[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2012001755A1 - 情報処理システム、情報処理装置および情報処理方法 - Google Patents

情報処理システム、情報処理装置および情報処理方法 Download PDF

Info

Publication number
WO2012001755A1
WO2012001755A1 PCT/JP2010/007121 JP2010007121W WO2012001755A1 WO 2012001755 A1 WO2012001755 A1 WO 2012001755A1 JP 2010007121 W JP2010007121 W JP 2010007121W WO 2012001755 A1 WO2012001755 A1 WO 2012001755A1
Authority
WO
WIPO (PCT)
Prior art keywords
camera
image data
image
information processing
target
Prior art date
Application number
PCT/JP2010/007121
Other languages
English (en)
French (fr)
Inventor
大場 章男
博之 勢川
稲田 徹悟
Original Assignee
株式会社ソニー・コンピュータエンタテインメント
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ソニー・コンピュータエンタテインメント filed Critical 株式会社ソニー・コンピュータエンタテインメント
Priority to JP2012522362A priority Critical patent/JP5395956B2/ja
Priority to EP10854052.7A priority patent/EP2590396B1/en
Priority to CN201080067714.4A priority patent/CN102959941B/zh
Publication of WO2012001755A1 publication Critical patent/WO2012001755A1/ja
Priority to US13/714,765 priority patent/US9357203B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/204Image signal generators using stereoscopic image cameras
    • H04N13/239Image signal generators using stereoscopic image cameras using two 2D image sensors having a relative position equal to or related to the interocular distance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/78Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using electromagnetic waves other than radio waves
    • G01S3/782Systems for determining direction or deviation from predetermined direction
    • G01S3/783Systems for determining direction or deviation from predetermined direction using amplitude comparison of signals derived from static detectors or detector systems
    • G01S3/784Systems for determining direction or deviation from predetermined direction using amplitude comparison of signals derived from static detectors or detector systems using a mosaic of detectors
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T3/00Geometric image transformations in the plane of the image
    • G06T3/40Scaling of whole images or parts thereof, e.g. expanding or contracting
    • G06T3/4038Image mosaicing, e.g. composing plane images from plane sub-images
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/20Image preprocessing
    • G06V10/24Aligning, centring, orientation detection or correction of the image
    • G06V10/245Aligning, centring, orientation detection or correction of the image by locating a pattern; Special marks for positioning
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/10Processing, recording or transmission of stereoscopic or multi-view image signals
    • H04N13/106Processing image signals
    • H04N13/156Mixing image signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/271Image signal generators wherein the generated image signals comprise depth maps or disparity maps
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/63Control of cameras or camera modules by using electronic viewfinders
    • H04N23/633Control of cameras or camera modules by using electronic viewfinders for displaying additional information relating to control or operation of the camera
    • H04N23/635Region indicators; Field of view indicators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/66Remote control of cameras or camera parts, e.g. by remote control devices
    • H04N23/661Transmitting camera control signals through networks, e.g. control via the Internet
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/73Circuitry for compensating brightness variation in the scene by influencing the exposure time

Definitions

  • the present invention relates to an information processing system that sequentially displays output images based on captured images, an information processing apparatus included in the system, and an information processing method used in the system.
  • the present invention has been made in view of such problems, and an object of the present invention is to provide a technique capable of enhancing the functions of an information processing apparatus using captured images at low cost and efficiency. .
  • An aspect of the present invention relates to an information processing system.
  • This information processing system is an information processing system that shoots a subject and sequentially obtains the image data to generate output image data, with different shooting conditions set to obtain individual information about the same subject.
  • a pair of cameras consisting of a first camera and a second camera having the same structure for photographing an object, and individual information included in two systems of image data obtained by photographing each of the pair of cameras And an information integration unit for generating one system of output image data.
  • the “subject” is not limited to a person who is clearly positioned as an object to be photographed, but includes a room, a person, an object, an animal, and the like that fall within the field of view of the camera. Accordingly, the “individual information regarding the subject” is not limited to the individual information regarding the same individual, but may be information regarding any one of a plurality of individuals included in the subject, or may be individual information regarding another individual.
  • This information processing apparatus is an information processing apparatus that sequentially acquires image data obtained by photographing a subject to generate output image data, and connects a pair of cameras having the same structure connected to each other with respect to the same subject. To obtain two sets of image data obtained by photographing each of the pair of cameras, and a photographing condition control unit for controlling photographing under different photographing conditions set in order to obtain, and included in each image data And an information integration unit that generates the output image data of one system by integrating the individual information.
  • Still another aspect of the present invention relates to an information processing method.
  • This information processing method is an information processing method that sequentially acquires image data obtained by photographing a subject and outputs output image data corresponding to the acquired image data. Individual information regarding the same subject is obtained by a pair of cameras having the same structure. A step of shooting under different shooting conditions set in order to obtain two image data obtained by each pair of cameras, and integrating individual information included in each image data And generating a series of output image data, and outputting the output image data to a display device.
  • FIG. 5 is a diagram illustrating an example of an image captured by an imaging device and an output image obtained by using the image captured by the imaging device in a mode in which the angle of view and the resolution are different according to the present embodiment. It is a flowchart which shows the process sequence of the information processing in the aspect which changes the magnitude
  • FIG. 4 is a diagram illustrating an example of an image captured by an imaging device and an output image obtained by using the image captured by the imaging device in an embodiment in which the angle of view and the frame rate are different according to the present embodiment. It is a flowchart which shows the process sequence of the information processing in the aspect which changes the magnitude
  • FIG. 4 is a diagram illustrating an example of an image captured by an imaging device and an output image obtained by using the image captured by the imaging device in an embodiment in which the angle of view and the frame rate are different according to the present embodiment.
  • FIG. 5 is a diagram illustrating an example of an image captured by an imaging device and an output image obtained by using the image in the aspect of varying the exposure time / aperture value according to the present embodiment. It is a flowchart which shows the process sequence of the information processing in the aspect which varies exposure time / aperture value of this Embodiment.
  • FIG. 1 shows a configuration example of an information processing system to which this embodiment can be applied.
  • the information processing system 10 includes an imaging device 12 equipped with two cameras that capture objects such as users 1a and 1b, an information processing device 14 that performs information processing according to a user's request based on the captured images, and information processing A display device 16 for outputting image data obtained as a result of processing by the device 14 is included.
  • the information processing apparatus 14 can be connected to a network 18 such as the Internet.
  • the information processing device 14, the imaging device 12, the display device 16, and the network 18 may be connected by a wired cable, or may be wirelessly connected by a wireless LAN (Local Area Network) or the like. Any two or all of the imaging device 12, the information processing device 14, and the display device 16 may be combined and integrally provided. Further, the imaging device 12 is not necessarily installed on the display device 16. Furthermore, the users 1a and 1b may not be people, and the number is not limited.
  • the imaging device 12 captures an object existing in the same space with a pair of cameras having the same structure.
  • a stereo camera or the like that has been put to practical use for acquiring depth information of an object may be used. That is, it may be a pair of cameras each having a lens that can obtain almost the same field of view by being placed side by side.
  • the interval and the relative position between the two cameras are not limited.
  • two cameras may be substantially realized by using one lens and spectrally separating the image captured by the lens inside the imaging device 12.
  • At least one of the two cameras is equipped with an electronic zoom, an electronic pan tilter, or a corresponding image cutout function so that the field of view can be independently changed under the control of the information processing device 14.
  • shooting conditions such as white balance, frame rate, exposure time, and aperture value can be controlled independently by the information processing device 14 using two cameras.
  • the imaging device 12 acquires image data including the users 1a and 1b as a moving image or a still image under the shooting conditions specified by the information processing device 14.
  • the acquired image data is input to the information processing apparatus 14.
  • the information processing device 14 determines subsequent shooting conditions based on the image data acquired from the imaging device 12, and feeds back the shooting conditions to the imaging device 12.
  • the information processing device 14 further performs information processing according to the function designated by the user based on the image data acquired from the imaging device 12, and generates output image data.
  • the generated image data is output to the display device 16 or transmitted to another information processing device connected via the network 18.
  • the display device 16 may be a television having a display for outputting an image and a speaker for outputting sound.
  • FIG. 2 shows the configuration of the imaging device 12 and the information processing device 14 in detail.
  • the information processing apparatus 14 has an input information acquisition unit 22 that receives an instruction input from a user, a shooting condition control unit 24 that starts shooting under a shooting condition determined based on a user instruction or an analysis result of a shot image, and the like.
  • a shooting condition storage unit 26 that stores a shooting condition table in which functions and shooting conditions are associated, images acquired by the first camera 28 and the second camera 30 mounted on the imaging device 12 are acquired, and necessary image analysis is performed.
  • each element described as a functional block for performing various processes can be configured with a CPU, a memory, and other LSIs in terms of hardware, and a program for performing image processing in terms of software. It is realized by. Therefore, it is understood by those skilled in the art that these functional blocks can be realized in various forms by hardware only, software only, or a combination thereof, and is not limited to any one.
  • the input information acquisition unit 22 is an interface that receives an instruction input performed by the user to the information processing apparatus 14, and can be realized by a general input device such as a pointing device, a mouse, a keyboard, a touch panel, a game controller, and a button.
  • the input information acquisition unit 22 may be a device connected to the information processing device 14 main body by a wireless or wired connection.
  • the instruction input by the user includes an input for selecting any of the functions executable by the information processing apparatus 14 and an input for moving or selecting a cursor or a frame displayed on the display device 16.
  • Information acquired by the input information acquisition unit 22 is appropriately notified to the imaging condition control unit 24, the first image analysis unit 32, the second image analysis unit 34, and the information integration unit 36. Examples of functions that can be executed by the information processing apparatus 14 will be described later.
  • the shooting condition control unit 24 determines shooting conditions in the first camera 28 and the second camera 30 in accordance with an instruction input input by the user to the input information acquisition unit 22, and sends a shooting request signal to at least one of the two cameras. By transmitting, shooting under the determined condition is started.
  • the initial value of the shooting condition is obtained by referring to the shooting condition table stored in the shooting condition storage unit 26 based on the function designated by the user.
  • the shooting condition control unit 24 further determines shooting conditions based on the result of analyzing an image shot by at least one of the first camera 28 and the second camera 30, and shots at least one of the cameras under the conditions. To start.
  • the first image analysis unit 32 acquires an image captured by the first camera 28, and the second image analysis unit 34 acquires an image captured by the second camera 30, both of which perform image analysis according to the function selected by the user. I do. However, depending on the function selected by the user, image analysis may not be required. In this case, the image data may be sent to the information integration unit 36 or the like as it is. Therefore, the first image analysis unit 32 and the second image analysis unit 34 execute processing after acquiring information about the function selected by the user from the input information acquisition unit 22. The analysis results by the first image analysis unit 32 and the second image analysis unit 34 are transmitted to the imaging condition control unit 24, and are used for determining further imaging conditions or transmitted to the information integration unit 36.
  • the information integration unit 36 integrates the results analyzed by the first image analysis unit 32 and the second image analysis unit 34, or the image data transmitted from each. What integration is performed depends on the function selected by the user. Therefore, the information integration unit 36 acquires information about the function selected by the user from the input information acquisition unit 22 and executes the process.
  • the image data generation unit 38 generates image data for outputting the result integrated by the information integration unit 36 as an image, and outputs the image data to the display device 16 or the network 18.
  • FIG. 3 is a diagram for explaining an example of a shooting situation assumed in the present embodiment.
  • the first camera 28 and the second camera 30 photograph a situation where two users 1a and 1b are talking about the table.
  • the subject to be imaged is not limited to a person such as the users 1a and 1b, but may be an object such as a flip 2 held by the user.
  • the captured image is sequentially transmitted to another information processing system via the network 18 to be displayed on the display device of the other information processing system.
  • the functions of video chat and videophone can be realized. It should be noted that general techniques may be employed for establishing a network for exhibiting such functions and procedures for data transmission, and a description thereof will be omitted here.
  • the user 1a, 1b enjoys the game by displaying the image as the processing result on the display device 16 viewed by the user 1a, 1b that is the subject of photographing. It is also possible to use such a mode.
  • the information processing system 10 uses the two cameras to capture the same object under different conditions, thereby adding value to the captured image and using it as output information.
  • the first camera 28 captures the entire area 40 of the object at a wide angle
  • the second camera 30 captures only the face area 42 of the user 1b at a narrow angle.
  • the image captured by the second camera 30 has the same pixel size as the image captured by the first camera 28.
  • the image captured by the second camera 30 has a higher resolution than the image captured by the first camera 28.
  • it is possible to acquire images having different properties such as an image captured by the first camera 28 with a wide angle at a normal resolution and an image captured with the second camera 30 at a high resolution and a narrow angle.
  • images having different properties such as an image captured by the first camera 28 with a wide angle at a normal resolution and an image captured with the second camera 30 at a high resolution and a narrow angle.
  • the same subject and space are simultaneously photographed under different conditions, and various processes are made possible by integrating information held by each.
  • FIG. 4 shows an example of an image captured by the first camera 28 and the second camera 30 and an output image obtained by using the image in this embodiment.
  • the image captured by the first camera 28 is a wide-angle image 44 of the region 40 in FIG.
  • the image captured by the second camera 30 is a narrow-angle image 46 in the region 42 in FIG.
  • the resolution is three times that of the wide-angle image 44 when the pixel size is made equal. Note that the pixel size and the aspect ratio of the image do not have to be exactly the same as described above.
  • an allowable range is determined for the size of the image data in consideration of the processing capability, and the angle of view and the resolution within the range are determined. The relationship may be determined as appropriate.
  • the wide-angle image 44 is photographed, and a region that can be a target to be photographed at a narrow angle is detected by performing face recognition processing. Then, an image representing the target candidate area is displayed on the wide-angle image 44 on the display device 16, and selection by the user is accepted. At this time, the position of the selected target region in the wide-angle image 44 is stored. Then, the narrow-angle image 46 is synthesized with the corresponding region on the wide-angle image 44 and output. As a result, it is possible to display the composite image 48 having a high resolution only in the target region 50 selected by the user in the wide-angle image 44.
  • FIG. 5 is a flowchart showing a processing procedure of information processing in this mode.
  • the processing procedure of each unit is displayed by a combination of S (acronym for Step) meaning a step and a number.
  • the flowchart in FIG. 5 is started when the user inputs an instruction to start shooting and output of image data to the input information acquisition unit 22.
  • the user inputs an instruction to select a function to the input information acquisition unit 22 (S10).
  • the user selects a function using the above-described processing such as video chat from the menu screen displayed on the display device 16.
  • the information is notified to the imaging condition control unit 24, the first image analysis unit 32, the second image analysis unit 34, and the information integration unit 36.
  • a processing sequence corresponding to the selected function is set. This process may actually be a script file or program selection. The same applies to the following examples.
  • the shooting condition control unit 24 causes the first camera 28 to start shooting at a standard angle of view and resolution (S12).
  • the shooting conditions at this time can be determined by referring to the shooting condition table stored in the shooting condition storage unit 26 and acquiring the shooting conditions set for the selected function.
  • the image photographed here is an image such as the wide-angle image 44 shown in FIG.
  • the first camera 28 may automatically adjust the white balance and aperture value that are optimal for the actual shooting environment using existing techniques.
  • the image data taken by the first camera 28 is sent to the first image analysis unit 32.
  • the first image analysis unit 32 analyzes the data of the image and detects candidate areas that can be targets of a narrow-angle image such as a human face. Then, the image data generation unit 38 generates image data in which the region is enclosed by a rectangle and outputs the image data to the display device 16 (S14).
  • the image analysis performed by the first image analysis unit 32 uses an existing detection technique such as face detection by feature point extraction or detection of a predetermined object by pattern matching.
  • the target to be targeted may be appropriately determined according to the selected target, for example, by the user selecting from a list of detectable objects such as a face, a hand, or a specific marker.
  • face detection is performed, the image displayed in S14 is, for example, the image of the area 40 in FIG. 3 is displayed and a frame indicating the boundary of the area 42 is overlaid on both face areas of the users 1a and 1b. It is the image made to do.
  • a cursor pointing to one of the frames is displayed, and the user can move the cursor and input a decision via the input information acquisition unit 22.
  • the selection target may be represented by the color of the frame.
  • the user selects a target while viewing the display device 16 (S16).
  • the imaging condition control unit 24 causes the second camera 30 to capture the area of the frame surrounding the selected target, so that the wide-angle image and the narrow-angle image of the first camera 28 and the second camera 30 are captured. Simultaneous shooting is started (S18).
  • the imaging condition control unit 24 controls the electronic zoom and the electronic pan tilter of the second camera 30 so that the selected area is captured.
  • relative position information indicating which region of the wide-angle image the narrow-angle image is informed from the input information acquisition unit 22 to the information integration unit 36.
  • the wide-angle and narrow-angle image data captured by the two cameras are sequentially supplied to the information integration unit 36 via the first image analysis unit 32 and the second image analysis unit 34, respectively.
  • the information integration unit 36 transmits two pieces of image data together with the relative position information of both, and instructs the image data generation unit 38 to perform synthesis, so that the image data generation unit 38 generates and outputs a composite image (S20).
  • S20 composite image
  • FIG. 6 shows an example of a captured image and an output image when the flip 2 that the user has is targeted.
  • a marker 53 having a predetermined color and shape is attached to the flip 2 in advance at two corners diagonally out of the four corners. Accordingly, the first image analysis unit 32 can detect a marker by pattern matching or the like in S14 of FIG. 5, thereby detecting a flip region as a target candidate.
  • the image captured by the first camera 28 is the wide-angle image 52
  • the image captured by the second camera 30 is the narrow-angle image 54 of the flip area.
  • the narrow-angle image 54 is a high-resolution image, characters and the like written on the flip are clearly displayed as compared with the wide-angle image 52.
  • FIG. 7 shows an example of a captured image and an output image when a narrow-angle image is captured by both the first camera 28 and the second camera 30.
  • two target selections are received from the user in S16 of FIG.
  • the first camera 28 captures a narrow-angle image 60 of one target
  • the second camera 30 captures a narrow-angle image 62 of the other target.
  • the face area of the user 1a and the face area of the user 1b are selected as targets.
  • the wide-angle image in the composite image 64 is any frame of the image captured by the first camera 28 when the target is selected in S16 of FIG. Display as a still image.
  • the synthesized image 64 only the target areas 66 and 68 have high resolution and motion, and the other areas can display still image images. In this way, the number of targets can be increased by the number of cameras in a situation where the area to be viewed in detail is limited and the movement of other areas is not so important.
  • narrow-angle images 60 and 62 may be enlarged and displayed side by side in accordance with the screen size of the display device 16 as a composite image. Further, such an image may be switched between the image and the composite image 64 in FIG.
  • the first camera 28 captures a wide-angle image
  • the first image analysis unit 32 tracks the target with the existing technology
  • the imaging condition control unit 24 responds accordingly with the electronic punch filter. By adjusting the field of view of each camera, the target may always be included in the narrow-angle image. This is the same in any case described above.
  • the frame rate at the time of shooting is made different between the two cameras. Specifically, one camera captures the entire image at a standard frame rate, and the other camera captures a narrow-angle image of the target at a high frame rate. An image taken at a high frame rate is used for tracking a target or a part included in the target. As a result, efficient and highly accurate tracking can be performed for a region of interest without increasing the data size.
  • FIG. 8 shows an example of an image captured by the first camera 28 and the second camera 30 and an output image obtained using the image in this aspect.
  • the image captured by the first camera 28 is a wide-angle image 70 of the region 40 in FIG.
  • the image captured by the second camera 30 is a narrow-angle high frame rate image 72 of the target area.
  • n 1 ⁇ n 2 the second camera 30 captures n 2 frames of the narrow-angle high frame rate image 72 while the first camera 28 captures n 1 frames of the wide-angle image 70.
  • the second image analysis unit 34 performs tracking of the target object with respect to the narrow-angle high frame rate image 72 by an existing method.
  • a change in facial expression is recognized by tracking a facial part such as an eye or a mouth.
  • the gesture is recognized by tracking its outline.
  • the output image 74 is an image obtained by performing processing on the wide-angle image 70 according to the tracking result.
  • the target is narrowed down by the wide-angle image, and only the area is photographed at a high frame rate for tracking, so that an increase in the image data size can be suppressed.
  • the overall movement information can be acquired in the wide-angle image, so that the target position can be narrowed down efficiently.
  • an image display with less noise suitable for display can be realized.
  • FIG. 9 is a flowchart showing a processing procedure of information processing in this mode.
  • the flowchart in FIG. 9 is started when the user inputs an instruction to start shooting and output of image data to the input information acquisition unit 22.
  • the user inputs an instruction to select a function to the input information acquisition unit 22 (S22), and the shooting condition control unit 24 follows the shooting conditions set for the selected function.
  • the first camera 28 starts photographing at a standard angle of view and frame rate (S24).
  • Data of an image captured by the first camera 28 is acquired by the first image analysis unit 32 and subjected to image analysis, whereby a predetermined object, such as a human face, hand, or head, is detected as a target.
  • a predetermined object such as a human face, hand, or head
  • the detected target candidates may be displayed by being surrounded by a frame.
  • the target detection method may be an existing detection technique such as pattern matching, as described with reference to FIG.
  • a method may be used in which a face is first detected by face recognition processing, the position of the hand or head contour is estimated from the relative position, and then the target is determined by pattern matching.
  • the information of the detected target is notified to the imaging condition control unit 24. Then, the imaging condition control unit 24 causes the second camera 30 to capture the selected target area at a high frame rate, so that the wide-angle image and the narrow-angle high frame rate image by the first camera 28 and the second camera 30 are simultaneously displayed. Shooting is started (S28). At this time, the information integration unit 36 is notified of the position information of the target to be tracked.
  • the second image analysis unit 34 performs target tracking processing on the narrow-angle high frame rate image captured by the second camera (S30).
  • the actual shape of the target obtained when the target is detected in S26 may be held as a template image, and the target position may be tracked by matching it with a high frame rate image.
  • a table in which a target position change pattern and a gesture are associated with each other is stored in a memory (not shown) or the like, and gesture determination is performed by referring to the table.
  • Such a gesture recognition method may be one that has been put into practical use by a game or the like.
  • the “gesture” may be any form change that can be given meaning, such as a change in facial expression, in addition to an action generally performed by a person as a gesture.
  • the gesture recognition result and the data of the wide-angle image captured by the first camera 28 are sequentially supplied to the information integration unit 36.
  • the information integration unit 36 sends image data to the image data generation unit 38 together with the contents of the animation and image processing processing prepared according to the gesture and information on the position to be processed, thereby instructing the image processing.
  • the generation unit 38 generates and outputs a processed image (S34).
  • the processing performed by gesture recognition is not particularly limited.
  • the user's gesture in the wide-angle image is synthesized in the image representing the virtual world, and the user's gesture causes some change in the virtual world. It may be a complex expression. That is, an image output by tracking or gesture recognition may be generated in various combinations with existing image processing techniques depending on the content of the game and the purpose of information processing.
  • the wide-angle image and the narrow-angle high frame rate image it is not necessary to always shoot the wide-angle image and the narrow-angle high frame rate image at the same time depending on the contents of the processing, and either of the two cameras may be turned on / off according to the period during which image acquisition is necessary.
  • a wide-angle image is always taken to display an image obtained by combining the user's figure and the landscape of the baseball field, and the user's arm movement is changed only during the period when the batter user swings.
  • a mode is conceivable in which shooting is performed at a narrow angle and a high frame rate, and the hit ball is animated according to the swing angle and speed.
  • the wide-angle image is not used as the output image and only the result of gesture recognition is used as the output information
  • the wide-angle image is captured only when the target is lost in the narrow-angle high frame rate image, and the target is detected over a wide range. It may be possible to search.
  • the resource consumption can be adjusted according to the processing content.
  • the tracking result is fed back to a wide-angle image.
  • Information can be supplemented to each other, such as following the overall movement or performing high-precision tracking within a limited range from the overall movement, and can be used in a wide range of applications.
  • the narrow-angle high frame images of the two targets may be captured by the two cameras. .
  • the gestures of the two targets can be recognized independently, a battle game or the like in the virtual space can be expressed.
  • the narrow-angle high frame rate image may be taken with the same pixel size as that of the wide-angle image to have a high resolution as in the aspect (1), or may have the same resolution as the wide-angle image.
  • the resolution may be determined in advance according to the required tracking accuracy, the processing capability of the information processing apparatus, the bus bandwidth at the time of data transfer, and the like.
  • FIG. 10 is a diagram for explaining an image scanning time in this aspect. The figure schematically shows the time displacement (solid line) of the scanned scan line in the camera sensor area indicated by the rectangle 86 when the horizontal axis is the time axis.
  • FIG. 11 shows an example of each captured image and an output image obtained using the captured image when a first camera 28 captures a wide-angle image and a second camera 30 captures a narrow-angle low frame rate image.
  • the image captured by the first camera 28 is a wide-angle image 80 captured at a standard frame rate, as described above.
  • the image captured by the second camera 30 is a narrow-angle low frame rate image 82 of the target area.
  • n 1 > n 2 the second camera 30 captures n 2 frames of the narrow-angle low frame rate image 82 while the first camera 28 captures n 1 frames of the wide-angle image 80.
  • the hand of the person to be photographed is detected as a target and a narrow-angle low frame rate image of that area is photographed.
  • the person to be imaged shakes his / her hand, the left and right movements of the hand appear in the narrow-angle low frame rate image 82 as shown in the figure.
  • the shape of the hand color can be acquired as if the left and right reciprocating motion is extended in the vertical direction.
  • the second image analysis unit 34 acquires the narrow-angle low frame rate image 82, and obtains the change in the hand speed from the horizontal displacement of the hand and the scanning speed in the vertical direction. Based on this information, it is determined whether or not a gesture has been performed by referring to a table in which an exercise pattern prepared in advance is associated with a gesture. Then, similarly to the above-described example, the output image 84 is generated by applying a predetermined process corresponding to the gesture to the wide-angle image 80. In the example shown in the figure, a balloon is added that says that the subject is “goodbye”.
  • the RGB value of the light emitting part of the marker is saturated, and the white color and the outline are blurred regardless of the color of the light emitter. It may be an image. Further, if the marker moves at a relatively high speed, the image may be blurred.
  • one camera captures the entire image with the standard exposure time and aperture value, and the other camera captures either the exposure time and / or aperture value with the optimum value for the marker. . Accordingly, it is possible to accurately detect the marker in any photographing environment while ensuring a balanced image that can be appreciated as an image to be finally displayed.
  • FIG. 12 shows an example of an image captured by the first camera 28 and the second camera 30 and an output image obtained by using the image in this aspect.
  • the image captured by the first camera 28 is a general image 90 obtained by capturing the user holding the marker 92 that emits light from the tip sphere with the optimal exposure time and aperture value for the entire image.
  • the light emitter of the marker 92 may appear white regardless of the actual color.
  • the shape of the marker is not limited to that shown in the figure, and any color, shape, size, luminance, etc. are known and can be detected. Moreover, it may not be a light-emitting body.
  • the image photographed by the second camera 30 is a photographing condition adjustment image 94 photographed with an optimal exposure time and aperture value for the light emitter of the marker 92.
  • This image is, for example, an image with a short exposure depth (small aperture value) in which the exposure time is short and the focus is on the marker 92 compared to the general image 90.
  • the exposure time is adjusted according to the shutter speed of the electronic shutter. The exposure time is shortened by increasing the shutter speed.
  • the shooting condition adjustment image 94 is dark overall or other objects are blurred, but the light emitter portion of the marker 92 is actually close in color, shape, size, and luminance. It becomes an image.
  • the photographing condition adjustment image 94 may be a narrow-angle image obtained by photographing only the marker portion.
  • the position detection and tracking of the marker 92 may be performed in combination with the modes (1) and (2) in accordance with the accuracy required for marker detection and the processing capability of the information processing apparatus.
  • the second image analysis unit 34 acquires the position of the marker using the shooting condition adjustment image 94 and recognizes the movement of the user. Then, an output image 98 is generated by applying processing corresponding to the movement to the general image 90. In the example of FIG. 12, it is recognized that the user has swung the marker 92 down, and accordingly, a display is performed in which the length of the sword 100 that the user has in the virtual world in the output image is extended.
  • FIG. 13 is a flowchart showing a processing procedure of information processing in this mode.
  • the flowchart in FIG. 13 is started when the user inputs an instruction to start shooting and output of image data to the input information acquisition unit 22.
  • the user inputs an instruction to select a function to the input information acquisition unit 22 (S40).
  • the imaging condition control unit 24 performs imaging with the optimal exposure time and aperture value for the entire field of view for the first camera 28 and with the optimal exposure time and aperture value for the marker illuminator for the second camera 30.
  • Start S42).
  • the shooting conditions of the first camera 28 may be set according to the environment of the place by a normal calibration method.
  • the shooting conditions of the second camera 30 may be selected based on the actual marker characteristics by describing the optimum values acquired for each marker characteristic such as the color and brightness of the marker in the shooting condition table. Alternatively, the optimum condition may be obtained by performing calibration at the start of processing.
  • the image of the second camera 30 is a narrow-angle image
  • the field of view of the narrow-angle image is determined by detecting the approximate position of the marker from the wide-angle image, as in S24 and S26 of FIG. Also good.
  • the second image analysis unit 34 performs marker detection processing on the photographing condition adjustment image photographed by the second camera (S44), and recognizes the movement of the user by the movement (S46).
  • the motion recognition result and the data of the wide-angle image captured by the first camera 28 are sequentially supplied to the information integration unit 36.
  • the information integration unit 36 transmits image data to the image data generation unit 38 together with information on the animation and image processing processing prepared according to the motion and information on the position to be processed, thereby instructing image processing.
  • the data generation unit 38 generates and outputs a processed image (S48).
  • the process performed by motion recognition is not particularly limited, and may be variously combined with an existing image processing technique depending on the content of the game and the purpose of information processing.
  • two narrow-angle images in which the shooting conditions are adjusted for each of the two markers may be shot with two cameras.
  • the same space is photographed using two cameras under different conditions.
  • the information specialized for each can be acquired in a complementary manner, and various functions can be exhibited depending on the combination.
  • an image with a large resolution or frame rate is made into a narrow-angle image to prevent an increase in data size, and there is no problem in data transfer inside the information processing apparatus or image data transmission over a network.
  • Embodiment 2 In the first embodiment, a pair of cameras having the same structure is used, and the desired functions are realized by interpolating information held by each other by changing the shooting conditions. In this embodiment, a pair of cameras having at least a part of the structure is used.
  • the configuration of the information processing system to which the present embodiment can be applied and the configurations of the imaging device 12 and the information processing device 14 are the same as those described in the first embodiment, but the hardware of the first camera 28 and the second camera 30. At least a part of the configuration is different.
  • the configuration to be varied here may be a stationary configuration in each camera such as a sensor size, or a variable region of an adjustable imaging condition value such as a focal length. In the latter case, a part of the variable region may overlap.
  • the difference in the configuration of the camera will be described for each item, but two or more items may be simultaneously changed.
  • the first camera 28 is a camera having a standard or lower resolution
  • the second camera 30 is a camera having a higher resolution than the first camera 28.
  • a mode similar to “(1) mode of varying the size and resolution of the angle of view” of the first embodiment is realized.
  • the resolution of the camera is different from the original, it is not always necessary to adjust the angle of view at the same time.
  • the entire image is captured by the first camera 28, and only the target area is captured by the second camera 30. Can be output.
  • the processing procedure is the same as that shown in FIG.
  • the degree of freedom in the relative relationship between the angles of view increases as compared with the first embodiment. Therefore, it is necessary to limit the low-resolution first camera 28 to the wide angle and the high-resolution second camera 30 to the narrow angle. Disappears. Further, depending on the relative value of the original resolution, the resolution of the image to be synthesized can be made more sharp.
  • the aspect described with reference to FIGS. 6 and 7 can be realized in the same manner. However, as shown in FIG.
  • the first camera 28 having a low resolution captures the narrow-angle image 60 while the second Processing such as cutting out a corresponding area from a wide range of images taken by the camera 28 is necessary.
  • the first camera 28 is a camera having a standard or lower frame rate
  • the second camera 30 is a camera having a higher frame rate than the first camera 28.
  • Such a camera realizes an aspect similar to “(2) aspect in which the size of the angle of view and the frame rate are different” in the first embodiment. Also in this case, it is not always necessary to adjust the angle of view.
  • the first camera 28 captures the entire image
  • the second camera 30 captures only the target area at a high frame rate. Then, the object is accurately tracked using the image from the second camera 30, and the entire image from the first camera 28 is processed according to the result.
  • the processing procedure is the same as that shown in FIG.
  • the tracking process can be efficiently performed by detecting the target in the entire image by the first camera 28 and photographing only the target area with the second camera 30 at a high frame rate.
  • tracking processing may be performed after cutting out only the target area from the image captured by the second camera 30.
  • a camera having a high frame rate may have a lower resolution and a higher sensitivity than a camera having a low frame rate.
  • face recognition processing is performed on an image captured by a low frame rate camera to detect a face, and the position of a hand or a marker to be grasped is estimated based on the relative position from the detected face, and the target is used as a target.
  • the image may be taken with a high frame rate camera.
  • An object with a small amount of movement, such as a face can easily obtain a clear image by lowering the frame rate below the standard value, and the accuracy of face recognition can be increased. Therefore, by capturing the entire image at a low frame rate, it is possible to accurately detect the face and thus the target position.
  • the first camera 28 is a camera having a standard shutter speed
  • the second camera 30 is a camera having a shutter speed higher than that of the first camera 28.
  • Such a camera realizes a mode similar to “(3) Mode of varying exposure time / aperture value” in the first embodiment.
  • a general image is taken by the first camera 28, and the same area is taken by the second camera 30 with a high-speed shutter with a short exposure time.
  • the marker is accurately tracked using the image from the second camera 30, and the general image from the first camera 28 is processed and output according to the result.
  • the processing procedure is the same as that shown in FIG.
  • the first camera 28 is a camera having a standard focal length
  • the second camera 30 is a camera having a shorter focal length than the first camera 28.
  • Such a camera realizes a mode similar to “(3) Mode of varying exposure time / aperture value” in the first embodiment.
  • a general image is taken with the first camera 28, and the same region is taken with a short focal length by the second camera 30.
  • the marker is accurately tracked using the image from the second camera 30, and the general image from the first camera 28 is processed and output according to the result.
  • the processing procedure is the same as that shown in FIG.
  • the first camera 28 is a camera that captures general color images
  • the second camera 30 is a camera that captures monochrome images.
  • Monochrome images can be taken with higher sensitivity than color images. Therefore, a general color image such as a dark room is relatively easy to capture the contour even in an environment where the subject is easily blurred and is advantageous for tracking processing. Therefore, for example, as shown in FIG. 12, a color image is taken with the first camera 28, and a monochrome image is taken with the second camera 30.
  • the marker is accurately tracked using the monochrome image, and the color image by the first camera 28 is processed and output according to the result.
  • the processing procedure in this case is the same as that shown in FIG.
  • the embodiment shown in FIG. 8 can also be realized by using not only the marker but also a monochrome image for tracking the object. Further, the same effect can be obtained in the same manner by using a camera for capturing a color image and an infrared camera instead of the camera for capturing a color image and a monochrome image.
  • the same space is photographed by two cameras having different structures at least in part.
  • information specialized for each can be acquired in a complementary manner, and various functions can be exhibited depending on the combination.
  • by making the structure different from the original it is possible to make a large difference in the images taken by each camera, and easy matching according to the nature of the tracking object.
  • the same processing as that of a conventional stereo camera may be performed using two cameras having different structures at least partially as described in the second embodiment.
  • a frame having the same timing as that of the low frame rate image is extracted from the high frame rate image, and based on the two images at each time, the principle of triangulation is used.
  • the position in the depth direction for example, the position of the part closest to the camera among the persons in front of the camera is derived.
  • an output image that has been processed based on the absolute position and relative position of the two parts of the person can be generated.
  • the same processing as that of the stereo camera can be performed.
  • the information that can be output as a result increases synergistically.
  • only one of the two cameras may be provided with any one or a combination of a mechanism capable of electronically adjusting the angle of view, such as a zoom mechanism and an electronic pan tilter.
  • a mechanism capable of electronically adjusting the angle of view such as a zoom mechanism and an electronic pan tilter.
  • 10 information processing system 12 imaging device, 14 information processing device, 16 display device, 18 network, 22 input information acquisition unit, 24 shooting condition control unit, 26 shooting condition storage unit, 28 first camera, 30 second camera, 32 1st image analysis part, 34 2nd image analysis part, 36 Information integration part, 38 Image data generation part.
  • the present invention can be used for information processing apparatuses such as computers, image processing apparatuses, game machines, and photographing apparatuses.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Electromagnetism (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Studio Devices (AREA)

Abstract

 情報処理装置14の入力情報取得部22は、ユーザからの指示入力を受け付ける。撮影条件制御部24は、ユーザの指示または撮影された画像の解析結果に基づき決定した撮影条件で撮影を開始させる。撮影条件記憶部26は、目的とする機能と撮影条件とを対応づけた撮影条件テーブルを記憶する。第1画像解析部32および第2画像解析部34は、撮像装置12に搭載された第1カメラ28、第2カメラ30が撮影した画像をそれぞれ取得して必要な画像解析を行う。情報統合部36は、一対のカメラで撮影された画像や解析結果を統合する。画像データ生成部38は、処理の結果として出力する画像のデータを生成する。

Description

情報処理システム、情報処理装置および情報処理方法
 本発明は、撮影した画像に基づき逐次出力画像を表示する情報処理システム、当該システムに含まれる情報処理装置、および当該システムで用いる情報処理方法に関する。
 近年、パーソナルコンピュータやゲーム機などにカメラを搭載し、ユーザの姿を撮像して様々な形で利用することが一般的に行われるようになってきた。例えばテレビ電話、ビデオチャットなど、ユーザの画像を、ネットワークを介してそのまま相手に伝送するものや、画像解析によってユーザの動きを認識してゲームや情報処理の入力情報とするものなどが実用化されている(例えば特許文献1参照)。
WO 2007/050885 A2公報
 撮影画像を利用して様々な処理を応答性よく高精度に実現するためには、その処理内容に応じた撮影条件が求められる。しかしながら製造コスト、画像の伝送帯域、撮影から出力までの応答性などの点から、単にカメラの性能や画質を上げることのみによって情報処理装置の機能を充実化させるのは困難な状況にある。
 本発明はこのような課題に鑑みてなされたものであり、その目的は、安価かつ効率的に、撮影画像を利用した情報処理装置の機能を充実化させることのできる技術を提供することにある。
 本発明のある態様は情報処理システムに関する。この情報処理システムは、被写体を撮影し、その画像データを逐次取得して出力画像データを生成する情報処理システムであって、同じ被写体に関する個別の情報を得るためにそれぞれ設定された異なる撮影条件で対象物を撮影する、同一の構造を有する第1のカメラおよび第2のカメラからなる一対のカメラと、一対のカメラのそれぞれが撮影して得られた2系統の画像データに含まれる個別の情報を統合して1系統の出力画像データを生成する情報統合部と、を備えたことを特徴とする。
 ここで「被写体」は、撮影対象として明確に位置づけられた人などに限らず、カメラの視野に入る部屋、人、物、動物などを含む。したがって「被写体に関する個別の情報」とは、同一の個体に関する個別の情報に限らず、被写体に含まれる複数の個体のいずれかに関する情報でよく、別の個体に関する個別の情報でもよい。
 本発明の別の態様は情報処理装置に関する。この情報処理装置は、被写体を撮影した画像データを逐次取得して出力画像データを生成する情報処理装置であって、接続された同一の構造を有する一対のカメラを、同じ被写体に関する個別の情報を得るためにそれぞれ設定した異なる撮影条件にて撮影を行うように制御する撮影条件制御部と、一対のカメラのそれぞれが撮影して得られた2系統の画像データを取得し、各画像データに含まれる個別の情報を統合して1系統の出力画像データを生成する情報統合部と、を備えたことを特徴とする。
 本発明のさらに別の態様は情報処理方法に関する。この情報処理方法は、被写体を撮影した画像データを逐次取得して、それに応じた出力画像データを出力する情報処理方法であって、同一の構造を有する一対のカメラによって、同じ被写体に関する個別の情報を得るためにそれぞれ設定した異なる撮影条件にて撮影を行うステップと、一対のカメラのそれぞれが撮影して得られた2系統の画像データを取得し、各画像データに含まれる個別の情報を統合して1系統の出力画像データを生成するステップと、出力画像データを表示装置に出力するステップと、を含むことを特徴とする。
 なお、以上の構成要素の任意の組合せ、本発明の表現を方法、装置、システム、コンピュータプログラムなどの間で変換したものもまた、本発明の態様として有効である。
 本発明によると、撮影画像を利用した様々な機能を安価に実現できる。
本実施の形態を適用できる情報処理システムの構成例を示す図である。 本実施の形態の撮像装置および情報処理装置の構成を詳細に示す図である。 本実施の形態で想定する撮影状況例を説明するための図である。 本実施の形態の、画角の大きさと解像度を異ならせる態様において、撮像装置が撮影した画像と、それを利用して得られる出力画像の例を示す図である。 本実施の形態の、画角の大きさと解像度を異ならせる態様における情報処理の処理手順を示すフローチャートである。 本実施の形態の、画角の大きさと解像度を異ならせる態様の変形例を示す図である。 本実施の形態の、画角の大きさと解像度を異ならせる態様の変形例を示す図である。 本実施の形態の、画角の大きさとフレームレートを異ならせる態様において、撮像装置が撮影した画像と、それを利用して得られる出力画像の例を示す図である。 本実施の形態の、画角の大きさとフレームレートを異ならせる態様における情報処理の処理手順を示すフローチャートである。 本実施の形態の、画角の大きさとフレームレートを異ならせる態様における、画像のスキャン時間を説明するための図である。 本実施の形態の、画角の大きさとフレームレートを異ならせる態様において、撮像装置が撮影した画像と、それを利用して得られる出力画像の例を示す図である。 本実施の形態の、露光時間/絞り値を異ならせる態様において、撮像装置が撮影した画像と、それを利用して得られる出力画像の例を示す図である。 本実施の形態の、露光時間/絞り値を異ならせる態様における情報処理の処理手順を示すフローチャートである。
実施形態1
 図1は本実施の形態を適用できる情報処理システムの構成例を示す。情報処理システム10は、ユーザ1a、1bなどの対象物を撮影する2つのカメラを搭載した撮像装置12、撮影した画像に基づき、ユーザの要求に応じた情報処理を行う情報処理装置14、情報処理装置14が処理した結果得られた画像データを出力する表示装置16を含む。また情報処理装置14はインターネットなどのネットワーク18と接続可能とする。
 情報処理装置14と、撮像装置12、表示装置16、ネットワーク18とは、有線ケーブルで接続されてよく、また無線LAN(Local Area Network)などにより無線接続されてもよい。撮像装置12、情報処理装置14、表示装置16のうちいずれか2つ、または全てが組み合わされて一体的に装備されていてもよい。また、撮像装置12は必ずしも表示装置16の上に設置されていなくてもよい。さらにユーザ1a、1bは人でなくてもよく、その数も限定されない。
 撮像装置12は、同じ構造を有する一対のカメラで同一空間に存在する対象物を撮影する。撮像装置12として、対象物の奥行き情報を取得するために実用化されているステレオカメラなどを利用してもよい。すなわち並べて設置することによりほぼ同一の視野を得ることのできる、それぞれにレンズを有するカメラの対であってよい。一方、カメラの間隔が既知であり視差を補正することにより、少なくとも視野の一部の対応関係が導出できれば、2つのカメラの間隔や相対位置は限定されない。またレンズを1つとし、当該レンズが捉えた画像を撮像装置12内部で分光することにより実質上、2つのカメラを実現してもよい。
 2つのカメラの少なくとも一方は電子ズーム、電子パンチルタ、もしくは相当の画像切り出し機能を備え、情報処理装置14の制御によって視野を独立に変化させることができるようにする。また撮影条件、例えばホワイトバランス、フレームレート、露光時間、絞り値は、情報処理装置14によって2つのカメラでそれぞれ独立に制御可能とする。
 撮像装置12は情報処理装置14が指定した撮影条件で、ユーザ1a、1bなどを含む画像のデータを動画または静止画として取得する。取得した画像データは情報処理装置14に入力される。情報処理装置14は、撮像装置12から取得した画像データに基づきその後の撮影条件を決定し、撮像装置12へ当該撮影条件をフィードバックする。情報処理装置14はさらに、撮像装置12から取得した画像データに基づき、ユーザが指定した機能に応じた情報処理を行い、出力する画像データを生成する。
 生成した画像データは表示装置16に出力するか、ネットワーク18を介して接続した別の情報処理装置へ送信する。表示装置16は画像を出力するディスプレイおよび音声を出力するスピーカを有するテレビであってよい。
 図2は撮像装置12および情報処理装置14の構成を詳細に示している。情報処理装置14は、ユーザからの指示入力を受け付ける入力情報取得部22、ユーザの指示または撮影された画像の解析結果に基づき決定した撮影条件で撮影を開始させる撮影条件制御部24、目的とする機能と撮影条件とを対応づけた撮影条件テーブルを記憶する撮影条件記憶部26、撮像装置12に搭載された第1カメラ28、第2カメラ30が撮影した画像をそれぞれ取得して必要な画像解析を行う第1画像解析部32および第2画像解析部34、一対のカメラで撮影された画像や解析結果を統合する情報統合部36、および、処理の結果として出力する画像のデータを生成する画像データ生成部38を含む。
 図2において、様々な処理を行う機能ブロックとして記載される各要素は、ハードウェア的には、CPU、メモリ、その他のLSIで構成することができ、ソフトウェア的には、画像処理を行うプログラムなどによって実現される。したがって、これらの機能ブロックがハードウェアのみ、ソフトウェアのみ、またはそれらの組合せによっていろいろな形で実現できることは当業者には理解されるところであり、いずれかに限定されるものではない。
 入力情報取得部22は、ユーザが情報処理装置14に対し行う指示入力を受け付けるインターフェースであり、ポインティングデバイス、マウス、キーボード、タッチパネル、ゲームコントローラ、ボタンなど一般的な入力装置で実現できる。入力情報取得部22は情報処理装置14本体と別の筐体を有する、無線又は有線で接続した装置としてもよい。ユーザによる指示入力は、情報処理装置14が実行可能な機能のいずれかを選択する入力、表示装置16に表示されたカーソルや枠を移動させたり選択したりする入力を含む。入力情報取得部22が取得した情報は、撮影条件制御部24、第1画像解析部32、第2画像解析部34、情報統合部36に適宜通知される。情報処理装置14が実行可能な機能の例については後述する。
 撮影条件制御部24は、ユーザが入力情報取得部22に入力した指示入力に従い第1カメラ28および第2カメラ30における撮影条件を決定し、当該2台のカメラの少なくともいずれかに撮影要求信号を送信することにより、決定した条件での撮影を開始させる。撮影条件の初期値は、ユーザが指示する機能に基づき、撮影条件記憶部26に格納された撮影条件テーブルを参照することによって得られる。また撮影条件制御部24は、第1カメラ28、第2カメラ30の少なくともいずれかが撮影した画像を解析した結果に基づき、さらに撮影条件を決定し、少なくともいずれかのカメラに当該条件にて撮影を開始させる。
 第1画像解析部32は第1カメラ28が撮影した画像を取得し、第2画像解析部34は第2カメラ30が撮影した画像を取得し、いずれもユーザが選択した機能に応じた画像解析を行う。ただしユーザが選択した機能によっては画像解析を必要としない場合もあり、その場合は画像データをそのまま情報統合部36などへ送出してよい。そのため第1画像解析部32および第2画像解析部34は、入力情報取得部22から、ユーザが選択した機能についての情報を取得したうえ処理を実行する。第1画像解析部32や第2画像解析部34による解析結果は撮影条件制御部24へ送信され、さらなる撮影条件の決定に利用されるか、情報統合部36へ送信される。
 情報統合部36は、第1画像解析部32および第2画像解析部34が解析した結果、またはそれぞれから送信された画像データを統合する。どのような統合を行うかはユーザが選択した機能によって異なる。そのため情報統合部36は、入力情報取得部22から、ユーザが選択した機能についての情報を取得したうえ処理を実行する。画像データ生成部38は、情報統合部36が統合した結果を画像として出力するための画像データを生成し、表示装置16またはネットワーク18へ出力する。
 次に情報処理システム10が実現する機能の具体例について説明する。図3は本実施の形態で想定する撮影状況例を説明するための図である。同図の例では二人のユーザ1a、1bがテーブルについて会話などしている状況を第1カメラ28、第2カメラ30で撮影している。撮影対象はユーザ1a、1bなど人に限らず、ユーザが保持するフリップ2などの物でもよい。撮影した画像は例えば、逐次、ネットワーク18を介して別の情報処理システムに送信することにより、当該別の情報処理システムの表示装置に表示されるようにする。
 これにより、遠隔地でユーザ1a、1bの会話の様子を見ることができる。また2つの情報処理システム10相互に同様の処理を実行することにより、ビデオチャットやテレビ電話の機能を実現することができる。なおこのような機能を発揮させるためのネットワークの確立やデータ伝送のための手続きなどについては一般的な技術を採用してよく、ここでは説明を省略する。またネットワークを介して画像データを送信するばかりでなく、撮影対象であるユーザ1a、1bが見ている表示装置16に、処理結果である画像を表示することにより、ユーザ1a、1bがゲームを楽しむ、といった態様でもよい。
 このような状況において本実施の形態における情報処理システム10は、2台のカメラで同一の対象物を、異なる条件で撮影することにより、撮影画像に付加価値をつけて出力情報とする。図3の例では第1カメラ28は対象物全体の領域40を広角で撮影し、第2カメラ30はユーザ1bの顔の領域42のみを狭角で撮影している。このとき第2カメラ30が撮影する画像は第1カメラ28が撮影する画像と同じ画素サイズとする。
 結果として第2カメラ30で撮影した画像は第1カメラ28で撮影した画像より高解像度となる。これにより第1カメラ28で撮影した画像は通常の解像度で広角、第2カメラ30で撮影した画像は高解像度で狭角、と互いに異なる性質の画像を取得できる。本実施の形態ではこのように、同一の被写体、空間を、条件を異ならせて同時に撮影し、それぞれが有する情報を統合することによって様々な処理を可能にする。
 以下、情報処理システム10が実現する機能の例について具体的に説明する。なおこれらの機能は例示であり、情報処理システム10はこれらの機能のうちのいずれか1つまたはいずれか2つ以上の組み合わせを実現可能とすればよく、全ての機能を備える趣旨ではない。
(1)画角の大きさと解像度を異ならせる態様
 本態様は図3で説明したように、2つのカメラが撮影する画角を異ならせる。このとき上述のように、2つのカメラが同じ画素サイズで撮影すると、画角が小さいほど解像度が上がる。そしてこれらの画像を合成して出力することにより、人の顔など注目領域のみを詳細に表した画像を表示できる。
 図4は本態様において、第1カメラ28および第2カメラ30が撮影した画像と、それを利用して得られる出力画像の例を示している。同図において第1カメラ28が撮影する画像は図3における領域40の広角画像44である。第2カメラ30が撮影する画像は図3における領域42の狭角画像46である。
 狭角画像46の領域面積が広角画像44の領域面積の縦横1/3である場合、画素サイズを等しくすると、解像度は狭角画像46が広角画像44の縦横3倍となる。なおこのように画素サイズや画像の縦横比率を厳密に同一とする必要はなく、まず処理能力などを考慮して画像データのサイズに許容範囲を定めておき、その範囲内で画角と解像度との関係を適宜決定すればよい。
 狭角画像46の画角を決定するためには、まず広角画像44を撮影し、顔認識処理を行うことにより狭角で撮影するターゲットとなり得る領域を検出する。そして当該広角画像44上にターゲット候補の領域を表した画像を表示装置16に表示し、ユーザによる選択を受け付ける。このとき広角画像44中、選択されたターゲットの領域の位置を記憶しておく。そして広角画像44上の対応する領域に狭角画像46を合成して出力する。その結果、広角画像44のうちユーザが選択したターゲットの領域50のみ解像度が高い合成画像48を表示できる。
 図5はこの態様における情報処理の処理手順を示すフローチャートである。図5および後述する図9、図13のフローチャートにおいては、各部の処理手順を、ステップを意味するS(Stepの頭文字)と数字との組み合わせによって表示する。図5のフローチャートは、ユーザが、撮影および画像データの出力を開始する指示入力を入力情報取得部22に行ったときに開始される。
 まずユーザは入力情報取得部22に対し、機能を選択する指示入力を行う(S10)。例えばユーザは、表示装置16に表示されたメニュー画面のうち、ビデオチャットなど上述の処理を利用した機能を選択する。すると当該情報は撮影条件制御部24、第1画像解析部32、第2画像解析部34、情報統合部36に通知される。第1画像解析部32、第2画像解析部34、情報統合部36が当該通知を受けることにより、選択された機能に応じた処理のシーケンスが設定される。この処理は実際にはスクリプトファイルやプログラムの選択であってよい。以後の例でも同様である。
 そして撮影条件制御部24は、標準的な画角および解像度で、第1カメラ28に撮影を開始させる(S12)。このときの撮影条件は、撮影条件記憶部26が記憶する撮影条件テーブルを参照し、選択された機能に対して設定されている撮影条件を取得することによって決定できる。ここで撮影する画像は、図4に示す広角画像44のような画像である。撮影開始にあたり、第1カメラ28は、実際の撮影環境に対し最適となるホワイトバランスや絞り値を、既存の技術を用いて自動調整してもよい。
 第1カメラ28が撮影した画像のデータは、第1画像解析部32に送られる。第1画像解析部32は、当該画像のデータ解析して、人の顔など狭角画像のターゲットとなり得る候補の領域を検出する。そして画像データ生成部38が、当該領域を矩形で囲った画像データを生成して表示装置16に出力する(S14)。
 第1画像解析部32が行う画像解析は、特徴点抽出による顔検出やパターンマッチングによる所定の対象物の検出など既存の検出技術を利用する。ターゲットとすべき対象は顔、手、特定のマーカーなど、検出が可能な物のリストからユーザが選択するなどし、選択された対象物に応じて検出手法を適宜決定してよい。顔検出を行った場合、S14で表示される画像は、例えば図3の領域40の画像を表示させたうえ、領域42の境界を示すような枠をユーザ1a、1bの双方の顔領域にオーバーレイさせた画像である。
 このとき同時に、枠のいずれかを指すカーソルを表示させ、入力情報取得部22を介してユーザがカーソル移動、決定の入力をできるようにする。枠の色によって選択対象を表してもよい。そしてユーザは、表示装置16を見ながらターゲットを選択する(S16)。これに応じて撮影条件制御部24が、選択されたターゲットを囲んでいる枠の領域を第2カメラ30に撮影させることにより、第1カメラ28および第2カメラ30による広角画像、狭角画像の同時撮影が開始される(S18)。このとき撮影条件制御部24は、第2カメラ30の電子ズームおよび電子パンチルタを制御することにより、選択された領域が撮影されるようにする。なお上述のように、狭角画像が広角画像のどの領域の画像であるかを示す相対位置情報が、入力情報取得部22から情報統合部36に通知される。
 そして2台のカメラで撮影された広角画像、狭角画像のデータは、第1画像解析部32および第2画像解析部34をそれぞれ介して、逐次、情報統合部36に供給される。情報統合部36は双方の相対位置情報とともに2つの画像データを送信して画像データ生成部38に合成を指示することにより、画像データ生成部38が合成画像を生成して出力する(S20)。これにより、例えばビデオチャットなどにおいて、ユーザ1bの表情を詳細に捉えた画像を、相手の表示装置に表示させることができる。
 このとき高解像度となるのは全体画像の一部であるため、画像データのサイズ増大により伝送帯域を圧迫することなく、見たい領域を詳細に見る、という要求を満たすことができる。また、カメラ自体は一般的な性能を有すればよいため、製造コストが増大することがない。
 図6、図7はこの態様の変形例を示している。図6は、ユーザが持つフリップ2をターゲットとした場合の撮影画像と出力画像の例を示している。このときあらかじめ、フリップ2にはその四隅のうち対角上にある二隅などに、所定の色、形状を有するマーカー53をつけておく。これにより第1画像解析部32は、図5のS14において、パターンマッチングなどによりマーカーを検出し、それによってフリップの領域をターゲット候補として検出することができる。
 そしてS16においてユーザが当該フリップをターゲットとして選択した場合、第1カメラ28が撮影する画像は広角画像52、第2カメラ30が撮影する画像はフリップの領域の狭角画像54である。上述同様、狭角画像54は高解像度画像となるため、フリップ上に記載された文字などが、広角画像52と比較してはっきり表示される。
 それらの画像を合成し、合成画像56を表示する。この例では、広角画像52内のフリップの面積と比較し、対応する領域を表す狭角画像54を拡大した画像58を表示することにより、文字などが一層見やすくなるようにしている。このように、一つの視野内にある対象物であっても、対象物に応じた加工を行ったうえで合成画像を表示することができる。
 図7は、第1カメラ28および第2カメラ30の双方で狭角画像を撮影した場合の撮影画像と出力画像の例を示している。この場合、図4のS16においてユーザから2つのターゲット選択を受け付ける。そしてS18において、第1カメラ28で一方のターゲットの狭角画像60、第2カメラ30で他方のターゲットの狭角画像62を撮影する。同図の例では、ユーザ1aの顔、ユーザ1bの顔の領域がターゲットとして選択されたとしている。
 この場合、広角画像を撮影するカメラが存在しないため、合成画像64における広角画像は、図4のS16においてターゲットが選択されたときに第1カメラ28が撮影していた画像のいずれかのフレームを静止画として表示する。その結果、合成画像64のうち、ターゲットの領域66および68のみ解像度が高く動きを有し、その他の領域は静止画の画像を表示できる。このようにすると、詳細に見たい領域が限定的であり、その他の領域の動きがあまり重要でない状況において、ターゲットの数をカメラの数だけ増やすことができる。
 なお合成画像として、2つの狭角画像60、62のみを、表示装置16の画面の大きさに応じて拡大し、並べて表示するようにしてもよい。またこのような画像と、図7の合成画像64とを切り替え可能にしてもよい。また、ターゲットが大きく動くような場合は、第1カメラ28に広角画像を撮影させ、第1画像解析部32が既存の技術によりターゲットをトラッキングし、それに応じて撮影条件制御部24が電子パンチルタを用いて各カメラの視野を調整することにより、狭角画像内に常にターゲットが含まれるようにしてもよい。このことは、上述のいずれの場合でも同様である。
(2)画角の大きさとフレームレートを異ならせる態様
 本態様は、撮影時のフレームレートを2つのカメラで異ならせる。具体的には一方のカメラは全体画像を標準的なフレームレートで撮影し、他方のカメラはターゲットの狭角画像を高フレームレートで撮影する。高フレームレートで撮影した画像は、ターゲットまたはターゲットに含まれる部位のトラッキングに用いる。これにより、データサイズを増大させることなく、注目すべき領域について効率的かつ精度の高いトラッキングを実施できる。
 図8は本態様において、第1カメラ28および第2カメラ30が撮影する画像とそれを利用して得られる出力画像の例を示している。同図において第1カメラ28が撮影する画像は図3における領域40の広角画像70である。第2カメラ30が撮影する画像はターゲットの領域の狭角高フレームレート画像72である。n<nとしたとき、第1カメラ28が広角画像70をnフレーム撮影する間に、第2カメラ30は狭角高フレームレート画像72をnフレーム撮影する。
 そして第2画像解析部34は、狭角高フレームレート画像72に対し、既存の手法で対象物のトラッキングを行う。顔をターゲットとした場合、例えば目や口などの顔の部位をトラッキングすることにより表情の変化を認識する。あるいは頭や手などをターゲットとした場合、その輪郭をトラッキングすることによりジェスチャを認識する。このような場合、出力する画像74は、トラッキングした結果に応じた加工を、広角画像70に施した画像などとなる。図8の例では、ターゲットとなった顔が笑ったことを認識し、それに対応するアニメーション76を加えている。
 近年、対象物の動きを撮影してトラッキングすることにより表情やジェスチャを認識し、それを入力情報としてゲームを進捗させたり情報処理を行ったりする技術が実用化されている。トラッキングを高精度に行うためには、動きに対する時間の解像度が高くなるように高フレームレートで撮影することが望ましい。しかし高フレームレート撮影によって取得する画像データのサイズが増大すると、情報処理装置14内部でバス帯域やメモリ領域を圧迫する可能性がある。
 本態様ではまず広角画像によってターゲットの絞り込みを行ったうえ、その領域のみを高フレームレートで撮影してトラッキングを行うため、画像データサイズの増大を抑えることができる。また、ターゲットが大きく変位した場合などでも全体的な動きの情報は広角画像において取得できるため、効率よくターゲットの位置の絞り込みを行える。また最終的に出力する画像として、標準的なフレームレートで撮影したものを用いることにより、表示に適したノイズの少ない画像表示を実現できる。
 図9はこの態様における情報処理の処理手順を示すフローチャートである。図9のフローチャートは、ユーザが、撮影および画像データの出力を開始する指示入力を入力情報取得部22に行ったときに開始される。まず図5と同様、ユーザは入力情報取得部22に対し、機能を選択する指示入力を行い(S22)、撮影条件制御部24は、選択された機能に対して設定されている撮影条件に従い、標準的な画角およびフレームレートで、第1カメラ28に撮影を開始させる(S24)。
 第1カメラ28が撮影した画像のデータは、第1画像解析部32が取得し画像解析を行うことにより、あらかじめ定めた対象物、例えば人の顔や手、頭などが、ターゲットとして検出される(S26)。このとき図5で説明したのと同様、検出したターゲット候補を枠で囲んで表示することによりユーザに選択させるようにしてもよい。またターゲットの検出手法も図5で説明したのと同様、パターンマッチングなど既存の検出技術を利用してよい。例えば、最初に顔認識処理によって顔を検出し、それとの相対位置から手や頭の輪郭の位置を推定した後、パターンマッチングを行ってターゲットを確定させる、といった手法でもよい。
 検出したターゲットの情報は撮影条件制御部24へ通知される。そして撮影条件制御部24が、選択されたターゲットの領域を高フレームレートで第2カメラ30に撮影させることにより、第1カメラ28および第2カメラ30による広角画像、狭角高フレームレート画像の同時撮影が開始される(S28)。このとき、トラッキング対象となるターゲットの位置情報を情報統合部36に通知しておく。
 そして第2画像解析部34は、第2カメラが撮影した狭角高フレームレート画像についてターゲットのトラッキング処理を行う(S30)。トラッキングに際しては、S26でターゲットを検出した際に得られたターゲットの実際の形状をテンプレート画像として保持しておき、それと高フレームレート画像とのマッチングによってターゲットの位置を追尾するようにしてもよい。そしてトラッキングした結果得られるターゲットの位置変化から所定のジェスチャが行われたことを検出する(S32)。例えば、ターゲットの位置変化のパターンとジェスチャとを対応づけたテーブルを図示しないメモリなどに格納しておき、それを参照することによりジェスチャ判定を行う。
 このようなジェスチャ認識手法も、ゲームなどによって実用化されているものを採用してよい。ここで「ジェスチャ」は、一般的に人がジェスチャとして行う動作のほか、顔の表情の変化など、意味づけを行うことのできる形態変化であればそのいずれでもよい。
 ジェスチャ認識結果と、第1カメラ28が撮影した広角画像のデータは逐次、情報統合部36に供給される。情報統合部36はジェスチャに応じて用意されたアニメーションや画像加工処理の内容と、加工を施す位置の情報とともに画像データを画像データ生成部38に送信して画像加工を指示することにより、画像データ生成部38が加工画像を生成して出力する(S34)。
 なお本態様において、ジェスチャ認識によって行う処理は特に限定されない。例えば、図8で示したような単純なアニメーション付加以外に、仮想世界を表現した画像中に広角画像中のユーザの姿を合成し、ユーザのジェスチャによって仮想世界に何らかの変化を生じさせるなど、より複雑な表現としてもよい。すなわちトラッキングやジェスチャ認識によって出力する画像は、ゲームの内容や情報処理の目的に応じて、既存の画像処理技術と様々に組み合わせて生成してよい。
 また広角画像と狭角高フレームレート画像は、処理の内容によっては常時同時に撮影する必要はなく、画像取得が必要な期間に応じて2台のカメラのいずれかをオン/オフさせてもよい。例えば野球ゲームを画像で表現する場合、広角画像を常時撮影してユーザの姿と野球場の風景を合成させた画像を表示させ、バッターであるユーザがスイングする期間のみ、ユーザの腕の動きを狭角高フレームレートで撮影し、スイングの角度や速さに応じて打球をアニメーション表示する、といった態様が考えられる。
 逆に、広角画像を出力画像として用いず、ジェスチャ認識の結果のみを出力情報に用いる場合などは、狭角高フレームレート画像においてターゲットを見失ったときのみ広角画像を撮影して広い範囲でターゲットを探索できるようにしてもよい。このように広角画像の撮影期間と狭角ハイフレーム画像の撮影期間とを臨機応変に設定することにより、処理内容に応じてリソースの消費量を調整することができる。
 一方で、限定的な空間において時間軸での解像度を上げた情報取得と、広い空間の全体的な情報取得とを並列に実行するようにすれば、例えばトラッキングの結果を広角画像にフィードバックして全体的な動きを追ったり、全体的な動きから限定的な範囲の高精度なトラッキングを行ったり、といったように相互に情報を補うことができ、幅広い応用が可能である。
 また図7で説明したのと同様に、最初に第1カメラ28で撮影した広角画像によってターゲットを検出したら、2つのターゲットの狭角高フレーム画像を2台のカメラで撮影するようにしてもよい。これにより2つのターゲットのジェスチャを独立して認識できるため、仮想空間における対戦ゲームなどを表現することができる。
 なお狭角高フレームレート画像は態様(1)と同様、広角画像と同じ画素サイズで撮影して高解像度としてもよいし、広角画像と同じ解像度としてもよい。どのような解像度とするかは、要求されるトラッキングの精度や情報処理装置の処理能力、データ転送時のバスの帯域などに応じてあらかじめ決定しておけばよい。
 上述の例は第2カメラが狭角画像を高フレームレートで撮影したが、逆に低フレームレートで撮影してもよい。低フレームレートで、画像を取得するスキャン速度が遅くなると、1つのフレームに含まれる動きの情報量が多くなる。図10はこの態様における画像のスキャン時間を説明するための図である。同図は横軸を時間軸としたときに矩形86で示したカメラセンサ領域中、スキャンされるスキャンラインの時間変位(実線)を模式的に示している。
 下段に示す低速スキャンの場合、上段に示す標準的なスキャンスピードと比較し、センサ領域の上から下までスキャンする時間が長い。そのため同一期間において取得できるフレームの数は少ないが、一つのフレーム画像の取得を完了してから次のフレーム画像の取得を開始するまでのブラインド期間が発生する頻度が低くなる。そのため動く対象物に対して時間解像度の高い情報を取得できる。また1つのフレームに長期間の情報が含まれるため、処理の負荷が軽くレイテンシの少ないジェスチャ認識が可能となる。
 図11は第1カメラ28で広角画像を、第2カメラ30で狭角の低フレームレート画像を撮影した場合の各撮影画像とそれを利用して得られる出力画像の例を示している。同図において第1カメラ28が撮影する画像は上述と同様、標準的なフレームレートで撮影した広角画像80である。第2カメラ30が撮影する画像はターゲットの領域の狭角低フレームレート画像82である。n>nとしたとき、第1カメラ28が広角画像80をnフレーム撮影する間に、第2カメラ30は狭角低フレームレート画像82をnフレーム撮影する。
 この例では、撮影対象の人物の手をターゲットとして検出し、その領域の狭角低フレームレート画像を撮影しているとする。ここで撮影対象の人物が手を振ったとすると、狭角低フレームレート画像82では、その手の左右の動きが、図示するように表れる。すなわち、手が左右に振られている状況でスキャンラインの上から下へスキャンが進捗していくため、左右の往復運動を縦方向に引き延ばしたような手の色の形状が取得できる。
 第2画像解析部34はこの狭角低フレームレート画像82を取得し、手の左右方向の変位と上下方向のスキャンスピードから、手の速度の変化を得る。この情報に基づき、あらかじめ準備した運動パターンとジェスチャとを対応づけたテーブルを参照することにより、ジェスチャが行われたか否かを判定する。そして上述の例と同様、ジェスチャに応じた所定の加工を広角画像80に施すことにより、出力画像84を生成する。同図の例では、撮影対象が「さようなら」と言っている吹き出しを付加している。
(3)露光時間/絞り値を異ならせる態様
 本態様は、撮影時の露光時間、絞り値のどちらか一方、または両方を、2つのカメラで異ならせる。近年、発光体などのマーカーをユーザに持たせたり体に装着させたりして、それを撮影することによってユーザの動きを検出し、ゲームなどへの入力情報とする技術が提案されている。この技術は、特定の大きさ、色、形状、輝度などを有するマーカーを、画像として捉えた部屋や人、物などの中から常に検出できる、という前提のもとに成り立つ。しかしながら人間による目視と異なり、画像内でのマーカーの写り具合は、周囲の明るさや物の有無、周囲の色などの撮影環境や、露光時間や焦点深度などの撮影条件によって大きく変化する。
 ユーザや部屋を含む広角画像を撮影する場合、一般的にはその撮影環境に合わせてホワイトバランスや露光時間などの撮影条件が自動で調整され、それによって、全体としてバランスのとれた画像を取得する。しかしながらその画像中でマーカーを検出する場合、このように環境に応じて撮影条件を変化させると、マーカーの写り具合、すなわち像の色、大きさ、形状、輝度などが変化し、検出処理に支障をきたすことがあり得る。
 例えば発光するマーカーを用いる場合、部屋の明るさに応じて決定した露光時間が長すぎると、マーカーの発光部分のRGB値が飽和してしまい、発光体の色に関わらず真っ白かつ輪郭のぼやけた画像となってしまうことが考えられる。またマーカーが比較的高速で動いていると、その像がぶれてしまうことが考えられる。
 そのため、奥行き方向を含むマーカーの位置が正確に取得できなかったり、発光体の色によってユーザを識別するような場合に識別ができなくなったりすることがあり得る。そこで本態様では、一方のカメラは全体画像を標準的な露光時間、絞り値で撮影し、他方のカメラは露光時間、絞り値のいずれかまたは双方を、マーカーに対して最適な値で撮影する。これにより、最終的に表示するための画像として鑑賞に堪えるバランスのとれた画像を確保しつつ、どのような撮影環境であってもマーカー検出を精度よく行うことができる。
 図12は本態様において、第1カメラ28および第2カメラ30が撮影する画像とそれを利用して得られる出力画像の例を示している。同図において第1カメラ28が撮影する画像は、先端の球体が発光するマーカー92を把持するユーザを、画像全体に対し最適な露光時間、絞り値で撮影した一般画像90である。この画像では上述のように、マーカー92の発光体は実際の色に関わらず白く写っている可能性もある。なおマーカーの形状は同図に示す物に限らず、色、形状、大きさ、輝度などが既知であり、検出対象となり得るものであればよい。また発光体でなくてもよい。
 一方、第2カメラ30が撮影する画像は、マーカー92の発光体に対して最適な露光時間、絞り値で撮影した撮影条件調整画像94である。この画像は例えば、一般画像90と比較し、露光時間が短く、焦点がマーカー92に合っている焦点深度の浅い(絞り値が小さい)画像である。露光時間は電子シャッターのシャッタースピードによって調整する。シャッタースピードを高速とすることにより露光時間が短くなる。
 このような調整によって撮影条件調整画像94は、全体的に暗かったり、他の物がぼやけていたりする代わりに、マーカー92の発光体部分については、色、形状、大きさ、輝度が実際に近い画像となる。なお撮影条件調整画像94は、マーカーの部分のみを撮影した狭角画像でもよい。このとき、マーカー検出に求められる精度や情報処理装置の処理能力などに応じて態様(1)や(2)と組み合わせ、マーカー92の位置検出やトラッキングを行ってもよい。
 第2画像解析部34は、撮影条件調整画像94を用いてマーカの位置を取得し、ユーザの動きを認識する。そして、動きに応じた加工を一般画像90に施すことによって出力画像98を生成する。図12の例では、ユーザがマーカー92を振り下ろしたことを認識し、それに応じて出力画像中の仮想世界でユーザが持つ刀100の長さが伸びたような表示を行っている。
 図13はこの態様における情報処理の処理手順を示すフローチャートである。図13のフローチャートは、ユーザが、撮影および画像データの出力を開始する指示入力を入力情報取得部22に行ったときに開始される。まず図5、図9と同様、ユーザは入力情報取得部22に対し、機能を選択する指示入力を行う(S40)。すると撮影条件制御部24は、第1カメラ28には視野全体に対し最適な露光時間、絞り値で、第2カメラ30にはマーカーの発光体に対し最適な露光時間、絞り値で、撮影を開始させる(S42)。
 第1カメラ28の撮影条件は、通常のキャリブレーション手法によってその場の環境に応じて設定してよい。第2カメラ30の撮影条件は、マーカーの色や輝度などマーカーの特性ごとに取得した最適値を撮影条件テーブルに記述しておき、実際のマーカーの特性に基づき選択するようにしてもよい。または処理開始時にキャリブレーションを行って最適条件を求めてもよい。また第2カメラ30の画像を狭角画像とする場合は、図9のS24、S26と同様、マーカーのおよその位置を広角画像によって検出することにより、狭角画像の視野を決定するようにしてもよい。
 そして第2画像解析部34は、第2カメラが撮影した撮影条件調整画像に対してマーカー検出処理を行い(S44)、その動きによってユーザの動きを認識する(S46)。動き認識結果と、第1カメラ28が撮影した広角画像のデータは逐次、情報統合部36に供給される。情報統合部36は、動きに応じて用意されたアニメーションや画像加工処理の内容と、加工を施す位置の情報とともに画像データを画像データ生成部38へ送信して画像加工を指示することにより、画像データ生成部38が加工画像を生成して出力する(S48)。
 なお態様(2)と同様、動き認識によって行う処理は特に限定されず、ゲームの内容や情報処理の目的に応じて、既存の画像処理技術と様々に組み合わせてよい。また図7で説明したのと同様に、2つのマーカーのそれぞれに対し撮影条件を調整した2つの狭角画像を2台のカメラで撮影するようにしてもよい。これにより2つのマーカーの動きを独立して認識できるため、仮想空間における対戦ゲームなどを表現することができる。
 以上述べた本実施の形態によれば、同じ空間を2つのカメラを用いて異なる条件で撮影する。これによりそれぞれに特化した情報を相補完的に取得することができ、組み合わせによって様々な機能を発揮することができる。このとき、解像度やフレームレートが大きい画像は狭角画像とすることにより、データサイズの肥大化を防止し、情報処理装置内部でのデータ転送やネットワークを介した画像データの伝送などに支障がないようにできる。さらに本実施の態様は、ステレオカメラとして一般的に流通している対のカメラをそのまま利用することができるため、コストを増大させることなく機能を充実させることが容易にできる。
実施形態2
 実施形態1では同じ構造を有する一対のカメラを用い、撮影条件を異ならせることにより互いが持つ情報を補間して所望の機能を実現させた。本実施の形態では構造の少なくとも一部が異なる1対のカメラを用いる。本実施の形態を適用できる情報処理システムの構成や撮像装置12および情報処理装置14の構成は、実施形態1で説明したのと同様であるが、第1カメラ28と第2カメラ30のハードウェアとしての構成の少なくとも一部が異なっている。ここで異ならせる構成は、センササイズなどそれぞれのカメラにおける定常的な構成でもよいし、焦点距離など調整可能な撮影条件値の可変領域が異なるのでもよい。後者の場合、可変領域の一部が重複していてもよい。以後、このようなカメラの構成の違いを項目別に説明するが、2つ以上の項目を同時に異ならせてもよい。
(1)解像度(センササイズ)の異なる2つのカメラ
 例えば第1カメラ28を、標準的またはそれより低い解像度を有するカメラとし、第2カメラ30を、第1カメラ28より高い解像度を有するカメラとする。このようなカメラによって、実施形態1の「(1)画角の大きさと解像度を異ならせる態様」と同様の態様を実現する。ただしカメラの解像度が元から異なるため、必ずしも同時に画角を調整する必要はない。この場合も、例えば図4で示したのと同様に、第1カメラ28で全体的な画像を撮影し、第2カメラ30でターゲットの領域のみを撮影することにより、低解像度画像と高解像度画像を合成した画像を出力することができる。処理手順は図5で示したのと同様である。
 上述のとおりこの場合、実施形態1と比較し画角の相対関係についての自由度が増すため、必ずしも低解像度の第1カメラ28を広角、高解像度の第2カメラ30を狭角と限定する必要がなくなる。また元から有する解像度の相対値によっては、合成する画像の解像度に、よりメリハリをつけることができる。図6や図7を参照して説明した態様も同様に実現できる。ただし図7のように、ほぼ同じ領域サイズで同じ解像度の2つの狭角画像60、62を必要とする場合は、例えば低解像度の第1カメラ28で狭角画像60を撮影する一方、第2カメラ28が撮影する広範囲の画像から対応する領域を切り出す、といった処理が必要となる。
(2)フレームレートの異なる2つのカメラ
 例えば第1カメラ28を、標準的またはそれより低いフレームレートを有するカメラとし、第2カメラ30を、第1カメラ28より高いフレームレートを有するカメラとする。このようなカメラによって実施形態1の「(2)画角の大きさとフレームレートを異ならせる態様」と同様の態様を実現する。この場合も、必ずしも画角を調整する必要はない。そして例えば図8で示したのと同様に、第1カメラ28で全体的な画像を撮影し、第2カメラ30でターゲットの領域のみを高フレームレートで撮影する。そして第2カメラ30による画像を用いて対象物のトラッキングを精度よく行い、その結果に応じて、第1カメラ28による全体的な画像に加工を加える。処理手順は図9で示したのと同様である。
 この場合も、第1カメラ28による全体的な画像においてターゲットを検出し、ターゲットの領域のみを第2カメラ30で高フレームレート撮影することにより、トラッキング処理を効率的に行うことができる。このとき、第2カメラ30によって撮影した画像のうち、ターゲットの領域のみを切り出したうえでトラッキング処理を行ってもよい。また、トラッキングの精度をさらに向上させるため、高フレームレートを有するカメラは、低フレームレートを有するカメラより解像度を低くしてその感度を上げてもよい。このようにフレームレートが異なる2つのカメラを利用することにより、出力画像の取得と同時に、より精度の高いトラッキングを実現できる。
 変形例として、低フレームレートカメラによって撮影された画像に顔認識処理を施して顔を検出し、検出された顔からの相対位置によって手や把持されるマーカなどの位置を推定し、それをターゲットとして高フレームレートカメラで撮影するようにしてもよい。顔など大きな動きの少ない対象物は、フレームレートを標準値より低くすることによって鮮明な画像を得やすく、顔認識の精度を上げることができる。そのため全体的な画像を低フレームレートで撮影することにより、精度よく顔、ひいてはターゲットの位置を検出することができる。
(3)シャッタースピードの異なる2つのカメラ
 例えば第1カメラ28を、標準的なシャッタースピードを有するカメラとし、第2カメラ30を、第1カメラ28より高速なシャッタースピードを有するカメラとする。このようなカメラによって実施形態1の「(3)露光時間/絞り値を異ならせる態様」と同様の態様を実現する。そして例えば図12で示したのと同様に、第1カメラ28で一般的な画像を撮影し、第2カメラ30で同じ領域を高速シャッターにより露光時間を短くして撮影する。そして第2カメラ30による画像を用いてマーカのトラッキングを精度よく行い、その結果に応じて、第1カメラ28による一般的な画像に加工を加え、出力する。処理手順は図13で示したのと同様である。このようにシャッタースピードが異なる2つのカメラを利用することにより、出力画像の取得と同時に、より精度の高いマーカ検出を実現できる。
(4)焦点距離の異なる2つのカメラ
 例えば第1カメラ28を、標準的な焦点距離を有するカメラとし、第2カメラ30を、第1カメラ28より短い焦点距離を有するカメラとする。このようなカメラによって実施形態1の「(3)露光時間/絞り値を異ならせる態様」と同様の態様を実現する。そして例えば図12で示したのと同様に、第1カメラ28で一般的な画像を撮影し、第2カメラ30で同じ領域を短い焦点距離で撮影する。そして第2カメラ30による画像を用いてマーカのトラッキングを精度よく行い、その結果に応じて、第1カメラ28による一般的な画像に加工を加え、出力する。処理手順は図13で示したのと同様である。このように焦点距離が異なる2つのカメラを利用することにより、出力画像の取得と同時に、より精度の高いマーカ検出を実現できる。
(5)カラー(RGB)画像とモノクロ画像をそれぞれ撮影する2つのカメラ
 例えば第1カメラ28を、一般的なカラー画像を撮影するカメラとし、第2カメラ30を、モノクロ画像を撮影するカメラとする。モノクロ画像はカラー画像と比較し感度良く撮影ができる。そのため暗い室内など一般的なカラー画像では被写体がぼやけて写りやすい環境においても比較的、輪郭を捉えやすく、トラッキング処理に有利である。そこで例えば図12で示したのと同様に、第1カメラ28でカラー画像を撮影し、第2カメラ30で同じ領域をモノクロ画像撮影する。そしてモノクロ画像を用いてマーカのトラッキングを精度よく行い、その結果に応じて、第1カメラ28によるカラー画像に加工を加え、出力する。この場合の処理手順も図13で示したのと同様である。マーカに限らずモノクロ画像を対象物のトラッキングに用いることにより、図8で示した態様を実現することもできる。また、カラー画像とモノクロ画像を撮影するカメラに代えて、カラー画像を撮影するカメラと赤外線カメラを利用しても同じ態様で同様の効果を奏することができる。
 以上述べた本実施の形態では、構造の少なくとも一部が異なる2つのカメラで同じ空間を撮影する。これによりそれぞれに特化した情報を相補完的に取得することができ、組み合わせによって様々な機能を発揮することができる。また構造を元から異ならせておくことにより、各カメラが撮影する画像に大きく差をつけることが可能であり、トラッキングの対象物の性質に応じた合わせ込みが容易である。
 以上、本発明を実施の形態をもとに説明した。上記実施の形態は例示であり、それらの各構成要素や各処理プロセスの組合せにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。
 例えば実施形態2で説明したような、構造の少なくとも一部が異なる2つのカメラを用いて、さらに従来のステレオカメラと同様の処理を行ってもよい。例えばフレームレートが異なる2つのカメラを用いた場合、低フレームレート画像と同じタイミングのフレームを高フレームレート画像から抽出し、各時刻における2枚の画像に基づき三角測量の原理を用いて対象物の深さ方向の位置、例えばカメラ前にいる人物のうちカメラに最も近い部位の位置を導出する。同時に、高フレームレート画像を用いた腕やマーカなどのトラッキングを実施形態2のとおり実施すれば、人物の2つの部位の絶対位置および相対位置に基づく加工を施した出力画像を生成できる。
 同様に、解像度の異なる2つのカメラで撮影した画像のうち高解像度画像の解像度を低解像度画像の解像度に合わせて解像度変換すれば、ステレオカメラと同様の処理を行うことができる。このようにステレオカメラの機能と、構造が異なる2つのカメラによって実現できる上記機能とを同時に実現させることにより、結果として出力できる情報が相乗的に増加する。
 また、2つのカメラのうち片方にのみズーム機構、電子パンチルタなど画角を電子的に調整することのできる機構のいずれかまたは組み合わせを設けてもよい。このようにすることで、画角が固定されたカメラで撮影した全体画像を用いてターゲットを検出し、当該ターゲットの領域のみを画角を調整可能なカメラで撮影することができる。結果として図3で示したように、ズームアップして撮影した人物画像と全体画像を合成するなどの態様を実現できる。この機構の差を、実施形態2で述べた他の構成の差と組み合わせてもよい。
10 情報処理システム、 12 撮像装置、 14 情報処理装置、 16 表示装置、 18 ネットワーク、 22 入力情報取得部、 24 撮影条件制御部、 26 撮影条件記憶部、 28 第1カメラ、 30 第2カメラ、 32 第1画像解析部、 34 第2画像解析部、 36 情報統合部、 38 画像データ生成部。
 以上のように本発明はコンピュータ、画像処理装置、ゲーム機、撮影装置などの情報処理装置に利用可能である。

Claims (21)

  1.  被写体を撮影し、その画像データを逐次取得して出力画像データを生成する情報処理システムであって、
     同じ被写体に関する個別の情報を得るためにそれぞれ設定された異なる撮影条件で対象物を撮影する、同一の構造を有する第1のカメラおよび第2のカメラからなる一対のカメラと、
     前記一対のカメラのそれぞれが撮影して得られた2系統の画像データに含まれる前記個別の情報を統合して1系統の出力画像データを生成する情報統合部と、
     を備えたことを特徴とする情報処理システム。
  2.  前記第2のカメラは、被写体に含まれる所定のターゲットの位置情報を取得するために設定された撮影条件で撮影し、
     前記情報統合部は、前記第1のカメラが撮影して得られた画像に、前記ターゲットの位置情報に応じた変化を与えた画像のデータを、前記出力画像データとして生成することを特徴とする請求項1に記載の情報処理システム。
  3.  前記第2のカメラは、被写体に含まれるターゲットが装備するマーカーの形態に応じて設定された撮影条件で撮影し、
     前記第2のカメラが撮影した画像に対しマーカー検出処理を行うことにより、前記ターゲットの動きを認識する画像解析部をさらに備え、
     前記情報統合部は、前記第1のカメラが撮影して得られた、前記ターゲットを含む画像に、前記ターゲットの動きのパターンに対応して設定された加工を施した画像のデータを、前記出力画像データとして生成することを特徴とする請求項1に記載の情報処理システム。
  4.  前記第2のカメラは、前記第1のカメラの撮影時の露光時間より短い露光時間で撮影することを特徴とする請求項1から3のいずれかに記載の情報処理システム。
  5.  前記第2のカメラは、前記第1のカメラの撮影時の絞り値より小さい絞り値で撮影することを特徴とする請求項1から4のいずれかに記載の情報処理システム。
  6.  前記第2のカメラは、被写体に含まれるターゲットをトラッキングするために設定された撮影条件で撮影し、
     前記第2のカメラが撮影した画像に対し前記ターゲットのトラッキングを行うことにより、前記ターゲットの動きを認識する画像解析部をさらに備え、
     前記情報統合部は、前記第1のカメラが撮影して得られた、前記ターゲットを含む画像に、前記ターゲットの動きのパターンに対応して設定された加工を施した画像のデータを、前記出力画像データとして生成することを特徴とする請求項1に記載の情報処理システム。
  7.  前記第2のカメラは、前記第1のカメラの撮影時のフレームレートより大きいフレームレートで撮影することを特徴とする請求項1から6のいずれかに記載の情報処理システム。
  8.  前記第2のカメラは、前記第1のカメラの撮影時のフレームレートより小さいフレームレートで撮影し、
     前記第2のカメラが撮影した画像フレーム中の所定のターゲットの変位と画像取得時のスキャンスピードとから、前記ターゲットの速度の変化を取得することにより、前記ターゲットの動きを認識する画像解析部をさらに備え、
     前記情報統合部は、前記第1のカメラが撮影して得られた、前記ターゲットを含む画像に、前記ターゲットの動きのパターンに対応して設定された加工を施した画像のデータを、前記出力画像データとして生成することを特徴とする請求項1に記載の情報処理システム。
  9.  前記第1のカメラが撮影して得られた画像データに含まれる情報に基づき、前記第2のカメラの撮影条件を決定し、
     前記第1のカメラが撮影して得られた画像と前記第2のカメラが撮影して得られた画像を合成した画像のデータを、前記出力画像データとして生成することを特徴とする請求項1に記載の情報処理システム。
  10.  前記第1のカメラが撮影して得られた画像データを解析することにより、被写体に含まれる所定のターゲットの位置を検出する画像解析部をさらに備え、
     前記第2のカメラは、前記ターゲットの位置情報に基づき、前記第1のカメラが撮影した画像より小さい画角で、かつ、高い解像度で、前記ターゲットを含む領域を撮影し、
     前記情報統合部は、前記第1のカメラが撮影した画像のうち前記ターゲットの領域に、前記第2のカメラが撮影した画像を合成してなる画像のデータを、前記出力画像データとして生成することを特徴とする請求項1に記載の情報処理システム。
  11.  被写体を撮影した画像データを逐次取得して出力画像データを生成する情報処理装置であって、
     接続された同一の構造を有する一対のカメラを、同じ被写体に関する個別の情報を得るためにそれぞれ設定した異なる撮影条件にて撮影を行うように制御する撮影条件制御部と、
     前記一対のカメラのそれぞれが撮影して得られた2系統の画像データを取得し、各画像データに含まれる前記個別の情報を統合して1系統の出力画像データを生成する情報統合部と、
     を備えたことを特徴とする情報処理装置。
  12.  被写体を撮影した画像データを逐次取得して、それに応じた出力画像データを出力する情報処理方法であって、
     同一の構造を有する一対のカメラによって、同じ被写体に関する個別の情報を得るためにそれぞれ設定した異なる撮影条件にて撮影を行うステップと、
     前記一対のカメラのそれぞれが撮影して得られた2系統の画像データを取得し、各画像データに含まれる前記個別の情報を統合して1系統の出力画像データを生成するステップと、
     前記出力画像データを表示装置に出力するステップと、
     を含むことを特徴とする情報処理方法。
  13.  被写体を撮影した画像データを逐次取得して、それに応じた出力画像データを出力する機能をコンピュータに実現させるコンピュータプログラムであって、
     接続された同一の構造を有する一対のカメラを、同じ被写体に関する個別の情報を得るためにそれぞれ設定した異なる撮影条件にて撮影を行うように制御する機能と、
     前記一対のカメラのそれぞれが撮影して得られた2系統の画像データを取得し、各画像データに含まれる前記個別の情報を統合して1系統の出力画像データを生成する機能と、
     前記出力画像データを表示装置に出力する機能と、
     をコンピュータに実現させることを特徴とするコンピュータプログラム。
  14.  被写体を撮影した画像データを逐次取得して、それに応じた出力画像データを出力する機能をコンピュータに実現させるコンピュータプログラムを記録した記録媒体であって、
     接続された同一の構造を有する一対のカメラを、同じ被写体に関する個別の情報を得るためにそれぞれ設定した異なる撮影条件にて撮影を行うように制御する機能と、
     前記一対のカメラのそれぞれが撮影して得られた2系統の画像データを取得し、各画像データに含まれる前記個別の情報を統合して1系統の出力画像データを生成する機能と、
     前記出力画像データを表示装置に出力する機能と、
     をコンピュータに実現させることを特徴とするコンピュータプログラムを記録した記録媒体。
  15.  同じ被写体を撮影し、その画像データを逐次取得して出力画像データを生成する情報処理システムであって、
     第1のカメラと、当該第1のカメラより高い解像度を有する第2のカメラとからなる一対のカメラと、
     前記第1のカメラが撮影した画像に含まれる部分領域に、前記第2のカメラが撮影した画像の少なくとも一部の領域を合成してなる画像のデータを、前記出力画像データとして生成する情報統合部と、
     を備えたことを特徴とする情報処理システム。
  16.  同じ被写体を撮影し、その画像データを逐次取得して出力画像データを生成する情報処理システムであって、
     第1のカメラと、当該第1のカメラより高いフレームレートを有する第2のカメラとからなる一対のカメラと、
     前記第2のカメラが撮影して得られた画像を用いてトラッキング処理を行うことにより、被写体に含まれる所定のターゲットの動きを認識する画像解析部と、
     前記第1のカメラが撮影して得られた画像に、前記ターゲットの動きに応じた変化を与えた画像のデータを、前記出力画像データとして生成する情報統合部と、
     を備えたことを特徴とする情報処理システム。
  17.  同じ被写体を撮影し、その画像データを逐次取得して出力画像データを生成する情報処理システムであって、
     第1のカメラと、当該第1のカメラより高いシャッタースピードを有する第2のカメラとからなる一対のカメラと、
     前記第2のカメラが撮影して得られた画像を用いて、被写体に含まれる所定のターゲットの検出処理を行うことにより、前記ターゲットの動きを認識する画像解析部と、
     前記第1のカメラが撮影して得られた画像に、前記ターゲットの動きに応じた変化を与えた画像のデータを、前記出力画像データとして生成する情報統合部と、
     を備えたことを特徴とする情報処理システム。
  18.  同じ被写体を撮影し、その画像データを逐次取得して出力画像データを生成する情報処理システムであって、
     第1のカメラと、当該第1のカメラより短い焦点距離を有する第2のカメラとからなる一対のカメラと、
     前記第2のカメラが撮影して得られた画像を用いて、被写体に含まれる所定のターゲットの検出処理を行うことにより、前記ターゲットの動きを認識する画像解析部と、
     前記第1のカメラが撮影して得られた画像に、前記ターゲットの動きに応じた変化を与えた画像のデータを、前記出力画像データとして生成する情報統合部と、
     を備えたことを特徴とする情報処理システム。
  19.  同じ被写体を撮影し、その画像データを逐次取得して出力画像データを生成する情報処理システムであって、
     カラー画像を撮影する第1のカメラと、モノクロ画像を撮影する第2のカメラとからなる一対のカメラと、
     前記第2のカメラが撮影して得られた画像を用いて、被写体に含まれる所定のターゲットの検出処理を行うことにより、前記ターゲットの動きを認識する画像解析部と、
     前記第1のカメラが撮影して得られた画像に、前記ターゲットの動きに応じた変化を与えた画像のデータを、前記出力画像データとして生成する情報統合部と、
     を備えたことを特徴とする情報処理システム。
  20.  同じ被写体を撮影し、その画像データを逐次取得して出力画像データを生成する情報処理システムであって、
     カラー画像を撮影する第1のカメラと、赤外線画像を撮影する第2のカメラとからなる一対のカメラと、
     前記第2のカメラが撮影して得られた画像を用いて、被写体に含まれる所定のターゲットの検出処理を行うことにより、前記ターゲットの動きを認識する画像解析部と、
     前記第1のカメラが撮影して得られた画像に、前記ターゲットの動きに応じた変化を与えた画像のデータを、前記出力画像データとして生成する情報統合部と、
     を備えたことを特徴とする情報処理システム。
  21.  同じ被写体を撮影し、その画像データを逐次取得して出力画像データを生成する情報処理システムであって、
     画角が固定された第1のカメラと、画角を電子的に調整可能な第2のカメラとからなる一対のカメラと、
     前記第1のカメラが撮影した画像に含まれる部分領域に、前記第2のカメラが撮影した画像の少なくとも一部の領域を合成してなる画像のデータを、前記出力画像データとして生成する情報統合部と、
     を備えたことを特徴とする情報処理システム。
PCT/JP2010/007121 2010-07-02 2010-12-07 情報処理システム、情報処理装置および情報処理方法 WO2012001755A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012522362A JP5395956B2 (ja) 2010-07-02 2010-12-07 情報処理システムおよび情報処理方法
EP10854052.7A EP2590396B1 (en) 2010-07-02 2010-12-07 Information processing system and information processing method
CN201080067714.4A CN102959941B (zh) 2010-07-02 2010-12-07 信息处理系统、信息处理装置及信息处理方法
US13/714,765 US9357203B2 (en) 2010-07-02 2012-12-14 Information processing system using captured image, information processing device, and information processing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-152362 2010-07-02
JP2010152362 2010-07-02

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/714,765 Continuation US9357203B2 (en) 2010-07-02 2012-12-14 Information processing system using captured image, information processing device, and information processing method

Publications (1)

Publication Number Publication Date
WO2012001755A1 true WO2012001755A1 (ja) 2012-01-05

Family

ID=45401513

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/007121 WO2012001755A1 (ja) 2010-07-02 2010-12-07 情報処理システム、情報処理装置および情報処理方法

Country Status (5)

Country Link
US (1) US9357203B2 (ja)
EP (1) EP2590396B1 (ja)
JP (1) JP5395956B2 (ja)
CN (1) CN102959941B (ja)
WO (1) WO2012001755A1 (ja)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102984452A (zh) * 2012-10-29 2013-03-20 东莞宇龙通信科技有限公司 照相终端的自拍方法及照相终端
JP2013162291A (ja) * 2012-02-03 2013-08-19 Toshiba Corp カメラモジュール
WO2014070927A2 (en) 2012-10-31 2014-05-08 Invisage Technologies, Inc. Expanded-field-of-view image and video capture
WO2014103094A1 (ja) * 2012-12-27 2014-07-03 株式会社ソニー・コンピュータエンタテインメント 情報処理装置、情報処理システム、および情報処理方法
WO2015114848A1 (ja) * 2014-01-31 2015-08-06 オリンパスイメージング株式会社 撮像装置
JP2015177428A (ja) * 2014-03-17 2015-10-05 ソニー株式会社 画像処理装置、画像処理方法、及び、プログラム
CN106067937A (zh) * 2015-04-23 2016-11-02 聚晶半导体股份有限公司 镜头模块阵列、图像感测装置与数字缩放图像融合方法
JP2016225885A (ja) * 2015-06-01 2016-12-28 キヤノン株式会社 情報処理装置、情報処理装置の制御方法、画像処理システム及びプログラム
JP2017055397A (ja) * 2015-09-08 2017-03-16 キヤノン株式会社 画像処理装置、画像合成装置、画像処理システム、画像処理方法、及びプログラム
WO2017203981A1 (ja) * 2016-05-26 2017-11-30 株式会社エクスビジョン Gui装置
JP2019030007A (ja) * 2017-07-27 2019-02-21 三星電子株式会社Samsung Electronics Co.,Ltd. 複数のカメラを用いて映像を取得するための電子装置及びこれを用いた映像処理方法
JP2019101943A (ja) * 2017-12-06 2019-06-24 株式会社スクウェア・エニックス 表示システム及び表示方法
JP2019125979A (ja) * 2018-01-18 2019-07-25 キヤノン株式会社 撮像装置及びその制御方法、プログラム、記憶媒体
US11047673B2 (en) 2018-09-11 2021-06-29 Baidu Online Network Technology (Beijing) Co., Ltd Method, device, apparatus and storage medium for detecting a height of an obstacle
JP2021136618A (ja) * 2020-02-28 2021-09-13 カシオ計算機株式会社 撮像装置、撮影システム、撮像方法及びプログラム
US11126875B2 (en) 2018-09-13 2021-09-21 Baidu Online Network Technology (Beijing) Co., Ltd. Method and device of multi-focal sensing of an obstacle and non-volatile computer-readable storage medium
JP2021180421A (ja) * 2020-05-14 2021-11-18 エヌ・ティ・ティ・コミュニケーションズ株式会社 遠隔制御システム、遠隔作業装置、映像処理装置およびプログラム
US11205289B2 (en) 2018-09-07 2021-12-21 Baidu Online Network Technology (Beijing) Co., Ltd. Method, device and terminal for data augmentation
WO2022085276A1 (ja) 2020-10-20 2022-04-28 日本電気株式会社 情報処理システム、目状態測定システム、情報処理方法および非一時的なコンピュータ可読媒体

Families Citing this family (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9724597B2 (en) 2012-06-04 2017-08-08 Sony Interactive Entertainment Inc. Multi-image interactive gaming device
JP6222898B2 (ja) * 2012-07-03 2017-11-01 キヤノン株式会社 3次元計測装置及びロボット装置
US9912929B2 (en) 2013-03-21 2018-03-06 Mediatek Inc. Video frame processing method
CN109040552B (zh) * 2013-06-13 2021-06-22 核心光电有限公司 双孔径变焦数字摄影机
US9936114B2 (en) * 2013-10-25 2018-04-03 Elwha Llc Mobile device for requesting the capture of an image
CN103888672A (zh) * 2014-03-31 2014-06-25 宇龙计算机通信科技(深圳)有限公司 一种终端及终端拍摄方法
CN104168418A (zh) * 2014-06-30 2014-11-26 宇龙计算机通信科技(深圳)有限公司 一种图像获取装置、图像获取方法及终端
CN105338338B (zh) 2014-07-17 2018-01-02 诺基亚技术有限公司 用于成像条件检测的方法和装置
US9521830B2 (en) 2014-08-21 2016-12-20 Identiflight, Llc Bird or bat detection and identification for wind turbine risk mitigation
EP3798444A1 (en) * 2014-08-21 2021-03-31 IdentiFlight International, LLC Avian detection system and method
US20160182866A1 (en) * 2014-12-19 2016-06-23 Sony Corporation Selective high frame rate video capturing in imaging sensor subarea
US10176558B2 (en) 2014-12-29 2019-01-08 Nokia Technologies Oy Method, apparatus and computer program product for motion deblurring of images
CN106454015B (zh) * 2015-08-04 2019-11-29 宁波舜宇光电信息有限公司 多镜头摄像模组的图像合成方法和提供图像的方法
US20170126966A1 (en) * 2015-10-29 2017-05-04 Mediatek Inc. Photography method using gaze detection
KR102489279B1 (ko) 2016-02-04 2023-01-18 삼성전자주식회사 이미지 처리장치 및 방법
WO2017145423A1 (ja) * 2016-02-25 2017-08-31 日本電気株式会社 情報処理システム、情報処理装置、制御方法、及びプログラム
US10242501B1 (en) 2016-05-03 2019-03-26 WorldViz, Inc. Multi-user virtual and augmented reality tracking systems
WO2018028585A1 (zh) * 2016-08-10 2018-02-15 宁波舜宇光电信息有限公司 具有不同大小光圈的多摄像头模组及其应用
CN107734214A (zh) * 2016-08-10 2018-02-23 宁波舜宇光电信息有限公司 具有不同大小光圈的多摄像头模组及其应用
KR102600504B1 (ko) * 2016-09-07 2023-11-10 삼성전자주식회사 전자 장치 및 그 제어 방법
CN106454011A (zh) * 2016-10-28 2017-02-22 信利光电股份有限公司 应用于移动终端设备的摄像装置及移动终端设备
CN108347557A (zh) * 2017-01-21 2018-07-31 盯盯拍(东莞)视觉设备有限公司 全景图像拍摄装置、显示装置、拍摄方法以及显示方法
CN108347556A (zh) * 2017-01-21 2018-07-31 盯盯拍(东莞)视觉设备有限公司 全景图像拍摄方法、全景图像显示方法、全景图像拍摄装置以及全景图像显示装置
US20180270445A1 (en) * 2017-03-20 2018-09-20 Samsung Electronics Co., Ltd. Methods and apparatus for generating video content
KR20180119281A (ko) * 2017-04-25 2018-11-02 엘지전자 주식회사 이동 단말기 및 그 제어 방법
US10438322B2 (en) 2017-05-26 2019-10-08 Microsoft Technology Licensing, Llc Image resolution enhancement
JP2019080226A (ja) 2017-10-26 2019-05-23 キヤノン株式会社 撮像装置、撮像装置の制御方法、及びプログラム
CN108965742B (zh) * 2018-08-14 2021-01-22 京东方科技集团股份有限公司 异形屏显示方法、装置、电子设备及计算机可读存储介质
CN109151303B (zh) * 2018-08-22 2020-12-18 Oppo广东移动通信有限公司 图像处理方法和装置、电子设备、计算机可读存储介质
CN109118581B (zh) * 2018-08-22 2023-04-11 Oppo广东移动通信有限公司 图像处理方法和装置、电子设备、计算机可读存储介质
CN109190533B (zh) * 2018-08-22 2021-07-09 Oppo广东移动通信有限公司 图像处理方法和装置、电子设备、计算机可读存储介质
CN109040591B (zh) * 2018-08-22 2020-08-04 Oppo广东移动通信有限公司 图像处理方法、装置、计算机可读存储介质和电子设备
CN108965732B (zh) * 2018-08-22 2020-04-14 Oppo广东移动通信有限公司 图像处理方法、装置、计算机可读存储介质和电子设备
CN108965721B (zh) * 2018-08-22 2020-12-22 Oppo广东移动通信有限公司 摄像头模组的控制方法和装置、电子设备
CN108989606B (zh) * 2018-08-22 2021-02-09 Oppo广东移动通信有限公司 图像处理方法和装置、电子设备、计算机可读存储介质
CN109143242B (zh) 2018-09-07 2020-04-14 百度在线网络技术(北京)有限公司 障碍物绝对速度估计方法、系统、计算机设备和存储介质
CN109255181B (zh) 2018-09-07 2019-12-24 百度在线网络技术(北京)有限公司 一种基于多模型的障碍物分布仿真方法、装置以及终端
JP7336773B2 (ja) * 2018-10-29 2023-09-01 パナソニックIpマネジメント株式会社 情報提示方法、情報提示装置、及び、情報提示システム
CN109703568B (zh) 2019-02-19 2020-08-18 百度在线网络技术(北京)有限公司 自动驾驶车辆行驶策略实时学习的方法、装置和服务器
AU2019201192A1 (en) 2019-02-20 2020-09-03 Canon Kabushiki Kaisha Method, system and apparatus for capturing an image
CN109712421B (zh) 2019-02-22 2021-06-04 百度在线网络技术(北京)有限公司 自动驾驶车辆的速度规划方法、装置和存储介质
DE102020113972A1 (de) * 2019-05-31 2020-12-03 Apple Inc. Videoanalyse- und -managementtechniquen für medienerfassung und -aufbewahrung
US11196943B2 (en) 2019-05-31 2021-12-07 Apple Inc. Video analysis and management techniques for media capture and retention
WO2020255742A1 (ja) * 2019-06-21 2020-12-24 パナソニックIpマネジメント株式会社 動物情報管理システム、及び、動物情報管理方法
WO2021039114A1 (ja) * 2019-08-29 2021-03-04 富士フイルム株式会社 撮像装置、撮像装置の動作方法、及びプログラム
JP7359074B2 (ja) * 2020-04-15 2023-10-11 トヨタ自動車株式会社 情報処理装置、情報処理方法、及びシステム
JP6844055B1 (ja) * 2020-05-29 2021-03-17 丸善インテック株式会社 監視カメラ
CN111914672B (zh) * 2020-07-08 2023-08-04 浙江大华技术股份有限公司 图像标注方法和装置及存储介质
CN112995509B (zh) * 2021-02-24 2022-11-11 深圳市沃特沃德信息有限公司 基于移动终端的摄像头切换方法、装置和计算机设备
CN114531554B (zh) * 2022-04-24 2022-08-16 浙江华眼视觉科技有限公司 一种快件码识别机的视频融合合成方法及装置
WO2024043353A1 (ko) * 2022-08-22 2024-02-29 엘지전자 주식회사 비디오 카메라 및 그 제어 방법
CN116405749B (zh) * 2023-03-30 2023-11-28 浙江德施曼科技智能股份有限公司 低功耗持续录像的门锁监控装置、门锁系统及实现方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003178274A (ja) * 2001-12-12 2003-06-27 Nippon Signal Co Ltd:The アクセスコントロールに用いる情報記憶媒体の発行装置および発行システム
JP2004235781A (ja) * 2003-01-29 2004-08-19 Nikon Gijutsu Kobo:Kk デジタルカメラ
WO2007050885A2 (en) 2005-10-26 2007-05-03 Sony Computer Entertainment America Inc. System and method for interfacing with a computer program
JP2010109554A (ja) * 2008-10-29 2010-05-13 Fujifilm Corp 撮像装置及びその制御方法

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10334270A (ja) * 1997-05-28 1998-12-18 Mitsubishi Electric Corp 動作認識装置及び動作認識プログラムを記録した記録媒体
JP2000172654A (ja) 1998-12-11 2000-06-23 Hitachi Software Eng Co Ltd 分散オブジェクト管理システム
US7015954B1 (en) * 1999-08-09 2006-03-21 Fuji Xerox Co., Ltd. Automatic video system using multiple cameras
JP3943848B2 (ja) * 2001-02-28 2007-07-11 株式会社リコー 撮像装置
US7259747B2 (en) 2001-06-05 2007-08-21 Reactrix Systems, Inc. Interactive video display system
JP2003234941A (ja) * 2002-02-07 2003-08-22 Fuji Photo Film Co Ltd 撮像装置
US8189059B2 (en) * 2003-01-29 2012-05-29 Nikon Corporation Digital camera and digital camera system
JP4546956B2 (ja) * 2003-06-12 2010-09-22 本田技研工業株式会社 奥行き検出を用いた対象の向きの推定
JP3922575B2 (ja) 2003-06-20 2007-05-30 日本電信電話株式会社 SIPセッション制御によるCDNにおけるQoS保証方法とQoS保証システムおよび端末装置とコンテンツ配信サブシステムとSIPセッション制御サブシステムならびにプログラム
IL157331A0 (en) * 2003-08-11 2004-06-20 Odf Optronics Ltd An electro-optic system for combining imaging sensors with selected spatial resolution
US20100013917A1 (en) * 2003-08-12 2010-01-21 Keith Hanna Method and system for performing surveillance
JP4736381B2 (ja) * 2003-11-27 2011-07-27 ソニー株式会社 撮像装置及び方法、監視システム、プログラム並びに記録媒体
WO2006137253A1 (ja) * 2005-06-22 2006-12-28 Matsushita Electric Industrial Co., Ltd. 画像生成装置および画像生成方法
US7606392B2 (en) * 2005-08-26 2009-10-20 Sony Corporation Capturing and processing facial motion data
US20070147827A1 (en) * 2005-12-28 2007-06-28 Arnold Sheynman Methods and apparatus for wireless stereo video streaming
JP4274184B2 (ja) 2006-01-30 2009-06-03 沖電気工業株式会社 通信システム、および通信方法
US7641565B2 (en) * 2006-06-12 2010-01-05 Wintriss Engineering Corporation Method and apparatus for detecting the placement of a golf ball for a launch monitor
JP4214160B2 (ja) * 2006-08-31 2009-01-28 フジノン株式会社 監視カメラシステム
JP2008278430A (ja) * 2007-05-07 2008-11-13 Fujifilm Corp 撮像装置、撮像方法、及びプログラム
US8320613B2 (en) * 2008-06-04 2012-11-27 Lockheed Martin Corporation Detecting and tracking targets in images based on estimated target geometry
CN101673346B (zh) * 2008-09-09 2013-06-05 日电(中国)有限公司 对图像进行处理的方法、设备和系统
CN101720027B (zh) * 2009-11-27 2011-06-01 西安电子科技大学 可变焦阵列摄像机协同获取不同分辨率多目标视频方法
US20110145581A1 (en) 2009-12-14 2011-06-16 Verizon Patent And Licensing, Inc. Media playback across devices
JP2012019413A (ja) 2010-07-08 2012-01-26 Toshiba Corp 表示システム、端末装置、表示装置、及びプログラム
JP5670387B2 (ja) 2012-06-26 2015-02-18 株式会社ソニー・コンピュータエンタテインメント 発光色決定装置および発光色決定方法
JP5624643B2 (ja) 2013-04-15 2014-11-12 株式会社東芝 電子機器、電子機器の制御方法、電子機器の制御プログラム、電子機器の通信システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003178274A (ja) * 2001-12-12 2003-06-27 Nippon Signal Co Ltd:The アクセスコントロールに用いる情報記憶媒体の発行装置および発行システム
JP2004235781A (ja) * 2003-01-29 2004-08-19 Nikon Gijutsu Kobo:Kk デジタルカメラ
WO2007050885A2 (en) 2005-10-26 2007-05-03 Sony Computer Entertainment America Inc. System and method for interfacing with a computer program
JP2010109554A (ja) * 2008-10-29 2010-05-13 Fujifilm Corp 撮像装置及びその制御方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2590396A4

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013162291A (ja) * 2012-02-03 2013-08-19 Toshiba Corp カメラモジュール
CN102984452B (zh) * 2012-10-29 2015-09-30 东莞宇龙通信科技有限公司 照相终端的自拍方法及照相终端
CN102984452A (zh) * 2012-10-29 2013-03-20 东莞宇龙通信科技有限公司 照相终端的自拍方法及照相终端
WO2014070927A2 (en) 2012-10-31 2014-05-08 Invisage Technologies, Inc. Expanded-field-of-view image and video capture
US9609190B2 (en) 2012-10-31 2017-03-28 Invisage Technologies, Inc. Devices, methods, and systems for expanded-field-of-view image and video capture
EP2915325A4 (en) * 2012-10-31 2016-06-01 Invisage Technologies Inc PICTURE AND VIDEO RECORDING WITH ADVANCED VIEW FIELD
US9619868B2 (en) 2012-12-27 2017-04-11 Sony Corporation Information processing device, information processing system, and information processing method
JP2014127151A (ja) * 2012-12-27 2014-07-07 Sony Computer Entertainment Inc 情報処理装置、情報処理システム、および情報処理方法
WO2014103094A1 (ja) * 2012-12-27 2014-07-03 株式会社ソニー・コンピュータエンタテインメント 情報処理装置、情報処理システム、および情報処理方法
CN104885125B (zh) * 2012-12-27 2017-05-31 索尼电脑娱乐公司 信息处理设备、信息处理系统和信息处理方法
CN104885125A (zh) * 2012-12-27 2015-09-02 索尼电脑娱乐公司 信息处理设备、信息处理系统和信息处理方法
WO2015114848A1 (ja) * 2014-01-31 2015-08-06 オリンパスイメージング株式会社 撮像装置
US10116862B2 (en) 2014-01-31 2018-10-30 Olympus Corporation Imaging apparatus
JP2016021748A (ja) * 2014-01-31 2016-02-04 オリンパス株式会社 撮像装置、撮像方法、撮像プログラム
US10367995B2 (en) 2014-01-31 2019-07-30 Olympus Corporation Imaging apparatus having control circuit that corresponds a region of first image data with second image data
US9894267B2 (en) 2014-01-31 2018-02-13 Olympus Corporation Imaging apparatus
JP2015177428A (ja) * 2014-03-17 2015-10-05 ソニー株式会社 画像処理装置、画像処理方法、及び、プログラム
CN106067937A (zh) * 2015-04-23 2016-11-02 聚晶半导体股份有限公司 镜头模块阵列、图像感测装置与数字缩放图像融合方法
JP2016225885A (ja) * 2015-06-01 2016-12-28 キヤノン株式会社 情報処理装置、情報処理装置の制御方法、画像処理システム及びプログラム
JP2017055397A (ja) * 2015-09-08 2017-03-16 キヤノン株式会社 画像処理装置、画像合成装置、画像処理システム、画像処理方法、及びプログラム
JP2017212654A (ja) * 2016-05-26 2017-11-30 株式会社エクスビジョン Gui装置
WO2017203981A1 (ja) * 2016-05-26 2017-11-30 株式会社エクスビジョン Gui装置
JP2019030007A (ja) * 2017-07-27 2019-02-21 三星電子株式会社Samsung Electronics Co.,Ltd. 複数のカメラを用いて映像を取得するための電子装置及びこれを用いた映像処理方法
JP7185434B2 (ja) 2017-07-27 2022-12-07 三星電子株式会社 複数のカメラを用いて映像を取得するための電子装置及びこれを用いた映像処理方法
JP2019101943A (ja) * 2017-12-06 2019-06-24 株式会社スクウェア・エニックス 表示システム及び表示方法
JP2019125979A (ja) * 2018-01-18 2019-07-25 キヤノン株式会社 撮像装置及びその制御方法、プログラム、記憶媒体
JP7025223B2 (ja) 2018-01-18 2022-02-24 キヤノン株式会社 撮像装置及びその制御方法、プログラム、記憶媒体
US11205289B2 (en) 2018-09-07 2021-12-21 Baidu Online Network Technology (Beijing) Co., Ltd. Method, device and terminal for data augmentation
US11519715B2 (en) 2018-09-11 2022-12-06 Baidu Online Network Technology (Beijing) Co., Ltd. Method, device, apparatus and storage medium for detecting a height of an obstacle
US11047673B2 (en) 2018-09-11 2021-06-29 Baidu Online Network Technology (Beijing) Co., Ltd Method, device, apparatus and storage medium for detecting a height of an obstacle
US11126875B2 (en) 2018-09-13 2021-09-21 Baidu Online Network Technology (Beijing) Co., Ltd. Method and device of multi-focal sensing of an obstacle and non-volatile computer-readable storage medium
JP2021136618A (ja) * 2020-02-28 2021-09-13 カシオ計算機株式会社 撮像装置、撮影システム、撮像方法及びプログラム
JP7173067B2 (ja) 2020-02-28 2022-11-16 カシオ計算機株式会社 撮像装置、撮影システム、撮像方法及びプログラム
JP2021180421A (ja) * 2020-05-14 2021-11-18 エヌ・ティ・ティ・コミュニケーションズ株式会社 遠隔制御システム、遠隔作業装置、映像処理装置およびプログラム
WO2021230363A1 (ja) * 2020-05-14 2021-11-18 エヌ・ティ・ティ・コミュニケーションズ株式会社 遠隔制御システム、遠隔作業装置、映像処理装置およびプログラム
WO2022085276A1 (ja) 2020-10-20 2022-04-28 日本電気株式会社 情報処理システム、目状態測定システム、情報処理方法および非一時的なコンピュータ可読媒体

Also Published As

Publication number Publication date
EP2590396B1 (en) 2018-08-08
US20130100255A1 (en) 2013-04-25
EP2590396A4 (en) 2015-05-27
US9357203B2 (en) 2016-05-31
CN102959941A (zh) 2013-03-06
JP5395956B2 (ja) 2014-01-22
JPWO2012001755A1 (ja) 2013-08-22
CN102959941B (zh) 2015-11-25
EP2590396A1 (en) 2013-05-08

Similar Documents

Publication Publication Date Title
JP5395956B2 (ja) 情報処理システムおよび情報処理方法
JP5843751B2 (ja) 情報処理装置、情報処理システム、および情報処理方法
JP2014238731A (ja) 画像処理装置、画像処理システム、および画像処理方法
US8711230B2 (en) Image capture apparatus and program
US10567641B1 (en) Gaze-directed photography
US9787943B2 (en) Natural user interface having video conference controls
WO2017033853A1 (ja) 情報処理装置および情報処理方法
KR101764372B1 (ko) 휴대용 단말기에서 영상 합성 방법 및 장치
JP5174908B2 (ja) 携帯型ゲーム装置及び携帯型ゲーム装置の制御方法
WO2019205284A1 (zh) Ar成像方法和装置
WO2014064870A1 (ja) 画像処理装置および画像処理方法
US10404911B2 (en) Image pickup apparatus, information processing apparatus, display apparatus, information processing system, image data sending method, image displaying method, and computer program for displaying synthesized images from a plurality of resolutions
WO2019205283A1 (zh) 基于红外的ar成像方法、系统及电子设备
JP5874626B2 (ja) 表示制御装置、表示制御システム、表示制御方法及びプログラム
US12136248B2 (en) Remote operation apparatus for communication with a user
JP2014127735A (ja) 表示制御装置、表示制御システム、表示制御方法及びプログラム
CN116208851A (zh) 图像处理方法及相关装置
JP6544719B2 (ja) 動画像生成システム、動画像生成装置、動画像生成方法、及びコンピュータプログラム
US20240295919A1 (en) Method and system for hosting a metaverse virtual conference
US20230379594A1 (en) Image blending
WO2020240989A1 (ja) 撮像装置、撮像制御方法および撮像制御プログラム
JP2023067530A (ja) 撮像装置及びその制御方法並びにプログラム
JP2022140423A (ja) 撮像装置及びその制御方法並びにプログラム
JP2022140422A (ja) 撮像装置、制御方法、並びにプログラム
JPWO2020148810A1 (ja) 情報処理装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080067714.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10854052

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012522362

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2010854052

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE