[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2012086602A1 - 二次電池用非水電解液および二次電池 - Google Patents

二次電池用非水電解液および二次電池 Download PDF

Info

Publication number
WO2012086602A1
WO2012086602A1 PCT/JP2011/079409 JP2011079409W WO2012086602A1 WO 2012086602 A1 WO2012086602 A1 WO 2012086602A1 JP 2011079409 W JP2011079409 W JP 2011079409W WO 2012086602 A1 WO2012086602 A1 WO 2012086602A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon atoms
compound
secondary battery
group
carbon
Prior art date
Application number
PCT/JP2011/079409
Other languages
English (en)
French (fr)
Inventor
祐 小野崎
真男 岩谷
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to JP2012549803A priority Critical patent/JPWO2012086602A1/ja
Publication of WO2012086602A1 publication Critical patent/WO2012086602A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a non-aqueous electrolyte for a secondary battery and a secondary battery.
  • lithium salt is dissolved well to express high lithium ion conductivity, and from the point of having a wide potential window, ethylene carbonate, dimethyl carbonate, etc. These carbonate compounds have been widely used. However, non-aqueous electrolytes containing carbonate compounds tend to have a low flash point.
  • lithium salts such as CF 3 SO 2 N (Li) SO 2 CF 3 and FSO 2 N (Li) SO 2 F strongly interact with the etheric oxygen atom of the glyme-based solvent and have a stable 1: 1.
  • Form a complex From the results of thermal analysis and the like, it has been reported that the complex behaves as a single ionic species and does not ignite at all even when heated by a burner (Non-patent Documents 1 and 2).
  • Non-patent Documents 1 and 2 2 it has been reported that the complex behaves as a single ionic species and does not ignite at all even when heated by a burner.
  • Non-patent Documents 1 and 2 2 when the non-aqueous electrolyte containing the 1: 1 complex is evaluated, it is not suitable for practical use because of its high viscosity and low electrical conductivity.
  • Examples of including a complex of a lithium salt and a glyme solvent in the electrolyte include the following.
  • a nonaqueous electrolytic solution comprising a complex salt of LiBF 4 and 1-ethoxy-2-methoxyethane (Patent Document 1).
  • a nonaqueous electrolytic solution containing LiPF 6 , 1,2-dimethoxyethane or 1,2-diethoxyethane, a fluorinated monoether, and ethylene carbonate (Patent Document 2).
  • a nonaqueous electrolytic solution containing a lithium salt such as (CF 3 SO 2 ) 2 NLi, tetraglyme, and optionally an organic solvent (Patent Document 3).
  • a non-aqueous electrolyte containing 1,2-dimethoxyethane together with a lithium salt, a fluorinated ether and a non-fluorinated carbonate (Patent Document 4).
  • a nonaqueous electrolytic solution containing a lithium salt, a hydrofluoroether, and a glyme solvent (Patent Document 5).
  • the present invention provides a non-aqueous electrolyte for a secondary battery capable of obtaining excellent low-temperature characteristics while ensuring other characteristics such as conductivity, and a secondary battery using the non-aqueous electrolyte for a secondary battery With the goal.
  • R 1 and R 2 are each independently an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 3 to 10 carbon atoms, a fluorinated alkyl group having 1 to 10 carbon atoms, or 3 to 10 carbon atoms
  • X is an alkylene group having 1 to 5 carbon atoms, a fluorinated alkylene group having 1 to 5 carbon atoms, an alkylene group having 1 to 5 carbon atoms having one or more etheric oxygen atoms between carbon atoms and carbon atoms, or carbon A fluorinated alkylene group having 1 to 5 carbon atoms having one or more etheric oxygen atoms between atoms and carbon atoms.
  • Q 1 represents a linear alkylene group having 1 to 4 carbon atoms, or one or more hydrogen atoms of the linear alkylene group are alkyl groups having 1 to 5 carbon atoms, or one or more carbon atoms between carbon atoms.
  • R 3 and R 4 are each independently an alkyl group having 1 to 5 carbon atoms or an alkylene group having 1 to 10 carbon atoms formed by linking R 3 and R 4 .
  • m is an integer of 2-4.
  • Q 2 is a linear alkylene group having 1 to 4 carbon atoms, or one or more of hydrogen atoms of the linear alkylene group is an alkyl group having 1 to 5 carbon atoms, or a carbon atom-carbon atom.
  • Q 2 may be the same group or different groups.
  • R 5 and R 6 are each independently an alkyl group having 1 to 5 carbon atoms or an alkylene group having 1 to 10 carbon atoms formed by linking R 5 and R 6 .
  • Formula (3) compounds represented by (molar amount: M III) and the formula (4) compounds represented by (molar amount: M IV) molar ratio (M III / M IV) is 10
  • [3] The non-aqueous electrolyte for a secondary battery according to [1] or [2], wherein the compound represented by the formula (3) is essentially a compound represented by the following formula (3A).
  • R 3 and R 4 are each independently an alkyl group having 1 to 5 carbon atoms, or an alkylene group having 1 to 10 carbon atoms formed by linking R 3 and R 4.
  • R 3 and R 4 are each independently an alkyl group having 1 to 5 carbon atoms, or an alkylene group having 1 to 10 carbon atoms formed by linking R 3 and R 4.
  • m is an integer of 2 to 4.
  • R 5 and R 6 are each independently an alkyl group having 1 to 5 carbon atoms, or R 1 and C 5 formed by linking R 5 and R 6. 10 alkylene groups.
  • [5] The compound represented by the formula (3) and the formula (4) with respect to the total number of moles of lithium atoms derived from the lithium salt (N Li ) contained in the non-aqueous electrolyte for secondary batteries.
  • the secondary according to any one of [1] to [4], wherein the ratio (N O / N Li ) of the total number of moles (N O ) of etheric oxygen atoms derived from the represented compound is 1 to 6 Non-aqueous electrolyte for batteries.
  • the lithium salt is LiPF 6 , a compound represented by the following formula (5), FSO 2 N (Li) SO 2 F, CF 3 SO 2 N (Li) SO 2 CF 3 , CF 3 CF 2 SO 1 N or more selected from the group consisting of 2 N (Li) SO 2 CF 2 CF 3 , LiClO 4 , a compound represented by the following formula (6), a compound represented by the following formula (7), and LiBF 4
  • the non-aqueous electrolyte for a secondary battery according to any one of [1] to [5].
  • k is an integer of 1 to 5.
  • the compound represented by the above formula (1) is CF 3 CH 2 OCF 2 CF 2 H, CHF 2 CF 2 CH 2 OCF 2 CF 2 H, CF 3 CF 2 CH 2 OCF 2 CHF 2 , or CF 3.
  • a compound having a ring structure composed of a carbon atom and an oxygen atom, the ring structure containing a bond represented by —O—C ( ⁇ O) —O—, and carbon-carbon unsaturated in the molecule The non-aqueous electrolyte for secondary batteries according to any one of [1] to [9], which contains a compound (9) containing a bond.
  • the non-aqueous electrolyte for a secondary battery of the present invention can provide excellent low temperature characteristics while ensuring other characteristics such as conductivity. Moreover, if the secondary battery of this invention is used, the secondary battery which has the outstanding low temperature characteristic and other characteristics, such as an electrical conductivity, is practically sufficient.
  • non-aqueous electrolyte for secondary battery is a fluorine-containing ether selected from the group consisting of a lithium salt to be described later, compound (1) and compound (2).
  • a non-aqueous electrolyte is an electrolyte that uses a solvent that does not substantially contain water.
  • the water content of the non-aqueous electrolyte has deteriorated in the performance of a secondary battery that uses the non-aqueous electrolyte. It is an electrolyte solution in an amount that is not possible.
  • the amount of water that can be contained in the non-aqueous electrolyte is preferably 500 ppm by mass or less, more preferably 100 ppm by mass or less, and 50 ppm by mass or less with respect to the total mass of the electrolyte. Is particularly preferred.
  • the lower limit of the moisture content is 0 mass ppm.
  • Lithium salt is an electrolyte that dissociates in a non-aqueous electrolyte and supplies lithium ions.
  • the lithium salt include LiPF 6 , the following compound (5), FSO 2 N (Li) SO 2 F, CF 3 SO 2 N (Li) SO 2 CF 3 , CF 3 CF 2 SO 2 N (Li) SO 2 CF. 2 CF 3, LiClO 4, the following compound (6), the following compound (7), and one or more is preferably selected from the group consisting of LiBF 4.
  • the lithium salt, LiPF 6, LiBF 4 and the compound (5) at least one member selected from the group consisting of is more preferable.
  • lithium salt Only one lithium salt may be used, or two or more lithium salts may be used in combination.
  • the combination in the case of using 2 or more types of lithium salt together includes the combination shown in International Publication No. 2009/133899.
  • the lithium salt it is more preferable that LiPF 6 is essential, and it is particularly preferable to use only LiPF 6 .
  • k in the compound (5) is an integer of 1 to 5.
  • Examples of the compound (5) include the following compounds (5-1) to (5-4).
  • the nonaqueous electrolytic solution of the present invention requires a compound (5-2) in which k is 2 when the compound (5) is used because a nonaqueous electrolytic solution having high conductivity is easily obtained. It is more preferable that the compound consists only of the compound (5-2) in which k is 2.
  • the content of the lithium salt in the non-aqueous electrolyte is not particularly limited, but is preferably 0.1 to 3.0 mol / L, particularly preferably 0.5 to 2.0 mol / L. If the content of the lithium salt is not less than the lower limit of the above range, a non-aqueous electrolyte with high conductivity is easily obtained. If the lithium salt content is not more than the upper limit of the above range, the lithium salt can be easily dissolved in the compounds (1) to (4) described later and the compound (8) used as necessary.
  • fluorine-containing ether solvent selected from the group consisting of the following compound (1) and the following compound (2) is used as a solvent that imparts nonflammability to the nonaqueous electrolytic solution. These may be used individually by 1 type, or may use 2 or more types together by arbitrary combinations and a ratio.
  • R 1 and R 2 are each independently an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 3 to 10 carbon atoms, a fluorinated alkyl group having 1 to 10 carbon atoms, or a carbon number
  • a fluorinated alkyl group having 1 to 10 carbon atoms having a reactive oxygen atom, and one or both of R 1 and R 2 is a fluorinated alkyl group.
  • X is an alkylene group having 1 to 5 carbon atoms, a fluorinated alkylene group having 1 to 5 carbon atoms, or a carbon atom having 1 or more etheric oxygen atoms between carbon atoms. Or a fluorinated alkylene group having 1 to 5 carbon atoms having one or more etheric oxygen atoms between carbon atoms.
  • fluorination means that a part or all of hydrogen atoms bonded to a carbon atom is substituted with a fluorine atom.
  • the fluorinated alkyl group is a group in which part or all of the hydrogen atoms of the alkyl group are substituted with fluorine atoms.
  • a hydrogen atom is present in a partially fluorinated group.
  • Partial fluorination means that a part of hydrogen atoms bonded to a carbon atom is replaced with a fluorine atom.
  • alkyl group and the alkyl group having an etheric oxygen atom between carbon atoms a group having a linear structure, a branched structure, or a partial cyclic structure (for example, a cycloalkylalkyl group), respectively. Is mentioned.
  • R 1 and R 2 in the compound (1) is a fluorinated alkyl group.
  • R 1 and R 2 in the compound (1) may be the same or different.
  • Compound (1) is a compound (1-A) in which each of R 1 and R 2 is a fluorinated alkyl group having 1 to 10 carbon atoms, or R 1 is one or more carbon atoms between carbon atoms
  • a compound (1-B) which is a fluorinated alkyl group having 1 to 10 carbon atoms having an etheric oxygen atom and R 2 is a fluorinated alkyl group having 1 to 10 carbon atoms is preferred.
  • the compound (1) is preferably a compound having a total carbon number of 4 to 10 and more preferably a compound of 4 to 8 because the boiling point is too low when the carbon number is too small and the viscosity increases when the carbon number is too large.
  • the molecular weight of the compound (1) is preferably 150 to 800, more preferably 150 to 500, and particularly preferably 200 to 500. Since the number of etheric oxygen atoms in the compound (1) affects flammability, the number of etheric oxygen atoms in the case of the compound (1) having an etheric oxygen atom is preferably 1 to 4, and 1 or 2 Is more preferable.
  • the ratio of the mass of fluorine atoms to the molecular weight of the compound (1) is preferably 50% or more, and more preferably 60% or more.
  • Specific examples of the compound other than the compound (1-A), the compound (1-B), the compound (1-A) and the compound (1-B) include, for example, the compounds described in International Publication No. 2009/133899, etc. Is mentioned.
  • the nonaqueous electrolytic solution of the present invention can easily dissolve a lithium salt and easily obtain a nonaqueous electrolytic solution having excellent nonflammability and high conductivity.
  • the compound (1-A) when 1 and R 2 is a fluorinated alkyl group having 1 to 10 carbon atoms is essential, and CF 3 CH 2 OCF 2 CF 2 H (trade name: AE-3000) , manufactured by Asahi Glass Co.), CHF 2 CF 2 CH 2 OCF 2 CF 2 H, CF 3 CF 2 CH 2 OCF 2 CF 2 H, CF 3 CH 2 OCF 2 CHFCF 3, and CHF 2 CF 2 CH 2 OCF 2 CFHCF 3 More preferably, at least one selected from the group consisting of: CF 3 CH 2 OCF 2 CF 2 H and CHF 2 CF 2 CH 2 OCF 2 CFHCF 3 is used. It is particularly preferable to make one essential.
  • X may have a linear structure or a branched structure.
  • X is preferably an alkylene group having 1 to 5 carbon atoms, more preferably an alkylene group having 2 to 4 carbon atoms.
  • the alkylene group preferably has a linear structure or a branched structure.
  • the side chain is preferably an alkyl group having 1 to 3 carbon atoms or an alkyl group having 1 to 3 carbon atoms having an etheric oxygen atom.
  • X is CH 2 , CH 2 CH 2 , CH (CH from the point that a lithium salt is uniformly dissolved and a non-aqueous electrolyte with excellent nonflammability and high conductivity is easily obtained. 3) CH 2, and CH 2 CH 2 1 or a is compound selected from the group consisting of CH 2 (2) is preferred.
  • Specific examples of the compound (2) include a compound represented by the following formula.
  • the nonaqueous electrolytic solution of the present invention is easily dissolved in a lithium salt, and a nonconductive electrolytic solution having excellent nonflammability and high conductivity is easily obtained.
  • At least one of the compound in which X is CH 2 CH 2 and the compound in which X is CH (CH 3 ) CH 2 is essential, the compound in which X is CH 2 CH 2 and X is CH (CH 3 It is more preferable that it consists of at least one of the compounds that are CH 2, and it is only one of the compound that X is CH 2 CH 2 or the compound that X is CH (CH 3 ) CH 2 preferable.
  • the fluorine-containing ether solvent may be any one of the use of only the compound (1), the use of only the compound (2), or the combined use of the compound (1) and the compound (2), and the use of only the compound (1). Or the use of only compound (2).
  • the content of the fluorinated ether solvent in the non-aqueous electrolyte is preferably 20 to 95% by volume, more preferably 30 to 90% by volume, and particularly preferably 40 to 80% by volume based on the total amount of the solvent.
  • the content of the compound (1) with respect to the total amount of the compound (1) and the compound (2) is 1 to 99% by volume. Preferably, it is 10 to 90% by volume.
  • the use of a fluorine-containing ether solvent in combination with the compounds (3) and (4) described later improves the low-temperature characteristics as an electrolytic solution.
  • the compound (3) is a solvent that plays a role of uniformly dissolving the lithium salt in the fluorinated ether solvent by efficiently solvating with the lithium salt. Part or all of the compound (3) is considered to form a complex with the lithium salt in the electrolytic solution.
  • Q 1 is a linear alkylene group having 1 to 4 carbon atoms, or one or more hydrogen atoms of the linear alkylene group is an alkyl group having 1 to 5 carbon atoms, or a carbon atom.
  • R 3 and R 4 are each independently an alkyl group having 1 to 5 carbon atoms, or an alkylene group having 1 to 10 carbon atoms formed by linking R 3 and R 4 .
  • Q 1 is preferably a linear alkylene group having 1 to 4 carbon atoms, particularly preferably —CH 2 CH 2 —.
  • R 3 and R 4 are each preferably a methyl group or an ethyl group, particularly preferably a methyl group.
  • the compound (3) preferably comprises the following compound (3A), and more preferably comprises only the compound (3A).
  • R 3 and R 4 are each independently an alkyl group having 1 to 5 carbon atoms or an alkylene group having 1 to 10 carbon atoms formed by linking R 3 and R 4 .
  • monoglyme (1,2-dimethoxyethane) or 1,2-diethoxyethane is preferable, and monoglyme is particularly preferable.
  • a compound (3) may be used individually by 1 type, and may use 2 or more types together.
  • the compound (4) is a solvent that plays a role in uniformly dissolving the lithium salt in a fluorinated ether solvent by efficiently solvating with the lithium salt. It is thought that a part or all of the compound (4) forms a complex with a lithium salt in the electrolytic solution.
  • m is an integer of 2 to 4.
  • Q 2 represents a linear alkylene group having 1 to 4 carbon atoms, or one or more of hydrogen atoms of the linear alkylene group is an alkyl group having 1 to 5 carbon atoms, or a carbon atom-carbon atom. A group substituted with an alkyl group having 1 to 5 carbon atoms containing one or more etheric oxygen atoms.
  • Q 2 may be the same group or different groups.
  • R 5 and R 6 are each independently an alkyl group having 1 to 5 carbon atoms, or an alkylene group having 1 to 10 carbon atoms formed by connecting R 5 and R 6 together.
  • m is preferably 2 to 3, and m is particularly preferably 2.
  • Q 2 is preferably a linear alkylene group having 1 to 4 carbon atoms, particularly preferably —CH 2 CH 2 —. Further, when Q 2 is only one kind, it is preferably composed of only —CH 2 CH 2 —. When Q 2 is 2 or more, it is preferably composed of a combination of —CH 2 CH 2 — and Q 2 other than —CH 2 CH 2 —.
  • R 5 and R 6 are each preferably a methyl group or an ethyl group, and more preferably a methyl group.
  • the compound (4) preferably comprises the following compound (4A), and more preferably comprises only the compound (4A).
  • m is an integer of 2 to 4.
  • R 5 and R 6 are each independently an alkyl group having 1 to 5 carbon atoms or an alkylene group having 1 to 10 carbon atoms formed by linking R 5 and R 6 .
  • m is particularly preferably 2.
  • R 5 and R 6 are each preferably a methyl group or an ethyl group, and more preferably a methyl group.
  • Examples of other compounds contained in the compound (4A) include diethylene glycol-diethyl ether, diethylene glycol-di-n-propyl ether, diethylene glycol-di-iso-propyl ether, diethylene glycol-di-n-butyl ether, triethylene glycol- Diethyl ether, triethylene glycol-di-n-propyl ether, triethylene glycol di-iso-propyl ether, triethylene glycol-di-n-butyl ether, tetraethylene glycol-diethyl ether, tetraethylene glycol di-n-propyl ether , Tetraethylene glycol di-iso-propyl ether, and tetraethylene glycol di-n-butyl ether.
  • R 5 and R 6 are a methyl group or an ethyl group, and examples of the compound other than the compound (4A) include compounds described in International Publication No. 2009/133899.
  • examples of the compound in which R 5 and R 6 are linked to form an alkylene group having 1 to 10 carbon atoms include 12-crown-4, 14-crown-4, 15- Crown-5, 18-crown-6 and the like.
  • a compound (4) may be used individually by 1 type, and may use 2 or more types together.
  • diglyme, triglyme, tetraglyme, diethylene glycol diethyl ether, triethylene glycol diethyl ether, or tetra is preferable because it is easy to improve low temperature characteristics while maintaining other performances such as conductivity and high rate characteristics.
  • Ethylene glycol diethyl ether is preferred, diglyme or diethylene glycol diethyl ether is more preferred, and diglyme is particularly preferred.
  • diglyme, triglyme, tetraglyme, and diethylene glycol diethyl are preferable in that the viscosity (20 ° C.) is 5 cP or less and the practical solvent viscosity of the non-aqueous electrolyte is excellent, and the obtained non-aqueous electrolyte exhibits good conductivity.
  • Ether, triethylene glycol diethyl ether, or tetraethylene glycol diethyl ether is preferable, and diglyme, triglyme, or tetraglyme is more preferable in terms of excellent balance between viscosity and flash point characteristics.
  • the total content of the compound (3) and the compound (4) in the non-aqueous electrolyte is preferably 0.2 to 4.0 times mol with respect to the total amount of the lithium salt in the non-aqueous electrolyte. It is more preferably 0.5 to 3.0 times, and particularly preferably 0.5 to 2.0 times mole. If the molar ratio of the total amount of the compound (3) and the compound (4) with respect to the lithium salt is not less than the lower limit of the above range, the lithium salt can be easily dissolved uniformly in the fluorinated ether solvent.
  • the molar ratio of the total amount of the compound (3) and the compound (4) with respect to the lithium salt is less than or equal to the upper limit of the above range, a nonaqueous electrolytic solution excellent in oxidation resistance and nonflammability can be easily obtained.
  • the total content of the compound (3) and the compound (4) in the nonaqueous electrolytic solution is preferably 5 to 30% by volume, more preferably 10 to 30% by volume, with respect to the total amount of the solvent. % Is more preferable, and 10 to 22% by volume is particularly preferable.
  • the present invention is characterized in that the compound (3) and the compound (4) coexist in the nonaqueous electrolytic solution.
  • the molar ratio (M III / M IV ) of the compound (3) (molar amount: M III ) to the compound (4) (molar amount: M IV ) in the non-aqueous electrolyte is preferably 10/90 to 90/10. 15/85 to 85/15 are more preferable.
  • the molar ratio (M III / M IV ) there is an advantage that the crystal precipitation from the electrolytic solution at a low temperature can be suppressed and the electrolytic solution can have high conductivity.
  • the molar ratio (M III / M IV ) is particularly preferably 40/60 to 80/20 from the viewpoint of conductivity.
  • the molar ratio (M III / M IV ) is particularly preferably 20/80 to 40/60 from the viewpoint of conductivity.
  • Total number of etheric oxygen atoms derived from compound (3) and compound (4) (N Li ) relative to the total number of lithium atoms derived from lithium salt (N Li ) contained in the non-aqueous electrolyte of the present invention (N The ratio ( O 2 ) (N 2 O 3 / N Li ) is preferably 1 or more, more preferably 2 or more, from the viewpoint that the lithium salt can be easily dissolved in the fluorine-containing ether solvent. Further, the ratio (N 2 O 3 / N Li ) is preferably 6 or less, more preferably 5 or less from the viewpoint of suppressing the battery capacity in charge / discharge under high rate conditions and further improving the cycle characteristics at high voltage. 4 or less is particularly preferable.
  • the nonaqueous electrolytic solution of the present invention is a compound having a ring structure composed of carbon atoms and oxygen atoms, the ring structure having a bond represented by —O—C ( ⁇ O) —O—, and a molecule. It is preferable to contain the compound (8) which does not contain a carbon-carbon unsaturated bond.
  • the compound (8) has a high polarity and plays a role of suppressing a decrease in battery capacity during charge / discharge at a high rate. Moreover, the electrical conductivity of this non-aqueous electrolyte is improved by improving the dissociation degree of lithium salt.
  • a carbonate compound refers to a compound including a bond represented by —O—C ( ⁇ O) —O— (hereinafter also referred to as “carbonate bond”).
  • a cyclic carbonate compound is a compound having a ring structure containing a carbonate bond.
  • the carbon-carbon unsaturated bond is a carbon-carbon double bond or a carbon-carbon triple bond.
  • the ring structure in compound (8) is preferably a 4- to 10-membered ring, more preferably a 4- to 7-membered ring, more preferably a 5- to 6-membered ring, and particularly preferably a 5-membered ring from the viewpoint of availability.
  • the ring structure of compound (8) is preferably a ring structure having one carbonate bond, and more preferably a ring structure formed by linking a carbonate bond to a linear alkylene group.
  • the linear alkylene group preferably has 1 to 7 carbon atoms, more preferably 1 to 4, more preferably 2 or 3, and particularly preferably 2.
  • the said linear alkylene group may have a substituent.
  • substituents examples include a halogen atom, an alkyl group, and a halogenated alkyl group.
  • a halogen in a halogen atom or a halogenated alkyl group a chlorine atom or a fluorine atom is preferable.
  • the compound (8) the following compound (8-1) is preferred.
  • R 7 to R 10 are each independently a hydrogen atom, a halogen atom, an alkyl group, or a halogenated alkyl group.
  • at least one of R 7 to R 10 is preferably a halogen atom.
  • Specific examples of the compound (8-1) include, for example, propylene carbonate, ethylene carbonate, butylene carbonate, 4-chloro-1,3-dioxolan-2-one, 4-fluoro-1,3-dioxolan-2-one 4-trifluoromethyl-1,3-dioxolan-2-one.
  • the compound (8) one or more hydrogen atoms bonded to a carbon atom forming a cyclic carbonate compound selected from the group consisting of propylene carbonate, ethylene carbonate, and butylene carbonate, or a ring structure of the cyclic carbonate compound are included.
  • a halogen atom, an alkyl group, or a compound substituted with a halogenated alkyl group is preferable. From the viewpoint of easy availability and properties of the electrolytic solution, ethylene carbonate, propylene carbonate or 4-fluoro-1,3-dioxolane-2 -ON is preferred.
  • one type of compound may be used alone, or two or more types of compounds may be used in combination.
  • the content of the compound (8) in the nonaqueous electrolytic solution is preferably 5 to 60% by volume, more preferably 5 to 50% by volume, and still more preferably 10 to 40% by volume with respect to the total amount of the solvent. If content of a compound (8) is more than the lower limit of the said range, it will be easy to suppress the fall of the battery capacity in charging / discharging at a high rate. In addition, the dissociation degree of the lithium salt is improved, and the electrical conductivity becomes better. If content of the compound (8) in a non-aqueous electrolyte is below the upper limit of the said range, it will be easy to obtain the non-aqueous electrolyte excellent in flame retardance.
  • the ratio (N VIII / N Li ) of the total number of moles (N VIII ) of compound (8) to the total number of moles (N Li ) of lithium atoms derived from the lithium salt contained in the non-aqueous electrolyte of the present invention is 0.01 to 6 is preferable, 0.1 to 5 is more preferable, and 1 to 4 is particularly preferable.
  • the ratio (N VIII / N Li ) is equal to or greater than the lower limit of the above range, it is easy to suppress a decrease in battery capacity during charge / discharge at a high rate. If the ratio (N VIII / N Li ) is less than or equal to the upper limit of the above range, the flame retardancy of the electrolyte solution can be easily maintained.
  • the factor that suppresses the decrease in battery capacity during charging and discharging at a high rate by the compound (8) is not necessarily clear, but is considered as follows.
  • lithium ions need to decoordinate and react with the electrode active material of the electrode.
  • the highly polar compound (8) is used as an auxiliary solvent in the electrolyte, the depolarization energy is lowered by improving the polarity of the whole solvent, and the compounds (3) and (4) are easily decoordinated. Since lithium ions can react efficiently with the electrode active material, it is considered that a decrease in battery capacity during charge / discharge at a high rate is suppressed.
  • the non-aqueous electrolyte of the present invention may contain a non-fluorinated cyclic carbonate compound.
  • the carbonate compound is preferably included from the viewpoint of charge / discharge characteristics at a high rate, and is preferably not included from the viewpoint of flame retardancy.
  • the carbonate compound is preferably a compound having a ring structure composed of a carbon atom and an oxygen atom, the ring structure having a carbonate bond and a carbon-carbon unsaturated bond in the molecule (9).
  • the ring structure in the compound (9) is preferably a 4- to 10-membered ring, more preferably a 4- to 7-membered ring, more preferably a 5- to 6-membered ring, and particularly preferably a 5-membered ring from the viewpoint of availability.
  • the ring structure of compound (9) is preferably a ring structure having one carbonate bond.
  • the carbon-carbon unsaturated bond of compound (9) may be inside the ring structure or outside the ring structure.
  • the carbon-carbon unsaturated bond is preferably 1 to 5 in the molecule, more preferably 1 to 3, and more preferably 1 to 2 from the viewpoint of availability and durability of the nonaqueous electrolyte. One is particularly preferred.
  • the compound (9) the following compound (9-1) or compound (9-2) is preferred.
  • R 11 and R 12 are each independently a hydrogen atom, a halogen atom, an alkyl group, or a halogenated alkyl group.
  • R 13 to R 16 are each independently a hydrogen atom, an alkyl group, a vinyl group or an allyl group, and at least one of R 13 to R 16 is a vinyl group or an allyl group.
  • the compound (9) only the compound (9-1) may be used, or only the compound (9-2) may be used, and the compound (9-1) and the compound (9-2) are used in combination. May be.
  • the compound (9) 4-vinyl-1,3-dioxolan-2-one, dimethyl vinylene carbonate or vinylene carbonate is preferable, and vinylene carbonate is particularly preferable.
  • compound (9) When charging with a secondary battery using a non-aqueous electrolyte containing compound (9), compound (9) decomposes on the surface of the negative electrode (for example, carbon electrode) to form a stable coating. Since the film formed of the compound (9) can reduce the resistance at the electrode interface, the effect of promoting the intercalation of lithium ions into the negative electrode can be obtained. That is, the impedance formed at the negative electrode interface is reduced by the coating formed of the compound (9) in the nonaqueous electrolytic solution, thereby promoting the intercalation of lithium ions into the negative electrode. Further, since the compound (9) has a high polarity like the compound (8), the intercalation of lithium ions into the negative electrode is promoted and the cycle characteristics are improved without impeding the effect of the compound (8).
  • the negative electrode for example, carbon electrode
  • the content of the compound (9) in the non-aqueous electrolyte is long-term flame retardancy, suppression of phase separation and generation of carbon dioxide in the non-aqueous electrolyte, suppression of deterioration of low temperature characteristics, and lithium salt From the viewpoint of easily having the effect of improving solubility, it is preferably 0.01 to 10.0% by volume, more preferably 0.05 to 5.0% by volume, and more preferably 0.1 to 3. 0% by volume is particularly preferred.
  • composition 1 LiPF 6 ; Compound (5), FSO 2 N (Li) SO 2 F, CF 3 SO 2 N (Li) SO 2 CF 3 , CF 3 CF 2 SO 2 N (Li) SO 2 CF 2 CF 3 , LiClO 4
  • LiPF 6 LiPF 6
  • LiPF 6 LiPF 6
  • LiPF 6 LiPF 6
  • composition 2 LiPF 6 ; Compound (5), FSO 2 N (Li) SO 2 F, CF 3 SO 2 N (Li) SO 2 CF 3 , CF 3 CF 2 SO 2 N (Li) SO 2 CF 2 CF 3 , LiClO 4
  • LiClO 4 One or more lithium salts selected from the group consisting of Compound (6), Compound (7), and LiBF 4 ; one or more fluorine-containing ether solvents selected from the group consisting of Compound (1) and Compound (2)
  • Non-aqueous electrolyte for secondary battery Compound (5), FSO 2 N (Li) SO 2 F, CF 3 SO 2 N (Li) SO 2 CF 3 , CF 3 CF 2 SO 2 N (Li) SO 2 CF 2 CF 3 , LiClO 4
  • composition 3 or 4 is more preferable.
  • Composition 3 One or more lithium selected from the group consisting of LiPF 6 ; CF 3 SO 2 N (Li) SO 2 CF 3 , CF 3 CF 2 SO 2 N (Li) SO 2 CF 2 CF 3 , LiClO 4 , and LiBF 4 salt; CF 3 CH 2 OCF 2 CF 2 H, CHF 2 CF 2 CH 2 OCF 2 CF 2 H, CF 3 CF 2 CH 2 OCF 2 CF 2 H, CF 3 CH 2 OCF 2 CHFCF 3, CHF 2 CF 2 CH 2 OCF 2 CFHCF 3 , a compound represented by the formula (2) and X is CH 2 CH 2 , and a group represented by the formula (2) and X is CH (CH 3 ) CH 2
  • composition 4 LiPF 6 ; one or more lithium salts selected from the group consisting of CF 3 SO 2 N (Li) SO 2 CF 3 , CF 3 CF 2 SO 2 N (Li) SO 2 CF 2 CF 3 , LiClO 4 , LiBF 4 ; CF 3 CH 2 OCF 2 CF 2 H, CHF 2 CF 2 CH 2 OCF 2 CF 2 H, CF 3 CF 2 CH 2 OCF 2 CF 2 H, CF 3 CH 2 OCF 2 CHFCF 3, CHF 2 CF 2 CH 2 OCF 2 CFHCF 3 , a compound represented by the formula (2) and X is CH 2 CH 2 and a group represented by the formula (2) and X is CH (CH 3 ) CH 2 At least one fluorine-containing ether solvent selected; monoglyme; diglyme, triglyme or tetraglyme; and ethylene carbonate or The non-aqueous electrolyte secondary battery containing, pyrene carbonate.
  • composition 5 or 6 is more preferable.
  • Composition 5 A non-aqueous electrolyte for a secondary battery containing a lithium salt essentially comprising LiPF 6 , CHF 2 CF 2 CH 2 OCF 2 CFHCF 3 , monoglyme, and diglyme.
  • Composition 6 A secondary battery non-aqueous electrolyte containing a lithium salt essentially comprising LiPF 6 , CHF 2 CF 2 CH 2 OCF 2 CFHCF 3 , monoglyme, diglyme, and ethylene carbonate or propylene carbonate.
  • the compositions 1 to 6 may contain the compound (9).
  • As the compound (9), vinylene carbonate is preferable.
  • the non-aqueous electrolyte in the present invention does not undergo phase separation and does not interfere with the effects of the present invention, and the lithium salt, the fluorinated ether solvent, the compound (3), the compound (4), and the compound (8). And a compound other than the compound (9) (hereinafter referred to as “other compounds”).
  • Other compounds include fluorine-containing alkanes; carboxylic acid esters such as propionic acid alkyl esters, malonic acid dialkyl esters and acetic acid alkyl esters; cyclic carboxylic acid esters such as ⁇ -butyrolactone; cyclic sulfonic acid esters such as propane sultone; sulfone Examples include acid alkyl esters; phosphoric acid alkyl esters; carbonitriles such as acetonitrile, isobutyronitrile, and pivalonitrile.
  • the content in the case of using other compounds other than the fluorinated alkane in the non-aqueous electrolyte is preferably more than 0 to 20% by volume and more than 0 to 15% by volume with respect to the total volume of the non-aqueous electrolyte. More preferably, more than 0.01 to 10% by volume is particularly preferable.
  • the non-aqueous electrolyte of the present invention contains a fluorinated alkane as another compound
  • the vapor pressure of the non-aqueous electrolyte can be suppressed and the non-flammability of the non-aqueous electrolyte can be further improved.
  • the fluorine-containing alkane refers to a compound in which one or more hydrogen atoms in the alkane are substituted with fluorine atoms and hydrogen atoms remain.
  • a fluorine-containing alkane having 4 to 12 carbon atoms is preferred.
  • the fluorine content in the fluorinated alkane (the fluorine content means the proportion of the mass of fluorine atoms in the molecular weight) is preferably 50 to 80%. If the fluorine content in the fluorine-containing alkane is 50% or more, the nonflammability is further increased. When the fluorine content in the fluorine-containing alkane is 80% or less, the solubility of the lithium salt is easily maintained.
  • the fluorine-containing alkane a compound having a linear structure is preferable.
  • These fluorine-containing alkanes may be used alone or in combination of two or more.
  • the content when the fluorine-containing alkane is contained in the non-aqueous electrolyte is preferably 5 to 60% by volume with respect to the total volume of the non-aqueous electrolyte. If content of the said fluorine-containing alkane is 5 volume% or more, it will be easy to reduce a vapor pressure and it will be easy to express nonflammability. If content of the said fluorine-containing alkane is 60 volume% or less, it will be easy to maintain the solubility of lithium salt.
  • the nonaqueous electrolytic solution of the present invention does not contain the following compound (10).
  • the compound (10) is a chain carbonate compound and has a low polarity unlike the cyclic carbonate compound such as the compound (9). Therefore, when compound (10) is contained in the nonaqueous electrolytic solution of the present invention, flame retardancy is reduced without improving the charge / discharge characteristics under high rate conditions.
  • R 17 to R 22 are each independently a hydrogen atom, a halogen atom, an alkyl group, or a halogenated alkyl group.
  • the non-aqueous electrolyte of the present invention may contain other components as required in order to improve the function of the non-aqueous electrolyte.
  • Other components include, for example, conventionally known overcharge inhibitors, dehydrating agents, deoxidizing agents, capacity maintenance characteristics after high-temperature storage and characteristics improvement aids for improving cycle characteristics, electrolyte solutions and electrode active materials.
  • Surfactant for improving wettability is mentioned.
  • overcharge inhibitor examples include aromatic compounds such as biphenyl, alkylbiphenyl, terphenyl, partially hydrogenated terphenyl, cyclohexylbenzene, t-butylbenzene, t-amylbenzene, diphenyl ether, and dibenzofuran; 2-fluoro Partially fluorinated products of the above aromatic compounds such as biphenyl, o-cyclohexylfluorobenzene, p-cyclohexylfluorobenzene; fluorinated anisole such as 2,4-difluoroanisole, 2,5-difluoroanisole and 2,6-difluoroaniol Compounds.
  • aromatic compounds such as biphenyl, alkylbiphenyl, terphenyl, partially hydrogenated terphenyl, cyclohexylbenzene, t-butylbenzene, t-amylbenzene, diphenyl
  • An overcharge inhibitor may be used individually by 1 type, and may use 2 or more types together.
  • the content of the overcharge inhibitor in the non-aqueous electrolyte is preferably 0.01 to 5% by mass.
  • the dehydrating agent examples include molecular sieves, sodium sulfate, magnesium sulfate, calcium hydride, sodium hydride, potassium hydride, lithium aluminum hydride and the like.
  • the solvent used in the nonaqueous electrolytic solution of the present invention it is preferable to use a solvent obtained by performing rectification after dehydrating with the dehydrating agent. Moreover, you may use the solvent which performed only the dehydration by the said dehydrating agent, without performing rectification.
  • characteristic improvement aids for improving capacity retention characteristics and cycle characteristics after high-temperature storage include carbonate compounds such as phenylethylene carbonate, erythritan carbonate, spiro-bis-dimethylene carbonate; succinic anhydride, anhydrous glutar Carboxylic acid anhydrides such as acid, maleic anhydride, citraconic anhydride, glutaconic anhydride, itaconic anhydride, diglycolic anhydride, cyclohexanedicarboxylic anhydride, cyclopentanetetracarboxylic dianhydride, phenylsuccinic anhydride; Ethylene sulfite, 1,3-propane sultone, 1,4-butane sultone, methyl methanesulfonate, busulfan, sulfolane, sulfolene, dimethyl sulfone, diphenyl sulfone, methyl phenyl sulfone, dibutyl
  • the non-aqueous electrolyte contains a property improving aid
  • the content of the property improving aid in the non-aqueous electrolyte is preferably 0.01 to 5% by mass.
  • any of a cationic surfactant, an anionic surfactant, a nonionic surfactant, and an amphoteric surfactant may be obtained.
  • An anionic surfactant is preferred because it is easy and has a high surfactant effect.
  • a fluorine-containing surfactant is preferable from the viewpoint of high oxidation resistance and good cycle characteristics and rate characteristics.
  • the fluorine-containing surfactant the following compound (11-1) or compound (11-2) is preferable.
  • R 23 and R 24 are each independently a perfluoroalkyl group having 4 to 20 carbon atoms, or a perfluoroalkyl group having 1 or more etheric oxygen atoms between carbon atoms and carbon atoms.
  • a fluoroalkyl group; M 1 and M 2 are each independently an alkali metal or NH (R 25 ) 3 (R 25 is a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, and may be the same group or different groups. Good.)
  • R 23 and R 24 are each a perfluoroalkyl group having 4 to 20 carbon atoms, or one or more etheric groups between carbon atoms and carbon atoms from the viewpoint that the degree of reducing the surface tension of the nonaqueous electrolytic solution is good.
  • a perfluoroalkyl group having 4 to 20 carbon atoms having an oxygen atom is preferable. From the viewpoint of excellent solubility and environmental accumulation, a perfluoroalkyl group having 4 to 8 carbon atoms, or one per carbon atom to carbon atom A perfluoroalkyl group having 4 to 8 carbon atoms having the above etheric oxygen atom is more preferred.
  • the alkali metal of M 1 and M 2 Li, Na, or K is preferable.
  • M 1 and M 2 NH 4+ is particularly preferable.
  • Specific examples of the compound (11-1) include, for example, C 4 F 9 COO — NH 4 + , C 5 F 11 COO — NH 4 + , C 6 F 13 COO — NH 4 + , C 5 F 11 COO ⁇ .
  • C 5 F 11 COO ⁇ NH 4 + , C 5 F 11 COO ⁇ Li + , and C 6 F 13 COO ⁇ Li are preferred because of their good solubility in non-aqueous electrolytes and the effect of reducing surface tension.
  • Specific examples of the compound (11-2) is, for example, C 4 F 9 SO 3 - NH 4 +, C 5 F 11 SO 3 - NH 4 +, C 6 F 13 SO 3 - NH 4 +, C 4 F 9 SO 3 - NH (CH 3 ) 3 +, C 5 F 11 SO 3 - NH (CH 3) 3 +, C 6 F 13 SO 3 - NH (CH 3) 3 +, C 4 F 9 SO 3 - Li +, C 5 F 11 SO 3 - Li +, C 6 F 13 SO 3 - Li +, C 3 F 7 OC (CF 3) FCF 2 OC (CF 3) FSO 3 - NH 4 +, C 3 F 7 OC (CF 3) FCF 2 OC ( CF 3) FCF 2 OC (CF 3) FSO 3 - NH 4 +, C 3 F 7 OC (CF 3) FCF 2 OC ( CF 3) FCF 2 OC (CF 3) FSO 3 - NH 4 +, HCF 2 CF 2 OCF 2
  • Surfactant may be used individually by 1 type and may use 2 or more types together.
  • the content of the surfactant in the non-aqueous electrolyte is preferably 5% by mass or less, more preferably 3% by mass or less, and 0.05 to 2% by mass. Further preferred.
  • the non-aqueous electrolyte of the present invention is used for a secondary battery.
  • a secondary battery when used as an electrolyte solution for a lithium ion secondary battery, lithium salts can be dissolved well, performances such as conductivity and nonflammability are practically sufficient, and particularly low temperature characteristics are excellent.
  • Other secondary batteries include electric double layer capacitors, lithium ion capacitors, and the like.
  • the non-aqueous electrolyte of the present invention described above has excellent low-temperature characteristics because precipitation of crystals at low temperatures is suppressed while securing other characteristics such as conductivity. This effect is due to the combined use of compound (3) and compound (4), which breaks the symmetry of the glyme complex that is complexed with the lithium salt, changes the association state of the glyme complex in the solution, and dissociates. This is thought to be due to the change in degree and viscosity. Moreover, if the non-aqueous electrolyte of this invention uses a compound (8), the effect which suppresses the fall of the battery capacity in charging / discharging on high-rate conditions will increase.
  • the nonaqueous electrolytic solution of the present invention is an electrolytic solution for a secondary battery, and is preferably used as an electrolytic solution for a lithium ion secondary battery.
  • the secondary battery is a secondary battery having a negative electrode and a positive electrode and the non-aqueous electrolyte of the present invention.
  • the negative electrode include a negative electrode active material capable of inserting and extracting lithium ions, a metal such as lithium metal and lithium alloy, or an electrode containing a metal compound as a negative electrode active material.
  • negative electrode active material known negative electrode active materials for lithium ion secondary batteries can be used, and artificial or natural graphite (graphite) capable of occluding and releasing lithium ions, carbonaceous materials such as amorphous carbon, or metal Examples thereof include metals such as lithium and lithium alloys, and metal compounds. These negative electrode active materials may be used individually by 1 type, and may use 2 or more types together.
  • a carbonaceous material is preferable.
  • the carbonaceous material graphite or a carbonaceous material in which the surface of graphite is coated with amorphous carbon as compared with the graphite is particularly preferable.
  • Graphite is the d-value (interlayer distance, hereinafter referred to as the lattice plane (002 plane)) determined by X-ray diffraction by the method established by the Japan Society for the Promotion of Science Carbon Material 117th Committee (hereinafter referred to as “Gakushin Law”).
  • the “d value” is simply 0.335 to 0.338 nm, more preferably 0.335 to 0.337 nm.
  • the crystallite size (Lc) determined by X-ray diffraction by the Gakushin method is preferably 30 nm or more, more preferably 50 nm or more, and particularly preferably 100 nm or more.
  • the graphite ash content is preferably 1% by mass or less, more preferably 0.5% by mass or less, and particularly preferably 0.1% by mass or less.
  • graphite having a d value of 0.335 to 0.338 nm is used as a core material, and the d value is larger on the surface of the graphite than the graphite.
  • the ratio of graphite (mass W A ), which is coated with amorphous carbon, and amorphous carbon (mass W B ) covering the graphite is 80 / weight ratio (W A / W B ). It is preferably 20 to 99/1.
  • the particle size of the carbonaceous material is 1 ⁇ m or more, preferably 3 ⁇ m or more, more preferably 5 ⁇ m or more, and particularly preferably 7 ⁇ m or more, as a median diameter by a laser diffraction / scattering method.
  • the upper limit of the particle size of the carbonaceous material is preferably 100 ⁇ m, more preferably 50 ⁇ m, further preferably 40 ⁇ m, and particularly preferably 30 ⁇ m.
  • BET specific surface area of the carbonaceous material is preferably at least 0.3 m 2 / g, more preferably at least 0.5 m 2 / g, more preferably not less than 0.7m 2 / g, 0.8m 2 / g or more Is particularly preferred.
  • the upper limit of the specific surface area of the carbonaceous material is preferably 25.0 m 2 / g, more preferably 20.0 m 2 / g, more preferably 15.0 m 2 / g, particularly preferably 10.0 m 2 / g.
  • the carbonaceous material has a peak intensity I A of peak P A in the range of 1,570 to 1,620 cm ⁇ 1 and 1,300 to 1,400 cm when analyzed by a Raman spectrum using an argon ion laser beam.
  • the half width of the peak P A is, it is particularly preferable is preferably 26cm -1 or less, and 25 cm -1 or less.
  • metals that can be used as the negative electrode active material other than metallic lithium include Ag, Zn, Al, Ga, In, Si, Ti, Ge, Sn, Pb, P, Sb, Bi, Cu, Ni, Sr, and Ba. It is done. Moreover, as a lithium alloy, the alloy of lithium and the said metal is mentioned. Moreover, as a metal compound, the said metal oxide etc. are mentioned. Among these, at least one metal selected from the group consisting of Si, Sn, Ge, Ti and Al, a metal compound containing the metal, a metal oxide, or a lithium alloy is preferable. From the group consisting of Si, Sn and Al One or more selected metals, a metal compound containing the metal, a lithium alloy, or lithium titanate is more preferable.
  • a metal capable of inserting and extracting lithium ions, a metal compound containing the metal, and a lithium alloy generally have a larger capacity per unit mass than a carbonaceous material typified by graphite, and therefore a higher energy density is required. It is suitable for a secondary battery.
  • the positive electrode examples include an electrode including a positive electrode active material that can occlude and release lithium ions.
  • a positive electrode active material a known positive electrode active material for a lithium ion secondary battery can be used.
  • lithium-containing transition metal oxide examples include lithium cobalt oxide, lithium nickel oxide, and lithium manganese oxide.
  • the metal contained in the lithium-containing transition metal composite oxide is preferably Al, V, Ti, Cr, Mn, Fe, Co, Li, Ni, Cu, Zn, Mg, Ga, Zr, Si, Yb, etc.
  • some of the transition metal atoms that are the main components of these lithium transition metal composite oxides are Al
  • Examples include those substituted with other metals such as Ti, V, Cr, Mn, Fe, Co, Li, Ni, Cu, Zn, Mg, Ga, Zr, Si, and Yb.
  • transition metal oxides include TiO 2 , MnO 2 , MoO 3 , V 2 O 5 , V 6 O 13 , transition metal sulfides TiS 2 , FeS, MoS 2 , metal oxides SnO 2 , Examples thereof include SiO 2 .
  • the olivine-type metallic lithium salt is Li L X x Y y O z F g (where X is Fe (II), Co (II), Mn (II), Ni (II), V (II), or Cu ( II), Y represents P or Si, and represents a number satisfying 0 ⁇ L ⁇ 3, 1 ⁇ x ⁇ 2, 1 ⁇ y ⁇ 3, 4 ⁇ z ⁇ 12, and 0 ⁇ g ⁇ 1, respectively) The indicated substance or a complex thereof.
  • examples thereof include 4 F, Li 2 FeSiO 4 , Li 2 MnSiO 4 , Li 2 NiSiO 4 , and Li 2 CoSiO 4 .
  • These positive electrode active materials may be used individually by 1 type, and may use 2 or more types together.
  • a material in which a substance having a composition different from that of the main constituent of the positive electrode active material is attached to the surface of the positive electrode active material can be used.
  • Surface adhesion substances include oxides such as aluminum oxide, silicon oxide, titanium oxide, zirconium oxide, magnesium oxide, calcium oxide, boron oxide, antimony oxide, bismuth oxide; lithium sulfate, sodium sulfate, potassium sulfate, magnesium sulfate, calcium sulfate And sulfates such as aluminum sulfate; carbonates such as lithium carbonate, calcium carbonate, and magnesium carbonate.
  • the lower limit of the mass with respect to the positive electrode active material is preferably 0.1 ppm, more preferably 1 ppm, and particularly preferably 10 ppm.
  • the upper limit is preferably 20%, more preferably 10%, and particularly preferably 5%.
  • the surface adhering substance can suppress the oxidation reaction of the non-aqueous electrolyte on the surface of the positive electrode active material, and can improve the battery life.
  • a lithium-containing composite oxide based on an ⁇ -NaCrO 2 structure such as LiCoO 2 , LiNiO 2 , LiMnO 2, or the like, LiMn 2 O, because of its high discharge voltage and high electrochemical stability
  • LiCoO 2 , LiNiO 2 , LiMnO 2, or the like, LiMn 2 O because of its high discharge voltage and high electrochemical stability
  • a lithium-containing composite oxide based on a spinel structure such as 4 is preferred.
  • the secondary battery of the present invention has a negative electrode and a positive electrode, one of which is a non-polarizable electrode and the other is a polarizable electrode, or both are non-polarizable electrodes, and the non-aqueous electrolyte of the present invention.
  • the polarizable electrode is preferably mainly composed of an electrochemically inactive material having a high specific surface area, and particularly preferably composed of activated carbon, carbon black, metal fine particles, and conductive oxide fine particles.
  • an electrode layer made of a carbon material powder having a high specific surface area such as activated carbon is formed on the surface of the metal current collector.
  • a binder that binds the negative electrode active material or the positive electrode active material is used.
  • the binder for binding the negative electrode active material and the positive electrode active material any binder can be used as long as it is a material that is stable with respect to the solvent and the electrolytic solution used during electrode production.
  • the binder is, for example, a fluororesin such as polyvinylidene fluoride or polytetrafluoroethylene, a polyolefin such as polyethylene or polypropylene, a polymer having an unsaturated bond such as styrene / butadiene rubber, isoprene rubber or butadiene rubber, and a copolymer thereof. Examples thereof include acrylic polymers such as polymers, acrylic acid copolymers, and methacrylic acid copolymers, and copolymers thereof. These binders may be used individually by 1 type, and may use 2 or more types together.
  • the electrode may contain a thickener, a conductive material, a filler and the like in order to increase mechanical strength and electrical conductivity.
  • a thickener examples include carboxymethylcellulose, methylcellulose, hydroxymethylcellulose, ethylcellulose, polyvinyl alcohol, oxidized starch, phosphorylated starch, casein, and polyvinylpyrrolidone. These thickeners may be used individually by 1 type, and may use 2 or more types together.
  • Examples of the conductive material include carbonaceous materials such as acetylene black, graphite, and carbon black. These electrically conductive materials may be used individually by 1 type, and may use 2 or more types together.
  • a binder, a thickener, a conductive material, a solvent, etc. are added to a negative electrode active material or a positive electrode active material to form a slurry, which is then applied to a current collector and dried. It can.
  • the electrode is preferably consolidated by pressing after drying. If the density of the positive electrode active material layer is too low, the capacity of the secondary battery may be insufficient.
  • the current collector various current collectors can be used, but usually a metal or an alloy is used.
  • the negative electrode current collector include copper, nickel, and stainless steel, with copper being preferred.
  • the current collector of the positive electrode include metals such as aluminum, titanium, and tantalum or alloys thereof, and aluminum or alloys thereof are preferable, and aluminum is more preferable.
  • the shape of the secondary battery may be selected according to the application, and may be a coin type, a cylindrical type, a square type or a laminate type. Further, the shapes of the positive electrode and the negative electrode can be appropriately selected according to the shape of the secondary battery.
  • the charging voltage of the secondary battery of the present invention is preferably 3.4 V or higher, more preferably 4.0 V or higher, and particularly preferably 4.2 V or higher.
  • the positive electrode active material of the secondary battery is a lithium-containing transition metal oxide, a lithium-containing transition metal composite oxide, a transition metal oxide, a transition metal sulfide, or a metal oxide
  • the charging voltage is preferably 4.0 V or more, 4.2V or more is more preferable.
  • the positive electrode active material is an olivine type lithium metal salt
  • the charging voltage is preferably 3.2 V or higher, and more preferably 3.4 V or higher.
  • a porous film is usually interposed as a separator between the positive electrode and the negative electrode of the secondary battery.
  • the nonaqueous electrolytic solution is used by impregnating the porous membrane.
  • the material and shape of the porous membrane are not particularly limited as long as it is stable with respect to the non-aqueous electrolyte and has excellent liquid retention properties, such as polyvinylidene fluoride, polytetrafluoroethylene, a copolymer of ethylene and tetrafluoroethylene, etc.
  • a porous sheet or non-woven fabric made of a polyolefin resin such as polyethylene or polypropylene is preferred, and a material such as polyethylene or polypropylene is preferred.
  • the battery case used in the non-aqueous electrolyte of the present invention may be made of any material that is usually used for secondary batteries. Nickel-plated iron, stainless steel, aluminum or alloys thereof, nickel, titanium, and resin materials And film materials.
  • the secondary battery of the present invention uses the non-aqueous electrolyte of the present invention, other characteristics such as conductivity are practically sufficient and have excellent low-temperature characteristics. Therefore, the secondary battery of the present invention includes a mobile phone, a portable game machine, a digital camera, a digital video camera, an electric tool, a notebook computer, a portable information terminal, a portable music player, an electric vehicle, a hybrid vehicle, a train, an aircraft, an artificial It can be used for various applications such as satellites, submarines, ships, uninterruptible power supplies, robots, and power storage systems.
  • the secondary battery of the present invention has particularly preferable characteristics for large-sized secondary batteries such as electric vehicles, hybrid vehicles, trains, airplanes, artificial satellites, submarines, ships, uninterruptible power supply devices, robots, and power storage systems. .
  • Examples 1 to 8 are examples, and examples 9 to 12 are comparative examples.
  • AE3000 CF 3 CH 2 OCF 2 CF 2 H, manufactured by Asahi Glass Co., Ltd.
  • a solvent is further added.
  • a non-aqueous electrolyte 0.26 g of monoglyme which is compound (3) and 1.53 g of diglyme which is compound (4) were added and mixed.
  • Examples 2 to 12 A nonaqueous electrolytic solution was obtained in the same manner as in Example 1 except that the composition of the lithium salt and the solvent was changed as shown in Table 1.
  • Crystal precipitation temperature In each example, 5 mL of non-aqueous electrolyte was put into a 20 mL capacity glass vial and placed in a thermostatic bath. Thereafter, the temperature of the thermostatic chamber was lowered from 25 ° C. to ⁇ 35 ° C. by 10 ° C. After the internal temperature of the thermostatic bath reached each set temperature, the temperature was maintained for 1 hour, and then each non-aqueous electrolyte in the bath was observed to confirm the presence or absence of crystal precipitation. When crystals were precipitated, the temperature was taken as the crystal precipitation temperature.
  • Table 1 shows the measurement results of the crystal precipitation temperature and conductivity.
  • the non-aqueous electrolyte using a combination of monoglyme and diglyme is excellent in low temperature characteristics because of its low crystal precipitation temperature, and has improved conductivity.
  • the non-aqueous electrolyte for secondary battery and the secondary battery of the present invention achieve excellent low-temperature characteristics while ensuring performance such as conductivity. Therefore, it can be suitably used for a secondary battery for various uses such as a mobile phone, a notebook computer, and an electric vehicle.
  • the non-aqueous electrolyte for secondary battery of the present invention dissolves lithium salt well and has excellent nonflammability, so it can be used for other electricity storage devices such as electric double layer capacitors and lithium ion capacitors. it can.
  • the entire contents of the specification, claims, and abstract of Japanese Patent Application No. 2010-283154 filed on December 20, 2010 are incorporated herein as the disclosure of the specification of the present invention. Is.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

 電導度等の他の特性を確保しつつ、優れた低温特性が得られる二次電池用非水電解液、および該二次電池用非水電解液を用いた二次電池の提供を目的とする。 リチウム塩と、特定の含フッ素エーテル溶媒と、モノグライム等のエーテル性酸素原子を2個有するグライム系溶媒と、ジグライム等のエーテル性酸素原子を3~5個有するグライム系溶媒とを含有する二次電池用非水電解液。また、該二次電池用非水電解液を用いた二次電池。

Description

二次電池用非水電解液および二次電池
 本発明は、二次電池用非水電解液および二次電池に関する。
 二次電池用の非水電解液の溶媒としては、一般的にリチウム塩を良好に溶解することで高いリチウムイオン電導度を発現し、また広い電位窓を持つ点から、エチレンカーボネート、ジメチルカーボネート等のカーボネート系化合物が広く用いられてきた。しかし、カーボネート系化合物を含む非水電解液は引火点が低くなる傾向がある。
 非水電解液の不燃性(難燃性)を高める方法としては、フッ素系溶媒を添加する方法が提案されている。また、電解質塩の溶解性を向上させるために、環状の非フッ素カーボネートと鎖状の非フッ素エーテル類との併用が提案されている。
 一方、CFSON(Li)SOCF、およびFSON(Li)SOF等のリチウム塩は、グライム系溶媒のエーテル性酸素原子と強く相互作用し、安定な1:1錯体を形成する。該錯体は、熱分析等の結果からはあたかも単一のイオン種としての挙動を示し、バーナーによる加熱によっても全く着火しないことが報告されている(非特許文献1、2)。しかし、該1:1錯体を含む非水電解液を評価したところ、粘度が高く、また電導度が低いことから実用に適さない。
 リチウム塩とグライム系溶媒との錯体を電解液に含ませた例としては、以下がある。
 LiBFと1-エトキシ-2-メトキシエタンとの錯塩からなる非水電解液(特許文献1)。
 LiPF、1,2-ジメトキシエタンまたは1,2-ジエトキシエタン、含フッ素モノエーテル、およびエチレンカーボネートを含む非水電解液(特許文献2)。
 (CFSONLi等のリチウム塩とテトラグライム、および任意で有機溶媒を含む非水電解液(特許文献3)。
 リチウム塩と、含フッ素エーテル、非フッ素系カーボネートとともに、1,2-ジメトキシエタンを含む、非水電解液(特許文献4)。
 リチウム塩、ハイドロフルオロエーテル、およびグライム系溶媒を含む非水電解液(特許文献5)。
日本特開2005-126339号公報 日本特開2010-238510号公報 日本特開2009-245911号公報 日本特開2008-218387号公報 国際公開第2009/133899号
2006年第47回電池討論会講演要旨集 1F06 2008年第75回電気化学会講演要旨集 3D09
 しかし、本発明者等が特許文献1~5に記載の非水電解液を評価したところ、従来の非水電解液は、低温域において、電解液としての性能が充分ではないことがわかった。
 本発明は、電導度等の他の特性を確保しつつ、優れた低温特性が得られる二次電池用非水電解液、および該二次電池用非水電解液を用いた二次電池の提供を目的とする。
 本発明は、前記課題を解決するために以下の構成を採用した。
[1]リチウム塩、下式(1)で表される化合物および下式(2)で表される化合物からなる群から選ばれる含フッ素エーテル溶媒、下式(3)で表される化合物、ならびに下式(4)で表される化合物を含有することを特徴とする二次電池用非水電解液。
Figure JPOXMLDOC01-appb-C000005
(ただし、式中、RおよびRはそれぞれ独立に炭素数1~10のアルキル基、炭素数3~10のシクロアルキル基、炭素数1~10のフッ素化アルキル基、炭素数3~10のフッ素化シクロアルキル基、炭素原子-炭素原子間に1個以上のエーテル性酸素原子を有する炭素数1~10のアルキル基、または、炭素原子-炭素原子間に1個以上のエーテル性酸素原子を有する炭素数1~10のフッ素化アルキル基であり、RおよびRの一方または両方は、フッ素化アルキル基である。
 Xは炭素数1~5のアルキレン基、炭素数1~5のフッ素化アルキレン基、炭素原子-炭素原子間に1個以上のエーテル性酸素原子を有する炭素数1~5のアルキレン基、または炭素原子-炭素原子間に1個以上のエーテル性酸素原子を有する炭素数1~5のフッ素化アルキレン基である。
 Qは炭素数1~4の直鎖アルキレン基、または、該直鎖アルキレン基の水素原子の1個以上が、炭素数1~5のアルキル基、もしくは炭素原子-炭素原子間に1個以上のエーテル性酸素原子を含む炭素数1~5のアルキル基に置換された基である。
 RおよびRはそれぞれ独立に炭素数1~5のアルキル基、またはRとRが連結して形成した炭素数1~10のアルキレン基である。
 mは2~4の整数である。
 Qは炭素数1~4の直鎖アルキレン基、または、該直鎖アルキレン基の水素原子の1個以上が、炭素数1~5のアルキル基、もしくは炭素原子-炭素原子間に1個以上のエーテル性酸素原子を含む炭素数1~5のアルキル基に置換された基である。Qは、同一の基であっても、異なる基であってもよい。
 RおよびRはそれぞれ独立に炭素数1~5のアルキル基、またはRとRが連結して形成した炭素数1~10のアルキレン基である。)
[2]前記式(3)で表される化合物(モル量:MIII)と前記式(4)で表される化合物(モル量:MIV)のモル比(MIII/MIV)が10/90~90/10である[1]に記載の二次電池用非水電解液。
[3]前記式(3)で表される化合物が下式(3A)で表される化合物を必須とする[1]または[2]に記載の二次電池用非水電解液。
Figure JPOXMLDOC01-appb-C000006
(ただし、式中、RおよびRはそれぞれ独立に炭素数1~5のアルキル基、またはRとRが連結して形成した炭素数1~10のアルキレン基である。)
[4]前記式(4)で表される化合物が下式(4A)で表される化合物を必須とする[1]~[3]のいずれか一項に記載の二次電池用非水電解液。
Figure JPOXMLDOC01-appb-C000007
(ただし、式中、mは2~4の整数である。RおよびRはそれぞれ独立に炭素数1~5のアルキル基、またはRとRが連結して形成した炭素数1~10のアルキレン基である。)
[5]二次電池用非水電解液中に含まれる、前記リチウム塩由来のリチウム原子の総モル数(NLi)に対する、前記式(3)で表される化合物および前記式(4)で表される化合物由来のエーテル性酸素原子の総モル数(N)の比(N/NLi)が1~6である[1]~[4]のいずれか一項に記載の二次電池用非水電解液。
[6]前記リチウム塩が、LiPF、下式(5)で表される化合物、FSON(Li)SOF、CFSON(Li)SOCF、CFCFSON(Li)SOCFCF、LiClO、下式(6)で表される化合物、下式(7)で表される化合物、およびLiBFからなる群からから選ばれる1種以上である[1]~[5]のいずれか一項に記載の二次電池用非水電解液。
Figure JPOXMLDOC01-appb-C000008
(ただし、式中、kは1~5の整数である。)
[7]界面活性剤を含有する、[1]~[6]のいずれか一項に記載の非水電解液。
[8]前記式(1)で表される化合物が、CFCHOCFCFH、CHFCFCHOCFCFH、CFCFCHOCFCHF、CFCHOCFCHFCF、およびCHFCFCHOCFCFHCFからなる群から選ばれる1種以上を必須とする、[1]~[7]のいずれか一項に記載の二次電池用非水電解液。
[9]さらに、炭素原子と酸素原子からなる環構造を有する化合物であり、該環構造が-O-C(=O)-O-で表される結合を有し、かつ分子内に炭素-炭素不飽和結合を有さない化合物(8)を含有する[1]~[8]のいずれか一項に記載の二次電池用非水電解液。
[10]炭素原子と酸素原子からなる環構造を有する化合物であり、該環構造が-O-C(=O)-O-で表される結合を含み、かつ分子内に炭素-炭素不飽和結合を含む化合物(9)を含有する[1]~[9]のいずれか一項に記載の二次電池用非水電解液。
[11]リチウムイオン二次電池の電解液として用いる、[1]~[10]のいずれか一項に記載の二次電池用非水電解液。
[12]リチウムイオンを吸蔵および放出できる材料、金属リチウムまたはリチウム合金からなる負極と、リチウムイオンを吸蔵および放出できる材料からなる正極と、[1]~[10]のいずれか一項に記載の二次電池用非水電解液とを有することを特徴とする二次電池。
 本発明の二次電池用非水電解液は、電導度等の他の特性を確保しつつ、優れた低温特性が得られる。
 また、本発明の二次電池を使用すれば、優れた低温特性を有し、かつ電導度等の他の特性が実用上充分である二次電池が得られる。
 本明細書中では、特に説明しない限り、式(1)で表される化合物を化合物(1)と示し、他の式についても同様に示す。
<二次電池用非水電解液>
 本発明の二次電池用非水電解液(以下、単に「非水電解液」という。)は、後述するリチウム塩と、化合物(1)および化合物(2)からなる群から選ばれる含フッ素エーテル溶媒と、化合物(3)と、化合物(4)とを含む電解液である。非水電解液とは、水を実質的に含まない溶媒を用いた電解液であり、仮に水を含んでいたとしてもその水分量が該非水電解液を用いた二次電池の性能劣化が見られない範囲の量である電解液である。かかる非水電解液中に含まれうる水分量は、電解液の総質量に対して500質量ppm以下であることが好ましく、100質量ppm以下であることがより好ましく、50質量ppm以下であることが特に好ましい。水分量の下限値は、0質量ppmである。
[リチウム塩]
 リチウム塩は、非水電解液中で解離してリチウムイオンを供給する電解質である。リチウム塩としては、LiPF、下記化合物(5)、FSON(Li)SOF、CFSON(Li)SOCF、CFCFSON(Li)SOCFCF、LiClO、下記化合物(6)、下記化合物(7)、およびLiBFからなる群から選ばれる1種以上が好ましい。リチウム塩としては、LiPF、LiBFおよび化合物(5)からなる群から選ばれる1種以上がより好ましい。
 リチウム塩は、1種のみを使用してもよく、2種以上を併用してもよい。リチウム塩を2種以上併用する場合の組み合わせは、国際公開第2009/133899号に示されている組み合わせが挙げられる。
 リチウム塩としては、LiPFを必須とすることがより好ましく、LiPFのみを使用することが特に好ましい。
Figure JPOXMLDOC01-appb-C000009
 ただし、前記化合物(5)におけるkは1~5の整数である。
 化合物(5)としては、例えば、下記化合物(5-1)~(5-4)が挙げられる。本発明の非水電解液は、電導度の高い非水電解液が得られやすい点から、化合物(5)を使用する場合には、kが2の化合物(5-2)を必須とすることが好ましく、kが2の化合物(5-2)のみからなることがより好ましい。
Figure JPOXMLDOC01-appb-C000010
 非水電解液中のリチウム塩の含有量は、特に限定されず、0.1~3.0mol/Lが好ましく、0.5~2.0mol/Lが特に好ましい。リチウム塩の含有量が前記範囲の下限値以上であれば、電導度の高い非水電解液が得られやすい。また、リチウム塩の含有量が前記範囲の上限値以下であれば、リチウム塩を、後述する化合物(1)~(4)、および必要に応じて使用する化合物(8)に溶解させやすい。
[含フッ素エーテル溶媒]
 下記化合物(1)および下記化合物(2)からなる群から選ばれる含フッ素エーテル溶媒は、非水電解液に不燃性を付与する溶媒として使用する。これらは、1種を単独で使用しても、2種以上を任意の組み合わせおよび比率で併用してもよい。
Figure JPOXMLDOC01-appb-C000011
 ただし、式(1)中、RおよびRは、それぞれ独立に炭素数1~10のアルキル基、炭素数3~10のシクロアルキル基、炭素数1~10のフッ素化アルキル基、炭素数3~10のフッ素化シクロアルキル基、炭素原子-炭素原子間に1個以上のエーテル性酸素原子を有する炭素数1~10のアルキル基、または、炭素原子-炭素原子間に1個以上のエーテル性酸素原子を有する炭素数1~10のフッ素化アルキル基であり、RおよびRの一方または両方は、フッ素化アルキル基である。
 また、式(2)中、Xは炭素数1~5のアルキレン基、炭素数1~5のフッ素化アルキレン基、炭素原子-炭素原子間に1個以上のエーテル性酸素原子を有する炭素数1~5のアルキレン基、または炭素原子-炭素原子間に1個以上のエーテル性酸素原子を有する炭素数1~5のフッ素化アルキレン基である。
 本明細書において、フッ素化とは、炭素原子に結合した水素原子の一部または全部がフッ素原子に置換されることをいう。フッ素化アルキル基は、アルキル基の水素原子の一部または全部がフッ素原子に置換された基である。一部がフッ素化された基中には、水素原子が存在する。部分フッ素化とは、炭素原子に結合した水素原子の一部がフッ素原子に置換されることをいう。
 また、前記アルキル基および炭素原子-炭素原子間にエーテル性酸素原子を有するアルキル基としては、それぞれ、直鎖構造、分岐構造、または部分的に環状構造を有する基(例えば、シクロアルキルアルキル基)が挙げられる。
 化合物(1)におけるRおよびRは、その一方または両方がフッ素化アルキル基である。RおよびRの一方または両方がフッ素化アルキル基であることで、リチウム塩の非水電解液への溶解性および難燃性が向上する。化合物(1)におけるRとRは同じであってもよく、異なっていてもよい。
 化合物(1)としては、RおよびRが、いずれも炭素数1~10のフッ素化アルキル基である化合物(1-A)、またはRが炭素原子-炭素原子間に1個以上のエーテル性酸素原子を有する炭素数1~10のフッ素化アルキル基であり、Rが炭素数1~10のフッ素化アルキル基である化合物(1-B)が好ましい。
 化合物(1)は、炭素数が少なすぎると沸点が低すぎ、多すぎると高粘度化することから、総炭素数が4~10の化合物が好ましく、4~8の化合物がより好ましい。化合物(1)の分子量は150~800が好ましく、150~500がより好ましく、200~500が特に好ましい。化合物(1)中のエーテル性酸素原子数は可燃性に影響することから、エーテル性酸素原子を有する化合物(1)である場合のエーテル性酸素原子数は、1~4が好ましく、1または2がより好ましい。また化合物(1)中のフッ素含有量が高くなると不燃性を向上させることから、化合物(1)の分子量に対するフッ素原子の質量の割合は50%以上が好ましく、60%以上がより好ましい。
 化合物(1-A)、化合物(1-B)、化合物(1-A)および化合物(1-B)以外の化合物の具体例としては、例えば、国際公開第2009/133899号に記載の化合物等が挙げられる。
 本発明の非水電解液は、リチウム塩を均一に溶解させやすく、不燃性に優れた電導度の高い非水電解液が得られやすい点から、化合物(1)を使用する場合には、RおよびRが、炭素数1~10のフッ素化アルキル基である場合の化合物(1-A)を必須とすることが好ましく、CFCHOCFCFH(商品名:AE-3000、旭硝子社製)、CHFCFCHOCFCFH、CFCFCHOCFCFH、CFCHOCFCHFCF、およびCHFCFCHOCFCFHCFからなる群から選ばれる1種以上を必須とすることがより好ましく、CFCHOCFCFHおよびCHFCFCHOCFCFHCFの少なくとも一方を必須とすることが特に好ましい。
 化合物(2)において、Xは直鎖構造であっても分岐構造であってもよい。Xとしては、炭素数1~5のアルキレン基が好ましく、炭素数2~4のアルキレン基がより好ましい。該アルキレン基は、直鎖構造または分岐構造が好ましい。Xにおけるアルキレン基が分岐構造を有する場合には、側鎖は炭素数1~3のアルキル基またはエーテル性酸素原子を有する炭素数1~3のアルキル基であることが好ましい。
 さらに、化合物(2)としては、リチウム塩を均一に溶解させ、不燃性に優れた電導度の高い非水電解液が得られやすい点から、XがCH、CHCH、CH(CH)CH、およびCHCHCHからなる群から選ばれる1種である化合物(2)が好ましい。
 化合物(2)の具体例としては、例えば、下式で表される化合物等が挙げられる。
 本発明の非水電解液は、リチウム塩を均一に溶解させやすく、不燃性に優れた電導度の高い非水電解液が得られやすい点から、化合物(2)を使用する場合には、XがCHCHである化合物、およびXがCH(CH)CHである化合物の少なくとも一方を必須とすることが好ましく、XがCHCHである化合物、およびXがCH(CH)CHである化合物の少なくとも一方からなることがより好ましく、XがCHCHである化合物、またはXがCH(CH)CHである化合物のいずれか1種のみであることがさらに好ましい。
Figure JPOXMLDOC01-appb-C000012
 含フッ素エーテル溶媒としては、化合物(1)のみの使用、化合物(2)のみの使用、または化合物(1)および化合物(2)の併用のいずれであってもよく、化合物(1)のみの使用、または化合物(2)のみの使用が好ましい。
 非水電解液中の含フッ素エーテル溶媒の含有量は、全溶媒量に対して、20~95体積%が好ましく、30~90体積%がより好ましく、40~80体積%が特に好ましい。
 また、含フッ素エーテル溶媒として、化合物(1)と化合物(2)を併用する場合、化合物(1)と化合物(2)の合計量に対する化合物(1)の含有量は、1~99体積%が好ましく、10~90体積%がより好ましい。
 本発明においては、含フッ素エーテル溶媒を、後述する化合物(3)および化合物(4)と組み合わせて用いることにより電解液としての低温特性が向上する。
[化合物(3)]
 化合物(3)は、リチウム塩と効率良く溶媒和することにより、該リチウム塩を含フッ素エーテル溶媒に均一に溶解させる役割を果たす溶媒である。化合物(3)は、その一部または全部が電解液中でリチウム塩と錯体を形成すると考えられる。
Figure JPOXMLDOC01-appb-C000013
 ただし、式(3)中、Qは炭素数1~4の直鎖アルキレン基、または、該直鎖アルキレン基の水素原子の1個以上が、炭素数1~5のアルキル基、もしくは炭素原子-炭素原子間に1個以上のエーテル性酸素原子を含む炭素数1~5のアルキル基に置換された基である。また、RおよびRはそれぞれ独立に炭素数1~5のアルキル基、またはRとRが連結して形成した炭素数1~10のアルキレン基である。
 Qは、炭素数1~4の直鎖アルキレン基が好ましく、-CHCH-が特に好ましい。
 RおよびRは、それぞれメチル基またはエチル基が好ましく、メチル基が特に好ましい。
 本発明の非水電解液は、化合物(3)が、下記化合物(3A)を必須とすることが好ましく、化合物(3A)のみからなることがより好ましい。
Figure JPOXMLDOC01-appb-C000014
 ただし、式(3A)中、RおよびRは、それぞれ独立に炭素数1~5のアルキル基、またはRとRが連結して形成した炭素数1~10のアルキレン基である。
 化合物(3A)としては、モノグライム(1,2-ジメトキシエタン)、または1,2-ジエトキシエタンが好ましく、モノグライムが特に好ましい。
 化合物(3)は、1種を単独で使用してもよく、2種以上を併用してもよい。
[化合物(4)]
 化合物(4)は、化合物(3)と同様に、リチウム塩と効率良く溶媒和することにより、該リチウム塩を含フッ素エーテル溶媒に均一に溶解させる役割を果たす溶媒である。化合物(4)は、その一部または全部が電解液中でリチウム塩と錯体を形成すると考えられる。
Figure JPOXMLDOC01-appb-C000015
 ただし、式(4)中、mは2~4の整数である。
 また、Qは、炭素数1~4の直鎖アルキレン基、または、該直鎖アルキレン基の水素原子の1個以上が、炭素数1~5のアルキル基、もしくは炭素原子-炭素原子間に1個以上のエーテル性酸素原子を含む炭素数1~5のアルキル基に置換された基である。Qは、同一の基であっても、異なる基であってもよい。
 また、RおよびRは、それぞれ独立に炭素数1~5のアルキル基、またはRとRが連結して形成した炭素数1~10のアルキレン基である。
 化合物(4)においては、mは2~3が好ましく、mは2が特に好ましい。
 Qは、炭素数1~4の直鎖アルキレン基が好ましく、-CHCH-が特に好ましい。さらに、Qが1種のみである場合は、-CHCH-のみからなるのが好ましい。Qが2種以上である場合には、-CHCH-と、-CHCH-以外の他のQとの組み合わせからなるのが好ましい。
 RおよびRは、それぞれメチル基またはエチル基が好ましく、メチル基がより好ましい。
 本発明の非水電解液は、化合物(4)が、下記化合物(4A)を必須とすることが好ましく、化合物(4A)のみからなることがより好ましい。
Figure JPOXMLDOC01-appb-C000016
 ただし、式(4A)中、mは2~4の整数である。RおよびRはそれぞれ独立に炭素数1~5のアルキル基、またはRとRが連結して形成した炭素数1~10のアルキレン基である。
 化合物(4A)においては、mは2が特に好ましい。
 また、化合物(4A)においては、RおよびRは、それぞれメチル基またはエチル基が好ましく、メチル基がより好ましい。
 化合物(4A)において、RとRがメチル基で、mが2~4の化合物とは、ジエチレングリコールジメチルエーテル(ジグライム、m=2)、トリエチレングリコールジエチルエーテル(トリグライム、m=3)、テトラエチレングリコールジエチルエーテル(テトラグライム、m=4)である。
 化合物(4A)に含まれる他の化合物としては、例えば、ジエチレングリコール-ジエチルエーテル、ジエチレングリコール-ジ-n-プロピルエーテル、ジエチレングリコール-ジ-iso-プロピルエーテル、ジエチレングリコール-ジ-n-ブチルエーテル、トリエチレングリコール-ジエチルエーテル、トリエチレングリコール-ジ-n-プロピルエーテル、トリエチレングリコールジ-iso-プロピルエーテル、トリエチレングリコール-ジ-n-ブチルエーテル、テトラエチレングリコール-ジエチルエーテル、テトラエチレングリコールジ-n-プロピルエーテル、テトラエチレングリコールジ-iso-プロピルエーテル、テトラエチレングリコール-ジ-n-ブチルエーテルが挙げられる。
 化合物(4)において、RとRがメチル基またはエチル基で、化合物(4A)以外の化合物としては、例えば、国際公開第2009/133899号に記載の化合物等が挙げられる。
 また、化合物(4)において、RとRが連結して炭素数1~10のアルキレン基を形成している化合物としては、例えば、12-クラウン-4、14-クラウン-4、15-クラウン-5、18-クラウン-6等が挙げられる。
 化合物(4)は、1種を単独で使用してもよく、2種以上を併用してもよい。
 化合物(4)としては、電導度、高レート特性等の他の性能を維持しつつ低温特性を向上させやすい点から、ジグライム、トリグライム、テトラグライム、ジエチレングリコールジエチルエーテル、トリエチレングリコールジエチルエーテル、またはテトラエチレングリコールジエチルエーテルが好ましく、ジグライム、またはジエチレングリコールジエチルエーテルがより好ましく、ジグライムが特に好ましい。
 また、粘度(20℃)が5cP以下で非水電解液の実用上の溶媒粘度に優れ、かつ得られる非水電解液が良好な電導度を示す点では、ジグライム、トリグライム、テトラグライム、ジエチレングリコールジエチルエーテル、トリエチレングリコールジエチルエーテル、またはテトラエチレングリコールジエチルエーテルが好ましく、粘度および引火点の両特性のバランスに優れる点では、ジグライム、トリグライムまたはテトラグライムがより好ましい。
 非水電解液中の化合物(3)と化合物(4)を合計した含有量は、非水電解液中の前記リチウム塩の総量に対して、0.2~4.0倍モルが好ましく、0.5~3.0倍がより好ましく、0.5~2.0倍モルが特に好ましい。リチウム塩に対する、化合物(3)と化合物(4)の合計量のモル比が前記範囲の下限値以上であれば、リチウム塩を含フッ素エーテル溶媒に均一に溶解させやすい。また、リチウム塩に対する、化合物(3)と化合物(4)の合計量のモル比が前記範囲の上限値以下であれば、耐酸化性および不燃性に優れた非水電解液が得られやすい。
 非水電解液中の化合物(3)および化合物(4)を合計した含有量は、全溶媒量に対して、5~30体積%が好ましく、10~30体積%がより好ましく、10~25体積%がさらに好ましく、10~22体積%が特に好ましい。
 本発明においては、非水電解液中に化合物(3)と化合物(4)とを並存させることが特徴である。2つのエーテル化合物を並存させることにより、低温下での電解液からの結晶析出を抑制できる。非水電解液中の化合物(3)(モル量:MIII)と化合物(4)(モル量:MIV)のモル比(MIII/MIV)は、10/90~90/10が好ましく、15/85~85/15がより好ましい。前記モル比(MIII/MIV)とすることにより低温下での電解液からの結晶析出を抑制し、かつ、電解液を高電導度にできる利点がある。本発明の非水電解液が後述の化合物(8)を含有しない場合、前記モル比(MIII/MIV)は、電導度の点から、40/60~80/20が特に好ましい。本発明の非水電解液が後述の化合物(8)を含有する場合、前記モル比(MIII/MIV)は、電導度の点から、20/80~40/60が特に好ましい。
 本発明の非水電解液中に含まれる、前記リチウム塩由来のリチウム原子の総モル数(NLi)に対する、化合物(3)および化合物(4)由来のエーテル性酸素原子の総モル数(N)の比(N/NLi)は、リチウム塩を含フッ素エーテル溶媒に溶解させることが容易になる点から、1以上が好ましく、2以上がより好ましい。また、前記比(N/NLi)は、高レート条件での充放電における電池容量を抑制し、さらに高電圧でのサイクル特性を向上させやすい点から、6以下が好ましく、5以下がより好ましく、4以下が特に好ましい。
[化合物(8)]
 本発明の非水電解液は、炭素原子と酸素原子からなる環構造を有する化合物であり、該環構造が-O-C(=O)-O-で表される結合を有し、かつ分子内に炭素-炭素不飽和結合を含まない化合物(8)を含有することが好ましい。化合物(8)は、極性が高く、高レートでの充放電における電池容量の低下を抑制する役割を果たす。また、リチウム塩の解離度を向上させることで、該非水電解液の電導度を向上させる。また、リチウム塩と効率よく溶媒和することにより、該リチウム塩を、含フッ素エーテル溶媒に均一に溶解させることを補助する。
 なお、本明細書において、カーボネート化合物とは、-O-C(=O)-O-で表される結合(以下、「カーボネート結合」ともいう。)を含む化合物をいう。環状カーボネート化合物とは、カーボネート結合を含む環構造を有する化合物である。炭素-炭素不飽和結合とは、炭素-炭素二重結合または炭素-炭素三重結合である。
 化合物(8)における環構造は、4~10員環が好ましく、4~7員環がより好ましく、入手容易な点から、5~6員環がさらに好ましく、5員環が特に好ましい。
 化合物(8)の環構造は、カーボネート結合を1つ有する環構造が好ましく、カーボネート結合が、直鎖アルキレン基と連結して形成された環構造がより好ましい。直鎖アルキレン基の炭素数は1~7が好ましく、1~4がより好ましく、2または3がさらに好ましく、2が特に好ましい。また、前記直鎖アルキレン基は、置換基を有していてもよい。置換基としては、例えば、ハロゲン原子、アルキル基、ハロゲン化アルキル基等が挙げられる。ハロゲン原子、またはハロゲン化アルキル基におけるハロゲンとしては、塩素原子またはフッ素原子が好ましい。
 化合物(8)としては、下記化合物(8-1)が好ましい。
Figure JPOXMLDOC01-appb-C000017
 ただし、式(8-1)中、R~R10は、それぞれ独立に水素原子、ハロゲン原子、アルキル基、またはハロゲン化アルキル基である。また、化合物(8-1)は、酸化され難くなることで、高電圧条件下での使用により適している点では、R~R10の少なくとも1個以上がハロゲン原子であることが好ましい。
 化合物(8-1)の具体例としては、例えば、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、4-クロロ-1,3-ジオキソラン-2-オン、4-フルオロ-1,3-ジオキソラン-2-オン、4-トリフルオロメチル-1,3-ジオキソラン-2-オンが挙げられる。
 化合物(8)としては、プロピレンカーボネート、エチレンカーボネート、およびブチレンカーボネートからなる群から選ばれる環状カーボネート化合物、または、該環状カーボネート化合物の環構造を形成する炭素原子に結合する水素原子の1個以上が、ハロゲン原子、アルキル基、またはハロゲン化アルキル基に置換された化合物が好ましく、入手容易な点および電解液の性質の点から、エチレンカーボネート、プロピレンカーボネートまたは4-フルオロ-1,3-ジオキソラン-2-オンが好ましい。
 化合物(8)は、1種の化合物を単独で使用してもよく、2種以上の化合物を併用してもよい。
 非水電解液中の化合物(8)の含有量は、全溶媒量に対して、5~60体積%が好ましく、5~50体積%がより好ましく、10~40体積%がさらに好ましい。化合物(8)の含有量が前記範囲の下限値以上であれば、高レートでの充放電における電池容量の低下を抑制しやすい。また、リチウム塩の解離度が向上し、電導度がより良好になる。非水電解液中の化合物(8)の含有量が前記範囲の上限値以下であれば、難燃性に優れた非水電解液を得やすい。
 本発明の非水電解液中に含まれる、リチウム塩由来のリチウム原子の総モル数(NLi)に対する、化合物(8)の総モル数(NVIII)の比(NVIII/NLi)は、0.01~6が好ましく、0.1~5がより好ましく、1~4が特に好ましい。前記比(NVIII/NLi)が前記範囲の下限値以上であれば、高レートでの充放電における電池容量の低下を抑制しやすい。前記比(NVIII/NLi)が前記範囲の上限値以下であれば、電解液の難燃性を維持しやすい。
 化合物(8)によって高レートでの充放電における電池容量の低下が抑制される要因については必ずしも明らかではないが、以下のように考えられる。
 二次電池の充放電ではリチウムイオンが脱配位して電極の電極活物質と反応する必要がある。極性の高い化合物(8)を補助溶媒として電解液に用いると、溶媒全体の極性が向上することで脱配位エネルギーが低下し、化合物(3)および化合物(4)が容易に脱配位してリチウムイオンが効率的に電極活物質と反応できるので、高レートでの充放電における電池容量の低下が抑制されると考えられる。
[化合物(9)]
 本発明の非水電解液は非フッ素系の環状カーボネート化合物を含んでいてもよい。カーボネート化合物は、高レートでの充放電特性の点からは含むのが好ましく、難燃性の点からは含まないのが好ましい。該カーボネート化合物としては、炭素原子と酸素原子からなる環構造を有する化合物であり、該環構造がカーボネート結合を有し、かつ分子内に炭素-炭素不飽和結合を含む化合物(9)が好ましい。
 化合物(9)における環構造は、4~10員環が好ましく、4~7員環がより好ましく、入手容易な点から、5~6員環がさらに好ましく、5員環が特に好ましい。
 化合物(9)の環構造は、カーボネート結合を1つ有する環構造が好ましい。
 化合物(9)の炭素-炭素不飽和結合は環構造内にあっても環構造の外にあってもよい。炭素-炭素不飽和結合は分子内に1~5個あるのが好ましく、1~3個がより好ましく、入手容易な点と非水電解液の耐久性の点から、1~2個がさらに好ましく、1個が特に好ましい。
 化合物(9)としては、下記化合物(9-1)、または化合物(9-2)が好ましい。
Figure JPOXMLDOC01-appb-C000018
 ただし、式中、R11およびR12は、それぞれ独立に水素原子、ハロゲン原子、アルキル基、またはハロゲン化アルキル基である。
 R13~R16は、それぞれ独立に水素原子、アルキル基、ビニル基またはアリル基であり、R13~R16の少なくとも1つはビニル基あるいはアリル基である。
 化合物(9)としては、化合物(9-1)のみを使用してもよく、化合物(9-2)のみを使用してもよく、化合物(9-1)と化合物(9-2)を併用してもよい。
 化合物(9)としては、4-ビニル-1,3-ジオキソラン-2-オン、ジメチルビニレンカーボネートまたはビニレンカーボネートが好ましく、ビニレンカーボネートが特に好ましい。
 化合物(9)を含む非水電解液を用いた二次電池で充電を行う場合、化合物(9)が負極(例えば炭素電極)表面上で分解して安定な被膜を形成する。化合物(9)により形成された被膜は電極界面における抵抗を低減できるため、リチウムイオンの負極へのインターカレーションを促進する効果が得られる。すなわち、非水電解液中の化合物(9)により形成された被膜によって負極界面におけるインピーダンスが小さくなることで、リチウムイオンの負極へのインターカレーションが促進される。また、化合物(9)は、化合物(8)と同様に極性が高いため、化合物(8)による効果を妨げずに、リチウムイオンの負極へのインターカレーションを促進し、サイクル特性を向上させる。
 非水電解液中の化合物(9)の含有量は、長期にわたる難燃性、非水電解液中での相分離および炭酸ガスの大量発生の抑制、低温特性の低下の抑制、ならびにリチウム塩の溶解性の向上の効果を兼ね備えやすい点から、全溶媒量に対して、0.01~10.0体積%が好ましく、0.05~5.0体積%がより好ましく、0.1~3.0体積%が特に好ましい。
[非水電解液の好ましい組成]
 本発明の非水電解液としては、本発明の目的とする効果が大きいことから下記組成1または組成2が好ましい。
(組成1)
 LiPF;化合物(5)、FSON(Li)SOF、CFSON(Li)SOCF、CFCFSON(Li)SOCFCF、LiClO、化合物(6)、化合物(7)、およびLiBFからなる群から選ばれる1種以上のリチウム塩;化合物(1)および化合物(2)からなる群から選ばれる1種以上の含フッ素エーテル溶媒;化合物(3A);化合物(4A);を含有する二次電池用非水電解液。
(組成2)
 LiPF;化合物(5)、FSON(Li)SOF、CFSON(Li)SOCF、CFCFSON(Li)SOCFCF、LiClO、化合物(6)、化合物(7)、およびLiBFからなる群から選ばれる1種以上のリチウム塩;化合物(1)および化合物(2)からなる群から選ばれる1種以上の含フッ素エーテル溶媒;化合物(3A);化合物(4A);および化合物(8-1);を含有する二次電池用非水電解液。
 本発明の非水電解液としては、組成3、または4がより好ましい。
(組成3)
 LiPF;CFSON(Li)SOCF、CFCFSON(Li)SOCFCF、LiClO、およびLiBFからなる群から選ばれる1種以上のリチウム塩;CFCHOCFCFH、CHFCFCHOCFCFH、CFCFCHOCFCFH、CFCHOCFCHFCF、CHFCFCHOCFCFHCF、前記式(2)で表されかつXがCHCHである化合物、および前記式(2)で表されかつXがCH(CH)CHである化合物からなる群から選ばれる1種以上の含フッ素エーテル溶媒;モノグライム;および、ジグライム、トリグライムまたはテトラグライム;を含有する二次電池非水電解液。
(組成4)
 LiPF;CFSON(Li)SOCF、CFCFSON(Li)SOCFCF、LiClO、LiBFからなる群から選ばれる1種以上のリチウム塩;CFCHOCFCFH、CHFCFCHOCFCFH、CFCFCHOCFCFH、CFCHOCFCHFCF、CHFCFCHOCFCFHCF、前記式(2)で表されかつXがCHCHである化合物、および前記式(2)で表されかつXがCH(CH)CHである化合物からなる群から選ばれる1種以上の含フッ素エーテル溶媒;モノグライム;ジグライム、トリグライムまたはテトラグライム;および、エチレンカーボネートまたはプロピレンカーボネート;を含有する二次電池用非水電解液。
 本発明の非水電解液としては、組成5、または6がさらに好ましい。
(組成5)
 LiPFを必須とするリチウム塩、CHFCFCHOCFCFHCF、モノグライム、および、ジグライムを含有する二次電池用非水電解液。
(組成6)
 LiPFを必須とするリチウム塩、CHFCFCHOCFCFHCF、モノグライム、ジグライム、および、エチレンカーボネートまたはプロピレンカーボネートを含有する二次電池非水電解液。
 また、前記組成1~6には、化合物(9)を含ませてもよい。化合物(9)としては、ビニレンカーボネートが好ましい。
[その他の化合物]
 本発明における非水電解液は、相分離せず、本発明の効果を妨げない範囲内であれば、前記リチウム塩、含フッ素エーテル溶媒、化合物(3)、化合物(4)、化合物(8)および化合物(9)以外の化合物(以下、「その他の化合物」という。)を含んでもよい。
 その他の化合物としては、含フッ素アルカン;プロピオン酸アルキルエステル、マロン酸ジアルキルエステル、酢酸アルキルエステル等のカルボン酸エステル;γ-ブチロラクトン等の環状カルボン酸エステル;プロパンサルトン等の環状スルホン酸エステル;スルホン酸アルキルエステル;リン酸アルキルエステル;アセトニトリル、イソブチロニトリル、ピバロニトリル等のカルボニトリル等が挙げられる。
 非水電解液中の含フッ素アルカン以外のその他の化合物を用いる場合の含有量は、非水電解液の総体積量に対して、0超~20体積%が好ましく、0超~15体積%がより好ましく、0.01超~10体積%が特に好ましい。
 本発明の非水電解液がその他の化合物として含フッ素アルカンを含む場合には、非水電解液の蒸気圧を抑制し、非水電解液の不燃性をさらに向上させうる。含フッ素アルカンとは、アルカンの水素原子の1個以上がフッ素原子に置換され、水素原子が残っている化合物をいう。本発明においては、炭素数4~12の含フッ素アルカンが好ましい。このうち、炭素数6以上の含フッ素アルカンを用いた場合は、非水電解液の蒸気圧を低下させる効果が期待でき、また炭素数が12以下であればリチウム塩の溶解度を保ちやすい。また、含フッ素アルカン中のフッ素含有量(フッ素含有量とは、分子量に占めるフッ素原子の質量の割合をいう。)は、50~80%が好ましい。含フッ素アルカン中のフッ素含有量が50%以上であれば、不燃性がさらに高くなる。含フッ素アルカン中のフッ素含有量が80%以下であれば、リチウム塩の溶解性を保持しやすい。
 含フッ素アルカンとしては、直鎖構造の化合物が好ましく、例えば、n-CCHCH、n-C13CHCH、n-C13H、n-C17H等が挙げられる。これら含フッ素アルカンは、1種を単独で使用してもよく、2種以上を併用してもよい。
 非水電解液中に前記含フッ素アルカンを含ませる場合の含有量は、非水電解液の総体積量に対して、5~60体積%が好ましい。前記含フッ素アルカンの含有量が5体積%以上であれば、蒸気圧を低下させやすく、不燃性を発現させやすい。前記含フッ素アルカンの含有量が60体積%以下であれば、リチウム塩の溶解度を維持しやすい。
 また、本発明の非水電解液は、下記化合物(10)を含まないことが特に好ましい。化合物(10)は鎖状のカーボネート化合物であり、化合物(9)のような環状カーボネート化合物とは異なり、極性が低い。そのため、本発明の非水電解液に化合物(10)を含有させると、高レート条件での充放電特性を改善することなく、難燃性の低下を招く。
Figure JPOXMLDOC01-appb-C000019
 ただし、式(10)中、R17~R22は、それぞれ独立に水素原子、ハロゲン原子、アルキル基、またはハロゲン化アルキル基である。
 本発明の非水電解液には、非水電解液の機能を向上させるために、必要に応じて他の成分を含ませてもよい。他の成分としては、例えば、従来公知の過充電防止剤、脱水剤、脱酸剤、高温保存後の容量維持特性およびサイクル特性を改善するための特性改善助剤、電解液と電極活物質の濡れ性を改善するための界面活性剤が挙げられる。
 過充電防止剤としては、例えば、ビフェニル、アルキルビフェニル、ターフェニル、ターフェニルの部分水素化体、シクロヘキシルベンゼン、t-ブチルベンゼン、t-アミルベンゼン、ジフェニルエーテル、ジベンゾフラン等の芳香族化合物;2-フルオロビフェニル、o-シクロヘキシルフルオロベンゼン、p-シクロヘキシルフルオロベンゼン等の前記芳香族化合物の部分フッ素化物;2,4-ジフルオロアニソール、2,5-ジフルオロアニソールおよび2,6-ジフルオロアニオール等の含フッ素アニソール化合物が挙げられる。過充電防止剤は、1種を単独で用いてもよく、2種以上を併用してもよい。
 非水電解液が過充電防止剤を含有する場合、非水電解液中の過充電防止剤の含有量は、0.01~5質量%であることが好ましい。非水電解液に過充電防止剤を0.01質量%以上含有させることにより、過充電による二次電池の破裂・発火を抑制することがさらに容易になり、二次電池をより安定に使用できる。
 脱水剤としては、例えば、モレキュラーシーブス、芒硝、硫酸マグネシウム、水素化カルシウム、水素化ナトリウム、水素化カリウム、水素化リチウムアルミニウム等が挙げられる。本発明の非水電解液に用いる溶媒は、前記脱水剤で脱水を行った後に精留を行ったものを使用することが好ましい。また、精留を行わずに前記脱水剤による脱水のみを行った溶媒を使用してもよい。
 高温保存後の容量維持特性やサイクル特性を改善するための特性改善助剤としては、例えば、フェニルエチレンカーボネート、エリスリタンカーボネート、スピロ-ビス-ジメチレンカーボネート等のカーボネート化合物;無水コハク酸、無水グルタル酸、無水マレイン酸、無水シトラコン酸、無水グルタコン酸、無水イタコン酸、無水ジグリコール酸、シクロヘキサンジカルボン酸無水物、シクロペンタンテトラカルボン酸二無水物、フェニルコハク酸無水物等のカルボン酸無水物;エチレンサルファイト、1,3-プロパンスルトン、1,4-ブタンスルトン、メタンスルホン酸メチル、ブスルファン、スルホラン、スルホレン、ジメチルスルホン、ジフェニルスルホン、メチルフェニルスルホン、ジブチルジスルフィド、ジシクロヘキシルジスルフィド、テトラメチルチウラムモノスルフィド、N,N-ジメチルメタンスルホンアミド、N,N-ジエチルメタンスルホンアミド等の含硫黄化合物;1-メチル-2-ピロリジノン、1-メチル-2-ピペリドン、3-メチル-2-オキサゾリジノン、1,3-ジメチル-2-イミダゾリジノン、N-メチルスクシイミド等の含窒素化合物;ヘプタン、オクタン、シクロヘプタン等の炭化水素化合物;フルオロベンゼン、ジフルオロベンゼン、ヘキサフルオロベンゼン、ベンゾトリフルオライド等の含フッ素芳香族化合物が挙げられる。これら特性改善助剤は、1種を単独で用いてもよく、2種以上を併用してもよい。
 非水電解液が特性改善助剤を含有する場合、非水電解液中の特性改善助剤の含有量は、0.01~5質量%であることが好ましい。
 電解液と電極活物質の濡れ性を改善するための界面活性剤としては、カチオン性界面活性剤、アニオン性界面活性剤、非イオン性界面活性剤、両性界面活性剤のいずれでもよく、入手が容易で界面活性効果が高いことから、アニオン性界面活性剤が好ましい。また、界面活性剤としては、耐酸化性が高く、サイクル特性、レート特性が良好な点から、含フッ素界面活性剤が好ましい。
 含フッ素界面活性剤としては、下記化合物(11-1)または化合物(11-2)が好ましい。
Figure JPOXMLDOC01-appb-C000020
 ただし、式中、R23およびR24はそれぞれ独立に炭素数4~20のパーフルオロアルキル基、または炭素原子-炭素原子間に1個以上のエーテル性酸素原子を有する炭素数4~20のパーフルオロアルキル基である。
 MおよびMはそれぞれ独立にアルカリ金属またはNH(R25(R25は水素原子または炭素数1~3のアルキル基であり、同一の基であっても、異なる基であってもよい。)である。
 R23およびR24としては、非水電解液の表面張力を低下させる度合いが良好な点から、炭素数4~20のパーフルオロアルキル基、または炭素原子-炭素原子間に1個以上のエーテル性酸素原子を有する炭素数4~20のパーフルオロアルキル基が好ましく、溶解性に優れ、環境蓄積性の観点から、炭素数4~8のパーフルオロアルキル基、または炭素原子-炭素原子間に1個以上のエーテル性酸素原子を有する炭素数4~8のパーフルオロアルキル基がより好ましい。
 MおよびMのアルカリ金属としては、Li、Na、またはKが好ましい。MおよびMとしては、NH4+が特に好ましい。
 化合物(11-1)の具体例としては、例えば、CCOONH 、C11COONH 、C13COONH 、C11COONH(CH 、C13COONH(CH 、CCOOLi、C11COOLi、C13COOLi、COCF(CF)COONH 、COCF(CF)CFOCF(CF)COONH 、COCF(CF)COONH(CH 、COCF(CF)CFOCF(CF)COONH(CH 、COCF(CF)COOLi、COCOCFCOOLi、COCOCFCOONH 、COCF(CF)CFOCF(CF)COOLi等の含フッ素カルボン酸塩が挙げられる。
 なかでも、非水電解液への溶解性、表面張力を低下させる効果が良好な点から、C11COONH 、C11COOLi、C13COOLi、COC(CF)FCOONH 、COCF(CF)CFOCF(CF)COONH 、COCF(CF)COOLi、COCF(CF)CFOCF(CF)COOLi、COCOCFCOOLi、またはCOCOCFCOONH が好ましい。
 化合物(11-2)の具体例としては、例えば、CSO NH 、C11SO NH 、C13SO NH 、CSO NH(CH 、C11SO NH(CH 、C13SO NH(CH 、CSO Li、C11SO Li、C13SO Li、COC(CF)FCFOC(CF)FSO NH 、COC(CF)FCFOC(CF)FCFOC(CF)FSO NH 、HCFCFOCFCFSO NH 、CFCFHCFOCFCFSO NH 、COC(CF)FSO NH 、COC(CF)FCFOC(CF)FSO NH(CH 、COC(CF)FCFOC(CF)FCFOC(CF)FSO NH(CH 、HCFCFOCFCFSONH(CH 、CFCFHCFOCFCFSO NH(CH 、COC(CF)FSO NH(CH 、COC(CF)FCFOC(CF)FSO Li、COC(CF)FCFOC(CF)FCFOC(CF)FSO Li、HCFCFOCFCFSO Li、CFCFHCFOCFCFSO Li、COC(CF)FSO Li等の含フッ素スルホン酸塩が挙げられる。
 なかでも、非水電解液への溶解性、表面張力を低下させる効果が良好な点から、CSO NH 、C13SO NH 、CSO Li、C13SO Li、C17SO Li、COC(CF)FCFOC(CF)FSO NH 、COC(CF)FCFOC(CF)FSO Li、COC(CF)FSO NH 、またはCOC(CF)FSO Liが好ましい。
 界面活性剤は、1種を単独で使用してもよく、2種以上を併用してもよい。
 非水電解液が界面活性剤を含有する場合、非水電解液中の界面活性剤の含有量は、5質量%以下が好ましく、3質量%以下がより好ましく、0.05~2質量%がさらに好ましい。
 本発明の非水電解液は、二次電池用に用いる。特にリチウムイオン二次電池の電解液として用いた場合には、リチウム塩を良好に溶解でき、電導度、不燃性等の性能が実用上充分であり、特に低温特性が優れている。また、リチウムイオン二次電池以外の他の二次電池に使用してもよい。他の二次電池としては、電気二重層キャパシタ、リチウムイオンキャパシタ等が挙げられる。
 以上説明した本発明の非水電解液は、電導度等の他の特性を確保しつつ、低温における結晶の析出が抑制されており、優れた低温特性を有している。この効果は、化合物(3)と化合物(4)を併用することで、それらがリチウム塩と錯形成したグライム錯体の対称性が崩れ、溶液中での該グライム錯体の会合状態が変化し、解離度や粘度が変化することに由来すると考えられる。また、本発明の非水電解液は、化合物(8)を使用すれば、高レート条件での充放電における電池容量の低下を抑制する効果が高まる。
<二次電池>
 本発明の非水電解液は二次電池用の電解液であり、リチウムイオン二次電池用の電解液として用いることが好ましい。該二次電池としては、負極および正極と、本発明の非水電解液とを有する二次電池である。
 負極としては、リチウムイオンを吸蔵および放出できる負極活物質もしくは金属リチウム、リチウム合金等の金属、または金属化合物を負極活物質として含む電極が挙げられる。負極活物質としては、公知のリチウムイオン二次電池用負極活物質を用いることができ、リチウムイオンを吸蔵および放出できる人造または天然グラファイト(黒鉛)、非晶質炭素等の炭素質材料、または金属リチウム、リチウム合金等の金属、金属化合物が挙げられる。これら負極活物質は、1種を単独で用いてもよく、2種以上を併用してもよい。
 なかでも、負極活物質としては、炭素質材料が好ましい。また、炭素質材料としては、黒鉛、または黒鉛の表面を該黒鉛に比べて非晶質の炭素で被覆した炭素質材料が特に好ましい。
 黒鉛は、日本学術振興会炭素材料第117委員会で制定された方法(以下、「学振法」という。)によるX線回折で求めた格子面(002面)のd値(層間距離、以下単に「d値」という。)が0.335~0.338nmが好ましく、0.335~0.337nmがより好ましい。また、学振法によるX線回折で求めた結晶子サイズ(Lc)は、30nm以上が好ましく、50nm以上がより好ましく、100nm以上が特に好ましい。黒鉛の灰分は、1質量%以下が好ましく、0.5質量%以下がより好ましく、0.1質量%以下が特に好ましい。
 また、黒鉛の表面を非晶質炭素で被覆した炭素質材料としては、d値が0.335~0.338nmである黒鉛を核材とし、該黒鉛の表面に該黒鉛よりもd値が大きい非晶質炭素が被覆されており、かつ核材の黒鉛(質量W)と該黒鉛を被覆する非晶質炭素(質量W)の割合が質量比(W/W)で80/20~99/1であることが好ましい。この炭素質材料を用いることにより、高い容量で、かつ非水電解液と反応しにくい負極を製造することが容易になる。
 炭素質材料の粒径は、レーザー回折・散乱法によるメジアン径で、1μm以上が好ましく、3μm以上がより好ましく、5μm以上がさらに好ましく、7μm以上が特に好ましい。また、炭素質材料の粒径の上限は、100μmが好ましく、50μmがより好ましく、40μmがさらに好ましく、30μmが特に好ましい。
 炭素質材料のBET法による比表面積は、0.3m/g以上が好ましく、0.5m/g以上がより好ましく、0.7m/g以上がさらに好ましく、0.8m/g以上が特に好ましい。炭素質材料の比表面積の上限は、25.0m/gが好ましく、20.0m/gがより好ましく、15.0m/gがさらに好ましく、10.0m/gが特に好ましい。
 炭素質材料は、アルゴンイオンレーザー光を用いたラマンスペクトルで分析したときに、1,570~1,620cm-1の範囲にあるピークPのピーク強度Iと、1,300~1,400cm-1の範囲にあるピークPのピーク強度Iとの比で表されるR値(=I/I)が、0.01~0.7であることが好ましい。また、ピークPの半値幅が、26cm-1以下であることが好ましく、25cm-1以下であることが特に好ましい。
 金属リチウム以外に負極活物質として使用できる金属としては、Ag、Zn、Al、Ga、In、Si、Ti、Ge、Sn、Pb、P、Sb、Bi、Cu、Ni、Sr、Ba等が挙げられる。また、リチウム合金としては、リチウムと前記金属の合金が挙げられる。また、金属化合物としては、前記金属の酸化物等が挙げられる。
 なかでも、Si、Sn、Ge、TiおよびAlからなる群から選ばれる1種以上の金属、該金属を含む金属化合物、金属酸化物、またはリチウム合金が好ましく、Si、SnおよびAlからなる群から選ばれる1種以上の金属、該金属を含む金属化合物、リチウム合金、またはチタン酸リチウムがより好ましい。
 リチウムイオンを吸蔵および放出できる金属、該金属を含む金属化合物、およびリチウム合金は、一般に黒鉛に代表される炭素質材料と比較して、単位質量当たりの容量が大きいので、より高エネルギー密度が求められる二次電池に好適である。
 正極としては、リチウムイオンを吸蔵および放出できる正極活物質を含む電極が挙げられる。
 正極活物質としては、公知のリチウムイオン二次電池用正極活物質を用いることができ、例えば、リチウム含有遷移金属酸化物、1種類以上の遷移金属を用いたリチウム含有遷移金属複合酸化物、遷移金属酸化物、遷移金属硫化物、金属酸化物、オリビン型金属リチウム塩等が挙げられる。
 リチウム含有遷移金属酸化物としては、リチウムコバルト酸化物、リチウムニッケル酸化物、リチウムマンガン酸化物等が挙げられる。
 リチウム含有遷移金属複合酸化物に含まれる金属としてはAl、V、Ti、Cr、Mn、Fe、Co、Li、Ni、Cu、Zn、Mg、Ga、Zr、Si、Yb等が好ましく、例えば、LiCoO等のリチウムコバルト複合酸化物、LiNiO等のリチウムニッケル複合酸化物、LiMnO、LiMn、LiMnO等のリチウムマンガン複合酸化物、Li(NiCoMn)O(ただし、a,b,c>0、a+b+c=1である。)等のリチウム三元系複合酸化物、これらのリチウム遷移金属複合酸化物の主体となる遷移金属原子の一部をAl、Ti、V、Cr、Mn、Fe、Co、Li、Ni、Cu、Zn、Mg、Ga、Zr、Si、Yb等の他の金属で置換したもの等が挙げられる。例えば、具体的に、LiMn0.5Ni0.5、LiMn1.8Al0.2、LiNi0.85Co0.10Al0.05、LiMn1.5Ni0.5、LiNi1/3Co1/3Mn1/3、LiMn1.8Al0.2等が挙げられる。
 遷移金属酸化物としては、例えば、TiO、MnO、MoO、V、V13、遷移金属硫化物としてはTiS、FeS、MoS、金属酸化物としてはSnO、SiO等が挙げられる。
 オリビン型金属リチウム塩は、Li(ただし、XはFe(II)、Co(II)、Mn(II)、Ni(II)、V(II)、またはCu(II)を示し、YはPまたはSiを示し、0≦L≦3、1≦x≦2、1≦y≦3、4≦z≦12、0≦g≦1である数をそれぞれ示す)で示される物質またはこれらの複合体である。例えば、LiFePO、LiFe(PO、LiFeP、LiMnPO、LiNiPO、LiCoPO、LiFePOF、LiMnPOF、LiNiPOF、LiCoPOF、LiFeSiO、LiMnSiO、LiNiSiO、LiCoSiOが挙げられる。
 これら正極活物質は、1種を単独で用いてもよく、2種以上を併用してもよい。
 また、これら正極活物質の表面に、主体となる正極活物質を構成する物質とは異なる組成の物質が付着したものを用いることもできる。表面付着物質としては酸化アルミニウム、酸化ケイ素、酸化チタン、酸化ジルコニウム、酸化マグネシウム、酸化カルシウム、酸化ホウ素、酸化アンチモン、酸化ビスマス等の酸化物;硫酸リチウム、硫酸ナトリウム、硫酸カリウム、硫酸マグネシウム、硫酸カルシウム、硫酸アルミニウム等の硫酸塩;炭酸リチウム、炭酸カルシウム、炭酸マグネシウム等の炭酸塩等が挙げられる。
 表面付着物質の量としては、正極活物質に対する質量の下限は0.1ppmが好ましく、1ppmがより好ましく、10ppmが特に好ましい。上限は20%が好ましく、10%がより好ましく、5%が特に好ましい。表面付着物質により、正極活物質表面での非水系電解液の酸化反応を抑制することができ、電池寿命を向上させることができる。
 正極活物質としては、放電電圧が高く、かつ電気化学的安定性が高い点から、LiCoO、LiNiO、LiMnO等のα-NaCrO構造を母体とするリチウム含有複合酸化物、LiMn等のスピネル型構造を母体とするリチウム含有複合酸化物が好ましい。
 本発明の二次電池は、一方が非分極性電極であり他方が分極性電極である、または両方が非分極性電極である負極および正極と、本発明の非水電解液とを有する。分極性電極は、電気化学的に不活性な高比表面積の材料を主体とするものが好ましく、活性炭、カーボンブラック、金属微粒子、導電性酸化物微粒子からなるものが特に好ましい。なかでも、金属集電体の表面に活性炭等の高比表面積の炭素材料粉末からなる電極層が形成されたものが好ましい。
 電極の製造には、負極活物質または正極活物質を結着させる結着剤を用いる。
 負極活物質および正極活物質を結着する結着剤としては、電極製造時に使用する溶媒、電解液に対して安定な材料であれば、任意の結着剤を使用することができる。結着剤は、例えば、ポリフッ化ビニリデン、ポリテトラフルオロエチレン等のフッ素系樹脂、ポリエチレン、ポリプロピレン等のポリオレフィン、スチレン・ブタジエンゴム、イソプレンゴム、ブタジエンゴム等の不飽和結合を有する重合体およびその共重合体、アクリル酸共重合体、メタクリル酸共重合体等のアクリル酸系重合体およびその共重合体等が挙げられる。これらの結着剤は1種を単独で用いてもよく、2種以上を併用してもよい。
 電極中には、機械的強度、電気伝導度を高めるために増粘剤、導電材、充填剤等を含有させてもよい。
 増粘剤としては、例えば、カルボキシルメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコール、酸化スターチ、リン酸化スターチ、ガゼイン、ポリビニルピロリドンが挙げられる。これらの増粘剤は1種を単独で用いてもよく、2種以上を併用してもよい。
 導電材としては、例えば、アセチレンブラック、グラファイトまたはカーボンブラック等の炭素質材料が挙げられる。これら導電材は1種を単独で用いてもよく、2種以上を併用してもよい。
 電極の製造法としては、負極活物質または正極活物質に、結着剤、増粘剤、導電材、溶媒等を加えてスラリー化し、これを集電体に塗布、乾燥して製造することができる。この場合、乾燥後にプレスすることによって電極を圧密化することが好ましい。
 正極活物質層の密度が低すぎると二次電池の容量が不充分となるおそれがある。
 集電体としては、各種の集電体を用いることができるが、通常は金属または合金が用いられる。負極の集電体としては、銅、ニッケル、ステンレス等が挙げられ、銅が好ましい。また、正極の集電体としては、アルミニウム、チタン、タンタル等の金属またはその合金が挙げられ、アルミニウムまたはその合金が好ましく、アルミニウムがより好ましい。
 二次電池の形状は、用途に応じて選択すればよく、コイン型であってもよく、円筒型であっても、角型であってもラミネート型であってもよい。また、正極および負極の形状も、二次電池の形状に合わせて適宜選択することができる。
 本発明の二次電池の充電電圧は、3.4V以上とするのが好ましく、4.0V以上がより好ましく、4.2V以上が特に好ましい。二次電池の正極活物質が、リチウム含有遷移金属酸化物、リチウム含有遷移金属複合酸化物、遷移金属酸化物、遷移金属硫化物、金属酸化物の場合の充電電圧は4.0V以上が好ましく、4.2V以上がより好ましい。また、正極活物質がオリビン型金属リチウム塩の場合の充電電圧は3.2V以上が好ましく、3.4V以上がより好ましい。
 二次電池の正極と負極の間には、短絡を防止するために通常はセパレータとして多孔膜を介在させる。この場合、非水電解液は該多孔膜に含浸させて用いる。多孔膜の材質および形状は、非水電解液に対して安定であり、かつ保液性に優れていれば特に制限はなく、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、エチレンとテトラフルオロエチレンのコポリマー等のフッ素樹脂、またはポリエチレン、ポリプロピレン等のポリオレフィンを原料とする多孔性シートまたは不織布が好ましく、材質はポリエチレン、ポリプロピレン等のポリオレフィンが好ましい。また、これらの多孔膜に電解液を含浸させてゲル化させたものをゲル電解質として用いてもよい。
 本発明の非水電解液に使用される電池外装体の材質も二次電池に通常用いられる材質であればよく、ニッケルメッキを施した鉄、ステンレス、アルミニウムまたはその合金、ニッケル、チタン、樹脂材料、フィルム材料等が挙げられる。
 以上説明した本発明の二次電池は、本発明の非水電解液を用いているため、電導度等の他の特性が実用上充分であり、かつ優れた低温特性を有する。
 そのため、本発明の二次電池は、携帯電話、携帯ゲーム機、デジタルカメラ、デジタルビデオカメラ、電動工具、ノートパソコン、携帯情報端末、携帯音楽プレーヤー、電気自動車、ハイブリット式自動車、電車、航空機、人工衛星、潜水艦、船舶、無停電電源装置、ロボット、電力貯蔵システム等の様々な用途に用いることができる。また、本発明の二次電池は、電気自動車、ハイブリット式自動車、電車、航空機、人工衛星、潜水艦、船舶、無停電電源装置、ロボット、電力貯蔵システム等の大型二次電池に特に好ましい特性を有する。
 以下、実施例によって本発明を詳細に説明するが、本発明は以下の記載によっては限定されない。例1~8は実施例であり、例9~12は比較例である。 
[例1]
 リチウム塩であるLiPFの1.52gを、含フッ素エーテル溶媒である商品名「AE3000」(CFCHOCFCFH、旭硝子社製)の8.08mL中に分散した後、さらに溶媒として化合物(3)であるモノグライムの0.26g、および化合物(4)であるジグライムの1.53gを添加、混合して非水電解液とした。
[例2~12]
 リチウム塩および溶媒の組成を表1に示す通りに変更した以外は、例1と同様にして非水電解液を得た。
<低温特性および電導度の評価>
[評価方法]
 例1~12で得られた非水電解液について、結晶析出温度の測定、および電導度の測定を行った。(結晶析出温度)
 各例において、非水電解液5mLを、容量20mLのガラスバイアルに入れ、恒温槽に設置した。その後、恒温槽温度を25℃から10℃ずつ-35℃まで下げた。恒温槽の内温が各設定温度に到達後1時間温度を維持し、その後槽内の各非水電解液を観察し、結晶析出の有無を確認した。結晶が析出していた場合、その温度を結晶析出温度とした。
(電導度)
 電導度の測定は、得られた非水電解液について、「溶融塩及び高温化学、2002、45、43」に記載の既知の方法を用いて25℃で行った。
 結晶析出温度および電導度の測定結果を表1に示す。
Figure JPOXMLDOC01-appb-T000021
 ただし、表1中の略語は以下の意味を示す。
 AE3000:CFCHOCFCF
 結晶析出温度の欄に「-」と記載した電解液は、-35℃では全く結晶の析出が認められなかったことを示す。
 表1に示すように、モノグライムとジグライムを併用した非水電解液は結晶析出温度が低いことから低温特性に優れ、かつ、電導度も向上した。
 本発明の二次電池用非水電解液および二次電池は、電導度等の性能を確保しつつ、優れた低温特性が達成される。そのため、携帯電話、ノートパソコン、電気自動車等の様々な用途の二次電池に好適に使用できる。また、本発明の二次電池用非水電解液は、リチウム塩を良好に溶解させ、かつ、不燃性にも優れることから、電気二重層キャパシタ、リチウムイオンキャパシタ等の他の蓄電デバイスにも使用できる。
 なお、2010年12月20日に出願された日本特許出願2010-283154号の明細書、特許請求の範囲、及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。

Claims (12)

  1.  リチウム塩、下式(1)で表される化合物および下式(2)で表される化合物からなる群から選ばれる含フッ素エーテル溶媒、下式(3)で表される化合物、ならびに下式(4)で表される化合物を含有することを特徴とする二次電池用非水電解液。
    Figure JPOXMLDOC01-appb-C000001
    (ただし、式中、RおよびRはそれぞれ独立に炭素数1~10のアルキル基、炭素数3~10のシクロアルキル基、炭素数1~10のフッ素化アルキル基、炭素数3~10のフッ素化シクロアルキル基、炭素原子-炭素原子間に1個以上のエーテル性酸素原子を有する炭素数1~10のアルキル基、または、炭素原子-炭素原子間に1個以上のエーテル性酸素原子を有する炭素数1~10のフッ素化アルキル基であり、RおよびRの一方または両方は、フッ素化アルキル基である。
     Xは炭素数1~5のアルキレン基、炭素数1~5のフッ素化アルキレン基、炭素原子-炭素原子間に1個以上のエーテル性酸素原子を有する炭素数1~5のアルキレン基、または炭素原子-炭素原子間に1個以上のエーテル性酸素原子を有する炭素数1~5のフッ素化アルキレン基である。
     Qは炭素数1~4の直鎖アルキレン基、または、該直鎖アルキレン基の水素原子の1個以上が、炭素数1~5のアルキル基、もしくは炭素原子-炭素原子間に1個以上のエーテル性酸素原子を含む炭素数1~5のアルキル基に置換された基である。
     RおよびRはそれぞれ独立に炭素数1~5のアルキル基、またはRとRが連結して形成した炭素数1~10のアルキレン基である。
     mは2~4の整数である。
     Qは炭素数1~4の直鎖アルキレン基、または、該直鎖アルキレン基の水素原子の1個以上が、炭素数1~5のアルキル基、もしくは炭素原子-炭素原子間に1個以上のエーテル性酸素原子を含む炭素数1~5のアルキル基に置換された基である。Qは、同一の基であっても、異なる基であってもよい。
     RおよびRはそれぞれ独立に炭素数1~5のアルキル基、またはRとRが連結して形成した炭素数1~10のアルキレン基である。)
  2.  前記式(3)で表される化合物(モル量:MIII)と前記式(4)で表される化合物(モル量:MIV)のモル比(MIII/MIV)が10/90~90/10である請求項1に記載の二次電池用非水電解液。
  3.  前記式(3)で表される化合物が下式(3A)で表される化合物を必須とする請求項1または2に記載の二次電池用非水電解液。
    Figure JPOXMLDOC01-appb-C000002
    (ただし、式中、RおよびRはそれぞれ独立に炭素数1~5のアルキル基、またはRとRが連結して形成した炭素数1~10のアルキレン基である。)
  4.  前記式(4)で表される化合物が下式(4A)で表される化合物を必須とする請求項1~3のいずれか一項に記載の二次電池用非水電解液。
    Figure JPOXMLDOC01-appb-C000003
    (ただし、式中、mは2~4の整数である。RおよびRはそれぞれ独立に炭素数1~5のアルキル基、またはRとRが連結して形成した炭素数1~10のアルキレン基である。)
  5.  二次電池用非水電解液中に含まれる、前記リチウム塩由来のリチウム原子の総モル数(NLi)に対する、前記式(3)で表される化合物および前記式(4)で表される化合物由来のエーテル性酸素原子の総モル数(N)の比(N/NLi)が1~6である請求項1~4のいずれか一項に記載の二次電池用非水電解液。
  6.  前記リチウム塩が、LiPF、下式(5)で表される化合物、FSON(Li)SOF、CFSON(Li)SOCF、CFCFSON(Li)SOCFCF、LiClO、下式(6)で表される化合物、下式(7)で表される化合物、およびLiBFからなる群からから選ばれる1種以上である請求項1~5のいずれか一項に記載の二次電池用非水電解液。
    Figure JPOXMLDOC01-appb-C000004
    (ただし、式中、kは1~5の整数である。)
  7.  界面活性剤を含有する、請求項1~6のいずれか一項に記載の二次電池用非水電解液。
  8.  前記式(1)で表される化合物が、CFCHOCFCFH、CHFCFCHOCFCFH、CFCFCHOCFCHF、CFCHOCFCHFCF、およびCHFCFCHOCFCFHCFからなる群から選ばれる1種以上を必須とする、請求項1~7のいずれか一項に記載の二次電池用非水電解液。
  9.  さらに、炭素原子と酸素原子からなる環構造を有する化合物であり、該環構造が-O-C(=O)-O-で表される結合を有し、かつ分子内に炭素-炭素不飽和結合を有さない化合物(8)を含有する請求項1~8のいずれか一項に記載の二次電池用非水電解液。
  10.  炭素原子と酸素原子からなる環構造を有する化合物であり、該環構造が-O-C(=O)-O-で表される結合を含み、かつ分子内に炭素-炭素不飽和結合を含む化合物(9)を含有する請求項1~9のいずれか一項に記載の二次電池用非水電解液。
  11.  リチウムイオン二次電池の電解液として用いる、請求項1~10のいずれか一項に記載の二次電池用非水電解液。
  12.  リチウムイオンを吸蔵および放出できる材料、金属リチウムまたはリチウム合金からなる負極と、リチウムイオンを吸蔵および放出できる材料からなる正極と、請求項1~10のいずれか一項に記載の二次電池用非水電解液とを有することを特徴とする二次電池。
PCT/JP2011/079409 2010-12-20 2011-12-19 二次電池用非水電解液および二次電池 WO2012086602A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012549803A JPWO2012086602A1 (ja) 2010-12-20 2011-12-19 二次電池用非水電解液および二次電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-283154 2010-12-20
JP2010283154 2010-12-20

Publications (1)

Publication Number Publication Date
WO2012086602A1 true WO2012086602A1 (ja) 2012-06-28

Family

ID=46313871

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/079409 WO2012086602A1 (ja) 2010-12-20 2011-12-19 二次電池用非水電解液および二次電池

Country Status (2)

Country Link
JP (1) JPWO2012086602A1 (ja)
WO (1) WO2012086602A1 (ja)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10811673B2 (en) 2015-09-16 2020-10-20 Panasonic Intellectual Property Management Co., Ltd. Battery
US10811672B2 (en) 2015-09-16 2020-10-20 Panasonic Intellectual Property Management Co., Ltd. Battery
US10811671B2 (en) 2015-09-16 2020-10-20 Panasonic Intellectual Property Management Co., Ltd. Positive-electrode active material and battery
US10818911B2 (en) 2015-09-16 2020-10-27 Panasonic Intellectual Property Management Co., Ltd. Positive-electrode active material and battery
US10818910B2 (en) 2015-07-23 2020-10-27 Panasonic Intellectual Property Management Co., Ltd. Positive-electrode active material and battery
US10818912B2 (en) 2015-09-16 2020-10-27 Panasonic Intellectual Property Management Co., Ltd. Battery
US10833315B2 (en) 2015-09-16 2020-11-10 Panasonic Intellectual Property Management Co., Ltd. Battery
US10833322B2 (en) 2017-01-19 2020-11-10 Panasonic Intellectual Property Management Co., Ltd. Positive electrode active material containing lithium composite oxide and lithium composite oxyfluoride, and battery including positive electrode containing positive electrode active material
US10833317B2 (en) 2015-09-16 2020-11-10 Panasonic Intellectual Property Management Co., Ltd. Positive-electrode active material and battery
US10833316B2 (en) 2015-09-16 2020-11-10 Panasonic Intellectual Property Management Co., Ltd. Battery
US10840499B2 (en) 2016-11-15 2020-11-17 Panasonic Intellectual Property Management Co., Ltd. Positive electrode active material and battery using positive electrode active material
US10854876B2 (en) 2016-11-15 2020-12-01 Panasonic Intellectual Property Management Co., Ltd. Positive electrode active material and battery using positive electrode active material
US11043661B2 (en) 2017-01-19 2021-06-22 Panasonic Intellectual Property Management Co., Ltd. Positive electrode active material containing lithium composite oxyfluoride and organosilicon compound, and battery including positive electrode containing the positive electrode active material
US11081687B2 (en) 2016-12-02 2021-08-03 Panasonic Intellectual Property Management Co., Ltd. Positive-electrode active material and battery including positive-electrode active material

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0212776A (ja) * 1988-06-29 1990-01-17 Matsushita Electric Ind Co Ltd 非水電解液二次電池
JPH07263027A (ja) * 1994-03-22 1995-10-13 Sony Corp 非水電解液二次電池
JPH11307123A (ja) * 1998-02-20 1999-11-05 Hitachi Ltd リチウム2次電池とその電解液及び電気機器
JP2001093572A (ja) * 1999-09-27 2001-04-06 Hitachi Ltd 非水電解液二次電池及びそれを用いた電気自動車、ハイブリット式自動車及び電力貯蔵システム
JP2003187864A (ja) * 2001-12-19 2003-07-04 Sony Corp 電 池
WO2009133899A1 (ja) * 2008-04-28 2009-11-05 旭硝子株式会社 二次電池用非水電解液および二次電池
WO2011136226A1 (ja) * 2010-04-26 2011-11-03 旭硝子株式会社 二次電池用非水電解液および二次電池

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0212776A (ja) * 1988-06-29 1990-01-17 Matsushita Electric Ind Co Ltd 非水電解液二次電池
JPH07263027A (ja) * 1994-03-22 1995-10-13 Sony Corp 非水電解液二次電池
JPH11307123A (ja) * 1998-02-20 1999-11-05 Hitachi Ltd リチウム2次電池とその電解液及び電気機器
JP2001093572A (ja) * 1999-09-27 2001-04-06 Hitachi Ltd 非水電解液二次電池及びそれを用いた電気自動車、ハイブリット式自動車及び電力貯蔵システム
JP2003187864A (ja) * 2001-12-19 2003-07-04 Sony Corp 電 池
WO2009133899A1 (ja) * 2008-04-28 2009-11-05 旭硝子株式会社 二次電池用非水電解液および二次電池
WO2011136226A1 (ja) * 2010-04-26 2011-11-03 旭硝子株式会社 二次電池用非水電解液および二次電池

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10818910B2 (en) 2015-07-23 2020-10-27 Panasonic Intellectual Property Management Co., Ltd. Positive-electrode active material and battery
US11637277B2 (en) 2015-07-23 2023-04-25 Panasonic Intellectual Property Management Co., Ltd. Positive-electrode active material and battery
US11588143B2 (en) 2015-09-16 2023-02-21 Panasonic Intellectual Property Management Co., Ltd. Battery
US10811673B2 (en) 2015-09-16 2020-10-20 Panasonic Intellectual Property Management Co., Ltd. Battery
US10811671B2 (en) 2015-09-16 2020-10-20 Panasonic Intellectual Property Management Co., Ltd. Positive-electrode active material and battery
US10818912B2 (en) 2015-09-16 2020-10-27 Panasonic Intellectual Property Management Co., Ltd. Battery
US10833315B2 (en) 2015-09-16 2020-11-10 Panasonic Intellectual Property Management Co., Ltd. Battery
US11799067B2 (en) 2015-09-16 2023-10-24 Panasonic Intellectual Property Management Co., Ltd. Battery
US10833317B2 (en) 2015-09-16 2020-11-10 Panasonic Intellectual Property Management Co., Ltd. Positive-electrode active material and battery
US10833316B2 (en) 2015-09-16 2020-11-10 Panasonic Intellectual Property Management Co., Ltd. Battery
US11721800B2 (en) 2015-09-16 2023-08-08 Panasonic Intellectual Property Management Co., Ltd. Battery
US10818911B2 (en) 2015-09-16 2020-10-27 Panasonic Intellectual Property Management Co., Ltd. Positive-electrode active material and battery
US11710816B2 (en) 2015-09-16 2023-07-25 Panasonic Intellectual Property Management Co., Ltd. Battery
US10811672B2 (en) 2015-09-16 2020-10-20 Panasonic Intellectual Property Management Co., Ltd. Battery
US11569492B2 (en) 2015-09-16 2023-01-31 Panasonic Intellectual Property Management Co., Ltd. Positive-electrode active material and battery
US10854876B2 (en) 2016-11-15 2020-12-01 Panasonic Intellectual Property Management Co., Ltd. Positive electrode active material and battery using positive electrode active material
US10840499B2 (en) 2016-11-15 2020-11-17 Panasonic Intellectual Property Management Co., Ltd. Positive electrode active material and battery using positive electrode active material
US11081687B2 (en) 2016-12-02 2021-08-03 Panasonic Intellectual Property Management Co., Ltd. Positive-electrode active material and battery including positive-electrode active material
US11043661B2 (en) 2017-01-19 2021-06-22 Panasonic Intellectual Property Management Co., Ltd. Positive electrode active material containing lithium composite oxyfluoride and organosilicon compound, and battery including positive electrode containing the positive electrode active material
US10833322B2 (en) 2017-01-19 2020-11-10 Panasonic Intellectual Property Management Co., Ltd. Positive electrode active material containing lithium composite oxide and lithium composite oxyfluoride, and battery including positive electrode containing positive electrode active material

Also Published As

Publication number Publication date
JPWO2012086602A1 (ja) 2014-05-22

Similar Documents

Publication Publication Date Title
JP5605221B2 (ja) 二次電池用非水電解液および二次電池
JP5942849B2 (ja) 二次電池用非水電解液および二次電池
US8586250B2 (en) Non-aqueous electrolyte solution for storage battery devices, and storage battery device
WO2012086602A1 (ja) 二次電池用非水電解液および二次電池
US20120214073A1 (en) Non-aqueous electrolyte solution for secondary batteries, and secondary battery
JP5786856B2 (ja) 二次電池用非水電解液および二次電池
WO2011136226A1 (ja) 二次電池用非水電解液および二次電池
US20120107701A1 (en) Electrolyte solution for chargeable device, electrolyte solution for lithium ion secondary battery, and secondary battery
JP5556818B2 (ja) 二次電池用非水電解液
JPWO2013183719A1 (ja) 二次電池用非水電解液およびリチウムイオン二次電池
JP2011040311A (ja) 二次電池用電解液およびリチウムイオン二次電池
JPWO2010110388A1 (ja) 蓄電デバイス用電解液および蓄電デバイス
WO2012011508A1 (ja) 二次電池用非水電解液および二次電池
WO2012081710A1 (ja) 二次電池用非水電解液および二次電池
JP2013101766A (ja) 二次電池用非水電解液および二次電池
JP2013041793A (ja) 非水電解液二次電池
JPWO2012115112A1 (ja) 二次電池用非水電解液および二次電池
WO2012173253A1 (ja) 二次電池用非水電解液および二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11850614

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012549803

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11850614

Country of ref document: EP

Kind code of ref document: A1