WO2012090759A1 - 表面プラズモン励起増強蛍光測定装置およびこれに用いられるセンサチップ - Google Patents
表面プラズモン励起増強蛍光測定装置およびこれに用いられるセンサチップ Download PDFInfo
- Publication number
- WO2012090759A1 WO2012090759A1 PCT/JP2011/079358 JP2011079358W WO2012090759A1 WO 2012090759 A1 WO2012090759 A1 WO 2012090759A1 JP 2011079358 W JP2011079358 W JP 2011079358W WO 2012090759 A1 WO2012090759 A1 WO 2012090759A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sensor
- sensor chip
- dielectric member
- main surface
- flow path
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N21/645—Specially adapted constructive features of fluorimeters
- G01N21/648—Specially adapted constructive features of fluorimeters using evanescent coupling or surface plasmon coupling for the excitation of fluorescence
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/55—Specular reflectivity
- G01N21/552—Attenuated total reflection
- G01N21/553—Attenuated total reflection and using surface plasmons
Definitions
- the present invention relates to a measuring device (surface plasmon excitation enhanced fluorescence measuring device) of SPFS (SurfacecopyPlasmon-field enhanced Fluorescence Spectroscopy) used in the fields of medicine, biotechnology, and the like. It relates to a sensor chip.
- SPFS SurfacecopyPlasmon-field enhanced Fluorescence Spectroscopy
- SPFS when the metal thin film formed on the dielectric member is irradiated with excitation light at an angle that causes total reflection attenuation (ATR), the evanescent wave transmitted through the metal thin film is several tens of times due to resonance with the surface plasmon. It is a method that uses surface plasmon resonance enhanced several hundred times to efficiently excite a fluorescent dye for labeling an analyte (analyte) captured in the vicinity of a metal thin film and measure the fluorescence signal. . Since such SPFS is extremely sensitive compared to a general fluorescent labeling method, it can be quantified even when only a very small amount of analyte is present in the sample. Basic aspects of a surface plasmon excitation enhanced fluorescence measurement device (hereinafter sometimes referred to as “SPFS device”) are disclosed in, for example, Patent Documents 1 and 2.
- Such an SPFS device 100 includes a sensor chip loading unit 111 and is formed on a dielectric member 112 and a main surface 112a of the dielectric member 112 via a metal thin film 114 as shown in FIG.
- a sensor chip 110 having a sensor unit 116 configured by immobilizing a ligand at a predetermined position on the microchannel 118 is configured to be loaded into the sensor chip loading unit 111.
- the sensor chip 110 loaded in the sensor chip loading unit 111 of the SPFS device 100 is incident on the dielectric member 112 side from the incident surface 112i of the dielectric member 112, and the metal thin film 114 is subjected to a total reflection condition.
- a light source 120 that irradiates the excitation light 122 toward the sensor unit 116 at an incident angle ⁇ is provided, and a light receiving means 132 that receives the reflected light 124 that is irradiated from the light source 120 and reflected by the metal thin film 114 is provided.
- a light detection means 130 for receiving the fluorescence 134 emitted from the fluorescent substance labeled with the analyte captured by the ligand fixed to the sensor unit 116.
- the condensing member 126 for condensing the fluorescence 134 efficiently and the light other than the fluorescence 134 are removed and only the fluorescence 134 is selectively transmitted.
- a wavelength selection function member 128 is provided.
- This SPFS device 100 is used as follows.
- the analyte solution containing the analyte is caused to flow into the sensor unit 116 via the fine channel 118, and then the fluorescent substance for labeling the analyte is similarly caused to flow via the fine channel 118. It is assumed that an analyte labeled with a fluorescent substance is captured by the sensor unit 116.
- the excitation light 122 is irradiated from the light source 120 through the dielectric member 112 at a predetermined incident angle ⁇ that is a total reflection condition on the metal thin film 114, thereby generating evanescent waves and surface plasmons from the metal thin film 114.
- the fluorescent material 134 captured by the sensor unit 116 is efficiently excited by the electric field enhanced by the resonance with.
- Such an SPFS device 100 is expected to be applied to clinical examinations in recent years. In applying the SPFS device 100 to a clinical test, it is required to improve the measurement accuracy by suppressing the variation in the measurement data of the fluorescence signal due to individual differences of the sensor chip 110 more than ever.
- Patent Document 3 discloses a sensor chip for an SPFS device having a plurality of sensor portions each having a different type of ligand immobilized thereon, as a sensor chip capable of simultaneously testing a plurality of infectious disease pathogens. ing.
- the birefringence of the dielectric member is the main cause of variation depending on the arrangement position of a plurality of sensor units.
- the present invention has been completed by finding that it may be a cause.
- the present invention has been made in view of such a current situation, and in a sensor chip having a plurality of sensor units, it is possible to suppress variations in measurement data of fluorescent signals between the plurality of sensor units and improve measurement accuracy.
- An object of the present invention is to provide a sensor chip for an SPFS device (surface plasmon excitation enhanced fluorescence measuring device).
- the present invention includes such a sensor chip, makes it easy to align the light source or the sensor chip when irradiating the sensor chip with excitation light, and simplifies the driving mechanism of the light source and the sensor chip.
- An object of the present invention is to provide an SPFS device (surface plasmon excitation enhanced fluorescence measuring device) that can be configured.
- the present invention has been invented to solve the above-described problems,
- the sensor chip of the present invention is A sensor chip used in a surface plasmon excitation enhanced fluorescence measurement device, A dielectric member comprising at least a main surface and an incident surface irradiated with excitation light; A metal thin film formed on the main surface of the dielectric member; On the metal thin film, a plurality of sensor portions that are a plurality of regions to which a ligand is fixed; and With The plurality of sensor units are formed at positions where the shortest separation distances from the incident surface to each of the plurality of sensor units are equal to each other.
- each of the plurality of sensor portions is formed at a position where the shortest separation distance from the incident surface of the dielectric member is equal to each other, so that the incident light is incident from the incident surface of the dielectric member.
- the optical path length in the chip of the excitation light that passes through the inside of the dielectric member and irradiates each of the plurality of sensor units can be easily aligned between the plurality of sensor units.
- the dielectric member is formed of a material having birefringence, it is possible to minimize the phase shift of the excitation light between the plurality of sensor units. Therefore, it is possible to reduce the variation in the fluorescence signal measurement data between the plurality of sensor units and improve the measurement accuracy.
- a flow path is provided on the main surface of the dielectric member,
- the plurality of sensor parts are preferably formed in the flow path.
- the flow path is a single flow path; It is also possible to configure such that the plurality of sensor units are formed in the single flow path. In this case, for example, the measurement of a plurality of items at the same time for one sample can be realized with a simple configuration.
- the flow path includes a plurality of flow paths, It is also possible to configure so that one sensor unit among the plurality of sensor units is formed in the plurality of flow paths. In this case, for example, more accurate measurement can be easily realized, for example, by using one channel as a control channel that does not send the sample.
- a gate in injection molding is formed on the surface of the dielectric member that intersects the arrangement direction of the plurality of sensor parts in a top view of the main surface. Is preferably arranged.
- the gate in the injection molding By arranging the gate in the injection molding at such a position, it is possible to suppress variation in optical characteristics due to birefringence and the like between the plurality of sensor units, and to uniform the plurality of sensor units. Measurement errors can be suppressed, and highly accurate measurement can be realized. .
- the surface plasmon excitation enhanced fluorescence measuring apparatus of the present invention is At least the sensor chip described above, a loading section for loading the sensor chip, and a light source for irradiating excitation light toward the incident surface of the sensor chip loaded in the loading section.
- the plurality of sensor units are formed so as to be positioned on a line parallel to the incident surface in a top view of the main surface, and the sensor chip and the light source are located with respect to the incident surface. It can also be configured to be relatively movable in parallel directions, and The plurality of sensor units are formed so as to be located concentrically in a top view of the main surface, and the loading unit rotates about a vertical axis through which the sensor chip passes a center point of the concentric circles It is also possible to configure.
- the SPFS apparatus which the position alignment of the light source or sensor chip at the time of irradiating excitation light with respect to a sensor chip is easy, and the drive mechanism of a light source and a sensor chip becomes a simple structure. be able to.
- an SPFS device surface plasmon excitation enhanced fluorescence measurement device capable of suppressing variation in measurement data of fluorescence signals between the plurality of sensor units and improving measurement accuracy.
- an SPFS device surface plasmon excitation enhanced fluorescence measuring device
- FIG. 1 is a perspective view for explaining a sensor chip and an SPFS device according to a first embodiment of the present invention.
- 2A and 2B are a plan view and a cross-sectional view of the sensor chip according to the first embodiment of the present invention shown in FIG. 1, in which FIG. 2A is a plan view of the sensor chip, and FIG. FIG. 3 is a sectional view taken along line AA in FIG. FIG. 3 is a graph showing the relationship between the p-polarization ratio of the in-chip excitation light and the electric field strength.
- FIG. 4 is a perspective view for explaining the sensor chip and the SPFS device according to the second embodiment of the present invention.
- FIG. 5 is a perspective view for explaining a sensor chip and an SPFS device according to a third embodiment of the present invention.
- FIG. 6 is a diagram for explaining the basic structure of a conventional SPFS apparatus.
- FIG. 1 is a perspective view for explaining a sensor chip and an SPFS device according to a first embodiment of the present invention.
- 2A and 2B are a plan view and a cross-sectional view of the sensor chip according to the first embodiment of the present invention shown in FIG. 1, in which FIG. 2A is a plan view of the sensor chip, and FIG. FIG. 3 is a sectional view taken along line AA in FIG.
- the SPFS device 1 irradiates excitation light 22 toward the loading unit 11 for loading the sensor chip 10 and the sensor chip 10 loaded in the loading unit 11. And at least a projector 20 that is a light source.
- the sensor chip 10 includes a sensor unit 16 formed on a main surface 12a of a dielectric member 12 such as a prism with a metal thin film 14 interposed therebetween.
- a plurality of sensor parts 16 are formed, and in this embodiment, three sensor parts 16 of sensor parts 16A, 16B, and 16C are formed.
- a fine flow path 18 is formed on the main surface 12a of the dielectric member 12 as a flow path for the sample solution.
- three fine channels 18A, 18B, and 18C are formed, and each of the three fine channels 18A, 18B, and 18C is described above.
- One sensor part 16A, 16B, 16C is formed.
- the dielectric member 12 is formed in a hexahedron shape having a trapezoidal cross section.
- the upper surface constitutes the main surface 12 a described above, and one of the hexahedrons constitutes an incident surface 12 i that is an incident surface of the excitation light 22.
- the shape of the dielectric member 12 is not limited to the hexahedral shape described above. At least a main surface 12 a on which the sensor unit 16 is formed and an incident surface 12 i on which the excitation light 22 is incident are formed, and the excitation light 22 incident from the incident surface 12 i is a dielectric as the in-chip excitation light 23. It only needs to be configured to pass through the member 12 and irradiate the sensor unit 16 at a predetermined incident angle ⁇ that is a total reflection condition.
- the shape may be, for example, a cone shape, a triangular pyramid, a quadrangular pyramid, or the like. It may be a pyramid shape or a kamaboko shape. It is also possible to form two or more incident surfaces 12 i on the dielectric member 12.
- the material of the dielectric member 12 is not particularly limited as long as it is made of a material that is optically transparent at least with respect to the excitation light.
- it is preferably formed from a resin material.
- polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate
- polyolefins such as polyethylene (PE) and polypropylene (PP), cyclic olefin copolymer (COC)
- Polycyclic olefins such as cyclic olefin polymer (COP)
- vinyl resins such as polyvinyl chloride and polyvinylidene chloride, polystyrene, polyetheretherketone (PEEK), polysulfone (PSF), polyethersulfone (PES), polycarbonate (PC), polyamide, polyimide, acrylic resin, triacetyl cellulose (TAC), or the like
- PEEK polyetheretherketone
- PSF polysulfone
- PES polyethersulfone
- PC polycarbonate
- polyamide polyimide
- acrylic resin triacetyl cellulose
- the formation method of the dielectric member 12 is not particularly limited.
- the resin material as described above it can be formed by injection molding.
- the gold used for the injection molding is arranged such that the gate in the injection molding is arranged on the surface 12b or the surface 12c of the dielectric member 12 intersecting the arrangement direction of the plurality of sensor units 16. It is preferable to make a mold.
- the metal thin film 14 can use the same metal as the metal thin film that constitutes a sensor chip used in a general SPFS apparatus. That is, it is preferably made of at least one metal selected from the group consisting of gold, silver, aluminum, copper, and platinum, and more preferably made of gold. About these metals, the form of the alloy may be sufficient and what laminated
- the sensor unit 16 is formed by immobilizing a ligand that specifically binds to a specific analyte.
- a sample solution containing a specific analyte is caused to flow into the sensor unit 16 via the fine channel 18, and then a fluorescent substance that labels the analyte is caused to similarly flow through the fine channel 18.
- the analyte labeled with a fluorescent substance can be fixed to the sensor unit 16.
- each of the three sensor portions 16A, 16B, 16C described above is formed at a position where the shortest separation distance L from the incident surface 12i of the dielectric member 12 becomes equal. Therefore, the in-chip excitation lights 23A, 23B, and 23C that are incident from the incident surface 12i of the dielectric member 12 and irradiate the sensor units 16A, 16B, and 16C at a predetermined incident angle ⁇ that is a total reflection condition are optical path lengths. Are equal to each other.
- each of the three sensor portions 16A, 16B, and 16C has a line P positioned in parallel to the incident surface 12i of the dielectric member 12, as shown in FIG. Is formed on top.
- the projector 20 is configured to be movable only in one axial direction indicated by an arrow X in the figure by a moving means (not shown) while being fixed at a predetermined elevation angle.
- the uniaxial direction indicated by the arrow X is a direction parallel to the incident surface 12i of the dielectric member 12 described above.
- a light receiving means for receiving the reflected light 24 reflected by the metal thin film 14, a light detecting means (not shown) disposed above the sensor chip 10, and the sensor chip 10 and this light detecting means (not shown).
- a condensing member (not shown), a wavelength selection function member (not shown), and the like disposed between the two are provided.
- the light detecting means and the light receiving means are configured to be movable only in the uniaxial direction indicated by the arrow X in the figure, similarly to the projector 20 described above.
- the SPFS device 1 configured in this way is used as follows, similarly to the conventional SPFS device 100 described above.
- a specimen solution having an analyte is caused to flow into the sensor unit 16A via the fine channel 18A, and then a fluorescent substance for labeling the analyte is similarly caused to flow via the fine channel 18A. It is assumed that the analyte labeled with a fluorescent substance is immobilized on the sensor unit 16A.
- the projection light 20 irradiates the incident surface 12i of the dielectric member 12 with the excitation light 22 so that the in-chip excitation light 23A that has passed through the inside of the dielectric member 12 is a predetermined condition that becomes a total reflection condition.
- the projector 20 and the light detection means (not shown) are moved in the direction of the arrow X shown in FIGS. 1 and 2, and the sensor units 16B and 16C are moved. Then, the same procedure as described above is repeated. And the fluorescence 34 by the fluorescent substance fixed to the sensor parts 16B and 16C is detected by a light detection means (not shown).
- a polarizing filter or the like is attached to the projector 20 to polarize the light, and the excitation light 22 is irradiated with the dielectric member 12 as light consisting only of p-polarized light.
- the excitation light 22 in the chip when irradiating the sensor unit 16 is obtained by setting the polarization state of the excitation light 22 in advance to allow for a phase change due to birefringence.
- the polarization state of 23 is set to a state close to approximately 100% as the p polarization ratio.
- p-polarized light is defined as a polarization component of light parallel to the incident surface when light is incident at an angle between the interfaces of two materials having different refractive indexes.
- p-polarized light ratio means a ratio of p-polarized light in the excitation light, and is defined as the following formula (1).
- FIG. 3 is a graph showing the relationship between the p-polarization ratio of the in-chip excitation light and the electric field strength.
- the horizontal axis of the graph represents the above-described p-polarization ratio, and the vertical axis of the graph represents the ratio to the electric field intensity (electric field intensity ratio) when the p-polarization ratio is 100%.
- the p-polarization ratio and the electric field strength show a linear proportional relationship, and the electric field strength decreases as the p-polarization ratio decreases.
- the fact that the electric field intensity is small means that the enhancement of the evanescent wave due to surface plasmon resonance is small. Therefore, when the electric field intensity is small, the fluorescence 34 excited by the evanescent wave is also small, and the detected fluorescence signal is also small. Get smaller.
- the amount of phase change due to birefringence that is, the phase difference increases as the optical path length of the in-chip excitation light 23 passing through the inside of the dielectric member 12 increases. Therefore, when the optical path lengths of the plurality of in-chip pumping lights 23 are different from each other, the p polarization ratios of the plurality of in-chip pumping lights 23 are also different from each other in correlation with the difference in the optical path lengths.
- the sensor parts 16A, 16B, and 16C are formed on the dielectric member 12 having birefringence, such as a resin material, and fluorescence signals are measured in each of the sensor parts 16A, 16B, and 16C, in-chip excitation is performed. If the optical path lengths of the lights 23A, 23B, and 23C are different, the detected fluorescence 34A, 34B, and 34C will vary even if the analysis is performed on the same sample solution.
- the optical path lengths of the in-chip excitation lights 23A, 23B, and 23C are equal to each other. Therefore, even when the dielectric member 12 is formed of a birefringent material such as a resin material, for example, the phase difference of the in-chip excitation light 23A, 23B, 23C caused by the birefringence of the dielectric member 12 Therefore, it is possible to reduce the variation in the measurement data of the fluorescence signals of the sensor units 16A, 16B, and 16C and improve the measurement accuracy.
- the dielectric member 12 can be formed of a material having no birefringence, such as glass.
- the material of the dielectric member 12 is birefringent. Even a relatively high material can be selected, and the material selection range of the dielectric member 12 can be expanded.
- the sensor unit 16 in which a common ligand is immobilized via a common metal thin film is similarly formed, so that each type of sensor chip is In addition, it is possible to share the same without changing the manufacturing apparatus and the like, and in providing various types of sensor chips 10 according to the user's needs, it is possible to reduce the manufacturing cost.
- each of the three sensor units 16A, 16B, and 16C has a line P that is positioned in parallel to the incident surface 12i of the dielectric member 12. Formed on top. Therefore, when the projector 20 irradiates each of the three sensor units 16A, 16B, and 16C with the excitation light 22, it is necessary to adjust the irradiation direction of the projector 20 or adjust the position of the sensor chip 10. Therefore, it is only necessary to move the projector 20 only in the uniaxial direction indicated by the arrow X in the drawing, and therefore the alignment between the sensor chip 10 and the projector 20 is easy. Further, since the driving mechanism only needs to include a moving unit that moves the optical system such as the light projector 20, the light detection unit, and the light receiving unit only in one axial direction, the SPFS device 1 has a simple driving mechanism. be able to.
- FIG. 4 is a perspective view for explaining the sensor chip and the SPFS device according to the second embodiment of the present invention.
- the sensor chip 10 and the SPFS device 1 according to the second embodiment have basically the same configuration as the sensor chip 10 and the SPFS device 1 according to the first embodiment described above, and the same constituent members are used.
- the same reference numerals are assigned and detailed description thereof is omitted.
- a single fine flow path 18 is formed on the main surface 12a of the dielectric member 12 as a flow path for the analyte solution.
- the point from which the three sensor parts 16A, 16B, and 16C are formed differs from the sensor chip 10 of the first embodiment described above.
- the fine flow path 18 may be formed for each of the plurality of sensor units 16 as in the first embodiment described above. As in the form, only a single fine channel 18 may be formed. Further, the fine flow path 18 can be separated from the sensor chip 10 and can be configured to be attached to the sensor chip 10 during use. However, as in the first and second embodiments described above, It is preferable that the fine flow path 18 is formed in advance in the sensor chip 10 because the inspection by SPFS can be easily performed.
- the optical system such as the projector 20, the light detection means (not shown) and the light reception means can be moved in a uniaxial direction, and the position of the sensor chip 10 is fixed.
- the SPFS device 1 of the present invention is not limited to this, and the position of the projector 20 and the like can be fixed and only the sensor chip 10 can be moved in the uniaxial direction. It is also possible to configure.
- FIG. 5 is a perspective view for explaining a sensor chip and an SPFS device according to a third embodiment of the present invention.
- the sensor chip 10 and the SPFS device 1 according to the third embodiment have basically the same configuration as the sensor chip 10 and the SPFS device 1 according to the first and second embodiments described above, and have the same configuration.
- the members are denoted by the same reference numerals, and detailed description thereof is omitted.
- the dielectric member 12 is formed in a conical shape, its bottom surface (upper surface in the figure) constitutes the main surface 12a, and its side surface defines the incident surface 12i. It is composed.
- four sensor portions 16A, 16B, 16C, and 16D are formed on the main surface 12a, and four fine channels 18A, 18B, 18C, and 18D are formed. And in each of these four fine flow paths 18A, 18B, 18C, 18D, the above-mentioned sensor parts 16A, 16B, 16C, 16D are formed one by one.
- the four sensor parts 16A, 16B, 16C, and 16D are formed so as to be positioned on a circle C drawn with the center of the main surface 12a as a center point. That is, these four sensor portions 16A, 16B, 16C, and 16D are formed at positions where the shortest separation distances from the incident surface 12i are equal to each other, like the sensor portions 16 of the first and second embodiments described above. ing.
- the sensor chip 10 is configured to be rotatable in a direction indicated by an arrow R in the drawing by a rotating means (not shown) around the vertical axis CL passing through the center point of the circle C described above.
- the projector 20 is disposed at a predetermined position in a fixed state at a predetermined elevation angle so that the excitation light 22 is always irradiated in a predetermined direction and a predetermined angle.
- the optical path lengths of the in-chip excitation light 23 are equal to each other as described above. Therefore, it is possible to reduce the occurrence of deviation in the phase difference of the in-chip excitation light 23. Therefore, variation in measurement data of the fluorescence 34 in the sensor units 16A, 16B, 16C, and 16D can be suppressed, and measurement accuracy can be improved.
- the sensor units 16A, 16B, 16C, and 16D are positioned on the circle C drawn with the center of the main surface 12a as the center point. Is formed. Therefore, when the projector 20 irradiates each of the four sensor units 16A, 16B, 16C, and 16D with the excitation light 22, it is not necessary to adjust the position and the irradiation direction of the projector 20, and the sensor chip 10 is illustrated in FIG. Since the sensor chip 10 and the projector 20 can be easily aligned, it is only necessary to rotate it by a predetermined angle (90 ° in this embodiment) in the direction indicated by the arrow R. Moreover, since it is only necessary to provide a rotation mechanism for rotating the sensor chip 10 as the drive mechanism, the SPFS device 1 can be configured with a simple drive mechanism for the projector 20 and the sensor chip 10.
- all of the plurality of sensor portions 16 formed on the main surface 12a of the dielectric member 12 are at positions where the shortest separation distances L from the incident surface 12i are equal to each other.
- the sensor chip 10 of the present invention not all of the sensor units 16 need to be formed at positions where the shortest separation distance L from the incident surface 12i is equal. Even if the sensor unit 16 having the shortest separation distance L from the incident surface 12i different from the other sensor units 16 is formed, a plurality of sensor units 16 having the same shortest separation distance L from the incident surface 12i may be formed.
- the variation in the fluorescence signal can be suppressed between the plurality of sensor units 16 having the same shortest separation distance L from the incident surface 12i. That is, in the present invention, it is only necessary that at least a plurality of sensor parts 16 having the same shortest separation distance L from the incident surface 12i are formed.
Landscapes
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
[課題]複数のセンサ部を有するセンサチップにおいて、複数のセンサ部間における蛍光シグナルの測定データのバラツキを抑え、測定精度を向上させることのできる、SPFS装置用のセンサチップを提供すること。 [解決手段]主面と、励起光が照射される入射面とを少なくとも備える誘電体部材と、誘電体部材の前記主面上に形成された金属薄膜と、金属薄膜上において、リガンドが固定された複数の領域である、複数のセンサ部とを備え、複数のセンサ部は、入射面から複数のセンサ部の各々までの最短離間距離がそれぞれ等しくなる位置に形成した。
Description
本発明は、医療、バイオテクノロジー等の分野で利用されるSPFS(Surface Plasmon-field enhanced Fluorescence Spectroscopy:表面プラズモン励起増強蛍光分光法)の測定装置(表面プラズモン励起増強蛍光測定装置)、およびこれに用いられるセンサチップに関する。
SPFSは、誘電体部材上に形成された金属薄膜に全反射減衰(ATR)が生じる角度で励起光を照射したときに、金属薄膜を透過したエバネッセント波が表面プラズモンとの共鳴により数十倍~数百倍に増強される表面プラズモン共鳴を利用して、金属薄膜近傍に捕捉されたアナライト(分析対象物)を標識する蛍光色素を効率的に励起させ、その蛍光シグナルを測定する方法である。このようなSPFSは、一般的な蛍光標識法などに比べて極めて感度が高いため、サンプル中にアナライトがごく微量しか存在しない場合であってもそれを定量することができる。表面プラズモン励起増強蛍光測定装置(以下、「SPFS装置」と言う場合がある。)の基本的な態様は、たとえば特許文献1および2に開示されている。
このようなSPFS装置100は、センサチップ装填部111を備えており、図6に示したように、誘電体部材112と、誘電体部材112の主面112aに金属薄膜114を介して形成される、微細流路118上の所定位置にリガンドが固定化されることで構成されたセンサ部116と、を有するセンサチップ110が、センサチップ装填部111に装填されるように構成されている。
そして、SPFS装置100のセンサチップ装填部111に装填されたセンサチップ110の誘電体部材112側には、誘電体部材112の入射面112iから入射され、金属薄膜114において全反射条件となる所定の入射角θでセンサ部116に向かって励起光122を照射する光源120を備えるとともに、さらに光源120から照射され、金属薄膜114で反射した反射光124を受光する受光手段132が備えられている。
一方、センサチップ110の上方には、センサ部116に固定されているリガンドで捕捉されたアナライトを標識した蛍光物質が発する蛍光134を受光する光検出手段130が設けられている。
なお、センサチップ110と光検出手段130との間には、蛍光134を効率良く集光するための集光部材126と、蛍光134以外の光を除去して蛍光134のみを選択的に透過する波長選択機能部材128が設けられている。
このSPFS装置100は、以下のとおり使用される。
先ず、センサ部116に微細流路118を介してアナライトを含有する検体溶液を流入させ、その後、このアナライトを標識する蛍光物質を、同様に微細流路118を介して流入させることで、センサ部116に蛍光物質で標識されたアナライトが捕捉された状態とする。
そして、この状態で光源120より誘電体部材112を介して、金属薄膜114において全反射条件となる所定の入射角θで励起光122を照射することで、エバネッセント波と、金属薄膜114から表面プラズモンとの共鳴によって増強された電場によりセンサ部116に捕捉された蛍光物質による蛍光134を効率よく励起させる。
そして、この励起された蛍光134を光検出手段130で検出することで、極微量および/または極低濃度のアナライトを検知する。
このようなSPFS装置100は、近年、臨床検査等への応用が期待されている。SPFS装置100を臨床検査へ応用するにあたっては、センサチップ110の個体差などに起因する蛍光シグナルの測定データのバラツキを今まで以上に抑えて、測定精度を向上させることが求められている。
ところで近年、このようなSPFS装置において、効率的に検査を行えるようにするために、一つの誘電体部材に対して複数のセンサ部を備えたセンサチップが開発されている。
例えば特許文献3には、複数の感染症病原体に対して、一斉に検査を行えるセンサチップとして、各々異なる種類のリガンドが固定化された複数のセンサ部を有するSPFS装置用のセンサチップが開示されている。
しかしながら、このような複数のセンサ部を有するセンサチップにあっては、複数のセンサ部の各々から検出される蛍光シグナルの測定データにバラツキが生じ易いことが、本発明者の研究するところによって明らかとなった。
そして、そのバラツキの原因を究明すべく鋭意検討したところ、特に誘電体部材に樹脂材料を用いた際に、複数のセンサ部の配置位置などによっては、誘電体部材の複屈折性がバラツキの主原因となることがあることを見出して、本発明を完成するに至った。
本発明はこのような現状に鑑みなされた発明であって、複数のセンサ部を有するセンサチップにおいて、複数のセンサ部間における蛍光シグナルの測定データのバラツキを抑え、測定精度を向上させることのできる、SPFS装置(表面プラズモン励起増強蛍光測定装置)用のセンサチップを提供することを目的とする。
また本発明は、このようなセンサチップを備えるとともに、センサチップに対して励起光を照射する際の光源またはセンサチップの位置合わせが容易であり、且つ、光源およびセンサチップの駆動機構を簡素な構成にすることができるSPFS装置(表面プラズモン励起増強蛍光測定装置)を提供することを目的とする。
本発明は、上述したような課題を解決するために発明されたものであって、
本発明のセンサチップは、
表面プラズモン励起増強蛍光測定装置に用いられるセンサチップであって、
主面と、励起光が照射される入射面とを少なくとも備える誘電体部材と、
前記誘電体部材の前記主面上に形成された金属薄膜と、
前記金属薄膜上において、リガンドが固定された複数の領域である、複数のセンサ部と、
を備え、
前記複数のセンサ部は、前記入射面から前記複数のセンサ部の各々までの最短離間距離がそれぞれ等しくなる位置に形成されていることを特徴とする。
本発明のセンサチップは、
表面プラズモン励起増強蛍光測定装置に用いられるセンサチップであって、
主面と、励起光が照射される入射面とを少なくとも備える誘電体部材と、
前記誘電体部材の前記主面上に形成された金属薄膜と、
前記金属薄膜上において、リガンドが固定された複数の領域である、複数のセンサ部と、
を備え、
前記複数のセンサ部は、前記入射面から前記複数のセンサ部の各々までの最短離間距離がそれぞれ等しくなる位置に形成されていることを特徴とする。
このように本発明のセンサチップでは、複数のセンサ部の各々が、誘電体部材の入射面からの最短離間距離がそれぞれ等しくなる位置に形成されているため、誘電体部材の入射面から入射し、誘電体部材の内部を通過して、複数のセンサ部の各々を照射する励起光のチップ内における光路長を、複数のセンサ部間で容易に揃えることができる。
したがって、誘電体部材が複屈折性を有する材料によって形成されていたとしても、複数のセンサ部間で励起光の位相にずれが生ずるのを最小限にできるため、表面プラズモン共鳴によって生じる金属膜上の電場の大きさを揃えることができ、複数のセンサ部間における蛍光シグナルの測定データのバラツキを抑え、測定精度を向上させることができる。
上記発明において、
前記誘電体部材の前記主面上に流路を備え、
前記複数のセンサ部は、前記流路内に形成されていることが望ましい。
前記誘電体部材の前記主面上に流路を備え、
前記複数のセンサ部は、前記流路内に形成されていることが望ましい。
このような流路がセンサチップに予め形成されていれば、本発明のセンサチップを用いたSPFSによる測定を容易に行なうことができる。
この場合、
前記流路は単一の流路であり、
前記単一の流路内に、前記複数のセンサ部が形成されるように構成することも可能である。この場合、例えば、一つの検体に対して複数項目の測定を一度に行うことなどを簡易な構成で実現することができる。
前記流路は単一の流路であり、
前記単一の流路内に、前記複数のセンサ部が形成されるように構成することも可能である。この場合、例えば、一つの検体に対して複数項目の測定を一度に行うことなどを簡易な構成で実現することができる。
また、
前記流路は複数の流路を備え、
前記複数の流路内に、前記複数のセンサ部のうち一つのセンサ部が形成されるように構成することも可能である。この場合、例えば、一つの流路を、検体を送液しないコントロール用の流路に利用するなど、より精度の高い測定を容易に実現することができる。
前記流路は複数の流路を備え、
前記複数の流路内に、前記複数のセンサ部のうち一つのセンサ部が形成されるように構成することも可能である。この場合、例えば、一つの流路を、検体を送液しないコントロール用の流路に利用するなど、より精度の高い測定を容易に実現することができる。
また、前記誘電体部材が、射出成形により形成された樹脂製の場合、前記主面の上面視において、前記複数のセンサ部の配列方向に交差する前記誘電体部材の面に、射出成形におけるゲートが配置されることが好ましい。
このような位置に射出成形におけるゲートを配置することによって、複数のセンサ部間において、複屈折性等に起因する光学特性のばらつきを抑えて均一化することができ、複数のセンサ部間での測定誤差を抑制し、精度の高い測定を実現することができる。
また、本発明の表面プラズモン励起増強蛍光測定装置は、
上述したセンサチップと、前記センサチップを装填するための装填部と、前記装填部に装填された前記センサチップの前記入射面に向かって励起光を照射するための光源と、を少なくとも備えることを特徴とする。
上述したセンサチップと、前記センサチップを装填するための装填部と、前記装填部に装填された前記センサチップの前記入射面に向かって励起光を照射するための光源と、を少なくとも備えることを特徴とする。
このようなセンサチップを備えていれば、誘電体部材の複屈折性によって複数のセンサ部間で励起光の位相にずれが生じるのを最小限にすることができるため、複数のセンサ部間における蛍光シグナルの測定データのバラツキを抑え、測定精度を向上させることが可能なSPFS装置とすることができる。
この場合、
前記複数のセンサ部が、前記主面の上面視において、前記入射面に対して平行なライン上に位置するように形成されるとともに、前記センサチップと前記光源とが、前記入射面に対して平行な方向に、相対的に移動可能に構成することも可能であり、また、
前記複数のセンサ部が、前記主面の上面視において、同心円上に位置するように形成されるとともに、前記装填部は、前記センサチップが前記同心円の中心点を通過する垂直軸を中心として回転可能に構成することも可能である。
前記複数のセンサ部が、前記主面の上面視において、前記入射面に対して平行なライン上に位置するように形成されるとともに、前記センサチップと前記光源とが、前記入射面に対して平行な方向に、相対的に移動可能に構成することも可能であり、また、
前記複数のセンサ部が、前記主面の上面視において、同心円上に位置するように形成されるとともに、前記装填部は、前記センサチップが前記同心円の中心点を通過する垂直軸を中心として回転可能に構成することも可能である。
このように構成すれば、センサチップに対して励起光を照射する際の光源またはセンサチップの位置合わせが容易であり、且つ、光源およびセンサチップの駆動機構が簡素な構成となるSPFS装置とすることができる。
本発明によれば、複数のセンサ部を有するセンサチップにおいて、複数のセンサ部間における蛍光シグナルの測定データのバラツキを抑え、測定精度を向上させることができるSPFS装置(表面プラズモン励起増強蛍光測定装置)用のセンサチップを提供することができる。
また、本発明によれば、センサチップに対して励起光を照射する際の光源またはセンサチップの位置合わせが容易であり、且つ、光源およびセンサチップの駆動機構を簡素な構成にすることができるSPFS装置(表面プラズモン励起増強蛍光測定装置)を提供することができる。
以下、本発明の実施の形態について図面などを基に詳細に説明する。
<第1の実施形態>
図1は、本発明の第1の実施形態のセンサチップおよびSPFS装置を説明するための斜視図である。図2は、図1に示した本発明の第1の実施形態のセンサチップの平面図および断面図であり、図2の(a)は、センサチップの平面図、図2の(b)は、図2の(a)のA-A線における断面図である。
図1は、本発明の第1の実施形態のセンサチップおよびSPFS装置を説明するための斜視図である。図2は、図1に示した本発明の第1の実施形態のセンサチップの平面図および断面図であり、図2の(a)は、センサチップの平面図、図2の(b)は、図2の(a)のA-A線における断面図である。
図1に示したように、第1の実施形態のSPFS装置1は、センサチップ10を装填するための装填部11と、装填部11に装填されたセンサチップ10に向かって励起光22を照射する光源である投光器20と、を少なくとも備えている。
センサチップ10は、図1および図2に示したように、プリズムなどの誘電体部材12の主面12aに金属薄膜14を介して形成されたセンサ部16を備えている。このセンサ部16は複数形成されており、本実施形態ではセンサ部16A,16B,16Cの3つのセンサ部16が形成されている。また、誘電体部材12の主面12aには、検体溶液の流路として微細流路18が形成されている。図1および図2に示したように、本実施形態では3つの微細流路18A,18B,18Cが形成されており、これら3つの微細流路18A,18B,18Cの各々の中に、上述したセンサ部16A,16B,16Cが一つずつ形成されている。
誘電体部材12は、図1および図2に示したように、断面が台形状をなした六面体形状に形成されている。そして、その上側の面が上述した主面12aを構成するとともに、この六面体の内の一面が、励起光22の入射面である入射面12iを構成している。
なお、誘電体部材12の形状は、上述した六面体形状に限定されない。少なくともセンサ部16が形成される主面12aと、励起光22が入射する面である入射面12iが形成されるとともに、入射面12iから入射した励起光22が、チップ内励起光23として誘電体部材12の内部を通過し、全反射条件となる所定の入射角θでセンサ部16を照射するように構成されていればよく、その形状は、例えば円錐形状や、三角錐や四角錐などの角錐形状、或いはかまぼこ状であってもよいものである。また、誘電体部材12に二面以上の入射面12iを形成することも可能である。
また、誘電体部材12の材質は、少なくとも励起光に対して光学的に透明な材料から形成されていればその材質は特に限定されないが、安価で取り扱い性に優れるセンサチップを提供する上で、例えば樹脂材料から形成されていることが好ましい。誘電体部材12を樹脂材料から形成する場合は、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレートなどのポリエステル類、ポリエチレン(PE)、ポリプロピレン(PP)などのポリオレフィン類、環状オレフィンコポリマー(COC)、環状オレフィンポリマー(COP)などのポリ環状オレフィン類、ポリ塩化ビニル、ポリ塩化ビニリデンなどのビニル系樹脂、ポリスチレン、ポリエーテルエーテルケトン(PEEK)、ポリサルホン(PSF)、ポリエーテルサルホン(PES)、ポリカーボネート(PC)、ポリアミド、ポリイミド、アクリル樹脂、トリアセチルセルロース(TAC)などを用いることができる。
誘電体部材12の形成方法は、特に限定されるものではないが、例えば、上記のような樹脂材料を用いる場合には、射出成形によって形成することができる。
この場合、主面12aの上面視において、複数のセンサ部16の配列方向に交差する誘電体部材12の面12b若しくは面12cに、射出成形におけるゲートが配置されるように、射出成形に用いる金型を製作することが好ましい。
金属薄膜14は、一般的なSPFS装置に用いられるセンサチップを構成する金属薄膜と同様の金属を用いることができる。すなわち、金、銀、アルミニウム、銅、および白金からなる群から選ばれる少なくとも1種の金属からなることが好ましく、その中でも金からなることがより好ましい。これらの金属については、その合金の形態であっても良く、金属を積層したものであってもよい。
センサ部16は、特定のアナライトと特異的に結合するリガンドが固定化されることで形成されている。このセンサ部16に微細流路18を介して特定のアナライトを含有した検体溶液を流入させ、その後、このアナライトを標識する蛍光物質を、同様に微細流路18を介して流入させることで、センサ部16に蛍光物質で標識されたアナライトが固定化された状態とすることができる。
また、図2に示したように、上述した3つのセンサ部16A,16B,16Cの各々は、誘電体部材12の入射面12iからの最短離間距離Lが各々等しくなる位置に形成されている。したがって、誘電体部材12の入射面12iから入射して、全反射条件となる所定の入射角θでセンサ部16A,16B,16Cを照射するチップ内励起光23A,23B,23Cは、その光路長が各々等しくなるようになっている。
また、本実施形態では、これら3つのセンサ部16A,16B,16Cの各々は、図2の(a)に示したように、誘電体部材12の入射面12iに対して平行に位置するラインPの上に形成されている。
投光器20は、所定の仰角に固定された状態で、不図示の移動手段によって、図中の矢印Xで示す一軸方向にのみ移動できるように構成されている。なお、この矢印Xで示す一軸方向とは、上述した誘電体部材12の入射面12iと平行な方向である。
SPFS装置1のその他の構成としては、前述した従来のSPFS装置100と同様である。すなわち、金属薄膜14で反射した反射光24を受光する受光手段(不図示)、センサチップ10の上方に配置される光検出手段(不図示)、およびセンサチップ10とこの不図示の光検出手段との間に配置される集光部材(不図示)や波長選択機能部材(不図示)などが設けられている。また、この光検出手段および受光手段は、上述した投光器20と同様に、図中の矢印Xに示す一軸方向にのみ移動できるように構成されているものとする。
このように構成されるSPFS装置1は、上述した従来のSPFS装置100と同様に、以下のように使用される。
先ず、例えばセンサ部16Aに微細流路18Aを介してアナライトを有する検体溶液を流入させ、その後、このアナライトを標識する蛍光物質を、同様に微細流路18Aを介して流入させることで、センサ部16Aに蛍光物質で標識されたアナライトが固定化された状態とする。
そして、この状態で投光器20より誘電体部材12の入射面12iに対して励起光22を照射することで、誘電体部材12の内部を通過したチップ内励起光23Aを、全反射条件となる所定の入射角θでセンサ部16Aに向かって照射し、金属薄膜14の表面からエバネッセント波を放出させ、センサ部16Aに固定化された蛍光物質による蛍光34Aを励起させる。
そして、このエバネッセント波によって励起された蛍光34Aを不図示の光検出手段で検出することで、極微量および/または極低濃度のアナライトを検知する。
また、センサ部16B、16Cにおいても検体溶液の分析を行う場合は、投光器20、および不図示の光検出手段を図1および図2に示す矢印X方向に移動し、センサ部16B、16Cに対して、上述した手順と同様の手順を繰り返す。そして、センサ部16B、16Cに固定化された蛍光物質による蛍光34を不図示の光検出手段で検出する。
ここで、誘電体部材12の複屈折性が、蛍光シグナルの測定データに及ぼす影響について説明する。
前述したような表面プラズモン共鳴を生じさせるためには、p偏光の光をセンサ部16に向かって照射する必要がある。これは、表面プラズモン共鳴の発生に寄与するのはp偏光だけであり、s偏光は寄与しないからである。したがって、通常は、投光器20に偏光フィルターなどを装着して光を偏光させ、励起光22をp偏光だけからなる光にして誘電体部材12に照射している。また、誘電体部材12が複屈折性を有する場合は、励起光22の偏光状態を予め複屈折による位相の変化を見込んだ状態とすることで、センサ部16を照射する際のチップ内励起光23の偏光状態が、p偏光比率としておおよそ100%に近い状態になるようにしている。
なお、p偏光とは、2つの屈折率の異なる材質の界面にある角度をもって光が入射する時、その入射面に対して平行な光の偏光成分と定義される。また、ここで言う「p偏光比率」とは、励起光におけるp偏光の占める比率を意味し、次式(1)のとおり定義される。
p偏光比率=p偏光強度/(p偏光強度+s偏光強度)×100・・・・(1)
図3は、チップ内励起光のp偏光比率と、電場強度との関係を示したグラフである。なお、グラフの横軸は上述したp偏光比率を、グラフの縦軸はp偏光比率100%の状態における電場強度に対する比(電場強度比)、をそれぞれ示している。
図3は、チップ内励起光のp偏光比率と、電場強度との関係を示したグラフである。なお、グラフの横軸は上述したp偏光比率を、グラフの縦軸はp偏光比率100%の状態における電場強度に対する比(電場強度比)、をそれぞれ示している。
この図3からも分かるように、p偏光比率と電場強度とはリニアな比例関係を示しており、p偏光比率が小さくなるほど電場強度も小さくなる。電場強度が小さくなるということは、表面プラズモン共鳴によるエバネッセント波の増強度が小さくなることを意味するため、電場強度が小さくなるとエバネッセント波によって励起される蛍光34も小さくなり、検出される蛍光シグナルも小さくなる。
一方、複屈折による位相の変化量、すなわち位相差は、誘電体部材12の内部を通過するチップ内励起光23の光路長が長いほど大きくなる。したがって、複数のチップ内励起光23の光路長が各々異なる場合は、その光路長の差分に相関して、これら複数のチップ内励起光23のp偏光比率も各々異なるものとなる。
したがって、例えば樹脂材料などの複屈折性を有する誘電体部材12にセンサ部16A,16B,16Cを形成し、これらセンサ部16A,16B,16Cの各々において蛍光シグナルを測定する場合において、チップ内励起光23A,23B,23Cの各々の光路長が異なると、同一の検体溶液に対する分析であったとしても、検出される蛍光34A,34B,34Cにバラツキが生じてしまうこととなる。
これに対して、本実施形態のセンサチップ10にあっては、上述したように、チップ内励起光23A,23B,23Cの光路長が各々等しくなるようになっている。したがって、例えば樹脂材料などの複屈折性を有する材料によって誘電体部材12を形成した場合であっても、誘電体部材12の複屈折性によって生じる、チップ内励起光23A,23B,23Cの位相差のズレを低減できるため、センサ部16A,16B,16Cの各々の蛍光シグナルの測定データのバラツキを小さくし、測定精度を向上させることができるようになっている。
また、本実施形態のセンサチップ10において、誘電体部材12を例えばガラスなどの複屈折性のない材料によって形成することも勿論可能である。このように、本発明のセンサチップ10にあっては、チップ内励起光23A,23B,23Cの光路長が各々等しくなるように形成されているため、誘電体部材12の材料として複屈折性の比較的高い材料であっても選択することが可能となり、誘電体部材12の材料選択の幅を広げることができる。また、それぞれ異なる材料から形成された複数の誘電体部材12に対して、共通する金属薄膜を介して共通するリガンドが固定化されたセンサ部16を同様に形成することで、センサチップの種類毎に製造装置等を変えることなく共通化することができ、ユーザーのニーズなどに応じて多様な種類のセンサチップ10を提供するにあたり、その製造コストを低減することも可能となる。
また、本実施形態のSPFS装置1にあっては、上述したように、3つのセンサ部16A,16B,16Cの各々が、誘電体部材12の入射面12iに対して平行に位置するラインPの上に形成されている。したがって、投光器20で3つのセンサ部16A,16B,16Cの各々に対して励起光22を照射する場合には、投光器20の照射方向を調整したり、センサチップ10の位置を調整したりする必要がなく、投光器20を図中の矢印Xで示した一軸方向だけに移動させればよいため、センサチップ10と投光器20との位置合わせが容易である。また、駆動機構として、投光器20、光検出手段および受光手段等の光学系を一軸方向だけに移動させる移動手段を備えていればよいため、投光器20の駆動機構が簡素であるSPFS装置1とすることができる。
<第2の実施形態>
図4は、本発明の第2の実施形態のセンサチップおよびSPFS装置を説明するための斜視図である。
図4は、本発明の第2の実施形態のセンサチップおよびSPFS装置を説明するための斜視図である。
なお、この第2の実施形態のセンサチップ10およびSPFS装置1は、上述した第1の実施形態のセンサチップ10およびSPFS装置1と基本的には同様の構成であり、同一の構成部材には同一の符号を付し、その詳細な説明を省略する。
この第2の実施形態のセンサチップ10は、誘電体部材12の主面12aに、検体溶液の流路として単一の微細流路18が形成されており、この単一の微細流路18の中に、3つのセンサ部16A,16B,16Cが形成されている点が、上述した第1の実施形態のセンサチップ10と異なっている。
このように、本発明のセンサチップ10にあっては、上述した第1の実施形態のように、複数のセンサ部16の各々に対して微細流路18が形成されていてもよく、本実施形態のように、単一の微細流路18だけが形成されていてもよいものである。また、微細流路18をセンサチップ10とは別体とし、使用の際にセンサチップ10に取り付けるように構成することも可能であるが、上述した第1、第2の実施形態のように、センサチップ10に予め微細流路18が形成されている方が、SPFSによる検査を容易に行なうことができるため好ましい。
なお、上述した第1、第2の実施形態では、投光器20、不図示の光検出手段および受光手段等の光学系を一軸方向に移動できるように構成し、センサチップ10の位置を固定した状態で、両者の位置合わせを行うように構成しているが、本発明のSPFS装置1はこれに限定されず、投光器20等の位置を固定して、センサチップ10だけを一軸方向に移動できるように構成することも可能である。
<第3の実施形態>
図5は、本発明の第3の実施形態のセンサチップおよびSPFS装置を説明するための斜視図である。
図5は、本発明の第3の実施形態のセンサチップおよびSPFS装置を説明するための斜視図である。
なお、この第3の実施形態のセンサチップ10およびSPFS装置1は、上述した第1、第2の実施形態のセンサチップ10およびSPFS装置1と基本的には同様の構成であり、同一の構成部材には同一の符号を付し、その詳細な説明を省略する。
この第3の実施形態のセンサチップ10では、誘電体部材12が円錐形状に形成されており、その底面(図中の上側の面)が主面12aを構成し、その側面が入射面12iを構成している。また、主面12aには4つのセンサ部16A,16B,16C,16Dが形成されるとともに、4つの微細流路18A,18B,18C,18Dが形成されている。そして、これら4つの微細流路18A,18B,18C,18Dの各々の中に、上述したセンサ部16A,16B,16C,16Dが一つずつ形成されている。
また、これら4つのセンサ部16A,16B,16C,16Dは、主面12aの中心を中心点として描かれる円Cの上に各々位置するように形成されている。すなわち、これら4つのセンサ部16A,16B,16C,16Dは、上述した第1、第2の実施形態のセンサ部16と同様に、入射面12iからの最短離間距離が各々等しくなる位置に形成されている。
また、センサチップ10は、不図示の回転手段によって、上述した円Cの中心点を通過する垂直軸CLを中心として、図中の矢印Rで示した方向に回転可能に構成されている。これに対して、投光器20は、常に所定方向および所定角度に励起光22を照射するように、所定の仰角で固定された状態で、所定の位置に配置されている。
このように構成される本実施形態のセンサチップ10であっても、上述したように、チップ内励起光23の光路長が各々等しくなるようになっているため、誘電体部材12の複屈折性によって、チップ内励起光23の位相差にズレが生ずるのを軽減できる。よって、センサ部16A,16B,16C,16Dにおける蛍光34の測定データのバラツキを抑え、測定精度を向上させることができるようになっている。
また、本実施形態のSPFS装置1にあっては、上述したように、センサ部16A,16B,16C,16Dが、主面12aの中心を中心点として描かれる円Cの上に位置するように形成されている。したがって、投光器20で4つのセンサ部16A,16B,16C,16Dの各々に対して励起光22を照射する場合には、投光器20の位置や照射方向を調整する必要がなく、センサチップ10を図中の矢印Rで示した方向に所定角度(本実施形態では90°)だけ回転させればよいため、センサチップ10と投光器20との位置合わせが容易である。また、駆動機構として、センサチップ10を回転させる回転手段だけを備えてればよいため、投光器20およびセンサチップ10の駆動機構が簡素であるSPFS装置1とすることができる。
以上、本発明の好ましい実施形態を説明したが、本発明は上述した実施形態に限定されない。本発明の趣旨を逸脱しない限りにおいて、種々の変更が可能である。
例えば、上述した第1~3の実施形態では、誘電体部材12の主面12aに形成されている複数のセンサ部16の全てが、入射面12iからの最短離間距離Lが各々等しくなる位置に形成されているが、本発明のセンサチップ10においては、必ずしも全てのセンサ部16が、入射面12iからの最短離間距離Lが等しくなり位置に形成されていなくともよい。入射面12iからの最短離間距離Lがその他の複数のセンサ部16とは異なるセンサ部16が形成されていても、入射面12iからの最短離間距離Lが等しいセンサ部16が複数形成されていれば、これら入射面12iからの最短離間距離Lが等しい複数のセンサ部16間において、蛍光シグナルのバラツキを抑えることができる。すなわち、本発明においては、入射面12iからの最短離間距離Lが等しいセンサ部16が、少なくとも複数形成されていればよいものである。
1 SPFS装置(表面プラズモン励起増強蛍光測定装置)
10 センサチップ
11 センサチップ装填部
12 誘電体部材
12a 主面
12i 入射面
14 金属薄膜
16,16A,16B,16C,16D センサ部
18,18A,18B,18D,18D 微細流路
20 投光器
22 励起光
23、23A,23B,23C チップ内励起光
24 反射光
34,34A,34B,34C 蛍光
100 SPFS装置(表面プラズモン励起増強蛍光測定装置)
110 センサチップ
111 センサチップ装填部
112 誘電体部材
112a 主面
112i 入射面
114 金属薄膜
116 センサ部
118 微細流路
120 光源
122 励起光
124 反射光
126 集光部材
128 波長選択機能部材
130 光検出手段
132 受光手段
134 蛍光
10 センサチップ
11 センサチップ装填部
12 誘電体部材
12a 主面
12i 入射面
14 金属薄膜
16,16A,16B,16C,16D センサ部
18,18A,18B,18D,18D 微細流路
20 投光器
22 励起光
23、23A,23B,23C チップ内励起光
24 反射光
34,34A,34B,34C 蛍光
100 SPFS装置(表面プラズモン励起増強蛍光測定装置)
110 センサチップ
111 センサチップ装填部
112 誘電体部材
112a 主面
112i 入射面
114 金属薄膜
116 センサ部
118 微細流路
120 光源
122 励起光
124 反射光
126 集光部材
128 波長選択機能部材
130 光検出手段
132 受光手段
134 蛍光
Claims (8)
- 表面プラズモン励起増強蛍光測定装置に用いられるセンサチップであって、
主面と、励起光が照射される入射面とを少なくとも備える誘電体部材と、
前記誘電体部材の前記主面上に形成された金属薄膜と、
前記金属薄膜上において、リガンドが固定された複数の領域である、複数のセンサ部と、を備え、
前記複数のセンサ部は、前記入射面から前記複数のセンサ部の各々までの最短離間距離がそれぞれ等しくなる位置に形成されていることを特徴とするセンサチップ。 - 前記誘電体部材の前記主面上に流路を備え、
前記複数のセンサ部は、前記流路内に形成されていることを特徴とする請求項1に記載のセンサチップ。 - 前記流路は単一の流路であり、前記単一の流路内に、前記複数のセンサ部が形成されていることを特徴とする請求項2に記載のセンサチップ。
- 前記流路は複数の流路を備え、
前記複数の流路内に、前記複数のセンサ部のうち一つのセンサ部が形成されていることを特徴とする請求項2に記載のセンサチップ。 - 前記誘電体部材は、射出成形により形成された樹脂製であり、前記主面の上面視において、前記複数のセンサ部の配列方向に交差する前記誘電体部材の面に、射出成形におけるゲートが配置されていることを特徴とする請求項3または4に記載のセンサチップ。
- 請求項1~5のいずれかに記載のセンサチップと、前記センサチップを装填するための装填部と、前記装填部に装填された前記センサチップの前記入射面に向かって励起光を照射するための光源と、を少なくとも備えることを特徴とする表面プラズモン励起増強蛍光測定装置。
- 前記複数のセンサ部が、前記主面の上面視において、前記入射面に対して平行なライン上に位置するように形成されるとともに、前記センサチップと前記光源とが、前記入射面に対して平行な方向に、相対的に移動可能に構成されていることを特徴とする請求項6に記載の表面プラズモン励起増強蛍光測定装置。
- 前記複数のセンサ部が、前記主面の上面視において、同心円上に位置するように形成されるとともに、前記装填部は、前記センサチップが前記同心円の中心点を通過する垂直軸を中心として回転可能に構成されていることを特徴とする請求項6に記載の表面プラズモン励起増強蛍光測定装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012550844A JPWO2012090759A1 (ja) | 2010-12-28 | 2011-12-19 | 表面プラズモン励起増強蛍光測定装置およびこれに用いられるセンサチップ |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010-293480 | 2010-12-28 | ||
JP2010293480 | 2010-12-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012090759A1 true WO2012090759A1 (ja) | 2012-07-05 |
Family
ID=46382870
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/079358 WO2012090759A1 (ja) | 2010-12-28 | 2011-12-19 | 表面プラズモン励起増強蛍光測定装置およびこれに用いられるセンサチップ |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2012090759A1 (ja) |
WO (1) | WO2012090759A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014196603A1 (ja) | 2013-06-06 | 2014-12-11 | コニカミノルタ株式会社 | 蛍光免疫測定用センサーチップ及び蛍光免疫測定方法 |
WO2015105114A1 (ja) | 2014-01-10 | 2015-07-16 | コニカミノルタ株式会社 | イムノアッセイ法およびイムノアッセイシステム |
US12055489B2 (en) | 2019-05-01 | 2024-08-06 | The University Of Melbourne | Evanescent field resonance imaging microscopy apparatus and method |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09292332A (ja) * | 1996-04-25 | 1997-11-11 | Fuji Photo Film Co Ltd | 表面プラズモンセンサー |
JP2001504582A (ja) * | 1996-11-16 | 2001-04-03 | イギリス国 | 分析装置 |
JP2002372490A (ja) * | 2001-04-12 | 2002-12-26 | Fuji Photo Film Co Ltd | 全反射減衰を利用したセンサーおよび測定チップアセンブリ |
JP2003106991A (ja) * | 2001-09-28 | 2003-04-09 | Fuji Photo Optical Co Ltd | 測定チップおよびその作製方法 |
JP2003172693A (ja) * | 2001-12-06 | 2003-06-20 | Fuji Photo Optical Co Ltd | 全反射減衰を利用した測定装置 |
JP2003329578A (ja) * | 2002-05-13 | 2003-11-19 | Fuji Photo Film Co Ltd | 全反射光を利用した測定装置 |
JP2010091553A (ja) * | 2008-09-09 | 2010-04-22 | Konica Minolta Holdings Inc | 生体分子の検出方法 |
-
2011
- 2011-12-19 JP JP2012550844A patent/JPWO2012090759A1/ja active Pending
- 2011-12-19 WO PCT/JP2011/079358 patent/WO2012090759A1/ja active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09292332A (ja) * | 1996-04-25 | 1997-11-11 | Fuji Photo Film Co Ltd | 表面プラズモンセンサー |
JP2001504582A (ja) * | 1996-11-16 | 2001-04-03 | イギリス国 | 分析装置 |
JP2002372490A (ja) * | 2001-04-12 | 2002-12-26 | Fuji Photo Film Co Ltd | 全反射減衰を利用したセンサーおよび測定チップアセンブリ |
JP2003106991A (ja) * | 2001-09-28 | 2003-04-09 | Fuji Photo Optical Co Ltd | 測定チップおよびその作製方法 |
JP2003172693A (ja) * | 2001-12-06 | 2003-06-20 | Fuji Photo Optical Co Ltd | 全反射減衰を利用した測定装置 |
JP2003329578A (ja) * | 2002-05-13 | 2003-11-19 | Fuji Photo Film Co Ltd | 全反射光を利用した測定装置 |
JP2010091553A (ja) * | 2008-09-09 | 2010-04-22 | Konica Minolta Holdings Inc | 生体分子の検出方法 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014196603A1 (ja) | 2013-06-06 | 2014-12-11 | コニカミノルタ株式会社 | 蛍光免疫測定用センサーチップ及び蛍光免疫測定方法 |
US10365273B2 (en) | 2013-06-06 | 2019-07-30 | Konica Minolta, Inc. | Fluorescence immunoassay sensor chip and fluorescence immunoassay method |
WO2015105114A1 (ja) | 2014-01-10 | 2015-07-16 | コニカミノルタ株式会社 | イムノアッセイ法およびイムノアッセイシステム |
JPWO2015105114A1 (ja) * | 2014-01-10 | 2017-03-23 | コニカミノルタ株式会社 | イムノアッセイ法およびイムノアッセイシステム |
US10545141B2 (en) | 2014-01-10 | 2020-01-28 | Konica Minolta, Inc. | Immunoassay method and immunoassay system |
US12055489B2 (en) | 2019-05-01 | 2024-08-06 | The University Of Melbourne | Evanescent field resonance imaging microscopy apparatus and method |
Also Published As
Publication number | Publication date |
---|---|
JPWO2012090759A1 (ja) | 2014-06-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6483834B2 (ja) | 傾斜入射構造、プリズム入射型、シリコン基盤の液浸微細流路測定装置及び測定方法 | |
US11408817B2 (en) | Detection chip, detection system, and detection method | |
US9500584B2 (en) | Multiple examinations of a sample | |
JP2005257455A (ja) | 測定装置および測定ユニット | |
JP2009210495A (ja) | 円二色性を持つ媒体測定表面プラズモン共鳴センサー、円二色性測定法及び測定装置 | |
US10895535B2 (en) | Measurement method, and measuring chip and measuring kit used for the same | |
WO2012090759A1 (ja) | 表面プラズモン励起増強蛍光測定装置およびこれに用いられるセンサチップ | |
JP2006064514A (ja) | 測定ユニット | |
JP5786308B2 (ja) | 表面プラズモン共鳴測定装置 | |
JP6098523B2 (ja) | Spfs測定用センサーチップ、およびspfs測定用センサーチップを用いたspfs測定方法、ならびにspfs測定用センサーチップを備えたspfs測定装置 | |
WO2018012436A1 (ja) | 光学的検出装置及び光学的検出方法 | |
JPH10300667A (ja) | 分子間相互作用測定プレートおよび測定装置 | |
JP2016151417A (ja) | 赤血球凝集検出装置および検出方法 | |
JP7050776B2 (ja) | 検体検出装置及び検体検出方法 | |
JP4219689B2 (ja) | イメージングの装置及び方法 | |
WO2014021171A1 (ja) | センサー部材の製造方法およびセンサーチップの製造方法ならびにセンサー部材の使用方法 | |
JP5488351B2 (ja) | 表面プラズモン励起増強蛍光測定装置およびこれに用いられるセンサ構造体 | |
JP7121742B2 (ja) | 回折光除去スリットを用いた光学式検体検出システム | |
US10976250B2 (en) | Position detection method and position detection device for sensor chip in optical sample detection system | |
JP6717201B2 (ja) | 検出方法および検出装置 | |
JP5983786B2 (ja) | 表面プラズモン測定装置に用いられるセンサーチップおよびセンサーチップを用いた表面プラズモン測定装置 | |
JP6711285B2 (ja) | 検出方法、検出装置およびチップ | |
JP6481371B2 (ja) | 検出方法および検出キット | |
JP2012220256A (ja) | 表面プラズモン測定装置に用いられるセンサーチップおよびセンサーチップを用いた表面プラズモン測定装置 | |
JP5772238B2 (ja) | 表面プラズモン共鳴測定用マイクロチップ及び表面プラズモン共鳴測定装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11853336 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2012550844 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11853336 Country of ref document: EP Kind code of ref document: A1 |