[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2012005123A1 - 通信装置およびリソース導出方法 - Google Patents

通信装置およびリソース導出方法 Download PDF

Info

Publication number
WO2012005123A1
WO2012005123A1 PCT/JP2011/064560 JP2011064560W WO2012005123A1 WO 2012005123 A1 WO2012005123 A1 WO 2012005123A1 JP 2011064560 W JP2011064560 W JP 2011064560W WO 2012005123 A1 WO2012005123 A1 WO 2012005123A1
Authority
WO
WIPO (PCT)
Prior art keywords
predetermined information
pusch
transport block
transmitted
assigned
Prior art date
Application number
PCT/JP2011/064560
Other languages
English (en)
French (fr)
Inventor
笹木 高広
岩崎 玄弥
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2012523816A priority Critical patent/JP5482898B2/ja
Priority to CN201180030118.3A priority patent/CN102960039B/zh
Priority to EP11803459.4A priority patent/EP2592886A1/en
Priority to US13/702,442 priority patent/US9312932B2/en
Priority to KR1020137001102A priority patent/KR101301428B1/ko
Publication of WO2012005123A1 publication Critical patent/WO2012005123A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1861Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0072Error control for data other than payload data, e.g. control data
    • H04L1/0073Special arrangements for feedback channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L2001/125Arrangements for preventing errors in the return channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present invention relates to a technology in which a mobile device and a base station are independently derived and communicated.
  • HARQ-ACK and RANK INDICATOR (hereinafter referred to as RI)
  • UE User Equipment: mobile station
  • eNodeB base station
  • PUSCH PUSCH used for transmission.
  • HARQ-ACK here is an acknowledgment indicating to the eNodeB whether or not the UE has correctly received the downlink data transmitted from the eNodeB, and has two states, positive acknowledgment and negative acknowledgment.
  • RI is an index indicating the rank of the downlink MIMO communication path (from eNodeB to UE) when performing MIMO (Multiple Input Multiple Output) communication between UE and eNodeB, and is notified from UE to eNodeB. is there.
  • the rank represents the number of communication channels that can be spatially multiplexed in MIMO communication, and the upper limit is the smaller of the number of transmitting antennas and the number of receiving antennas facing each other.
  • Each spatially multiplexed data communication path is called a layer.
  • the UE and eNodeB independently calculate the number of resources required when the UE transmits HARQ-ACK or RI to the eNodeB via PUSCH.
  • the HARQ-ACK or RI is sent and received with the recognition of.
  • uplink resources are managed in a two-dimensional space consisting of a virtual frequency axis and a time axis so that they can be handled in the same way as downlink resources.
  • the frequency axis is divided into subcarriers (15 kHz)
  • the time axis is divided into SC-FDMA symbols
  • the divided areas (grids) are called resource elements (hereinafter referred to as RE). It is.
  • RE resource elements
  • Non-patent Document 1 In LTE Release 8, only 1 antenna transmission (that is, non-MIMO) PUSCH is supported for uplink data transmission.
  • the following formula 1 is defined (Non-patent Document 1).
  • the min () function on the right side is a function that selects the minimum value among the arguments, as in the general definition.
  • M_sc ⁇ PUSCH-Initial represents a frequency resource allocated to data (transport block) transmitted by PUSCH in a unit equivalent to a subcarrier (ie, 15 kHz unit), and HARQ-ACK or RI Represents a resource allocated at the time of initial transmission (regardless of whether it is initial transmission or re-transmission) for a transport block transmitted by PUSCH in which is multiplexed.
  • the first transmission here indicates the transmission in which the transport block is transmitted first, and the re-transmission means that the transport block (data) cannot be correctly received at the first transmission by eNodeB. Indicates that the transport block is transmitted again.
  • N_symb ⁇ PUSCH-Initial indicates the number of SC-FDMA symbols when the transport block is transmitted for the first time.
  • K_r indicates the number of bits included in the r-th code block (starting from 0) after being divided into C code blocks in order to turbo-code the transport block. Therefore, the denominator of the argument of the first item indicates the total number of bits after the transport block is divided into code blocks.
  • Equation 1 the product of M_sc ⁇ PUSCH-Initial and N_symb ⁇ PUSCH-Initial divided by the denominator is necessary to transmit one bit of the transport block after code block division while satisfying the required quality. It can be interpreted as indicating the number of resources.
  • O (O) indicates the number of HARQ-ACK or RI information bits multiplexed on PUSCH.
  • ⁇ _offset ⁇ PUSCH indicates the coefficient (or offset, multiple, magnification) required to satisfy the transmission quality of HARQ-ACK transmission and RI transmission based on the transmission quality of the transport block. This value is preset according to the target type (HARQ-ACK or RI) and is shared between the eNodeB and the UE. Since required quality differs between HARQ-ACK and RI, different values can be set.
  • the argument of the second item of the min () function, 4M_sc ⁇ PUSCH gives the upper limit of the number of resources that can be allocated to HARQ-ACK and RI in PUSCH where HARQ-ACK and RI are actually multiplexed. .
  • LTE-Advanced the next generation communication standard of LTE, makes it possible to apply MIMO to PUSCH, which is an uplink data channel.
  • MIMO is applied, depending on the rank of the MIMO communication channel, one data can be sent by PUSCH if the rank is 1, and multiple data (transport blocks) can be sent if the rank is greater than 1.
  • These data are each encoded when transmitted by PUSCH, and the encoded data is called a code word.
  • Equation 1 specified in Release 8 can be applied when the number of code words is 1, but when the number of code words is greater than 1, Not applicable. Therefore, in such a case, there is a problem that the number of resources necessary for transmitting HARQ-ACK or RI cannot be calculated.
  • LTE-Advanced introduces a technology called carrier aggregation that handles multiple carriers together. As a result, it becomes necessary to simultaneously transmit HARQ-ACK and RI multiple times the number of carriers, and there is a problem that the number of bits of HARQ-ACK and RI increases.
  • an object of the present invention is to solve the above-described problem, and multiplex the predetermined information such as HARQ-ACK or RI into a plurality of code words transmitted by PUSCH and transmit the number of HARQ-ACK resources in the carrier code.
  • An object of the present invention is to provide a communication device and a resource derivation method that can be derived while alleviating an increase due to aggregation.
  • the first communication device of the present invention is In the PUSCH, a communication device that transmits or receives predetermined information using one or more codewords, A communication unit for transmitting or receiving the predetermined information; A control unit, The controller is The number of information bits of the predetermined information is O, the number of subcarriers assigned to the transport block transmitted on the PUSCH at the time of initial transmission is assigned to M_sc ⁇ PUSCH-Initial, and assigned to the transport block at the time of initial transmission.
  • the coefficient set in advance according to the predetermined information type is ⁇ _offset ⁇ PUSCH
  • the transport block is divided into C code blocks for turbo coding
  • the number of bits included in the r-th code block is K_r
  • the number of resources Q′_i in the case where it is assumed that the predetermined information is transmitted using the i-th code word CW_i alone is calculated by the following equation:
  • the one or more codewords are The number of resources Q ′ in the case where the predetermined information is transmitted using is calculated by the following equation.
  • the second communication device of the present invention In the PUSCH, a communication device that transmits or receives predetermined information using one or more codewords, A communication unit for transmitting or receiving the predetermined information; A control unit, The controller is The number of information bits of the predetermined information is O, the number of subcarriers assigned to the transport block transmitted on the PUSCH at the time of initial transmission is assigned to M_sc ⁇ PUSCH-Initial, and assigned to the transport block at the time of initial transmission.
  • the coefficient set in advance according to the predetermined information type is ⁇ _offset ⁇ PUSCH
  • the transport block is divided into C code blocks for turbo coding
  • the number of bits included in the r-th code block is K_r
  • the number of subcarriers assigned to the transport block when transmitting the predetermined information is M_sc ⁇ PUSCH
  • the i-th code word CW_i alone Use in the above place
  • the number of resources Q'_i by the following equation on the assumption that transmits the information
  • the number of resources Q ′ when the predetermined information is transmitted using the one or more codewords is calculated by the following equation.
  • the third communication device of the present invention In the PUSCH, a communication device that transmits or receives predetermined information using one or more codewords, A communication unit for transmitting or receiving the predetermined information; A control unit, The controller is The number of information bits of the predetermined information is O, the number of subcarriers assigned to the transport block transmitted on the PUSCH at the time of initial transmission is assigned to M_sc ⁇ PUSCH-Initial, and assigned to the transport block at the time of initial transmission.
  • the coefficient set in advance according to the predetermined information type is ⁇ _offset ⁇ PUSCH
  • the transport block is divided into C code blocks for turbo coding
  • the number of bits included in the r-th code block is K_r
  • the one or more codewords are The number of resources Q ′ in the case where the predetermined information is transmitted using is calculated by the following equation.
  • the fourth communication device of the present invention is In the PUSCH, a communication device that transmits or receives predetermined information using one or more codewords, A communication unit for transmitting or receiving the predetermined information; A control unit, The controller is The number of information bits of the predetermined information is O, the number of subcarriers assigned to the transport block transmitted on the PUSCH at the time of initial transmission is assigned to M_sc ⁇ PUSCH-Initial, and assigned to the transport block at the time of initial transmission.
  • N_sym ⁇ PUSCH-Initial the number of symbols set in advance according to the predetermined information type is ⁇ , ⁇ _offset ⁇ PUSCH, and the transport block is divided into C code blocks for turbo coding
  • the number of bits included in the r-th code block after K is assumed to be K_r
  • the number of resources Q′_i in the case where it is assumed that the predetermined information is transmitted using the i-th code word CW_i alone is Calculate with
  • the one or more codewords are The number of resources Q ′ in the case where the predetermined information is transmitted using is calculated by the following equation.
  • the fifth communication device of the present invention In the PUSCH, a communication device that transmits or receives predetermined information using one or more codewords, A communication unit for transmitting or receiving the predetermined information; A control unit, The controller is The number of information bits of the predetermined information is O, the number of subcarriers assigned to the transport block transmitted on the PUSCH at the time of initial transmission is assigned to M_sc ⁇ PUSCH-Initial, and assigned to the transport block at the time of initial transmission.
  • the number of symbols set in advance according to the predetermined information type is ⁇ , ⁇ _offset ⁇ PUSCH, and the transport block is divided into C code blocks for turbo coding
  • the number of bits included in the r-th code block after the transmission is K_r and the number of subcarriers assigned when the predetermined information is transmitted to the transport block is M_sc ⁇ PUSCH
  • the i-th code word CW_i Using the above alone alone
  • the number of resources Q′_i when it is assumed that predetermined information is transmitted is calculated by the following equation:
  • the number of resources Q ′ when the predetermined information is transmitted using the one or more codewords is calculated by the following equation.
  • the sixth communication device of the present invention In the PUSCH, a communication device that transmits or receives predetermined information using one or more codewords, A communication unit for transmitting or receiving the predetermined information; A control unit, The controller is The number of information bits of the predetermined information is O, the number of subcarriers assigned to the transport block transmitted on the PUSCH at the time of initial transmission is assigned to M_sc ⁇ PUSCH-Initial, and assigned to the transport block at the time of initial transmission.
  • N_sym ⁇ PUSCH-Initial the number of symbols set in advance according to the predetermined information type is ⁇ , ⁇ _offset ⁇ PUSCH, and the transport block is divided into C code blocks for turbo coding
  • K_r the number of bits included in the r-th code block after K
  • '_I is calculated by the following formula,
  • the one or more codewords are The number of resources Q ′ in the case where the predetermined information is transmitted using is calculated by the following equation.
  • the first resource derivation method of the present invention includes: A resource derivation method by a communication apparatus that transmits or receives predetermined information using one or more codewords in PUSCH,
  • the number of information bits of the predetermined information is O
  • the number of subcarriers assigned to the transport block transmitted on the PUSCH at the time of initial transmission is assigned to M_sc ⁇ PUSCH-Initial, and assigned to the transport block at the time of initial transmission.
  • the coefficient set in advance according to the predetermined information type is ⁇ _offset ⁇ PUSCH
  • the transport block is divided into C code blocks for turbo coding
  • the number of bits included in the r-th code block is K_r
  • the number of resources Q′_i in the case where it is assumed that the predetermined information is transmitted using the i-th code word CW_i alone is calculated by the following equation:
  • the one or more codewords are The number of resources Q ′ in the case where the predetermined information is transmitted using is calculated by the following equation.
  • the second resource derivation method of the present invention is: A resource derivation method by a communication apparatus that transmits or receives predetermined information using one or more codewords in PUSCH,
  • the number of information bits of the predetermined information is O
  • the number of subcarriers assigned to the transport block transmitted on the PUSCH at the time of initial transmission is assigned to M_sc ⁇ PUSCH-Initial, and assigned to the transport block at the time of initial transmission.
  • the coefficient set in advance according to the predetermined information type is ⁇ _offset ⁇ PUSCH
  • the transport block is divided into C code blocks for turbo coding
  • the number of bits included in the r-th code block is K_r
  • the number of subcarriers assigned to the transport block when transmitting the predetermined information is M_sc ⁇ PUSCH
  • the i-th code word CW_i alone Use in the above place
  • the number of resources Q'_i by the following equation on the assumption that transmits the information
  • the number of resources Q ′ when the predetermined information is transmitted using the one or more codewords is calculated by the following equation.
  • the third resource derivation method of the present invention is: A resource derivation method by a communication apparatus that transmits or receives predetermined information using one or more codewords in PUSCH,
  • the number of information bits of the predetermined information is O
  • the number of subcarriers assigned to the transport block transmitted on the PUSCH at the time of initial transmission is assigned to M_sc ⁇ PUSCH-Initial, and assigned to the transport block at the time of initial transmission.
  • the coefficient set in advance according to the predetermined information type is ⁇ _offset ⁇ PUSCH
  • the transport block is divided into C code blocks for turbo coding
  • the number of bits included in the r-th code block is K_r
  • the one or more codewords are The number of resources Q ′ in the case where the predetermined information is transmitted using is calculated by the following equation.
  • the fourth resource derivation method of the present invention is as follows.
  • a resource derivation method by a communication apparatus that transmits or receives predetermined information using one or more codewords in PUSCH The number of information bits of the predetermined information is O, the number of subcarriers assigned to the transport block transmitted on the PUSCH at the time of initial transmission is assigned to M_sc ⁇ PUSCH-Initial, and assigned to the transport block at the time of initial transmission.
  • N_sym ⁇ PUSCH-Initial the number of symbols set in advance according to the predetermined information type is ⁇ , ⁇ _offset ⁇ PUSCH, and the transport block is divided into C code blocks for turbo coding
  • the number of bits included in the r-th code block after K is assumed to be K_r
  • the number of resources Q′_i in the case where it is assumed that the predetermined information is transmitted using the i-th code word CW_i alone is Calculate with
  • the one or more codewords are The number of resources Q ′ in the case where the predetermined information is transmitted using is calculated by the following equation.
  • the fifth resource derivation method of the present invention is: A resource derivation method by a communication apparatus that transmits or receives predetermined information using one or more codewords in PUSCH,
  • the number of information bits of the predetermined information is O
  • the number of subcarriers assigned to the transport block transmitted on the PUSCH at the time of initial transmission is assigned to M_sc ⁇ PUSCH-Initial, and assigned to the transport block at the time of initial transmission.
  • the number of symbols set in advance according to the predetermined information type is ⁇ , ⁇ _offset ⁇ PUSCH, and the transport block is divided into C code blocks for turbo coding
  • the number of bits included in the r-th code block after the transmission is K_r and the number of subcarriers assigned when the predetermined information is transmitted to the transport block is M_sc ⁇ PUSCH
  • the i-th code word CW_i Using the above alone alone
  • the number of resources Q′_i when it is assumed that predetermined information is transmitted is calculated by the following equation:
  • the number of resources Q ′ when the predetermined information is transmitted using the one or more codewords is calculated by the following equation.
  • the sixth resource derivation method of the present invention is as follows.
  • a resource derivation method by a communication apparatus that transmits or receives predetermined information using one or more codewords in PUSCH The number of information bits of the predetermined information is O, the number of subcarriers assigned to the transport block transmitted on the PUSCH at the time of initial transmission is assigned to M_sc ⁇ PUSCH-Initial, and assigned to the transport block at the time of initial transmission.
  • N_sym ⁇ PUSCH-Initial the number of symbols set in advance according to the predetermined information type is ⁇ , ⁇ _offset ⁇ PUSCH, and the transport block is divided into C code blocks for turbo coding
  • K_r the number of bits included in the r-th code block after K
  • '_I is calculated by the following formula,
  • the one or more codewords are The number of resources Q ′ in the case where the predetermined information is transmitted using is calculated by the following equation.
  • PUSCH which is an uplink (UE to eNodeB direction) data channel
  • PUSCH which is an uplink (UE to eNodeB direction) data channel
  • predetermined information such as HARQ-ACK or RI
  • the predetermined transmission quality is satisfied.
  • the effect is that the required number of resources can be derived.
  • FIG. 1 the communication system of this embodiment has UE10 and eNodeB20.
  • both the UE 10 and the eNodeB 20 correspond to the communication device of the present invention.
  • the communication system of the present embodiment is an LTE-Advanced communication system in which MIMO is applied to PUSCH.
  • MIMO MIMO-Advanced communication system
  • UE 10 transmits HARQ-ACK or RI on PUSCH, it depends on the rank of the MIMO communication path.
  • One or two code words can be used. Each code word is assigned one or more layers.
  • UE 10 has a communication unit 11 and a control unit 12.
  • the communication unit 11 is a part that performs wireless communication with the eNodeB 20, and for example, transmits HARQ-ACK or RI to the eNodeB 20 using PUSCH.
  • the control unit 12 controls the communication unit 11.
  • the HARQ calculates the number of resources required when the UE 10 transmits HARQ-ACK or RI on the PUSCH, and maps to the code word at that time. -Calculate the number of bits in the ACK sequence or RI sequence.
  • the HARQ-ACK sequence indicates not the HARQ-ACK information element itself but the bit string after encoding the HARQ-ACK information element.
  • the RI sequence indicates a bit string after encoding the RI information element, like the HARQ-ACK sequence.
  • ENodeB 20 has a communication unit 21 and a control unit 22.
  • the communication unit 21 is a part that performs radio communication with the UE 10, and receives, for example, HARQ-ACK or RI transmitted from the UE 10 via PUSCH.
  • the control unit 22 controls the communication unit 21.
  • the HARQ calculates the number of resources required when the UE 10 transmits HARQ-ACK or RI in PUSCH, and maps to the code word at that time. -Calculate the number of bits in the ACK sequence or RI sequence.
  • Formula 26 is obtained by removing the upper limit from Formula 1 of Release 8 and is basically the same as Release 8. Since it is appropriate to apply the upper limit to the final result, the upper limit is removed in Equation 26.
  • Equation 27 is an expression that gives Q_ACK, which is the number of bits of the HARQ-ACK sequence transmitted with the code word, and Q_RI, which is the number of bits of the RI sequence transmitted with the code word, where Q_m is the code Modulation order of word, L is the number of layers assigned to the code word, Q ′ is a value obtained by substituting HARQ-ACK parameters or RI parameters for the code word in Equation 26 .
  • SNRs of Layer 1, Layer 2, and Layer 3 be SNR1, SNR2, and SNR3, respectively.
  • the number of resources required for the layer assigned to CW1 (here, each of layer 1 and layer 2) is Q′_1.
  • Q'_1 is calculated by applying the CW1 parameter to Equation 26.
  • the number of resources required for the layer (here, layer 3) allocated to CW2 is assumed to be Q'_2.
  • Q'_2 is calculated by applying the CW2 parameter to Equation 26, as in CW1.
  • the transmission quality of HARQ-ACK is expected to satisfy the required quality, as in CW1.
  • Equation 26 M_sc ⁇ PUSCH-Initial and N_symb ⁇ PUSCH-Initial are common to CW1 and CW2.
  • ⁇ _offset ⁇ PUSCH may be different between CW1 and CW2, but it is necessary to use a common value between UE10 and eNodeB20.
  • ⁇ _offset ⁇ PUSCH is selected according to the modulation schemes of CW1 and CW2.
  • UE10 and eNodeB20 have a common recognition regarding the modulation scheme of each code word (since eNodeB20 notifies UE10). Therefore, it is only necessary that UE10 and eNodeB20 share the following table.
  • ⁇ _offset ⁇ PUSCH in Equation 26 may be replaced with ⁇ ⁇ ⁇ _offset ⁇ PUSCH as in Equation 28 below.
  • the range of ⁇ is 0 ⁇ ⁇ 1.
  • is selected for each code word.
  • may be selected according to any code word modulation method.
  • may be set in advance to eNode20 and UE10 as a predetermined value, or may be set from eNodeB20 to UE10. In this case, ⁇ _offset ⁇ PUSCH itself does not depend on the modulation scheme.
  • ⁇ in Table 2 indicates the transmission power of the code word and the HARQ-ACK or RI when the HARQ-ACK or RI is transmitted using the outermost modulation point of each modulation scheme and modulated with QPSK.
  • adopted ratio with the transmission power of is represented. You may optimize according to the required SNR of the data in each MCS.
  • Table 2 shows the ratio of the average transmission power of all signal points (equal to the transmission power of code word) and the transmission power of the outermost signal points (equal to the transmission power of HARQ-ACK and RI).
  • Equation 28 compared to Equation 26, the value of Q ′ is reduced to about half in the case of 16QAM and 64QAM. If RI's Q 'is reduced, each code word is rate-matched with resources excluding RI resources from all resources, so the effect of lowering the code rate of each code word (ie, the effect of improving error correction capability) There is. If Q ′ of HARQ-ACK is reduced, the number of bits of each code word that is overwritten by HARQ-ACK is reduced, which has the effect of improving the transmission quality of each code word.
  • Equation 31 a lower limit is set so that the number of resources does not fall below the number of resources necessary for information transmission. Furthermore, when an upper limit similar to that in Release 8 is set, Equation 32 is obtained, which gives resources necessary for transmitting HARQ-ACK and RI using two code words.
  • O (O) is the number of information bits of HARQ-ACK and RI, and is a value of 1 or more.
  • Q_m ⁇ UCI indicates the modulation order of the modulation scheme of the HARQ-ACK sequence. For example, even when the code word modulation scheme is 16QAM, when only the outermost modulation point is used, it is regarded as QPSK and the modulation order is set to 2.
  • the lower limit of the number of resources to be allocated to HARQ-ACK and RI is given by the argument of the second item of the max () function, and the upper limit that can be allocated is min It is given by the argument of the second item of the () function.
  • Q_m ⁇ i indicates the number of bits that can be transmitted with one resource in the modulation method of code word i. It is 2 for QPSK, 4 for 16QAM, and 6 for 64QAM.
  • L ⁇ i is the number of layers assigned to code word i.
  • Q ′ is a value calculated by Equation 32.
  • Q′_1 and Q′_2 in Expression 32 are values given by substituting the number of HARQ-ACK information bits and an offset value into O (O) and ⁇ _offset ⁇ PUSCH in Expression 26.
  • RI is the same as HARQ-ACK except that the values given by substituting RI values into O (O) and ⁇ _offset ⁇ PUSCH in Equation 26 are used in Equation 32 and Equation 33.
  • Formula 32 is generally represented by the following Formula 34.
  • Q′_i is the number of resources given by applying Expression 26 to the code word when it is assumed that HARQ-ACK or RI is transmitted by the code word i alone. Others are the same as Expression 32.
  • the UE 10 and the eNodeB 20 calculate the number of resources when HARQ-ACK or RI is transmitted in PUSCH using a plurality of code words by applying Equation 34. Can do.
  • Equation 34 Can do.
  • Second Embodiment the operation for calculating the number of bits of the HARQ-ACK sequence or the RI sequence using Expression 27 and Expression 33 is common as compared with the first embodiment. However, the operation of calculating the number of resources is different. Other configurations and operations are the same as those in the first embodiment.
  • Q′_1 and Q′_2 are calculated as in the first embodiment. However, for calculating Q′_1 and Q′_2, Formula 1 (3GPP Release 8 Formula) or Formula 29 is used.
  • Q'_12 is calculated by the following formula 35. That is, Q'_12 is the smallest of Q'_1 and Q'_2 when Q'_1 and Q'_2 are equal to or greater than the lower limit value of the number of resources.
  • the transmission quality when transmitting HARQ-ACK using only CW1 satisfies the required quality by the resource of Q′_1. Therefore, by setting the number of CW2 resources to Q′_1, it is possible to further improve the transmission quality when HARQ-ACK is transmitted using only CW2.
  • the transmission quality of HARQ-ACK can satisfy the required quality.
  • Formula 35 is generally represented by the following Formula 36.
  • Q′_i is the number of resources given by applying Formula 1 or Formula 29 to the code word when it is assumed that HARQ-ACK or RI is transmitted by code word i alone. Others are the same as Expression 35.
  • the UE 10 and the eNodeB 20 calculate the number of resources when HARQ-ACK or RI is transmitted in PUSCH using a plurality of code words by applying Equation 36. Can do.
  • this embodiment has the same operation for calculating the number of bits of the HARQ-ACK sequence or the RI sequence using Equation 27 and Equation 33. However, the operation of calculating the number of resources is different. Other configurations and operations are the same as those in the first embodiment.
  • Q′_1 and Q′_2 are calculated using the formula 26 or 28.
  • Q′_12 is calculated using Equation 37 below.
  • Q′_12 is calculated using the following Expression 38.
  • whether the transmission quality is good or bad can be determined by the size of the index of MCS (Modulation and Coding Scheme).
  • the number of layers of CW1 and CW2 is not limited to this example, and can be applied when the number is 1 or more.
  • This method is applicable when the transmission quality of the code word with the worst transmission quality is applied to all layers.
  • Equation 30 ⁇ SNR1, SNR2, and SNR3 in Equation 30 are substituted with the SNR of the code word with the worst transmission quality as SNR0.
  • the number of resources can be calculated in the same way for RI.
  • Formula 37 and Formula 38 are generally expressed by Formula 41 below, where the worst code word is CW_i.
  • Q′_i is the number of resources given by applying Equation 26 or Equation 28 to the code word when it is assumed that HARQ-ACK or RI is transmitted by code word i alone.
  • Others are the same as Expression 37 and Expression 38.
  • the UE 10 and the eNodeB 20 calculate the number of resources when HARQ-ACK or RI is transmitted in PUSCH using a plurality of code words by applying Equation 41. Can do.
  • the second embodiment may be combined with the third embodiment, and the smaller Q′_12 may be selected.
  • the number of resources in the case of transmitting HARQ-ACK or RI from the UE 10 to the eNodeB 20 is calculated.
  • the present invention is not limited to this, and the data is the required quality (that is, BLER). It can be applied when transmitting different information.
  • a plurality of code words are used.
  • the present invention is not limited to this, and can also be applied to the case of using one code word.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

 本発明は、PUSCHにおいて、1以上のコードワードを使用して、所定の情報を送信または受信する通信装置に適用される。本発明の通信装置は、i番目のコードワードCW_iを単独で使用して前記所定の情報を送信すると仮定した場合におけるリソース数Q'_iを次式(1)で計算し、前記1以上のコードワードを使用して前記所定の情報を送信する場合におけるリソース数Q'を次式(2)で計算する。

Description

通信装置およびリソース導出方法
 本発明は、移動体通信において、上りデータ通信用のチャネルに、下りデータに対するacknowledgementや品質情報を多重して送信する際、所要伝送品質を満足するために必要となるリソース数を、お互いにシグナリングすることなく、移動機と基地局が独立して導出し、通信する技術に関する。
 3GPP(3rd Generation Partnership Project)のLTE(Long Term Evolution)では、UE(User Equipment:移動機)からeNodeB(基地局)に対して、HARQ-ACKやRANK INDICATOR(以下、RIと呼ぶ)を、データ送信に使用するPUSCHで送信することできる。
 ここで言うHARQ-ACKとは、eNodeBから送信された下りデータをUEが正しく受信できたか否かをeNodeBに対して示すacknowledgementであり、positive acknowledgementとnegative acknowledgementの2つの状態がある。
 一方、RIは、UEとeNodeB間でMIMO(Multiple Input Multiple Output)通信を行う際、下りMIMO通信路(eNodeBからUEの方向)のランクを示すindexであり、UEからeNodeBに通知されるものである。なお、ランクは、MIMO通信において空間多重できる通信路の数を表わし、上限は、対向する送信アンテナ数と受信アンテナ数の少ない方となる。また、空間多重された各データ通信路をレイヤと呼ぶ。
 LTEのリリース8(2008年版)では、UEがPUSCHにてHARQ-ACKまたはRIをeNodeBに送信する際に必要となるリソース数を、UEおよびeNodeBがそれぞれ独立して計算し、多重されているリソースの認識あわせをして、HARQ-ACKまたはRIの送受信を行う。
 ところで、LTEでは、上りリソースは、下りリソースと同様な扱いが可能となるように、仮想的な周波数軸と時間軸からなる2次元の空間で管理されている。この仮想的な空間は、周波数軸はサブキャリア(15kHz)単位、時間軸は、SC-FDMAシンボル単位で区切られ、この区切られた領域(グリッド)はリソースエレメント(以下、REと表記)と呼ばれている。上述したリソース数とは、このREの数を示している。
 LTEのリリース8においては、上りデータ送信においては、1アンテナ送信(すなわち非MIMO)のPUSCHのみがサポートされている。このPUSCHにてO(オー)ビットのHARQ-ACKまたはRIを送信する際に必要となるリソース数Q’を計算するために、次の数式1が規定されている(非特許文献1)。
Figure JPOXMLDOC01-appb-M000027
 以下、数式1について説明する。
 右辺のmin()関数は、一般的な定義と同様に、引数のうち最小値を選択する関数である。
 min()関数の引数のうち、まず、第1項目の引数について説明する。
 M_sc^PUSCH-Initialは、PUSCHで送信されるデータ(トランスポートブロック)に割り当てられた周波数リソースを、サブキャリア相当の単位(すなわち15kHz単位)で表わしたものであり、かつ、HARQ-ACKやRIが多重されるPUSCHで送信されるトランスポートブロックに対し、(初回送信か再送信であるかによらず)、初回送信時に割り当てられたリソースを表わしている。
 なお、ここで初回送信とは、当該トランスポートブロックが最初に送信される送信のことを示しており、再送信とは、eNodeBにて初回送信時に当該トランスポートブロック(データ)が正しく受信できなかった場合に、当該トランスポートブロックを再度送信する送信のことを示している。
 N_symb^PUSCH-Initialは、当該トランスポートブロックの初回送信時のSC-FDMAシンボル数を示す。
 K_rは、当該トランスポートブロックをターボ符号化するために、C個のコードブロックに分割した後の、r番目のコードブロック(0始まり)に含まれるbit数を示す。したがって、第1項目の引数の分母は、当該トランスポートブロックをコードブロック分割した後の全bit数を示す。
 数式1において、M_sc^PUSCH-InitialとN_symb^PUSCH-Initialの積を、分母で割った部分は、コードブロック分割後のトランスポートブロックの1ビットを所要品質を満足しながら送信するために必要なリソース数を示していると解釈できる。
 O(オー)は、PUSCHに多重するHARQ-ACKまたはRIの情報ビット数を示す。
 β_offset^PUSCHは、トランスポートブロックの伝送品質を基準として、HARQ-ACKの送信、およびRIの送信の伝送品質を満足するために必要な係数(又はオフセット、倍数、倍率)を示しており、送信対象の種別(HARQ-ACKまたはRI)に応じて予め設定される値であり、eNodeBとUEとで共有される。HARQ-ACKとRIとでは要求される品質が異なるため、異なる値を設定することが可能となっている。
 一方、min()関数の第2項目の引数、4・M_sc^PUSCHは、実際にHARQ-ACKやRIが多重されるPUSCHにおいて、HARQ-ACKやRIに割り当て可能なリソース数の上限値を与える。
3GPP TS36.212
 ところで、LTEの次世代の通信規格であるLTE-Advancedでは、上りデータチャネルであるPUSCHにMIMOを適用することが可能になる。MIMO適用時には、MIMO通信路のランクに応じ、ランクが1の場合は1つ、ランクが1より大の場合には複数データ(トランスポートブロック)をPUSCHで送ることができる。これらのデータは、PUSCHで送信される際それぞれ符号化され、符号化されたデータをcode word(コードワード)と呼ぶ。
 しかし、PUSCHにMIMO通信を適用すると、リリース8で規定されている数式1は、code word数が1の場合には適用可能であるが、code word数が1より大の場合には、そのままでは適用できない。したがって、そのような場合には、HARQ-ACKまたはRIを送信するために必要なリソース数を計算することができないという問題がある。
 また、LTE-Advancedでは、複数のキャリアをまとめて扱うキャリア・アグリゲーションという技術が導入される。これによって、複数のキャリア数倍のHARQ-ACKやRIを同時に送信する必要性が生じ、HARQ-ACKやRIのbit数が増大するという問題がある。
 そこで、本発明の目的は、上述した課題を解決し、PUSCHで送信される複数のcode wordにHARQ-ACKまたはRIといった所定の情報を多重、送信する場合におけるHARQ-ACKリソース数を、キャリア・アグリゲーションによる増大を緩和しつつ、導出することができる通信装置およびリソース導出方法を提供することにある。
 本発明の第1の通信装置は、
 PUSCHにおいて、1以上のコードワードを使用して、所定の情報を送信または受信する通信装置であって、
 前記所定の情報を送信または受信する通信部と、
 制御部と、を有し、
 前記制御部は、
 前記所定の情報の情報ビット数をO、前記PUSCHで送信されるトランスポートブロックに対して初回送信時に割り当てられたサブキャリア数をM_sc^PUSCH-Initial、前記トランスポートブロックに対して初回送信時に割り当てられたシンボル数をN_symb^PUSCH-Initial、前記所定の情報の種別に応じて予め設定された係数をβ_offset^PUSCH、前記トランスポートブロックをターボ符号化するためにC個のコードブロックに分割した後のr番目のコードブロックに含まれるビット数をK_rとしたとき、i番目のコードワードCW_iを単独で使用して前記所定の情報を送信すると仮定した場合におけるリソース数Q’_iを次式で計算し、
Figure JPOXMLDOC01-appb-M000028
 前記所定の情報の変調方式のモジュレーションオーダーをQ_m^UCI、前記トランスポートブロックに対して前記所定の情報の送信時に割り当てられたサブキャリア数をM_sc^PUSCHとしたとき、前記1以上のコードワードを使用して前記所定の情報を送信する場合におけるリソース数Q’を次式で計算する。
Figure JPOXMLDOC01-appb-M000029
 本発明の第2の通信装置は、
 PUSCHにおいて、1以上のコードワードを使用して、所定の情報を送信または受信する通信装置であって、
 前記所定の情報を送信または受信する通信部と、
 制御部と、を有し、
 前記制御部は、
 前記所定の情報の情報ビット数をO、前記PUSCHで送信されるトランスポートブロックに対して初回送信時に割り当てられたサブキャリア数をM_sc^PUSCH-Initial、前記トランスポートブロックに対して初回送信時に割り当てられたシンボル数をN_symb^PUSCH-Initial、前記所定の情報の種別に応じて予め設定された係数をβ_offset^PUSCH、前記トランスポートブロックをターボ符号化するためにC個のコードブロックに分割した後のr番目のコードブロックに含まれるビット数をK_r、前記トランスポートブロックに対して前記所定の情報の送信時に割り当てられたサブキャリア数をM_sc^PUSCHとしたとき、i番目のコードワードCW_iを単独で使用して前記所定の情報を送信すると仮定した場合におけるリソース数Q’_iを次式で計算し、
Figure JPOXMLDOC01-appb-M000030
 前記所定の情報の変調方式のモジュレーションオーダーをQ_m^UCIとしたとき、前記1以上のコードワードを使用して前記所定の情報を送信する場合におけるリソース数Q’を次式で計算する。
Figure JPOXMLDOC01-appb-M000031
 本発明の第3の通信装置は、
 PUSCHにおいて、1以上のコードワードを使用して、所定の情報を送信または受信する通信装置であって、
 前記所定の情報を送信または受信する通信部と、
 制御部と、を有し、
 前記制御部は、
 前記所定の情報の情報ビット数をO、前記PUSCHで送信されるトランスポートブロックに対して初回送信時に割り当てられたサブキャリア数をM_sc^PUSCH-Initial、前記トランスポートブロックに対して初回送信時に割り当てられたシンボル数をN_symb^PUSCH-Initial、前記所定の情報の種別に応じて予め設定された係数をβ_offset^PUSCH、前記トランスポートブロックをターボ符号化するためにC個のコードブロックに分割した後のr番目のコードブロックに含まれるビット数をK_rとしたとき、伝送品質が最も悪いi番目のコードワードCW_iを単独で使用して前記所定の情報を送信すると仮定した場合におけるリソース数Q’_iを次式で計算し、
Figure JPOXMLDOC01-appb-M000032
 前記所定の情報の変調方式のモジュレーションオーダーをQ_m^UCI、前記トランスポートブロックに対して前記所定の情報の送信時に割り当てられたサブキャリア数をM_sc^PUSCHとしたとき、前記1以上のコードワードを使用して前記所定の情報を送信する場合におけるリソース数Q’を次式で計算する。
Figure JPOXMLDOC01-appb-M000033
 本発明の第4の通信装置は、
 PUSCHにおいて、1以上のコードワードを使用して、所定の情報を送信または受信する通信装置であって、
 前記所定の情報を送信または受信する通信部と、
 制御部と、を有し、
 前記制御部は、
 前記所定の情報の情報ビット数をO、前記PUSCHで送信されるトランスポートブロックに対して初回送信時に割り当てられたサブキャリア数をM_sc^PUSCH-Initial、前記トランスポートブロックに対して初回送信時に割り当てられたシンボル数をN_symb^PUSCH-Initial、前記所定の情報の種別に応じて予め設定された係数をα、β_offset^PUSCH、前記トランスポートブロックをターボ符号化するためにC個のコードブロックに分割した後のr番目のコードブロックに含まれるビット数をK_rとしたとき、i番目のコードワードCW_iを単独で使用して前記所定の情報を送信すると仮定した場合におけるリソース数Q’_iを次式で計算し、
Figure JPOXMLDOC01-appb-M000034
 前記所定の情報の変調方式のモジュレーションオーダーをQ_m^UCI、前記トランスポートブロックに対して前記所定の情報の送信時に割り当てられたサブキャリア数をM_sc^PUSCHとしたとき、前記1以上のコードワードを使用して前記所定の情報を送信する場合におけるリソース数Q’を次式で計算する。
Figure JPOXMLDOC01-appb-M000035
 本発明の第5の通信装置は、
 PUSCHにおいて、1以上のコードワードを使用して、所定の情報を送信または受信する通信装置であって、
 前記所定の情報を送信または受信する通信部と、
 制御部と、を有し、
 前記制御部は、
 前記所定の情報の情報ビット数をO、前記PUSCHで送信されるトランスポートブロックに対して初回送信時に割り当てられたサブキャリア数をM_sc^PUSCH-Initial、前記トランスポートブロックに対して初回送信時に割り当てられたシンボル数をN_symb^PUSCH-Initial、前記所定の情報の種別に応じて予め設定された係数をα、β_offset^PUSCH、前記トランスポートブロックをターボ符号化するためにC個のコードブロックに分割した後のr番目のコードブロックに含まれるビット数をK_r、前記トランスポートブロックに対して前記所定の情報の送信時に割り当てられたサブキャリア数をM_sc^PUSCHとしたとき、i番目のコードワードCW_iを単独で使用して前記所定の情報を送信すると仮定した場合におけるリソース数Q’_iを次式で計算し、
Figure JPOXMLDOC01-appb-M000036
 前記所定の情報の変調方式のモジュレーションオーダーをQ_m^UCIとしたとき、前記1以上のコードワードを使用して前記所定の情報を送信する場合におけるリソース数Q’を次式で計算する。
Figure JPOXMLDOC01-appb-M000037
 本発明の第6の通信装置は、
 PUSCHにおいて、1以上のコードワードを使用して、所定の情報を送信または受信する通信装置であって、
 前記所定の情報を送信または受信する通信部と、
 制御部と、を有し、
 前記制御部は、
 前記所定の情報の情報ビット数をO、前記PUSCHで送信されるトランスポートブロックに対して初回送信時に割り当てられたサブキャリア数をM_sc^PUSCH-Initial、前記トランスポートブロックに対して初回送信時に割り当てられたシンボル数をN_symb^PUSCH-Initial、前記所定の情報の種別に応じて予め設定された係数をα、β_offset^PUSCH、前記トランスポートブロックをターボ符号化するためにC個のコードブロックに分割した後のr番目のコードブロックに含まれるビット数をK_rとしたとき、伝送品質が最も悪いi番目のコードワードCW_iを単独で使用して前記所定の情報を送信すると仮定した場合におけるリソース数Q’_iを次式で計算し、
Figure JPOXMLDOC01-appb-M000038
 前記所定の情報の変調方式のモジュレーションオーダーをQ_m^UCI、前記トランスポートブロックに対して前記所定の情報の送信時に割り当てられたサブキャリア数をM_sc^PUSCHとしたとき、前記1以上のコードワードを使用して前記所定の情報を送信する場合におけるリソース数Q’を次式で計算する。
Figure JPOXMLDOC01-appb-M000039
 本発明の第1のリソース導出方法は、
 PUSCHにおいて、1以上のコードワードを使用して、所定の情報を送信または受信する通信装置によるリソース導出方法であって、
 前記所定の情報の情報ビット数をO、前記PUSCHで送信されるトランスポートブロックに対して初回送信時に割り当てられたサブキャリア数をM_sc^PUSCH-Initial、前記トランスポートブロックに対して初回送信時に割り当てられたシンボル数をN_symb^PUSCH-Initial、前記所定の情報の種別に応じて予め設定された係数をβ_offset^PUSCH、前記トランスポートブロックをターボ符号化するためにC個のコードブロックに分割した後のr番目のコードブロックに含まれるビット数をK_rとしたとき、i番目のコードワードCW_iを単独で使用して前記所定の情報を送信すると仮定した場合におけるリソース数Q’_iを次式で計算し、
Figure JPOXMLDOC01-appb-M000040
 前記所定の情報の変調方式のモジュレーションオーダーをQ_m^UCI、前記トランスポートブロックに対して前記所定の情報の送信時に割り当てられたサブキャリア数をM_sc^PUSCHとしたとき、前記1以上のコードワードを使用して前記所定の情報を送信する場合におけるリソース数Q’を次式で計算する。
Figure JPOXMLDOC01-appb-M000041
 本発明の第2のリソース導出方法は、
 PUSCHにおいて、1以上のコードワードを使用して、所定の情報を送信または受信する通信装置によるリソース導出方法であって、
 前記所定の情報の情報ビット数をO、前記PUSCHで送信されるトランスポートブロックに対して初回送信時に割り当てられたサブキャリア数をM_sc^PUSCH-Initial、前記トランスポートブロックに対して初回送信時に割り当てられたシンボル数をN_symb^PUSCH-Initial、前記所定の情報の種別に応じて予め設定された係数をβ_offset^PUSCH、前記トランスポートブロックをターボ符号化するためにC個のコードブロックに分割した後のr番目のコードブロックに含まれるビット数をK_r、前記トランスポートブロックに対して前記所定の情報の送信時に割り当てられたサブキャリア数をM_sc^PUSCHとしたとき、i番目のコードワードCW_iを単独で使用して前記所定の情報を送信すると仮定した場合におけるリソース数Q’_iを次式で計算し、
Figure JPOXMLDOC01-appb-M000042
 前記所定の情報の変調方式のモジュレーションオーダーをQ_m^UCIとしたとき、前記1以上のコードワードを使用して前記所定の情報を送信する場合におけるリソース数Q’を次式で計算する。
Figure JPOXMLDOC01-appb-M000043
 本発明の第3のリソース導出方法は、
 PUSCHにおいて、1以上のコードワードを使用して、所定の情報を送信または受信する通信装置によるリソース導出方法であって、
 前記所定の情報の情報ビット数をO、前記PUSCHで送信されるトランスポートブロックに対して初回送信時に割り当てられたサブキャリア数をM_sc^PUSCH-Initial、前記トランスポートブロックに対して初回送信時に割り当てられたシンボル数をN_symb^PUSCH-Initial、前記所定の情報の種別に応じて予め設定された係数をβ_offset^PUSCH、前記トランスポートブロックをターボ符号化するためにC個のコードブロックに分割した後のr番目のコードブロックに含まれるビット数をK_rとしたとき、伝送品質が最も悪いi番目のコードワードCW_iを単独で使用して前記所定の情報を送信すると仮定した場合におけるリソース数Q’_iを次式で計算し、
Figure JPOXMLDOC01-appb-M000044
 前記所定の情報の変調方式のモジュレーションオーダーをQ_m^UCI、前記トランスポートブロックに対して前記所定の情報の送信時に割り当てられたサブキャリア数をM_sc^PUSCHとしたとき、前記1以上のコードワードを使用して前記所定の情報を送信する場合におけるリソース数Q’を次式で計算する。
Figure JPOXMLDOC01-appb-M000045
 本発明の第4のリソース導出方法は、
 PUSCHにおいて、1以上のコードワードを使用して、所定の情報を送信または受信する通信装置によるリソース導出方法であって、
 前記所定の情報の情報ビット数をO、前記PUSCHで送信されるトランスポートブロックに対して初回送信時に割り当てられたサブキャリア数をM_sc^PUSCH-Initial、前記トランスポートブロックに対して初回送信時に割り当てられたシンボル数をN_symb^PUSCH-Initial、前記所定の情報の種別に応じて予め設定された係数をα、β_offset^PUSCH、前記トランスポートブロックをターボ符号化するためにC個のコードブロックに分割した後のr番目のコードブロックに含まれるビット数をK_rとしたとき、i番目のコードワードCW_iを単独で使用して前記所定の情報を送信すると仮定した場合におけるリソース数Q’_iを次式で計算し、
Figure JPOXMLDOC01-appb-M000046
 前記所定の情報の変調方式のモジュレーションオーダーをQ_m^UCI、前記トランスポートブロックに対して前記所定の情報の送信時に割り当てられたサブキャリア数をM_sc^PUSCHとしたとき、前記1以上のコードワードを使用して前記所定の情報を送信する場合におけるリソース数Q’を次式で計算する。
Figure JPOXMLDOC01-appb-M000047
 本発明の第5のリソース導出方法は、
 PUSCHにおいて、1以上のコードワードを使用して、所定の情報を送信または受信する通信装置によるリソース導出方法であって、
 前記所定の情報の情報ビット数をO、前記PUSCHで送信されるトランスポートブロックに対して初回送信時に割り当てられたサブキャリア数をM_sc^PUSCH-Initial、前記トランスポートブロックに対して初回送信時に割り当てられたシンボル数をN_symb^PUSCH-Initial、前記所定の情報の種別に応じて予め設定された係数をα、β_offset^PUSCH、前記トランスポートブロックをターボ符号化するためにC個のコードブロックに分割した後のr番目のコードブロックに含まれるビット数をK_r、前記トランスポートブロックに対して前記所定の情報の送信時に割り当てられたサブキャリア数をM_sc^PUSCHとしたとき、i番目のコードワードCW_iを単独で使用して前記所定の情報を送信すると仮定した場合におけるリソース数Q’_iを次式で計算し、
Figure JPOXMLDOC01-appb-M000048
 前記所定の情報の変調方式のモジュレーションオーダーをQ_m^UCIとしたとき、前記1以上のコードワードを使用して前記所定の情報を送信する場合におけるリソース数Q’を次式で計算する。
Figure JPOXMLDOC01-appb-M000049
 本発明の第6のリソース導出方法は、
 PUSCHにおいて、1以上のコードワードを使用して、所定の情報を送信または受信する通信装置によるリソース導出方法であって、
 前記所定の情報の情報ビット数をO、前記PUSCHで送信されるトランスポートブロックに対して初回送信時に割り当てられたサブキャリア数をM_sc^PUSCH-Initial、前記トランスポートブロックに対して初回送信時に割り当てられたシンボル数をN_symb^PUSCH-Initial、前記所定の情報の種別に応じて予め設定された係数をα、β_offset^PUSCH、前記トランスポートブロックをターボ符号化するためにC個のコードブロックに分割した後のr番目のコードブロックに含まれるビット数をK_rとしたとき、伝送品質が最も悪いi番目のコードワードCW_iを単独で使用して前記所定の情報を送信すると仮定した場合におけるリソース数Q’_iを次式で計算し、
Figure JPOXMLDOC01-appb-M000050
 前記所定の情報の変調方式のモジュレーションオーダーをQ_m^UCI、前記トランスポートブロックに対して前記所定の情報の送信時に割り当てられたサブキャリア数をM_sc^PUSCHとしたとき、前記1以上のコードワードを使用して前記所定の情報を送信する場合におけるリソース数Q’を次式で計算する。
Figure JPOXMLDOC01-appb-M000051
 本発明によれば、上り(UEからeNodeB方向)データチャネルであるPUSCHにおいて、複数のcode wordにHARQ-ACKまたはRIといった所定の情報を多重、送信する場合に所定の伝送品質を満足するのに必要なリソース数を導出することができるという効果が得られる。
本発明の一実施形態の通信システムの構成を示すブロック図である。 QPSKの信号点配置を示す図である。 16QAMの信号点配置を示す図である。 64QAMの信号点配置を示す図である。
 以下に、本発明を実施するための形態について図面を参照して説明する。
(1)第1の実施形態
 図1を参照すると、本実施形態の通信システムは、UE10およびeNodeB20を有している。ここで、UE10およびeNodeB20は共に、本発明の通信装置に相当する。
 なお、本実施形態の通信システムは、PUSCHにMIMOを適用したLTE-Advancedの通信システムであり、UE10がPUSCHにてHARQ-ACKまたはRIを送信する際には、MIMO通信路のランクに応じて1つまたは、2つのcode wordが使用することができるものとする。また、各code wordには、1以上のレイヤが割り当てられる。
 UE10は、通信部11および制御部12を有している。
 通信部11は、eNodeB20と無線通信を行う部分であり、例えば、eNodeB20に対してPUSCHにてHARQ-ACKまたはRIを送信する。
 制御部12は、通信部11を制御するものであり、例えば、UE10がPUSCHにてHARQ-ACKまたはRIを送信する際に必要なリソース数を計算したり、その際にcode wordにマッピングするHARQ-ACKシーケンスまたはRIシーケンスのビット数を計算したりする。
 ここで、HARQ-ACKシーケンスとは、HARQ-ACKの情報要素そのものではなく、HARQ-ACKの情報要素を符号化した後のビット列を示している。また、RIシーケンスは、HARQ-ACKシーケンスと同様に、RIの情報要素を符号化した後のビット列を示している。
 eNodeB20は、通信部21および制御部22を有している。
 通信部21は、UE10と無線通信を行う部分であり、例えば、UE10からPUSCHにて送信されてきたHARQ-ACKまたはRIを受信する。
 制御部22は、通信部21を制御するものであり、例えば、UE10がPUSCHにてHARQ-ACKまたはRIを送信する際に必要なリソース数を計算したり、その際にcode wordにマッピングするHARQ-ACKシーケンスまたはRIシーケンスのビット数を計算したりする。
 本実施形態のUE10およびeNodeB20は、PUSCHでHARQ-ACKやRANK INDICATORを送信する際、
code wordが1つの場合は、数式1を用いて、リソース数を計算する。
 code wordが2つある場合は、まず、code wordごとに、そのcode wordを単独で使用してHARQ-ACKやRIを送信すると仮定した場合におけるリソース数を数式26を用いて計算する。
 そして、それらの計算結果を基に、2つのcode wordを使用してHARQ-ACKまたはRIを送信する場合におけるリソース数を計算する。
Figure JPOXMLDOC01-appb-M000052
Figure JPOXMLDOC01-appb-M000053
 数式26は、リリース8の数式1から、上限を取り除いただけのものであり、基本的にリリース8と同じものである。上限は最終結果にかけるのが妥当であるため、数式26では取り除いている。
 数式27は、当該code wordで送信するHARQ-ACKシーケンスのbit数であるQ_ACKを与えるとともに、当該code wordで送信するRIシーケンスのbit数であるQ_RIを与える式であって、Q_mは、当該code wordのモジュレーションオーダー、Lは、当該code wordに割り当てられるレイヤ数、Q'は、数式26に当該code wordについて、HARQ-ACKのパラメータ、または、RIのパラメータを代入して得られた値である。
 以下、本実施形態のUE10およびeNodeB20において、HARQ-ACK送信時のリソース数を計算する動作について説明する。
 ここでは、上述のように、PUSCHにMIMOを適用した場合であって、ランクが3、code word数が2(以下、2つのcode wordを、CW1とCW2で示す)である場合を例にとって説明する。
 また、CW1にはレイヤ1およびレイヤ2の2レイヤを、CW2にはレイヤ3の1レイヤをそれぞれ割り当て(全部で3レイヤ)、code wordに割り当てられている各レイヤには同一数のリソースを割り当てるものとする。
 また、レイヤ1、レイヤ2、レイヤ3のSNRを、それぞれ、SNR1、SNR2、SNR3とする。
 また、CW1のみを使用してHARQ-ACKを送信する場合に、CW1に割り当てられたレイヤ(ここではレイヤ1およびレイヤ2の各々)に必要なリソース数をQ'_1とする。
 Q'_1は、数式26にCW1のパラメータを適用して計算する。
 CW1のパラメータは、CW1の伝送において、要求品質(BLER=BLock Error Rate)を満足することが期待されることから、Q'_1が示すリソース数で、HARQ-ACKの伝送を行うことにより、それらの伝送品質は所要品質を満足することが期待される。
 また、CW2のみを使用してHARQ-ACKを送信する場合に、CW2に割り当てられたレイヤ(ここではレイヤ3)に必要なリソース数をQ'_2とする。
 Q'_2は、CW1の場合と同様に、数式26にCW2のパラメータを適用して計算する。Q'_2が示すリソース数も、HARQ-ACKの伝送品質は所要品質を満足することがCW1の場合と同様に期待される。
 なお、数式26の計算において、M_sc^PUSCH-Initialと、N_symb^PUSCH-Initialとは、CW1とCW2とで共通である。β_offset^PUSCHは、CW1とCW2で異なっていても良いが、UE10とeNodeB20とで共通の値を用いる必要がある。ここでは、CW1とCW2それぞれの変調方式に応じてβ_offset^PUSCHを選ぶ例を取り上げる。UE10とeNodeB20は、各code wordの変調方式に関して共通認識を持っている(eNodeB20からUE10に通知されるから)。そのため、UE10とeNodeB20で以下のようなテーブルを共有していれば良い。
Figure JPOXMLDOC01-appb-T000054
 CW1とCW2それぞれの変調方式に応じてβ_offset^PUSCHを選ぶ方式のその他の例として、数式26のβ_offset^PUSCHを、α×β_offset^PUSCHで置き換えて、以下の数式28のようにしても良い。αの範囲は、0<α≦1である。この場合、αはcode word毎に選択する。または、αはいずれかのcode wordの変調方式に合わせて選択しても良い。αは予め決められた値として、eNode20とUE10に予め設定されていても良いし、eNodeB20からUE10に設定しても良い。この場合、β_offset^PUSCH自体は、変調方式によらない。
Figure JPOXMLDOC01-appb-M000055
Figure JPOXMLDOC01-appb-T000056
 表2のαは、HARQ-ACKやRIを送信する際に、各変調方式の最も外側の変調点を用い、QPSKで変調を掛けた場合の、code wordの送信電力と、HARQ-ACKやRIの送信電力との比を採用した例を表わしている。各MCSにおけるデータの所要SNRに応じて、最適化しても良い。
 図2、図3、図4は、それぞれ、QPSK、16QAM、64QAMの信号点配置を表わしており、全信号点の送信電力の平均は同じ(=1)である。各図を参照すると、同じ送信電力であっても、QPSK<16QAM<64QAMの順に最も外側の信号点の振幅が大きくなっていることが分かる。表2は全信号点の平均送信電力(code wordの送信電力に等しい)と、最も外側の信号点の送信電力(HARQ-ACKやRIの送信電力に等しい)との比を表わしている。
 表2を参照すると、数式28では、数式26と比べて、16QAMや64QAMの場合に、Q'の値が半分程度に低減される。RIのQ'を低減すれば、各code wordは全リソースからRI用のリソースを除いたリソースでレートマッチングされるため、各code wordのcoding rateを下げる効果(すなわち誤り訂正能力が向上する効果)がある。HARQ-ACKのQ'を低減すれば、HARQ-ACKによって上書きされるされてしまう各code wordのbit数が低減されるため、各code wordの伝送品質が向上する効果がある。
 なお、β_offset^PUSCHを、α×β_offset^PUSCHに置き換えることは、リリース8の数式1にも適用可能である。この場合、以下の数式29が得られる。
Figure JPOXMLDOC01-appb-M000057
 さて、CW1とCW2の両方を使用してHARQ-ACKを送信する場合に、CW1,CW2に割り当てられた各レイヤ(ここではレイヤ1、レイヤ2、およびレイヤ3)の各々に必要なリソース数をQ'_12とする。
 ここで、CW1、CW2ともに、データ送信の所要品質を満足するように、パラメータが選択されていることが期待できる。そのため、CW1のみ、あるいは、CW2のみを使用して、HARQ-ACKを送信した場合に、それらの情報bit全体として得られるSNRは同一であると考えられる。さらに、CW1とCW2と両方使用した場合も同じSNRを達成すべきであるので、以下の数式30が成り立つ。
Figure JPOXMLDOC01-appb-M000058
 この数式30において、Q'_12を解くと、以下の数式31が得られる。
Figure JPOXMLDOC01-appb-M000059
 なお、各code wordに割り当てられるレイヤ数(1以上)にかかわらず、code word数が2の場合、結果は同一となる。
 数式31に、リソース数が情報伝送に必要なリソース数を下回らないように下限を設ける。さらに、リリース8と同様の上限を設けると、2つのcode wordを使用してHARQ-ACKやRIの送信をする場合に必要となるリソースを与える、数式32が得られる。
Figure JPOXMLDOC01-appb-M000060
Figure JPOXMLDOC01-appb-M000061
 数式32において、O(オー)は、HARQ-ACKやRIの情報bit数であり、1以上の値である。Q_m^UCIは、HARQ-ACKシーケンスの変調方式のモジュレーションオーダーを示す。たとえば、code wordの変調方式が16QAMの場合であっても、最も外側の変調点のみを使用する場合には、QPSKと見なし、モジュレーションオーダーを2とする。実際にHARQ-ACKが多重されるPUSCHにおいて、HARQ-ACKやRIに割り当てるべきリソース数の下限値は、max()関数の第2項目の引数によって与えられ、割り当てか可能な上限値は、min()関数の第2項目の引数によって与えられる。
 数式33は、数式27と同じである。PUSCHにてO(オー)ビットのHARQ-ACKを送信する際に、その送信に使用されるi番目(i={1,2})のcode word iにマッピングすべきHARQ-ACKシーケンスのビット数Q_ACK^iを与える。
 右辺において、Q_m^iは、code word iの変調方式で1リソースで送信可能なビット数を示しており、QPSKの場合は2、16QAMの場合は4、64QAMの場合は6である。L^iは、code word iに割り当てられているレイヤ数である。Q'は数式32で計算される値である。数式32のQ'_1とQ'_2とは、数式26のO(オー)およびβ_offset^PUSCHにHARQ-ACKの情報bit数およびオフセット値を代入して与えられる値である。
 なお、RIについては、数式26のO(オー)およびβ_offset^PUSCHにRI用の値を代入して与えられる値を、数式32および数式33に使用する以外は、HARQ-ACKと同様である。
 数式32は、一般的に、以下の数式34で表される。
Figure JPOXMLDOC01-appb-M000062
 ここで、Q'_iは、code word i単独でHARQ-ACKやRIを送信することを仮定した場合に、当該code wordに数式26を適用して与えられるリソース数である。他は、数式32と同じである。
 上述したように本実施形態においては、UE10およびeNodeB20は、数式34を適用することによって、複数のcode wordを使用してPUSCHにてHARQ-ACKまたはRIを送信する場合におけるリソース数を計算することができる。
(2)第2の実施形態
 本実施形態は、第1の実施形態と比較して、数式27および数式33を利用してHARQ-ACKシーケンスまたはRIシーケンスのビット数を計算する動作は共通であるが、リソース数を計算する動作が異なる。また、その他の構成および動作は第1の実施形態と同様である。
 以下、本実施形態のUE10およびeNodeB20において、HARQ-ACK送信時のリソース数を計算する動作について、第1の実施形態と同じ例を用いて説明する。
 まず、第1の実施形態と同様に、Q'_1、Q'_2を計算する。ただし、Q'_1、Q'_2の計算には、数式1(3GPPのリリース8の計算式)または数式29を利用する。
 次に、以下の数式35により、Q'_12を計算する。すなわち、Q'_12は、Q'_1、Q'_2がリソース数の下限値以上である場合において、Q'_1およびQ'_2のうち最小のものとなる。
Figure JPOXMLDOC01-appb-M000063
 例えば、Q'_1<Q'_2の場合、Q'_1のリソースによって、CW1のみを使用してHARQ-ACKを送信する場合の伝送品質は所要品質を満足する。このことから、CW2のリソース数もQ'_1とすることで、CW2のみを使用してHARQ-ACKを送信する場合の伝送品質をさらに向上できる。
 一方、Q'_2<Q'_1の場合、Q'_2のリソースによって、CW2のみを使用してHARQ-ACKを送信する場合の伝送品質は所要品質を満足する。このことから、CW1のリソース数もQ'_2とすることで、CW1のみを使用してHARQ-ACKを送信する場合の伝送品質をさらに向上できる。
 このように、Q'_12とQ'_2のうちリソース数が最小のものを選択すれば、HARQ-ACKの伝送品質は所要品質を満足することができる。
 なお、RIについても同様にリソース数を計算することができる。
 数式35は、一般的に、以下の数式36で表される。
Figure JPOXMLDOC01-appb-M000064
 ここで、Q'_iは、code word i単独でHARQ-ACKやRIを送信することを仮定した場合に、当該code wordに数式1または数式29を適用して与えられるリソース数である。他は、数式35と同じである。
 上述したように本実施形態においては、UE10およびeNodeB20は、数式36を適用することにより、複数のcode wordを使用してPUSCHにてHARQ-ACKまたはRIを送信する場合におけるリソース数を計算することができる。
(3)第3の実施形態
 本実施形態は、第1の実施形態と比較して、数式27および数式33を利用してHARQ-ACKシーケンスまたはRIシーケンスのビット数を計算する動作は共通であるが、リソース数を計算する動作が異なる。また、その他の構成および動作は第1の実施形態と同様である。
 以下、本実施形態のUE10およびeNodeB20において、HARQ-ACK送信時のリソース数を計算する動作について、第1の実施形態と同じ例を用いて説明する。
 まず、第1の実施形態と同様に、数式26または数式28を利用して、Q'_1、Q'_2を計算する。
 例えば、CW1の伝送品質の方が悪い場合、以下の数式37を用いて、Q'_12を計算する。
Figure JPOXMLDOC01-appb-M000065
 一方、CW2の伝送品質の方が悪い場合、以下の数式38を用いて、Q'_12を計算する。
Figure JPOXMLDOC01-appb-M000066
 伝送品質の善し悪しは、LTEの場合、MCS(Modulation and Coding Scheme)のインデックスの大小で決めることができる。
 なお、CW1、CW2のレイヤ数は、この例に限らず、1以上の場合に適用できる。
 この方式は、伝送品質が最も悪い方のcode wordの伝送品質を全てのレイヤに適用した場合に該当する。
 数式30のSNR1、SNR2、SNR3に、最も伝送品質が悪いcode wordのSNRをSNR0として代入する。
 例えば、CW1の伝送品質の方が悪い場合は、以下の数式39が得られる。
Figure JPOXMLDOC01-appb-M000067
 一方、CW2の伝送品質の方が悪い場合は、以下の数式40が得られる。
Figure JPOXMLDOC01-appb-M000068
 なお、2つのcode wordの伝送品質が等しい場合、どちらのcode wordを使用しても計算結果は同じになるので、どちらのcode wordを使用してもよい。
 また、RIについても同様にリソース数を計算することができる。
 数式37および数式38は、一般的に、最も品質が悪いcode wordをCW_iとすると、以下の数式41で表される。
Figure JPOXMLDOC01-appb-M000069
 ここで、Q'_iは、code word i単独でHARQ-ACKやRIを送信することを仮定した場合に、当該code wordに数式26または数式28を適用して与えられるリソース数である。他は、数式37および数式38と同じである。
 上述したように本実施形態においては、UE10およびeNodeB20は、数式41を適用することにより、複数のcode wordを使用してPUSCHにてHARQ-ACKまたはRIを送信する場合におけるリソース数を計算することができる。
 さらに、第2の実施形態と第3の実施形態を組み合わせ、より少ない方のQ'_12を選択しても良い。
 以上、実施形態を参照して本発明を説明したが、本発明は上記実施形態に限定されるものでない。本発明の構成や詳細には、本発明の範囲内で当業者が理解し得る様々な変更をすることができる。
 例えば、本実施形態では、UE10からeNodeB20に対し、HARQ-ACKやRIを送信する場合のリソース数を計算していたが、本発明はこれに限らず、データとは要求品質(すなわち、BLER)が異なる情報を伝送する場合に適用することができる。
 また、本実施形態においては、複数のcode wordを使用していたが、本発明はこれに限らず、1つのcode wordを使用する場合にも適用することができる。
 本出願は、2010年7月9日に出願された日本出願特願2010-156915および2010年8月10日に出願された日本出願特願2010-179449を基礎とする優先権を主張し、その開示の全てをここに取り込む。

Claims (18)

  1.  PUSCHにおいて、1以上のコードワードを使用して、所定の情報を送信または受信する通信装置であって、
     前記所定の情報を送信または受信する通信部と、
     制御部と、を有し、
     前記制御部は、
     前記所定の情報の情報ビット数をO、前記PUSCHで送信されるトランスポートブロックに対して初回送信時に割り当てられたサブキャリア数をM_sc^PUSCH-Initial、前記トランスポートブロックに対して初回送信時に割り当てられたシンボル数をN_symb^PUSCH-Initial、前記所定の情報の種別に応じて予め設定された係数をβ_offset^PUSCH、前記トランスポートブロックをターボ符号化するためにC個のコードブロックに分割した後のr番目のコードブロックに含まれるビット数をK_rとしたとき、i番目のコードワードCW_iを単独で使用して前記所定の情報を送信すると仮定した場合におけるリソース数Q’_iを次式で計算し、
    Figure JPOXMLDOC01-appb-M000001
     前記所定の情報の変調方式のモジュレーションオーダーをQ_m^UCI、前記トランスポートブロックに対して前記所定の情報の送信時に割り当てられたサブキャリア数をM_sc^PUSCHとしたとき、前記1以上のコードワードを使用して前記所定の情報を送信する場合におけるリソース数Q’を次式で計算する、
    Figure JPOXMLDOC01-appb-M000002
     通信装置。
  2.  PUSCHにおいて、1以上のコードワードを使用して、所定の情報を送信または受信する通信装置であって、
     前記所定の情報を送信または受信する通信部と、
     制御部と、を有し、
     前記制御部は、
     前記所定の情報の情報ビット数をO、前記PUSCHで送信されるトランスポートブロックに対して初回送信時に割り当てられたサブキャリア数をM_sc^PUSCH-Initial、前記トランスポートブロックに対して初回送信時に割り当てられたシンボル数をN_symb^PUSCH-Initial、前記所定の情報の種別に応じて予め設定された係数をβ_offset^PUSCH、前記トランスポートブロックをターボ符号化するためにC個のコードブロックに分割した後のr番目のコードブロックに含まれるビット数をK_r、前記トランスポートブロックに対して前記所定の情報の送信時に割り当てられたサブキャリア数をM_sc^PUSCHとしたとき、i番目のコードワードCW_iを単独で使用して前記所定の情報を送信すると仮定した場合におけるリソース数Q’_iを次式で計算し、
    Figure JPOXMLDOC01-appb-M000003
     前記所定の情報の変調方式のモジュレーションオーダーをQ_m^UCIとしたとき、前記1以上のコードワードを使用して前記所定の情報を送信する場合におけるリソース数Q’を次式で計算する、
    Figure JPOXMLDOC01-appb-M000004
     通信装置。
  3.  PUSCHにおいて、1以上のコードワードを使用して、所定の情報を送信または受信する通信装置であって、
     前記所定の情報を送信または受信する通信部と、
     制御部と、を有し、
     前記制御部は、
     前記所定の情報の情報ビット数をO、前記PUSCHで送信されるトランスポートブロックに対して初回送信時に割り当てられたサブキャリア数をM_sc^PUSCH-Initial、前記トランスポートブロックに対して初回送信時に割り当てられたシンボル数をN_symb^PUSCH-Initial、前記所定の情報の種別に応じて予め設定された係数をβ_offset^PUSCH、前記トランスポートブロックをターボ符号化するためにC個のコードブロックに分割した後のr番目のコードブロックに含まれるビット数をK_rとしたとき、伝送品質が最も悪いi番目のコードワードCW_iを単独で使用して前記所定の情報を送信すると仮定した場合におけるリソース数Q’_iを次式で計算し、
    Figure JPOXMLDOC01-appb-M000005
     前記所定の情報の変調方式のモジュレーションオーダーをQ_m^UCI、前記トランスポートブロックに対して前記所定の情報の送信時に割り当てられたサブキャリア数をM_sc^PUSCHとしたとき、前記1以上のコードワードを使用して前記所定の情報を送信する場合におけるリソース数Q’を次式で計算する、
    Figure JPOXMLDOC01-appb-M000006
     通信装置。
  4.  PUSCHにおいて、1以上のコードワードを使用して、所定の情報を送信または受信する通信装置であって、
     前記所定の情報を送信または受信する通信部と、
     制御部と、を有し、
     前記制御部は、
     前記所定の情報の情報ビット数をO、前記PUSCHで送信されるトランスポートブロックに対して初回送信時に割り当てられたサブキャリア数をM_sc^PUSCH-Initial、前記トランスポートブロックに対して初回送信時に割り当てられたシンボル数をN_symb^PUSCH-Initial、前記所定の情報の種別に応じて予め設定された係数をα、β_offset^PUSCH、前記トランスポートブロックをターボ符号化するためにC個のコードブロックに分割した後のr番目のコードブロックに含まれるビット数をK_rとしたとき、i番目のコードワードCW_iを単独で使用して前記所定の情報を送信すると仮定した場合におけるリソース数Q’_iを次式で計算し、
    Figure JPOXMLDOC01-appb-M000007
     前記所定の情報の変調方式のモジュレーションオーダーをQ_m^UCI、前記トランスポートブロックに対して前記所定の情報の送信時に割り当てられたサブキャリア数をM_sc^PUSCHとしたとき、前記1以上のコードワードを使用して前記所定の情報を送信する場合におけるリソース数Q’を次式で計算する、
    Figure JPOXMLDOC01-appb-M000008
     通信装置。
  5.  PUSCHにおいて、1以上のコードワードを使用して、所定の情報を送信または受信する通信装置であって、
     前記所定の情報を送信または受信する通信部と、
     制御部と、を有し、
     前記制御部は、
     前記所定の情報の情報ビット数をO、前記PUSCHで送信されるトランスポートブロックに対して初回送信時に割り当てられたサブキャリア数をM_sc^PUSCH-Initial、前記トランスポートブロックに対して初回送信時に割り当てられたシンボル数をN_symb^PUSCH-Initial、前記所定の情報の種別に応じて予め設定された係数をα、β_offset^PUSCH、前記トランスポートブロックをターボ符号化するためにC個のコードブロックに分割した後のr番目のコードブロックに含まれるビット数をK_r、前記トランスポートブロックに対して前記所定の情報の送信時に割り当てられたサブキャリア数をM_sc^PUSCHとしたとき、i番目のコードワードCW_iを単独で使用して前記所定の情報を送信すると仮定した場合におけるリソース数Q’_iを次式で計算し、
    Figure JPOXMLDOC01-appb-M000009
     前記所定の情報の変調方式のモジュレーションオーダーをQ_m^UCIとしたとき、前記1以上のコードワードを使用して前記所定の情報を送信する場合におけるリソース数Q’を次式で計算する、
    Figure JPOXMLDOC01-appb-M000010
     通信装置。
  6.  PUSCHにおいて、1以上のコードワードを使用して、所定の情報を送信または受信する通信装置であって、
     前記所定の情報を送信または受信する通信部と、
     制御部と、を有し、
     前記制御部は、
     前記所定の情報の情報ビット数をO、前記PUSCHで送信されるトランスポートブロックに対して初回送信時に割り当てられたサブキャリア数をM_sc^PUSCH-Initial、前記トランスポートブロックに対して初回送信時に割り当てられたシンボル数をN_symb^PUSCH-Initial、前記所定の情報の種別に応じて予め設定された係数をα、β_offset^PUSCH、前記トランスポートブロックをターボ符号化するためにC個のコードブロックに分割した後のr番目のコードブロックに含まれるビット数をK_rとしたとき、伝送品質が最も悪いi番目のコードワードCW_iを単独で使用して前記所定の情報を送信すると仮定した場合におけるリソース数Q’_iを次式で計算し、
    Figure JPOXMLDOC01-appb-M000011
     前記所定の情報の変調方式のモジュレーションオーダーをQ_m^UCI、前記トランスポートブロックに対して前記所定の情報の送信時に割り当てられたサブキャリア数をM_sc^PUSCHとしたとき、前記1以上のコードワードを使用して前記所定の情報を送信する場合におけるリソース数Q’を次式で計算する、
    Figure JPOXMLDOC01-appb-M000012
     通信装置。
  7.  前記制御部は、
     コードワードの変調方式に応じて、αの値を切り替える、請求項4から6のいずれか1項に記載の通信装置。
  8.  前記通信装置は、
     移動機または基地局のいずれかであり、
     αとして、予め決められた値を、前記移動機および前記基地局で共有している、請求項4から6のいずれか1項に記載の通信装置。
  9.  前記制御部は、
     i番目のコードワードの変調方式で1リソースで送信可能なビット数をQ_m^i、i番目のコードワードのレイヤ数をL^iとしたとき、i番目のコードワードにマッピングすべき前記所定の情報のビット数Q^iを、次式で計算する、
    Figure JPOXMLDOC01-appb-M000013
     請求項1から8のいずれか1項に記載の通信装置。
  10.  PUSCHにおいて、1以上のコードワードを使用して、所定の情報を送信または受信する通信装置によるリソース導出方法であって、
     前記所定の情報の情報ビット数をO、前記PUSCHで送信されるトランスポートブロックに対して初回送信時に割り当てられたサブキャリア数をM_sc^PUSCH-Initial、前記トランスポートブロックに対して初回送信時に割り当てられたシンボル数をN_symb^PUSCH-Initial、前記所定の情報の種別に応じて予め設定された係数をβ_offset^PUSCH、前記トランスポートブロックをターボ符号化するためにC個のコードブロックに分割した後のr番目のコードブロックに含まれるビット数をK_rとしたとき、i番目のコードワードCW_iを単独で使用して前記所定の情報を送信すると仮定した場合におけるリソース数Q’_iを次式で計算し、
    Figure JPOXMLDOC01-appb-M000014
     前記所定の情報の変調方式のモジュレーションオーダーをQ_m^UCI、前記トランスポートブロックに対して前記所定の情報の送信時に割り当てられたサブキャリア数をM_sc^PUSCHとしたとき、前記1以上のコードワードを使用して前記所定の情報を送信する場合におけるリソース数Q’を次式で計算する、
    Figure JPOXMLDOC01-appb-M000015
     リソース導出方法。
  11.  PUSCHにおいて、1以上のコードワードを使用して、所定の情報を送信または受信する通信装置によるリソース導出方法であって、
     前記所定の情報の情報ビット数をO、前記PUSCHで送信されるトランスポートブロックに対して初回送信時に割り当てられたサブキャリア数をM_sc^PUSCH-Initial、前記トランスポートブロックに対して初回送信時に割り当てられたシンボル数をN_symb^PUSCH-Initial、前記所定の情報の種別に応じて予め設定された係数をβ_offset^PUSCH、前記トランスポートブロックをターボ符号化するためにC個のコードブロックに分割した後のr番目のコードブロックに含まれるビット数をK_r、前記トランスポートブロックに対して前記所定の情報の送信時に割り当てられたサブキャリア数をM_sc^PUSCHとしたとき、i番目のコードワードCW_iを単独で使用して前記所定の情報を送信すると仮定した場合におけるリソース数Q’_iを次式で計算し、
    Figure JPOXMLDOC01-appb-M000016
     前記所定の情報の変調方式のモジュレーションオーダーをQ_m^UCIとしたとき、前記1以上のコードワードを使用して前記所定の情報を送信する場合におけるリソース数Q’を次式で計算する、
    Figure JPOXMLDOC01-appb-M000017
     リソース導出方法。
  12.  PUSCHにおいて、1以上のコードワードを使用して、所定の情報を送信または受信する通信装置によるリソース導出方法であって、
     前記所定の情報の情報ビット数をO、前記PUSCHで送信されるトランスポートブロックに対して初回送信時に割り当てられたサブキャリア数をM_sc^PUSCH-Initial、前記トランスポートブロックに対して初回送信時に割り当てられたシンボル数をN_symb^PUSCH-Initial、前記所定の情報の種別に応じて予め設定された係数をβ_offset^PUSCH、前記トランスポートブロックをターボ符号化するためにC個のコードブロックに分割した後のr番目のコードブロックに含まれるビット数をK_rとしたとき、伝送品質が最も悪いi番目のコードワードCW_iを単独で使用して前記所定の情報を送信すると仮定した場合におけるリソース数Q’_iを次式で計算し、
    Figure JPOXMLDOC01-appb-M000018
     前記所定の情報の変調方式のモジュレーションオーダーをQ_m^UCI、前記トランスポートブロックに対して前記所定の情報の送信時に割り当てられたサブキャリア数をM_sc^PUSCHとしたとき、前記1以上のコードワードを使用して前記所定の情報を送信する場合におけるリソース数Q’を次式で計算する、
    Figure JPOXMLDOC01-appb-M000019
     リソース導出方法。
  13.  PUSCHにおいて、1以上のコードワードを使用して、所定の情報を送信または受信する通信装置によるリソース導出方法であって、
     前記所定の情報の情報ビット数をO、前記PUSCHで送信されるトランスポートブロックに対して初回送信時に割り当てられたサブキャリア数をM_sc^PUSCH-Initial、前記トランスポートブロックに対して初回送信時に割り当てられたシンボル数をN_symb^PUSCH-Initial、前記所定の情報の種別に応じて予め設定された係数をα、β_offset^PUSCH、前記トランスポートブロックをターボ符号化するためにC個のコードブロックに分割した後のr番目のコードブロックに含まれるビット数をK_rとしたとき、i番目のコードワードCW_iを単独で使用して前記所定の情報を送信すると仮定した場合におけるリソース数Q’_iを次式で計算し、
    Figure JPOXMLDOC01-appb-M000020
     前記所定の情報の変調方式のモジュレーションオーダーをQ_m^UCI、前記トランスポートブロックに対して前記所定の情報の送信時に割り当てられたサブキャリア数をM_sc^PUSCHとしたとき、前記1以上のコードワードを使用して前記所定の情報を送信する場合におけるリソース数Q’を次式で計算する、
    Figure JPOXMLDOC01-appb-M000021
     リソース導出方法。
  14.  PUSCHにおいて、1以上のコードワードを使用して、所定の情報を送信または受信する通信装置によるリソース導出方法であって、
     前記所定の情報の情報ビット数をO、前記PUSCHで送信されるトランスポートブロックに対して初回送信時に割り当てられたサブキャリア数をM_sc^PUSCH-Initial、前記トランスポートブロックに対して初回送信時に割り当てられたシンボル数をN_symb^PUSCH-Initial、前記所定の情報の種別に応じて予め設定された係数をα、β_offset^PUSCH、前記トランスポートブロックをターボ符号化するためにC個のコードブロックに分割した後のr番目のコードブロックに含まれるビット数をK_r、前記トランスポートブロックに対して前記所定の情報の送信時に割り当てられたサブキャリア数をM_sc^PUSCHとしたとき、i番目のコードワードCW_iを単独で使用して前記所定の情報を送信すると仮定した場合におけるリソース数Q’_iを次式で計算し、
    Figure JPOXMLDOC01-appb-M000022
     前記所定の情報の変調方式のモジュレーションオーダーをQ_m^UCIとしたとき、前記1以上のコードワードを使用して前記所定の情報を送信する場合におけるリソース数Q’を次式で計算する、
    Figure JPOXMLDOC01-appb-M000023
     リソース導出方法。
  15.  PUSCHにおいて、1以上のコードワードを使用して、所定の情報を送信または受信する通信装置によるリソース導出方法であって、
     前記所定の情報の情報ビット数をO、前記PUSCHで送信されるトランスポートブロックに対して初回送信時に割り当てられたサブキャリア数をM_sc^PUSCH-Initial、前記トランスポートブロックに対して初回送信時に割り当てられたシンボル数をN_symb^PUSCH-Initial、前記所定の情報の種別に応じて予め設定された係数をα、β_offset^PUSCH、前記トランスポートブロックをターボ符号化するためにC個のコードブロックに分割した後のr番目のコードブロックに含まれるビット数をK_rとしたとき、伝送品質が最も悪いi番目のコードワードCW_iを単独で使用して前記所定の情報を送信すると仮定した場合におけるリソース数Q’_iを次式で計算し、
    Figure JPOXMLDOC01-appb-M000024
     前記所定の情報の変調方式のモジュレーションオーダーをQ_m^UCI、前記トランスポートブロックに対して前記所定の情報の送信時に割り当てられたサブキャリア数をM_sc^PUSCHとしたとき、前記1以上のコードワードを使用して前記所定の情報を送信する場合におけるリソース数Q’を次式で計算する、
    Figure JPOXMLDOC01-appb-M000025
     リソース導出方法。
  16.  コードワードの変調方式に応じて、αの値を切り替える、請求項13から15のいずれか1項に記載のリソース導出方法。
  17.  前記通信装置は、
     移動機または基地局のいずれかであり、
     αとして、予め決められた値を、前記移動機および前記基地局で共有している、請求項13から15のいずれか1項に記載のリソース導出方法。
  18.  前記制御部は、
     i番目のコードワードの変調方式で1リソースで送信可能なビット数をQ_m^i、i番目のコードワードのレイヤ数をL^iとしたとき、i番目のコードワードにマッピングすべき前記所定の情報のビット数Q^iを、次式で計算する、
    Figure JPOXMLDOC01-appb-M000026
     請求項10から17のいずれか1項に記載のリソース導出方法。
PCT/JP2011/064560 2010-07-09 2011-06-24 通信装置およびリソース導出方法 WO2012005123A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2012523816A JP5482898B2 (ja) 2010-07-09 2011-06-24 通信装置およびリソース導出方法
CN201180030118.3A CN102960039B (zh) 2010-07-09 2011-06-24 通信设备和资源导出方法
EP11803459.4A EP2592886A1 (en) 2010-07-09 2011-06-24 Communication apparatus and resource derivation method
US13/702,442 US9312932B2 (en) 2010-07-09 2011-06-24 Communication apparatus and resource derivation method
KR1020137001102A KR101301428B1 (ko) 2010-07-09 2011-06-24 통신 장치 및 자원 도출 방법

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010156915 2010-07-09
JP2010-156915 2010-07-09
JP2010179449 2010-08-10
JP2010-179449 2010-08-10

Publications (1)

Publication Number Publication Date
WO2012005123A1 true WO2012005123A1 (ja) 2012-01-12

Family

ID=45441108

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/064560 WO2012005123A1 (ja) 2010-07-09 2011-06-24 通信装置およびリソース導出方法

Country Status (6)

Country Link
US (1) US9312932B2 (ja)
EP (1) EP2592886A1 (ja)
JP (1) JP5482898B2 (ja)
KR (1) KR101301428B1 (ja)
CN (1) CN102960039B (ja)
WO (1) WO2012005123A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017179298A1 (ja) * 2016-04-13 2017-10-19 シャープ株式会社 端末装置、基地局装置、通信方法、および、集積回路
JP2021521758A (ja) * 2018-05-11 2021-08-26 中興通訊股▲ふん▼有限公司Zte Corporation 伝送方法、装置及びシステム

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102237985B (zh) * 2010-05-06 2015-12-16 中兴通讯股份有限公司 回程链路上行控制信息的处理方法、系统及中继站
US10355897B2 (en) 2015-01-30 2019-07-16 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for transmission of uplink control information
US10050688B2 (en) 2017-01-16 2018-08-14 At&T Intellectual Property I, L.P. Single codeword, multi-layer serial interference cancellation (SIC) for spatial multiplexing

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI574525B (zh) 2005-12-29 2017-03-11 內數位科技公司 以多h-arq方法同時選取多傳輸格式及傳送多傳輸塊組方法及裝置
CA2661145C (en) 2006-08-21 2014-12-23 Interdigital Technology Corporation Dynamic resource allocation, scheduling and signaling for variable data rate service in lte
US7933238B2 (en) * 2007-03-07 2011-04-26 Motorola Mobility, Inc. Method and apparatus for transmission within a multi-carrier communication system
HUE025654T2 (en) 2007-07-06 2016-04-28 Huawei Tech Co Ltd HARQ communication method, system, base station and mobile station
KR101544243B1 (ko) * 2008-12-02 2015-08-12 파나소닉 인텔렉츄얼 프로퍼티 코포레이션 오브 아메리카 통신 장치 및 제어 정보의 송신 방법
ES2475915T3 (es) * 2010-01-08 2014-07-11 Nokia Siemens Networks Oy Transmisión de información de control de enlace ascendente
US8514796B2 (en) * 2010-04-01 2013-08-20 Sharp Laboratories Of America, Inc. Transmitting control data and user data on a physical uplink channel
US8971261B2 (en) * 2010-06-02 2015-03-03 Samsung Electronics Co., Ltd. Method and system for transmitting channel state information in wireless communication systems
US8989156B2 (en) * 2010-06-18 2015-03-24 Sharp Kabushiki Kaisha Selecting a codeword and determining a symbol length for uplink control information
US8634345B2 (en) * 2010-06-18 2014-01-21 Sharp Laboratories Of America, Inc. Uplink control information (UCI) multiplexing on the physical uplink shared channel (PUSCH)
SG186233A1 (en) * 2010-06-21 2013-01-30 Panasonic Corp Terminal apparatus and communication method thereof

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
"3GPP TSG RAN WGL MEETING #6LBIS R1-104163, FURTHER DISCUSSIONS ON UCI MULTIPLEXING ON PUSCH IN CASE OF SU-MIMO, ALCATEL-LUCENT "1. NUMBER OF HARQ-ACK AND TI SYMBOL PER LAYER"", 3GPP TSG RAN WG1 MEETING, 28 June 2010 (2010-06-28), XP050449590 *
"7.1 Number of Coded Symbols For HARQ-ACK/RI (page 3-4)", 3GPP TSG RAN WG1 MEETING #61BIS R1-103451, HUAWEI, REMAINING ISSUES OF MULTIPLEXING SCHEMES OF CONTROL AND DATA IN MULTI-LAYER PUSCH TRANSMISSION, 28 June 2010 (2010-06-28), pages 3 - 4, XP050448977 *
3RD GENERATION PARTNERSHIP PROJECT: "Technical Specification Group Radio Access Network;Evolved UMTS Terrestrial Radio Access;Multiplexing and channel coding(3GPP TS36.212)", 3RD GENERATION PARTNERSHIP PROJECT, October 2006 (2006-10-01)
ERICSSON ET AL., 3GPP TSG RAN WG1 #61BIS R1-103845, 28 June 2010 (2010-06-28), XP050449260 *
PANASONIC: "UCI MULTIPLEXING ON PUSCH WITH MIMO TRANSMISSION", 3GPP TSG RAN WG1 MEETING #61BIS R1-103770, 28 June 2010 (2010-06-28), XP050449199 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017179298A1 (ja) * 2016-04-13 2017-10-19 シャープ株式会社 端末装置、基地局装置、通信方法、および、集積回路
US10623148B2 (en) 2016-04-13 2020-04-14 Sharp Kabushiki Kaisha Terminal apparatus, base station apparatus, communication method, and integrated circuit
JP2021521758A (ja) * 2018-05-11 2021-08-26 中興通訊股▲ふん▼有限公司Zte Corporation 伝送方法、装置及びシステム
JP7277570B2 (ja) 2018-05-11 2023-05-19 中興通訊股▲ふん▼有限公司 伝送方法、装置及びシステム
US11870577B2 (en) 2018-05-11 2024-01-09 Zte Corporation Method and apparatus for transmitting uplink control information in a physical uplink shared channel, and storage medium

Also Published As

Publication number Publication date
JPWO2012005123A1 (ja) 2013-09-02
JP5482898B2 (ja) 2014-05-07
CN102960039B (zh) 2015-08-26
KR101301428B1 (ko) 2013-08-28
US9312932B2 (en) 2016-04-12
EP2592886A1 (en) 2013-05-15
US20130077465A1 (en) 2013-03-28
CN102960039A (zh) 2013-03-06
KR20130018993A (ko) 2013-02-25

Similar Documents

Publication Publication Date Title
JP7392035B2 (ja) 物理アップリンクデータチャンネルで制御情報多重化
KR102696296B1 (ko) 채널상태정보 보고를 위한 상향링크 컨트롤 정보 맵핑 방법 및 장치
US10057891B2 (en) Selecting a codeword and determining a symbol length for uplink control information
US9883519B2 (en) Wireless communication system, communication device and communication method
JP5882411B2 (ja) Mimoをサポートする無線通信システムにおけるアップリンクでの再伝送制御方法及び装置
KR101920241B1 (ko) Sc-fdm을 기반으로 하는 상향링크 다중 입출력 시스템에서 제어 및 데이터 다중화
JP5722995B2 (ja) アップリンク制御情報のための伝送モードを指示するための方法及びシステム
KR101852854B1 (ko) 무선 통신 시스템에서 채널 상태 정보를 송신하기 위한 방법 및 시스템
JP5883523B2 (ja) 端末装置、基地局装置、送信方法、受信方法及び集積回路
US20150043452A1 (en) Method, system and device for transmitting feedback information
WO2011099282A1 (ja) 端末及びその通信方法
EP3132581A1 (en) 256 quadrature amplitude modulation user equipment category handling
CN111480383B (zh) 无线通信系统中分配资源的装置和方法
WO2015114541A1 (en) 256 quadrature amplitude modulation user equipment category handling
JP5482898B2 (ja) 通信装置およびリソース導出方法
WO2022241449A1 (en) Modularized design for inter-physical layer priority uci multiplexing
KR102101213B1 (ko) 제어 신호 송수신 방법 및 장치

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180030118.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11803459

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2011803459

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011803459

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13702442

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012523816

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137001102

Country of ref document: KR

Kind code of ref document: A