[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2012098794A1 - 電池制御装置 - Google Patents

電池制御装置 Download PDF

Info

Publication number
WO2012098794A1
WO2012098794A1 PCT/JP2011/079144 JP2011079144W WO2012098794A1 WO 2012098794 A1 WO2012098794 A1 WO 2012098794A1 JP 2011079144 W JP2011079144 W JP 2011079144W WO 2012098794 A1 WO2012098794 A1 WO 2012098794A1
Authority
WO
WIPO (PCT)
Prior art keywords
storage battery
deterioration rate
energy amount
storage
parallel
Prior art date
Application number
PCT/JP2011/079144
Other languages
English (en)
French (fr)
Inventor
藤田 武志
木下 拓哉
康宏 柳原
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to CN201180065411.3A priority Critical patent/CN103329392B/zh
Priority to US13/978,202 priority patent/US9077184B2/en
Priority to JP2012553580A priority patent/JP5598553B2/ja
Priority to KR1020137015136A priority patent/KR101530793B1/ko
Priority to EP11856141.4A priority patent/EP2667479B1/en
Publication of WO2012098794A1 publication Critical patent/WO2012098794A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/007188Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters
    • H02J7/007192Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature
    • H02J7/007194Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature of the battery
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/443Methods for charging or discharging in response to temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/007182Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from AC mains by converters
    • H02J7/04Regulation of charging current or voltage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a battery control device for controlling a storage battery system formed by connecting a plurality of storage batteries in parallel.
  • a stationary storage battery system is known as a storage battery system used in a relatively severe temperature environment.
  • a stationary storage battery system in order to increase the battery capacity, one in which a plurality of storage batteries are connected in parallel is usually used. In such a configuration in which a plurality of storage batteries are connected in parallel, they are connected in parallel.
  • Each storage battery is often placed in a different temperature environment. If the storage battery is placed in such a different temperature environment, the deterioration rate between the storage batteries will be different, which promotes the deterioration variation between the storage batteries. As a result, there is a problem that the lifetime of the entire stationary storage battery system is shortened.
  • a method of adjusting the temperature of each storage battery is also conceivable, but in this case, it becomes necessary to provide a temperature control system corresponding to each storage battery.
  • Patent Document 1 in a storage battery system in which two storage batteries are connected in parallel, when a temperature difference occurs between the storage batteries, in order to suppress the promotion of deterioration variation between the storage batteries.
  • a technique for charging a storage battery having a high temperature after charging the storage battery having a low temperature and completing charging of the storage battery having a low temperature is disclosed.
  • the problem to be solved by the present invention is a battery control device that controls a storage battery system in which a plurality of storage batteries are connected in parallel, and without using a temperature control system, suppresses deterioration variation between the storage batteries connected in parallel, Thereby, there exists in improving the lifetime of a storage battery system.
  • the present invention detects the temperature and energy amount of each storage battery connected in parallel, calculates the deterioration rate of each storage battery from the detected temperature and energy amount, and each storage battery The above problem is solved by controlling the amount of power input / output to / from each storage battery so that the deterioration rate of the battery approaches.
  • the deterioration of each storage battery is controlled in order to control the amount of power input to and output from each storage battery so that the deterioration speed of each storage battery calculated based on the temperature and energy amount of each storage battery connected in parallel approaches.
  • the variation in speed can be suppressed, whereby the deterioration variation between the storage batteries can be suppressed, and as a result, the life of the storage battery system can be improved.
  • FIG. 1 is a configuration diagram illustrating a storage battery system according to the present embodiment.
  • FIG. 2 is a functional block diagram of the controller 40.
  • FIG. 3A is a graph showing the relationship between the temperature and deterioration rate of each storage battery
  • FIG. 3B is a graph showing the relationship between the energy amount of each storage battery and the deterioration rate.
  • FIG. 4 is a flowchart showing the degradation rate adjustment process according to the present embodiment.
  • FIG. 5A is a diagram showing the relationship between the temperature and deterioration rate of each storage battery 1a, 1b in one scene example
  • FIG. 5B is the energy amount of each storage battery 1a, 1b in one scene example. It is a figure which shows the relationship with a deterioration rate.
  • FIG. 1 is a configuration diagram showing a storage battery system according to the present embodiment.
  • the storage battery system according to the present embodiment is a stationary storage battery system will be described as an example, but the present invention is not particularly limited thereto.
  • the storage battery system includes a first storage battery 1a and a second storage battery 1b, a converter 10, an AC power supply 20, an AC load 30, and a controller 40, as shown in FIG.
  • the first storage battery 1a and the second storage battery 1b are connected to each other in parallel and connected to the converter 10 via a power line.
  • the 1st storage battery 1a and the 2nd storage battery 1b can supply the electric power from the alternating current power supply 20 via the converter 10, and can supply the electric power to the alternating current load 30.
  • a thick solid line indicates a power line
  • a broken line indicates a communication line.
  • the first storage battery 1a is, for example, a lithium ion secondary battery, and the first storage battery 1a detects the voltage Va of the first storage battery 1a and the first temperature sensor 2a for detecting the temperature Ta of the first storage battery 1a.
  • the 1st voltage sensor 3a for detecting, and the 1st current sensor 4a for detecting the electric current Ia input-output to the 1st storage battery 1a are provided.
  • the temperature Ta, voltage Va, and current Ia of the first storage battery 1a detected by the first temperature sensor 2a, the first voltage sensor 3a, and the first current sensor 4a are transmitted to the controller 40 at predetermined intervals.
  • the 1st storage battery 1a is provided with the 1st power switchgear 5a, and connection / disconnection with a power line is switched by carrying out on / off control of the 1st power switchgear 5a.
  • the second storage battery 1b is, for example, a lithium ion secondary battery
  • the second storage battery 1b is also a second temperature sensor 2b for detecting the temperature Tb of the second storage battery 1b, and the voltage Vb of the second storage battery 1b.
  • a second current sensor 4b for detecting a current Ib input / output to / from the second storage battery 1b.
  • the converter 10 is a converter for performing conversion between DC power and AC power.
  • the converter 10 converts the DC power from the first storage battery 1a and the second storage battery 1b into AC power, supplies the AC power to the AC load 30, and converts the AC power from the AC power source 20 into DC power. And it supplies to the 2nd storage battery 1b. Further, converter 10 detects charging power from AC power supply 20 and load power of AC load 30, and transmits these to controller 40.
  • the controller 40 obtains the temperature Ta, the voltage Va and the current Ia of the first storage battery 1a from the first temperature sensor 2a, the first voltage sensor 3a and the first current sensor 4a, and the second temperature sensor 2b and the second voltage sensor 3b. And from the second current sensor 4b, the temperature Tb, the voltage Vb and the current Ib of the second storage battery 1b, the charging power from the AC power source 20 and the load power of the AC load 30 are obtained from the converter 10, respectively.
  • the storage battery system is controlled based on the information.
  • FIG. 2 shows a functional block diagram of the controller 40.
  • the controller 40 includes a first energy amount calculation unit 41a, a second energy amount calculation unit 41b, a first deterioration rate calculation unit 42a, a second deterioration rate calculation unit 42b, a deterioration rate comparison unit 43, An output power detection unit 44 and a power switching condition setting unit 45 are provided.
  • the first energy amount calculation unit 41a acquires the voltage Va and the current Ia of the first storage battery 1a detected by the first voltage sensor 3a and the first current sensor 4a, and based on the voltage Va and the current Ia, the first energy sensor 41a The amount of energy (charge capacity) Sa of the storage battery 1a is calculated.
  • the energy amount Sa of the first storage battery 1a is calculated by, for example, a method using a table indicating the relationship between the voltage Va and the energy amount Sa, a method of integrating the current Ia, or a method combining these methods. Can do.
  • the calculated energy amount Sa of the first storage battery 1a is sent to the first deterioration rate calculation unit 42a.
  • the second energy amount calculation unit 41b acquires the voltage Vb and the current Ib of the second storage battery 1b detected by the second voltage sensor 3b and the second current sensor 4b, and based on the voltage Vb and the current Ib, the second energy sensor 41b The amount of energy (charge capacity) Sb of the storage battery 1b is calculated.
  • the energy amount Sb of the second storage battery 1b can be calculated by the same method as the energy amount Sa of the first storage battery 1a described above.
  • the calculated energy amount Sb of the second storage battery 1b is sent to the second deterioration rate calculation unit 42b.
  • the first deterioration rate calculation unit 42a is based on the temperature Ta of the first storage battery 1a detected by the first temperature sensor 2a and the energy amount Sa of the first storage battery 1a calculated by the first energy amount calculation unit 41a.
  • the deterioration rate Da of the first storage battery 1a is calculated.
  • the first deterioration rate calculation unit 42a first uses a temperature-deterioration rate table indicating the relationship between the temperature stored in advance and the deterioration rate based on the temperature Ta of the first storage battery 1a.
  • a deterioration rate DTa based on the temperature of the first storage battery 1a is obtained.
  • the first deterioration rate calculation unit 42a uses the energy amount-deterioration rate table indicating the relationship between the energy amount stored in advance and the deterioration rate based on the energy amount Sa of the first storage battery 1a to A deterioration rate DSa based on the energy amount of the storage battery 1a is obtained. And the 1st degradation rate calculating part 42a calculates degradation rate Da of the 1st storage battery 1a based on degradation rate DTa based on these temperature, and degradation rate DSa based on energy amount.
  • the second deterioration rate calculation unit 42b is based on the temperature Tb of the second storage battery 1b detected by the second temperature sensor 2b and the energy amount Sb of the second storage battery 1b calculated by the second energy amount calculation unit 41b. Thus, the deterioration rate Db of the second storage battery 1b is calculated. In addition, the deterioration rate Db of the 2nd storage battery 1b is the deterioration rate DTb based on the temperature of the 2nd storage battery 1b, and the deterioration rate based on the energy amount of the 2nd storage battery 1b similarly to the above-mentioned 1st deterioration rate calculating part 42a.
  • the second deterioration rate calculation unit 42b sends the calculated deterioration rate Db of the second storage battery 1b to the deterioration rate comparison unit 43 together with the deterioration rate DTb based on the temperature and the deterioration rate DSb based on the energy amount.
  • FIG. 3 (A) is a graph showing the relationship between the temperature of each storage battery 1a, 1b and the deterioration rate
  • FIG. 3 (B) is a graph showing the relationship between the energy amount of each storage battery 1a, 1b and the deterioration rate.
  • the deterioration of the first storage battery 1a and the second power storage 1b has a characteristic that it is mainly caused by the influence of its temperature and energy amount. That is, as shown in FIG. 3A, the first storage battery 1a and the second storage battery 1b have a characteristic that the deterioration rate increases as the temperature increases.
  • the 1st storage battery 1a and the 2nd electrical storage 1b have the characteristic that a deterioration rate changes according to energy amount.
  • a temperature-deterioration rate table showing the relationship between temperature and deterioration rate, and a relationship between energy amount and deterioration rate are shown.
  • An energy amount-deterioration rate table is stored in advance, and based on these, deterioration rates DTa, DTb based on the temperature of each storage battery 1a, 1b, deterioration rates DSa, TSb based on the energy amount are obtained, and based on these, The deterioration rates Da and Db of the storage batteries 1a and 1b are calculated.
  • the deterioration rate comparison unit 43 compares the deterioration rate Da of the first storage battery 1a with the deterioration rate Db of the second storage battery 1b, and determines whether or not the difference (
  • the target energy amount required for making the deterioration rates of the first storage battery 1a and the second storage battery 1b close to each other and approximately equal to each other is calculated.
  • a specific method for calculating the target energy amount by the deterioration rate comparison unit 43 will be described later.
  • the input / output power detection unit 44 detects the charging power from the AC power supply 20 and the load power of the AC load 30 and sends the detection result to the deterioration rate comparison unit 43 and the power switching condition setting unit 45.
  • the power switching condition setting unit 45 uses the target energy amount calculated by the deterioration rate comparison unit 43, the charging power from the AC power source 20 detected by the input / output power detection unit 44, and the load power information of the AC load 30. Based on this, a power switching condition for cutting off / connecting the first power switching device 5a provided in the first storage battery 1a and the second power switching device 5b provided in the second storage battery 1b is set. Send power switching command. A specific method for setting the power switching condition by the power switching condition setting unit 45 will be described later.
  • FIG. 4 is a flowchart showing the degradation rate adjustment process according to the present embodiment.
  • step S1 the temperature Ta, voltage Va, and current Ia of the first storage battery 1a are acquired by the first energy amount calculation unit 41a and the first deterioration rate calculation unit 42a of the controller 40.
  • the temperature Tb, voltage Vb, and current Ib of the second storage battery 1b are acquired by the second energy amount calculation unit 41b and the second deterioration rate calculation unit 42b of the controller 40.
  • step S2 the first energy amount calculation unit 41a of the controller 40 calculates the energy amount Sa of the first storage battery 1a based on the voltage Va and the current Ia of the first storage battery 1a acquired in step S1. The amount of energy Sa that has been sent is sent to the first deterioration rate calculator 42a.
  • the second energy amount calculation unit 41b of the controller 40 calculates the energy amount Sb of the second storage battery 1b based on the voltage Vb and current Ib of the second storage battery 1b acquired in step S1, The calculated energy amount Sb is sent to the second deterioration rate calculation unit 42b.
  • step S3 based on the temperature Ta of the first storage battery 1a acquired in step S1 and the energy amount Sa of the first storage battery 1a calculated in step S2 by the first deterioration rate calculation unit 42a of the controller 40, FIG.
  • FIG. Using the temperature-deterioration rate table showing the relationship between the temperature and the deterioration rate shown in (A) and the energy amount-deterioration rate table showing the relationship between the energy amount and the deterioration rate shown in FIG.
  • the deterioration rate DTa based on this and the deterioration rate DSa based on the amount of energy are calculated, and based on these, the deterioration rate Da of the first storage battery 1a is calculated.
  • the first deterioration rate calculation unit 42a sends the calculated deterioration rate Da of the first storage battery 1a to the deterioration rate comparison unit 43 together with the deterioration rate DTa based on the temperature and the deterioration rate DSa based on the energy amount.
  • FIG. Using the temperature-deterioration rate table showing the relationship between the temperature and the deterioration rate shown in FIG. 3A and the energy amount-deterioration rate table showing the relationship between the energy amount and the deterioration rate shown in FIG.
  • the deterioration rate DTb based on the above and the deterioration rate DSb based on the energy amount are calculated, and based on these, the deterioration rate Db of the second storage battery 1b is calculated.
  • the second deterioration rate calculation unit 42b sends the calculated deterioration rate Db of the second storage battery 1b to the deterioration rate comparison unit 43 together with the deterioration rate DTb based on the temperature and the deterioration rate DSb based on the energy amount.
  • step S4 the deterioration rate comparison unit 43 of the controller 40 compares the deterioration rate Da of the first storage battery 1a calculated in step S3 with the deterioration rate Db of the second storage battery 1b. A determination is made whether or not the value is greater than or equal to ⁇ . If the difference between the deterioration rate Da of the first storage battery 1a and the deterioration rate Db of the second storage battery 1b is equal to or greater than the predetermined value ⁇ , it is determined that a process for adjusting the deterioration rate is necessary, and the process proceeds to step S5.
  • step S5 the input / output power detection unit 44 detects the charging power from the AC power source 20 and the load power of the AC load 30, and the input / output power detection unit 44 charges when the charging power is detected.
  • the load power is sent to the deterioration speed comparison unit 43 and the power switching condition setting unit 45.
  • the deterioration rate comparison unit 43 determines whether it is possible to shut off one of the first storage battery 1a and the second storage battery 1b from the power line based on the detected charging power or load power. Do.
  • step S6 when any one of the 1st storage battery 1a and the 2nd storage battery 1b can be interrupted
  • the present process is terminated.
  • the first storage battery 1a and the second storage battery 1b can be cut off from the power line is determined when load power is detected, that is, the first storage battery 1a and the second storage battery 1b. Is in a discharged state (output state), it is performed based on whether the detected load power can be supplied by only one of the first storage battery 1a and the second storage battery 1b. .
  • the detected charging power is used as the first storage battery 1a and the second storage battery 1b. Of these, it is performed based on whether or not input is possible only to one of them.
  • the deterioration rate comparison unit 43 calculates the target energy amount. Specifically, the deterioration rate comparison unit 43 sets the deterioration rate DTa based on the temperature of the first storage battery 1a, the deterioration rate DSa based on the energy amount, and the deterioration rate DTb and energy amount based on the temperature of the second storage battery 1b.
  • the degradation rate DSa ′ or DSb ′ that satisfies the following formula (1) or the following formula (2) is calculated from the degradation rate DSb based on it, and the target energy amount Sa ′ such that the degradation rate becomes DSa ′ or DSb ′.
  • Sb ′ is calculated.
  • (DTa ⁇ DSa) (DTb ⁇ DSb ′) (1)
  • (DTa ⁇ DSa ′) (DTb ⁇ DSb) (2)
  • FIG. 5 (A) is a diagram showing the relationship between the temperature of each storage battery 1a, 1b and the deterioration rate
  • FIG. 5 (B) is the relationship between the energy amount of each storage battery 1a, 1b and the deterioration rate.
  • FIG. As shown in FIGS. 5A and 5B, in this example of the scene, the deterioration rate DTa based on the temperature of the first storage battery 1a is higher than the deterioration rate DTb based on the temperature of the second storage battery 1b.
  • the deterioration rate DSa based on the energy amount of the first storage battery 1a is smaller (DTa ⁇ DTb) and greater than the deterioration rate DSb based on the energy amount of the second storage battery 1b (DSa> DSb).
  • fills following formula (3) is shown. (DTa ⁇ DSa) ⁇ (DTb ⁇ DSb) (3)
  • the degradation rate comparison unit 43 sends the target energy amount Sa ′ or Sb ′ calculated according to the above method to the power switching condition setting unit 45.
  • step S7 in order to adjust the deterioration speed of the 1st storage battery 1a and the 2nd storage battery 1b by the power switching condition setting part 45, it interrupts
  • the relationship is (DTa ⁇ DSa) ⁇ (DTb ⁇ DSb), and the first storage battery 1a and the second storage battery 1b are in a charged state (input state). Therefore, when Sa ′ (Sa ′> Sa) is calculated as the target energy amount, only the first storage battery 1a is charged (input), and the energy amount of the first storage battery 1a is changed to the target energy amount Sa. Therefore, the second power switchgear 5b is set as the power switchgear to be cut off.
  • step S8 based on the load power or charging power detected in step S5 by the power switching condition setting unit 45 and the target energy amount Sa ′ or Sb ′ calculated in step S6, the first power switching device 5a or setting breaking time t s for blocking the second power switchgear 5b is performed.
  • the first storage battery 1a and the second storage battery 1b are in a discharged state (that is, when load power is detected in step S5), and step In S6, when Sb ′ (Sb ′ ⁇ Sb) is calculated as the target energy amount, it takes until the energy amount of the second storage battery 1b changes from Sb to Sb ′ when discharged with the load power. time is set as the breaking time t s for blocking the first power switching device 5a.
  • the 1st storage battery 1a and the 2nd storage battery 1b are charge states (that is, when charge electric power is detected in step S5), and step In S6, when Sa ′ (Sa ′> Sa) is calculated as the target energy amount, it is necessary for the energy amount of the first storage battery 1a to change from Sa to Sa ′ when charged with the charging power. time is set as the breaking time t s for blocking the second power switchgear 5b.
  • step S9 the power switching condition setting unit 45 causes the power switching device set as the power switching device to be cut off from the first power switching device 5a and the second power switching device 5b in step S7 from the power line.
  • a power open / close command is sent to shut off.
  • a power switching command for cutting off from the power line is sent to the first power switching device 5a.
  • the first power switchgear 5a cuts off the first storage battery 1a from the power line, and only the second storage battery 1b is charged (input) or discharged (output).
  • step S7 when the second power switching device 5b is set as the power switching device to be shut off in step S7, a power switching command for shutting off from the power line is sent to the second power switching device 5b. Based on this, the second power switching device 5b disconnects the second storage battery 1b from the power line, and only the first storage battery 1a is charged (input) or discharged (output).
  • step S10 the power-off condition setting unit 45, after sending a power-off command to shut off from the power line, breaking time t s set in step S8 it is the determination of whether the elapsed performed. If the interruption time t s has not elapsed, until breaking time t s has elapsed, repeats step S10. On the other hand, when the interruption time t s has elapsed, the flow proceeds to step S11.
  • the power switching device that has sent a power switching command for disconnecting from the power line. Then, a power open / close command for connecting to the power line is sent, and thereby the first storage battery 1a or the second storage battery 1b that has been cut off is connected to the power line.
  • the deterioration rate adjustment processing according to the present embodiment is performed.
  • the deterioration rate Da of the 1st storage battery 1a and the deterioration rate Db of the 2nd storage battery 1b can be made substantially equal, Thereby, deterioration variation can be eliminated and as a result The life of the storage battery system can be improved.
  • the first storage battery 1a and the second storage battery 1b can be provided with separate temperature control systems, the deterioration variation of the first storage battery 1a and the second storage battery 1b can be eliminated.
  • the storage battery system can be reduced in size, weight, and cost.
  • the storage battery system of the present embodiment is, for example, a stationary storage battery system
  • the stationary storage battery system rather than the load power required to drive an AC load
  • the capacity of each storage battery constituting the storage battery system is set to be much larger. Therefore, according to the present embodiment, in order to perform the deterioration rate adjustment processing, even if the storage battery constituting the storage battery system is disconnected from the power line, there is no problem in power supply to the AC load (with insufficient power supply). Without any deterioration).
  • the first power switchgear 5a provided in the first storage battery 1a and the second storage battery 1b, respectively.
  • the second power switching device 5b since the second power switching device 5b is used, it is not necessary to introduce a new device in order to eliminate the variation in the deterioration rate. Therefore, the storage battery system can be reduced in size, weight, and cost. It becomes possible.
  • the temperature sensors 2a and 2b are the temperature detection means of the present invention
  • the first energy amount calculation unit 41a and the second energy amount calculation unit 41b of the controller 40 are the energy amount detection means of the present invention.
  • the first deterioration rate calculation unit 42a is a control unit and a first calculation unit of the present invention
  • the second deterioration rate calculation unit 42b is a control unit and a second calculation unit of the present invention, a deterioration rate comparison unit 43 and a power switching condition setting unit. 45 corresponds to the control means of the present invention.
  • the voltage Va of the first storage battery 1a and the voltage Vb of the second storage battery 1b are compared, and the difference between these voltages Va and Vb is determined in advance.
  • the deterioration rate adjustment process may be performed when the value is equal to or less than the predetermined value. That is, when the difference between the voltages Va and Vb exceeds a predetermined value, the deterioration rate adjustment process may not be performed. Only when the difference between the voltages Va and Vb is equal to or less than a predetermined value, the above-described deterioration rate adjustment process is performed. For example, one of the first storage battery 1a and the second storage battery 1b is connected to the power line.
  • the target energy amount when the target energy amount is calculated by the deterioration rate comparison unit 43, power is input to and output from the first storage battery 1a and the second storage battery 1b in order to obtain the target energy amount.
  • the target energy amount may be calculated by predicting the temperature change and considering the prediction result of the temperature change.
  • the time constant of the temperature change with respect to the input / output power may be relatively large depending on the size of the storage battery, that is, the heat capacity, and in such a case, by considering the prediction result of the temperature change.
  • the target energy amount necessary for making the deterioration rate Da of the first storage battery 1a and the deterioration rate Db of the second storage battery 1b substantially equal can be calculated with high accuracy.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

 蓄電池を複数並列接続してなる蓄電池システムであって、並列接続された各蓄電池の温度およびエネルギー量を検出し、検出した温度およびエネルギー量から、各蓄電池の劣化速度を算出し、各蓄電池の劣化速度が近づくように、各蓄電池に入出力する電力量を制御することを特徴とする蓄電池システムを提供する。

Description

電池制御装置
 本発明は、蓄電池を複数並列接続してなる蓄電池システムを制御する電池制御装置に関するものである。
 従来より、比較的に厳しい温度環境で用いられる蓄電池システムとして、定置型蓄電池システムが知られている。このような定置型蓄電池システムとしては、電池容量を大きくするために、通常、複数の蓄電池を並列接続したものが用いられるが、このように複数の蓄電池を並列接続した構成においては、並列接続された各蓄電池は異なる温度環境に置かれることが多く、このように異なる温度環境に置かれると、各蓄電池間における劣化速度が異なることとなってしまい、これにより、各蓄電池間の劣化バラツキが促進し、結果として、定置型蓄電池システム全体の寿命が短くなってしまうという問題がある。一方、各蓄電池の温度環境を同一にするために、各蓄電池に対して温調を行なう方法も考えられるが、この場合においては、各蓄電池に対応した温調システムを設ける必要が生じてしまう。
 これに対して、たとえば、特許文献1では、2個の蓄電池を並列接続してなる蓄電池システムにおいて、蓄電池間において温度差が生じている場合に、蓄電池間における劣化バラツキの促進を抑制するために、まず、温度の低い蓄電池の充電を行ない、温度の低い蓄電池の充電が終了した後に、温度の高い蓄電池の充電を行なう技術が開示されている。
特開平7-153498号公報
 しかしながら、上記従来技術においては、蓄電池間において温度差が生じている場合に、単に蓄電池の充電タイミングを制御するものであり、蓄電池のエネルギー量に起因する蓄電池の劣化速度を考慮するものではないため、各蓄電池間の劣化バラツキを充分に解消することができないという問題があった。
 本発明が解決しようとする課題は、蓄電池を複数並列接続してなる蓄電池システムを制御する電池制御装置において、温調システムを用いることなく、並列接続された各蓄電池間の劣化バラツキを抑制し、これにより、蓄電池システムの寿命を向上させることにある。
 本発明は、蓄電池を複数並列接続してなる蓄電池システムにおいて、並列接続された各蓄電池の温度およびエネルギー量を検出し、検出した温度およびエネルギー量から、各蓄電池の劣化速度を算出し、各蓄電池の劣化速度が近づくように、各蓄電池に入出力する電力量を制御することにより、上記課題を解決する。
 本発明によれば、並列接続された各蓄電池の温度およびエネルギー量に基づいて算出された各蓄電池の劣化速度が近づくように、各蓄電池に入出力する電力量を制御するため、各蓄電池の劣化速度のバラツキを抑制することができ、これにより、各蓄電池間の劣化バラツキを抑制することができ、結果として、蓄電池システムの寿命を向上させることができる。
図1は、本実施形態に係る蓄電池システムを示す構成図である。 図2は、コントローラ40の機能ブロック図である。 図3(A)は、各蓄電池の温度と劣化速度との関係を示すグラフ、図3(B)は、各蓄電池のエネルギー量と劣化速度との関係を示すグラフである。 図4は、本実施形態に係る劣化速度調整処理を示すフローチャートである。 図5(A)は、一場面例における、各蓄電池1a,1bの温度と劣化速度との関係を示す図、図5(B)は、一場面例における、各蓄電池1a,1bのエネルギー量と劣化速度との関係を示す図である。
 以下、本発明の実施形態を図面に基づいて説明する。
 図1は、本実施形態に係る蓄電池システムを示す構成図である。以下においては、本実施形態に係る蓄電池システムが、定置型蓄電池システムである場合を例示して説明するが、特にこれに限定されるものではない。
 本実施形態に係る蓄電池システムは、図1に示すように、第1蓄電池1aおよび第2蓄電池1b、コンバータ10、交流電源20、交流負荷30、およびコントローラ40を備える。第1蓄電池1aおよび第2蓄電池1bは、電力線を介して、互いに並列に接続されるとともに、変換機10に接続されている。そして、第1蓄電池1aおよび第2蓄電池1bは、変換機10を介して、交流電源20からの電力が入力可能となっているとともに、交流負荷30への電力の供給が可能となっている。なお、図1中、太実線は電力線を、破線は通信線を示している。
 第1蓄電池1aは、たとえば、リチウムイオン二次電池であり、第1蓄電池1aには、第1蓄電池1aの温度Taを検出するための第1温度センサ2a、第1蓄電池1aの電圧Vaを検出するための第1電圧センサ3a、および、第1蓄電池1aに入出力される電流Iaを検出するための第1電流センサ4aが設けられている。そして、これら第1温度センサ2a、第1電圧センサ3a、および第1電流センサ4aにより検出された第1蓄電池1aの温度Ta、電圧Vaおよび電流Iaは、コントローラ40に、所定の間隔で送信される。また、第1蓄電池1aは、第1電力開閉装置5aを備えており、第1電力開閉装置5aをオン/オフ制御することにより、電力線との接続/切断が切り替えられるようになっている。
 同様に、第2蓄電池1bは、たとえば、リチウムイオン二次電池であり、第2蓄電池1bも、第2蓄電池1bの温度Tbを検出するための第2温度センサ2b、第2蓄電池1bの電圧Vbを検出するための第2電圧センサ3b、および、第2蓄電池1bに入出力される電流Ibを検出するための第2電流センサ4bを備えており、これら第2温度センサ2b、第2電圧センサ3b、および第2電流センサ4bにより検出された第2蓄電池1bの温度Tb、電圧Vbおよび電流Ibは、コントローラ40に、所定の間隔で送信される。また、第2蓄電池1bも、第2電力開閉装置5bを備えており、第2電力開閉装置5bをオン/オフ制御することにより、電力線との接続/切断が切り替えられるようになっている。
 コンバータ10は、直流電力と交流電力との変換を行なうための変換機である。コンバータ10は、第1蓄電池1aおよび第2蓄電池1bからの直流電力を交流電力に変換し、交流負荷30に供給するとともに、交流電源20からの交流電力を直流電力に変換し、第1蓄電池1aおよび第2蓄電池1bに供給する。また、コンバータ10は、交流電源20からの充電電力、および交流負荷30の負荷電力を検出し、これらをコントローラ40に送信する。
 コントローラ40は、第1温度センサ2a、第1電圧センサ3a、および第1電流センサ4aから、第1蓄電池1aの温度Ta、電圧Vaおよび電流Iaを、第2温度センサ2b、第2電圧センサ3b、および第2電流センサ4bから、第2蓄電池1bの温度Tb、電圧Vbおよび電流Ibを、コンバータ10から、交流電源20からの充電電力、および交流負荷30の負荷電力を、それぞれ取得し、これらの情報に基づき、蓄電池システムを制御する。
 図2に、コントローラ40の機能ブロック図を示す。図2に示すように、コントローラ40は、第1エネルギー量演算部41a、第2エネルギー量演算部41b、第1劣化速度演算部42a、第2劣化速度演算部42b、劣化速度比較部43、入出力電力検出部44、および電力開閉条件設定部45を備える。
 第1エネルギー量演算部41aは第1電圧センサ3a、および第1電流センサ4aにより検出された第1蓄電池1aの電圧Vaおよび電流Iaを取得し、これら電圧Vaおよび電流Iaに基づいて、第1蓄電池1aのエネルギー量(充電容量)Saを算出する。第1蓄電池1aのエネルギー量Saは、たとえば、電圧Vaとエネルギー量Saとの関係を示すテーブルを用いる方法や、電流Iaを積算する方法、さらにはこれらの方法を組み合わせた方法により、算出することができる。算出された第1蓄電池1aのエネルギー量Saは、第1劣化速度演算部42aに送出される。
 第2エネルギー量演算部41bは第2電圧センサ3b、および第2電流センサ4bにより検出された第2蓄電池1bの電圧Vbおよび電流Ibを取得し、これら電圧Vbおよび電流Ibに基づいて、第2蓄電池1bのエネルギー量(充電容量)Sbを算出する。なお、第2蓄電池1bのエネルギー量Sbは、上述の第1蓄電池1aのエネルギー量Saと同様の方法により、算出することができる。算出された第2蓄電池1bのエネルギー量Sbは、第2劣化速度演算部42bに送出される。
 第1劣化速度演算部42aは、第1温度センサ2aにより検出された第1蓄電池1aの温度Ta、および第1エネルギー量演算部41aにより算出された第1蓄電池1aのエネルギー量Saに基づいて、第1蓄電池1aの劣化速度Daを算出する。具体的には、第1劣化速度演算部42aは、まず、第1蓄電池1aの温度Taに基づいて、予め記憶している温度と劣化速度との関係を示す温度-劣化速度テーブルを用いて、第1蓄電池1aの温度に基づく劣化速度DTaを求める。次いで、第1劣化速度演算部42aは、第1蓄電池1aのエネルギー量Saに基づいて、予め記憶しているエネルギー量と劣化速度との関係を示すエネルギー量-劣化速度テーブルを用いて、第1蓄電池1aのエネルギー量に基づく劣化速度DSaを求める。そして、第1劣化速度演算部42aは、これら温度に基づく劣化速度DTaと、エネルギー量に基づく劣化速度DSaに基づいて、第1蓄電池1aの劣化速度Daを算出する。本実施形態においては、第1蓄電池1aの劣化速度Daは、たとえば、温度に基づく劣化速度DTaと、エネルギー量に基づく劣化速度DSaとを乗じることにより、すなわち、Da=DTa×DSaとして求めることができる。そして、第1劣化速度演算部42aは、算出した第1蓄電池1aの劣化速度Daを、温度に基づく劣化速度DTa、およびエネルギー量に基づく劣化速度DSaとともに、劣化速度比較部43に送出する。
 また、第2劣化速度演算部42bは、第2温度センサ2bにより検出された第2蓄電池1bの温度Tb、および第2エネルギー量演算部41bにより算出された第2蓄電池1bのエネルギー量Sbに基づいて、第2蓄電池1bの劣化速度Dbを算出する。なお、第2蓄電池1bの劣化速度Dbは、上述の第1劣化速度演算部42aと同様にして、第2蓄電池1bの温度に基づく劣化速度DTb、および第2蓄電池1bのエネルギー量に基づく劣化速度DSbを求め、これらDTb、DSbに基づいて、Db=DTb×DSbとして求めることができる。そして、第2劣化速度演算部42bは、算出した第2蓄電池1bの劣化速度Dbを、温度に基づく劣化速度DTb、およびエネルギー量に基づく劣化速度DSbとともに、劣化速度比較部43に送出する。
 ここで、図3(A)に各蓄電池1a、1bの温度と劣化速度との関係を示すグラフ、図3(B)に各蓄電池1a、1bのエネルギー量と劣化速度との関係を示すグラフを、それぞれ示す。本実施形態においては、第1蓄電池1aおよび第2蓄電1bの劣化は、主として、その温度およびエネルギー量の影響により引き起こされるという特性を有する。すなわち、図3(A)に示すように、第1蓄電池1aおよび第2蓄電1bは、その温度が高いほど、劣化速度が高くなるという特性を有する。一方、図3(B)に示すように、第1蓄電池1aおよび第2蓄電1bは、エネルギー量に応じて劣化速度が変化する特性を有する。
 そのため、本実施形態においては、図3(A)、図3(B)に示すような、温度と劣化速度との関係を示す温度-劣化速度テーブル、およびエネルギー量と劣化速度との関係を示すエネルギー量-劣化速度テーブルを予め記憶しておき、これらに基づいて、各蓄電池1a、1bの温度に基づく劣化速度DTa、DTb、エネルギー量に基づく劣化速度DSa、TSbを求め、これらに基づき、各蓄電池1a、1bの劣化速度Da、Dbを算出する。
 劣化速度比較部43は、第1蓄電池1aの劣化速度Daと、第2蓄電池1bの劣化速度Dbとを比較し、これらの差(|Da-Db|)が所定値α以上であるか否かの判断を行なう。そして、劣化速度比較部43は、第1蓄電池1aの劣化速度Daと、第2蓄電池1bの劣化速度Dbとの差が所定値α以上である場合には、第1蓄電池1aまたは第2蓄電池1bのエネルギー量を変化させ、これにより、第1蓄電池1aと第2蓄電池1bとの劣化速度を互いに近づけて、略等しくするために必要となる目標エネルギー量を算出する。なお、劣化速度比較部43による目標エネルギー量の具体的な算出方法については、後述する。
 入出力電力検出部44は、交流電源20からの充電電力、および交流負荷30の負荷電力の検出を行い、検出結果を劣化速度比較部43および電力開閉条件設定部45に送出する。
 電力開閉条件設定部45は、劣化速度比較部43により算出された目標エネルギー量、および入出力電力検出部44により検出された交流電源20からの充電電力、および交流負荷30の負荷電力の情報に基づき、第1蓄電池1aに備えられた第1電力開閉装置5a、および第2蓄電池1bに備えられた第2電力開閉装置5bを遮断/接続するための電力開閉条件を設定し、これに基づき、電力開閉指令を送出する。なお、電力開閉条件設定部45による、電力開閉条件の具体的な設定方法については、後述する。
 次いで、本実施形態に係る劣化速度調整処理について説明する。図4は、本実施形態に係る劣化速度調整処理を示すフローチャートである。
 まず、ステップS1では、コントローラ40の第1エネルギー量演算部41aおよび第1劣化速度演算部42aにより、第1蓄電池1aの温度Ta、電圧Vaおよび電流Iaの取得が行なわれる。また、同様に、コントローラ40の第2エネルギー量演算部41bおよび第2劣化速度演算部42bにより、第2蓄電池1bの温度Tb、電圧Vbおよび電流Ibの取得が行なわれる。
 ステップS2では、コントローラ40の第1エネルギー量演算部41aにより、ステップS1で取得した第1蓄電池1aの電圧Vaおよび電流Iaに基づいて、第1蓄電池1aのエネルギー量Saの算出が行なわれ、算出されたエネルギー量Saは、第1劣化速度演算部42aに送出される。また、同様に、コントローラ40の第2エネルギー量演算部41bにより、ステップS1で取得した第2蓄電池1bの電圧Vbおよび電流Ibに基づいて、第2蓄電池1bのエネルギー量Sbの算出が行なわれ、算出されたエネルギー量Sbは、第2劣化速度演算部42bに送出される。
 ステップS3では、コントローラ40の第1劣化速度演算部42aにより、ステップS1で取得した第1蓄電池1aの温度Ta、およびステップS2で算出された第1蓄電池1aのエネルギー量Saに基づいて、図3(A)に示す温度と劣化速度との関係を示す温度-劣化速度テーブル、および図3(B)に示すエネルギー量と劣化速度との関係を示すエネルギー量-劣化速度テーブルを用いて、温度に基づく劣化速度DTa、およびエネルギー量に基づく劣化速度DSaの算出が行なわれ、これらに基づき、第1蓄電池1aの劣化速度Daが算出される。そして、第1劣化速度演算部42aは、算出した第1蓄電池1aの劣化速度Daを、温度に基づく劣化速度DTa、およびエネルギー量に基づく劣化速度DSaとともに、劣化速度比較部43に送出する。
 また、同様に、コントローラ40の第2劣化速度演算部42bにより、ステップS1で取得した第2蓄電池1bの温度Tb、およびステップS2で算出された第2蓄電池1bのエネルギー量Sbに基づいて、図3(A)に示す温度と劣化速度との関係を示す温度-劣化速度テーブル、および図3(B)に示すエネルギー量と劣化速度との関係を示すエネルギー量-劣化速度テーブルを用いて、温度に基づく劣化速度DTb、およびエネルギー量に基づく劣化速度DSbの算出が行なわれ、これらに基づき、第2蓄電池1bの劣化速度Dbが算出される。そして、第2劣化速度演算部42bは、算出した第2蓄電池1bの劣化速度Dbを、温度に基づく劣化速度DTb、およびエネルギー量に基づく劣化速度DSbとともに、劣化速度比較部43に送出する。
 ステップS4では、コントローラ40の劣化速度比較部43により、ステップS3で算出された第1蓄電池1aの劣化速度Daと、第2蓄電池1bの劣化速度Dbとの比較が行なわれ、これらの差が所定値α以上であるか否かの判定が行なわれる。第1蓄電池1aの劣化速度Daと第2蓄電池1bの劣化速度Dbとの差が所定値α以上である場合には、劣化速度を調整する処理が必要であると判断し、ステップS5に進む。一方、第1蓄電池1aの劣化速度Daと第2蓄電池1bの劣化速度Dbとの差が所定値α未満である場合には、劣化速度を調整する処理が不要であると判断し、本処理を終了する。
 ステップS5では、入出力電力検出部44により、交流電源20からの充電電力および交流負荷30の負荷電力の検出が行われ、入出力電力検出部44は、充電電力が検出された場合には充電電力を、負荷電力が検出された場合には負荷電力を、劣化速度比較部43および電力開閉条件設定部45に送出する。そして、劣化速度比較部43は、検出された充電電力、または負荷電力に基づいて、第1蓄電池1aおよび第2蓄電池1bのいずれか一方を、電力線から遮断することが可能か否かの判断が行う。そして、その結果、第1蓄電池1aおよび第2蓄電池1bのいずれか一方を、電力線から遮断することが可能である場合には、劣化速度を調整する処理を実行するために、ステップS6に進む。一方、第1蓄電池1aおよび第2蓄電池1bのいずれか一方を、電力線から遮断することができない場合には、本処理を終了する。
 なお、第1蓄電池1aおよび第2蓄電池1bのいずれか一方を、電力線から遮断することが可能か否かの判断は、負荷電力が検出された場合、すなわち、第1蓄電池1aおよび第2蓄電池1bが放電状態(出力状態)である場合には、検出された負荷電力を、第1蓄電池1aおよび第2蓄電池1bのうち、いずれか一方のみで供給することができるか否かに基づいて行なわれる。また、充電電力が検出された場合、すなわち、第1蓄電池1aおよび第2蓄電池1bが充電状態(入力状態)である場合には、検出された充電電力を、第1蓄電池1aおよび第2蓄電池1bのうち、いずれか一方のみに入力可能か否かに基づいて行なわれる。
 ステップS6では、劣化速度比較部43により、目標エネルギー量の算出が行なわれる。具体的には、劣化速度比較部43は、第1蓄電池1aの温度に基づく劣化速度DTa、およびエネルギー量に基づく劣化速度DSa、ならびに、第2蓄電池1bの温度に基づく劣化速度DTbおよびエネルギー量に基づく劣化速度DSbから、下記式(1)または下記式(2)を満足するような劣化速度DSa’またはDSb’を算出し、劣化速度がDSa’またはDSb’となるような目標エネルギー量Sa’またはSb’を算出する。
  (DTa×DSa)=(DTb×DSb’) …(1)
  (DTa×DSa’)=(DTb×DSb) …(2)
 以下、目標エネルギー量Sa’またはSb’の算出方法について、図5(A)、図5(B)に示す場面例を参照して説明する。ここで、図5(A)は、各蓄電池1a,1bの温度と劣化速度との関係を示す図であり、図5(B)は、各蓄電池1a,1bのエネルギー量と劣化速度との関係を示す図である。そして、図5(A)、図5(B)に示すように、本場面例においては、第1蓄電池1aの温度に基づく劣化速度DTaが、第2蓄電池1bの温度に基づく劣化速度DTbよりも小さく(DTa<DTb)、かつ、第1蓄電池1aのエネルギー量に基づく劣化速度DSaが、第2蓄電池1bのエネルギー量に基づく劣化速度DSbよりも大きく(DSa>DSb)、さらには、第1蓄電池1aの劣化速度Daが、第2蓄電池1bの劣化速度Dbよりも小さい、すなわち、下記式(3)を満たすような場面を示している。
   (DTa×DSa)<(DTb×DSb) …(3)
 そして、図5(A)、図5(B)に示す場面例において、第1蓄電池1aおよび第2蓄電池1bが放電状態(出力状態)である場合(すなわち、ステップS5において、負荷電力が検出された場合)には、図5(B)に示すように、上記式(1)を満たすような劣化速度DSb’(DSb’<DSb)を求め、これに対応するエネルギー量Sb’(Sb’<Sb)を、目標エネルギー量に設定する。あるいは、図5(A)、図5(B)に示す場面例において、第1蓄電池1aおよび第2蓄電池1bが充電状態(入力状態)である場合(すなわち、ステップS5において、充電電力が検出された場合)、図5(B)に示すように、上記式(2)を満たすような劣化速度DSa’(DSa’>DSa)を求め、これに対応するエネルギー量Sa’(Sa’>Sa)を、目標エネルギー量に設定する。
Figure JPOXMLDOC01-appb-T000001
 このように、本実施形態においては、表1の(A)に示すように、第1蓄電池1aの劣化速度Daが、第2蓄電池1bの劣化速度Dbよりも小さい場合、すなわち、(DTa×DSa)<(DTb×DSb)の関係にある場合において、第1蓄電池1aおよび第2蓄電池1bが放電状態のときには、上記式(1)を満たすような劣化速度DSb’(DSb’<DSb)を求め、これに対応するエネルギー量Sb’(Sb’<Sb)を、目標エネルギー量に設定する。
 また、表1の(B)に示すように、第1蓄電池1aの劣化速度Daが、第2蓄電池1bの劣化速度Dbよりも小さい場合、すなわち、(DTa×DSa)<(DTb×DSb)の関係にある場合において、第1蓄電池1aおよび第2蓄電池1bが充電状態のときには、上記式(2)を満たすような劣化速度DSa’(DSa’>DSa)を求め、これに対応するエネルギー量Sa’(Sa’>Sa)を、目標エネルギー量に設定する。
 さらに、表1の(C)に示すように、第1蓄電池1aの劣化速度Daが、第2蓄電池1bの劣化速度Dbよりも大きい場合、すなわち、(DTa×DSa)>(DTb×DSb)の関係にある場合において、第1蓄電池1aおよび第2蓄電池1bが放電状態のときには、上記式(2)を満たすような劣化速度DSa’(DSa’<DSa)を求め、これに対応するエネルギー量Sa’(Sa’<Sa)を、目標エネルギー量に設定する。
 また、表1の(D)に示すように、第1蓄電池1aの劣化速度Daが、第2蓄電池1bの劣化速度Dbよりも大きい場合、すなわち、(DTa×DSa)>(DTb×DSb)の関係にある場合において、第1蓄電池1aおよび第2蓄電池1bが充電状態のときには、上記式(1)を満たすような劣化速度DSb’(DSb’>DSb)を求め、これに対応するエネルギー量Sb’(Sb’>Sb)を、目標エネルギー量に設定する。
 そして、劣化速度比較部43は、上記方法にしたがって算出した目標エネルギー量Sa’またはSb’を、電力開閉条件設定部45に送出する。
 ステップS7では、電力開閉条件設定部45により、第1蓄電池1aおよび第2蓄電池1bの劣化速度を調整するために、第1電力開閉装置5aおよび第2電力開閉装置5bのうち、電力線から遮断する電力開閉装置を設定する処理が行なわれる。
 すなわち、表1の(A)に示すように、(DTa×DSa)<(DTb×DSb)の関係にあり、かつ、第1蓄電池1aおよび第2蓄電池1bが放電状態(出力状態)にあり、そのため、目標エネルギー量として、Sb’(Sb’<Sb)が算出されている場合には、第2蓄電池1bのみについて放電(出力)を行い、第2蓄電池1bのエネルギー量を、目標エネルギー量Sb’とするために、遮断する電力開閉装置として、第1電力開閉装置5aを設定する。
 また、表1の(B)に示すように、(DTa×DSa)<(DTb×DSb)の関係にあり、かつ、第1蓄電池1aおよび第2蓄電池1bが充電状態(入力状態)にあり、そのため、目標エネルギー量として、Sa’(Sa’>Sa)が算出されている場合には、第1蓄電池1aのみについて充電(入力)を行い、第1蓄電池1aのエネルギー量を、目標エネルギー量Sa’とするために、遮断する電力開閉装置として、第2電力開閉装置5bを設定する。
 さらに、表1の(C)に示すように、(DTa×DSa)>(DTb×DSb)の関係にあり、かつ、第1蓄電池1aおよび第2蓄電池1bが放電状態(出力状態)にあり、そのため、目標エネルギー量として、Sa’(Sa’<Sa)が算出されている場合には、第1蓄電池1aのみについて放電(出力)を行い、第1蓄電池1aのエネルギー量を、目標エネルギー量Sa’とするために、遮断する電力開閉装置として、第2電力開閉装置5bを設定する。
 また、表1の(D)に示すように、(DTa×DSa)>(DTb×DSb)の関係にあり、かつ、第1蓄電池1aおよび第2蓄電池1bが充電状態(入力状態)にあり、そのため、目標エネルギー量として、Sb’(Sb’>Sb)が算出されている場合には、第2蓄電池1bのみについて放電(入力)を行い、第2蓄電池1bのエネルギー量を、目標エネルギー量Sb’とするために、遮断する電力開閉装置として、第1電力開閉装置5aを設定する。
 ステップS8では、電力開閉条件設定部45により、ステップS5で検出された負荷電力または充電電力、およびステップS6において算出された目標エネルギー量Sa’またはSb’に基づいて、第1電力開閉装置5aまたは第2電力開閉装置5bを遮断するための遮断時間tの設定が行なわれる。
 たとえば、図5(A)、図5(B)に示す場面例において、第1蓄電池1aおよび第2蓄電池1bが放電状態であり(すなわち、ステップS5において、負荷電力が検出された場合)、ステップS6において、目標エネルギー量としてSb’(Sb’<Sb)が算出されている場合には、該負荷電力で放電した場合に、第2蓄電池1bのエネルギー量がSbからSb’となるまでに要する時間が、第1電力開閉装置5aを遮断するための遮断時間tとして設定される。
 あるいは、図5(A)、図5(B)に示す場面例において、第1蓄電池1aおよび第2蓄電池1bが充電状態であり(すなわち、ステップS5において、充電電力が検出された場合)、ステップS6において、目標エネルギー量としてSa’(Sa’>Sa)が算出されている場合には、該充電電力で充電した場合に、第1蓄電池1aのエネルギー量がSaからSa’となるまでに要する時間が、第2電力開閉装置5bを遮断するための遮断時間tとして設定される。
 ステップS9では、電力開閉条件設定部45により、ステップS7において、第1電力開閉装置5aおよび第2電力開閉装置5bのうち、遮断する電力開閉装置として設定された電力開閉装置に対して、電力線から遮断するための電力開閉指令が送出される。たとえば、ステップS7において、遮断する電力開閉装置として、第1電力開閉装置5aが設定されている場合には、第1電力開閉装置5aに対して、電力線から遮断するための電力開閉指令が送出され、これに基づき、第1電力開閉装置5aが第1蓄電池1aを電力線から遮断し、第2蓄電池1bのみについて充電(入力)または放電(出力)が行なわれることとなる。あるいは、ステップS7において、遮断する電力開閉装置として、第2電力開閉装置5bが設定されている場合には、第2電力開閉装置5bに対して、電力線から遮断するための電力開閉指令が送出され、これに基づき、第2電力開閉装置5bが第2蓄電池1bを電力線から遮断し、第1蓄電池1aのみについて充電(入力)または放電(出力)が行なわれることとなる。
 ステップS10では、電力開閉条件設定部45により、電力線から遮断するための電力開閉指令を送出してから、ステップS8で設定した遮断時間tが経過したか否かの判断が行なわれる。遮断時間tが経過していない場合には、遮断時間tが経過するまで、ステップS10を繰り返す。一方、遮断時間tが経過した場合には、ステップS11に進む。
 ステップS11では、遮断時間tが経過したため、第1蓄電池1aまたは第2蓄電池1bが、ステップS6で算出された目標エネルギー量Sa’またはSb’となり、第1蓄電池1aの劣化速度Da(Da=DTa×DSa)と、第2蓄電池1bの劣化速度Db(Db=DTb×DSb)とが略等しくなったと判断し、劣化速度調整処理を終了するための処理が行なわれる。具体的には、電力開閉条件設定部45により、第1電力開閉装置5aおよび第2電力開閉装置5bのうち、ステップS9において、電力線から遮断するための電力開閉指令を送出した電力開閉装置に対して、電力線に接続するための電力開閉指令が送出され、これにより、遮断していた第1蓄電池1aまたは第2蓄電池1bを、電力線に接続させる。
 以上のようにして、本実施形態に係る劣化速度調整処理は行なわれる。
 本実施形態においては、第1蓄電池1aの温度に基づく劣化速度DTa、およびエネルギー量に基づく劣化速度DSa、ならびに、第2蓄電池1bの温度に基づく劣化速度DTb、およびエネルギー量に基づく劣化速度DSbを算出し、これらに基づいて、第1蓄電池1aの劣化速度Da(Da=DTa×DSa)、および第2蓄電池1bの劣化速度Db(Db=DTb×DSb)を求め、これらが略等しくなるような(すなわち、DTa×DSa=DTb×DSb)、目標エネルギー量を求め、これに基づき、第1蓄電池1aおよび第2蓄電池1bに入出力される電力量を制御する。そのため、本実施形態によれば、第1蓄電池1aの劣化速度Daと、第2蓄電池1bの劣化速度Dbとを略等しくすることができ、これにより、劣化バラツキを解消することができ、結果として、蓄電池システムの寿命を向上させることができる。特に、本実施形態によれば、第1蓄電池1aおよび第2蓄電池1bに、個別の温調システムを設けることなく、第1蓄電池1aおよび第2蓄電池1bの劣化バラツキを解消することができるため、蓄電池システムの小型化や軽量化、さらには低コスト化が可能となる。
 また、本実施形態の蓄電池システムを、たとえば、定置型の蓄電池システムとした場合においては、一般的に、定置型の蓄電池システムにおいては、交流負荷を駆動するために必要となる負荷電力よりも、蓄電池システムを構成する各蓄電池の容量の方がはるかに大きくなるような構成とされる。そのため、本実施形態によれば、劣化速度調整処理を行なうために、蓄電池システムを構成する蓄電池を電力線から遮断しても、交流負荷への電力供給に問題を生じさせることなく(電力供給不足となることなく)、劣化バラツキを解消することができる。
 加えて、本実施形態によれば、第1蓄電池1aおよび第2蓄電池1bの劣化速度バラツキを解消する際に、第1蓄電池1aおよび第2蓄電池1bに、それぞれ備えられた第1電力開閉装置5aおよび第2電力開閉装置5bを利用するものであるため、劣化速度バラツキを解消するために新たな装置を導入する必要がなく、そのため、蓄電池システムの小型化や軽量化、さらには低コスト化が可能となる。
 なお、上述した実施形態において、温度センサ2a,2bは本発明の温度検出手段に、コントローラ40の第1エネルギー量演算部41aおよび第2エネルギー量演算部41bは本発明のエネルギー量検出手段、第1劣化速度演算部42aは本発明の制御手段および第1算出手段に、第2劣化速度演算部42bは本発明の制御手段および第2算出手段に、劣化速度比較部43および電力開閉条件設定部45は本発明の制御手段に、それぞれ相当する。
 以上、本発明の実施形態について説明したが、これらの実施形態は、本発明の理解を容易にするために記載されたものであって、本発明を限定するために記載されたものではない。したがって、上記の実施形態に開示された各要素は、本発明の技術的範囲に属する全ての設計変更や均等物をも含む趣旨である。
 なお、上述した実施形態において、劣化速度調整処理を行なう際には、第1蓄電池1aの電圧Va、および第2蓄電池1bの電圧Vbを比較し、これら電圧Va、Vbの差が、予め定められた所定値以下である場合に、劣化速度調整処理を行なうような構成としてもよい。すなわち、電圧Va、Vbの差が、所定値を超える場合には、劣化速度調整処理を行なわないような構成としてもよい。電圧Va、Vbの差が、所定値以下である場合にのみ、上述の劣化速度調整処理を行なう構成とすることにより、たとえば、第1蓄電池1aおよび第2蓄電池1bのうち、一方の蓄電池を電力線から遮断し、次いで、劣化速度調整終了後、電力線に接続した際に、電圧の高い蓄電池から、電圧の低い蓄電池に瞬時に大電流が流れてしまうことにより、蓄電池システムが高温状態となり、これにより、蓄電池システムの寿命が短くなってしまうことを有効に防止することができる。
 また、上述した実施形態において、劣化速度比較部43により、目標エネルギー量を算出する際には、目標エネルギー量とするために、第1蓄電池1aおよび第2蓄電池1bに電力を入出力した際における、温度変化を予測し、温度変化の予測結果を考慮して、目標エネルギー量を算出するような構成としてもよい。特に、蓄電池においては、入出力電力に対する温度変化の時定数は、蓄電池の大きさ、すなわち、熱容量によっては比較的大きい場合があり、このような場合において、温度変化の予測結果を考慮することにより、第1蓄電池1aの劣化速度Daと、第2蓄電池1bの劣化速度Dbとを略等しくするために必要となる目標エネルギー量を高精度に算出することが可能となる。
 また、上述した実施形態においては、蓄電池が2個並列に接続されてなる蓄電池システムに、本発明を適用した例を示したが、蓄電池が3個以上並列に接続されてなる蓄電池システムに、本発明を適用することももちろん可能である。
1a…第1蓄電池
1b…第2蓄電池
5a…第1電力開閉装置
5b…第2電力開閉装置
10…コンバータ
20…交流電源
30…交流負荷
40…コントローラ
 41a…第1エネルギー量演算部
 41b…第2エネルギー量演算部
 42a…第1劣化速度演算部
 42b…第2劣化速度演算部
 43…劣化速度比較部
 44…入出力電力検出部
 45…電力開閉条件設定部

Claims (6)

  1.  蓄電池を複数並列接続してなる蓄電池システムを制御する電池制御装置であって、
     前記並列接続された各蓄電池の温度を検出する温度検出手段と、
     前記並列接続された各蓄電池のエネルギー量を検出するエネルギー量検出手段と、
     前記温度検出手段により検出された温度と、前記エネルギー量検出手段により検出されたエネルギー量とから、前記並列接続された各蓄電池の劣化速度を算出し、前記並列接続された各蓄電池の劣化速度が近づくように、前記並列接続された各蓄電池に入出力する電力量を制御する制御手段と、を備えることを特徴とする電池制御装置。
  2.  請求項1に記載の電池制御装置において、
     前記制御手段は、前記並列接続された各蓄電池に備えられた電力開閉装置を制御することで、前記並列接続された各蓄電池に入出力する電力量を制御することを特徴とする電池制御装置。
  3.  請求項1または2に記載の電池制御装置において、
     前記制御手段は、
     蓄電池システムに入出力される電力が入力状態であるか、出力状態であるかを判断し、
     蓄電池システムに入出力される電力が入力状態である場合には、前記並列接続された各蓄電池のうち、前記劣化速度の速い蓄電池への入力を遮断して、前記劣化速度の遅い蓄電池のみへ入力するように前記電力開閉装置を制御し、
     蓄電池システムに入出力される電力が出力状態である場合には、前記並列接続された各蓄電池のうち、前記劣化速度の遅い蓄電池からの出力を遮断して、前記劣化速度の速い蓄電池のみから出力するように前記電力開閉装置を制御することを特徴とする電池制御装置。
  4.  請求項1~3のいずれかに記載の電池制御装置において、
     前記制御手段は、前記並列接続された各蓄電池の電圧が、所定値以下である場合に、前記並列接続された各蓄電池に入出力する電力量を制御する処理を実行することを特徴とする電池制御装置。
  5.  請求項1~4のいずれかに記載の電池制御装置において、
     前記制御手段は、前記並列接続された各蓄電池に電力を入出力した場合における、前記蓄電池の温度変化を予測し、該予測結果に基づいて、前記並列接続された各蓄電池に入出力する電力量を制御することを特徴とする電池制御装置。
  6.  請求項1~5のいずれかに記載の電池制御装置において、
     前記並列接続された各蓄電池のうち、第1蓄電池について、温度に基づく劣化速度DTa、およびエネルギー量に基づく劣化速度DSaを算出する第1算出手段と、
     前記第1蓄電池とは別の第2蓄電池について、温度に基づく劣化速度DTb、およびエネルギー量に基づく劣化速度DSbを算出する第2算出手段と、をさらに備え、
     前記制御手段は、前記第1蓄電池および/または前記第2蓄電池について、下記式(I)の関係を満足するようなエネルギー量を、目標エネルギー量として算出し、前記第1蓄電池および/または前記第2蓄電池が、前記目標エネルギー量となるように、前記第1蓄電池および/または前記第2蓄電池に入出力する電力量を制御することを特徴とする電池制御装置。
      (DTa×DSa)=(DTb×DSb) …(I)
PCT/JP2011/079144 2011-01-18 2011-12-16 電池制御装置 WO2012098794A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201180065411.3A CN103329392B (zh) 2011-01-18 2011-12-16 电池控制装置
US13/978,202 US9077184B2 (en) 2011-01-18 2011-12-16 Control device to control deterioration of batteries in a battery stack
JP2012553580A JP5598553B2 (ja) 2011-01-18 2011-12-16 電池制御装置
KR1020137015136A KR101530793B1 (ko) 2011-01-18 2011-12-16 전지 제어 장치
EP11856141.4A EP2667479B1 (en) 2011-01-18 2011-12-16 Battery control device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011007437 2011-01-18
JP2011-007437 2011-03-31

Publications (1)

Publication Number Publication Date
WO2012098794A1 true WO2012098794A1 (ja) 2012-07-26

Family

ID=46515431

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/079144 WO2012098794A1 (ja) 2011-01-18 2011-12-16 電池制御装置

Country Status (6)

Country Link
US (1) US9077184B2 (ja)
EP (1) EP2667479B1 (ja)
JP (1) JP5598553B2 (ja)
KR (1) KR101530793B1 (ja)
CN (1) CN103329392B (ja)
WO (1) WO2012098794A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015178075A1 (ja) * 2014-05-22 2015-11-26 株式会社東芝 電池制御装置
JP5932190B1 (ja) * 2015-02-17 2016-06-08 三菱電機株式会社 電力変換システム
WO2016132586A1 (ja) * 2015-02-17 2016-08-25 三菱電機株式会社 電力変換システム
JP7573446B2 (ja) 2021-01-07 2024-10-25 本田技研工業株式会社 充電システム

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140042974A1 (en) * 2011-04-22 2014-02-13 Sk Innovation Co., Ltd. Detachable battery module, and method and apparatus for the charge equalization of a battery string using same
JP5919525B2 (ja) * 2011-11-22 2016-05-18 パナソニックIpマネジメント株式会社 車両管理システム
US20160105044A1 (en) * 2014-10-08 2016-04-14 Panasonic Intellectual Property Management Co., Ltd. Power-storage-system control method and power-storage-system control apparatus
US10403936B2 (en) 2015-01-15 2019-09-03 Nec Corporation Storage cell control system, storage cell control method, and recording medium
JP2017055551A (ja) * 2015-09-09 2017-03-16 日立オートモティブシステムズ株式会社 蓄電池制御装置
JP7255086B2 (ja) * 2017-04-28 2023-04-11 富士電機株式会社 充放電配分制御装置、充放電配分制御システム、および充放電配分制御方法
CN107612076A (zh) * 2017-09-27 2018-01-19 宁德时代新能源科技股份有限公司 电池充电方法、装置、设备和存储介质
CN107612075A (zh) * 2017-09-27 2018-01-19 宁德时代新能源科技股份有限公司 电池充电方法、装置、设备和存储介质
US20220069593A1 (en) * 2020-09-01 2022-03-03 Sion Power Corporation Multiplexed battery management system
JP2023068406A (ja) * 2021-11-02 2023-05-17 Fdk株式会社 充電方法、及びバックアップ電源装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07153498A (ja) 1993-11-30 1995-06-16 Sanyo Electric Co Ltd 二次電池の充電方法
JP2009044862A (ja) * 2007-08-09 2009-02-26 Toyota Motor Corp 電気自動車の電源制御装置及び電源システム
JP2010104129A (ja) * 2008-10-22 2010-05-06 Sanyo Electric Co Ltd 電源システム、電源側制御部及び電動車輌
JP2010239711A (ja) * 2009-03-30 2010-10-21 Japan Research Institute Ltd 電池制御装置、車両、及び電池制御方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3965817B2 (ja) * 1999-02-04 2007-08-29 トヨタ自動車株式会社 電池容量予測装置
JP3469228B2 (ja) * 2002-02-13 2003-11-25 三菱重工業株式会社 蓄電装置の充放電制御装置及び充放電制御方法並びに電力貯蔵システム
US6894459B2 (en) * 2003-07-29 2005-05-17 Motorola, Inc. Charging method for extending battery life in the presence of high temperature
JP2005110337A (ja) * 2003-09-26 2005-04-21 Sanyo Electric Co Ltd 複数の電池の充電装置
FR2862558B1 (fr) * 2003-11-20 2006-04-28 Pellenc Sa Outil portatif electrique autonome de puissance
CA2531295C (en) * 2004-12-22 2013-10-22 Odyne Corporation Battery management and equalization system for batteries using power line carrier communications
JP4572850B2 (ja) * 2006-03-24 2010-11-04 株式会社日立製作所 電源制御装置
JP2010011708A (ja) * 2008-06-30 2010-01-14 Panasonic Corp 電池パックの充電制御方法、放電制御方法および充放電システム
JP4715881B2 (ja) * 2008-07-25 2011-07-06 トヨタ自動車株式会社 電源システムおよびそれを備えた車両
JP2011015473A (ja) * 2009-06-30 2011-01-20 Toyota Motor Corp 電源システムおよびそれを備えた電動車両ならびに電源システムの制御方法
CN102439780B (zh) * 2010-04-21 2014-06-18 丰田自动车株式会社 二次电池的劣化度计算装置、搭载该装置的车辆以及二次电池的劣化度计算方法
JP5146855B2 (ja) * 2010-08-09 2013-02-20 村田機械株式会社 天井走行車システム
US20120256752A1 (en) * 2011-04-06 2012-10-11 James William Musser System and method to extend operating life of rechargable batteries using battery charge management
JP2013074785A (ja) * 2011-09-26 2013-04-22 Hyundai Motor Co Ltd 車両のバッテリー充電制御方法およびその装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07153498A (ja) 1993-11-30 1995-06-16 Sanyo Electric Co Ltd 二次電池の充電方法
JP2009044862A (ja) * 2007-08-09 2009-02-26 Toyota Motor Corp 電気自動車の電源制御装置及び電源システム
JP2010104129A (ja) * 2008-10-22 2010-05-06 Sanyo Electric Co Ltd 電源システム、電源側制御部及び電動車輌
JP2010239711A (ja) * 2009-03-30 2010-10-21 Japan Research Institute Ltd 電池制御装置、車両、及び電池制御方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2667479A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015178075A1 (ja) * 2014-05-22 2015-11-26 株式会社東芝 電池制御装置
JP5932190B1 (ja) * 2015-02-17 2016-06-08 三菱電機株式会社 電力変換システム
WO2016132586A1 (ja) * 2015-02-17 2016-08-25 三菱電機株式会社 電力変換システム
US10164448B2 (en) 2015-02-17 2018-12-25 Mitsubishi Electric Corporation Power conversion system
JP7573446B2 (ja) 2021-01-07 2024-10-25 本田技研工業株式会社 充電システム

Also Published As

Publication number Publication date
KR20130097794A (ko) 2013-09-03
US9077184B2 (en) 2015-07-07
CN103329392A (zh) 2013-09-25
CN103329392B (zh) 2016-02-17
JPWO2012098794A1 (ja) 2014-06-09
KR101530793B1 (ko) 2015-06-22
EP2667479B1 (en) 2018-06-27
US20130285613A1 (en) 2013-10-31
JP5598553B2 (ja) 2014-10-01
EP2667479A1 (en) 2013-11-27
EP2667479A4 (en) 2016-10-12

Similar Documents

Publication Publication Date Title
JP5598553B2 (ja) 電池制御装置
EP3281274B1 (en) Systems, methods and devices for adaptable battery charging
JP6168043B2 (ja) 調整装置、組電池装置および調整方法
JP6195310B2 (ja) 電池制御システムおよび電池パック
JP4967162B2 (ja) 二次電池パック
JP5859341B2 (ja) 電圧均等化装置及び方法並びにプログラム、それを備えた電力貯蔵システム
JP2010088202A (ja) 電池ユニットおよびこれを用いた電池システム
CN103683359B (zh) 电池组的电池均衡方法及电池管理系统
US9472960B2 (en) Regulating device, battery assembly device and regulating method
JP6202632B2 (ja) 蓄電システムおよび電池保護方法
KR20160137493A (ko) 전압 측정을 통한 배터리 랙 파손 방지 장치, 시스템 및 방법
JP5533482B2 (ja) 電池制御装置
JP2014103831A (ja) 電力貯蔵システムの制御装置及び方法並びにプログラム、それを備えた電力貯蔵システム
JP5644691B2 (ja) セルバランス制御装置およびセルバランス制御方法
JP5317245B2 (ja) 二次電池パック
JP2011072084A (ja) 大型二次電池の充電方法及びシステム
JP2012182915A (ja) 電力貯蔵装置、電源装置、バッテリユニット、および制御装置
JP2011182479A (ja) リチウムイオン組電池の充電システムおよび充電方法
TW201622295A (zh) 充電裝置及其充電方法
TWI519032B (zh) 充電方法及其適用之充電系統
WO2013008614A1 (ja) 蓄電池管理ユニット
JP2016170938A (ja) 電池システムの電池パック交換方法及び電池パック
US12009683B2 (en) Standby power supply device and method for charging secondary battery
JP2015100237A (ja) 制御装置、蓄電装置、蓄電装置の制御方法、及びプログラム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180065411.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11856141

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012553580

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20137015136

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011856141

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13978202

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE