590 * |
"7.1 Number of Coded Symbols For HARQ-ACK/RI (page 3-4)", 3GPP TSG RAN WG1 MEETING #61BIS R1-103451, HUAWEI, REMAINING ISSUES OF MULTIPLEXING SCHEMES OF CONTROL AND DATA IN MULTI-LAYER PUSCH TRANSMISSION, 28 June 2010 (2010-06-28), pages 3 - 4, XP050448977 * |
3RD GENERATION PARTNERSHIP PROJECT: "Technical Specification Group Radio Access Network;Evolved UMTS Terrestrial Radio Access;Multiplexing and channel coding(3GPP TS36.212)", 3RD GENERATION PARTNERSHIP PROJECT, October 2006 (2006-10-01) |
ERICSSON ET AL., 3GPP TSG RAN WG1 #61BIS R1-103845, 28 June 2010 (2010-06-28), XP050449260 * |
PANASONIC: "UCI MULTIPLEXING ON PUSCH WITH MIMO TRANSMISSION", 3GPP TSG RAN WG1 MEETING #61BIS R1-103770, 28 June 2010 (2010-06-28), XP050449199 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017179298A1 (ja) * | 2016-04-13 | 2017-10-19 | シャープ株式会社 | 端末装置、基地局装置、通信方法、および、集積回路 |
US10623148B2 (en) | 2016-04-13 | 2020-04-14 | Sharp Kabushiki Kaisha | Terminal apparatus, base station apparatus, communication method, and integrated circuit |
JP2021521758A (ja) * | 2018-05-11 | 2021-08-26 | 中興通訊股▲ふん▼有限公司Zte Corporation | 伝送方法、装置及びシステム |
JP7277570B2 (ja) | 2018-05-11 | 2023-05-19 | 中興通訊股▲ふん▼有限公司 | 伝送方法、装置及びシステム |
US11870577B2 (en) | 2018-05-11 | 2024-01-09 | Zte Corporation | Method and apparatus for transmitting uplink control information in a physical uplink shared channel, and storage medium |
Also Published As
Publication number | Publication date |
---|---|
JPWO2012005123A1 (ja) | 2013-09-02 |
JP5482898B2 (ja) | 2014-05-07 |
CN102960039B (zh) | 2015-08-26 |
KR101301428B1 (ko) | 2013-08-28 |
US9312932B2 (en) | 2016-04-12 |
EP2592886A1 (en) | 2013-05-15 |
US20130077465A1 (en) | 2013-03-28 |
CN102960039A (zh) | 2013-03-06 |
KR20130018993A (ko) | 2013-02-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7392035B2 (ja) | 物理アップリンクデータチャンネルで制御情報多重化 | |
KR102696296B1 (ko) | 채널상태정보 보고를 위한 상향링크 컨트롤 정보 맵핑 방법 및 장치 | |
US10057891B2 (en) | Selecting a codeword and determining a symbol length for uplink control information | |
US9883519B2 (en) | Wireless communication system, communication device and communication method | |
JP5882411B2 (ja) | Mimoをサポートする無線通信システムにおけるアップリンクでの再伝送制御方法及び装置 | |
KR101920241B1 (ko) | Sc-fdm을 기반으로 하는 상향링크 다중 입출력 시스템에서 제어 및 데이터 다중화 | |
JP5722995B2 (ja) | アップリンク制御情報のための伝送モードを指示するための方法及びシステム | |
KR101852854B1 (ko) | 무선 통신 시스템에서 채널 상태 정보를 송신하기 위한 방법 및 시스템 | |
JP5883523B2 (ja) | 端末装置、基地局装置、送信方法、受信方法及び集積回路 | |
US20150043452A1 (en) | Method, system and device for transmitting feedback information | |
WO2011099282A1 (ja) | 端末及びその通信方法 | |
EP3132581A1 (en) | 256 quadrature amplitude modulation user equipment category handling | |
CN111480383B (zh) | 无线通信系统中分配资源的装置和方法 | |
WO2015114541A1 (en) | 256 quadrature amplitude modulation user equipment category handling | |
JP5482898B2 (ja) | 通信装置およびリソース導出方法 | |
WO2022241449A1 (en) | Modularized design for inter-physical layer priority uci multiplexing | |
KR102101213B1 (ko) | 제어 신호 송수신 방법 및 장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201180030118.3 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11803459 Country of ref document: EP Kind code of ref document: A1 |
|
REEP | Request for entry into the european phase |
Ref document number: 2011803459 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011803459 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13702442 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012523816 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20137001102 Country of ref document: KR Kind code of ref document: A |