[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2012098968A1 - 二次電池の充電状態推定装置 - Google Patents

二次電池の充電状態推定装置 Download PDF

Info

Publication number
WO2012098968A1
WO2012098968A1 PCT/JP2012/050407 JP2012050407W WO2012098968A1 WO 2012098968 A1 WO2012098968 A1 WO 2012098968A1 JP 2012050407 W JP2012050407 W JP 2012050407W WO 2012098968 A1 WO2012098968 A1 WO 2012098968A1
Authority
WO
WIPO (PCT)
Prior art keywords
correction value
voltage
charge
state
secondary battery
Prior art date
Application number
PCT/JP2012/050407
Other languages
English (en)
French (fr)
Inventor
尚志 赤嶺
Original Assignee
プライムアースEvエナジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by プライムアースEvエナジー株式会社 filed Critical プライムアースEvエナジー株式会社
Priority to JP2012553663A priority Critical patent/JP5616464B2/ja
Publication of WO2012098968A1 publication Critical patent/WO2012098968A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3842Arrangements for monitoring battery or accumulator variables, e.g. SoC combining voltage and current measurements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/367Software therefor, e.g. for battery testing using modelling or look-up tables
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/00714Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery charging or discharging current
    • H02J7/00716Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery charging or discharging current in response to integrated charge or discharge current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors

Definitions

  • the present invention relates to a charging state estimation device for a secondary battery, and more particularly to estimation of a charging state using an extended Kalman filter.
  • a technology for estimating the state of charge (SOC) of a secondary battery such as a nickel metal hydride secondary battery or a lithium ion secondary battery and controlling the charge / discharge of the secondary battery based on the estimated SOC is known. Yes.
  • the following patent documents include a sensing unit that measures charge / discharge current flowing through a battery, battery temperature and terminal voltage, a prediction unit that accumulates charge / discharge current to estimate battery SOC, battery temperature, charge / discharge current.
  • a data rejection unit that generates information corresponding to an error generated by the measurement model according to at least one of the time change rate of SOC, SOC, and charge / discharge current, and the measurement model and information corresponding to the error are used
  • a battery management system including a measurement unit that corrects the estimated SOC of the battery is disclosed. Specifically, the data rejection unit sets a modeled battery equivalent circuit as a measurement model, and generates a gain corresponding to the variance of errors generated by the measurement model. Then, a Kalman gain is generated using the dispersion gain of the measurement model error, and the estimated SOC is corrected using the generated Kalman gain.
  • the prediction unit predicts the voltage Vdiff applied to the SOC and diffusion impedance of the battery, which is the state variable (x), using the state equation.
  • the prediction unit generates a covariance for the predicted state variable and the estimation error of the state variable and supplies the generated covariance to the measurement unit.
  • the measurement unit predicts a value that can be measured using the SOC predicted by the prediction unit and the voltage Vdiff, that is, the terminal voltage of the battery.
  • the measurement unit solves the non-linearity between SOC and OCV and uses differential equations to use the Kalman filter. Then, the measurement unit generates a Kalman gain for correcting the predicted SOC and voltage Vdiff.
  • the Kalman gain is set to a value that minimizes the covariance.
  • a reliable period and an unreliable period are set for the temperature, SOC, time change rate of current, and current magnitude, respectively, and the variance of the error is adjusted according to the interval. That is, the error variance is fixed to a predetermined value in a reliable period, but is changed by the data rejection unit in an unreliable period. For example, in an interval where the magnitude of the current exceeds a predetermined reference value and is not reliable, the error variance value increases, the Kalman gain decreases, and the SOC predicted by the prediction unit is corrected by the measurement model in the measurement unit. Decrease.
  • the current offset that can be included in the current sensor (the value of the current sensor when no current flows) is not taken into consideration. Therefore, even if the current value itself does not exceed the predetermined reference value and is reliable, if the current offset is included, the current offset can be quickly corrected to improve the accuracy of the SOC. Where necessary, such correction is difficult with the prior art.
  • An object of the present invention is to provide a state of charge estimation device for a secondary battery that can improve the estimation accuracy of the SOC by considering the current offset included in the current sensor.
  • the present invention is a secondary battery charge state estimation device, comprising: a current detection means for detecting a charge / discharge current of the secondary battery; a voltage detection means for detecting a terminal voltage of the secondary battery; and the current detection.
  • a charge state estimating means for estimating a current state included in the means and correcting a charge / discharge current detected by the current detecting means based on the current offset to estimate a charge state of the secondary battery; and a predetermined measurement model.
  • Correction value calculation means for calculating a value, and offset correction means for correcting the estimated current offset using the first correction value calculated by the correction value calculation means. .
  • the correction value calculation means uses the error between the estimated terminal voltage and the terminal voltage detected by the voltage detection means to perform the second correction of the estimated charge state.
  • Charge state correction means for calculating a value and correcting the estimated state of charge using the second correction value is further provided.
  • the predetermined measurement model is based on an equivalent circuit model of a polarization voltage of the secondary battery.
  • the terminal voltage estimation means includes the long-term polarization voltage, the short-term polarization voltage, the voltage drop due to internal resistance in the equivalent circuit model, and the charge estimated by the charge state estimation means.
  • the terminal voltage is estimated using the electromotive force corresponding to the state.
  • the correction value calculation means is an extended Kalman filter.
  • the correction value calculation means is an extended Kalman filter, and the extended Kalman filter includes a third correction of the long-term polarization voltage in addition to the first correction value and the second correction value.
  • a long-term polarization voltage correction means for correcting the long-term polarization voltage using the third correction value calculated by the correction value calculation means, and a correction value.
  • Short-term polarization voltage correction means for correcting the short-term polarization voltage using the fourth correction value calculated by the calculation means.
  • the SOC estimation accuracy can be improved by considering the current offset included in the current detection means (current sensor).
  • FIG. 1 shows a schematic configuration of a hybrid electric vehicle.
  • the vehicle ECU 10 controls the inverter 50 and the engine ECU 40.
  • the engine ECU 40 controls the engine 60.
  • the battery ECU 20 functions as a charge state estimation device, receives information such as the battery voltage V, the charge / discharge current I, and the battery temperature T from the secondary battery 30 and estimates the state of charge (SOC) of the secondary battery 30.
  • the battery ECU 20 transmits battery information such as the SOC and battery temperature of the secondary battery 30 to the vehicle ECU 10.
  • the vehicle ECU 10 controls charging / discharging of the secondary battery 30 by controlling the engine ECU 40, the inverter 50, and the like based on various battery information.
  • the secondary battery 30 supplies electric power to the motor 52.
  • the inverter 50 converts DC power supplied from the secondary battery 30 into AC power and supplies it to the motor 52 when the secondary battery 30 is discharged.
  • the engine 60 transmits power to the wheels via the power split mechanism 42, the speed reducer 44, and the drive shaft 46.
  • the motor 52 transmits power to the wheels via the speed reducer 44 and the dry shaft 46.
  • a part of the power of the engine 60 is supplied to the generator 54 via the power split mechanism 42 and used for charging.
  • the vehicle ECU 10 receives information on the operating state of the engine 60 from the engine ECU 40, the operation amount of the accelerator pedal, the operation amount of the brake pedal, the operation information such as the shift range set by the shift lever, and the battery information such as the SOC from the battery ECU 20. Is output to the engine ECU 40 or the inverter 50 to drive the engine 60 or the motor 52.
  • FIG. 2 shows the configuration of the secondary battery 30 and the battery ECU 20.
  • the secondary battery 30 is configured, for example, by connecting battery blocks B1 to B20 in series.
  • Battery blocks B1 to B20 are housed in a battery case 32.
  • Each of the battery blocks B1 to B20 is configured by electrically connecting a plurality of battery modules in series, and each battery module is configured by electrically connecting a plurality of single cells (cells) in series.
  • a plurality of temperature sensors 34 are provided in the battery case 32.
  • the voltage measuring unit 22 measures the terminal voltage of the secondary battery 30.
  • the voltage measuring unit 22 measures the terminal voltages of the battery blocks B1 to B20 and outputs them to the control unit 26.
  • the control unit 26 stores the voltage measurement value in the storage unit 28.
  • the output of the voltage data to the control unit 26 is performed at a preset period, for example, 100 msec.
  • the control unit 26 calculates the battery voltage V by summing the terminal voltages of the battery blocks B1 to B20.
  • the current measuring unit 23 measures the charging / discharging current I at the time of charging / discharging the secondary battery 30 and outputs it to the control unit 26.
  • the control unit 26 stores the current measurement value in the storage unit 28.
  • the current measuring unit 23 generates a current measurement value, for example, when charging is negative and when discharging is positive.
  • the temperature measurement unit 24 measures the battery temperature of the secondary battery 30 and outputs it to the control unit 26.
  • the control unit 26 stores temperature data in the storage unit 26.
  • the control unit 26 includes a DCIR (internal resistance) unit 261, a polarization voltage calculation unit 262, an electromotive force calculation unit 263, a charge state estimation unit 264, an extended Kalman filter (EKF) 265, and a correction unit 266.
  • the control unit 26 estimates the state of charge (SOC) of the secondary battery 30 based on the charge / discharge current I. Specifically, the SOC of the secondary battery 30 is estimated by integrating the charge / discharge current I, and information corresponding to the error generated by the measurement model is generated. Then, a Kalman gain is generated using the dispersion gain of the measurement model error, and the estimated SOC is corrected or updated using the generated Kalman gain.
  • SOC state of charge
  • FIG. 3 shows a detailed functional block diagram of the control unit 26.
  • the control unit 26 uses an internal resistance voltage drop calculated by the DCIR unit 261, a long-term polarization voltage and a short-term polarization voltage calculated by the polarization voltage calculation unit 262, and an electromotive force calculation unit 263.
  • the estimation unit 267 that estimates the terminal voltage of the secondary battery 30 using the calculated electromotive force
  • the error calculation unit 268 that calculates the error between the voltage measured by the voltage measurement unit 22 and the estimated terminal voltage
  • the error An extended Kalman filter (EKF) 265 that generates a Kalman gain by using it and calculates various correction values
  • a correction unit 266 that performs correction using the calculated correction values are provided.
  • EKF extended Kalman filter
  • the electromotive force calculation unit 263 calculates the estimated SOC obtained by integrating the charging current in the charge state estimation unit 264 by converting it into an electromotive force using a predetermined electromotive force map.
  • the extended Kalman filter (EKF) 265 calculates a current sensor offset correction value (first correction value) and an SOC correction value (second correction value) as correction values, and a long-term polarization voltage correction value (third correction value).
  • a short-term polarization correction value (fourth correction value) is calculated.
  • the correction unit 266 corrects the estimated current sensor offset value included in the current measurement unit 23 using the current sensor offset correction value, and corrects the estimated SOC calculated by the charging state estimation unit 264 using the SOC correction value. . Further, the correction unit 266 corrects the long-term polarization voltage and the short-term polarization voltage using the long-term polarization voltage correction value and the short-term polarization correction value, respectively.
  • the SOC is corrected using the extended Kalman filter (EKF) 265, but also the charge / discharge current measured by the current measurement unit 23 includes a measurement error, that is, a current sensor offset.
  • a measurement error that is, a current sensor offset.
  • the control unit 26 considers that the current measurement value from the current measurement unit 23 includes the current sensor offset, sets the current sensor offset estimated value ⁇ I, and sets the current measurement value I and the current sensor offset estimated value ⁇ I. Perform a difference operation. That is, I ⁇ I is calculated. The difference value is supplied to a DCIR (internal resistance) unit 261, a polarization voltage calculation unit 262, and a charge state estimation unit 264.
  • DCIR internal resistance
  • the DCIR (internal resistance) unit 261 plots a set of current measurement values and voltage measurement values in advance, calculates the DCIR (internal resistance) of the secondary battery 30 from the slope of the primary approximate line, and uses this DCIR voltage Calculate the drop (voltage drop). That is, DCIR ⁇ (I ⁇ I) is calculated.
  • the DCIR unit outputs the calculation result to the terminal voltage estimation unit 267.
  • the polarization voltage calculation unit 262 calculates the polarization voltage based on the equivalent circuit model of the polarization voltage.
  • the polarization voltage is calculated based on the change amount of the integrated capacity in a predetermined period.
  • the polarization voltage includes a short-term polarization voltage and a long-term polarization voltage, and the polarization voltage calculation unit 262 calculates a short-term polarization estimated value and a long-term polarization estimated value.
  • the polarization voltage calculation unit 262 outputs each calculation result to the terminal voltage estimation unit 267.
  • the charging state estimation unit 264 calculates the SOC estimated value by integrating the amount (I ⁇ I) obtained by subtracting the current sensor offset from the current measured value.
  • the charge state estimation unit 264 outputs the estimated SOC value obtained by integrating the current to the electromotive force calculation unit 263.
  • the electromotive force calculation unit 263 stores an electromotive force map that preliminarily defines the relationship between the SOC and the electromotive force in the memory, and obtains an electromotive force corresponding to the estimated SOC value with reference to the electromotive force map.
  • the electromotive force calculation unit outputs the obtained electromotive force to the terminal voltage estimation unit 267.
  • the terminal voltage estimation unit 267 estimates the voltage of the secondary battery 30 based on a predetermined measurement model.
  • the measurement model is different for discharging and charging. And the voltage from this model is It becomes.
  • ECRP Exponentially correlated Random Process
  • ⁇ I ( ⁇ ) ⁇ ⁇ I / ⁇ ⁇ I + ⁇ (2 / ⁇ ) ⁇ I ) 0.5 ⁇ .
  • (•) represents time differentiation
  • represents random noise.
  • FIG. 4 shows an equivalent model of the polarization voltage. The change in polarization voltage over time is It is.
  • FIG. 5 shows an example of an electromotive force map, that is, a map that defines the relationship between the SOC estimated value and the electromotive force.
  • the terminal voltage estimator 267 performs the long-term polarization voltage Vpl, the short-term polarization voltage Vps, the electromotive force Vemf (SOC) calculated from the estimated SOC value, and the internal resistance drop DCIR in accordance with the above formula (2) or (4)
  • the measured voltage Vb is calculated using (I ⁇ I).
  • the error calculation unit 268 calculates a difference between the voltage measurement value actually measured by the voltage measurement unit 22 and the measurement voltage Vb calculated by the terminal voltage estimation unit 267, that is, an error caused by the measurement model.
  • the calculated error is supplied to an extended Kalman filter (EKF) 265.
  • EKF extended Kalman filter
  • the extended Kalman filter (EKF) 265 generates a Kalman gain by using the dispersion gain of the measurement model error, calculates an SOC correction value by using the generated Kalman gain, and also calculates a current sensor offset correction value, a long-term polarization. A correction value and a short-term polarization correction value are calculated. These correction values are supplied to the correction unit 266.
  • the SOC correction value is supplied to a correction unit 266 that corrects the SOC.
  • Correction unit 266 corrects the SOC estimated value obtained by charge state estimating unit 264 using the SOC correction value.
  • the corrected SOC is transmitted to the vehicle ECU 10.
  • the current sensor offset correction value is supplied to the correction unit 266 that corrects the current sensor offset.
  • the correction unit 266 corrects the current sensor offset estimated value using the current sensor offset correction value.
  • the long-term polarization correction value and the short-term polarization correction value are supplied to the respective correction units 266 and used for correcting the long-term polarization estimation value and the short-term polarization estimation value.
  • FIG. 6 shows a processing flowchart in the present embodiment.
  • the measurement model is linearized (S101).
  • Nonlinear systems are Where x is a state vector, u is an input vector, and function f is a non-linear function with respect to x and u. This is approximated so that the derivative of x becomes a gain independent of x. That is, in continuous time, And in discrete time, It is.
  • A is a state matrix and B is an input matrix.
  • A is obtained by differentiating equations (1) and (3). In the case of discharge, In the case of charging, It is.
  • the discretized (k-1) component Adk-1 of A is Given in. Where E is It is. ⁇ T is the minimum time unit (sampling time) in discrete time. In processing by software, an operation cycle (for example, 100 msec) is used as a minimum time unit.
  • time update processing is performed (S102).
  • the time update process It is. Hat ( ⁇ ) represents an estimated value. Also, Is the time update state estimate, Is the observed update state estimate.
  • the error covariance estimate is It is.
  • P is a covariance value of the error between the true state and the estimated value, and is a matrix of the number of states ⁇ the number of states, which is 4 ⁇ 4 in this embodiment. If xk is true, the error is And the error covariance estimate is It is.
  • the diagonal component is the error covariance value of the state estimation value. In particular, It is.
  • observation update processing is performed (S104).
  • the observation update process It is. ( ⁇ ) in xk is a value before being corrected with the correction value, and (+) is an updated value after being corrected with the correction value.
  • the second term on the right side of equation (27) is the correction value
  • the Kalman gain that is, the observation update gain is Is calculated as Specifically, the long-term polarization voltage estimated value, the short-term polarization voltage estimated value, the SOC estimated value, and the current sensor offset estimated value are respectively Is updated.
  • R in equation (25) is a measurement error weight matrix, Is defined as
  • the state estimation error weight matrix Q and the measurement error weight matrix R By adjusting the balance between the state estimation error weight matrix Q and the measurement error weight matrix R, it is possible to set which of the estimation based on the measurement model and the observed value is used more. For example, when the estimation accuracy of the measurement model is high and the reliability is high, the SOC estimation by the measurement model is emphasized by setting Q ⁇ R. On the other hand, when it is assumed that the actual deviation from the measurement model is large, it is possible to perform SOC estimation based on the measured voltage by setting Q> R.
  • correction values for correcting the long-term polarization voltage estimated value, the short-term polarization voltage estimated value, the current sensor offset estimated value, and the SOC estimated value can be calculated and corrected by the extended Kalman filter (EKF). Therefore, the accuracy of SOC estimation can be improved.
  • EKF extended Kalman filter
  • a correction value for correcting the estimated value of the current sensor offset is calculated, and the current sensor offset estimated value is corrected by the equation (32) using the calculated correction value.
  • the offset can be estimated with high accuracy, and as a result, the SOC estimation accuracy can be improved.
  • the correction of the current sensor offset estimated value that is performed when the vehicle is normally stopped can be performed even during traveling, so that the SOC estimation accuracy can be improved even in the case of long-distance traveling that does not stop for a long time. it can.
  • ⁇ 1 / ⁇ I is “0” in the numbers (1), (3), (9), and (10).
  • the model using ECRP is preferable because it reaches the true error earlier and has less variation.
  • FIG. 7 shows simulation results of a model using ECRP and a model that changes with time at ⁇ .
  • reference numeral 100 denotes a model using ECRP
  • reference numeral 102 denotes a model that changes over time with ⁇ .
  • a phenomenon occurs in which the estimated value varies near the true value.
  • the model using ECRP the estimated value quickly approaches the true value and no variation occurs. From this simulation result, it is understood that a model using ECRP is more desirable.
  • the correction is calculated using the extended Kalman filter from the error between the estimated terminal voltage and the terminal voltage detected by the voltage detection unit.
  • the correction value particularly the current sensor, is calculated using this error.
  • the adaptive filter is not limited to the extended Kalman filter, and other adaptive filters such as an Unscented Kalman filter and a particle filter can also be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

 二次電池の充電状態を高精度に推定する装置。二次電池(30)の端子電圧を測定する電圧測定部(22)と、二次電池30の充放電電流を測定する電流測定部(23)と、二次電池(30)の充電状態SOCを推定する制御部(26)を備える。制御部(26)は、充放電電流から電流オフセットを差し引いた充放電電流を積算してSOCを推定する。また、測定モデルにより二次電池(30)の端子電圧を推定し、電圧測定部(22)で測定された端子電圧との誤差を用いて、推定された電流オフセットの第1補正値、及び推定されたSOCの第2補正値を算出し、電流オフセット及びSOCをそれぞれ補正する。

Description

二次電池の充電状態推定装置
 本発明は、二次電池の充電状態推定装置に関し、特に拡張カルマンフィルタを用いた充電状態の推定に関する。
 ニッケル水素二次電池やリチウムイオン二次電池等の二次電池の充電状態(SOC:State of Charge)を推定し、推定したSOCに基づいて二次電池の充放電を制御する技術が知られている。
 下記の特許文献には、バッテリに流れる充放電電流、バッテリの温度及び端子電圧を測定するセンシング部と、充放電電流を積算してバッテリのSOCを推定する予測部と、バッテリ温度、充放電電流、SOC、及び充放電電流の時間変化率のうちの少なくともいずれか1つに従って、測定モデルにより発生する誤差に対応する情報を生成するデータリジェクション部と、測定モデル及び誤差に対応する情報を利用して推定されたバッテリのSOCを修正する測定部とを含むバッテリ管理システムが開示されている。データリジェクション部は、具体的にはモデル化されたバッテリの等価回路を測定モデルに設定し、測定モデルにより発生する誤差の分散に対応するゲインを生成する。そして、測定モデル誤差の分散ゲインを利用してカルマンゲインを生成し、生成されたカルマンゲインを利用して、推定されたSOCを修正する。
 具体的には、予測部は、状態方程式を利用して、状態変数(x)であるバッテリのSOC及び拡散インピーダンスに印加される電圧Vdiffを予測する。予測部は、予測した状態変数及び状態変数の推定誤差に対する共分散を生成して測定部に供給する。測定部は、予測部で予測されたSOCと電圧Vdiffを利用して測定できる値、すなわちバッテリの端子電圧を予測する。測定部は、SOCとOCVとの間の非線形性を解決し、カルマンフィルタを使用するために微分形式の方程式を使用する。そして、測定部は、予測されたSOC及び電圧Vdiffを修正するためのカルマンゲインを生成する。カルマンゲインは、共分散を最小化する値に定められる。
特開2008-10420号公報
 上記の従来技術では、温度、SOC、電流の時間変化率及び電流の大きさに対して各々信頼できる期間と信頼できない期間とを設定し、区間により誤差の分散を調整している。すなわち、信頼できる期間では誤差の分散は予め設定された一定の値に固定されるが、信頼できない区間ではデータリジェクション部により変更される。例えば、電流の大きさが所定の基準値を超えて信頼できない区間では誤差の分散の値が増加し、カルマンゲインは減少し、予測部で予測したSOCが測定部で測定モデルにより修正される範囲が減少する。
 しかしながら、上記従来技術では、電流センサに含まれ得る電流オフセット(電流が流れていないときの電流センサの値)については考慮されていない。従って、電流値自体が所定の基準値を超えず信頼できる期間であっても、電流オフセットが含まれている場合には、この電流オフセット分を迅速に修正してSOCの精度を向上させることが必要であるところ、従来技術ではこのような修正が困難である。
 本発明の目的は、電流センサに含まれる電流オフセットを考慮することで、SOCの推定精度を向上させることができる二次電池の充電状態推定装置を提供することにある。
 本発明は、二次電池の充電状態推定装置であって、前記二次電池の充放電電流を検出する電流検出手段と、前記二次電池の端子電圧を検出する電圧検出手段と、前記電流検出手段に含まれる電流オフセットを推定し、該電流オフセットにより前記電流検出手段で検出された充放電電流を補正して前記二次電池の充電状態を推定する充電状態推定手段と、所定の測定モデルにより前記二次電池の端子電圧を推定する端子電圧推定手段と、推定された端子電圧と、前記電圧検出手段で検出された端子電圧との誤差を用いて、推定された前記電流オフセットの第1補正値を算出する補正値算出手段と、前記補正値算出手段で算出された第1補正値を用いて、推定された前記電流オフセットを補正するオフセット補正手段とを備えることを特徴とする。
 本発明の1つの実施形態では、前記補正値算出手段は、推定された端子電圧と、前記電圧検出手段で検出された端子電圧との誤差を用いて、推定された前記充電状態の第2補正値を算出し、前記第2補正値を用いて、推定された前記充電状態を補正する充電状態補正手段をさらに備える。また、本発明の他の実施形態では、前記所定の測定モデルは、前記二次電池の分極電圧の等価回路モデルに基づく。
 また、本発明の他の実施形態では、前記端子電圧推定手段は、前記等価回路モデルにおける長期分極電圧、短期分極電圧、内部抵抗による電圧降下分、及び前記充電状態推定手段により推定された前記充電状態に対応する起電力を用いて端子電圧を推定する。
 また、本発明の他の実施形態では、前記補正値算出手段は、拡張カルマンフィルタである。
 また、本発明の他の実施形態では、前記補正値算出手段は、拡張カルマンフィルタであり、前記拡張カルマンフィルタは、前記第1補正値、前記第2補正値に加え、前記長期分極電圧の第3補正値及び前記短期分極の第4補正値を算出し、さらに、前記補正値算出手段で算出された第3補正値を用いて、前記長期分極電圧を補正する長期分極電圧補正手段と、前記補正値算出手段で算出された第4補正値を用いて、前記短期分極電圧を補正する短期分極電圧補正手段とを備える。
 本発明によれば、電流検出手段(電流センサ)に含まれる電流オフセットを考慮することで、SOCの推定精度を向上させることができる。
実施形態のシステム構成図である。 実施形態の二次電池及び電池ECUの構成図である。 実施形態の制御部の機能ブロック図である。 分極電圧の等価回路図である。 起電力と充電状態SOCとの関係を示すグラフ図である。 実施形態の処理フローチャートである。 2つのモデルを用いた電流オフセットシミュレーション結果を示すグラフ図である。
 以下、図面に基づき本発明の実施形態について、ハイブリッド電気自動車を例にとり説明する。なお、本実施形態では電気自動車の1つであるハイブリッド電気自動車を例示するが、駆動源としてモータを備える他の電気自動車にも適用可能である。
 1.基本構成
 図1に、ハイブリッド電気自動車の概略構成を示す。車両ECU10は、インバータ50、エンジンECU40を制御する。エンジンECU40は、エンジン60を制御する。電池ECU20は、充電状態推定装置として機能し、二次電池30から電池電圧V,充放電電流I、電池温度T等の情報を受信して二次電池30の充電状態(SOC)を推定する。また、電池ECU20は、二次電池30のSOCや電池温度等の電池情報を車両ECU10に送信する。車両ECU10は、各種電池情報に基づいてエンジンECU40やインバータ50等を制御することで、二次電池30の充放電を制御する。
 二次電池30は、モータ52に電力を供給する。インバータ50は、二次電池30の放電時に、二次電池30から供給される直流電力を交流電力に変換してモータ52に供給する。
 エンジン60は、動力分割機構42、減速機44及びドライブシャフト46を介して車輪に動力を伝達する。モータ52は、減速機44及びドライシャフト46を介して車輪に動力を伝達する。二次電池30に充電が必要な場合、エンジン60の動力の一部が動力分割機構42を介して発電機54に供給され、充電に利用される。
 車両ECU10は、エンジンECU40からのエンジン60の運転状態の情報やアクセルペダルの操作量、ブレーキペダルの操作量、シフトレバーで設定されるシフトレンジ等の運転情報や電池ECU20からのSOC等の電池情報に基づいて、エンジンECU40やインバータ50に制御命令を出力し、エンジン60やモータ52を駆動させる。
 図2に、二次電池30及び電池ECU20の構成を示す。二次電池30は、例えば電池ブロックB1~B20を直列に接続して構成される。電池ブロックB1~B20は、電池ケース32に収容される。電池ブロックB1~B20は、それぞれ複数の電池モジュールを電気的に直列接続して構成され、各電池モジュールは、複数の単電池(セル)を電気的に直列接続して構成される。電池ケース32内には、複数の温度センサ34が設けられる。
 次に、電池ECU20の構成について説明する。
 電圧測定部22は、二次電池30の端子電圧を測定する。電圧測定部22は、電池ブロックB1~B20それぞれの端子電圧を測定し、制御部26に出力する。制御部26は、電圧計測値を記憶部28に格納する。制御部26への電圧データの出力は、予め設定された周期、例えば100msecで行われる。制御部26は、各電池ブロックB1~B20の端子電圧を合計することで電池電圧Vを算出する。
 電流測定部23は、二次電池30の充放電時における充放電電流Iを測定し、制御部26に出力する。制御部26は、電流計測値を記憶部28に格納する。電流測定部23は、例えば充電時をマイナス、放電時をプラスとして電流計測値を生成する。
 温度測定部24は、二次電池30の電池温度を測定し、制御部26に出力する。制御部26は、温度データを記憶部26に格納する。
 制御部26は、DCIR(内部抵抗)部261,分極電圧算出部262,起電力算出部263,充電状態推定部264,拡張カルマンフィルタ(EKF)265,及び補正部266を備える。制御部26は、充放電電流Iに基づいて二次電池30の充電状態(SOC)を推定する。具体的には、充放電電流Iを積算して二次電池30のSOCを推定し、測定モデルにより発生する誤差に対応する情報を生成する。そして、測定モデル誤差の分散ゲインを利用してカルマンゲインを生成し、生成されたカルマンゲインを利用して、推定されたSOCを補正あるいは更新する。
 図3に、制御部26の詳細な機能ブロック図を示す。制御部26は、所定の測定モデルに基づき、DCIR部261で算出される内部抵抗電圧降下分と、分極電圧算出部262で算出される長期分極電圧及び短期分極電圧と、起電力算出部263で算出される起電力を用いて二次電池30の端子電圧を推定する推定部267と、電圧測定部22で測定された電圧と推定端子電圧との誤差を算出する誤差算出部268と、誤差を用いてカルマンゲインを生成し、各種の補正値を算出する拡張カルマンフィルタ(EKF)265と、算出された補正値を用いて補正する補正部266とを備える。起電力算出部263は、充電状態推定部264で充電電流を積算して得られる推定SOCを、所定の起電力マップを用いて起電力に換算して算出する。拡張カルマンフィルタ(EKF)265は、補正値として、電流センサオフセット補正値(第1補正値)及びSOC補正値(第2補正値)を算出するとともに、長期分極電圧補正値(第3補正値)、短期分極補正値(第4補正値)を算出する。補正部266は、電流センサオフセット補正値を用いて電流測定部23に含まれる電流センサオフセット推定値を補正するとともに、SOC補正値を用いて充電状態推定部264で算出された推定SOCを補正する。また、補正部266は、長期分極電圧補正値及び短期分極補正値を用いてそれぞれ長期分極電圧及び短期分極電圧を補正する。
 本実施形態においては、拡張カルマンフィルタ(EKF)265を用いてSOCを補正しているだけでなく、電流測定部23で計測された充放電電流に計測誤差、すなわち電流センサオフセットが含まれていると想定し、この電流センサオフセット値を推定してSOCを推定するとともに、拡張カルマンフィルタ(EKF)265を用いて電流センサオフセットの推定値を補正することで電流センサオフセット推定の精度を向上させ、ひいてはSOC推定の精度を向上させる点に大きな特徴がある。
 以下、制御部26における電流センサオフセット推定値の補正方法、及びこの補正方法を用いたSOCの推定方法について説明する。
 2.SOCの推定方法 
 制御部26は、電流測定部23からの電流計測値には電流センサオフセットが含まれているとみなし、電流センサオフセット推定値δIを設定し、電流計測値Iと電流センサオフセット推定値δIとの差分演算を行う。すなわち、I-δIを演算する。差分値は、DCIR(内部抵抗)部261、分極電圧算出部262、及び充電状態推定部264に供給される。
 DCIR(内部抵抗)部261は、予め電流計測値と電圧計測値の組をプロットし、その一次近似直線の傾きから二次電池30のDCIR(内部抵抗)を算出し、このDCIRを用いた電圧降下(電圧ドロップ)分を演算する。すなわち、DCIR・(I-δI)を演算する。DCIR部は、演算結果を端子電圧推定部267に出力する。
 分極電圧算出部262は、分極電圧の等価回路モデルに基づいて分極電圧を演算する。分極電圧は、所定期間における積算容量の変化量に基づいて演算される。分極電圧には、短期分極電圧と長期分極電圧があり、分極電圧算出部262は、短期分極推定値及び長期分極推定値を演算する。分極電圧算出部262は、それぞれの演算結果を端子電圧推定部267に出力する。
 充電状態推定部264は、電流計測値から電流センサオフセットを差し引いた分(I-δI)を積算してSOC推定値を演算する。充電状態推定部264は、電流を積算して得られたSOC推定値を起電力算出部263に出力する。
 起電力算出部263は、予めSOCと起電力との関係を規定した起電力マップをメモリに記憶しており、起電力マップを参照してSOC推定値に対応する起電力を求める。起電力算出部は、求めた起電力を端子電圧推定部267に出力する。
 端子電圧推定部267は、予め定めた測定モデルに基づいて二次電池30の電圧を推定する。測定モデルは、放電の場合と充電の場合で異なり、放電の場合には、
Figure JPOXMLDOC01-appb-M000001
であり、このモデルから電圧は
Figure JPOXMLDOC01-appb-M000002
となる。
 一方、充電の場合には、
Figure JPOXMLDOC01-appb-M000003
であり、このモデルから電圧は
Figure JPOXMLDOC01-appb-M000004
となる。
但し、
x:状態推定値
Vpl:長期分極
Vps:短期分極
δI:電流センサオフセット推定値
u=I:計測電流値
y=Vb:計測電圧値
Cpl:分極電圧の等価回路モデルにおける長期分極キャパシタ
Cps:分極電圧の等価回路モデルにおける短期分極キャパシタ
Rpl:分極電圧の等価回路モデルにおける長期分極抵抗
Rps:分極回路の等価回路モデルにおける短期分極抵抗
DCIR:内部抵抗
ηc:充電効率
τδI:電流センサオフセットの相関時間
Vemf(SOC):SOC推定値から算出された起電力
である。また、本実施形態では、電流センサオフセットを、時間変化量が現在の値によって決まる、いわゆるECRP(Exponentially correlated Random Process)でモデル化して、δI(・)=-δI/τδI+σ(2/τδI0.5ωとしている。ここで、(・)は時間微分を表し、ωはランダムノイズを表す。
 図4に、分極電圧の等価モデルを示す。分極電圧の時間変化は、
Figure JPOXMLDOC01-appb-M000005
である。
 また、図5に、起電力マップ、すなわちSOC推定値と起電力との関係を規定するマップの一例を示す。
 端子電圧推定部267は、上記の(2)式あるいは(4)式に従って、長期分極電圧Vpl、短期分極電圧Vps、SOC推定値から算出された起電力Vemf(SOC)、及び内部抵抗降下分DCIR(I-δI)を用いて計測電圧Vbを算出する。
 誤差算出部268は、電圧測定部22で実測された電圧計測値と、端子電圧推定部267で算出された計測電圧Vbとの差分、すなわち測定モデルにより発生する誤差を算出する。算出された誤差は、拡張カルマンフィルタ(EKF)265に供給される。
 拡張カルマンフィルタ(EKF)265は、測定モデル誤差の分散ゲインを利用してカルマンゲインを生成し、生成されたカルマンゲインを利用して、SOC補正値を算出するとともに、電流センサオフセット補正値、長期分極補正値、短期分極補正値を算出する。これらの補正値は、補正部266に供給される。
 SOC補正値は、SOCを補正する補正部266に供給される。補正部266は、SOC補正値を用いて充電状態推定部264で得られたSOC推定値を補正する。補正後のSOCは、車両ECU10に送信される。
 電流センサオフセット補正値は、電流センサオフセットを補正する補正部266に供給される。補正部266は、電流センサオフセット補正値を用いて電流センサオフセット推定値を補正する。
 長期分極補正値及び短期分極補正値は、それぞれの補正部266に供給され、長期分極推定値及び短期分極推定値の補正に用いられる。
 図6に、本実施形態における処理フローチャートを示す。まず、測定モデルを線形化する(S101)。非線形システムは、
Figure JPOXMLDOC01-appb-M000006
であり、xは状態ベクトル、uは入力ベクトル、関数fはxとuについて非線形な関数である。これを、xの微分がxに依存しないゲインとなるように近似する。すなわち、連続時間では、
Figure JPOXMLDOC01-appb-M000007
であり、離散時間では、
Figure JPOXMLDOC01-appb-M000008
である。ここで、Aは状態行列、Bは入力行列である。Aは、具体的には、(1)式、(3)式を微分して得られ、放電の場合には、
Figure JPOXMLDOC01-appb-M000009
であり、充電の場合には、
Figure JPOXMLDOC01-appb-M000010
である。
 離散化されたAの(k-1)成分Adk-1は、
Figure JPOXMLDOC01-appb-M000011
で与えられる。ここで、Eは、
Figure JPOXMLDOC01-appb-M000012
である。ΔTは、離散時間における最小の時間単位(サンプリング時間)である。ソフトウェアによる処理では、動作周期(例えば100msec)が最小の時間単位として用いられる。
 線形化した後、次に、時間更新処理を行う(S102)。時間更新処理は、
Figure JPOXMLDOC01-appb-M000013
である。なお、ハット( ^ )は推定値を表す。また、
Figure JPOXMLDOC01-appb-M000014
は時間更新状態推定値であり、
Figure JPOXMLDOC01-appb-M000015
は観測更新状態推定値である。
 また、誤差共分散推定値は、
Figure JPOXMLDOC01-appb-M000016
である。Pは、真の状態と推定値の誤差の共分散値であり、状態数×状態数の行列で本実施形態では4×4である。xkを真の状態とすると、誤差は
Figure JPOXMLDOC01-appb-M000017
であり、誤差共分散推定値は、
Figure JPOXMLDOC01-appb-M000018
である。対角成分が状態推定値の誤差共分散値である。具体的には、
Figure JPOXMLDOC01-appb-M000019
Figure JPOXMLDOC01-appb-M000020
Figure JPOXMLDOC01-appb-M000021
Figure JPOXMLDOC01-appb-M000022
である。
 また、(16)式におけるQは、状態推定誤差の重み行列であり、
Figure JPOXMLDOC01-appb-M000023
で定義される。例えば、分極モデルによる長期分極の推定誤差が0.1Vと推定できるならば、Q1=0.01となる。
 時間更新処理を行った後、線形化を行う(S103)。すなわち、
Figure JPOXMLDOC01-appb-M000024
である。
 最後に、観測更新処理を行う(S104)。観測更新処理は、
Figure JPOXMLDOC01-appb-M000025
Figure JPOXMLDOC01-appb-M000026
Figure JPOXMLDOC01-appb-M000027
である。xkにおける(-)は補正値で補正される前の値であり、(+)は補正値で補正された後の更新値である。ここで、(27)式の右辺第2項が補正値であり、カルマンゲイン、すなわち観測更新ゲインを
Figure JPOXMLDOC01-appb-M000028
として算出される。具体的に示すと、長期分極電圧推定値、短期分極電圧推定値、SOC推定値、電流センサオフセット推定値は、それぞれ
Figure JPOXMLDOC01-appb-M000029
Figure JPOXMLDOC01-appb-M000030
Figure JPOXMLDOC01-appb-M000031
Figure JPOXMLDOC01-appb-M000032
によって更新処理される。
 なお、(25)式におけるRは、計測誤差の重み行列であり、
Figure JPOXMLDOC01-appb-M000033
として定義される。
 状態推定誤差の重み行列Qと計測誤差の重み行列Rのバランスを調整することで、測定モデルに基づく推定と観測値のいずれをより用いるかを設定することができる。例えば、測定モデルの推定精度が高く信頼性が高い場合にはQ<Rとすることで測定モデルによるSOC推定を重視する。一方、測定モデルと実際のずれが大きいことが想定される場合には、Q>Rとすることで計測電圧に基づくSOC推定を行うようにできる。
 以上のようにして、拡張カルマンフィルタ(EKF)により長期分極電圧推定値、短期分極電圧推定値、電流センサオフセット推定値、SOC推定値をそれぞれ補正するための補正値を算出して補正することができるので、SOC推定の精度を向上させることができる。特に、本実施形態では、電流センサオフセットの推定値を補正するための補正値を算出し、算出した補正値を用いて(32)式により電流センサオフセット推定値を補正しているので、電流センサオフセットを高精度に推定し、結果としてSOC推定精度を向上させることができる。また、本実施形態では、通常停車時に行われる電流センサオフセット推定値の補正を、走行時にも行うことができるため、長時間停車しない長距離走行の場合等でも、SOC推定精度を向上させることができる。
 なお、本実施形態では、電流センサオフセットを、時間変化量が現在の値によって決まる、いわゆるECRPでモデル化して、δI(・)=-δI/τδI+σ(2/τδI0.5ωとしているが、本発明には、電流センサオフセットを、ω(ランダムノイズ)で時間変化するようモデル化して、δI(・)=ωとする場合も含まれる。この場合、数(1)、(3)、(9)、(10)において、-1/τδIは「0」となる。但し、ECRPを使用したモデルの方が、真の誤差に早く到達し、ばらつきも少ないため好ましい。図7に、ECRPを使用したモデルと、ωで時間変化するモデルのシミュレーション結果を示す。図において、横軸は時間、縦軸は電流センサオフセットδIである。符号100はECRPを使用したモデル、符号102はωで時間変化するモデルを示す。ωで時間変化するモデルでは、真値付近で推定値がばらつくという現象が生じる。これに対し、ECRPを使用したモデルでは推定値が真値に迅速に近づき、ばらつきが生じない。このシミュレーション結果より、ECRPを使用したモデルの方が望ましいことが理解される。
 また、本実施形態では、推定された端子電圧と、電圧検出手段で検出された端子電圧との誤差から、拡張カルマンフィルタを用いて補正を算出したが、この誤差を用いて補正値、特に電流センサオフセット補正値を算出するものであれば、拡張カルマンフィルタに限られず、Unscentedカルマンフィルタや粒子フィルタ等、他の適応フィルタも用いることができる。
 10 車両ECU、20 電池ECU、22 電圧測定部、23 電流測定部、26 制御部。

Claims (6)

  1.  二次電池の充電状態推定装置であって、
     前記二次電池の充放電電流を検出する電流検出手段と、
     前記二次電池の端子電圧を検出する電圧検出手段と、
     前記電流検出手段に含まれる電流オフセットを推定し、該電流オフセットにより前記電流検出手段で検出された充放電電流を補正して前記二次電池の充電状態を推定する充電状態推定手段と、
     所定の測定モデルにより前記二次電池の端子電圧を推定する端子電圧推定手段と、
     推定された端子電圧と、前記電圧検出手段で検出された端子電圧との誤差を用いて、推定された前記電流オフセットの第1補正値を算出する補正値算出手段と、
     前記補正値算出手段で算出された第1補正値を用いて、推定された前記電流オフセットを補正するオフセット補正手段と、
     を備えることを特徴とする二次電池の充電状態推定装置。
  2.  請求項1記載の二次電池の充電状態推定装置において、
     前記補正値算出手段は、推定された端子電圧と、前記電圧検出手段で検出された端子電圧との誤差を用いて、推定された前記充電状態の第2補正値を算出し、
     前記第2補正値を用いて、推定された前記充電状態を補正する充電状態補正手段
     をさらに備えることを特徴とする二次電池の充電状態推定装置。
  3.  請求項1記載の二次電池の充電状態推定装置において、
     前記所定の測定モデルは、前記二次電池の分極電圧の等価回路モデルに基づくことを特徴とする二次電池の状態推定装置。
  4.  請求項3記載の二次電池の充電状態推定装置において、
     前記端子電圧推定手段は、前記等価回路モデルにおける長期分極電圧、短期分極電圧、内部抵抗による電圧降下分、及び前記充電状態推定手段により推定された前記充電状態に対応する起電力を用いて端子電圧を推定することを特徴とする二次電池の充電状態推定装置。
  5.  請求項1記載の二次電池の充電状態推定装置において、
     前記補正値算出手段は、拡張カルマンフィルタであることを特徴とする二次電池の充電状態推定装置。
  6.  請求項4記載の二次電池の充電状態推定装置において、
     前記補正値算出手段は、拡張カルマンフィルタであり、
     前記拡張カルマンフィルタは、前記第1補正値、前記第2補正値に加え、前記長期分極電圧の第3補正値及び前記短期分極の第4補正値を算出し、
     さらに、
     前記補正値算出手段で算出された第3補正値を用いて、前記長期分極電圧を補正する長期分極電圧補正手段と、
     前記補正値算出手段で算出された第4補正値を用いて、前記短期分極電圧を補正する短期分極電圧補正手段と、
     を備えることを特徴とする二次電池の充電状態推定装置。
PCT/JP2012/050407 2011-01-17 2012-01-11 二次電池の充電状態推定装置 WO2012098968A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012553663A JP5616464B2 (ja) 2011-01-17 2012-01-11 二次電池の充電状態推定装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-006795 2011-01-17
JP2011006795 2011-01-17

Publications (1)

Publication Number Publication Date
WO2012098968A1 true WO2012098968A1 (ja) 2012-07-26

Family

ID=46515598

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/050407 WO2012098968A1 (ja) 2011-01-17 2012-01-11 二次電池の充電状態推定装置

Country Status (2)

Country Link
JP (1) JP5616464B2 (ja)
WO (1) WO2012098968A1 (ja)

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104049215A (zh) * 2013-03-12 2014-09-17 通用汽车环球科技运作有限责任公司 使用扩展卡尔曼滤波器技术估计混合动力及电动车辆的电池充电状态
JP2014176196A (ja) * 2013-03-08 2014-09-22 Primearth Ev Energy Co Ltd 電池制御装置及び電池制御方法
JP2014182072A (ja) * 2013-03-21 2014-09-29 Primearth Ev Energy Co Ltd 二次電池の状態推定装置及び二次電池の状態推定方法
WO2015033503A1 (ja) * 2013-09-05 2015-03-12 カルソニックカンセイ株式会社 推定装置及び推定方法
CN105122074A (zh) * 2013-04-16 2015-12-02 约翰逊控制技术公司 用于自动停止应用的铅酸充电状态估计
JP2015224927A (ja) * 2014-05-27 2015-12-14 学校法人立命館 蓄電残量推定装置、蓄電池の蓄電残量を推定する方法、及びコンピュータプログラム
CN106062579A (zh) * 2014-03-03 2016-10-26 松下知识产权经营株式会社 电池状态估计装置以及电池状态估计方法
JPWO2014122721A1 (ja) * 2013-02-05 2017-01-26 日立オートモティブシステムズ株式会社 電池制御装置
CN106501724A (zh) * 2016-10-28 2017-03-15 合肥工业大学 一种基于rls和ekf算法的全钒液流电池soc估计方法
CN108287316A (zh) * 2018-01-15 2018-07-17 厦门大学 基于阈值扩展卡尔曼算法的蓄电池剩余电量估计方法
CN108375381A (zh) * 2018-02-08 2018-08-07 北方工业大学 一种基于扩展卡尔曼滤波的仿生偏振传感器多源误差标定方法
CN109633470A (zh) * 2019-01-04 2019-04-16 深圳市计量质量检测研究院 基于ekf-gpr和日常片段数据的电池实时全充时间的估算方法
JP2019132666A (ja) * 2018-01-30 2019-08-08 プライムアースEvエナジー株式会社 組電池の状態推定装置及び組電池の状態推定方法
CN110502778A (zh) * 2019-07-02 2019-11-26 江苏大学 一种基于卡尔曼滤波框架估算电池soc的自适应优化方法
KR20200010369A (ko) * 2017-06-29 2020-01-30 가부시끼가이샤 도시바 축전지 잔량 추정 장치, 축전지 잔량 추정 방법, 및 프로그램
CN111044913A (zh) * 2018-10-15 2020-04-21 大陆汽车有限责任公司 用于运行电池传感器的方法和电池传感器
WO2020188284A1 (en) * 2019-03-20 2020-09-24 Dyson Technology Limited Device and method of estimating an amount of charge of a battery
JP2020529027A (ja) * 2017-07-26 2020-10-01 インフェノクス ゲーエムベーハーInvenox Gmbh カルマンフィルタの安定した収束挙動を監視するための方法及びデバイス
JPWO2021009852A1 (ja) * 2019-07-16 2021-01-21
US10962597B2 (en) 2017-12-04 2021-03-30 Gs Yuasa International Ltd. Measurement apparatus, energy storage apparatus, measurement system, and offset error measurement method
EP3805768A4 (en) * 2019-01-23 2021-08-25 Lg Chem, Ltd. BATTERY MANAGEMENT APPARATUS, BATTERY MANAGEMENT PROCESS AND BATTERY PACK
CN113567867A (zh) * 2021-08-02 2021-10-29 潍柴动力股份有限公司 一种电池建模数据处理方法、装置、存储介质和设备
KR102412606B1 (ko) * 2022-02-10 2022-06-22 이중휘 배터리의 soh 추정 장치 및 방법
KR102416009B1 (ko) * 2022-02-10 2022-06-30 이중휘 배터리의 soc 추정 장치 및 방법
KR102424671B1 (ko) * 2022-02-10 2022-07-25 주식회사 크레스트 리튬인산철 배터리의 soc 추정 장치 및 방법
CN115327385A (zh) * 2022-07-29 2022-11-11 武汉理工大学 一种动力电池soc值估算方法及系统
EP4024066A4 (en) * 2020-05-15 2022-12-07 Lg Energy Solution, Ltd. BATTERY DIAGNOSTIC DEVICE AND METHOD THEREOF
CN115840148A (zh) * 2022-01-07 2023-03-24 宁德时代新能源科技股份有限公司 确定电池荷电状态的方法、装置、电子设备及存储介质
JP7485566B2 (ja) 2020-08-12 2024-05-16 日立グローバルライフソリューションズ株式会社 電池状態推定装置、電池状態推定方法およびプログラム
JP7499591B2 (ja) 2020-03-25 2024-06-14 エナジーウィズ株式会社 電池状態推定装置および電池状態推定方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10353007B2 (en) * 2015-05-28 2019-07-16 Mitsubishi Electric Corporation Rechargeable battery parameter estimation apparatus and rechargeable battery parameter estimation method for calculating first and second coefficients which are partial derivatives of an estimated value of the battery state-of-charge

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006105821A (ja) * 2004-10-06 2006-04-20 Toyota Motor Corp 二次電池の充電容量推定装置およびその方法
JP2008010420A (ja) * 2006-06-26 2008-01-17 Samsung Sdi Co Ltd バッテリー管理システム、バッテリーsocの推定方法及びバッテリー管理システムの駆動方法
JP2009042091A (ja) * 2007-08-09 2009-02-26 Nissan Motor Co Ltd 電動車両システム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006105821A (ja) * 2004-10-06 2006-04-20 Toyota Motor Corp 二次電池の充電容量推定装置およびその方法
JP2008010420A (ja) * 2006-06-26 2008-01-17 Samsung Sdi Co Ltd バッテリー管理システム、バッテリーsocの推定方法及びバッテリー管理システムの駆動方法
JP2009042091A (ja) * 2007-08-09 2009-02-26 Nissan Motor Co Ltd 電動車両システム

Cited By (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014122721A1 (ja) * 2013-02-05 2017-01-26 日立オートモティブシステムズ株式会社 電池制御装置
US9952288B2 (en) 2013-02-05 2018-04-24 Hitachi Automotive Systems, Ltd. Battery controller
JP2014176196A (ja) * 2013-03-08 2014-09-22 Primearth Ev Energy Co Ltd 電池制御装置及び電池制御方法
CN104049215A (zh) * 2013-03-12 2014-09-17 通用汽车环球科技运作有限责任公司 使用扩展卡尔曼滤波器技术估计混合动力及电动车辆的电池充电状态
JP2014182072A (ja) * 2013-03-21 2014-09-29 Primearth Ev Energy Co Ltd 二次電池の状態推定装置及び二次電池の状態推定方法
CN105122074A (zh) * 2013-04-16 2015-12-02 约翰逊控制技术公司 用于自动停止应用的铅酸充电状态估计
WO2015033503A1 (ja) * 2013-09-05 2015-03-12 カルソニックカンセイ株式会社 推定装置及び推定方法
CN105378496A (zh) * 2013-09-05 2016-03-02 日本康奈可株式会社 估计装置以及估计方法
JP2015052483A (ja) * 2013-09-05 2015-03-19 カルソニックカンセイ株式会社 推定装置及び推定方法
CN106062579A (zh) * 2014-03-03 2016-10-26 松下知识产权经营株式会社 电池状态估计装置以及电池状态估计方法
EP3115797A4 (en) * 2014-03-03 2017-03-15 Panasonic Intellectual Property Management Co., Ltd. Battery state estimation device and method of estimating battery state
JP2015224927A (ja) * 2014-05-27 2015-12-14 学校法人立命館 蓄電残量推定装置、蓄電池の蓄電残量を推定する方法、及びコンピュータプログラム
CN106501724A (zh) * 2016-10-28 2017-03-15 合肥工业大学 一种基于rls和ekf算法的全钒液流电池soc估计方法
KR20200010369A (ko) * 2017-06-29 2020-01-30 가부시끼가이샤 도시바 축전지 잔량 추정 장치, 축전지 잔량 추정 방법, 및 프로그램
KR102347014B1 (ko) 2017-06-29 2022-01-04 가부시끼가이샤 도시바 축전지 잔량 추정 장치, 축전지 잔량 추정 방법, 및 프로그램
US11255916B2 (en) 2017-07-26 2022-02-22 Invenox Gmbh Method and device for monitoring a stable convergence behavior of a Kalman filter
JP2020529027A (ja) * 2017-07-26 2020-10-01 インフェノクス ゲーエムベーハーInvenox Gmbh カルマンフィルタの安定した収束挙動を監視するための方法及びデバイス
JP7030191B2 (ja) 2017-07-26 2022-03-04 インフェノクス ゲーエムベーハー カルマンフィルタの安定した収束挙動を監視するための方法及びデバイス
US10962597B2 (en) 2017-12-04 2021-03-30 Gs Yuasa International Ltd. Measurement apparatus, energy storage apparatus, measurement system, and offset error measurement method
CN108287316B (zh) * 2018-01-15 2020-04-03 厦门大学 基于阈值扩展卡尔曼算法的蓄电池剩余电量估计方法
CN108287316A (zh) * 2018-01-15 2018-07-17 厦门大学 基于阈值扩展卡尔曼算法的蓄电池剩余电量估计方法
JP7036605B2 (ja) 2018-01-30 2022-03-15 プライムアースEvエナジー株式会社 組電池の状態推定装置及び組電池の状態推定方法
JP2019132666A (ja) * 2018-01-30 2019-08-08 プライムアースEvエナジー株式会社 組電池の状態推定装置及び組電池の状態推定方法
CN108375381B (zh) * 2018-02-08 2021-12-21 北方工业大学 一种基于扩展卡尔曼滤波的仿生偏振传感器多源误差标定方法
CN108375381A (zh) * 2018-02-08 2018-08-07 北方工业大学 一种基于扩展卡尔曼滤波的仿生偏振传感器多源误差标定方法
EP3640652A1 (de) * 2018-10-15 2020-04-22 Continental Automotive GmbH Verfahren zum betrieb eines batteriesensors und batteriesensor
US11209490B2 (en) 2018-10-15 2021-12-28 Continental Automotive Gmbh Method for operating a battery sensor, and battery sensor
CN111044913A (zh) * 2018-10-15 2020-04-21 大陆汽车有限责任公司 用于运行电池传感器的方法和电池传感器
CN109633470A (zh) * 2019-01-04 2019-04-16 深圳市计量质量检测研究院 基于ekf-gpr和日常片段数据的电池实时全充时间的估算方法
CN109633470B (zh) * 2019-01-04 2021-04-16 深圳市计量质量检测研究院 基于ekf-gpr和日常片段数据的电池实时全充时间的估算方法
US11493557B2 (en) 2019-01-23 2022-11-08 Lg Energy Solution, Ltd. Battery management apparatus, battery management method, and battery pack
EP3805768A4 (en) * 2019-01-23 2021-08-25 Lg Chem, Ltd. BATTERY MANAGEMENT APPARATUS, BATTERY MANAGEMENT PROCESS AND BATTERY PACK
WO2020188284A1 (en) * 2019-03-20 2020-09-24 Dyson Technology Limited Device and method of estimating an amount of charge of a battery
CN110502778A (zh) * 2019-07-02 2019-11-26 江苏大学 一种基于卡尔曼滤波框架估算电池soc的自适应优化方法
JP7151900B2 (ja) 2019-07-16 2022-10-12 日本電気株式会社 推定装置、制御システム、推定方法及びプログラム
JPWO2021009852A1 (ja) * 2019-07-16 2021-01-21
WO2021009852A1 (ja) * 2019-07-16 2021-01-21 日本電気株式会社 推定装置、制御システム、推定方法及びプログラム
JP7499591B2 (ja) 2020-03-25 2024-06-14 エナジーウィズ株式会社 電池状態推定装置および電池状態推定方法
EP4024066A4 (en) * 2020-05-15 2022-12-07 Lg Energy Solution, Ltd. BATTERY DIAGNOSTIC DEVICE AND METHOD THEREOF
JP7485566B2 (ja) 2020-08-12 2024-05-16 日立グローバルライフソリューションズ株式会社 電池状態推定装置、電池状態推定方法およびプログラム
CN113567867A (zh) * 2021-08-02 2021-10-29 潍柴动力股份有限公司 一种电池建模数据处理方法、装置、存储介质和设备
CN115840148A (zh) * 2022-01-07 2023-03-24 宁德时代新能源科技股份有限公司 确定电池荷电状态的方法、装置、电子设备及存储介质
CN115840148B (zh) * 2022-01-07 2024-01-23 宁德时代新能源科技股份有限公司 确定电池荷电状态的方法、装置、电子设备及存储介质
KR102412606B1 (ko) * 2022-02-10 2022-06-22 이중휘 배터리의 soh 추정 장치 및 방법
KR102416009B1 (ko) * 2022-02-10 2022-06-30 이중휘 배터리의 soc 추정 장치 및 방법
KR102424671B1 (ko) * 2022-02-10 2022-07-25 주식회사 크레스트 리튬인산철 배터리의 soc 추정 장치 및 방법
CN115327385A (zh) * 2022-07-29 2022-11-11 武汉理工大学 一种动力电池soc值估算方法及系统

Also Published As

Publication number Publication date
JP5616464B2 (ja) 2014-10-29
JPWO2012098968A1 (ja) 2014-06-09

Similar Documents

Publication Publication Date Title
JP5616464B2 (ja) 二次電池の充電状態推定装置
JP5595361B2 (ja) 二次電池の充電状態推定装置
CN107533109B (zh) 电池控制装置以及电动车辆系统
JP5393837B2 (ja) バッテリの充電率推定装置
US10955479B2 (en) Battery control device
CN104890526B (zh) 车辆、系统和方法
Sun et al. Adaptive unscented Kalman filtering for state of charge estimation of a lithium-ion battery for electric vehicles
JP4692246B2 (ja) 二次電池の入出力可能電力推定装置
JP6317031B2 (ja) 電池制御装置、および、車両システム
Chaoui et al. Online parameter and state estimation of lithium-ion batteries under temperature effects
JP5393619B2 (ja) バッテリの充電率推定装置
US20130185007A1 (en) Method and configuration for estimating the efficiency of at least one battery unit of a rechargeable battery
US10124696B2 (en) Estimation and compensation of battery measurement and asynchronization biases
CN110418972A (zh) 电池单体充电状态估计方法和电池状态监测系统
WO1999061929A1 (en) Means for estimating charged state of battery and method for estimating degraded state of battery
CN105283773A (zh) 电池的健康度估计装置以及健康度估计方法
CN105304952A (zh) 用于车辆控制的降阶电化学电池模型
CN104773086A (zh) 使用滚动时域回归分析来估计电池阻抗参数的方法和系统
JP2012057998A (ja) 二次電池の充電率算出装置および充電率算出方法
CN105319508A (zh) 用于电池荷电状态估计的方法和系统
CN105304965A (zh) 基于降阶电化学模型的电池功率容量估计
JP5803767B2 (ja) 2次電池の充電相当量算出装置
JP2014176196A (ja) 電池制御装置及び電池制御方法
JP5090865B2 (ja) 起電力演算装置および充電状態推定装置
JP2018084548A (ja) 二次電池の状態推定装置及び車両

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12737053

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012553663

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12737053

Country of ref document: EP

Kind code of ref document: A1