WO2012095962A1 - Organic el device and method for manufacturing same - Google Patents
Organic el device and method for manufacturing same Download PDFInfo
- Publication number
- WO2012095962A1 WO2012095962A1 PCT/JP2011/050364 JP2011050364W WO2012095962A1 WO 2012095962 A1 WO2012095962 A1 WO 2012095962A1 JP 2011050364 W JP2011050364 W JP 2011050364W WO 2012095962 A1 WO2012095962 A1 WO 2012095962A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- organic
- layer
- light emitting
- lower electrode
- emitting region
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/10—OLED displays
- H10K59/17—Passive-matrix OLED displays
- H10K59/173—Passive-matrix OLED displays comprising banks or shadow masks
Definitions
- the present invention relates to an organic EL device and a manufacturing method thereof.
- the organic EL device has a structure in which an organic layer including a lower electrode and a light emitting layer and an upper electrode are stacked on a substrate, and is used as various light emitting devices such as a display and an illumination light source.
- the light emitting part of the organic EL device is such that one of the upper electrode and the lower electrode is an anode and the other is a cathode, and holes injected from the anode side and electrons injected from the cathode side are recombined in the organic layer. It emits light due to.
- the light-emitting portion of the organic EL device includes a plurality or a single light-emitting region partitioned into a predetermined planar shape, and the pattern shape and arrangement of the lower electrode are determined according to the shape and arrangement of the light-emitting region.
- Conventionally known passive matrix drive type (simple matrix drive type) organic EL devices have a lower electrode patterned in a line, and this lower electrode is insulated and partitioned so as to correspond to the planar shape of the light emitting region.
- a partition wall is formed in a line pattern in a direction crossing the lower electrode, and an organic layer and an upper electrode are stacked on the lower electrode that is insulated and partitioned.
- a mask having an opening corresponding to the planar shape of the light emitting region is used.
- the aforementioned partition has a function of supporting this mask. By supporting the mask on the upper surface of the partition wall formed in a line pattern, the distance between the mask and the lower electrode can be kept at an appropriate distance (see Patent Document 1 below).
- the organic layer in an organic EL device is often formed by a multilayer film for each function such as a hole injection / transport layer, a light emitting layer, and an electron injection / transport layer.
- Methods for forming a multilayer film of an organic layer are roughly classified into a gas phase method and a liquid phase method.
- the gas phase method is a method in which a material that has been converted into gas molecules by heating or the like is attached to a film formation surface, such as vacuum evaporation in which the material is evaporated and attached in a vacuum chamber.
- the liquid phase method is a method in which a liquid or semi-liquid material is attached to a film formation surface, such as coating.
- the organic layer is formed by the liquid phase method in the conventional organic EL device provided with the partition walls patterned in a line shape
- the following problems occur.
- a liquid pool is generated along the line-shaped partition wall, the film thickness is increased on the side near the partition wall, and the film thickness is not uniform in the light emitting region.
- the organic material flows along the partition walls to the wiring area outside the light emitting portion, and causes poor contact between the upper electrode and the lead wiring formed thereafter, and the sealing performance when the light emitting portion is sealed is lowered.
- the present invention is an example of a problem to deal with such a problem. That is, in an organic EL device, when an organic layer is formed by a liquid phase method, the film thickness non-uniformity in the light emitting region can be minimized, and after a single layer is formed by a liquid phase method, a mask is formed. It is an object of the present invention that, when another layer is formed through a film, patterning can be easily performed while supporting the mask.
- the present invention comprises at least the following configuration.
- An organic EL device in which a lower electrode, an organic layer, and an upper electrode are laminated directly or via another layer on at least one surface side of a substrate, and on the lower electrode, between the lower electrode and the upper electrode A light emitting region that emits light is partitioned by light emission driving power supplied to the substrate, and the organic layer is a layer formed by coating at least one of the organic layers.
- the organic EL device is characterized in that a plurality of projecting portions projecting in a direction crossing the one surface are scattered.
- FIG. 1 is an explanatory view showing an organic EL device according to an embodiment of the present invention
- FIG. 1A is a partial cross-sectional conceptual view of the organic EL device in the AA cross section of FIG. 1B, FIG.
- the conceptual diagram which planarly viewed the state before forming an organic layer. It is explanatory drawing which showed the organic electroluminescent apparatus which concerns on one Embodiment of this invention, Comprising: It is explanatory drawing which showed the example of formation of an upper electrode.
- the organic EL device according to the embodiment of the present invention it is an explanatory view showing a modified example of the arrangement of the protruding portion.
- FIG. 1 is an explanatory view showing an organic EL device according to an embodiment of the present invention
- FIG. 1 (a) is a partial sectional conceptual view of the organic EL device in the AA section of FIG. 1 (b)).
- FIG. 1 (B) The conceptual diagram which planarly viewed the state before forming an organic layer.
- the organic EL device 1 includes a substrate 10, a lower electrode 11, an organic layer 12 including a light emitting layer, and an upper electrode 13.
- this organic EL device 1 by applying light emission driving power between the lower electrode 11 and the upper electrode 13, one of the lower electrode 11 and the upper electrode 13 becomes a cathode and the other becomes an anode, and injection is performed from the anode side. -Light is emitted due to recombination of transported holes and electrons injected / transported from the cathode side in the light emitting layer.
- the lower electrode 11, the organic layer 12, and the upper electrode 13 are laminated on at least one surface side of the substrate 10 directly or via another layer.
- the lower electrode 11 is an electrode closer to the substrate 10 in the pair of electrodes, and is formed on the substrate 10 directly or via another layer such as a planarizing layer or a covering layer.
- the substrate 10 and the lower electrode 11 are made of a transparent or translucent material.
- the organic layer 12 is composed of a plurality of layers.
- the organic layer 12 is formed by two layers of the first layer 12A and the second layer 12B.
- the organic layer 12 may be three or more layers, and one or more of the layers emit light. Acts as a layer.
- the upper electrode 13 is an electrode on the side away from the substrate 10 in the pair of electrodes, and is laminated on the organic layer 12 directly or via another layer. When light is extracted from the upper electrode 13 side, the upper electrode 13 is made of a transparent or translucent material. In addition, when light is extracted from only one side of the lower electrode 11 and the upper electrode 13, only one side from which light is extracted is made of a transparent or translucent material, and the other side is made of a material having high reflectivity. Is preferred.
- a light emitting region La is defined on the lower electrode 11.
- the light emitting region La is an area where light on the lower electrode 11 is emitted.
- the lower electrode 11 has a predetermined area on one surface side of the substrate 10, and a part of the lower electrode 11 is a light emitting region La.
- the lower electrode 11 has a plurality of linear patterns arranged in parallel.
- the lower electrode 11 may be formed in another pattern along one surface of the substrate 10. It may be formed by a single pattern.
- the light emitting region La is partitioned for each pattern of the lower electrode 11. Therefore, when the lower electrode 11 has a plurality of patterns, a plurality of light emitting regions La are provided. Further, a plurality of light emitting regions La can be partitioned on one pattern of the lower electrode 11.
- the light emitting region La is partitioned into a rectangle whose longitudinal direction is the long side of the lower electrode 11 by a part of the lower electrode 11 and the opening 14a of the insulating film 14 covering the substrate 10.
- the light emitting regions La are arranged along the short side direction.
- the organic EL device 1 includes a protruding portion 15 that protrudes in a direction intersecting with one surface of the substrate 10.
- a plurality of the protrusions 15 are provided on one surface side of the substrate 10 and are scattered at least outside the light emitting region La.
- the protrusions 15 are provided between the plurality of light emitting regions La, have a circular shape in plan view, and are arranged in a row at a predetermined interval p along the line-shaped lower electrode 11.
- the shape and arrangement of the protrusion 15 are not limited to this. As long as the position of the protrusion 15 is provided outside the light emitting region La, it may be provided within the light emitting region La in addition to this.
- the protrusion 15 is provided on the insulating film 14 in the illustrated example. In the illustrated example, the protrusion 15 is provided along at least a part of the opening edge of the opening 14 a of the insulating film 14.
- FIG. 2 is an explanatory view showing an organic EL device according to an embodiment of the present invention, showing an example of forming an upper electrode.
- the upper electrode 13 of the organic EL device 1 can be uniformly formed for the plurality of light emitting regions La.
- the upper electrode 13 is uniformly formed on all the light emitting regions La.
- the upper electrode 13 is patterned.
- the pattern of the upper electrode 13 is indicated by a broken line.
- the lower electrode 11 is patterned in a line shape
- the upper electrode 13 is patterned in a line shape in a direction intersecting the lower electrode 11. According to this, the intersection of the lower electrode 11 and the upper electrode 13 in the light emitting region La becomes one light emission control unit, and the light emission control units can be arranged in a dot matrix.
- the light emitting region may be partitioned by the insulating film 14 for each light emitting control unit, in the illustrated example, a plurality of light emitting control units are formed in a vertically long rectangular light emitting region La along the lower electrode 11. . According to this, the aperture ratio can be increased as compared with the case where the light emitting region is partitioned for each light emission control unit.
- an organic EL device 1 even if at least one layer of the organic layer 12 is formed by coating, that is, a layer formed by a liquid phase method, a liquid pool is generated near the protruding portion 15. In addition, since the flow of the liquid or semi-liquid coating material immediately after the plurality of projecting portions 15 are applied is suppressed, the film thickness of the formed organic layer is not uniform in the light emitting region La. Can be minimized.
- the organic EL device 1 forms the second layer 12B by the vapor phase method on the coated first layer 12A
- the mask is supported in a stable state by a plurality of projecting portions 15. Therefore, the second layer 12B can be patterned with high accuracy according to the light emitting region La.
- the pattern forming portion includes a wiring region formed around the light emitting region La and includes a region other than the range where the first layer 12A is formed.
- Electrode contact failure contact failure between the upper electrode 13 and the wiring electrode
- the formation of the protruding portion 15 is particularly effective when the first layer 12A is uniformly applied to all the light emitting regions La when the first layer 12A is applied and formed. Since the plurality of projecting portions 15 are scattered at a predetermined interval, it is difficult to obstruct the application of the first layer 12A uniformly over the plurality of light emitting regions La. By setting the arrangement and size of the protrusions 15, it is difficult to obstruct the uniform application of the first layer 12 ⁇ / b> A to the entire plurality of light emitting regions La, and the wiring region outside the light emitting unit or the like can be prevented. It is possible to prevent the liquid or semi-liquid coating material from flowing in.
- FIG. 3 is an explanatory view showing a modified example of the arrangement of the protrusions in the organic EL device according to the embodiment of the present invention (the same parts as those in FIG. 1 are denoted by the same reference numerals).
- a plurality of lower electrodes 11 formed in a line pattern are arranged in parallel on one surface side of the substrate 10, and an opening of the insulating film 14 is formed on the lower electrode 11.
- a rectangular light emitting region La is partitioned by the portion 14a.
- the protrusions 15 are provided between the plurality of light emitting regions La, and are arranged at predetermined intervals p in a row along the lower electrode 11.
- positioned at multiple rows is arrange
- the distance d1 between the protrusions 15 arranged with the light emitting region La interposed therebetween is relatively smaller than the example shown in FIG. Since it can be increased, even if the phenomenon that the film thickness of the coating material increases in the vicinity of the protrusion 15 occurs, it is difficult to affect the film thickness in the light emitting region La. Therefore, the film thickness non-uniformity in the light emitting region La can be made more difficult to occur.
- the protrusions 15 are arranged in a zigzag shape along the direction intersecting the longitudinal direction of the lower electrode 11, the flow of the coating material along this direction is effectively suppressed. be able to.
- FIG. 4 shows a modification of the arrangement and form of the protrusions 15 provided for one light emitting area La.
- the protrusion 15 is provided along at least the entire circumference of the opening edge of the opening 14 a of the insulating film 14.
- the protrusion 15 is provided along at least a part of the opening edge of the opening 14a of the insulating film 14, and the planar shape of the protrusion 15 is bowl-shaped. It has become.
- the longitudinal direction of the hook-shaped protrusions 15 is a direction intersecting with the arrangement direction of the protrusions 15.
- the light emitting regions La shown in FIGS. 4A and 4B may exist only on one surface of the substrate 10 or may exist in plural on one surface of the substrate 10. In any of the examples, a mask for patterning the organic layer 12 around one light emitting region La can be stably supported.
- FIG. 5 shows a modified example of the arrangement of the protrusions 15 provided for the plurality of light emitting regions La.
- the interval between adjacent protrusions 15 differs depending on the position of the protrusions 15.
- the distance between the protrusions 15 and 15 is relatively wide on the side of the opening 14a in the insulating film 14, and the protrusion is relatively between one opening 14a and the other opening 14a.
- interval between 15 and 15 is narrow.
- FIG. 6 shows a modification of the arrangement and size of the protrusions 15 provided for the plurality of light emitting regions La.
- the planar size of the protrusion 15 differs depending on the position of the protrusion 15.
- a relatively small planar protrusion 15 is provided on the side of the opening 14a in the insulating film 14, and a relatively large planar protrusion is provided between one opening 14a and the other opening 14a.
- a portion 15 is provided.
- FIG. 7 shows a modification of the arrangement and shape of the protrusions 15 provided for the plurality of light emitting regions La.
- the planar shape of the protrusion 15 differs depending on the position of the protrusion 15.
- a protrusion 15 having a circular planar shape is provided on the side of the opening 14a in the insulating film 14, and a horizontally elongated bowl shape is formed between one opening 14a and the other opening 14a.
- the protrusion part 15 which has is provided.
- FIG. 8 shows a modification of the form of the individual protrusions 15.
- the upper surface shape of the protrusion part 15 of the example mentioned above was circular or bowl shape
- the upper surface shape of the protrusion part 15 is not limited to this.
- the upper surface shape of the protrusion 15 may be a polygon (the protrusion 15 (15A) in FIG. 8A is a triangle, and the protrusion 15 in FIG.
- the protrusion 15 (15B) is a quadrangle, and the protrusion 15 (15C) in FIG.
- FIG. 1 is an inversely tapered shape in which the side surface is inclined so as to face one surface of the substrate 10, but is not limited to this, and FIG. As shown in FIG. 8E, even if the side surface of the protrusion 15 (15D) is tapered with an angle of less than 90 ° with respect to one surface of the substrate 10, as shown in FIG.
- the side surface 15E) may be substantially perpendicular to the substrate 10.
- FIG. 9 is an explanatory view showing a method for manufacturing an organic EL device according to an embodiment of the present invention.
- the insulating film 14 is formed so as to cover a part of the lower electrode 11 and the substrate 10, and the opening 14 a of the insulating film 14 forms the lower part.
- a light emitting region La is partitioned on the electrode 11 (see FIG. 9A).
- the protruding portions 15 protruding in a direction intersecting with one surface of the substrate 10 are formed in a dotted manner (see FIG. 9B). .
- the first layer 12A in the organic layer 12 is applied on at least the light emitting region La (see FIG. 9C).
- the second layer 12B in the organic layer 12 is patterned on the upper layer side of the first layer 12A through the mask M supported on the protrusion 15 (FIG. 9 ( d)).
- the upper electrode 13 is formed on the organic layer 12 (see FIG. 9D). Thereafter, the light emitting unit is sealed as necessary.
- the upper electrode 13 is covered with the sealing material 16 and the light emitting part is solid-sealed. It may be a hollow seal that bonds the stop member to the substrate 10.
- the substrate 10 is formed of glass, plastic, metal having a surface of an insulating material formed on the surface, or the like.
- the lower electrode 11 is formed of a transparent conductive film, ITO (Indium Tin Oxide), IZO (Indium Zinc Oxide), zinc oxide-based transparent conductive film, SnO 2 -based transparent conductive film, titanium dioxide-based transparent conductive film, etc.
- a transparent metal oxide can be used.
- the lower electrode 11 can be formed by sputtering or vapor deposition.
- the pattern formation of the lower electrode 11 on the substrate 10 can be performed by a photolithography process or the like.
- the insulating film 14 is provided in order to ensure insulation of each of the patterned lower electrodes 11, and a material such as polyimide resin, acrylic resin, silicon oxide, silicon nitride is used.
- the insulating film 14 is formed over the entire surface of the light emitting portion on the substrate 10 on which the lower electrode 11 is formed, and then the opening 14 a is patterned to form the light emitting region La on the lower electrode 11.
- a film is formed on the substrate 10 on which the lower electrode 11 is formed to have a predetermined coating thickness by spin coating, and exposure processing and development processing are performed using an exposure mask, whereby the light emitting region La is formed.
- the opening 14a of the insulating film 14 having the pattern shape is formed.
- the insulating film 14 is formed so as to fill in between the patterns of the lower electrode 11 and partially cover the side end portion thereof. As a result, the light emitting region La is opened on the lower electrode 11, and the region is insulated and partitioned by the insulating film 14.
- the protrusion 15 is formed by applying an insulating material such as a photosensitive resin on the insulating film 14 by spin coating or the like to a thickness greater than the total thickness of the organic layer 12 and the upper electrode 13. Irradiate ultraviolet rays or the like through a photomask having a planar pattern of the protrusions 15 on the photosensitive resin film, and use the difference in development speed caused by the difference in the exposure amount in the thickness direction of the layer.
- a protruding portion 15 having a tapered surface with a side portion facing downward can be formed.
- the organic layer 12 has a laminated structure of light emitting functional layers including a light emitting layer.
- a hole injection layer and a hole transport are sequentially formed from the anode side.
- a layer, a light emitting layer, an electron transport layer, an electron injection layer, and the like are selectively formed.
- the first layer 12A is formed by a liquid phase method (application or various printing methods)
- the second layer 12B is formed by a vacuum vapor deposition method by a vapor phase method.
- a hole transport layer having a function of transporting holes injected from the anode to the light-emitting layer is formed as the first layer 12A by coating.
- the first layer 12A can be formed as a layer common to the plurality of light emitting regions La, and is applied to the entire surface of the light emitting portion including the insulating film 14.
- the insulating film 14 By subjecting the insulating film 14 to a water repellent treatment, the first layer 12A can be formed only in the light emitting region La without the insulating film 14.
- the hole transport layer may be a single layer or a stack of two or more layers.
- hole transport layer examples include, for example, 3,4-polyethylenediosithiophene / polystyrene sulfonic acid (PEDOT / PSS), which is a polyolefin derivative, and polytetrahydrothiophenylphenylene, which is a polymer precursor.
- PEDOT / PSS 3,4-polyethylenediosithiophene / polystyrene sulfonic acid
- PDOT / PSS polystyrene sulfonic acid
- polytetrahydrothiophenylphenylene which is a polymer precursor.
- a liquid composition in which a hole injecting and transporting layer forming material such as polyphenylene vinylene, 1,1-bis- (4-N, N-ditolylaminophenyl) cyclohexane or the like is dissolved in a polar solvent can be used.
- polar solvents examples include glycol ethers such as isopropyl alcohol, normal butanol, ⁇ -butyrolactone, N-methylpyrrolidone, 1,3-dimethyl-2-imidazolidinone and derivatives thereof, carbitol acetate, and butyl carbitol acetate. And the like.
- the second layer 12B formed on the first layer 12A is a light-emitting layer formed on the hole transport layer.
- red (R) an organic material that emits red light such as a styryl dye such as DCM1 (4- (dicyanomethylene) -2-methyl-6- (4′-dimethylaminostyryl) -4H-pyran) is used.
- green (G) an organic material that emits green light such as an aluminum quinolinol complex (Alq 3 ) is used.
- blue (B) an organic material emitting blue light such as a distyryl derivative or a triazole derivative is used.
- a distyryl derivative or a triazole derivative is used.
- other materials or a host-guest layer structure may be used, and the light emission form may be a fluorescent light emitting material or a phosphorescent light emitting material.
- An electron transport layer may be further formed on the second layer 12B.
- the electron transport layer can be formed by using various materials such as an aluminum quinolinol complex (Alq 3 ) by various film forming methods such as resistance heating vapor deposition.
- Alq 3 aluminum quinolinol complex
- the electron transport layer has a function of transporting electrons injected from the cathode to the light emitting layer.
- This electron transport layer may have a multilayer structure in which only one layer is stacked or two or more layers are stacked.
- the electron transport layer may be formed of a plurality of materials instead of a single material, and a guest material having a high charge donating (accepting) property may be formed on a host material having a high charge transport capability. It may be formed by doping.
- a material (metal, metal oxide, metal fluoride, alloy, etc.) having a work function smaller than that of the anode (for example, 4 eV or less) is used.
- metal films such as aluminum (Al), indium (In), magnesium (Mg), amorphous semiconductors such as doped polyaniline and doped polyphenylene vinylene, Cr 2 O 3 , NiO , Oxides such as Mn 2 O 5 can be used.
- a single layer structure made of a metal material, a laminated structure such as LiO 2 / Al, or the like can be adopted.
- each light emitting region La includes at least a first light emitting region that emits the first light emission color and a second light emitting region that emits the second light emission color by separately coating the light emitting layers.
Landscapes
- Electroluminescent Light Sources (AREA)
Abstract
Unevenness of film thickness is suppressed to minimum at the time of coat-forming an organic layer of an organic EL device (1). The organic EL device (1) has a lower electrode (11), an organic layer (12), and an upper electrode (13) laminated at least on one surface of a substrate (10) directly or with other layer therebetween. On the lower electrode (11), a light emitting region (La) is demarcated, said light emitting region emitting light with light emission drive power supplied to between the lower electrode (11) and the upper electrode (13). The organic layer (12) has, among the layers thereof, at least one layer (first layer (12A)) coat-formed, and on the one surface of the substrate (10), protruding sections (15) are spread outside of at least the light emitting region (La), said protruding sections protruding in the direction that intersects the one surface of the substrate (10).
Description
本発明は、有機EL装置及びその製造方法に関するものである。
The present invention relates to an organic EL device and a manufacturing method thereof.
有機EL装置は、基板上に下部電極と発光層を含む有機層と上部電極を積層した構造を有しており、ディスプレイや照明光源など、各種の発光装置として用いられている。有機EL装置の発光部は、上部電極と下部電極の一方が陽極、他方が陰極となって、陽極側から注入された正孔と陰極側から注入された電子が有機層内で再結合することに起因して光を放出する。
The organic EL device has a structure in which an organic layer including a lower electrode and a light emitting layer and an upper electrode are stacked on a substrate, and is used as various light emitting devices such as a display and an illumination light source. The light emitting part of the organic EL device is such that one of the upper electrode and the lower electrode is an anode and the other is a cathode, and holes injected from the anode side and electrons injected from the cathode side are recombined in the organic layer. It emits light due to.
有機EL装置の発光部は、所定の平面形状に区画された複数又は単数の発光領域を備えており、この発光領域の形状や配列に応じて下部電極のパターン形状や配置が決められている。従来から知られているパッシブマトリクス駆動方式(単純マトリクス駆動方式)の有機EL装置は、下部電極がライン状にパターン形成され、この下部電極を発光領域の平面形状に対応するように絶縁区画して、下部電極と交差する方向にライン状のパターンで隔壁を形成し、絶縁区画された下部電極上に有機層と上部電極を積層している。
The light-emitting portion of the organic EL device includes a plurality or a single light-emitting region partitioned into a predetermined planar shape, and the pattern shape and arrangement of the lower electrode are determined according to the shape and arrangement of the light-emitting region. Conventionally known passive matrix drive type (simple matrix drive type) organic EL devices have a lower electrode patterned in a line, and this lower electrode is insulated and partitioned so as to correspond to the planar shape of the light emitting region. A partition wall is formed in a line pattern in a direction crossing the lower electrode, and an organic layer and an upper electrode are stacked on the lower electrode that is insulated and partitioned.
有機層の成膜には、発光領域の平面形状に対応する開口を有するマスクが用いられる。前述した隔壁はこのマスクを支持する機能を併せ持っている。マスクをライン状のパターンで形成された隔壁の上面で支持することで、マスクと下部電極との間隔を適宜の距離に保つことができる(下記特許文献1参照)。
For forming the organic layer, a mask having an opening corresponding to the planar shape of the light emitting region is used. The aforementioned partition has a function of supporting this mask. By supporting the mask on the upper surface of the partition wall formed in a line pattern, the distance between the mask and the lower electrode can be kept at an appropriate distance (see Patent Document 1 below).
有機EL装置における有機層は、正孔注入・輸送層,発光層,電子注入・輸送層といった機能毎の多層膜によって形成されることが多い。有機層の多層膜を形成する方法には大きく分けて気相法と液相法がある。気相法は、加熱等によって気体分子となった材料を被成膜面に付着させる方法であり、真空室内で材料を蒸発させて付着させる真空蒸着等がこれに当たる。液相法は、液状又は半液状の材料を被成膜面に付着させる方法であり、塗布等がこれに当たる。
The organic layer in an organic EL device is often formed by a multilayer film for each function such as a hole injection / transport layer, a light emitting layer, and an electron injection / transport layer. Methods for forming a multilayer film of an organic layer are roughly classified into a gas phase method and a liquid phase method. The gas phase method is a method in which a material that has been converted into gas molecules by heating or the like is attached to a film formation surface, such as vacuum evaporation in which the material is evaporated and attached in a vacuum chamber. The liquid phase method is a method in which a liquid or semi-liquid material is attached to a film formation surface, such as coating.
ライン状にパターン形成された隔壁を備えた従来の有機EL装置において、液相法で有機層を形成すると以下のような問題が生じる。一つには、ライン状の隔壁に沿って液溜まりが生じて隔壁に近い側で膜厚が厚くなり、発光領域内での膜厚が不均一になる。また、有機材料が隔壁に沿って発光部の外側の配線領域等に流れ出し、その後に形成する上部電極と引出配線との接触不良を引き起こしたり、発光部を封止する際の封止性能を低下させたりする不具合が生じる。
When the organic layer is formed by the liquid phase method in the conventional organic EL device provided with the partition walls patterned in a line shape, the following problems occur. For example, a liquid pool is generated along the line-shaped partition wall, the film thickness is increased on the side near the partition wall, and the film thickness is not uniform in the light emitting region. In addition, the organic material flows along the partition walls to the wiring area outside the light emitting portion, and causes poor contact between the upper electrode and the lead wiring formed thereafter, and the sealing performance when the light emitting portion is sealed is lowered. Cause problems.
一方、液相法で有機層を形成する有機EL装置において隔壁を排除してしまうと、やはり基板に傾斜や振動が加わった場合等には成膜直後の有機材料が流動しやすく、発光領域内での膜厚を均一に保つことが困難になり、また、液相法で一つの層を成膜した後にマスクを介して他の層を成膜する場合にマスクを支持することができなくなる問題が生じる。
On the other hand, if the partition walls are eliminated in an organic EL device that forms an organic layer by a liquid phase method, the organic material immediately after film formation tends to flow when the substrate is tilted or vibrated, so that the light emitting region is It is difficult to maintain a uniform film thickness at the same time, and when one layer is formed by the liquid phase method and another layer is formed through the mask, the mask cannot be supported. Occurs.
本発明は、このような問題に対処することを課題の一例とするものである。すなわち、有機EL装置において、液相法で有機層を成膜する場合に発光領域内での膜厚不均一を最小限に抑えることができること、液相法で一つの層を成膜した後にマスクを介して他の層を成膜する場合に、マスクを支持して簡易にパターニングを行うことができること、等が本発明の目的である。
The present invention is an example of a problem to deal with such a problem. That is, in an organic EL device, when an organic layer is formed by a liquid phase method, the film thickness non-uniformity in the light emitting region can be minimized, and after a single layer is formed by a liquid phase method, a mask is formed. It is an object of the present invention that, when another layer is formed through a film, patterning can be easily performed while supporting the mask.
このような目的を達成するために、本発明は以下の構成を少なくとも具備するものである。
基板の少なくとも一面側に、下部電極,有機層,上部電極を直接又は他の層を介して積層した有機EL装置であって、前記下部電極上には、当該下部電極と前記上部電極との間に供給される発光駆動電力によって発光する発光領域が区画されており、前記有機層はその中の少なくとも一層が塗布形成された層であり、前記基板の一面側には、少なくとも前記発光領域の外に前記一面と交差する方向に突出する突出部が点在していることを特徴とする有機EL装置。 In order to achieve such an object, the present invention comprises at least the following configuration.
An organic EL device in which a lower electrode, an organic layer, and an upper electrode are laminated directly or via another layer on at least one surface side of a substrate, and on the lower electrode, between the lower electrode and the upper electrode A light emitting region that emits light is partitioned by light emission driving power supplied to the substrate, and the organic layer is a layer formed by coating at least one of the organic layers. The organic EL device is characterized in that a plurality of projecting portions projecting in a direction crossing the one surface are scattered.
基板の少なくとも一面側に、下部電極,有機層,上部電極を直接又は他の層を介して積層した有機EL装置であって、前記下部電極上には、当該下部電極と前記上部電極との間に供給される発光駆動電力によって発光する発光領域が区画されており、前記有機層はその中の少なくとも一層が塗布形成された層であり、前記基板の一面側には、少なくとも前記発光領域の外に前記一面と交差する方向に突出する突出部が点在していることを特徴とする有機EL装置。 In order to achieve such an object, the present invention comprises at least the following configuration.
An organic EL device in which a lower electrode, an organic layer, and an upper electrode are laminated directly or via another layer on at least one surface side of a substrate, and on the lower electrode, between the lower electrode and the upper electrode A light emitting region that emits light is partitioned by light emission driving power supplied to the substrate, and the organic layer is a layer formed by coating at least one of the organic layers. The organic EL device is characterized in that a plurality of projecting portions projecting in a direction crossing the one surface are scattered.
以下、図面を参照しながら本発明の実施形態を説明する。本発明の実施形態は図示の内容を含むがこれのみに限定されるものではない。図1は本発明の一実施形態に係る有機EL装置を示した説明図である(図1(a)が図1(b)のA-A断面における有機EL装置の部分断面概念図、図1(b)が有機層を形成する前の状態を平面視した概念図)。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. The embodiment of the present invention includes the contents shown in the drawings, but is not limited thereto. FIG. 1 is an explanatory view showing an organic EL device according to an embodiment of the present invention (FIG. 1 (a) is a partial sectional conceptual view of the organic EL device in the AA section of FIG. 1 (b)). (B) The conceptual diagram which planarly viewed the state before forming an organic layer.
有機EL装置1は、基板10と下部電極11と発光層を含む有機層12と上部電極13を備えている。この有機EL装置1は、下部電極11と上部電極13との間に発光駆動電力を印加することにより、下部電極11と上部電極13の一方が陰極、他方が陽極となって、陽極側から注入・輸送された正孔と陰極側から注入・輸送された電子が発光層で再結合することに起因して光を放出するものである。
The organic EL device 1 includes a substrate 10, a lower electrode 11, an organic layer 12 including a light emitting layer, and an upper electrode 13. In this organic EL device 1, by applying light emission driving power between the lower electrode 11 and the upper electrode 13, one of the lower electrode 11 and the upper electrode 13 becomes a cathode and the other becomes an anode, and injection is performed from the anode side. -Light is emitted due to recombination of transported holes and electrons injected / transported from the cathode side in the light emitting layer.
下部電極11,有機層12,上部電極13は基板10の少なくとも一面側に直接又は他の層を介して積層されている。下部電極11は、一対の電極の中でより基板10に近い側の電極であって、基板10上に直接又は平坦化層や被覆層等の他の層を介して形成されている。基板10側から光を取り出す場合には、基板10及び下部電極11が透明又は半透明の材料によって構成される。
The lower electrode 11, the organic layer 12, and the upper electrode 13 are laminated on at least one surface side of the substrate 10 directly or via another layer. The lower electrode 11 is an electrode closer to the substrate 10 in the pair of electrodes, and is formed on the substrate 10 directly or via another layer such as a planarizing layer or a covering layer. When light is extracted from the substrate 10 side, the substrate 10 and the lower electrode 11 are made of a transparent or translucent material.
有機層12は複数の層からなる。有機層12は、図示の例では第1の層12Aと第2の層12Bの2層によって形成されているが、3層以上であってもよく、その中の一つ又は複数の層が発光層として機能する。上部電極13は、一対の電極の中で基板10から離れている側の電極であって、有機層12上に直接又は他の層を介して積層されている。上部電極13側から光を取り出す場合には上部電極13が透明又は半透明の材料によって構成される。また、下部電極11と上部電極13の一方側のみから光を取り出す場合には、光を取り出す一方側のみを透明又は半透明の材料で構成し、他方側を反射率の高い材料で構成することが好ましい。
The organic layer 12 is composed of a plurality of layers. In the illustrated example, the organic layer 12 is formed by two layers of the first layer 12A and the second layer 12B. However, the organic layer 12 may be three or more layers, and one or more of the layers emit light. Acts as a layer. The upper electrode 13 is an electrode on the side away from the substrate 10 in the pair of electrodes, and is laminated on the organic layer 12 directly or via another layer. When light is extracted from the upper electrode 13 side, the upper electrode 13 is made of a transparent or translucent material. In addition, when light is extracted from only one side of the lower electrode 11 and the upper electrode 13, only one side from which light is extracted is made of a transparent or translucent material, and the other side is made of a material having high reflectivity. Is preferred.
下部電極11上には発光領域Laが区画されている。発光領域Laは下部電極11上の光が放出される区域である。下部電極11は基板10の一面側に所定の広さの面積を有しており、その一部が発光領域Laになっている。下部電極11は、図示の例では複数のライン状パターンを平行に並べて配置しているが、基板10の一面に沿って他のパターンで形成されていてもよく、基板10上の主な面積を占める一つのパターンで形成されていてもよい。発光領域Laは、下部電極11の一つのパターン毎に区画される。したがって、下部電極11が複数のパターンを有する場合には、発光領域Laは複数設けられる。また、下部電極11の一つのパターン上に複数の発光領域Laを区画することもできる。図示の例では、発光領域Laは下部電極11の一部と基板10上を覆う絶縁膜14の開口部14aによって、下部電極11の長手方向が長辺になる長方形に区画されており、複数の発光領域Laはその短辺方向に沿って配列されている。
A light emitting region La is defined on the lower electrode 11. The light emitting region La is an area where light on the lower electrode 11 is emitted. The lower electrode 11 has a predetermined area on one surface side of the substrate 10, and a part of the lower electrode 11 is a light emitting region La. In the illustrated example, the lower electrode 11 has a plurality of linear patterns arranged in parallel. However, the lower electrode 11 may be formed in another pattern along one surface of the substrate 10. It may be formed by a single pattern. The light emitting region La is partitioned for each pattern of the lower electrode 11. Therefore, when the lower electrode 11 has a plurality of patterns, a plurality of light emitting regions La are provided. Further, a plurality of light emitting regions La can be partitioned on one pattern of the lower electrode 11. In the example shown in the drawing, the light emitting region La is partitioned into a rectangle whose longitudinal direction is the long side of the lower electrode 11 by a part of the lower electrode 11 and the opening 14a of the insulating film 14 covering the substrate 10. The light emitting regions La are arranged along the short side direction.
有機EL装置1は、基板10の一面と交差する方向に突出する突出部15を備える。突出部15は、基板10の一面側に複数設けられ、少なくとも発光領域Laの外に点在している。図示の例では、突出部15は、複数設けられた発光領域Laの間に設けられ、平面視円形状であり、ライン状の下部電極11に沿って所定の間隔pを空けて列状に配置されているが、突出部15の形状及び配置はこれに限定されるものではない。突出部15の位置は、発光領域Laの外側に設けていれば、これに加えて発光領域La内に設けてもよい。
The organic EL device 1 includes a protruding portion 15 that protrudes in a direction intersecting with one surface of the substrate 10. A plurality of the protrusions 15 are provided on one surface side of the substrate 10 and are scattered at least outside the light emitting region La. In the illustrated example, the protrusions 15 are provided between the plurality of light emitting regions La, have a circular shape in plan view, and are arranged in a row at a predetermined interval p along the line-shaped lower electrode 11. However, the shape and arrangement of the protrusion 15 are not limited to this. As long as the position of the protrusion 15 is provided outside the light emitting region La, it may be provided within the light emitting region La in addition to this.
突出部15は、図示の例では、絶縁膜14の上に設けられている。また、図示の例では、突出部15は、少なくとも絶縁膜14の開口部14aの開口縁の一部に沿って設けられている。
The protrusion 15 is provided on the insulating film 14 in the illustrated example. In the illustrated example, the protrusion 15 is provided along at least a part of the opening edge of the opening 14 a of the insulating film 14.
図2は本発明の一実施形態に係る有機EL装置を示した説明図であって上部電極の形成例を示した説明図である。有機EL装置1の上部電極13は、一例としては、複数の発光領域Laに対して一様に形成することができる。図1(a)に示した例では、有機層12における第2の層12Bを発光領域La毎にパターン形成した後に、全ての発光領域La上に一様に上部電極13を形成している。これに対して、図2に示した例は、上部電極13がパターン形成されている。図2においては破線で上部電極13のパターンを示している。この例では、下部電極11がライン状にパターン形成され、上部電極13が下部電極11と交差する方向にライン状にパターン形成されている。これによると、発光領域La内の下部電極11と上部電極13の交差部分が一つの発光制御単位になり、ドットマトリクス状に発光制御単位を配列することができる。この発光制御単位毎に絶縁膜14によって発光領域を区画してもよいが、図示の例では、下部電極11に沿った縦長の長方形の発光領域La内に複数の発光制御単位が形成されている。これによると、発光制御単位毎に発光領域を区画する場合と比較して開口率を高めることができる。
FIG. 2 is an explanatory view showing an organic EL device according to an embodiment of the present invention, showing an example of forming an upper electrode. For example, the upper electrode 13 of the organic EL device 1 can be uniformly formed for the plurality of light emitting regions La. In the example shown in FIG. 1A, after the second layer 12B of the organic layer 12 is patterned for each light emitting region La, the upper electrode 13 is uniformly formed on all the light emitting regions La. On the other hand, in the example shown in FIG. 2, the upper electrode 13 is patterned. In FIG. 2, the pattern of the upper electrode 13 is indicated by a broken line. In this example, the lower electrode 11 is patterned in a line shape, and the upper electrode 13 is patterned in a line shape in a direction intersecting the lower electrode 11. According to this, the intersection of the lower electrode 11 and the upper electrode 13 in the light emitting region La becomes one light emission control unit, and the light emission control units can be arranged in a dot matrix. Although the light emitting region may be partitioned by the insulating film 14 for each light emitting control unit, in the illustrated example, a plurality of light emitting control units are formed in a vertically long rectangular light emitting region La along the lower electrode 11. . According to this, the aperture ratio can be increased as compared with the case where the light emitting region is partitioned for each light emission control unit.
このような有機EL装置1によると、有機層12の中の少なくとも一層が塗布形成された層、すなわち液相法で形成された層であっても、突出部15の近くで液溜まりが生じることを抑制でき、また、複数点在した突出部15が塗布された直後の液状又は半液状の塗布材料の流動を抑止するので、塗布形成された有機層の膜厚が発光領域La内で不均一になるのを最小限に抑えることが可能になる。
According to such an organic EL device 1, even if at least one layer of the organic layer 12 is formed by coating, that is, a layer formed by a liquid phase method, a liquid pool is generated near the protruding portion 15. In addition, since the flow of the liquid or semi-liquid coating material immediately after the plurality of projecting portions 15 are applied is suppressed, the film thickness of the formed organic layer is not uniform in the light emitting region La. Can be minimized.
また、有機EL装置1は、塗布形成された第1の層12Aの上に気相法によって第2の層12Bを形成する場合に、複数点在した突出部15によってマスクを安定した状態で支持することができるので、第2の層12Bを発光領域Laに応じて精度よくパターニングすることができる。
Further, when the organic EL device 1 forms the second layer 12B by the vapor phase method on the coated first layer 12A, the mask is supported in a stable state by a plurality of projecting portions 15. Therefore, the second layer 12B can be patterned with high accuracy according to the light emitting region La.
突出部15は、全ての発光領域Laを含むパターン形成部全面に配置することが有効である。これによって、第2の層12Bを気相法で形成する際のマスクの設置をより安定化させることができる。ここでいうパターン形成部とは、発光領域Laの周囲に形成される配線領域等を含むものであり、第1の層12Aが形成された範囲以外の領域を含むものである。このように、第1の層12Aが形成された範囲以外にも突出部15を設けることで、第1の層12Aの塗布時に配線領域に液状又は半液状の塗布材料が流入するのを抑止でき、電極の接触不良(上部電極13と配線電極との接触不良)を抑止することができる。
It is effective to dispose the protruding portion 15 over the entire pattern forming portion including all the light emitting regions La. Thereby, the installation of the mask when forming the second layer 12B by the vapor phase method can be further stabilized. Here, the pattern forming portion includes a wiring region formed around the light emitting region La and includes a region other than the range where the first layer 12A is formed. As described above, by providing the protruding portion 15 in addition to the range where the first layer 12A is formed, it is possible to prevent the liquid or semi-liquid coating material from flowing into the wiring region when the first layer 12A is applied. Electrode contact failure (contact failure between the upper electrode 13 and the wiring electrode) can be suppressed.
さらに、突出部15の配置を拡大することで、発光部の外側に液状又は半液状の塗布材料が流入するのを抑止でき、発光部の外側に封止部材を接着する際の接着不良を抑止することが可能になる。
Furthermore, by expanding the arrangement of the protrusions 15, it is possible to prevent the liquid or semi-liquid coating material from flowing into the outside of the light emitting part, and to suppress poor adhesion when the sealing member is adhered to the outside of the light emitting part. It becomes possible to do.
突出部15の形成は、第1の層12Aを塗布形成するに際して、第1の層12Aを全ての発光領域Laに一様に塗布する場合に特に有効である。複数の突出部15は所定の間隔で点在しているので、複数の発光領域La全体に第1の層12Aを一様に塗布する際の妨げになり難い。突出部15の配置や大きさを設定することで、複数の発光領域La全体に第1の層12Aを一様に塗布する際の妨げにはなり難く、且つ発光部の外側の配線領域等に液状又は半液状の塗布材料が流入するのを抑止することが可能になる。
The formation of the protruding portion 15 is particularly effective when the first layer 12A is uniformly applied to all the light emitting regions La when the first layer 12A is applied and formed. Since the plurality of projecting portions 15 are scattered at a predetermined interval, it is difficult to obstruct the application of the first layer 12A uniformly over the plurality of light emitting regions La. By setting the arrangement and size of the protrusions 15, it is difficult to obstruct the uniform application of the first layer 12 </ b> A to the entire plurality of light emitting regions La, and the wiring region outside the light emitting unit or the like can be prevented. It is possible to prevent the liquid or semi-liquid coating material from flowing in.
図3は、本発明の実施形態に係る有機EL装置において、突出部の配置の変形例を示した説明図である(図1と同一の部位には同一符号を付している)。この例も図1に示した例と同様に、基板10の一面側にライン状のパターンで形成された下部電極11を複数平行に並べて配置しており、下部電極11上に絶縁膜14の開口部14aによって長方形の発光領域Laが区画されている。突出部15は、複数設けられた発光領域Laの間に設けられ、下部電極11に沿って列をなして所定の間隔pで点在している。そして、複数列に配置された突出部15が千鳥状に配置されている。すなわち、下部電極11を挟んで隣接して配置された一対の突出部15,15の間隔d1が下部電極11を挟んで配置された突出部15の列間隔dより大きくなっている。
FIG. 3 is an explanatory view showing a modified example of the arrangement of the protrusions in the organic EL device according to the embodiment of the present invention (the same parts as those in FIG. 1 are denoted by the same reference numerals). In this example, similarly to the example shown in FIG. 1, a plurality of lower electrodes 11 formed in a line pattern are arranged in parallel on one surface side of the substrate 10, and an opening of the insulating film 14 is formed on the lower electrode 11. A rectangular light emitting region La is partitioned by the portion 14a. The protrusions 15 are provided between the plurality of light emitting regions La, and are arranged at predetermined intervals p in a row along the lower electrode 11. And the protrusion part 15 arrange | positioned at multiple rows is arrange | positioned at zigzag form. That is, the distance d1 between the pair of protrusions 15 and 15 disposed adjacent to each other with the lower electrode 11 interposed therebetween is larger than the column interval d between the protrusions 15 disposed with the lower electrode 11 interposed therebetween.
このように複数列に配置された突出部15が千鳥状に配置された例では、発光領域Laを挟んで配置される突出部15間の間隔d1を図1に示した例に比べて比較的大きくできるので、突出部15の近傍で塗布材料の膜厚が大きくなる現象が生じたとしても、それが発光領域La内での膜厚に影響し難くなる。よって、発光領域La内での膜厚不均一をより生じ難くすることができる。また、下部電極11の長手方向に交差する方向に沿っては、突出部15がジグザグ(zigzag)状に配置されることになるので、この方向に沿った塗布材料の流れを効果的に抑止することができる。
Thus, in the example in which the protrusions 15 arranged in a plurality of rows are arranged in a staggered manner, the distance d1 between the protrusions 15 arranged with the light emitting region La interposed therebetween is relatively smaller than the example shown in FIG. Since it can be increased, even if the phenomenon that the film thickness of the coating material increases in the vicinity of the protrusion 15 occurs, it is difficult to affect the film thickness in the light emitting region La. Therefore, the film thickness non-uniformity in the light emitting region La can be made more difficult to occur. In addition, since the protrusions 15 are arranged in a zigzag shape along the direction intersecting the longitudinal direction of the lower electrode 11, the flow of the coating material along this direction is effectively suppressed. be able to.
図4~図7は、本発明の実施形態に係る有機EL装置における突出部の配置及び形態の変形例を示した説明図である。図4は、一つの発光領域Laに対して設けられる突出部15の配置及び形態の変形例を示している。図4(a)に示した例では、突出部15は、少なくとも絶縁膜14の開口部14aの開口縁の全周に沿って設けられている。また、図4(b)に示した例では、突出部15は、少なくとも絶縁膜14の開口部14aの開口縁の一部に沿って設けられており、突出部15の平面形状が俵形になっている。また、俵形の突出部15の長手方向が突出部15の配列方向と交差する方向になっている。図4(a),(b)に示した発光領域Laは、基板10の一面に唯一存在するものであっても、基板10の一面に複数存在するものであってもよい。いずれの例も一つの発光領域Laの周囲で有機層12をパターニングするためのマスクを安定して支持することができる。
4 to 7 are explanatory views showing modifications of the arrangement and form of the protrusions in the organic EL device according to the embodiment of the present invention. FIG. 4 shows a modification of the arrangement and form of the protrusions 15 provided for one light emitting area La. In the example shown in FIG. 4A, the protrusion 15 is provided along at least the entire circumference of the opening edge of the opening 14 a of the insulating film 14. In the example shown in FIG. 4B, the protrusion 15 is provided along at least a part of the opening edge of the opening 14a of the insulating film 14, and the planar shape of the protrusion 15 is bowl-shaped. It has become. Further, the longitudinal direction of the hook-shaped protrusions 15 is a direction intersecting with the arrangement direction of the protrusions 15. The light emitting regions La shown in FIGS. 4A and 4B may exist only on one surface of the substrate 10 or may exist in plural on one surface of the substrate 10. In any of the examples, a mask for patterning the organic layer 12 around one light emitting region La can be stably supported.
図5は、複数の発光領域Laに対して設けられる突出部15の配置の変形例を示している。この例は、隣り合う突出部15間の間隔が突出部15の位置によって異なっている。図示の例では、絶縁膜14における開口部14aの側方では比較的突出部15,15間の間隔が広くなっており、一つの開口部14aと他の開口部14aの間では比較的突出部15,15間の間隔が狭くなっている。このような配置にすることで、開口部14aによって区画される発光領域Laの周囲では塗布される第1の層12Aを一様に広げ、隣接する発光領域La,Laの間では塗布される第1の層12Aの流動を抑制する機能を有する。
FIG. 5 shows a modified example of the arrangement of the protrusions 15 provided for the plurality of light emitting regions La. In this example, the interval between adjacent protrusions 15 differs depending on the position of the protrusions 15. In the illustrated example, the distance between the protrusions 15 and 15 is relatively wide on the side of the opening 14a in the insulating film 14, and the protrusion is relatively between one opening 14a and the other opening 14a. The space | interval between 15 and 15 is narrow. With such an arrangement, the first layer 12A to be applied is uniformly spread around the light emitting region La defined by the opening 14a, and the first layer 12A is applied between the adjacent light emitting regions La and La. 1 has a function of suppressing the flow of the layer 12A.
図6は、複数の発光領域Laに対して設けられる突出部15の配置及び大きさの変形例を示している。この例は、突出部15の平面的な大きさが突出部15の位置によって異なっている。図示の例では、絶縁膜14における開口部14aの側方では比較的小さい平面形状の突出部15が設けられ、一つの開口部14aと他の開口部14aの間では比較的大きい平面形状の突出部15が設けられている。このような配置及び大きさにすることで、開口部14aによって区画される発光領域Laの周囲では塗布される第1の層12Aを一様に広げ、隣接する発光領域La,Laの間では塗布される第1の層12Aの流動を抑制する機能を有する。
FIG. 6 shows a modification of the arrangement and size of the protrusions 15 provided for the plurality of light emitting regions La. In this example, the planar size of the protrusion 15 differs depending on the position of the protrusion 15. In the illustrated example, a relatively small planar protrusion 15 is provided on the side of the opening 14a in the insulating film 14, and a relatively large planar protrusion is provided between one opening 14a and the other opening 14a. A portion 15 is provided. With such an arrangement and size, the first layer 12A to be applied is uniformly spread around the light emitting area La defined by the opening 14a, and the application is applied between the adjacent light emitting areas La and La. Has a function of suppressing the flow of the first layer 12A.
図7は、複数の発光領域Laに対して設けられる突出部15の配置及び形状の変形例を示している。この例は、突出部15の平面的な形状が突出部15の位置によって異なっている。図示の例では、絶縁膜14における開口部14aの側方では平面形状が円形状の突出部15が設けられ、一つの開口部14aと他の開口部14aの間では平面形状が横長の俵形状を有する突出部15が設けられている。このような配置及び形状にすることで、開口部14aによって区画される発光領域Laの周囲では塗布される第1の層12Aを一様に広げ、隣接する発光領域La,Laの間では塗布される第1の層12Aの流動を抑制する機能を有する。
FIG. 7 shows a modification of the arrangement and shape of the protrusions 15 provided for the plurality of light emitting regions La. In this example, the planar shape of the protrusion 15 differs depending on the position of the protrusion 15. In the example shown in the drawing, a protrusion 15 having a circular planar shape is provided on the side of the opening 14a in the insulating film 14, and a horizontally elongated bowl shape is formed between one opening 14a and the other opening 14a. The protrusion part 15 which has is provided. By adopting such an arrangement and shape, the first layer 12A to be applied is uniformly spread around the light emitting area La defined by the opening 14a, and is applied between the adjacent light emitting areas La and La. A function of suppressing the flow of the first layer 12A.
図8は、個々の突出部15の形態の変形例を示している。前述した例の突出部15の上面形状は円形又は俵形であったが、突出部15の上面形状はこれに限定されない。図8(a)~(c)に示すように、突出部15の上面形状が多角形であってもよい(図8(a)の突出部15(15A)は三角形、図8(b)の突出部15(15B)は四角形、図8(c)の突出部15(15C)は六角形)。また、図1に示した例の突出部15の側面形状は、側面が基板10の一面に対して向き合うように傾斜している逆テーパ状であるが、これに限らず、図8(d)に示すように、突出部15(15D)の側面が基板10の一面に対して90°未満で傾斜しているテーパ状であっても、図8(e)に示すように、突出部15(15E)の側面が基板10に対して略垂直であってもよい。
FIG. 8 shows a modification of the form of the individual protrusions 15. Although the upper surface shape of the protrusion part 15 of the example mentioned above was circular or bowl shape, the upper surface shape of the protrusion part 15 is not limited to this. As shown in FIGS. 8A to 8C, the upper surface shape of the protrusion 15 may be a polygon (the protrusion 15 (15A) in FIG. 8A is a triangle, and the protrusion 15 in FIG. The protrusion 15 (15B) is a quadrangle, and the protrusion 15 (15C) in FIG. Further, the side surface shape of the protruding portion 15 in the example shown in FIG. 1 is an inversely tapered shape in which the side surface is inclined so as to face one surface of the substrate 10, but is not limited to this, and FIG. As shown in FIG. 8E, even if the side surface of the protrusion 15 (15D) is tapered with an angle of less than 90 ° with respect to one surface of the substrate 10, as shown in FIG. The side surface 15E) may be substantially perpendicular to the substrate 10.
図9は、本発明の実施形態に係る有機EL装置の製造方法を示した説明図である。本発明の実施形態に係る有機EL装置の製造方法は、第1の工程として、下部電極11の一部と基板10を覆うように絶縁膜14を形成し、絶縁膜14の開口部14aによって下部電極11上に発光領域Laを区画する(図9(a)参照)。次に第2の工程として、発光領域Laの外の絶縁膜14上に、基板10の一面と交差する方向に突出する突出部15を点在した状態で形成する(図9(b)参照)。次に第3の工程として、少なくとも発光領域La上に有機層12の中の第1の層12Aを塗布する(図9(c)参照)。次に第4の工程として、第1の層12Aの上層側に、突出部15上に支持されたマスクMを介して有機層12の中の第2の層12Bをパターン形成する(図9(d)参照)。次に第5の工程として、有機層12の上に上部電極13を形成する(図9(d)参照)。その後は、必要に応じて発光部の封止を行う。図9(f)に示した例では、上部電極13上を封止材16で覆い、発光部を固体封止しているが、これに限らず、発光部を囲む封止空間を形成する封止部材を基板10に貼り合わせる中空封止であってもよい。
FIG. 9 is an explanatory view showing a method for manufacturing an organic EL device according to an embodiment of the present invention. In the manufacturing method of the organic EL device according to the embodiment of the present invention, as a first step, the insulating film 14 is formed so as to cover a part of the lower electrode 11 and the substrate 10, and the opening 14 a of the insulating film 14 forms the lower part. A light emitting region La is partitioned on the electrode 11 (see FIG. 9A). Next, as a second step, on the insulating film 14 outside the light emitting region La, the protruding portions 15 protruding in a direction intersecting with one surface of the substrate 10 are formed in a dotted manner (see FIG. 9B). . Next, as a third step, the first layer 12A in the organic layer 12 is applied on at least the light emitting region La (see FIG. 9C). Next, as the fourth step, the second layer 12B in the organic layer 12 is patterned on the upper layer side of the first layer 12A through the mask M supported on the protrusion 15 (FIG. 9 ( d)). Next, as a fifth step, the upper electrode 13 is formed on the organic layer 12 (see FIG. 9D). Thereafter, the light emitting unit is sealed as necessary. In the example shown in FIG. 9 (f), the upper electrode 13 is covered with the sealing material 16 and the light emitting part is solid-sealed. It may be a hollow seal that bonds the stop member to the substrate 10.
以下に、本発明の実施形態に係る有機EL装置の構成例を更に具体的に説明する。
Hereinafter, a configuration example of the organic EL device according to the embodiment of the present invention will be described more specifically.
基板10は、ガラス、プラスチック、表面に絶縁材料の層が形成された金属などによって形成される。下部電極11を透明導電膜によって形成する場合には、ITO(Indium Tin Oxide),IZO(Indium Zinc Oxide),酸化亜鉛系透明導電膜,SnO2系透明導電膜,二酸化チタン系透明導電膜などの透明金属酸化物を用いることができる。下部電極11の成膜はスパッタリングや蒸着などによって行うことができる。基板10上での下部電極11のパターン形成は、フォトリソグラフィ工程などによって行うことができる。
The substrate 10 is formed of glass, plastic, metal having a surface of an insulating material formed on the surface, or the like. When the lower electrode 11 is formed of a transparent conductive film, ITO (Indium Tin Oxide), IZO (Indium Zinc Oxide), zinc oxide-based transparent conductive film, SnO 2 -based transparent conductive film, titanium dioxide-based transparent conductive film, etc. A transparent metal oxide can be used. The lower electrode 11 can be formed by sputtering or vapor deposition. The pattern formation of the lower electrode 11 on the substrate 10 can be performed by a photolithography process or the like.
絶縁膜14は、パターニングされた下部電極11のそれぞれの絶縁性を確保するために設けられ、ポリイミド樹脂,アクリル系樹脂,酸化シリコン,窒化シリコンなどの材料が用いられる。絶縁膜14の形成は、下部電極11が形成された基板10上の発光部全面に成膜した後、下部電極11上に発光領域Laを形成するために開口部14aがパターニングされる。具体的には、下部電極11が形成された基板10にスピンコート法により所定の塗布厚となるように膜を形成し、露光マスクを用いて露光処理,現像処理を施すことにより、発光領域Laのパターン形状を有する絶縁膜14の開口部14aが形成される。この絶縁膜14は、下部電極11のパターン間を埋めると共にその側端部分を一部覆うように形成される。これによって、下部電極11上に発光領域Laを開口して、その領域が絶縁膜14によって絶縁区画されることになる。
The insulating film 14 is provided in order to ensure insulation of each of the patterned lower electrodes 11, and a material such as polyimide resin, acrylic resin, silicon oxide, silicon nitride is used. The insulating film 14 is formed over the entire surface of the light emitting portion on the substrate 10 on which the lower electrode 11 is formed, and then the opening 14 a is patterned to form the light emitting region La on the lower electrode 11. Specifically, a film is formed on the substrate 10 on which the lower electrode 11 is formed to have a predetermined coating thickness by spin coating, and exposure processing and development processing are performed using an exposure mask, whereby the light emitting region La is formed. The opening 14a of the insulating film 14 having the pattern shape is formed. The insulating film 14 is formed so as to fill in between the patterns of the lower electrode 11 and partially cover the side end portion thereof. As a result, the light emitting region La is opened on the lower electrode 11, and the region is insulated and partitioned by the insulating film 14.
突出部15の形成は、絶縁膜14の上に光感光性樹脂等の絶縁材料を、有機層12と上部電極13の膜厚の総和より厚い膜厚にスピンコート法等で塗布形成した後、この光感光性樹脂膜上に突出部15の平面形状のパターンを有するフォトマスクを介して紫外線等を照射し、層の厚さ方向の露光量の違いから生じる現像速度の差を利用して、側部が下向きのテーパ面を有する突出部15を形成することができる。
The protrusion 15 is formed by applying an insulating material such as a photosensitive resin on the insulating film 14 by spin coating or the like to a thickness greater than the total thickness of the organic layer 12 and the upper electrode 13. Irradiate ultraviolet rays or the like through a photomask having a planar pattern of the protrusions 15 on the photosensitive resin film, and use the difference in development speed caused by the difference in the exposure amount in the thickness direction of the layer. A protruding portion 15 having a tapered surface with a side portion facing downward can be formed.
有機層12は、発光層を含む発光機能層の積層構造を有し、下部電極11と上部電極13の一方を陽極とし他方を陰極とすると、陽極側から順次、正孔注入層、正孔輸送層、発光層、電子輸送層、電子注入層などが選択的に形成される。有機層12の成膜は、第1の層12Aが液相法による成膜(塗布或いは各種の印刷法)が用いられ、第2の層12Bが気相法による真空蒸着法などが用いられる。
The organic layer 12 has a laminated structure of light emitting functional layers including a light emitting layer. When one of the lower electrode 11 and the upper electrode 13 is an anode and the other is a cathode, a hole injection layer and a hole transport are sequentially formed from the anode side. A layer, a light emitting layer, an electron transport layer, an electron injection layer, and the like are selectively formed. For the film formation of the organic layer 12, the first layer 12A is formed by a liquid phase method (application or various printing methods), and the second layer 12B is formed by a vacuum vapor deposition method by a vapor phase method.
有機層12の形成例を以下に説明する。例えば先ず、第1の層12Aとして陽極から注入される正孔を発光層に輸送する機能を有する正孔輸送層を塗布によって形成する。この第1の層12Aは複数の発光領域Laに共通の層として形成することができ、絶縁膜14上を含めた発光部の全面に塗布される。絶縁膜14を撥水処理することで絶縁膜14の無い発光領域Laのみに第1の層12Aを形成することが可能になる。この正孔輸送層は、1層だけ積層したものでも2層以上積層したものであってもよい。
An example of forming the organic layer 12 will be described below. For example, first, a hole transport layer having a function of transporting holes injected from the anode to the light-emitting layer is formed as the first layer 12A by coating. The first layer 12A can be formed as a layer common to the plurality of light emitting regions La, and is applied to the entire surface of the light emitting portion including the insulating film 14. By subjecting the insulating film 14 to a water repellent treatment, the first layer 12A can be formed only in the light emitting region La without the insulating film 14. The hole transport layer may be a single layer or a stack of two or more layers.
正孔輸送層を形成するための具体的な材料としては、例えば、ポリオレフィン誘導体である3、4-ポリエチレンジオシチオフェン/ポリスチレンスルホン酸(PEDOT/PSS)や、ポリマー前駆体がポリテトラヒドロチオフェニルフェニレンであるポリフェニレンビニレン、1、1-ビス-(4-N、N-ジトリルアミノフェニル)シクロヘキサン等の正孔注入輸送層形成材料を極性溶媒に溶解させた液状組成物を用いることができる。極性溶媒としては、例えば、イソプロピルアルコール、ノルマルブタノール、γ-ブチロラクトン、N-メチルピロリドン、1、3-ジメチル-2-イミダゾリジノン及びその誘導体、カルビト-ルアセテート、ブチルカルビト-ルアセテート等のグリコールエーテル類等を挙げることができる。
Specific materials for forming the hole transport layer include, for example, 3,4-polyethylenediosithiophene / polystyrene sulfonic acid (PEDOT / PSS), which is a polyolefin derivative, and polytetrahydrothiophenylphenylene, which is a polymer precursor. A liquid composition in which a hole injecting and transporting layer forming material such as polyphenylene vinylene, 1,1-bis- (4-N, N-ditolylaminophenyl) cyclohexane or the like is dissolved in a polar solvent can be used. Examples of polar solvents include glycol ethers such as isopropyl alcohol, normal butanol, γ-butyrolactone, N-methylpyrrolidone, 1,3-dimethyl-2-imidazolidinone and derivatives thereof, carbitol acetate, and butyl carbitol acetate. And the like.
第1の層12Aの上に成膜される第2の層12Bは、正孔輸送層の上に成膜される発光層であり、一例としては、抵抗加熱蒸着法により、赤(R)、緑(G)、青(B)の発光層を、塗分け用のマスクMを利用して発光領域Laに対応するそれぞれの成膜領域に成膜する。赤(R)としては、DCM1(4-(ジシアノメチレン)-2-メチル-6-(4’-ジメチルアミノスチリル)-4H-ピラン)等のスチリル色素等の赤色を発光する有機材料を用いる。緑(G)としては、アルミキノリノール錯体(Alq3) 等の緑色を発光する有機材料を用いる。青(B)としては、ジスチリル誘導体、トリアゾール誘導体等の青色を発光する有機材料を用いる。勿論、他の材料でも、ホスト‐ゲスト系の層構成でも良く、発光形態も蛍光発光材料を用いてもりん光発光材料を用いたものであってもよい。
The second layer 12B formed on the first layer 12A is a light-emitting layer formed on the hole transport layer. As an example, red (R), The green (G) and blue (B) light-emitting layers are formed in the respective film formation regions corresponding to the light-emitting regions La using the mask M for coating. As red (R), an organic material that emits red light such as a styryl dye such as DCM1 (4- (dicyanomethylene) -2-methyl-6- (4′-dimethylaminostyryl) -4H-pyran) is used. As green (G), an organic material that emits green light such as an aluminum quinolinol complex (Alq 3 ) is used. As blue (B), an organic material emitting blue light such as a distyryl derivative or a triazole derivative is used. Of course, other materials or a host-guest layer structure may be used, and the light emission form may be a fluorescent light emitting material or a phosphorescent light emitting material.
第2の層12Bの上に更に電子輸送層を成膜してもよい。電子輸送層は、抵抗加熱蒸着法等の各種成膜方法により、例えばアルミキノリノール錯体(Alq3 )等の各種材料を用いて成膜することができる。電子輸送層は、陰極から注入される電子を発光層に輸送する機能を有する。この電子輸送層は、1層だけ積層したものでも2層以上積層した多層構造を有してもよい。また、電子輸送層は、単一の材料による成膜ではなく、複数の材料により一つの層を形成しても良く、電荷輸送能力の高いホスト材料に電荷供与(受容)性の高いゲスト材料をドーピングして形成してもよい。
An electron transport layer may be further formed on the second layer 12B. The electron transport layer can be formed by using various materials such as an aluminum quinolinol complex (Alq 3 ) by various film forming methods such as resistance heating vapor deposition. The electron transport layer has a function of transporting electrons injected from the cathode to the light emitting layer. This electron transport layer may have a multilayer structure in which only one layer is stacked or two or more layers are stacked. In addition, the electron transport layer may be formed of a plurality of materials instead of a single material, and a guest material having a high charge donating (accepting) property may be formed on a host material having a high charge transport capability. It may be formed by doping.
有機層12上に形成される上部電極13は、こちらが陰極の場合には、陽極より仕事関数の小さい(例えば4eV以下)材料(金属,金属酸化物,金属フッ化物,合金等)を用いることができ、具体的には、アルミニウム(Al),インジウム(In),マグネシウム(Mg)等の金属膜、ドープされたポリアニリンやドープされたポリフェニレンビニレン等の非晶質半導体、Cr2O3,NiO,Mn2O5等の酸化物を使用できる。構造としては、金属材料による単層構造、LiO2/Al等の積層構造等が採用できる。
When the upper electrode 13 formed on the organic layer 12 is a cathode, a material (metal, metal oxide, metal fluoride, alloy, etc.) having a work function smaller than that of the anode (for example, 4 eV or less) is used. Specifically, metal films such as aluminum (Al), indium (In), magnesium (Mg), amorphous semiconductors such as doped polyaniline and doped polyphenylene vinylene, Cr 2 O 3 , NiO , Oxides such as Mn 2 O 5 can be used. As the structure, a single layer structure made of a metal material, a laminated structure such as LiO 2 / Al, or the like can be adopted.
図1(a),(b)に示した有機EL装置1を照明光源として用いる場合の駆動方式の例を説明する。図1において、下部電極11はライン状にパターン形成され、複数の下部電極11がストライプ状に配置されている。一方、上部電極13は複数の下部電極11に対して共通する一様な層として形成されている。また、複数の下部電極11のそれぞれに区画される発光領域Laは、下部電極11の長手方向に沿った長方形に形成され、長方形の短辺方向に沿って複数の発光領域Laが並んで配列されている。各発光領域Laは、発光層の塗り分けによって第1の発光色を発光する第1の発光領域と第2の発光色を発光する第2の発光領域を少なくとも備えている。
An example of a driving method when the organic EL device 1 shown in FIGS. 1A and 1B is used as an illumination light source will be described. In FIG. 1, the lower electrode 11 is patterned in a line shape, and a plurality of lower electrodes 11 are arranged in a stripe shape. On the other hand, the upper electrode 13 is formed as a uniform layer common to the plurality of lower electrodes 11. Further, the light emitting region La divided into each of the plurality of lower electrodes 11 is formed in a rectangle along the longitudinal direction of the lower electrode 11, and the plurality of light emitting regions La are arranged along the short side direction of the rectangle. ing. Each light emitting region La includes at least a first light emitting region that emits the first light emission color and a second light emitting region that emits the second light emission color by separately coating the light emitting layers.
このような有機EL装置1において、1つの下部電極11を選択して、この下部電極11と共通の上部電極13との間に発光駆動電力を供給すると、選択された下部電極11上の発光領域Laの発光色の光が放出されることになる。また、2つの下部電極11を選択して、各下部電極11と共通の上部電極13との間に発光駆動電力を供給すると、2つの下部電極11上の発光領域Laの異なる発光色の混色の光が放出されることになる。更に、3つの下部電極11を選択して、各下部電極11と共通の上部電極13との間に発光駆動電力を供給すると、3つの下部電極11上の発光領域Laの異なる発光色の混色の光が放出されることになる。3つの下部電極11上の発光領域Laの異なる発光色を赤(R),緑(G),青(B)にすることでこれらの混色である白色光を放出することができる。
In such an organic EL device 1, when one lower electrode 11 is selected and light emission driving power is supplied between the lower electrode 11 and the common upper electrode 13, a light emitting region on the selected lower electrode 11 is obtained. The light of La emission color is emitted. Further, when two lower electrodes 11 are selected and light emission driving power is supplied between each lower electrode 11 and the common upper electrode 13, the light emission regions La on the two lower electrodes 11 have different emission color mixed colors. Light will be emitted. Further, when three lower electrodes 11 are selected and light emission driving power is supplied between each lower electrode 11 and the common upper electrode 13, the light emission regions La on the three lower electrodes 11 have different emission color mixed colors. Light will be emitted. By changing the light emission colors of the light emitting regions La on the three lower electrodes 11 to red (R), green (G), and blue (B), it is possible to emit white light that is a mixture of these.
以上、本発明の実施の形態について図面を参照して詳述してきたが、具体的な構成はこれらの実施の形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計の変更等があっても本発明に含まれる。上述の各図で示した実施の形態は、その目的及び構成等に特に矛盾や問題がない限り、互いの記載内容を組み合わせることが可能である。また、各図の記載内容はそれぞれ独立した実施形態になり得るものであり、本発明の実施形態は各図を組み合わせた一つの実施形態に限定されるものではない。
As described above, the embodiments of the present invention have been described in detail with reference to the drawings. However, the specific configuration is not limited to these embodiments, and the design can be changed without departing from the scope of the present invention. Is included in the present invention. The embodiments described in the above drawings can be combined with each other as long as there is no particular contradiction or problem in the purpose, configuration, or the like. Moreover, the description content of each figure can become independent embodiment, respectively, and embodiment of this invention is not limited to one embodiment which combined each figure.
Claims (25)
- 基板の少なくとも一面側に、下部電極,有機層,上部電極を直接又は他の層を介して積層した有機EL装置であって、
前記下部電極上には、当該下部電極と前記上部電極との間に供給される発光駆動電力によって発光する発光領域が区画されており、
前記有機層はその中の少なくとも一層が塗布形成された層であり、
前記基板の一面側には、少なくとも前記発光領域の外に前記一面と交差する方向に突出する突出部が点在していることを特徴とする有機EL装置。 An organic EL device in which a lower electrode, an organic layer, and an upper electrode are laminated directly or via another layer on at least one surface side of a substrate,
On the lower electrode, a light emitting region that emits light by light emission driving power supplied between the lower electrode and the upper electrode is defined,
The organic layer is a layer formed by coating at least one of the layers,
The organic EL device according to claim 1, wherein protrusions protruding in a direction intersecting with the one surface are dotted at least on the one surface side of the substrate. - 前記有機層は、塗布形成された第1の層と、該第1の層の上層側に気相法によってパターン形成された第2の層を備えることを特徴とする請求項1記載の有機EL装置。 2. The organic EL according to claim 1, wherein the organic layer includes a first layer formed by coating, and a second layer patterned by a vapor phase method on an upper layer side of the first layer. apparatus.
- 前記突出部は千鳥状に配置されていることを特徴とする請求項1又は2記載の有機EL装置。 3. The organic EL device according to claim 1, wherein the protruding portions are arranged in a staggered pattern.
- 隣り合う前記突出部間の間隔が前記突出部の位置によって異なることを特徴とする請求項1又は2記載の有機EL装置。 3. The organic EL device according to claim 1, wherein an interval between the adjacent projecting portions is different depending on a position of the projecting portion.
- 前記発光領域は複数設けられていることを特徴とする請求項3又は4記載の有機EL装置。 5. The organic EL device according to claim 3, wherein a plurality of the light emitting regions are provided.
- 前記突出部は複数設けられた前記発光領域の間に設けられていることを特徴とする請求項5記載の有機EL装置。 6. The organic EL device according to claim 5, wherein a plurality of the protruding portions are provided between the light emitting regions.
- 前記発光領域は、前記下部電極の一部と前記基板上を覆う絶縁膜の開口部によって区画されていることを特徴とする請求項6記載の有機EL装置。 The organic EL device according to claim 6, wherein the light emitting region is partitioned by a part of the lower electrode and an opening of an insulating film covering the substrate.
- 前記突出部は前記絶縁膜の上に設けられることを特徴とする請求項7記載の有機EL装置。 The organic EL device according to claim 7, wherein the protruding portion is provided on the insulating film.
- 前記突出部は、少なくとも前記開口部の開口縁の一部に沿って設けられていることを特徴とする請求項8記載の有機EL装置。 9. The organic EL device according to claim 8, wherein the protrusion is provided along at least a part of an opening edge of the opening.
- 前記突出部は、少なくとも前記開口部の開口縁の全周に沿って設けられていることを特徴とする請求項8記載の有機EL装置。 9. The organic EL device according to claim 8, wherein the protrusion is provided at least along the entire circumference of the opening edge of the opening.
- 前記突出部の平面的な大きさが前記突出部の位置によって異なることを特徴とする請求項9記載の有機EL装置。 10. The organic EL device according to claim 9, wherein a planar size of the protruding portion varies depending on a position of the protruding portion.
- 前記突出部の平面的な形状が前記突出部の位置によって異なることを特徴とする請求項9記載の有機EL装置。 10. The organic EL device according to claim 9, wherein a planar shape of the protruding portion varies depending on a position of the protruding portion.
- 前記上部電極はパターン形成されていることを特徴とする請求項9記載の有機EL装置。 10. The organic EL device according to claim 9, wherein the upper electrode is patterned.
- 前記下部電極がライン状にパターン形成され、前記上部電極が前記下部電極と交差する方向にライン状にパターン形成されていることを特徴とする請求項13記載の有機EL装置。 14. The organic EL device according to claim 13, wherein the lower electrode is patterned in a line shape, and the upper electrode is patterned in a line shape in a direction intersecting the lower electrode.
- 前記突出部の側面は前記基板の一面に対して傾斜していることを特徴とする請求項14記載の有機EL装置。 15. The organic EL device according to claim 14, wherein a side surface of the protruding portion is inclined with respect to one surface of the substrate.
- 前記突出部の側面は前記基板の一面に対して向き合うように傾斜していることを特徴とする請求項15記載の有機EL装置。 16. The organic EL device according to claim 15, wherein a side surface of the protruding portion is inclined to face one surface of the substrate.
- 前記突出部の側面は前記基板の一面に対して略垂直であることを特徴とする請求項14記載の有機EL装置。 15. The organic EL device according to claim 14, wherein a side surface of the protruding portion is substantially perpendicular to one surface of the substrate.
- 前記発光領域は、第1の発光色を発光する第1の発光領域と第2の発光色を発光する第2の発光領域を少なくとも備えることを特徴とする請求項14記載の有機EL装置。 15. The organic EL device according to claim 14, wherein the light emitting region includes at least a first light emitting region that emits a first light emitting color and a second light emitting region that emits a second light emitting color.
- 前記発光領域は長方形であることを特徴とする請求項18記載の有機EL装置。 19. The organic EL device according to claim 18, wherein the light emitting area is rectangular.
- 前記発光領域はその短辺方向に沿って配列されていることを特徴とする請求項19記載の有機EL装置。 20. The organic EL device according to claim 19, wherein the light emitting regions are arranged along the short side direction.
- 前記突出部の上面形状は円形であることを特徴とする請求項20記載の有機EL装置。 21. The organic EL device according to claim 20, wherein an upper surface shape of the protruding portion is circular.
- 前記突出部の上面形状は多角形であることを特徴とする請求項20記載の有機EL装置。 21. The organic EL device according to claim 20, wherein an upper surface shape of the protruding portion is a polygon.
- 前記突出部は前記第1の層が形成された範囲以外にも設けられていることを特徴とする請求項20記載の有機EL装置。 21. The organic EL device according to claim 20, wherein the protruding portion is provided outside the range where the first layer is formed.
- 前記突出部は前記発光領域内にも設けられていることを特徴とする請求項20記載の有機EL装置。 21. The organic EL device according to claim 20, wherein the protruding portion is also provided in the light emitting region.
- 基板の少なくとも一面側に、下部電極,有機層,上部電極を直接又は他の層を介して積層した有機EL装置の製造方法であって、
前記下部電極の一部と前記基板を覆うように絶縁膜を形成し、該絶縁膜の開口部によって前記下部電極上に発光領域を区画する工程と、
前記発光領域の外の前記絶縁膜上に、前記一面と交差する方向に突出する突出部を点在した状態で形成する工程と、
少なくとも前記発光領域上に前記有機層の中の第1の層を塗布する工程と、
前記第1の層の上層側に、前記突出部上に支持されたマスクを介して前記有機層の中の第2の層をパターン形成する工程と、
前記有機層の上に前記上部電極を形成する工程とを有することを特徴とする有機EL装置の製造方法。 A method of manufacturing an organic EL device in which a lower electrode, an organic layer, and an upper electrode are laminated directly or via another layer on at least one surface side of a substrate,
Forming an insulating film so as to cover a part of the lower electrode and the substrate, and partitioning a light emitting region on the lower electrode by an opening of the insulating film;
Forming the protrusions protruding in the direction intersecting the one surface on the insulating film outside the light emitting region,
Applying a first layer of the organic layer on at least the light emitting region;
Patterning a second layer of the organic layer on the upper layer side of the first layer through a mask supported on the protruding portion;
And a step of forming the upper electrode on the organic layer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2011/050364 WO2012095962A1 (en) | 2011-01-12 | 2011-01-12 | Organic el device and method for manufacturing same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2011/050364 WO2012095962A1 (en) | 2011-01-12 | 2011-01-12 | Organic el device and method for manufacturing same |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012095962A1 true WO2012095962A1 (en) | 2012-07-19 |
Family
ID=46506885
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/050364 WO2012095962A1 (en) | 2011-01-12 | 2011-01-12 | Organic el device and method for manufacturing same |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2012095962A1 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004288403A (en) * | 2003-03-19 | 2004-10-14 | Optrex Corp | Manufacturing method of organic el display and organic el display |
JP2010170767A (en) * | 2009-01-21 | 2010-08-05 | Seiko Epson Corp | Electro-optical device, light-emitting device, and electronic equipment |
JP2011048909A (en) * | 2009-08-25 | 2011-03-10 | Casio Computer Co Ltd | Light-emitting device, method of manufacturing the same, and electronic equipment |
-
2011
- 2011-01-12 WO PCT/JP2011/050364 patent/WO2012095962A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004288403A (en) * | 2003-03-19 | 2004-10-14 | Optrex Corp | Manufacturing method of organic el display and organic el display |
JP2010170767A (en) * | 2009-01-21 | 2010-08-05 | Seiko Epson Corp | Electro-optical device, light-emitting device, and electronic equipment |
JP2011048909A (en) * | 2009-08-25 | 2011-03-10 | Casio Computer Co Ltd | Light-emitting device, method of manufacturing the same, and electronic equipment |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6594859B2 (en) | Organic light emitting device and manufacturing method thereof | |
JP6519933B2 (en) | Organic light emitting device and method of manufacturing the same | |
JP2009187957A (en) | Organic el display panel | |
JP2010021138A (en) | Organic electroluminescent device and its manufacturing method | |
US9666647B2 (en) | OLED display and method of manufacturing the same | |
JP2010238675A (en) | Display device | |
US9112177B2 (en) | Organic light emitting diode, organic light emitting display panel including the same, and method of manufacturing the organic light emitting display panel | |
JP5478954B2 (en) | Organic electroluminescence display device | |
KR101084166B1 (en) | Pixel structure and organic light emitting device comprising the same | |
WO2015166647A1 (en) | Method for forming functional layer of organic light-emitting device and method for manufacturing organic light-emitting device | |
JP2006228649A (en) | Manufacturing method of organic el device, and vapor deposition boat | |
KR102312784B1 (en) | Electroluminescence device and method for fabricating thereof | |
JP2009070704A (en) | Display device and its manufacturing method | |
WO2013190636A1 (en) | Organic el panel | |
KR20080003079A (en) | Organic light emitting display device and and method for fabricating the same | |
WO2011070681A1 (en) | Organic el panel and method for manufacturing same | |
JP2010009753A (en) | Organic electroluminescent display device, and manufacturing method thereof | |
WO2012095962A1 (en) | Organic el device and method for manufacturing same | |
JP2008108680A (en) | Manufacturing method of organic el element | |
WO2010084586A1 (en) | Organic el panel and method for manufacturing the same | |
JP4803479B2 (en) | Organic electroluminescent device and manufacturing method thereof | |
KR101096719B1 (en) | Organic Electroluminescence Display Device And Method For Fabricating The Same | |
WO2014041614A1 (en) | Organic el device | |
KR100565745B1 (en) | Organic electroluminescence device and method for manufacturing thereof | |
WO2012032662A1 (en) | Organic el panel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11855514 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11855514 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |