WO2012001814A1 - リチウム二次電池 - Google Patents
リチウム二次電池 Download PDFInfo
- Publication number
- WO2012001814A1 WO2012001814A1 PCT/JP2010/061332 JP2010061332W WO2012001814A1 WO 2012001814 A1 WO2012001814 A1 WO 2012001814A1 JP 2010061332 W JP2010061332 W JP 2010061332W WO 2012001814 A1 WO2012001814 A1 WO 2012001814A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- negative electrode
- active material
- electrode active
- material layer
- binder
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/366—Composites as layered products
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/621—Binders
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/027—Negative electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/131—Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a lithium secondary battery, and more particularly to a lithium secondary battery with improved durability against charge / discharge cycles.
- a lithium secondary battery that is lightweight and has a high energy density is expected to be preferably used as a high-output power source for mounting on a vehicle.
- an electrode having a configuration in which a material (electrode active material) capable of reversibly occluding and releasing lithium ions is held in a conductive member (electrode current collector) is used.
- the electrode active material (negative electrode active material) used for the negative electrode carbon-based materials such as graphite carbon and amorphous carbon are exemplified.
- a typical example of the electrode current collector (negative electrode current collector) used for the negative electrode is a sheet-like or foil-like member mainly composed of copper or a copper alloy.
- a negative electrode in which a negative electrode active material powder and a binder (binder) are dispersed in an appropriate medium A method of forming a layer (negative electrode active material layer) containing a negative electrode active material by applying a paste for forming an active material layer to a negative electrode current collector (copper foil or the like), passing it through a hot air dryer or the like, and drying the paste. Is mentioned.
- the binder contained in the negative electrode active material layer plays a role of binding between the negative electrode active materials and between the negative electrode active material and the current collector.
- Patent document 1 is mentioned as a technical document regarding the electrode active material layer containing this kind of binder.
- lithium ions released from the positive electrode active material may not immediately enter the negative electrode active material but may precipitate in the negative electrode active material layer.
- Such lithium deposition can cause battery performance deterioration (battery capacity reduction, etc.).
- the reactivity of the negative electrode active material tends to further decrease, so that the performance deterioration is likely to occur.
- the present invention has been made in view of such a point, and a main object thereof is to provide a high-performance lithium secondary battery in which performance deterioration due to the deposition of lithium is suppressed.
- a lithium secondary battery including a negative electrode in which a negative electrode active material layer having a negative electrode active material and a binder is formed on a negative electrode current collector.
- the negative electrode active material layer has a thickness of 50 ⁇ m or less, and the binder content in the negative electrode active material layer is 1% by mass or less.
- the side closer to the negative electrode current collector is the lower layer and the side far from the negative electrode current collector is the upper layer
- the binder uneven distribution degree X B / A, which is a value obtained by dividing the binder concentration B on the upper layer side by the binder concentration A on the lower layer side, is 0.4 ⁇ X ⁇ 1.
- the binder uneven distribution degree X (upper layer side binder concentration B / lower layer side binder concentration A) when the negative electrode active material layer is divided in half in the thickness direction is 0.4 ⁇ X ⁇ . Since 1.0 is satisfy
- the binder uneven distribution degree X exceeds 1.0, a large amount of binder is disposed in the surface layer portion of the negative electrode active material layer, so the reactivity of the negative electrode active material in the surface layer portion (activity of lithium ion insertion / desorption reaction) Decreases. For this reason, the reaction resistance of the negative electrode increases, and lithium ions released from the positive electrode active material may not immediately enter the negative electrode active material but may precipitate in the negative electrode active material layer.
- the binder uneven distribution degree X is less than 0.4, a large amount of the binder is disposed in the vicinity of the negative electrode current collector, so that the interface resistance between the negative electrode current collector and the negative electrode active material layer increases.
- the binder uneven distribution degree X satisfies 0.4 ⁇ X ⁇ 1.0
- the binder concentration on the upper layer side and the lower layer side is appropriately adjusted. Both can be lowered and lithium precipitation can be suppressed.
- discharging and charging are performed at a low temperature (for example, 0 ° C.) and at a high rate (for example, 20 C) as expected in a battery for a power source of a vehicle, for example, where lithium is liable to precipitate.
- lithium deposition can be reliably suppressed, and a lithium secondary battery with high durability against a high-rate charge / discharge cycle (for example, a high capacity retention rate) can be provided. .
- the thickness of the negative electrode active material layer is 50 ⁇ m or less. If the negative electrode active material layer is too thick, the effect (effect of suppressing lithium deposition) obtained by setting the binder uneven distribution degree X of the negative electrode active material layer to 0.4 ⁇ X ⁇ 1.0 may not be obtained. On the other hand, if the negative electrode active material layer is too thin, the amount of active material contained per volume of the negative electrode is reduced, so that the capacity per volume of the negative electrode (and thus a lithium secondary battery constructed using the negative electrode) tends to decrease. May be. Accordingly, the thickness of the negative electrode active material layer is suitably 50 ⁇ m or less, preferably 10 ⁇ m to 50 ⁇ m, and particularly preferably 20 ⁇ m to 50 ⁇ m.
- the binder content in the negative electrode active material layer is 1% by mass or less. If the binder content is too high, the effect (effect of suppressing lithium deposition) obtained by setting the binder uneven distribution degree X of the negative electrode active material layer to 0.4 ⁇ X ⁇ 1.0 may not be obtained. On the other hand, if the binder content is too small, the adhesion between the negative electrode current collector and the negative electrode active material layer may decrease, and peeling of the negative electrode active material layer may occur. Accordingly, the binder content in the negative electrode active material layer is suitably 1% by mass or less, preferably 0.3% by mass to 1% by mass, and particularly preferably 0.5% by mass to 1% by mass. .
- the porosity of the negative electrode active material layer is 35% or more. If the porosity of the negative electrode active material layer is too low, the electrolytic solution is less likely to penetrate into the negative electrode active material layer, which is not preferable because battery performance decreases. On the other hand, if the porosity of the negative electrode active material layer is too high, the amount of active material contained per volume of the negative electrode decreases, so the capacity per volume of the negative electrode (and thus a lithium secondary battery constructed using the negative electrode) May tend to decline. Therefore, the porosity of the negative electrode active material layer is appropriately 35% or more, preferably 35% to 53%, and particularly preferably 35% to 48%.
- the negative electrode active material layer is formed by applying at least two types of negative electrode active material layer forming pastes having different binder concentrations and drying the layer.
- the binder concentration (ratio of the binder in the solid content in the negative electrode active material layer forming paste) of at least two types of negative electrode active material layer forming paste applied in layers on the negative electrode current collector is appropriately selected.
- a negative electrode active material layer in which the binder uneven distribution degree X satisfies 0.4 ⁇ X ⁇ 1.0 can be easily formed.
- any of the lithium secondary batteries disclosed herein has performance suitable for a battery mounted on a vehicle (for example, high output can be obtained), and can be particularly excellent in durability against high-rate charge / discharge. . Therefore, according to this invention, the vehicle provided with one of the lithium secondary batteries disclosed here is provided.
- a vehicle for example, an automobile
- the lithium secondary battery as a power source (typically, a power source of a hybrid vehicle or an electric vehicle) is provided.
- Examples are lithium secondary batteries that are supposed to be used.
- FIG. 1 is a perspective view schematically showing a lithium secondary battery according to an embodiment of the present invention.
- 2 is a cross-sectional view taken along line II-II in FIG.
- FIG. 3 is a diagram schematically showing an electrode body of a lithium secondary battery according to an embodiment of the present invention.
- FIG. 4 is a plan view schematically showing an electrode body of a lithium secondary battery according to an embodiment of the present invention.
- FIG. 5 is an enlarged cross-sectional view showing a main part of the lithium secondary battery according to one embodiment of the present invention.
- FIG. 6 is a diagram schematically showing a lithium secondary battery (laminate cell) according to Test Example 3.
- FIG. 7 is a graph showing the relationship between the degree of binder uneven distribution and resistance according to Test Example 3.
- FIG. 8 is a graph showing a cycle durability test result according to Test Example 4.
- FIG. 9 is a graph showing the relationship between the binder uneven distribution degree and resistance according to Test Example 5.
- FIG. 10 is a side view schematically showing a vehicle including a lithium secondary battery according to an embodiment of the present invention.
- a flatly wound electrode body wound electrode body
- a nonaqueous electrolyte solution are accommodated in a flat box-shaped (cuboid shape) container.
- the present invention will be described in detail by taking a lithium secondary battery (lithium ion battery) as an example.
- the lithium ion battery 100 includes an electrode body (winding electrode body) 80 in which a long positive electrode sheet 10 and a long negative electrode sheet 20 are wound flatly via a long separator 40.
- the wound electrode body 80 is accommodated in a container 50 having a shape (flat box shape) that can be accommodated.
- the container 50 includes a flat rectangular parallelepiped container main body 52 having an open upper end, and a lid 54 that closes the opening.
- a metal material such as aluminum or steel is preferably used (in this embodiment, aluminum).
- molding resin materials, such as PPS and a polyimide resin, may be sufficient.
- a positive electrode terminal 70 that is electrically connected to the positive electrode of the wound electrode body 80 and a negative electrode terminal 72 that is electrically connected to the negative electrode 20 of the electrode body 80 are provided. Yes.
- a flat wound electrode body 80 is accommodated together with a non-aqueous electrolyte (not shown).
- the wound electrode body 80 is the same as the wound electrode body of a normal lithium ion battery except for the configuration of a layer containing a negative electrode active material (negative electrode active material layer) provided in the negative electrode sheet 20 described later. Similarly, as shown in FIG. 3, a long (strip-shaped) sheet structure is provided before the wound electrode body 80 is assembled.
- the negative electrode sheet 20 has a structure in which a negative electrode active material layer 24 containing a negative electrode active material is held on both surfaces of a long sheet-like foil-shaped negative electrode current collector (hereinafter referred to as “negative electrode current collector foil”) 22. ing. However, the negative electrode active material layer 24 is not attached to one side edge (the upper side edge portion in the figure) along the edge in the width direction of the negative electrode sheet 20, and the negative electrode current collector 22 is exposed with a certain width. A negative electrode active material layer non-formed portion is formed.
- the positive electrode sheet 10 holds a positive electrode active material layer 14 containing a positive electrode active material on both surfaces of a long sheet-like foil-shaped positive electrode current collector (hereinafter referred to as “positive electrode current collector foil”) 12.
- positive electrode current collector foil a positive electrode active material layer 14 containing a positive electrode active material on both surfaces of a long sheet-like foil-shaped positive electrode current collector (hereinafter referred to as “positive electrode current collector foil”) 12.
- positive electrode current collector foil has a structured.
- the positive electrode active material layer 14 is not attached to one side edge (the lower side edge portion in the figure) along the edge in the width direction of the positive electrode sheet 10, and the positive electrode current collector 12 has a constant width. An exposed positive electrode active material layer non-forming portion is formed.
- the positive electrode sheet 10 and the negative electrode sheet 20 are laminated via the separator sheet 40.
- the positive electrode sheet 10 and the negative electrode sheet 20 are formed such that the positive electrode active material layer non-formed portion of the positive electrode sheet 10 and the negative electrode active material layer non-formed portion of the negative electrode sheet 20 protrude from both sides in the width direction of the separator sheet 40. Are overlapped slightly in the width direction.
- the laminated body thus stacked is wound, and then the obtained wound body is crushed from the side surface direction and ablated, whereby a flat wound electrode body 80 can be produced.
- a wound core portion 82 (that is, the positive electrode active material layer 14 of the positive electrode sheet 10, the negative electrode active material layer 24 of the negative electrode sheet 20, and the separator sheet 40) is densely arranged in the central portion of the wound electrode body 80 in the winding axis direction. Laminated portions) are formed. In addition, the electrode active material layer non-formed portions of the positive electrode sheet 10 and the negative electrode sheet 20 protrude outward from the wound core portion 82 at both ends in the winding axis direction of the wound electrode body 80.
- a positive electrode lead terminal 74 and a negative electrode lead terminal 76 are respectively provided on the protruding portion 84 (that is, a portion where the positive electrode active material layer 14 is not formed) 84 and the protruding portion 86 (that is, a portion where the negative electrode active material layer 24 is not formed) 86. Attached and electrically connected to the positive terminal 70 and the negative terminal 72 described above.
- the constituent elements of the wound electrode body 80 may be the same as those of the conventional wound electrode body of the lithium ion battery except for the negative electrode sheet 20, and are not particularly limited.
- the positive electrode sheet 10 can be formed by applying a positive electrode active material layer 14 mainly composed of a positive electrode active material for a lithium ion battery on a long positive electrode current collector 12.
- a positive electrode active material layer 14 mainly composed of a positive electrode active material for a lithium ion battery on a long positive electrode current collector 12.
- an aluminum foil or other metal foil suitable for the positive electrode is preferably used.
- the positive electrode active material one or more of materials conventionally used in lithium ion batteries can be used without any particular limitation.
- Preferable examples include oxides containing lithium and a transition metal element as constituent metal elements such as lithium nickel oxide (LiMn 2 O 4 ), lithium cobalt oxide (LiCoO 2 ), and lithium manganese oxide (LiNiO 2 ).
- a positive electrode active material typically, substantially a lithium nickel cobalt manganese composite oxide substantially composed of lithium nickel cobalt manganese composite oxide (for example, LiNi 1/3 Co 1/3 Mn 1/3 O 2 ).
- Application to a positive electrode active material comprising:
- the lithium nickel cobalt manganese composite oxide is an oxide having Li, Ni, Co, and Mn as constituent metal elements, and at least one other metal element in addition to Li, Ni, Co, and Mn (that is, It also includes oxides containing transition metal elements and / or typical metal elements other than Li, Ni, Co, and Mn.
- a metal element is selected from the group consisting of, for example, B, V, Mg, Sr, Zr, Mo, W, Ti, Al, Cr, Fe, Nb, Cu, Zn, Ga, In, Sn, La, and Ce. Or one or more elements. The same applies to lithium nickel oxide, lithium cobalt oxide, and lithium manganese oxide.
- the negative electrode sheet 20 can be formed by applying a negative electrode active material layer 24 mainly composed of a negative electrode active material for a lithium ion battery on a long negative electrode current collector 22.
- a negative electrode active material layer 24 mainly composed of a negative electrode active material for a lithium ion battery
- a copper foil or other metal foil suitable for the negative electrode is preferably used.
- the negative electrode active material one or more of materials conventionally used in lithium ion batteries can be used without any particular limitation.
- materials conventionally used in lithium ion batteries can be used without any particular limitation.
- Preferable examples include carbon-based materials such as graphite carbon and amorphous carbon, lithium-containing transition metal oxides and transition metal nitrides.
- a negative electrode active material typically, a negative electrode active material substantially composed of a carbon-based material
- a carbon-based material such as graphite carbon or amorphous carbon is preferable.
- a carbon-based material for example, a carbon-based material powder prepared by a conventionally known method can be used as it is.
- a carbon-based material powder substantially composed of secondary particles having an average particle diameter in the range of about 1 ⁇ m to 25 ⁇ m (for example, about 10 ⁇ m) can be preferably used as the negative electrode active material.
- the negative electrode active material layer 24 contains a binder (binder) that binds the negative electrode active material (typically in particulate form).
- the binder used for the negative electrode active material layer is for bonding the negative electrode active material particles, and the material constituting the binder itself is the same material as that used for a conventionally known negative electrode for a lithium secondary battery. possible.
- the binder is dispersed or dissolved in water.
- the polymer to be used can be preferably employed.
- the polymer that is dispersed or dissolved in water include styrene butadiene rubber (SBR).
- SBR styrene butadiene rubber
- Styrene butadiene rubber is a copolymer containing styrene and 1,3-butadiene, and the copolymerization mode and styrene / butadiene copolymer ratio are not particularly limited.
- polystyrene butadiene rubber and polytetrafluoroethylene (PTFE), polyethylene (PE), and polyacrylic acid (PAA) can also be used.
- PTFE polytetrafluoroethylene
- PE polyethylene
- PAA polyacrylic acid
- the negative electrode active material layer forming paste is a solvent-based solvent (a solution in which the binder dispersion medium is mainly an organic solvent)
- a polymer that is dispersed or dissolved in the solvent-based solvent can be used.
- the polymer dispersed or dissolved in the solvent-based solvent include polyvinylidene fluoride, polytetrafluoroethylene (PTFE), polyacrylonitrile, polymethyl methacrylate, and the like.
- the negative electrode active material layer 24 can contain one or two or more materials that can be used as components of the negative electrode active material layer in a general lithium ion battery, if necessary.
- materials include various polymer materials (for example, carboxymethyl cellulose (CMC)) that can function as a thickener for the negative electrode active material layer forming paste.
- CMC carboxymethyl cellulose
- a negative electrode active material typically granular
- a binder for example, a binder
- other negative electrode active material layer forming components for example, a thickener
- an appropriate solvent preferably an aqueous solvent
- a method in which the dispersed negative electrode active material layer forming paste is applied in a strip shape on one or both sides of the negative electrode current collector 22 and dried can be preferably employed.
- an appropriate press treatment for example, various conventionally known press methods such as a roll press method and a flat plate press method can be adopted
- the negative electrode active material layer The thickness and density of 24 can be adjusted.
- separator sheet 40 suitable for use between the positive and negative electrode sheets 10 and 20 examples include those made of a porous polyolefin resin.
- a porous separator sheet made of synthetic resin for example, made of polyolefin such as polyethylene
- a separator is unnecessary (that is, in this case, the electrolyte itself can function as a separator).
- FIG. 5 is a schematic cross-sectional view showing an enlarged part of a cross section along the winding axis of the wound electrode body 80 according to the present embodiment, which is formed on the negative electrode current collector 22 and one side thereof.
- the negative electrode active material layer 24 and the separator sheet 40 facing the negative electrode active material layer 24 are shown.
- the negative electrode sheet 20 has a structure in which a negative electrode active material layer 24 is held on a negative electrode current collector 22.
- the negative electrode active material layer 24 includes a negative electrode active material (typically granular) 26 and a binder 28, and the binder 28 provides a space between the negative electrode active material 26 and between the negative electrode active material 26 and the negative electrode current collector 22.
- a hole 25 is formed in a portion that is not bound by the binder 28 between the adjacent negative electrode active materials 26, and a nonaqueous electrolytic solution is held in the hole 25.
- the porosity of the negative electrode active material layer is not particularly limited. However, if the porosity of the negative electrode active material layer is too low, the electrolyte solution is less likely to penetrate into the negative electrode active material layer, which is not preferable. . On the other hand, if the porosity of the negative electrode active material layer is too high, the amount of active material contained per volume of the negative electrode decreases, so the capacity per volume of the negative electrode (and thus a lithium secondary battery constructed using the negative electrode) May tend to decline. Therefore, the porosity of the negative electrode active material layer is appropriately 35% or more, preferably 35% to 53%, and particularly preferably 35% to 48%.
- the thickness of the negative electrode active material layer is 50 ⁇ m or less
- the binder content in the negative electrode active material layer is 1% by mass or less.
- the binder concentration ( % By mass) is different between the upper layer 24b and the lower layer 24a
- the binder uneven distribution degree X B / A, which is a value obtained by dividing the binder concentration B on the upper layer side 24b by the binder concentration A on the lower layer side 24a, is 0.00. 4 ⁇ X ⁇ 1.0, preferably 0.4 ⁇ X ⁇ 0.8, and particularly preferably 0.4 ⁇ X ⁇ 0.6.
- the binder uneven distribution degree X exceeds 1.0, a large amount of the binder 28 is disposed in the surface layer portion of the negative electrode active material layer 24. Therefore, the reactivity of the negative electrode active material in the surface layer portion (lithium ion insertion / desorption reaction) Activity). For this reason, the reaction resistance of the negative electrode increases, and lithium ions released from the positive electrode active material may not immediately enter the negative electrode active material 26 but may precipitate in the negative electrode active material layer.
- the binder uneven distribution degree X is less than 0.4, a large amount of the binder 28 is disposed in the vicinity of the negative electrode current collector 22, so that the interface resistance between the negative electrode current collector 22 and the negative electrode active material layer 24 increases. To do.
- the binder uneven distribution degree X satisfies 0.4 ⁇ X ⁇ 1.0
- the binder concentration on the upper layer side and the lower layer side is appropriately adjusted. Both can be lowered and lithium precipitation can be suppressed.
- discharging and charging are performed at a low temperature (for example, 0 ° C.) and at a high rate (for example, 20 C) as expected in a battery for a power source of a vehicle, for example, where lithium is liable to precipitate.
- lithium deposition can be reliably suppressed, and a lithium secondary battery with high durability against a high-rate charge / discharge cycle (for example, a high capacity retention rate) can be provided. .
- the thickness of the negative electrode active material layer is 50 ⁇ m or less. If the negative electrode active material layer is too thick, the effect (effect of suppressing lithium deposition) obtained by setting the binder uneven distribution degree X of the negative electrode active material layer to 0.4 ⁇ X ⁇ 1.0 may not be obtained. On the other hand, if the negative electrode active material layer is too thin, the amount of active material contained per volume of the negative electrode is reduced, so that the capacity per volume of the negative electrode (and thus a lithium secondary battery constructed using the negative electrode) tends to decrease. May be. Accordingly, the thickness of the negative electrode active material layer is suitably 50 ⁇ m or less, preferably 10 ⁇ m to 50 ⁇ m, and particularly preferably 20 ⁇ m to 50 ⁇ m.
- the binder content in the negative electrode active material layer is 1% by mass or less. If the binder content is too high, the effect (effect of suppressing lithium deposition) obtained by setting the binder uneven distribution degree X of the negative electrode active material layer to 0.4 ⁇ X ⁇ 1.0 may not be obtained. On the other hand, if the binder content is too small, the adhesion between the negative electrode current collector and the negative electrode active material layer may decrease, and peeling of the negative electrode active material layer may occur. Accordingly, the binder content in the negative electrode active material layer is suitably 1% by mass or less, preferably 0.3% by mass to 1% by mass, and particularly preferably 0.5% by mass to 1% by mass. .
- the ratio of the negative electrode active material to the whole negative electrode active material layer is preferably about 90% by mass or more (typically 97% by mass to 99% by mass), and about 98% by mass. % To 99% by mass is preferable.
- the total content rate of these arbitrary components shall be about 3 mass% or less, and about 2 masses. % Or less (for example, approximately 0.5% by mass to 1% by mass).
- the negative electrode active material layer satisfying the binder uneven distribution degree X of 0.4 ⁇ X ⁇ 1.0 can be realized by appropriately selecting the formation conditions for forming the negative electrode active material layer.
- the negative electrode active material layer can be formed by applying and drying a negative electrode active material layer forming paste prepared by mixing a negative electrode active material and a binder in a suitable solvent on a negative electrode current collector.
- the binder uneven distribution degree X of the negative electrode active material layer can be controlled by adjusting drying conditions such as a drying temperature and a drying air speed when the applied negative electrode active material layer forming paste is dried. That is, a negative electrode active material layer having a binder uneven distribution degree X satisfying 0.4 ⁇ X ⁇ 1.0 can be formed by appropriately selecting drying conditions such as a drying temperature and a drying air speed.
- the negative electrode active material layer is formed by applying and drying two types of negative electrode active material layer forming pastes having different binder concentrations on the upper and lower layers (layered). At that time, by adjusting the binder concentration (ratio of the binder in the solid content in the negative electrode active material layer forming paste) of the upper and lower negative electrode active material layer forming paste, the binder uneven distribution degree X of the negative electrode active material layer Can be controlled.
- a negative electrode active material layer satisfying a binder uneven distribution degree X of 0.4 ⁇ X ⁇ 1.0 can be formed by appropriately selecting the binder concentration of the upper and lower negative electrode active material layer forming pastes. .
- a high binder concentration paste having a relatively high binder concentration is applied on the negative electrode current collector, and a low binder concentration paste having a relatively low binder concentration is applied thereon to form the negative electrode active material layer.
- the negative electrode active material layer with the binder uneven distribution degree X satisfying 0.4 ⁇ X ⁇ 1.0 can be easily formed.
- Examples of the solvent used in the negative electrode active material layer forming paste include water or a mixed solvent mainly composed of water.
- a solvent other than water constituting such a mixed solvent one or more organic solvents (lower alcohol, lower ketone, etc.) that can be uniformly mixed with water can be appropriately selected and used.
- it may be an organic solvent such as N-methylpyrrolidone (NMP), pyrrolidone, methyl ethyl ketone, methyl isobutyl ketone, ixahexanone, toluene, dimethylformamide, dimethylacetamide, or a combination of two or more thereof.
- NMP N-methylpyrrolidone
- pyrrolidone pyrrolidone
- methyl ethyl ketone methyl isobutyl ketone
- ixahexanone ixahexanone
- toluene dimethylformamide
- dimethylacetamide or a combination of two or more thereof
- the negative electrode active material layer forming paste may contain one or more materials that can be used as necessary in addition to the negative electrode active material and the binder.
- An example of such a material is a polymer that functions as a thickener for the negative electrode active material layer forming paste.
- the polymer that functions as a thickener for example, carboxymethyl cellulose (CMC) is preferably used.
- the operation of applying such a negative electrode active material layer forming paste to the surface of the negative electrode current collector 22 can be performed in the same manner as in the production of a conventional negative electrode for a lithium secondary battery.
- a coating device slit coater, die coater, comma coater, etc.
- the coating material is dried (for example, a drying temperature of 20 to 200 ° C.) by an appropriate drying means (for example, a hot air dryer) to remove the solvent in the negative electrode active material layer forming paste.
- an appropriate drying means for example, a hot air dryer
- the negative electrode sheet 20 in which the negative electrode active material layer 24 is formed on the negative electrode current collector 22 can be obtained.
- the thickness and density of the negative electrode active material layer 24 can be appropriately adjusted by performing an appropriate press process (for example, a roll press process) as necessary.
- the negative electrode sheet 20 When the negative electrode sheet 20 is formed in this manner, the negative electrode sheet 20 and the positive electrode sheet 10 are wound through two separator sheets 40 as shown in FIG. Then, as shown in FIGS. 1 and 2, the wound electrode body 80 is accommodated in the container body 52, and an appropriate nonaqueous electrolytic solution is disposed (injected) into the container body 52.
- an appropriate nonaqueous electrolytic solution As the non-aqueous electrolyte accommodated in the container main body 52 together with the wound electrode body 80, the same non-aqueous electrolyte as used in conventional lithium ion batteries can be used without any particular limitation.
- Such a nonaqueous electrolytic solution typically has a composition in which a supporting salt is contained in a suitable nonaqueous solvent.
- ethylene carbonate (EC), ethyl methyl carbonate (EMC), dimethyl carbonate (DMC), diethyl carbonate (DEC), propylene carbonate (PC) etc. can be used, for example.
- the supporting salt for example, LiPF 6, LiBF 4, LiAsF 6, LiCF 3 can be preferably used a lithium salt of SO 3 and the like.
- a nonaqueous electrolytic solution in which LiPF 6 as a supporting salt is contained at a concentration of about 1 mol / liter in a mixed solvent containing EC, EMC, and DMC at a volume ratio of 3: 4: 3 can be preferably used.
- the non-aqueous electrolyte is accommodated in the container body 52 together with the wound electrode body 80, and the opening of the container body 52 is sealed by welding or the like with the lid body 54, whereby the lithium secondary battery 100 according to the present embodiment. Construction (assembly) of is completed.
- positioning (injection) process of electrolyte solution can be performed similarly to the method currently performed by manufacture of the conventional lithium ion battery. Thereafter, the battery is conditioned (initial charge / discharge). You may perform processes, such as degassing and a quality inspection, as needed.
- the binder uneven distribution degree X (binder concentration B on the upper layer side 24b / binder concentration A on the lower layer side 24a) when the negative electrode active material layer is divided in half in the thickness direction is 0. Since 4 ⁇ X ⁇ 1.0, the battery performance may be excellent. For example, it may satisfy at least one (preferably all) of high durability against high rate charge / discharge, high output, and excellent low temperature characteristics.
- ⁇ Test Example 1 Preparation of negative electrode active material layer forming paste> Natural graphite (negative electrode active material) having an average particle diameter of 11 ⁇ m, SBR (binder), and CMC (thickener) have a mass ratio of these materials of 98: 1: 1 and a solid content concentration of about 46% by mass.
- the negative electrode active material layer forming paste was prepared by mixing with water so that the ratio of the binder (binder concentration) in the solid content in the negative electrode active material layer forming paste was 1% by mass.
- several types of pastes for forming a negative electrode active material layer having different binder concentrations were prepared using the blending ratio as a standard.
- ⁇ Test Example 2 Production of negative electrode sheet> Two types were selected from the various negative electrode active material layer forming pastes prepared in Test Example 1 above, and layered (upper and lower two layers) on one side of a long sheet-like copper foil (negative electrode current collector 22: thickness 10 ⁇ m). 10 types of negative electrode active material layers having different binder uneven distribution degrees X were formed. The amount of paste applied to the upper and lower layers was adjusted to be about 7.6 mg / cm 2 (solid content basis). The drying temperature of the applied paste was set to 25 ° C. After drying, the negative electrode active material layer was pressed so as to have a thickness of about 50 ⁇ m.
- the porosity based on the gas replacement method of the negative electrode active material layer was about 35%, and the density was 1.5 g / cm 3 . In this way, a total of 10 types of negative electrode sheets were prepared in which the negative electrode active material layer was provided on the negative electrode current collector.
- the cross sections of the various negative electrode sheets obtained above were analyzed with an electron beam microanalyzer (EPMA), and the binder uneven distribution degree X (binder concentration on the upper layer side 24b / lower layer) when the cross section of the negative electrode active material layer was divided in half in the thickness direction.
- EPMA electron beam microanalyzer
- the binder concentration on the side 24a) was examined.
- the ratio of the binder concentration between the upper layer side and the lower layer side was calculated from the Br element detection intensity ratio when the binder (SBR) was dyed with Br element.
- Table 1 shows the binder uneven distribution degree X of each sample.
- Lithium secondary batteries (laminate cells) were produced using the various negative electrode sheets produced in Test Example 2, and the direct current resistance and reaction resistance of these batteries were measured.
- the lithium secondary battery was produced as follows.
- These materials include nickel cobalt lithium manganate (LiNi 1/3 Co 1/3 Mn 1/3 O 2 ) powder as a positive electrode active material, polyvinylidene fluoride (PVDF) as a binder, and acetylene black as a conductive material. Is mixed with N-methylpyrrolidone (NMP) so that the mass ratio thereof becomes 90: 5: 5 to prepare a positive electrode active material layer forming paste, which is formed into a long sheet-like aluminum foil (positive electrode current collector 12). : Positive electrode sheet 10 provided with positive electrode active material layer 14 on both surfaces of positive electrode current collector 12 by applying a belt-like shape on both surfaces of the positive electrode current collector 12 and drying. The coating amount of the positive electrode active material layer forming paste was adjusted so as to be about 12 mg / cm 2 (solid content basis) per side.
- the positive electrode sheet obtained above was punched out to 5 cm ⁇ 5 cm to produce a positive electrode.
- the various negative electrode sheets produced in Test Example 2 were punched into 5 cm ⁇ 5 cm to produce negative electrodes.
- An aluminum lead is attached to the positive electrode, a nickel lead is attached to the negative electrode, and they are arranged opposite to each other via a separator (a three-layer structure of polypropylene (PP) -polyethylene (PE) -polypropylene (PP)).
- the lithium secondary battery (laminate cell) shown in FIG. 6 was constructed by inserting it into a laminate bag together with the non-aqueous electrolyte.
- PP polypropylene
- PE polyethylene
- PP polypropylene
- reference numeral 61 indicates a positive electrode
- reference numeral 62 indicates a negative electrode
- reference numeral 63 indicates a separator impregnated with an electrolytic solution
- reference numeral 64 indicates a laminate bag.
- LiPF 6 as a supporting salt is approximately mixed in a mixed solvent containing ethylene carbonate (EC), dimethyl carbonate (DMC), and ethyl methyl carbonate (EMC) in a volume ratio of 3: 3: 4. The one contained at a concentration of 1 mol / liter was used.
- the lithium secondary battery constructed using the negative electrode sheet in which the binder uneven distribution degree X of the negative electrode active material layer exceeds 1.2 has a low direct current resistance, but has a low reaction resistance. The value increased significantly.
- a lithium secondary battery constructed using a negative electrode sheet having a binder uneven distribution degree X of less than 0.4 had a low direct-current resistance value although the reaction resistance was low.
- a lithium secondary battery constructed using a negative electrode sheet having a binder uneven distribution degree X satisfying 0.4 ⁇ X ⁇ 1.0 has a low reaction resistance and direct current resistance, and is used for a vehicle power source.
- the lithium secondary battery used for other purposes showed particularly good performance.
- ⁇ Test Example 4 Charge / Discharge Cycle Test> Furthermore, the charge / discharge pattern which repeats a high rate pulse charge / discharge was provided with respect to the lithium secondary battery of the sample 4 and the sample 10, and the charge / discharge cycle test was done. Specifically, in an environment of 0 ° C., high-rate pulse charging is performed at 21.2 mA / cm 2 (corresponding to 18C) for 10 seconds, and high-rate pulse discharging is performed at 21.2 mA / cm 2 for 10 seconds. The charging / discharging cycle of resting for 10 minutes was repeated 250 times continuously.
- the charge / discharge cycle test was performed in five ways of 21.2 mA / cm 2 , 22.4 mA / cm 2 , 23.6 mA / cm 2 , 24.8 mA / cm 2 , and 26.0 mA / cm 2 .
- the capacity retention rate after each charge / discharge cycle test was determined by performing different pulse currents. The results are shown in FIG. FIG. 8 is a graph showing the relationship between the pulse current (mA / cm 2 ) and the capacity retention rate (%).
- the lithium secondary battery constructed using the negative electrode sheet having the binder uneven distribution degree X exceeding 1.0 has a capacity after the charge / discharge cycle test.
- the maintenance rate dropped sharply.
- the lithium secondary battery constructed using the negative electrode sheet satisfying the binder uneven distribution degree X satisfying 0.4 ⁇ X ⁇ 1.0 is 90% or more even at a high rate of 26.0 mA / cm 2.
- An extremely high capacity retention rate was achieved. This is considered to be because the precipitation of lithium in the negative electrode active material layer could be suppressed by setting the binder uneven distribution degree X to 0.4 ⁇ X ⁇ 1.0. From this result, it was confirmed that by setting the binder uneven distribution degree X to 0.4 ⁇ X ⁇ 1.0, excellent cycle life characteristics can be realized while performing high-rate charge / discharge.
- the thickness of the negative electrode active material layer is 20 ⁇ m (density 1.5 g / cm ⁇ 3 : porosity 35%) and 150 ⁇ m (density 1.5 g / cm ⁇ 3 : porosity 35%), respectively.
- a total of 15 types of negative electrode sheets were produced in the same manner as in Test Example 2.
- a lithium secondary battery was constructed in the same manner as in Test Example 3 except that the thickness of the negative electrode active material layer was changed, and the reaction resistance and DC resistance of the battery were measured. The results are shown in FIG. 9 and Table 2. In FIG.
- the plot indicated by ⁇ is the reaction resistance (m ⁇ ) when the thickness of the negative electrode active material layer is 50 ⁇ m
- the plot indicated by ⁇ is the reaction resistance when the thickness of the negative electrode active material layer is 20 ⁇ m.
- M ⁇ the reaction resistance
- x the value of reaction resistance (m ⁇ ) when the thickness of the negative electrode active material layer is 150 ⁇ m.
- the lithium secondary battery constructed using the negative electrode sheet having a negative electrode active material layer thickness of 20 ⁇ m has a binder uneven distribution degree X of 0.4 ⁇ X ⁇ 1.0.
- the values of reaction resistance and DC resistance were both low, and the same tendency as in the case where the thickness of the negative electrode active material layer was 50 ⁇ m was shown.
- a lithium secondary battery constructed using a negative electrode sheet having a negative electrode active material layer thickness of 150 ⁇ m has values of reaction resistance and DC resistance when the binder uneven distribution degree X is 0.8 ⁇ X ⁇ 1.0.
- the preferred range of the binder uneven distribution degree X became narrower.
- the effect (the effect of suppressing lithium precipitation) by setting the binder uneven distribution degree X of the negative electrode active material layer to 0.4 ⁇ X ⁇ 1.0 is that the thickness of the negative electrode active material layer is 50 ⁇ m or less (for example, It was confirmed that the difference was more remarkable in the case of 20 ⁇ m to 50 ⁇ m).
- any of the lithium secondary batteries 100 disclosed herein has performance suitable as a battery mounted on a vehicle, and can be particularly excellent in durability against high-rate charge / discharge. Therefore, according to the present invention, as shown in FIG. 10, a vehicle 1 including any of the lithium secondary batteries 100 disclosed herein is provided.
- a vehicle for example, an automobile
- the lithium secondary battery 100 as a power source (typically, a power source of a hybrid vehicle or an electric vehicle) is provided.
- the technology can be used in a charge / discharge cycle including a high rate discharge of 50 A or more (for example, 50 A to 250 A), and further 100 A or more (for example, 100 A to 200 A).
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Composite Materials (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Secondary Cells (AREA)
Abstract
本発明の主な目的は、リチウムの析出による性能劣化が抑制された高性能なリチウム二次電池を提供することである。本発明によって提供されるリチウム二次電池は、負極活物質26とバインダ28とを有する負極活物質層24が負極集電体22上に形成されている負極20を備え、負極活物質層24の厚さが50μm以下であり、負極活物質層24中のバインダ含有割合が1質量%以下であり、ここで負極活物質層24を厚さ方向に半分割し、負極集電体22に近い側を下層24aとし且つ負極集電体22から遠い側を上層24bとした場合において、バインダの濃度(質量%)は上層24bと下層24aとの間で異なっており、該上層側24bにおけるバインダ濃度Bを下層側24aにおけるバインダ濃度Aで除した値であるバインダ偏在度X=B/Aが、0.4≦X<1.0であることを特徴とする。
Description
本発明は、リチウム二次電池に関し、特に充放電サイクルに対する耐久性が高められたリチウム二次電池に関する。
近年、リチウムイオン電池、ニッケル水素電池その他の二次電池は、車両搭載用電源、或いはパソコンおよび携帯端末の電源として重要性が高まっている。特に、軽量で高エネルギー密度が得られるリチウム二次電池は、車両搭載用高出力電源として好ましく用いられるものとして期待されている。この種の二次電池の一つの典型的な構成では、リチウムイオンを可逆的に吸蔵および放出し得る材料(電極活物質)が導電性部材(電極集電体)に保持された構成の電極を備える。例えば、負極に用いられる電極活物質(負極活物質)の代表例としては、グラファイトカーボン、アモルファスカーボン等の炭素系材料が例示される。また、負極に用いられる電極集電体(負極集電体)の代表例としては、銅または銅合金を主体とするシート状または箔状の部材が挙げられる。
かかる構成を有する負極を製造するにあたって負極集電体に負極活物質を保持させる代表的な方法の一つとして、負極活物質粉末とバインダ(結着材)とを適当な媒体に分散させた負極活物質層形成用ペーストを負極集電体(銅箔等)に塗布し、これを熱風乾燥機等に通過させて乾燥させることにより負極活物質を含む層(負極活物質層)を形成する方法が挙げられる。負極活物質層中に含まれるバインダは、負極活物質間および負極活物質と集電体との間を結着させる役割を果たしている。この種のバインダを含む電極活物質層に関する技術文献としては特許文献1が挙げられる。
しかしながら、この種の負極を製造するにあたって、負極活物質とバインダとを含有する負極活物質層形成用ペーストを負極集電体に塗布して熱風を当てて乾燥させると、乾燥中に対流が発生し、負極集電体近傍のバインダがペースト塗布物の表面に浮き上がり、負極活物質層の表層部に偏析する場合がある。バインダが負極活物質層の表層部に偏析すると、表層部における負極活物質の反応性(リチウムイオンの挿入・脱離反応の活性)が低下し、反応抵抗が増大する。そのため、正極活物質から放出されたリチウムイオンが、すぐには負極活物質内に入りきらず、負極活物質層内に析出する場合がある。このようなリチウムの析出は、電池の性能劣化(電池容量の低下等)の原因となり得る。特に低温(例えば0℃以下)での充放電時には、負極活物質の反応性がさらに低下傾向となるため、上記性能劣化が起こりやすかった。
本発明はかかる点に鑑みてなされたものであり、その主な目的は、上記リチウムの析出による性能劣化が抑制された高性能なリチウム二次電池を提供することである。
本発明によると、負極活物質とバインダとを有する負極活物質層が負極集電体上に形成されている負極を備えたリチウム二次電池が提供される。前記負極活物質層の厚さが50μm以下であり、前記負極活物質層中のバインダ含有割合が1質量%以下である。ここで前記負極活物質層を厚さ方向に半分割し、前記負極集電体に近い側を下層とし且つ前記負極集電体から遠い側を上層とした場合において、前記バインダの濃度(質量%)は前記上層と下層との間で異なっており、該上層側におけるバインダ濃度Bを下層側におけるバインダ濃度Aで除した値であるバインダ偏在度X=B/Aが0.4≦X<1.0であり、好ましくは0.4≦X≦0.8であり、特に好ましくは0.4≦X≦0.6である。
かかる構成のリチウム二次電池によると、負極活物質層を厚さ方向に半分割したときのバインダ偏在度X(上層側のバインダ濃度B/下層側のバインダ濃度A)が0.4≦X<1.0を満たすので、負極活物質層内におけるリチウムの析出を抑制することができる。
上記バインダ偏在度Xが1.0を上回ると、負極活物質層の表層部にバインダが多く配置されるので、表層部における負極活物質の反応性(リチウムイオンの挿入・脱離反応の活性)が低下する。そのため、負極の反応抵抗が増大し、正極活物質から放出されたリチウムイオンが、すぐには負極活物質内に入りきらず、負極活物質層内に析出することがある。一方、バインダ偏在度Xが0.4を下回ると、負極集電体の近傍にバインダが多く配置されるので、負極集電体と負極活物質層との間の界面抵抗が増大する。そのため、負極の直流抵抗が増大し、それに伴い電池の内部抵抗が大きくなるので、内部抵抗の上昇に伴う過電圧の増大によりリチウム析出電位に到達しやすくなる。このようなリチウムの析出は性能劣化(電池容量の低下等)の原因となり得る。
これに対し、バインダ偏在度Xが0.4≦X<1.0を満たすリチウム二次電池は、上層側と下層側のバインダ濃度が適切に調整されるので、反応抵抗および直流抵抗の値をいずれも低くすることができ、リチウムの析出を抑制することができる。このようなリチウム二次電池によれば、特にリチウムが析出しやすい条件、例えば、車両動力源用の電池において想定されるような低温(例えば0℃)かつハイレート(例えば20C)で放電と充電を連続して繰り返すハイレート充放電パターンにおいても、リチウムの析出を確実に抑制することができ、ハイレート充放電サイクルに対する耐久性の高い(例えば容量維持率が高い)リチウム二次電池を提供することができる。
ここに開示されるリチウム二次電池の好ましい一態様では、上記負極活物質層の厚さは50μm以下である。負極活物質層が厚すぎると負極活物質層のバインダ偏在度Xを0.4≦X<1.0にすることによる効果(リチウム析出を抑制する効果)が得られないことがある。一方、負極活物質層が薄すぎると負極の体積当たりに含まれる活物質量が少なくなるため、負極(ひいては該負極を用いて構築されるリチウム二次電池)の体積当たりの容量が低下傾向になることがある。したがって、上記負極活物質層の厚さは50μm以下が適当であり、好ましくは10μm~50μmであり、特に好ましくは20μm~50μmである。
ここに開示されるリチウム二次電池の好ましい一態様では、上記負極活物質層中のバインダ含有割合は1質量%以下である。バインダ含有割合が多すぎると負極活物質層のバインダ偏在度Xを0.4≦X<1.0にすることによる効果(リチウム析出を抑制する効果)が得られないことがある。一方、バインダ含有割合が少なすぎると負極集電体と負極活物質層との間の密着性が低下し、負極活物質層の剥離等が生じることがある。したがって、上記負極活物質層中のバインダ含有割合は1質量%以下が適当であり、好ましくは0.3質量%~1質量%であり、特に好ましくは0.5質量%~1質量%である。
ここに開示されるリチウム二次電池の好ましい一態様では、上記負極活物質層の空孔率が35%以上である。負極活物質層の空孔率が低すぎると電解液が負極活物質層内に浸透しにくくなり、電池性能が低下するため好ましくない。一方、負極活物質層の空孔率が高すぎると負極の体積当たりに含まれる活物質量が少なくなるため、負極(ひいては該負極を用いて構築されるリチウム二次電池)の体積当たりの容量が低下傾向になることがある。したがって、上記負極活物質層の空孔率は35%以上が適当であり、好ましくは35%~53%であり、特に好ましくは35%~48%である。
ここに開示されるリチウム二次電池の好ましい一態様では、上記負極活物質層は、バインダ濃度が異なる少なくとも2種類の負極活物質層形成用ペーストを層状に塗布し、乾燥させて形成されている。この場合、負極集電体上に層状に塗布される少なくとも2種類の負極活物質層形成用ペーストのバインダ濃度(負極活物質層形成用ペースト中の固形分に占めるバインダの割合)を適切に選択することによって、上記バインダ偏在度Xが0.4≦X<1.0を満たす負極活物質層を容易に形成することができる。
ここに開示されるいずれかのリチウム二次電池は、車両に搭載される電池として適した性能(例えば高出力が得られること)を備え、特にハイレート充放電に対する耐久性に優れたものであり得る。したがって本発明によると、ここに開示されるいずれかのリチウム二次電池を備えた車両が提供される。特に、該リチウム二次電池を動力源(典型的には、ハイブリッド車両または電気車両の動力源)として備える車両(例えば自動車)が提供される。
ここに開示される技術の好ましい適用対象として、50A以上(例えば50A~250A)、さらには100A以上(例えば100A~200A)のハイレート充放電を含む充放電サイクルで使用され得ることが想定されるリチウム二次電池;理論容量が1Ah以上(さらには3Ah以上)の大容量タイプであって10C以上(例えば10C~50C)さらには20C以上(例えば20C~40C)のハイレート充放電を含む充放電サイクルで使用されることが想定されるリチウム二次電池;等が例示される。
以下、図面を参照しながら、本発明による実施の形態を説明する。以下の図面においては、同じ作用を奏する部材・部位には同じ符号を付して説明している。なお、各図における寸法関係(長さ、幅、厚さ等)は実際の寸法関係を反映するものではない。また、本明細書において特に言及している事項以外の事柄であって本発明の実施に必要な事柄(例えば、正極および負極を備えた電極体の構成および製法、セパレータや電解質の構成および製法、リチウム二次電池その他の電池の構築に係る一般的技術等)は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。
特に限定することを意図したものではないが、以下では扁平に捲回された電極体(捲回電極体)と非水電解液とを扁平な箱型(直方体形状)の容器に収容した形態のリチウム二次電池(リチウムイオン電池)を例として本発明を詳細に説明する。
本発明の一実施形態に係るリチウムイオン電池の概略構成を図1~4に示す。このリチウムイオン電池100は、長尺状の正極シート10と長尺状の負極シート20が長尺状のセパレータ40を介して扁平に捲回された形態の電極体(捲回電極体)80が、図示しない非水電解液とともに、該捲回電極体80を収容し得る形状(扁平な箱型)の容器50に収容された構成を有する。
容器50は、上端が開放された扁平な直方体状の容器本体52と、その開口部を塞ぐ蓋体54とを備える。容器50を構成する材質としては、アルミニウム、スチール等の金属材料が好ましく用いられる(本実施形態ではアルミニウム)。あるいは、PPS、ポリイミド樹脂等の樹脂材料を成形してなる容器50であってもよい。容器50の上面(すなわち蓋体54)には、捲回電極体80の正極と電気的に接続する正極端子70および該電極体80の負極20と電気的に接続する負極端子72が設けられている。容器50の内部には、扁平形状の捲回電極体80が図示しない非水電解液とともに収容される。
本実施形態に係る捲回電極体80は、後述する負極シート20に具備される負極活物質を含む層(負極活物質層)の構成を除いては通常のリチウムイオン電池の捲回電極体と同様であり、図3に示すように、捲回電極体80を組み立てる前段階において長尺状(帯状)のシート構造を有している。
負極シート20は、長尺シート状の箔状の負極集電体(以下「負極集電箔」と称する)22の両面に負極活物質を含む負極活物質層24が保持された構造を有している。ただし、負極活物質層24は負極シート20の幅方向の端辺に沿う一方の側縁(図では上側の側縁部分)には付着されず、負極集電体22を一定の幅にて露出させた負極活物質層非形成部が形成されている。
正極シート10も負極シート20と同様に、長尺シート状の箔状の正極集電体(以下「正極集電箔」と称する)12の両面に正極活物質を含む正極活物質層14が保持された構造を有している。ただし、正極活物質層14は正極シート10の幅方向の端辺に沿う一方の側縁(図では下側の側縁部分)には付着されず、正極集電体12を一定の幅にて露出させた正極活物質層非形成部が形成されている。
捲回電極体80を作製するに際しては、正極シート10と負極シート20とがセパレータシート40を介して積層される。このとき、正極シート10の正極活物質層非形成部分と負極シート20の負極活物質層非形成部分とがセパレータシート40の幅方向の両側からそれぞれはみ出すように、正極シート10と負極シート20とを幅方向にややずらして重ね合わせる。このとうに重ね合わせた積層体を捲回し、次いで得られた捲回体を側面方向から押しつぶして拉げさせることによって扁平状の捲回電極体80が作製され得る。
捲回電極体80の捲回軸方向における中央部分には、捲回コア部分82(即ち正極シート10の正極活物質層14と負極シート20の負極活物質層24とセパレータシート40とが密に積層された部分)が形成される。また、捲回電極体80の捲回軸方向の両端部には、正極シート10および負極シート20の電極活物質層非形成部分がそれぞれ捲回コア部分82から外方にはみ出ている。かかる正極側はみ出し部分(すなわち正極活物質層14の非形成部分)84および負極側はみ出し部分(すなわち負極活物質層24の非形成部分)86には、正極リード端子74および負極リード端子76がそれぞれ付設されており、上述の正極端子70および負極端子72とそれぞれ電気的に接続される。
かかる捲回電極体80を構成する構成要素は、負極シート20を除いて、従来のリチウムイオン電池の捲回電極体と同様でよく、特に制限はない。例えば、正極シート10は、長尺状の正極集電体12の上にリチウムイオン電池用正極活物質を主成分とする正極活物質層14が付与されて形成され得る。正極集電体12にはアルミニウム箔その他の正極に適する金属箔が好適に使用される。
正極活物質は従来からリチウムイオン電池に用いられる物質の一種または二種以上を特に限定することなく使用することができる。好適例として、リチウムニッケル酸化物(LiMn2O4)、リチウムコバルト酸化物(LiCoO2)、リチウムマンガン酸化物(LiNiO2)等の、リチウムと遷移金属元素とを構成金属元素として含む酸化物(リチウム遷移金属酸化物)を主成分とする正極活物質が挙げられる。中でも、リチウムニッケルコバルトマンガン複合酸化物(例えばLiNi1/3Co1/3Mn1/3O2)を主成分とする正極活物質(典型的には、実質的にリチウムニッケルコバルトマンガン複合酸化物からなる正極活物質)への適用が好ましい。
ここで、リチウムニッケルコバルトマンガン複合酸化物とは、Li,Ni,Co及びMnを構成金属元素とする酸化物のほか、Li,Ni,Co及びMn以外に他の少なくとも一種の金属元素(すなわち、Li,Ni,Co及びMn以外の遷移金属元素および/または典型金属元素)を含む酸化物をも包含する意味である。かかる金属元素は、例えば、B,V,Mg,Sr,Zr,Mo,W,Ti,Al,Cr,Fe,Nb,Cu,Zn,Ga,In,Sn,LaおよびCeからなる群から選択される一種または二種以上の元素であり得る。リチウムニッケル酸化物、リチウムコバルト酸化物、及びリチウムマンガン酸化物についても同様である。
負極シート20は、長尺状の負極集電体22の上にリチウムイオン電池用負極活物質を主成分とする負極活物質層24が付与されて形成され得る。負極集電体22には銅箔その他の負極に適する金属箔が好適に使用される。
負極活物質は従来からリチウムイオン電池に用いられる物質の一種または二種以上を特に限定することなく使用することができる。好適例として、グラファイトカーボン、アモルファスカーボン等の炭素系材料、リチウム含有遷移金属酸化物や遷移金属窒化物等が挙げられる。中でも、グラファイトカーボン、アモルファスカーボン等の炭素系材料を主成分とする負極活物質(典型的には、実質的に炭素系材料からなる負極活物質)への適用が好ましい。
このような炭素系材料(典型的には粒子状)としては、例えば、従来公知の方法で調製される炭素系材料粉末をそのまま使用することができる。例えば、平均粒径が凡そ1μm~25μm(例えば10μm程度)の範囲にある二次粒子によって実質的に構成された炭素系材料粉末を負極活物質として好ましく用いることができる。
また、負極活物質層24は、負極活物質(典型的には粒子状)を結合するバインダ(結着剤)を含有する。負極活物質層に用いられるバインダは、負極活物質粒子を結合するためのものであり、該バインダを構成する材料自体は、従来公知のリチウム二次電池用負極に用いられるものと同様の材料であり得る。
例えば、後述する負極活物質層形成用ペーストが水系の溶媒(バインダの分散媒として水または水を主成分とする混合溶媒を用いた溶液)の場合には、上記バインダとして、水に分散または溶解するポリマーを好ましく採用し得る。水に分散または溶解するポリマーとしては、例えば、スチレンブタジエンゴム(SBR)が挙げられる。スチレンブタジエンゴムは、スチレンと1,3‐ブタジエンを含む共重合体であり、その共重合様式やスチレン/ブタジエン共重合比については特に限定されない。さらに不飽和カルボン酸や不飽和ニトリル化合物を共重合させた変性SBRであってもよい。水に分散または溶解するポリマーとしては、スチレンブタジエンゴムに限らず、ポリテトラフルオロエチレン(PTFE)、ポリエチレン(PE)、ポリアクリル酸(PAA)を用いることもできる。
また、負極活物質層形成用ペーストが溶剤系の溶媒(バインダの分散媒が主として有機溶媒である溶液)の場合には、溶剤系の溶媒に分散または溶解するポリマーを用いることができる。溶剤系溶媒に分散または溶解するポリマーとしては、例えばポリフッ化ビニリデン、ポリテトラフルオロエチレン(PTFE)、ポリアクリロニトリル、ポリメタクリル酸メチル等が例示される。
また、負極活物質層24は、一般的なリチウムイオン電池において負極活物質層の構成成分として使用され得る一種または二種以上の材料を必要に応じて含有することができる。そのような材料の例として、負極活物質層形成用ペーストの増粘材として機能し得る各種のポリマー材料(例えばカルボキシメチルセルロース(CMC))が挙げられる。
上記負極活物質層24の形成方法としては、負極活物質(典型的には粒状)、バインダ、その他の負極活物質層形成成分(例えば増粘剤)を適当な溶媒(好ましくは水系溶媒)に分散した負極活物質層形成用ペーストを負極集電体22の片面または両面に帯状に塗布して乾燥させる方法を好ましく採用することができる。負極活物質層形成用ペーストの乾燥後、適当なプレス処理(例えば、ロールプレス法、平板プレス法等の従来公知の各種プレス方法を採用することができる。)を施すことによって、負極活物質層24の厚さや密度を調整することができる。
正負極シート10、20間に使用される好適なセパレータシート40としては多孔質ポリオレフィン系樹脂で構成されたものが挙げられる。例えば、合成樹脂製(例えばポリエチレン等のポリオレフィン製)多孔質セパレータシートが好適に使用し得る。なお、電解質として固体電解質若しくはゲル状電解質を使用する場合には、セパレータが不要な場合(即ちこの場合には電解質自体がセパレータとして機能し得る。)があり得る。
続いて、図5を加えて、本実施形態に係る負極シート20について詳細に説明する。図5は、本実施形態に係る捲回電極体80の捲回軸に沿う断面の一部を拡大して示す模式的断面図であって、負極集電体22およびその一方の側に形成された負極活物質層24と、その負極活物質層24に対向するセパレータシート40とを示したものである。
図5に示すように、本実施形態に係る負極シート20は、負極活物質層24が負極集電体22上に保持された構造を有する。負極活物質層24は、負極活物質(典型的には粒状)26とバインダ28とを含んでおり、バインダ28によって、負極活物質26間と負極活物質26と負極集電体22との間が結合されている。また、隣り合う負極活物質26間のバインダ28で結着されていない部位には空孔25が形成されており、この空孔25に非水電解液が保持されている。
上記負極活物質層の空孔率としては特に制限されないが、負極活物質層の空孔率が低すぎると電解液が負極活物質層内に浸透しにくくなり、電池性能が低下するため好ましくない。一方、負極活物質層の空孔率が高すぎると負極の体積当たりに含まれる活物質量が少なくなるため、負極(ひいては該負極を用いて構築されるリチウム二次電池)の体積当たりの容量が低下傾向になることがある。したがって、上記負極活物質層の空孔率は35%以上が適当であり、好ましくは35%~53%であり、特に好ましくは35%~48%である。
ここで本実施形態においては、負極活物質層の厚さが50μm以下であり、負極活物質層中のバインダ含有割合が1質量%以下である。そして、負極活物質層24を厚さ方向90に半分割し、負極集電体22に近い側を下層24aとし且つ負極集電体22から遠い側を上層24bとした場合において、バインダの濃度(質量%)は上層24bと下層24aとの間で異なっており、該上層側24bにおけるバインダ濃度Bを下層側24aにおけるバインダ濃度Aで除した値であるバインダ偏在度X=B/Aが0.4≦X<1.0であり、好ましくは0.4≦X≦0.8であり、特に好ましくは0.4≦X≦0.6である。
上記バインダ偏在度Xが1.0を上回ると、負極活物質層24の表層部にバインダ28が多く配置されるので、表層部における負極活物質の反応性(リチウムイオンの挿入・脱離反応の活性)が低下する。そのため、負極の反応抵抗が増大し、正極活物質から放出されたリチウムイオンが、すぐには負極活物質26内に入りきらず、負極活物質層内に析出することがある。一方、バインダ偏在度Xが0.4を下回ると、負極集電体22の近傍にバインダ28が多く配置されるので、負極集電体22と負極活物質層24との間の界面抵抗が増大する。そのため、負極の直流抵抗が増大し、それに伴い電池の内部抵抗が大きくなるので、内部抵抗の上昇に伴う過電圧の増大によりリチウム析出電位に到達しやすくなる。このようなリチウムの析出は性能劣化(電池容量の低下等)の原因となり得る。
これに対し、バインダ偏在度Xが0.4≦X<1.0を満たすリチウム二次電池は、上層側と下層側のバインダ濃度が適切に調整されるので、反応抵抗および直流抵抗の値をいずれも低くすることができ、リチウムの析出を抑制することができる。このようなリチウム二次電池によれば、特にリチウムが析出しやすい条件、例えば、車両動力源用の電池において想定されるような低温(例えば0℃)かつハイレート(例えば20C)で放電と充電を連続して繰り返すハイレート充放電パターンにおいても、リチウムの析出を確実に抑制することができ、ハイレート充放電サイクルに対する耐久性の高い(例えば容量維持率が高い)リチウム二次電池を提供することができる。
ここに開示される好ましい技術では、上記負極活物質層の厚さは50μm以下である。負極活物質層が厚すぎると負極活物質層のバインダ偏在度Xを0.4≦X<1.0にすることによる効果(リチウム析出を抑制する効果)が得られないことがある。一方、負極活物質層が薄すぎると負極の体積当たりに含まれる活物質量が少なくなるため、負極(ひいては該負極を用いて構築されるリチウム二次電池)の体積当たりの容量が低下傾向になることがある。したがって、上記負極活物質層の厚さは50μm以下が適当であり、好ましくは10μm~50μmであり、特に好ましくは20μm~50μmである。
ここに開示される好ましい技術では、上記負極活物質層中のバインダ含有割合は1質量%以下である。バインダ含有割合が多すぎると負極活物質層のバインダ偏在度Xを0.4≦X<1.0にすることによる効果(リチウム析出を抑制する効果)が得られないことがある。一方、バインダ含有割合が少なすぎると負極集電体と負極活物質層との間の密着性が低下し、負極活物質層の剥離等が生じることがある。したがって、上記負極活物質層中のバインダ含有割合は1質量%以下が適当であり、好ましくは0.3質量%~1質量%であり、特に好ましくは0.5質量%~1質量%である。
なお、特に限定するものではないが、負極活物質層全体に占める負極活物質の割合は凡そ90質量%以上(典型的には97質量%~99質量%)であることが好ましく、凡そ98質量%~99質量%であることが好ましい。また、負極活物質及びバインダ以外の負極活物質層形成成分(例えば増粘材等)を含有する場合は、それら任意成分の合計含有割合を凡そ3質量%以下とすることが好ましく、凡そ2質量%以下(例えば凡そ0.5質量%~1質量%)とすることが好ましい。
上記バインダ偏在度Xが0.4≦X<1.0を満たす負極活物質層は、該負極活物質層を形成するときの形成条件を適切に選択することによって実現され得る。例えば、上記負極活物質層は、負極活物質とバインダとを適当な溶媒に混合して調製された負極活物質層形成用ペーストを負極集電体上に塗布して乾燥することにより形成され得る。この場合、上記塗布された負極活物質層形成用ペーストを乾燥するときの乾燥温度や乾燥風速等の乾燥条件を調節することにより、負極活物質層のバインダ偏在度Xを制御することができる。すなわち、乾燥温度や乾燥風速等の乾燥条件を適切に選択することにより、バインダ偏在度Xが0.4≦X<1.0を満たす負極活物質層を形成することができる。
その他、上記バインダ偏在度Xが0.4≦X<1.0を満たす負極活物質層を実現する他の方法として、バインダ濃度が異なる複数の負極活物質層形成用ペーストを使用する方法が挙げられる。例えば、バインダ濃度が異なる2種類の負極活物質層形成用ペーストを上下二層(層状)に塗布して乾燥することにより負極活物質層を形成する。その際、上下二層の負極活物質層形成用ペーストのバインダ濃度(負極活物質層形成用ペースト中の固形分に占めるバインダの割合)を調節することにより、負極活物質層のバインダ偏在度Xを制御することができる。すなわち、上下二層の負極活物質層形成用ペーストのバインダ濃度を適切に選択することにより、バインダ偏在度Xが0.4≦X<1.0を満たす負極活物質層を形成することができる。好ましくは、負極集電体上にバインダ濃度が相対的に高い高バインダ濃度ペーストを付与し、その上にバインダ濃度が相対的に低い低バインダ濃度ペーストを付与して負極活物質層を形成するとよい。これにより、バインダ偏在度Xが0.4≦X<1.0を満たす負極活物質層を容易に形成することができる。
上記負極活物質層形成用ペーストに用いられる溶媒としては、水または水を主体とする混合溶媒が挙げられる。かかる混合溶媒を構成する水以外の溶媒としては、水と均一に混合し得る有機溶媒(低級アルコール、低級ケトン等)の一種または二種以上を適宜選択して用いることができる。あるいは、N‐メチルピロリドン(NMP)、ピロリドン、メチルエチルケトン、メチルイソブチルケトン、シクサヘキサノン、トルエン、ジメチルホルムアミド、ジメチルアセトアミド、等の有機系溶媒またはこれらの2種以上の組み合わせであってもよい。
また、上記負極活物質層形成用ペーストは、負極活物質とバインダのほかに、必要に応じて使用され得る一種または二種以上の材料を含有することができる。そのような材料の例として、負極活物質層形成用ペーストの増粘剤として機能するポリマーが挙げられる。増粘剤として機能するポリマーとしては、例えばカルボキシルメチルセルロース(CMC)が好ましく用いられる。
このような負極活物質層形成用ペーストを負極集電体22の表面に塗布する操作は、従来の一般的なリチウム二次電池用負極の作製と同様にして行うことができる。例えば、適当な塗布装置(スリットコーター、ダイコーター、コンマコーター等)を使用して、上記負極集電体22に所定量の上記負極活物質層形成用ペーストを均一な厚さにコーティングすることにより行われる。その後、適当な乾燥手段(例えば温風乾燥機)で塗布物を乾燥(例えば乾燥温度20~200℃)することによって、負極活物質層形成用ペースト中の溶媒を除去する。負極活物質層形成用ペーストから溶媒を除去することによって、負極活物質とバインダとを有する負極活物質層24が形成される。
このようにして負極集電体22上に負極活物質層24が形成された負極シート20を得ることができる。なお、乾燥後、必要に応じて適当なプレス処理(例えばロールプレス処理)を施すことによって、負極活物質層24の厚みや密度を適宜調整することができる。
このようにして負極シート20に形成したら、図3に示すように、該負極シート20と正極シート10とを2枚のセパレータシート40を介して捲回し、捲回電極体80を作製する。そして、図1及び図2に示すように、捲回電極体80を容器本体52に収容し、その容器本体52内に適当な非水電解液を配置(注液)する。容器本体52内に上記捲回電極体80と共に収容される非水電解液としては、従来のリチウムイオン電池に用いられる非水電解液と同様のものを特に限定なく使用することができる。かかる非水電解液は、典型的には、適当な非水溶媒に支持塩を含有させた組成を有する。上記非水溶媒としては、例えば、エチレンカーボネート(EC)、エチルメチルカーボネート(EMC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、プロピレンカーボネート(PC)等を用いることができる。また、上記支持塩としては、例えば、LiPF6、LiBF4、LiAsF6、LiCF3SO3等のリチウム塩を好ましく用いることができる。例えば、ECとEMCとDMCとを3:4:3の体積比で含む混合溶媒に支持塩としてのLiPF6を約1mol/リットルの濃度で含有させた非水電解液を好ましく用いることができる。
上記非水電解液を捲回電極体80とともに容器本体52に収容し、容器本体52の開口部を蓋体54との溶接等により封止することにより、本実施形態に係るリチウム二次電池100の構築(組み立て)が完成する。なお、容器本体52の封止プロセスや電解液の配置(注液)プロセスは、従来のリチウムイオン電池の製造で行われている手法と同様にして行うことができる。その後、該電池のコンディショニング(初期充放電)を行う。必要に応じてガス抜きや品質検査等の工程を行ってもよい。
このようにして構築されたリチウム二次電池は、負極活物質層を厚さ方向に半分割したときのバインダ偏在度X(上層側24bのバインダ濃度B/下層側24aのバインダ濃度A)が0.4≦X<1.0を満たすことから、優れた電池性能を示すものであり得る。例えば、ハイレート充放電に対する耐久性が高い、高出力が得られる、低温特性に優れる、のうちの少なくとも一つ(好ましくは全部)を満たすものであり得る。
以下、本発明を試験例に基づいてさらに詳細に説明する。
<試験例1:負極活物質層形成用ペーストの調製>
平均粒径11μmの天然黒鉛(負極活物質)とSBR(バインダ)とCMC(増粘剤)とを、これらの材料の質量比が98:1:1となりかつ固形分濃度が約46質量%となるように(すなわち負極活物質層形成用ペースト中の固形分に占めるバインダの割合(バインダ濃度)が1質量%となるように)水と混合して負極活物質層形成用ペーストを調製した。また、上記配合比を標準として、上記バインダ濃度がそれぞれ異なる数種類の負極活物質層形成用ペーストを作製した。
平均粒径11μmの天然黒鉛(負極活物質)とSBR(バインダ)とCMC(増粘剤)とを、これらの材料の質量比が98:1:1となりかつ固形分濃度が約46質量%となるように(すなわち負極活物質層形成用ペースト中の固形分に占めるバインダの割合(バインダ濃度)が1質量%となるように)水と混合して負極活物質層形成用ペーストを調製した。また、上記配合比を標準として、上記バインダ濃度がそれぞれ異なる数種類の負極活物質層形成用ペーストを作製した。
<試験例2:負極シートの作製>
上記試験例1で作製した各種の負極活物質層形成用ペーストの中から2種類を選択し、長尺シート状の銅箔(負極集電体22:厚さ10μm)の片面に層状(上下二層)に塗布して乾燥することにより、バインダ偏在度Xの異なる計10種類の負極活物質層を形成した。上下二層合わせたペーストの塗布量は約7.6mg/cm2(固形分基準)となるように調節した。塗布されたペーストの乾燥温度は25℃に設定した。乾燥後、負極活物質層の厚さが約50μmとなるようにプレスした。プレス後、負極活物質層の気体置換法に基づく空孔率は約35%であり、その密度は1.5g/cm3であった。このようにして負極集電体上に負極活物質層が設けられた計10種類の負極シートを作製した。
上記試験例1で作製した各種の負極活物質層形成用ペーストの中から2種類を選択し、長尺シート状の銅箔(負極集電体22:厚さ10μm)の片面に層状(上下二層)に塗布して乾燥することにより、バインダ偏在度Xの異なる計10種類の負極活物質層を形成した。上下二層合わせたペーストの塗布量は約7.6mg/cm2(固形分基準)となるように調節した。塗布されたペーストの乾燥温度は25℃に設定した。乾燥後、負極活物質層の厚さが約50μmとなるようにプレスした。プレス後、負極活物質層の気体置換法に基づく空孔率は約35%であり、その密度は1.5g/cm3であった。このようにして負極集電体上に負極活物質層が設けられた計10種類の負極シートを作製した。
上記得られた各種の負極シートの断面を電子線マイクロアナライザ(EPMA)により分析し、負極活物質層断面を厚さ方向に半分割したときのバインダ偏在度X(上層側24bのバインダ濃度/下層側24aのバインダ濃度)を調べた。上層側と下層側のバインダ濃度の比は、バインダ(SBR)をBr元素で染色したときのBr元素検出強度比から算出した。各サンプルのバインダ偏在度Xを表1に示す。
<試験例3:リチウム二次電池の作製と評価>
上記試験例2で作製した各種の負極シートを用いてリチウム二次電池(ラミネートセル)を作製し、それらの電池の直流抵抗と反応抵抗を測定した。リチウム二次電池は以下のようにして作製した。
上記試験例2で作製した各種の負極シートを用いてリチウム二次電池(ラミネートセル)を作製し、それらの電池の直流抵抗と反応抵抗を測定した。リチウム二次電池は以下のようにして作製した。
正極活物質としてのニッケルコバルトマンガン酸リチウム(LiNi1/3Co1/3Mn1/3O2)粉末とバインダとしてのポリフッ化ビニリデン(PVDF)と導電材としてのアセチレンブラックとを、これらの材料の質量比が90:5:5となるようにN-メチルピロリドン(NMP)と混合して正極活物質層形成用ペーストを調製し、これを長尺シート状のアルミニウム箔(正極集電体12:厚さ15μm)の両面に帯状に塗布して乾燥することにより、正極集電体12の両面に正極活物質層14が設けられた正極シート10を作製した。正極活物質層形成用ペーストの塗布量は、片面あたり約12mg/cm2(固形分基準)となるように調節した。
上記得られた正極シートを5cm×5cmに打ち抜いて正極を作製した。また、上記試験例2で作製した各種の負極シートを5cm×5cmに打ち抜いて負極を作製した。正極にアルミリードを取り付け、負極にニッケルリードを取り付け、それらをセパレータ(ポリプロピレン(PP)-ポリエチレン(PE)-ポリプロピレン(PP)の3層構造のものを使用した。)を介して対向配置し、非水電解液とともにラミネート袋に挿入して、図6に示すリチウム二次電池(ラミネートセル)を構築した。図6中、符号61は正極を、符号62は負極を、符号63は電解液の含浸したセパレータを、符号64はラミネート袋をそれぞれ示す。なお、非水電解液としては、エチレンカーボネート(EC)とジメチルカーボネート(DMC)とエチルメチルカーボネート(EMC)とを3:3:4の体積比で含む混合溶媒に支持塩としてのLiPF6を約1mol/リットルの濃度で含有させたものを用いた。
このようにして得られたリチウム二次電池のそれぞれに対し、25℃の環境下において、交流インピーダンス測定を行い、得られたインピーダンスのCole-Coleプロットから直流抵抗および反応抵抗を読み取った。交流インピーダンスの測定条件については、交流印加電圧5mV、周波数範囲0.1Hz~1000000Hzとした。それらの結果を図7と表1に示す。図7中、△で示したプロットが反応抵抗(mΩ)である。
図7および表1から明らかなように、負極活物質層のバインダ偏在度Xが1.2を上回る負極シートを用いて構築されたリチウム二次電池は、直流抵抗は低かったものの、反応抵抗の値が大幅に増大した。一方、バインダ偏在度Xが0.4を下回る負極シートを用いて構築されたリチウム二次電池は、反応抵抗は低かったものの、直流抵抗の値が大幅に増大した。これに対し、バインダ偏在度Xが0.4≦X<1.0を満たす負極シートを用いて構築されたリチウム二次電池は、反応抵抗および直流抵抗の値がいずれも低く、車両動力源用その他の用途に使用されるリチウム二次電池として特に良好な性能を示すものであった。
<試験例4:充放電サイクル試験>
さらに、サンプル4及びサンプル10のリチウム二次電池に対し、ハイレートパルス充放電を繰り返す充放電パターンを付与し、充放電サイクル試験を行った。具体的には、0℃の環境下において、21.2mA/cm2(18Cに相当する。)で10秒間のハイレートパルス充電を行い、21.2mA/cm2で10秒間のハイレートパルス放電を行い、10分間休止する充放電サイクルを250回連続して繰り返した。そして、上記充放電サイクル試験前における初期容量と、充放電サイクル試験後における放電容量とから、充放電サイクル試験後の容量維持率(=[充放電サイクル試験後の放電容量/充放電サイクル試験前の初期容量]×100)を算出した。
さらに、サンプル4及びサンプル10のリチウム二次電池に対し、ハイレートパルス充放電を繰り返す充放電パターンを付与し、充放電サイクル試験を行った。具体的には、0℃の環境下において、21.2mA/cm2(18Cに相当する。)で10秒間のハイレートパルス充電を行い、21.2mA/cm2で10秒間のハイレートパルス放電を行い、10分間休止する充放電サイクルを250回連続して繰り返した。そして、上記充放電サイクル試験前における初期容量と、充放電サイクル試験後における放電容量とから、充放電サイクル試験後の容量維持率(=[充放電サイクル試験後の放電容量/充放電サイクル試験前の初期容量]×100)を算出した。
なお、本例では、上記充放電サイクル試験を、21.2mA/cm2,22.4mA/cm2,23.6mA/cm2,24.8mA/cm2,26.0mA/cm2の5つの異なるパルス電流で行い、各充放電サイクル試験後の容量維持率を求めた。それらの結果を図8に示す。図8はパルス電流(mA/cm2)と容量維持率(%)との関係を示すグラフである。
図示されるように、バインダ偏在度Xが1.0を上回る負極シートを用いて構築されたリチウム二次電池は、パルス電流が23.6mA/cm2を超えると、充放電サイクル試験後の容量維持率が急激に低下した。これに対し、バインダ偏在度Xが0.4≦X<1.0を満たす負極シートを用いて構築されたリチウム二次電池は、パルス電流が26.0mA/cm2のハイレートでも90%以上という極めて高い容量維持率を実現できた。この理由としては、バインダ偏在度Xを0.4≦X<1.0とすることによって負極活物質層内のリチウムの析出を抑制できたためと考えられる。この結果から、バインダ偏在度Xを0.4≦X<1.0とすることによって、ハイレート充放電を行いながら優れたサイクル寿命特性を実現できることが確認できた。
<試験例5>
本例では、負極活物質層の厚さをそれぞれ20μm(密度1.5g/cm-3:空孔率35%)、及び150μm(密度1.5g/cm-3:空孔率35%)とし、他の点については試験例2と同様にして、計15種類の負極シートを作製した。そして、負極活物質層の厚さを変えたこと以外は試験例3と同様にしてリチウム二次電池を構築し、該電池の反応抵抗と直流抵抗を測定した。それらの結果を図9および表2に示す。図9中、△で示したプロットが負極活物質層の厚さが50μmのときの反応抵抗(mΩ)であり、○で示したプロットが負極活物質層の厚さが20μmのときの反応抵抗(mΩ)であり、×で示したプロットが負極活物質層の厚さが150μmのときの反応抵抗(mΩ)の値である。
本例では、負極活物質層の厚さをそれぞれ20μm(密度1.5g/cm-3:空孔率35%)、及び150μm(密度1.5g/cm-3:空孔率35%)とし、他の点については試験例2と同様にして、計15種類の負極シートを作製した。そして、負極活物質層の厚さを変えたこと以外は試験例3と同様にしてリチウム二次電池を構築し、該電池の反応抵抗と直流抵抗を測定した。それらの結果を図9および表2に示す。図9中、△で示したプロットが負極活物質層の厚さが50μmのときの反応抵抗(mΩ)であり、○で示したプロットが負極活物質層の厚さが20μmのときの反応抵抗(mΩ)であり、×で示したプロットが負極活物質層の厚さが150μmのときの反応抵抗(mΩ)の値である。
図9および表2から明らかなように、負極活物質層の厚さが20μmの負極シートを用いて構築されたリチウム二次電池は、バインダ偏在度Xが0.4≦X<1.0のときに反応抵抗および直流抵抗の値がいずれも低く、負極活物質層の厚さが50μmの場合と同じ傾向を示した。一方、負極活物質層の厚さが150μmの負極シートを用いて構築されたリチウム二次電池は、バインダ偏在度Xが0.8≦X<1.0のときに反応抵抗および直流抵抗の値がいずれも低く、負極活物質層の厚さが50μmの場合に比べて、バインダ偏在度Xの好適範囲が狭くなった。この結果から、負極活物質層のバインダ偏在度Xを0.4≦X<1.0にすることによる効果(リチウム析出を抑制する効果)は、負極活物質層の厚さを50μm以下(例えば20μm~50μm)とした場合により顕著であることが確認できた。
ここに開示されるいずれかのリチウム二次電池100は、車両に搭載される電池として適した性能を備え、特にハイレート充放電に対する耐久性に優れたものであり得る。したがって本発明によると、図10に示すように、ここに開示されるいずれかのリチウム二次電池100を備えた車両1が提供される。特に、該リチウム二次電池100を動力源(典型的には、ハイブリッド車両または電気車両の動力源)として備える車両(例えば自動車)が提供される。
また、ここに開示される技術の好ましい適用対象として、50A以上(例えば50A~250A)、さらには100A以上(例えば100A~200A)のハイレート放電を含む充放電サイクルで使用され得ることが想定されるリチウム二次電池;理論容量が1Ah以上(さらには3Ah以上)の大容量タイプであって10C以上(例えば10C~50C)さらには20C以上(例えば20C~40C)のハイレート充放電を含む充放電サイクルで使用されることが想定されるリチウム二次電池;等が例示される。
本発明によれば、充放電サイクルに対する耐久性が高められたリチウム二次電池を提供することができる。
Claims (6)
- 負極活物質とバインダとを有する負極活物質層が負極集電体上に形成されている負極を備えたリチウム二次電池であって、
前記負極活物質層の厚さが50μm以下であり、
前記負極活物質層中のバインダ含有割合が1質量%以下であり、
ここで前記負極活物質層を厚さ方向に半分割し、前記負極集電体に近い側を下層とし且つ前記負極集電体から遠い側を上層とした場合において、前記バインダの濃度(質量%)は前記上層と下層との間で異なっており、
該上層側におけるバインダ濃度Bを下層側におけるバインダ濃度Aで除した値であるバインダ偏在度X=B/Aが、0.4≦X<1.0であることを特徴とする、リチウム二次電池。 - 前記バインダ偏在度Xが0.4≦X≦0.8である、請求項1に記載のリチウム二次電池。
- 前記バインダは、スチレンブタジエンゴムである、請求項1または2に記載のリチウム二次電池。
- 前記負極活物質層の空孔率が35%以上である、請求項1から3の何れか一つに記載のリチウム二次電池。
- 前記負極活物質層は、バインダ濃度が異なる少なくとも2種類の負極活物質層形成用ペーストを塗布し、乾燥させて形成されている、請求項1から4の何れか一つに記載のリチウム二次電池。
- 請求項1から5の何れか一つに記載のリチウム二次電池を搭載した車両。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2010/061332 WO2012001814A1 (ja) | 2010-07-02 | 2010-07-02 | リチウム二次電池 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2010/061332 WO2012001814A1 (ja) | 2010-07-02 | 2010-07-02 | リチウム二次電池 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012001814A1 true WO2012001814A1 (ja) | 2012-01-05 |
Family
ID=45401567
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/061332 WO2012001814A1 (ja) | 2010-07-02 | 2010-07-02 | リチウム二次電池 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2012001814A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014156095A1 (ja) * | 2013-03-29 | 2014-10-02 | 三洋電機株式会社 | 非水電解質二次電池 |
WO2014157422A1 (ja) * | 2013-03-26 | 2014-10-02 | 日産自動車株式会社 | 非水電解質二次電池 |
CN110495035A (zh) * | 2017-03-31 | 2019-11-22 | 株式会社村田制作所 | 锂离子二次电池 |
US11495780B2 (en) * | 2016-07-18 | 2022-11-08 | Lg Energy Solution, Ltd. | Method of preparing electrode for lithium secondary battery and electrode for lithium secondary battery prepared thereby |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11126600A (ja) * | 1997-10-21 | 1999-05-11 | Fuji Elelctrochem Co Ltd | リチウムイオン二次電池 |
JP2000100439A (ja) * | 1998-09-24 | 2000-04-07 | Daicel Chem Ind Ltd | 結着剤、それを用いた積層体並びにリチウム二次電池 |
JP2000340216A (ja) * | 1999-05-25 | 2000-12-08 | Kao Corp | 二次電池用負極の製造方法 |
JP2003157849A (ja) * | 2001-11-21 | 2003-05-30 | Toyota Central Res & Dev Lab Inc | リチウム二次電池用負極およびそれを用いたリチウム二次電池 |
JP2005025991A (ja) * | 2003-06-30 | 2005-01-27 | Japan Storage Battery Co Ltd | 非水電解質二次電池 |
JP2008258055A (ja) * | 2007-04-06 | 2008-10-23 | Toyota Motor Corp | 二次電池、及び車両 |
JP2009245925A (ja) * | 2008-03-10 | 2009-10-22 | Nissan Motor Co Ltd | 電池用電極およびこれを用いた電池、並びにその製造方法 |
-
2010
- 2010-07-02 WO PCT/JP2010/061332 patent/WO2012001814A1/ja active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11126600A (ja) * | 1997-10-21 | 1999-05-11 | Fuji Elelctrochem Co Ltd | リチウムイオン二次電池 |
JP2000100439A (ja) * | 1998-09-24 | 2000-04-07 | Daicel Chem Ind Ltd | 結着剤、それを用いた積層体並びにリチウム二次電池 |
JP2000340216A (ja) * | 1999-05-25 | 2000-12-08 | Kao Corp | 二次電池用負極の製造方法 |
JP2003157849A (ja) * | 2001-11-21 | 2003-05-30 | Toyota Central Res & Dev Lab Inc | リチウム二次電池用負極およびそれを用いたリチウム二次電池 |
JP2005025991A (ja) * | 2003-06-30 | 2005-01-27 | Japan Storage Battery Co Ltd | 非水電解質二次電池 |
JP2008258055A (ja) * | 2007-04-06 | 2008-10-23 | Toyota Motor Corp | 二次電池、及び車両 |
JP2009245925A (ja) * | 2008-03-10 | 2009-10-22 | Nissan Motor Co Ltd | 電池用電極およびこれを用いた電池、並びにその製造方法 |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014157422A1 (ja) * | 2013-03-26 | 2014-10-02 | 日産自動車株式会社 | 非水電解質二次電池 |
WO2014156095A1 (ja) * | 2013-03-29 | 2014-10-02 | 三洋電機株式会社 | 非水電解質二次電池 |
CN105122507A (zh) * | 2013-03-29 | 2015-12-02 | 三洋电机株式会社 | 非水电解质二次电池 |
JPWO2014156095A1 (ja) * | 2013-03-29 | 2017-02-16 | 三洋電機株式会社 | 非水電解質二次電池 |
US9847529B2 (en) | 2013-03-29 | 2017-12-19 | Sanyo Electric Co., Ltd. | Nonaqueous electrolyte secondary battery |
US11495780B2 (en) * | 2016-07-18 | 2022-11-08 | Lg Energy Solution, Ltd. | Method of preparing electrode for lithium secondary battery and electrode for lithium secondary battery prepared thereby |
CN110495035A (zh) * | 2017-03-31 | 2019-11-22 | 株式会社村田制作所 | 锂离子二次电池 |
CN110495035B (zh) * | 2017-03-31 | 2022-07-08 | 株式会社村田制作所 | 锂离子二次电池 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5311157B2 (ja) | リチウム二次電池 | |
JP5229598B2 (ja) | リチウム二次電池及びその製造方法 | |
JP5626614B2 (ja) | 非水電解液二次電池 | |
JP5472759B2 (ja) | リチウム二次電池 | |
JP5218873B2 (ja) | リチウム二次電池およびその製造方法 | |
JP5618165B2 (ja) | 非水電解質二次電池 | |
WO2013073011A1 (ja) | 非水電解液型二次電池 | |
WO2012039041A1 (ja) | 非水電解質二次電池 | |
US9166247B2 (en) | Lithium-ion secondary cell and method for manufacturing same | |
JP5800208B2 (ja) | 非水電解質二次電池 | |
KR101944443B1 (ko) | 비수 전해질 이차 전지, 상기 비수 전해질 이차 전지에 사용되는 전극체, 및 상기 전극체의 제조방법 | |
KR101536063B1 (ko) | 비수전해액 2차 전지 | |
JP2013069432A (ja) | リチウムイオン二次電池とその製造方法 | |
JP5585834B2 (ja) | リチウムイオン二次電池 | |
JP5397715B2 (ja) | リチウム二次電池 | |
US9312568B2 (en) | Lithium secondary battery | |
WO2012001814A1 (ja) | リチウム二次電池 | |
JP6008188B2 (ja) | 非水電解液二次電池 | |
KR20170022909A (ko) | 리튬 이온 2차 전지 및 그 제조 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10854111 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10854111 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |