WO2012081191A1 - 複式クラッチ変速機の制御装置及び複式クラッチ変速機の制御方法 - Google Patents
複式クラッチ変速機の制御装置及び複式クラッチ変速機の制御方法 Download PDFInfo
- Publication number
- WO2012081191A1 WO2012081191A1 PCT/JP2011/006793 JP2011006793W WO2012081191A1 WO 2012081191 A1 WO2012081191 A1 WO 2012081191A1 JP 2011006793 W JP2011006793 W JP 2011006793W WO 2012081191 A1 WO2012081191 A1 WO 2012081191A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- clutch
- gear
- transmission
- torque
- shift
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W20/00—Control systems specially adapted for hybrid vehicles
- B60W20/40—Controlling the engagement or disengagement of prime movers, e.g. for transition between prime movers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H61/00—Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
- F16H61/12—Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D48/00—External control of clutches
- F16D48/06—Control by electric or electronic means, e.g. of fluid pressure
- F16D48/064—Control of electrically or electromagnetically actuated clutches
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H61/00—Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
- F16H61/68—Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for stepped gearings
- F16H61/684—Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for stepped gearings without interruption of drive
- F16H61/688—Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for stepped gearings without interruption of drive with two inputs, e.g. selection of one of two torque-flow paths by clutches
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D2500/00—External control of clutches by electric or electronic means
- F16D2500/10—System to be controlled
- F16D2500/102—Actuator
- F16D2500/1021—Electrical type
- F16D2500/1023—Electric motor
- F16D2500/1024—Electric motor combined with hydraulic actuation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D2500/00—External control of clutches by electric or electronic means
- F16D2500/10—System to be controlled
- F16D2500/108—Gear
- F16D2500/1086—Concentric shafts
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D2500/00—External control of clutches by electric or electronic means
- F16D2500/10—System to be controlled
- F16D2500/11—Application
- F16D2500/1107—Vehicles
- F16D2500/1117—Motorcycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D2500/00—External control of clutches by electric or electronic means
- F16D2500/50—Problem to be solved by the control system
- F16D2500/51—Relating safety
- F16D2500/5114—Failsafe
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H61/00—Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
- F16H61/12—Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures
- F16H2061/122—Avoiding failures by using redundant parts
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H61/00—Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
- F16H61/12—Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures
- F16H2061/1256—Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures characterised by the parts or units where malfunctioning was assumed or detected
- F16H2061/1276—Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures characterised by the parts or units where malfunctioning was assumed or detected the failing part is a friction device, e.g. clutches or brakes
- F16H2061/128—Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures characterised by the parts or units where malfunctioning was assumed or detected the failing part is a friction device, e.g. clutches or brakes the main clutch
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S903/00—Hybrid electric vehicles, HEVS
- Y10S903/902—Prime movers comprising electrical and internal combustion motors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T74/00—Machine element or mechanism
- Y10T74/19—Gearing
- Y10T74/19219—Interchangeably locked
- Y10T74/19251—Control mechanism
- Y10T74/19279—Cam operated
Definitions
- the present invention relates to a control device for a dual clutch transmission which is a transmission having a plurality of clutches, and a control method for the dual clutch transmission.
- a dual clutch transmission (hereinafter sometimes simply referred to as a “transmission”) that is mounted on a vehicle and includes a plurality of clutches to enable quick shifting operation in the vehicle, and controls the same.
- Control devices see, for example, Patent Document 1 and Patent Document 2 are known.
- This transmission is disposed between the engine and each of the two input shafts, and each has a plurality of clutches capable of transmitting or interrupting driving force, two input shafts, and a transmission output shaft (hereinafter simply referred to as “ And a pair of gears divided into two systems (for example, two systems of an odd-numbered gear group and an even-numbered gear group) that are selectively connected by a shifter selection operation.
- the other clutch related to the transmission system of the gear group not transmitting power is released, and then the transmission having an input shaft connected to the other clutch.
- the other clutch is engaged while releasing one clutch during power transmission.
- the control device shifts the clutch that is transmitting power. While releasing, the clutch is operated at the same time, such as fastening a clutch that transmits power for the next gear (next gear), and the gear pairs of both transmission systems are connected.
- Patent Document 1 and Patent Document 2 in the control of a conventional dual clutch transmission that operates and switches a plurality of clutches at the same time, in order to avoid a shift shock (including vehicle speed change, pitching, etc.) due to the switching as much as possible, It is necessary to always set the total torque capacity value of the clutches that are simultaneously operated to a target value such as an engine torque value in the clutch portion during clutch switching.
- a clutch that is currently in use and can be switched is referred to as a release-side clutch
- a clutch that transmits torque in an engaged state after shifting is referred to as an engagement-side clutch.
- Patent Document 3 discloses a back torque limiter (hereinafter referred to as appropriate) which releases back torque transmitted in the reverse direction from the transmission side to prevent transmission of excessive back torque to the crankshaft side.
- a clutch device is described that comprises (abbreviated as BTL).
- fixation means that the clutch is not attached and does not move from that state and does not move.
- fixation means that the clutch is not attached and does not move from that state and does not move.
- the disengaged state remains as it is, and when the clutch is disengaged, it remains unchanged.
- the sticking may occur in both the release side clutch and the engagement side clutch.
- the release-side clutch is stuck, it is double-engaged depending on the BTL, so that the brake is applied and no particularly large behavior occurs.
- An object of the present invention is to provide a control device for a dual clutch transmission and a control method for the dual clutch transmission that can minimize the behavior of the clutch in the case of a vehicle having a dual clutch transmission. Is to provide.
- a control apparatus for a dual clutch transmission includes a first main shaft having an odd number of transmission gears, a first clutch for transmitting or interrupting engine torque to the first main shaft, and a second main gear having an even number of transmission gears.
- a main shaft, a second clutch for transmitting or interrupting the engine torque to the second main shaft, each driven gear meshing with the odd-numbered transmission gear and the even-numbered transmission gear, and the first gear The output shaft that transmits the rotation from one main shaft or the second main shaft to the driving wheel and the back torque transmitted in the opposite direction from the transmission side are released, and the excessive back torque is transmitted to the crankshaft side.
- the shift control means determines that the operation failure of the next-stage clutch is fixed, and if the next-stage clutch fails and the front-stage gear is disengaged, After the side gear is engaged, the front-side clutch torque capacity is controlled to a predetermined value, and the back torque limiter is operated according to a predetermined condition to engage the front-side clutch.
- a control method for a dual clutch transmission includes a first main shaft having an odd number of transmission gears, a first clutch for transmitting or interrupting engine torque to the first main shaft, and a second main gear having an even number of transmission gears.
- a main shaft, a second clutch for transmitting or interrupting the engine torque to the second main shaft, each driven gear meshing with the odd-numbered transmission gear and the even-numbered transmission gear, and the first gear The output shaft that transmits the rotation from one main shaft or the second main shaft to the driving wheel and the back torque transmitted in the opposite direction from the transmission side are released, and the excessive back torque is transmitted to the crankshaft side.
- the inertia phase in the inertia phase, it is determined that the operation failure of the next-stage clutch is fixed, the next-stage clutch fails, and the previous-stage gear is disconnected.
- the front stage clutch torque capacity is controlled to a predetermined value, and the back torque limiter is operated according to a predetermined condition so as to engage the front stage clutch. did.
- the behavior of the clutch can be minimized when the clutch fails.
- the schematic diagram which shows the principal part structure of the double clutch transmission controlled by the control apparatus of the double clutch transmission which concerns on one embodiment of this invention.
- 1 is a schematic diagram showing a control system for a motorcycle including a control device for a dual clutch transmission according to an embodiment of the present invention.
- the figure which shows the control mode quadrant which is a control pattern at the time of performing shift control
- the figure explaining the clutch adhering determination method Time chart showing torque change and rotation speed change corresponding to clutch operation in latter half of DTC shift
- the control device for a dual clutch transmission controls a dual clutch transmission having a plurality of clutches, and suitably switches the gear position.
- a vehicle on which a control device and a dual clutch transmission controlled by the control device are mounted is described as a motorcycle.
- the present invention is not limited to this, and the control device and a dual clutch transmission controlled by the control device are described.
- the double clutch transmission may be a semi-automatic transmission in which the driver determines the timing of clutch operation and shift change at the start, and the remaining control is automated, or a fully automatic transmission. May be.
- FIG. 1 is a schematic diagram showing a configuration of a main part of a dual clutch transmission 70 controlled by a control device for a dual clutch transmission according to an embodiment of the present invention.
- a double clutch transmission (hereinafter referred to as “transmission”) 70 shown in FIG. 1 is a DCL with a BTL (Dual Clutch ⁇ ⁇ Transmission), and switches a plurality of clutches (first clutch 74 and second clutch 75) alternately.
- the driving force can be transmitted to the odd-numbered or even-numbered transmission gears.
- BTL releases the back torque transmitted in the reverse direction from the transmission side and prevents the excessive back torque from being transmitted to the crankshaft side.
- the transmission 70 is connected to a crankshaft 60 of the engine, and a transmission mechanism 700 that varies torque transmitted from the crankshaft 60 and transmits the torque to a rear wheel (not shown), and variable in the transmission mechanism 700. And a shift mechanism 701 for performing the operation.
- the crankshaft 60 is arranged in a direction orthogonal to the front-rear direction of the vehicle and substantially horizontal (lateral direction).
- the crankshaft 60 has a plurality of crank webs 61.
- the crank webs 61a and 61b arranged at one end and the other end of the crankshaft 60 have gears on their outer circumferences. This is an external gear having grooves.
- the crank web 61 a meshes with a first primary driven gear (also referred to as “first input gear”) 40 in the first clutch 74. Due to this meshing, the power transmitted from the crank web 61a at one end of the crankshaft 60 to the first input gear 40 is transmitted from the one end of the crankshaft 60 via the first clutch 74 to the first of the transmission 70. It is transmitted to the main shaft 710.
- first primary driven gear also referred to as “first input gear”
- crank web 61 b meshes with a second primary driven gear (also referred to as “second input gear”) 50 in the second clutch 75.
- second input gear also referred to as “second input gear”
- the speed change mechanism 700 includes a first main shaft (first main shaft portion) 710, a second main shaft (second main shaft portion) 720, a drive shaft (output shaft) 730, and a first clutch arranged in parallel with the crankshaft 60. 74, a second clutch 75, gears 81 to 86, 711, 712, 721, 722, 731 and 732 for transmitting power between the shafts 710 to 730, a drive sprocket (hereinafter referred to as "sprocket") 76, First and second clutch actuators 77 and 78 are provided.
- sprocket drive sprocket
- the power transmitted to the first and second main shafts 710 and 720 is appropriately selected from the gears 81 to 86, 711, 712, 721, 722, 731 and 732 constituting the speed stage, It is transmitted to a drive shaft 730 disposed at the rear of the vehicle.
- a sprocket 76 is fixed to one end (left end) of the drive shaft 730.
- the sprocket 76 is wound with a drive chain wound around a gear provided on a rotating shaft of a rear wheel (not shown).
- the driving force from the transmission 70 is transmitted to the rear wheels, which are driving wheels, via a drive chain (not shown).
- the torque generated in the engine is output from the drive shaft 730 via the first clutch 74 or the second clutch 75 and a predetermined gear train corresponding to each gear stage, and rotates the rear wheels (drive wheels).
- the transmission part of the driving force output to the drive shaft 730 via the odd-numbered gears (respective gears 81, 83, 85, 711, 712, 731) and the second main shaft 720
- the drive force transmission portion that is output to the drive shaft 730 via the even-numbered gears (the gears 82, 84, 86, 721, 722, and 732) has an outer diameter of substantially the same diameter.
- the driving force transmission portion of the first main shaft 710 and the driving force transmission portion of the second main shaft 720 are arranged so as not to overlap on a concentric circle.
- a first main shaft 710 and a second main shaft 720 having the same outer diameter are arranged side by side on the same axis and rotate independently of each other.
- the first main shaft 710 is connected to the first clutch 74, and the second main shaft 720 is connected to the second clutch 75.
- transmission gears 711, 85, and 712 constituting odd-numbered stages are arranged. Specifically, on the first main shaft 710, in order from the base end side to which the first clutch 74 is connected, a fixed gear (first-speed gear) 711, a fifth-speed gear 85, and a spline gear (third-speed gear). 712 is disposed.
- the fixed gear 711 is formed integrally with the first main shaft 710 and rotates together with the first main shaft 710.
- the fixed gear 711 meshes with the first speed gear (driven gear) 81 of the drive shaft 730, and is also referred to as a first speed corresponding gear here.
- the fifth speed gear 85 is restricted from moving in the axial direction on the first main shaft 710 at a position separated from the fixed gear 711 corresponding to the first speed and the spline gear 712 corresponding to the third speed.
- the first main shaft 710 is rotatably attached around the axis.
- the 5-speed gear 85 meshes with a spline gear (5-speed compatible gear as a driven side gear) 731 of the drive shaft 730.
- the spline gear 712 rotates on the first main shaft 710 on the distal end side of the first main shaft 710, that is, on the end portion side away from the first clutch 74 as the first main shaft 710 rotates. At the same time, it is mounted so as to be movable in the axial direction.
- the spline gear 712 is controlled in the axial direction while being restricted from rotating with respect to the first main shaft 710 by a spline formed along the axial direction on the outer periphery of the tip portion of the first main shaft 710. Is slidably mounted and meshed with a third speed gear (driven gear) 83 of the drive shaft 730.
- the spline gear 712 is connected to the shift fork 142, and moves on the first main shaft 710 in the axial direction by the movement of the shift fork 142.
- the spline gear 712 is also referred to as a third-speed gear here.
- the spline gear 712 moves on the first main shaft 710 to the fifth speed gear 85 side and engages with the fifth speed gear 85, and rotates around the axis of the fifth speed gear 85 on the first main shaft 710 (idling). To regulate.
- the fifth speed gear 85 is fixed to the first main shaft 710 and can be rotated integrally with the rotation of the first main shaft 710.
- transmission gears 721, 86, and 722 constituting even stages are arranged.
- a fixed gear (second speed compatible gear) 721, a sixth speed gear 86 and a spline gear (fourth speed compatible gear) are sequentially arranged from the base end side to which the second clutch 75 is connected.
- a spline gear fourth speed compatible gear
- the fixed gear 721 is integrally formed with the second main shaft 720 and rotates together with the second main shaft 720.
- the fixed gear 721 meshes with the second speed gear (driven gear) 82 of the drive shaft 730, and is also referred to as a second speed gear here.
- the sixth speed gear 86 is restricted from moving in the axial direction on the second main shaft 720 at a position spaced apart from the fixed gear 721 corresponding to the second speed and the spline gear 722 that is the fourth speed compatible gear.
- the second main shaft 720 is rotatably attached around the axis.
- the sixth speed gear 86 meshes with a spline gear 732 (sixth speed gear as a driven gear) of the drive shaft 730.
- a spline gear (also referred to as a “four-speed gear”) 722 is provided on the second main shaft 720 on the distal end side of the second main shaft 720, that is, on the end portion side away from the second clutch 75. 2 Along with the rotation of the main shaft 720, it is attached so as to be movable in the axial direction.
- the spline gear 722 is slid in the axial direction while the rotation with respect to the second main shaft 720 is restricted by the spline formed along the axial direction on the outer periphery of the tip portion of the second main shaft 720. It is movably attached and meshed with a fourth speed gear (driven gear) 84 of the drive shaft 730.
- the spline gear 722 is connected to the shift fork 143, and moves on the second main shaft 720 in the axial direction by the movement of the shift fork 143.
- the spline gear 722 moves on the second main shaft 720 to the sixth speed gear 86 side and engages with the sixth speed gear 86, and rotates around the axis of the sixth speed gear 86 on the second main shaft 720 (idling). To regulate.
- the sixth speed gear 86 is fixed to the second main shaft 720 and can be rotated integrally with the rotation of the second main shaft 720.
- the drive shaft 730 includes a first speed gear 81, a spline gear (fifth gear) 731, a third gear 83, a fourth gear 84, a spline gear (six gear) 732, in order from the first clutch 74 side.
- a second gear 82 and a sprocket 76 are disposed.
- the first speed gear 81, the third speed gear 83, the fourth speed gear 84, and the second speed gear 82 are rotatably provided around the drive shaft 730 in a state where movement of the drive shaft 730 in the axial direction is prohibited. It has been.
- the spline gear (also referred to as “5-speed gear”) 731 is attached to the drive shaft 730 so as to be slidable in the axial direction while being restricted from rotating by spline engagement. That is, the spline gear 731 is attached so as to be movable in the thrust direction with respect to the drive shaft 730 and to rotate together with the drive shaft 730.
- the spline gear 731 is coupled to the shift fork 141 of the shift mechanism 701 and moves on the drive shaft 730 in the axial direction by the movement of the shift fork 141.
- the spline gear (also referred to as “6-speed gear”) 732 is attached to the drive shaft 730 so as to be slidable in the axial direction while being restricted from rotating by spline engagement. That is, the spline gear (6-speed gear) 732 is attached so as to be movable in the thrust direction with respect to the drive shaft 730 and to rotate together with the drive shaft 730.
- the spline gear 732 is connected to the shift fork 144 of the shift mechanism 701 and moves on the drive shaft 730 in the axial direction by the movement of the shift fork 144.
- the sprocket 76 is fixed to the end portion of the drive shaft 730 located on the second clutch 75 side.
- These spline gears 712, 722, 731 and 732 function as transmission gears and function as dog selectors. Specifically, the concavity and convexity portions that fit each other are formed on the opposing surfaces of the spline gears 712, 722, 731, and 732 and the transmission gears that are adjacent in the axial direction, and the concavity and convexity portions are fitted. As a result, both gears rotate together.
- the spline gears 712, 722, 731 and 732 are moved in the axial direction by driving the connected shift forks 141 to 144, so that the transmission gears adjacent to each other in the axial direction (first speed gears 81 to 6).
- Each of the speed gears 86) is connected by a dog mechanism.
- the first clutch 74 and the second clutch 75 are separated in a direction perpendicular to the front-rear direction of the vehicle (here, the left-right direction) so as to sandwich the first main shaft 710 and the second main shaft 720 from both sides of the vehicle. Are arranged.
- the first clutch 74 is provided between the crankshaft 60 and the first main shaft 710.
- the first clutch 74 transmits the rotational power from the engine via the crankshaft 60 to the first main shaft 710 in the engaged state, and blocks the rotational power from the engine to the first main shaft 710 in the released state.
- the torque transmitted to the first main shaft 710 is a desired gear pair (gears 711, 85, 712 on the first main shaft 710) in odd-numbered gears (the gears 81, 83, 85, 711, 712, 731). And a pair of gears 81, 731 and 83 on the drive shaft 730 corresponding to these gears).
- the first clutch 74 is a well-known multi-plate friction clutch.
- 1st clutch 74 is connected with the 1st pull rod 77a of the 1st clutch actuator 77 controlled by the shift control part (TCU110 shown in Drawing 2) of a control part.
- TCU110 shown in Drawing 2
- the shift control part TCU110 shown in Drawing 2
- Torque transmission is cut off, that is, power transmission to the first main shaft 710 is interrupted.
- the second clutch 75 is provided between the crankshaft 60 and the second main shaft 720, and is a multi-plate friction clutch similarly to the first clutch 74.
- the second clutch 75 transmits the rotational power from the engine via the crankshaft 60 to the second main shaft 720 in the engaged state, and blocks the rotational power from the engine to the second main shaft 720 in the released state.
- the torque transmitted to the second main shaft 720 is the desired gear pair (the gears 721, 86, 722 on the second main shaft 720) in the even-numbered gears (each gear 82, 84, 86, 721, 722, 732). And a pair of gears 82, 732, 84 on the drive shaft 730 corresponding to these gears).
- the second clutch 75 is a well-known multi-plate clutch, and is connected to the second pull rod 78a of the second clutch actuator 78 controlled by the shift control unit 110 of the control unit. .
- the second clutch 75 when the second pull rod 78 a is pulled away from the second clutch 75, the plurality of clutch plates and the plurality of friction plates are separated from each other, and from the second input gear 50 to the second main shaft 720. Torque transmission is cut off, that is, power transmission to the second main shaft 720 is interrupted.
- first clutch 74 and the second clutch 75 are driven and controlled by the control unit 300 (specifically, the TCU 110 shown in FIG. 2) via the first clutch actuator 77 and the second clutch actuator 78.
- gear shift performed on the gears 81 to 86, 711, 712, 721, 722, 731, and 732 in the speed change mechanism 700 is performed by shift forks 141 to 144 that are movable by the rotation of the shift cam 14 in the shift mechanism 701. .
- the shift mechanism 701 connects the shift forks 141 to 144, the shift cam 14, the shift cam driving device 800 that rotationally drives the shift cam 14, the motor 140, the motor 140, and the cam driving device 800, thereby driving the motor 140. Is transmitted to the shift cam drive device 800.
- the shift forks 141 to 144 are installed between the spline gears 731, 712, 722, and 732 and the shift cam 14, and the first and second main shafts 71 and 72, the drive shaft 730, and the shift cam 14 are connected to each other. They are spaced apart in the axial direction. These shift forks 141 to 144 are arranged in parallel to each other, and are arranged so as to be movable in the axial direction of the rotation shaft of the shift cam 14.
- the base end side pin portion is movably disposed in each of the four cam grooves 14a to 14d formed on the outer periphery of the shift cam 14. That is, the shift forks 141 to 144 are followers with the shift cam 14 as an original node, and the first and second main shafts 71 and 72 and the drive shaft 730 are formed according to the shape of the cam grooves 14a to 14d of the shift cam 14. Slide in the axial direction. By this sliding movement, the spline gears 731, 712, 722, and 732 connected to the tip part move in the axial direction on the respective shafts inserted through the respective inner diameters.
- the shift cam 14 has a cylindrical shape and is arranged so that the rotation axis thereof is parallel to the first main shaft 71, the second main shaft 72, and the drive shaft 730.
- the shift cam 14 is rotationally driven by the driving force of the motor 140 transmitted to the shift cam driving device 800 via the transmission mechanism 41, and this rotation causes at least one of the shift forks 141 to 144 according to the shape of the cam grooves 14a to 14d. One is moved to move in the axial direction of the rotation shaft of the shift cam 14.
- the spline gear connected to the shifted shift fork is moved by the shift forks 141 to 144 that move following the rotation of the shift cam 14 having the cam grooves 14a to 14d, and the transmission 70 (transmission mechanism 700). ) Gear shift is performed.
- the driving force of the engine from the crankshaft 60 is generated by the operation of the first clutch 74 and the second clutch 75 and the operation of the shift mechanism 701 corresponding thereto.
- the signal is output via the drive shaft 730 through one of two independent systems having the shaft 710 and the second main shaft 720.
- the driven sprocket 76 rotates and rotates the rear wheel via the chain.
- the shift mechanism 701 that drives the first clutch 74, the second clutch 75, and the shift forks 141 to 144 in the transmission 70 is controlled by the control unit 300 in the control system 10 (see FIG. 2).
- FIG. 2 is a schematic diagram showing a motorcycle control system including a control device for a dual clutch transmission according to an embodiment of the present invention.
- the engine body is not shown.
- the control unit 300 includes a TCU (Transmission Control Unit, also referred to as “shift control unit”) 110 and an ECU (Engine Control Unit, also referred to as “engine control unit”) 200.
- TCU Transmission Control Unit
- ECU Engine Control Unit
- Various data are exchanged between the transmission control unit 110 and the engine control unit 200 by data communication such as CAN communication.
- the control system 10 includes an accelerator opening sensor (Accelerator Position Sensor) 101, clutch position sensors (Clutch Angle Sensor) 102 and 103, and a shift position sensor (shift stage detection). Part) 105, a shift switch 106, a first clutch actuator 77, a second clutch actuator 78, a shift mechanism 701, and an output shaft rotational speed detection sensor (referred to as “vehicle speed sensor”) 111.
- the accelerator opening sensor 101 detects the driver's accelerator operation amount APS and outputs it to the shift control unit 110.
- the clutch position sensors 102 and 103 detect the position of the clutch, that is, the engagement state of the first clutch 74 by the first actuator 77 and the engagement state of the second clutch 75 by the second actuator 78, respectively.
- the clutch position sensor 102 determines the amount of separation between the plurality of clutch plates and the plurality of friction plates adjusted by the first pull rod 77a from the rotation angle of the motor 77b, that is, the engagement state in the first clutch 74. Is output to the shift control unit 110.
- the clutch position sensor 103 is configured in the same manner as the clutch 102 and has the same function, and the amount of separation between the plurality of clutch plates and the plurality of friction plates in the second clutch 75 and the engagement state in the second clutch 75. Is output to the shift control unit 110.
- the vehicle speed sensor (output shaft rotation speed sensor) 111 detects the rotation speed (drive shaft rotation speed: corresponding to the vehicle speed) of the drive shaft 730 of the transmission 70 and outputs it to the shift control section 110 and the engine control section 200.
- the shift position sensor 105 detects a gear position (1st to 6th speed, neutral) that forms a predetermined gear position by the operation of the motor 140 of the shift mechanism 701, and outputs the detected gear position to the shift control unit 110.
- the shift switch 106 has a shift-up button and a shift-down button (not shown), and the transmission 70 performs a shift operation by pressing the shift-up button or the shift-down button.
- a signal indicating this (hereinafter referred to as a shift signal) is output from the shift switch 106 to the control unit 300.
- the control unit 300 controls the first and second clutch actuators 77 and 78 and the motor 140 based on the input shift signal. By this control, one of the first and second clutches 74 and 75, or both of the clutches 74 and 75 are disconnected, and the shift cam 14 is rotated, and the gear shift of the transmission 0 (specifically, the transmission mechanism 700) is performed. I do.
- the transmission 70 when the shift-up button is pressed by the driver, the transmission 70 performs an upshift operation, and when the shift-down button is pressed by the driver, the transmission 70 performs a shift-down operation. Is executed.
- the first clutch actuator 77 is based on a control command from the transmission control unit 110, and the engagement force acting on the first main shaft 710 in the first clutch 74, that is, the first clutch 74 to the first main shaft 710. Adjust the transmission torque. As a result, power is transmitted or cut off from the engine to the first main shaft 710, and the vehicle starts or stops.
- the first clutch actuator 77 of the present embodiment adjusts the transmission torque of the first clutch 74 by hydraulic pressure.
- a motor 77b that is driven and controlled by the speed change control unit 110 drives the master cylinder 77d via the link 77c to send hydraulic oil to the slave cylinder 77e.
- the slave cylinder 77e moves the first pull rod 77a biased toward the first clutch 74 side in a direction away from the first clutch 74 side by the flowing hydraulic oil.
- the engagement force that is, the transmission torque is reduced in the first clutch 74, and the power from the engine (specifically, the crankshaft 60) to the first main shaft 710 is shut off.
- the 1st pull rod 77a moves so that it may be pulled in the direction away from the 1st clutch 74, the 1st clutch 74 will be in a release state.
- the first pull rod 77a is released from the pulled state in the direction away from the first clutch 74 side by the drive of the motor 77b, and moves to the first clutch 74 side.
- the fastening force (engagement force) of the first clutch 74 increases, and the transmission torque from the engine to the first main shaft 710 increases.
- the first clutch 74 is in a state where there is a transmission torque from the engine to the first main shaft 710, that is, an engaged state.
- the second clutch actuator 78 Based on a control command from the speed change control unit 110, the second clutch actuator 78 transmits the engagement force acting on the second main shaft 720 in the second clutch 75, that is, transmission from the first clutch 74 to the first main shaft 710. Adjust the torque. As a result, power is transmitted or cut off from the engine to the second main shaft 720, and the vehicle starts or stops.
- the second clutch actuator 78 is configured in the same manner as the first clutch actuator 77, and drives the second clutch 75 in the same manner as the operation in which the first clutch actuator 77 drives the first clutch 74.
- first clutch actuator 77 and the second clutch actuator 78 operate the first clutch 74 and the second clutch 75 during traveling to perform a shift operation by switching the torque transmission path inside the transmission.
- the first actuator 77 and the second actuator 78 are hydraulic in this embodiment, but may be configured in any manner such as an electric type as long as the engagement force acting on the clutch is adjusted. .
- the shift mechanism 701 is a device for selecting a gear, and selectively operates each of the shift forks 141 to 144 (see FIG. 1) mounted on the transmission based on a control command from the shift control unit 110.
- the drive shaft 730 is connected to at least one of the first main shaft 710 and the second main shaft 720, which are transmission input shafts, to form a predetermined gear stage.
- the throttle opening sensor 121 detects the opening of the throttle valve 131 of the electronic control throttle 130 and outputs the signal to the shift control unit 110.
- the engine rotation speed sensor 123 detects the rotation speed of the engine (specifically, the rotation speed of the crankshaft 60) Ne and outputs the signal to the shift control unit 110.
- the opening degree of the throttle valve 131 from the throttle opening degree sensor 121 and the engine speed Ne from the engine speed sensor 123, together with a signal from the accelerator opening degree sensor 101, and the like are controlled via CAN communication. From the unit 110 to the engine control unit 200. That is, information input to the shift control unit 110 is input to the engine control unit 200, and information input to the engine control unit 200 is also input to the shift control unit 110 via CAN communication. That is, the shift control unit 110 shares information input with the engine control unit 200. Using the information input in this way, the engine control unit 200 controls the driving of the engine.
- the shift control unit 110 and the engine control unit 200 control each part of the vehicle using the input information.
- the engine control unit 200 receives a request torque command for determining the engine torque from the shift control unit 110, and controls the engine torque.
- the engine control unit 200 controls the generated torque of the engine by operating the electronic control throttle 130 or changing the ignition timing using the ignition 127 based on the received request torque command.
- the engine control unit 200 is connected to an electronic control throttle 130, an engine injector 133, and an ignition 127, and controls the engine using these connected units.
- Information such as intake air temperature, water temperature, intake air negative pressure, and the like is input to the engine control unit 200 from each connected sensor.
- the electronic control throttle 130 drives the motor 132 based on a control command from the engine control unit 200 and adjusts the opening degree of the throttle valve 131 provided in the engine intake system.
- Each sensor provided in the two-wheeled vehicle is connected to the speed change control unit 110. From these sensors, the accelerator opening, the engine speed, and the speed of the first main shaft 710 (in FIG. 2), the rotation speed of the second main shaft 720 (shown as “even-numbered main shaft rotation speed” in FIG. 2), the rotation angle of the shift cam 14, the rotation speed of the drive shaft 730, the oil temperature, the first clutch Information such as the position of 74, the position of the second clutch 75, and the position of the electromagnetic throttle valve is input. Further, side shift switch (side stand SW) information from a side stand switch (not shown) and neutral switch (neutral SW) information from a neutral switch are input to the shift control unit 110.
- the shift control unit 110 controls the operations of the first clutch actuator 77, the second clutch actuator 78, and the shift mechanism 701 at a predetermined timing based on the input signal.
- the first clutch actuator 77, the second clutch actuator 78, and the shift mechanism 701 By the operations of the first clutch actuator 77, the second clutch actuator 78, and the shift mechanism 701, the first clutch 74, the second clutch 75, and the respective shift gear stages are operated, and the shift stage switching operation is performed.
- the shift control unit 110 receives the gear position command from the shift switch 106 and inputs each piece of information (accelerator opening, engine speed, rotation speed of the first main shaft 710, second main shaft).
- the target engine torque and the target clutch torque are calculated based on the rotational speed of 720, the rotational speed of the drive shaft 730, and the rotational angle of the shift cam.
- the shift control unit 110 calculates the target throttle opening, the rotation angle of the target shift cam 14, and the target clutch position in the first clutch 74 or the second clutch 75 based on the target engine torque and the target clutch torque.
- the shift control unit 110 controls the operation of the first clutch actuator 77, the second clutch actuator 78, and the shift mechanism 701, and switches the shift stage for changing the torque transmission path during the clutch switching period. I do. For example, during the shift period, the shift control unit 110 operates a next-stage clutch that transmits torque to the gear pair of the next stage (target shift stage), which is the shift stage after switching, and the next-stage clutch After the clutch torque capacity is increased to the target value, the clutch on the front stage that transmits torque to the gear pair on the front stage, which is the shift stage before the changeover, is operated to reduce the clutch torque capacity of the clutch on the front stage. Thereby, the torque transmission path in the transmission 70 is changed.
- the shift control unit 110 determines that the operation of the next-stage clutch is fixed, and if the next-stage clutch fails and the front-stage gear is disconnected, the front-stage gear is disengaged. After engaging, the front clutch is engaged (engaged).
- the shift control unit 110 determines that the operation failure of the clutch is a failure due to sticking, and if the odd-numbered clutch has a failure, it determines whether the even-numbered gear is engaged and the even-numbered gear is engaged. If not, engage even-numbered clutch after even-numbered gear is engaged.If even-numbered clutch is faulty, determine whether odd-numbered gear is engaged. Engage odd-numbered clutches after engaging the gears. Further, the shift control unit 110 determines that the shift mechanism 701 has failed. If the shift mechanism 701 has failed, the shift control unit 110 engages both the next-stage clutch and the previous-stage clutch. Engagement of these clutches is the final retracting operation for changing the torque transmission path.
- the failure determination of the clutch or shift mechanism 701 is performed in the inertia phase Inti_f that matches the engine speed with the speed of the input shaft on the next stage when shifting.
- the shift period is a period in which the torque transmission path is changed by the operation of the first clutch 74 or the second clutch 75.
- the torque transmission preparation phase also referred to as dog-in phase Dg_in_f
- the torque transmission path change phase (torque phase) Trq_f) and inertia phase Inti_f.
- the torque transmission preparation phase Dg_in_f is a period in which a clutch changing operation can be immediately performed in a phase after the torque transmission preparation phase Dg_in_f, for example, the torque transmission path change phase Trq_f.
- the clutch serving as the engagement side clutch is brought into a state in which torque capacity is generated immediately upon receiving an operation command. That is, in the torque transmission preparation phase Dg_in_f, the engagement-side clutch is moved to a position immediately before engagement (a state in which the plurality of clutch plates and the plurality of friction plates are in close proximity to each other).
- this state of the clutch is also referred to as a state in which the clutch is in the engagement preparation position.
- the torque transmission preparation phase Dg_in_f strokes the pull rod of the clutch clutch actuator on the engagement side to operate the engagement side clutch to the engagement preparation position. It can be said that it is a period.
- the torque transmission path change phase Trq_f is a period during which the clutch is actually operated, that is, the torque transmission path is changed by switching the clutch, and is a substantial shift period.
- the shift control unit 110 controls the first clutch actuator 77 and the second clutch actuator 78 to sequentially change the clutches.
- the shift control unit 110 operates the engagement-side clutch to set the engagement-side clutch torque capacity to the target value, and then operates the release-side clutch. Set the clutch torque capacity to the target value.
- the target value of the clutch torque capacity in the engagement side clutch is, for example, the engine torque amount (
- the sum of the clutch torque capacity of the engagement side clutch and the clutch torque capacity of the release side clutch, which are respectively operated by the shift control unit 110 is equal to or greater than the engine torque (
- Inertia phase (also referred to as “inertia phase”) Inti_f is a period in which the inertia correction associated with the rotation speed change is performed while the input rotation speed is changed to the vicinity of the rotation speed to be realized after the shift.
- the inertia phase Inti_f is a period in which the engine speed is made to coincide with the speed of the input shaft (first main shaft 710 or second main shaft 720) on the shift destination stage (next stage) when shifting. It is. If there is a difference between the engine speed and the speed of the input shaft of the speed change destination,
- clutch torque capacity (maximum torque capacity that can be transmitted by the clutch).
- the gear shift actually proceeds in the transmission path of the transmission, and the input shaft (first or first) 2
- the rotational speed of the main shafts 710 and 720) is reduced. That is, in the inertia phase Inti_f, the shift control unit 110 engages the engagement side clutch and transmits power to the drive shaft 730 via the engagement side clutch.
- the release-side clutch in the inertia phase Inti_f is released by the shift control unit 110 to remove the dog that was performing the shift before the shift.
- the clutch on the release side in the inertia phase Inti_f is engaged after the dog is pulled out and is in a neutral state (idle).
- the shift speed change operation including the operations of the first clutch 74 and the second clutch 75 performed by the shift control unit 110 in this manner is performed according to four shift control modes (hereinafter referred to as “control mode”) according to the shift command of the driver. Is also performed by selecting a mode.
- the four shift control modes are modes corresponding to respective shift patterns for performing a downshift during acceleration of the vehicle, an upshift during acceleration, a downshift during deceleration, and an upshift during deceleration.
- the shift control unit 110 controls the operation of the first clutch 74 via the first actuator 77 or the second clutch 75 via the second actuator 78.
- the shift control is performed by controlling the operation of Note that the shift period in each control mode includes a torque transmission preparation phase Dg_in_f, a torque transmission path change phase Trq_f, and an inertia phase Inti_f.
- FIG. 3 is a diagram showing a control mode quadrant that is a control pattern when performing shift control.
- clutch change indicates the clutch operation in the torque transmission path change phase Trq_f
- engagement indicates the operation in the inertia phase, and the engagement of the clutch to which power is transmitted via the engagement side clutch. Indicates the status.
- the control mode 1 indicated by the first quadrant in FIG. 3 is a state in which the engine torque is positive (referred to as power-on) when the engine torque is expressed as positive and negative, and a state in which the shift stage is raised (upshift). This is called a power-on upshift state.
- This power-on upshift state is a state in which the gear stage is increased during acceleration, for example, when an upshift from the first speed to the second speed is performed while the vehicle is running.
- the torque transmission preparation phase Dg_in_f, the torque transmission path change phase Trq_f, and the inertia phase Inti_f are changed in this order.
- the control mode 2 indicated by the second quadrant of FIG. 3 is a state where the engine torque is positive (referred to as power-on) when the engine torque is expressed as positive and negative, and a state where the gear position is lowered (downshift). This is a state due to a so-called kick-down operation, and this state is called a power-on downshift state.
- This power-on downshift state is a state in which, for example, the gear position is lowered to increase the torque of the drive wheel, and the load on the drive wheel is increased when climbing a slope.
- the torque transmission path change phase Trq_f and the inertia phase Inti_f are switched as compared with the control mode 1 indicated by the first quadrant. That is, in the shift period of the control mode 2 indicated by the second quadrant, the torque transmission preparation phase Dg_in_f, the inertia phase Inti_f, and the torque transmission path change phase Trq_f are changed in this order.
- the control mode 3 shown in the third quadrant of FIG. 3 is a state where the engine torque is negative (referred to as power-off) when the engine torque is expressed as positive and negative, and a state where the gear position is lowered (downshift). This is called a power-off downshift state.
- This power-off downshift state is a state in which the gear position is lowered during deceleration, for example, when shifting down from the second speed to the first speed while the vehicle is running.
- the torque transmission preparation phase Dg_in_f, the torque transmission path change phase Trq_f, and the inertia phase Inti_f are changed in this order.
- the control mode 4 indicated by the fourth quadrant in FIG. 3 is a state where the engine torque is negative (referred to as power-off) when the engine torque is expressed as positive and negative, and a state where the shift stage is raised (upshift). This is called a power-off upshift state.
- this power-off upshift state for example, the vehicle is accelerated by kicking down, the vehicle speed is increased, the accelerator is released, and the load on the drive wheels is reduced while the shift speed is increased.
- the torque transmission path change phase Trq_f and the inertia phase Inti_f are switched as compared with the control mode 3 indicated by the third quadrant. That is, in the shift period of the control mode 4 indicated by the fourth quadrant, the torque transmission preparation phase Dg_in_f, the inertia phase Inti_f, and the torque transmission path change phase Trq_f are changed in this order.
- FIG. 4 is a diagram for explaining a clutch adhering determination method.
- the vertical axis represents the clutch position voltage
- the horizontal axis represents the elapsed time of the clutch operation.
- Condition 1 Deviation between target clutch position value and actual clutch position is 0.2 V or more
- Condition 2 Difference in speed at which actual clutch position follows target clutch position value is 0.08 V / 5 ms or less
- Condition 3 Actual clutch position is The speed following the clutch position target value continues for 50 ms.
- Conditions 1 to 3 are examples. Further, conditions 1 to 3 may be selectively combined.
- FIG. 5 is a time chart showing torque change and rotation speed change corresponding to the operation of the clutch in the latter half of the DTC shift.
- Tc_r is the torque capacity of the clutch on the release side (abbreviated as R side in the figure)
- Tc_e is the torque capacity of the clutch on the engage side (abbreviated as E side in the figure)
- Tc_t is the torque capacity of both clutches.
- Total transmission torque Neg is engine speed
- -Teg, Teg are engine torque values.
- the torque transmission preparation phase is indicated by Dg_in_f
- Trq_f the torque transmission path change phase
- Inti_f is indicated by Inti_f.
- the numerical values in FIG. 5 () indicate the time (ms) of each period.
- FIG. 5 a plurality of graphs that overlap on the same horizontal axis are illustrated in a state where the horizontally overlapping portions are slightly shifted for convenience.
- the graphs Teg, Tc_r, Tc_e, etc. in the torque transmission path change phase Trq_f in FIG. 5 are actually overlapped.
- the shift control unit 110 controls driving of the first clutch 74 via the first actuator 77 and controls driving of the second clutch 75 via the second actuator 78 based on the input information. By controlling the driving of the first clutch 74 and the second clutch 75 in this way, the shift control unit 110 releases the clutch that is transmitting torque, and engages the clutch that transmits torque to the gear pair after the shift. I do.
- the shift control unit 110 controls the clutch (also referred to as “release-side clutch”) that is transmitting torque among the first clutch 74 and the second clutch 75 in the torque transmission preparation phase Dg_in_f.
- the torque capacity Tc_r of the release side clutch is reduced without reducing the transmission torque (the total torque Tc_t of the clutches transmitted to the main shaft via both clutches).
- the shift control unit 110 also transmits the transmission torque (via both clutches) to the clutch that performs the next torque transmission (also referred to as “engage side clutch”). Control is performed to reduce the torque capacity Tc_e of the engagement side clutch without reducing the total torque Tc_t of the clutch transmitted to the main shaft.
- the engagement side clutch is not transmitting torque, that is, the engagement state is in a state where the dog is removed on the power transmission path of the engagement side clutch. Therefore, the shift control unit 110 controls the engagement-side clutch in the torque transmission preparation phase Dg_in_f, releases the connected engagement-side clutch, and puts the next gear (details include a dog). Move to the preparation position for changing and insert the dog.
- the shift control unit 110 controls the release side clutch to reduce the torque capacity Tc_r of the release side clutch to a torque equivalent to the engine torque Teg.
- the shift control unit 110 operates the engagement-side clutch and maintains the clutch capacity Tc_e of the engagement-side clutch while maintaining the torque capacity Tc_r of the release-side clutch at the engine torque Teg.
- the value is increased from 0 to a target value (here, engine torque Teg).
- the shift control unit 110 in the torque transmission path change phase Trq_f, sets the clutch capacity Tc_e of the engage side clutch to the engine torque (Teg), and then releases the release side clutch.
- the clutch capacity Tc_r of the release-side clutch maintained at the engine torque (Teg) is lowered to zero.
- the shift control unit 110 changes the torque transmission path in the transmission by changing clutches in the torque transmission path changing phase Trq_f.
- the shift control unit 110 performs control to transmit power to the drive shaft 730 via the engaged engagement-side clutch, and the torque capacity of the engagement-side clutch in this phase.
- Tc_e is set to be equal to or higher than the engine torque Teg.
- the shift control unit 110 drives the shift mechanism 701 while releasing the release-side clutch, and pulls out the dog of the transmission path including the release-side clutch (in the neutral state ( Idle), and then engage the release side clutch.
- the engine speed is synchronized with the speed of the transmission path via the engagement side clutch.
- An inertia torque is generated by the change in the engine speed Neg.
- the first-speed dog that has transmitted the driving force in the transmission path on the release-side clutch is removed, and the release-side clutch Tc_r is released.
- the clutch is engaged after being neutral.
- This operation differs depending on the transmission system. For example, in a pre-shift type system, a dog that transmits torque to the next gear pair is inserted first, and torque can be transmitted to the next gear pair. The clutch is off and waiting.
- the torque is small in the case of deceleration. If the rider raises the accelerator from there, the engine will blow. For example, when you want to slow down and corner and then accelerate from there to wake up the car body, the car body does not wake up.
- fail-safe control is provided when a failure occurs in the engagement side torque in the latter half of the DCT shift.
- the shift control unit 110 determines that the clutch has failed, and if the next-stage clutch has failed and the front-stage gear is disengaged, the front-stage gear is removed. Then, the clutch on the front side is engaged to make a final retracting operation for changing the torque transmission path.
- BTL operates when the engagement side clutch torque is greater than the torque at which the back torque limiter operates. In this case, the release side clutch torque exceeds and the release side is engaged.
- Tc_r + Tc_e Te-Je * dwe / dt (1)
- Tc_r is positive because the rotational speed is higher on the upstream side
- Tc_e is negative and negative
- Teg is negative because it is powered off.
- Expression (1) can be transformed into the following Expression (2).
- BTL is required.
- the BTL operates at about ⁇ 100 Nm, and the maximum torque capacity of the clutch is 240 Nm. Therefore, the release side clutch can be sufficiently engaged regardless of the torque at which the engagement side is fixed. That is, BTL does not operate when it is fixed at -100 Nm or less, and operates when it is fixed at more than that.
- the shift control unit 110 puts the release-side dog and controls the release-side clutch torque capacity to an appropriate value, while the BTL operates according to conditions to engage the release-side clutch.
- the shift control unit 110 engages with the release side clutch after engaging the release side gear in cooperation with the BTL.
- FIG. 6 is a flowchart when performing fail-safe control operation in the latter half of the DCT shift.
- S indicates each step of the flow.
- step S1 the shift control unit 110 determines that the clutch or the shift mechanism 701 has failed.
- the failure of the clutch is a determination of the occurrence of the clutch stuck in FIG.
- the process proceeds to step S11, step S21, and step S31.
- step S11 the shift control unit 110 determines whether or not the even-numbered gear on the normal side is engaged.
- the presence of a dog is determined by a shift potential.
- the shift cam moves, the potential of the rotation angle of the drum, that is, the shift potential changes, and it can be determined whether or not there is a doc.
- step S13 If there is no dog engagement of the even gear, the shift control unit 110 proceeds to step S13 after dog engagement of the even gear in step S12. If there is even-numbered gear dog engagement in step S11, the process proceeds to step S13.
- step S13 the shift control unit 110 engages the even-numbered clutch, performs a final retreat operation for changing the torque transmission path, and ends this flow.
- step S21 the shift control unit 110 determines whether or not the odd-numbered gear on the normal side is engaged.
- step S23 If there is no dog engagement of the odd gear, the shift control unit 110 shifts to step S23 after dog engagement of the odd gear in step S22. If there is an odd-numbered gear dog at step S21, the process proceeds to step S23.
- step S23 the shift control unit 110 engages the odd-numbered clutch, performs a final retreat operation for changing the torque transmission path, and ends this flow.
- the dog insertion from the final retracting operation is not only difficult to enter the dog, but also causes a shock if the dog is forced.
- step S31 the shift control unit 110 engages both the next-stage clutch and the previous-stage clutch, and finally changes the torque transmission path. The save operation is performed and this flow ends.
- the shift control unit 110 determines that the operation failure of the next-stage clutch is fixed, the next-stage clutch fails, and the previous-stage clutch fails. If the front gear is disengaged, the front-stage side clutch torque capacity is controlled to a predetermined value after the front-stage gear is engaged, and the BTL operates according to predetermined conditions to engage the front-stage clutch. To do. In other words, if the odd-numbered stage clutch is faulty, it is determined whether the even-numbered stage gear is engaged. If the even-numbered stage gear is not engaged, the even-numbered stage clutch is engaged after the even-numbered stage gear is engaged. If there is a failure, it is determined whether the odd-numbered gear is engaged, and if the odd-numbered gear is not engaged, the odd-numbered clutch is engaged after engaging the odd-numbered gear and the torque transmission path is changed. The final save operation is performed.
- double engagement is realized by BTL and it is safe. However, if the engagement side clutch is fixed and the gear is disengaged, double engagement cannot be achieved. In the present embodiment, it is determined whether the clutch is fixed, the dog is reinserted, and the release side clutch is reengaged.
- the release-side clutch can be connected to provide sufficient torque. Can be transmitted, and the influence of the vehicle due to the clutch failure can be minimized.
- the torque required for engaging the engine speed on the release side is set to be engaged.
- the shift control unit 110 calculates the required release-side clutch torque capacity based on the rotational speed difference, the target engagement time (about 250 ms: reference value), and the engagement-side clutch torque capacity, and the torque.
- the release side clutch is controlled so that Even if double engagement is realized by BTL, if one of the double engagements is 0, the double engagement is not effectively exhibited.
- torque is applied to one of the double engagements, thereby achieving effective vehicle control.
- control device for a dual clutch transmission is not limited to the above embodiment, and can be implemented with various modifications.
- the present invention can also be realized by software.
- the algorithm of the control method of the dual clutch transmission according to the present invention is described in a program language, the program is stored in a memory, and is executed by a control unit of a motorcycle on which the dual clutch transmission is mounted.
- the function similar to that of the control device for a double clutch transmission according to the present invention can be realized.
- the shift control unit 110 used in the description of the above embodiment is typically realized by using an LSI or the like that is an integrated circuit.
- Each function of the shift control unit 110 may be individually made into one chip, or may be made into one chip so as to include a part or all of the functions.
- LSI here, it may be referred to as IC, system LSI, super LSI, or ultra LSI depending on the degree of integration.
- the control apparatus for a dual clutch transmission and the control method for a dual clutch transmission according to the present invention can minimize the behavior of a clutch having a malfunction in a vehicle or the like having a dual clutch transmission. It has an effect and is useful as a shift control device in a motorcycle equipped with a twin clutch type transmission.
- Control system 70 Transmission 74 1st clutch 75 2nd clutch 77 1st clutch actuator 78 2nd clutch actuator 110 Shift control part 200 Engine control part 300 Control part 700 Shift mechanism 701 Shift mechanism
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Fluid Mechanics (AREA)
- Automation & Control Theory (AREA)
- Transportation (AREA)
- Control Of Transmission Device (AREA)
Abstract
複式クラッチ変速機をもつ車両等に於いて、クラッチが故障した場合に、その挙動を最小限に抑えること。変速制御部(110)は、次段側のクラッチの動作不動を固着として判定し、次段側のクラッチが故障し、前段側のギアが抜けている場合は、前段側のギアを入れた後、前段側のクラッチトルク容量を所定値に制御し、且つ、バックトルクリミッタが、所定条件により動作して前段側のクラッチを係合する。つまり、奇数段クラッチが故障の場合は、偶数段ギアのドグ入りを判定し、偶数段ギアがドグ入りしていないとき、偶数段ギアのドグ入れ後、偶数段クラッチをエンゲージし、偶数段クラッチが故障の場合は、奇数段ギアのドグ入りを判定し、奇数段ギアがドグ入りしていないとき、奇数段ギアのドグ入れ後、奇数段クラッチをエンゲージして、トルクの伝達経路の変更の最終退避動作を行う。
Description
本発明は、複数のクラッチを有する変速機である複式クラッチ変速機の制御装置及び複式クラッチ変速機の制御方法に関する。
従来、自動車に搭載され、自動車における迅速な変速動作を可能にするために複数のクラッチを備えた複式クラッチ変速機(以下では、単に「変速機」とも称することもある)と、これを制御する制御装置(例えば、特許文献1、特許文献2参照)とが知られている。
この変速機は、エンジンと2系統の各入力軸の間に配設され、それぞれ駆動力の伝達又は遮断が可能な複数のクラッチと、2系統の入力軸と変速機出力軸(以下、単に「出力軸」と称する)との間を、シフタの選択操作によって選択的に連結する2系統(例えば、奇数変速段群と偶数変速段群の2系統)に分かれたギア対と、を有する。
この変速機では、一方のクラッチを締結することによって一方のクラッチに連結され且つシフタにより選択した変速段群のギア対に動力を伝達している間、他方のクラッチを締結状態にしつつ、シフタの選択によって他方のクラッチに対応する変速段群のギア対を動力が伝達されない中立状態にしておくことができる。すなわち、クラッチ双方を締結した状態で、シフタの選択操作によって、選択した所望の変速段のギア対を介して出力軸から駆動輪に動力伝達を行うことができる。
また、変速の際には、複数のクラッチのうち、動力伝達を行っていない変速段群の伝動系に係わる他方のクラッチを解放し、次いで、この他方のクラッチに連結される入力軸を有する伝達系統のギア対を選択して目標変速段に投入した後、動力伝達中の一方のクラッチを解放しながら、他方のクラッチを締結する。
すなわち、従来の複式クラッチ変速機は、選択中の変速段(「前段」ともいう)から目標変速段(「次段」ともいう)への変速する場合、制御装置によって、動力伝達中のクラッチを解放しつつ、次の変速段(次段)のための動力を伝達するクラッチを締結するといったクラッチを同時に動作した掛け替えを、両伝達系統のギア対を繋げた状態で行う。
特許文献1及び特許文献2に示すように複数のクラッチを同時に動作させて掛け替える従来の複式クラッチ変速機の制御では、掛け替えによる変速ショック(車速変化、ピッチング等を含む)を極力回避するため、同時に動作させるクラッチのトルク容量合計値を、クラッチ掛け替え中に於いて常に、クラッチ部分におけるエンジントルク値などの目標値にする必要がある。
以下では、現在使用中であり、且つ、掛け替えられるクラッチをリリース側のクラッチと称し、変速後の締結状態においてトルクを伝達するクラッチをエンゲージ側のクラッチと称する。
また、特許文献3には、変速装置側から逆向きに伝達されるバックトルクを解放してクランク軸側に過大なバックトルクが伝達されるのを阻止するようにしたバックトルクリミッタ(以下、適宜BTLと略称する)を備えるクラッチ装置が記載されている。
ところで、クラッチには、現在の状態から動かない、動作不動が発生することがある。この動作不動は、クラッチ固着(以下「固着」という)と呼ばれることがある。前記固着とは、クラッチが貼り付いているのではなくて、その状態から動かない、動作不動をいうものとする。例えば、クラッチを切った状態では切った状態そのままとなり、クラッチを繋いだ状態では繋いだ状態のままで変わらない。前記固着は、リリース側のクラッチとエンゲージ側のクラッチとのいずれにも発生する可能性がある。リリース側のクラッチに固着が発生した場合、BTLに依って二重係合になるので、ブレーキがかかり、特に大きな挙動は発生しない。
しかしながら、BTL付きクラッチを備える複式クラッチ変速機において、エンゲージ側のクラッチが故障(機械的固着)し、リリース側ギアが抜けている場合、両方のクラッチを繋げる制御を実施しても十分なトルクを伝達できない場合がある。
エンゲージ側のクラッチが固着した場合、最終退避動作しようとしても、ギアを抜いてしまっている場合(例えば、2速から1速にダウンしている場合)、イナーシャフェーズに入ると、前段側(ここでは2段側)のギアを抜いて、リリース側を再係合しようとしてもできない。すなわち、ギアを抜いた後に、最終退避動作しても、クラッチは繋げるものの、ギアは抜けているので繋がらない。つまり、ドクが抜けており、エンゲージ側のクラッチは固着しているので、繋げにいっても、ドクが抜けておりトルク伝達はできない。但し、パワーオフダウンシフト状態のときであるため、そのまますぐに問題は起きない。しかし、その後加速しようとしたときに、エンゲージ側のトルクが少ない状態になるので、駆動が抜けたような感覚となる。
本発明の目的は、複式クラッチ変速機をもつ車両等に於いて、クラッチが故障した場合に、その挙動を最小限に抑えることができる複式クラッチ変速機の制御装置及び複式クラッチ変速機の制御方法を提供することである。
本発明の複式クラッチ変速機の制御装置は、奇数段の変速ギアを有する第1主軸と、エンジントルクを前記第1主軸に伝達又は遮断する第1クラッチと、偶数段の変速ギアを有する第2主軸と、前記エンジントルクを前記第2主軸に伝達又は遮断する第2クラッチと、前記奇数段の変速ギア及び前記偶数段の変速ギアに歯合する各被動側ギアを有し、且つ、前記第1主軸又は前記第2主軸からの回転を駆動輪に伝達する出力軸と、変速機側から逆向きに伝達されるバックトルクを解放してクランク軸側に過大なバックトルクが伝達されるのを阻止するバックトルクリミッタと、クラッチの掛け替え期間に前記第1クラッチ及び前記第2クラッチを制御することによってトルクの伝達経路を変更して変速段を前段から次段に切り換える変速制御手段と、を備え、前記変速制御手段は、前記次段側のクラッチの動作不動を固着として判定し、前記次段側のクラッチが故障し、前段側のギアが抜けている場合は、前記前段側のギアを入れた後、前記前段側のクラッチトルク容量を所定値に制御し、且つ、前記バックトルクリミッタが、所定条件により動作して前記前段側のクラッチを係合する構成を採る。
本発明の複式クラッチ変速機の制御方法は、奇数段の変速ギアを有する第1主軸と、エンジントルクを前記第1主軸に伝達又は遮断する第1クラッチと、偶数段の変速ギアを有する第2主軸と、前記エンジントルクを前記第2主軸に伝達又は遮断する第2クラッチと、前記奇数段の変速ギア及び前記偶数段の変速ギアに歯合する各被動側ギアを有し、且つ、前記第1主軸又は前記第2主軸からの回転を駆動輪に伝達する出力軸と、変速機側から逆向きに伝達されるバックトルクを解放してクランク軸側に過大なバックトルクが伝達されるのを阻止するバックトルクリミッタと、クラッチの掛け替え期間に前記第1クラッチ及び前記第2クラッチを制御することによってトルクの伝達経路を変更して変速段を前段から次段に切り換える複式クラッチ変速機の制御方法であって、イナーシャフェーズにおいて、前記次段側のクラッチの動作不動を固着として判定し、前記次段側のクラッチが故障し、前段側のギアが抜けている場合は、前記前段側のギアを入れた後、前記前段側のクラッチトルク容量を所定値に制御し、且つ、前記バックトルクリミッタが、所定条件により動作して前記前段側のクラッチを係合するようにした。
本発明によれば、複式クラッチ変速機をもつ車両等に於いて、クラッチが故障した場合に、その挙動を最小限に抑えることができる。
以下、本発明の実施の形態について、図面を参照して詳細に説明する。
本実施の形態に係る複式クラッチ変速機の制御装置は、複数のクラッチを有する複式クラッチ変速機を制御して、好適に変速段の切り替えを行うものである。なお、本実施の形態では、制御装置及びこれに制御される複式クラッチ変速機が搭載される車両を自動二輪車として説明するが、これに限らず、制御装置及びこれに制御される複式クラッチ変速機を、自動車などの四輪車、3輪車に搭載してもよい。また、複式クラッチ変速機は、発進時のクラッチ操作とシフトチェンジのタイミングの決定を運転者に任せ、残りの制御を自動化した半自動の変速機であってもよいし、全自動の変速機であってもよい。
まず、図1を用いて本発明に係る複式クラッチ変速機の制御装置により制御される複式クラッチ変速機の概要について説明する。
図1は、本発明の一実施の形態に係る複式クラッチ変速機の制御装置により制御される複式クラッチ変速機70の要部構成を示す模式図である。
図1に示す複式クラッチ変速機(以下、「変速機」という)70は、BTL付きDCT(Dual Clutch Transmission)であり、複数のクラッチ(第1クラッチ74及び第2クラッチ75)を交互に切り替えることによって、奇数段或いは偶数段の変速ギアへの駆動力の伝達を可能とする。
BTLは、変速機側から逆向きに伝達されるバックトルクを解放してクランク軸側に過大なバックトルクが伝達されるのを阻止する。
図1に示すように変速機70は、エンジンのクランクシャフト60に接続され、クランクシャフト60から伝達されるトルクを可変して図示しない後輪側に伝達する変速機構700と、変速機構700における可変動作を行うシフト機構701とを有する。なお、クランクシャフト60は、自動二輪車において、車両の前後方向と直交する方向に、且つ、略水平(横方向)に配置されている。
クランクシャフト60は、複数のクランクウェブ61を有し、これら複数のクランクウェブ61のうち、クランクシャフト60の一端部及び他端部に配置されるクランクウェブ61a、61bは、それぞれの外周にはギア溝が形成された外歯歯車である。
クランクウェブ61aは、第1クラッチ74における第1のプライマリドリブンギア(「第1入力ギア」ともいう)40と歯合している。この歯合により、クランクシャフト60の一端部のクランクウェブ61aから第1入力ギア40に伝達される動力は、第1クラッチ74を介して、クランクシャフト60の一端部側から変速機70の第1メインシャフト710に伝達される。
また、クランクウェブ61bは、第2クラッチ75における第2のプライマリドリブンギア(「第2入力ギア」といもいう)50と歯合している。この歯合により、クランクシャフト60の他端部のクランクウェブ61bから第2入力ギア50に伝達される動力は、クランクシャフト60の他端部側から第2メインシャフト720に伝達される。
変速機構700は、クランクシャフト60と平行に配置される第1メインシャフト(第1主軸部)710、第2メインシャフト(第2主軸部)720及びドライブシャフト(出力軸)730と、第1クラッチ74と、第2クラッチ75と、各シャフト710~730間の動力伝達を行う各ギア81~86、711、712、721、722、731、732と、ドライブスプロケット(以下「スプロケット」という)76、第1及び第2クラッチアクチュエータ77、78を有する。
変速機構700では、第1及び第2メインシャフト710、720に伝達される動力は、変速段を構成する各ギア81~86、711、712、721、722、731、732を適宜選択して、車両後方に配置されたドライブシャフト730に伝達される。ドライブシャフト730の一端部(左側端部)にはスプロケット76が固定されている。このスプロケット76には、図示しない後輪の回転軸に設けられギアに巻回されたドライブチェーンが巻回されている。スプロケット76が、ドライブシャフト730の回転に伴って回転することによって、図示しないドライブチェーンを介して、変速機70からの駆動力を駆動輪である後輪に伝達する。言い換えれば、エンジンで発生したトルクは、第1クラッチ74又は第2クラッチ75、各変速段に対応した所定ギア列を経由して、ドライブシャフト730から出力されて、後輪(駆動輪)を回転させる。
なお、第1メインシャフト710において、奇数段のギア(各ギア81、83、85、711、712、731)を介してドライブシャフト730に出力する駆動力の伝達部位と、第2メインシャフト720において、偶数段のギア(各ギア82、84、86、721、722、732)を介してドライブシャフト730に出力する駆動力の伝達部位とは、略同径の外径である。また、第1メインシャフト710の駆動力の伝達部位と、第2メインシャフト720の駆動力の伝達部位とは、同心円上で重なることなく配置されている。この変速機構700では、互いに同径の外径を有する第1メインシャフト710及び第2メインシャフト720が同一軸線上に左右に並べて配設され、それぞれ独立で回動する。
第1メインシャフト710は、第1クラッチ74に連結されており、第2メインシャフト720は、第2クラッチ75に連結されている。
第1メインシャフト710上には、奇数段を構成する変速ギア711、85、712が配設されている。具体的には、第1メインシャフト710上に、第1クラッチ74が接続される基端側から順に、固定ギア(1速対応ギア)711、5速ギア85及びスプラインギア(3速対応ギア)712が配設されている。
固定ギア711は、第1メインシャフト710に一体的に形成され、第1メインシャフト710とともに回転する。固定ギア711は、ドライブシャフト730の1速ギア(被動側ギア)81に歯合しており、ここでは、1速対応ギアとも称する。
5速ギア85は、第1メインシャフト710上において、1速対応の固定ギア711と、3速対応のスプラインギア712との間に互いに離間した位置に、軸方向への移動を規制された状態で、第1メインシャフト710の軸周りに回転自在に取り付けられている。
5速ギア85は、ドライブシャフト730のスプラインギア(被動側ギアとしての5速対応ギア)731に歯合している。
スプラインギア712は、第1メインシャフト710上に、当該第1メインシャフト710の先端側、つまり、第1クラッチ74から離間する側の端部側に、第1メインシャフト710の回転に伴い回転するとともに、軸方向に移動自在に取り付けられている。
具体的には、スプラインギア712は、第1メインシャフト710における先端部の外周に軸方向に沿って形成されたスプラインによって、第1メインシャフト710に対して回動を規制されつつ、軸方向にはスライド移動自在に取り付けられ、ドライブシャフト730の3速ギア(被動側ギア)83に歯合している。このスプラインギア712は、シフトフォーク142に連結され、シフトフォーク142の移動によって第1メインシャフト710上を軸方向に移動する。なお、スプラインギア712は、ここでは、3速対応ギアとも称する。
スプラインギア712は、第1メインシャフト710上を5速ギア85側に移動して5速ギア85と係合し、第1メインシャフト710上における5速ギア85の軸回りの回動(空転)を規制する。スプラインギア712が5速ギア85に係合することにより、5速ギア85を第1メインシャフト710に固定し、第1メインシャフト710の回転とともに一体的に回転可能にさせる。
一方、第2メインシャフト720上には、偶数段を構成する変速ギア721、86、722が配置されている。具体的には、第2メインシャフト720上に、第2クラッチ75が接続される基端部側から順に、固定ギア(2速対応ギア)721、6速ギア86及びスプラインギア(4速対応ギア)722が配設されている。
固定ギア721は、第2メインシャフト720に一体的に形成され、第2メインシャフト720とともに回転する。固定ギア721は、ドライブシャフト730の2速ギア(被動側ギア)82に歯合しており、ここでは、2速対応ギアとも称する。
6速ギア86は、第2メインシャフト720上において、2速対応の固定ギア721と、4速対応ギアであるスプラインギア722との間に互いに離間した位置に、軸方向への移動を規制された状態で、第2メインシャフト720の軸周りに回転自在に取り付けられている。この6速ギア86は、ドライブシャフト730のスプラインギア732(被動側ギアとしての6速対応ギア)に歯合している。
スプラインギア(「4速対応ギア」ともいう)722は、第2メインシャフト720上に、当該第2メインシャフト720の先端側、つまり、第2クラッチ75から離間する側の端部側に、第2メインシャフト720の回転に伴い回転するとともに、軸方向に移動自在に取り付けられている。
具体的には、スプラインギア722は、第2メインシャフト720における先端部の外周に軸方向に沿って形成されたスプラインによって、第2メインシャフト720に対する回動を規制されつつ、軸方向にはスライド移動自在に取り付けられ、ドライブシャフト730の4速ギア(被動側ギア)84に歯合している。このスプラインギア722は、シフトフォーク143に連結され、シフトフォーク143の移動によって第2メインシャフト720上を軸方向に移動する。
スプラインギア722は、第2メインシャフト720上を6速ギア86側に移動して6速ギア86と係合し、第2メインシャフト720上における6速ギア86の軸回りの回動(空転)を規制する。スプラインギア722が6速ギア86に係合することにより、6速ギア86を第2メインシャフト720に固定し、第2メインシャフト720の回転とともに一体的に回転可能にさせる。
一方、ドライブシャフト730には、第1クラッチ74側から順に1速ギア81、スプラインギア(5速対応ギア)731、3速ギア83、4速ギア84、スプラインギア(6速対応ギア)732、2速ギア82及びスプロケット76が配置されている。
ドライブシャフト730において、1速ギア81、3速ギア83、4速ギア84及び2速ギア82は、ドライブシャフト730の軸方向における移動が禁止された状態でドライブシャフト730を中心に回転自在に設けられている。
スプラインギア(「5速対応ギア」ともいう)731は、ドライブシャフト730に対して、スプライン係合によって回動を規制されつつ、軸方向にはスライド移動自在に取り付けられている。すなわち、スプラインギア731は、ドライブシャフト730に対してスラスト方向に移動自在で且つ、ドライブシャフト730とともに回転するように取り付けられている。このスプラインギア731は、シフト機構701のシフトフォーク141に連結され、シフトフォーク141の可動によってドライブシャフト730上を軸方向に移動する。
スプラインギア(「6速対応ギア」ともいう)732は、ドライブシャフト730に対して、スプライン係合によって回動を規制されつつ、軸方向にはスライド移動自在に取り付けられている。すなわち、スプラインギア(6速対応ギア)732は、ドライブシャフト730に対してスラスト方向に移動自在で且つ、ドライブシャフト730とともに回転するように取り付けられている。このスプラインギア732は、シフト機構701のシフトフォーク144に連結され、シフトフォーク144の可動によってドライブシャフト730上を軸方向に移動する。
なお、スプロケット76は、ドライブシャフト730において、第2クラッチ75側に位置する端部に固定されている。
これらスプラインギア712、722、731、732は、変速ギアとしてそれぞれ機能するとともにドグセレクタとして機能している。具体的には、スプラインギア712、722、731、732と、軸方向で隣り合う各変速ギアとの互いの対向面同士には、互いに嵌合する凹凸部が形成され、凹凸部が嵌合することによって両ギアは一体的に回動する。
このように、スプラインギア712、722、731、732は、連結されたシフトフォーク141~144の駆動によって軸方向に移動されることによって、軸方向で隣り合う各変速ギア(1速ギア81~6速ギア86)のそれぞれにドグ機構により連結される。
第1クラッチ74及び第2クラッチ75は、第1メインシャフト710と第2メインシャフト720とを車両の両側方から挟むように、車両の前後方向と直交する方向(ここでは左右方向)に離間して配置されている。
第1クラッチ74は、クランクシャフト60と第1メインシャフト710との間に設けられている。第1クラッチ74は、締結状態において、クランクシャフト60を介したエンジンからの回転動力を第1メインシャフト710に伝達し、他方、解放状態においてエンジンから第1メインシャフト710への回転動力を遮断する。第1メインシャフト710に伝達されたトルクは、奇数段のギア(各ギア81、83、85、711、712、731)において所望のギア対(第1メインシャフト710上のギア711、85、712と、これらギアに対応するドライブシャフト730上のギア81、731、83の対)を介してドライブシャフト730から出力される。なお、第1クラッチ74は周知の多板式構造の摩擦クラッチである。
第1クラッチ74は、制御部の変速制御部(図2で示すTCU110)によって制御される第1クラッチアクチュエータ77の第1プルロッド77aに連結されている。第1クラッチ74では、第1プルロッド77aが第1クラッチ74から離間する方向に引かれると、複数のクラッチプレートと複数のフリクションプレートが互いに離間され、第1入力ギア40から第1メインシャフト710へのトルクの伝達が切断、つまり、第1メインシャフト710への動力伝達が遮断される。一方、第1プルロッド77aが第1クラッチ74側に移動すると、複数のクラッチプレートと複数のフリクションプレートが互いに密着して、第1メインシャフト710へトルクを伝達する、つまり、奇数ギア(1速ギア81、3速ギア83及び5速ギア85)群を有する奇数ギア段の動力伝達を行う。
また、第2クラッチ75は、クランクシャフト60と第2メインシャフト720との間に設けられ、第1クラッチ74と同様に、多板式の摩擦クラッチである。第2クラッチ75は、締結状態において、クランクシャフト60を介したエンジンからの回転動力を第2メインシャフト720に伝達し、他方、解放状態においてエンジンから第2メインシャフト720への回転動力を遮断する。第2メインシャフト720に伝達されたトルクは、偶数段のギア(各ギア82、84、86、721、722、732)において所望のギア対(第2メインシャフト720上のギア721、86、722と、これらギアに対応するドライブシャフト730上のギア82、732、84の対)を介してドライブシャフト730から出力される。
第2クラッチ75は、第1クラッチ74と同様に、周知の多板式構造のクラッチであり、制御部の変速制御部110によって制御される第2クラッチアクチュエータ78の第2プルロッド78aに連結されている。第2クラッチ75では、第2プルロッド78aが第2クラッチ75から離間する方向に引かれると、複数のクラッチプレートと複数のフリクションプレートが互いに離間され、第2入力ギア50から第2メインシャフト720へのトルクの伝達が切断、つまり、第2メインシャフト720への動力伝達が遮断される。一方、第2プルロッド78aが第2クラッチ75側に移動すると、複数のクラッチプレートと複数のフリクションプレートが互いに密着して、第2メインシャフト720へトルクを伝達する、つまり、偶数ギア(2速ギア82、4速ギア84及び6速ギア86)群を有する偶数ギア段の動力伝達を行う。
このように第1クラッチ74及び第2クラッチ75は、第1クラッチアクチュエータ77及び第2クラッチアクチュエータ78を介して制御部300(詳細には図2に示すTCU110)によって駆動制御される。
なお、変速機構700において各ギア81~86、711、712、721、722、731、732に対して行われるギアシフトは、シフト機構701におけるシフトカム14の回転によって可動するシフトフォーク141~144によって行われる。
シフト機構701は、シフトフォーク141~144と、シフトカム14と、シフトカム14を回転駆動させるシフトカム駆動装置800と、モータ140と、モータ140とカム駆動装置800とを連結して、モータ140の駆動力をシフトカム駆動装置800に伝達する伝達機構41とを有する。
シフトフォーク141~144は、各スプラインギア731、712、722,732とシフトカム14との間に架設されており、互いに、第1及び第2メインシャフト71、72、及びドライブシャフト730、シフトカム14の軸方向で離間して配置されている。これらシフトフォーク141~144は互いに平行するように並べられ、それぞれがシフトカム14の回転軸の軸方向に移動自在に配置されている。
シフトフォーク141~144は、基端側のピン部を、シフトカム14の外周に形成された4本のカム溝14a~14dにおけるそれぞれの溝内に、移動自在に配置させている。すなわち、シフトフォーク141~144は、シフトカム14を原節とした従節をなしており、シフトカム14のカム溝14a~14dの形状によって第1及び第2メインシャフト71、72、及びドライブシャフト730の軸方向にスライド移動する。このスライド移動によって、先端部に連結される各スプラインギア731、712、722,732は、各々の内径に挿通されている各軸上を軸方向にそれぞれ移動する。
シフトカム14は、円筒状をなし、回転軸が第1メインシャフト71、第2メインシャフト72及びドライブシャフト730と平行になるように配置されている。
シフトカム14は、伝達機構41を介してシフトカム駆動装置800に伝達されるモータ140の駆動力によって回転駆動し、この回転によって、カム溝14a~14dの形状に応じてシフトフォーク141~144のうち少なくとも一つを、シフトカム14の回転軸の軸方向に可動させる移動させる。
このようなカム溝14a~14dを有するシフトカム14の回転に追従して可動するシフトフォーク141~144によって、その移動したシフトフォークに連結されるスプラインギアが移動して、変速機70(変速機構700)のギアシフトが行われる。
このように構成された変速機70では、クランクシャフト60からのエンジンの駆動力が、第1クラッチ74及び第2クラッチ75の動作と、これに対応するシフト機構701の動作とによって、第1メインシャフト710及び第2メインシャフト720を有する独立の2系統の一方を介して、ドライブシャフト730を介して出力される。このドライブシャフト730の回転とともにドリブンスプロケット76が回転し、チェーンを介して後輪を回転する。
この変速機70における第1クラッチ74、第2クラッチ75、シフトフォーク141~144を駆動するシフト機構701は、制御システム10(図2参照)における制御部300によって制御される。
図2は、本発明の一実施の形態に係る複式クラッチ変速機の制御装置を備える自動二輪車の制御システムを示す模式図である。なお、図2では、エンジン本体は図示省略している。
図2に示す制御システム(制御装置)10において、制御部300は、TCU(Transmission Control Unit、「変速制御部」とも称する)110とECU(Engine Control Unit、「エンジン制御部」とも称する)200とを有し、これら変速制御部110とエンジン制御部200との間では、CAN通信などのデータ通信により各種のデータが情報交換される。
制御システム10は、変速制御部110及びエンジン制御部200に加えて、アクセル開度センサ(Accelerator Position Sensor)101と、クラッチ位置センサ(Clutch Angle Sensor)102、103と、シフト位置センサ(変速段検出部)105と、シフトスイッチ106と、第1クラッチアクチュエータ77と、第2クラッチアクチュエータ78と、シフト機構701と、出力軸回転数検出センサ(「車速センサ」という)111と、を有する。
アクセル開度センサ101は、運転者のアクセル操作量APSを検出して変速制御部110に出力する。
クラッチ位置センサ102、103は、それぞれクラッチの位置、つまり、第1アクチュエータ77による第1クラッチ74の係合状態、第2アクチュエータ78による第2クラッチ75の係合状態を検出して、変速制御部110に出力する。具体的には、クラッチ位置センサ102は、モータ77bの回転角から、第1プルロッド77aにより調整される複数のクラッチプレートと複数のフリクションプレートとの離間量、つまり、第1クラッチ74における係合状態を変速制御部110に出力する。クラッチ位置センサ103もクラッチ102と同様に構成され同様の機能を有しており、第2クラッチ75における複数のクラッチプレートと複数のフリクションプレートとの間の離間量、第2クラッチ75における係合状態を変速制御部110に出力する。
車速センサ(出力軸回転数センサ)111は、変速機70のドライブシャフト730における回転速度(ドライブシャフト回転数:車速に相当)を検出して変速制御部110及びエンジン制御部200に出力する。
シフト位置センサ105は、シフト機構701のモータ140の動作により所定変速段を形成しているギア位置(1速~6速、ニュートラル)を検出して変速制御部110に出力する。
シフトスイッチ106は、図示しないシフトアップボタン及びシフトダウンボタンを有し、これらシフトアップボタン又はシフトダウンボタンの押下によって、変速機70が変速動作を行う。
すなわち、運転者がシフトスイッチ106のシフトアップボタン又はシフトダウンボタンを押下することによって、そのことを示す信号(以下、シフト信号と称する)がシフトスイッチ106から制御部300へ出力される。制御部300は、入力されるシフト信号に基づいて、第1及び第2クラッチアクチュエータ77,78ならびにモータ140を制御する。この制御によって、第1及び第2クラッチ74,75のいずれか一方、又はクラッチ74、75の両方が切断されるとともにシフトカム14が回転し、変速機0(詳細には、変速機構700)のギアシフトを行う。
本実施の形態では、シフトアップボタンが運転者に押下されることによって、変速機70ではアップシフト動作が実行され、シフトダウンボタンが運転者に押下されることによって、変速機70ではシフトダウン動作が実行される。
第1クラッチアクチュエータ77は、変速制御部110からの制御指令に基づいて、第1クラッチ74において、第1メインシャフト710に作用する係合力、つまり、第1クラッチ74から第1メインシャフト710への伝達トルクを調整する。これにより、エンジンから第1メインシャフト710への動力の伝達或いは遮断が行われて、車両は発進したり停止したりする。
本実施の形態の第1クラッチアクチュエータ77は、油圧によって第1クラッチ74の伝達トルクを調整する。第1クラッチアクチュエータ77では、変速制御部110により駆動制御されるモータ77bがリンク77cを介してマスターシリンダ77dを駆動してスレイブシリンダ77eに作動油を送出させる。スレイブシリンダ77eでは流入する作動油によって、第1クラッチ74側に付勢された第1プルロッド77aを第1クラッチ74側から離間する方向に移動させる。これにより、第1クラッチ74では係合力、つまり、伝達トルクを低下させて、エンジン(詳細には、クランクシャフト60)から第1メインシャフト710への動力を遮断する。このように第1プルロッド77aが第1クラッチ74から離間する方向に引っ張られるように移動することによって、第1クラッチ74は解放状態となる。また、モータ77bの駆動によって、第1プルロッド77aは、第1クラッチ74側から離間する方向への引っ張り状態を解除され、第1クラッチ74側に移動する。これにより、第1クラッチ74の締結力(係合力)が増加していき、エンジンから第1メインシャフト710への伝達トルクが大きくなる。このとき、第1クラッチ74は、エンジンから第1メインシャフト710への伝達トルクがある状態、つまり、締結状態となる。
第2クラッチアクチュエータ78は、変速制御部110からの制御指令に基づいて、第2クラッチ75において第2メインシャフト720に作用する係合力、つまり、第1クラッチ74から第1メインシャフト710への伝達トルクを調整する。これにより、エンジンから第2メインシャフト720への動力の伝達或いは遮断が行われて、車両は発進したり停止したりする。
なお、第2クラッチアクチュエータ78は、第1クラッチアクチュエータ77と同様に構成され、第1クラッチアクチュエータ77が第1クラッチ74を駆動する動作と同様の動作で、第2クラッチ75を駆動する。
さらに、第1クラッチアクチュエータ77及び第2クラッチアクチュエータ78は、走行中に、第1クラッチ74及び第2クラッチ75を動作させることによって、変速機内部のトルク伝達経路を切り替えて変速動作を行う。
なお、これら第1アクチュエータ77及び第2アクチュエータ78は、ここでは、油圧式のものとしたが、クラッチに作用する係合力を調整する構成であれば、電気式等、どのように構成されてよい。
シフト機構701は、ギアを選択する装置であり、変速制御部110からの制御指令に基づいて、変速機に搭載されている各シフトフォーク141~144(図1参照)を選択的に作動させて、変速機入力軸である第1メインシャフト710及び第2メインシャフト720の少なくとも一方と、ドライブシャフト730とを連結状態とし、所定変速段を形成する。
スロットル開度センサ121は、電子制御スロットル130のスロットルバルブ131の開度を検出して、その信号を変速制御部110に出力する。
エンジン回転数センサ123は、エンジンの回転速度(具体的にはクランクシャフト60の回転数)Neを検出し、その信号を変速制御部110に出力する。
なお、スロットル開度センサ121からのスロットルバルブ131の開度と、エンジン回転数センサ123からのエンジンの回転速度Neとは、アクセル開度センサ101からの信号等とともに、CAN通信を介して変速制御部110からエンジン制御部200に入力される。すなわち、エンジン制御部200には、変速制御部110に入力される情報が入力され、変速制御部110にも、エンジン制御部200に入力される情報がCAN通信を介して入力される。すなわち、変速制御部110はエンジン制御部200とともに、互いに入力される情報を共有している。このように入力される情報を用いて、エンジン制御部200は、エンジンの駆動を制御している。
変速制御部110及びエンジン制御部200は、入力される情報を用いて、車両の各部を制御する。
エンジン制御部200は、変速制御部110から、エンジンのトルクを決定する要求トルク指令を受けて、エンジンのトルクを制御する。
エンジン制御部200は、受信した要求トルク指令に基づいて電子制御スロットル130の作動、あるいはイグニッション127を用いて点火時期を変化させることによってエンジンの発生トルクを制御する。
エンジン制御部200は、電子制御スロットル130と、エンジンのインジェクタ133と、イグニッション127とが接続されており、これら接続される各部を用いて、エンジンを制御する。なお、エンジン制御部200には、接続される各センサから、吸気温、水温、吸気負圧などの情報が入力される。
電子制御スロットル130は、エンジン制御部200からの制御指令に基づいて、モータ132を駆動して、エンジン吸気系に設けられたスロットルバルブ131の開度を調整する。
変速制御部110には、二輪車に設けられた各センサが接続されており、これら各センサから、アクセル開度、エンジン回転数、第1メインシャフト710の回転数(図2では「奇数段メイン軸回転数」と示す)、第2メインシャフト720の回転数(図2では「偶数段メイン軸回転数」と示す)、シフトカム14の回転角、ドライブシャフト730の回転数、油温、第1クラッチ74の位置、第2クラッチ75の位置、電磁スロットル弁の位置などの情報が入力される。また、変速制御部110には、図示しないサイドスタンドスイッチからのサイドスタンドスイッチ(サイドスタンドSW)情報、ニュートラルスイッチからのニュートラルスイッチ(ニュートラルSW)情報が入力される。
また、変速制御部110は、入力される信号に基づいて、所定のタイミングで、第1クラッチアクチュエータ77、第2クラッチアクチュエータ78及びシフト機構701の動作を制御する。これら第1クラッチアクチュエータ77、第2クラッチアクチュエータ78及びシフト機構701の動作によって、第1クラッチ74、第2クラッチ75と各変速ギア段とが動作されて変速段の切り替え動作が行われる。
具体的には、変速制御部110は、シフトスイッチ106からの変速段指令を受けて、入力される各情報(アクセル開度、エンジン回転数、第1メインシャフト710の回転数、第2メインシャフト720の回転数、ドライブシャフト730の回転数及びシフトカムの回転角)に基づいて、目標エンジントルクと目標クラッチトルクを算出する。
さらに、変速制御部110は、目標エンジントルク、目標クラッチトルクに基づいて目標スロットル開度、目標シフトカム14の回転角、第1クラッチ74又は第2クラッチ75における目標クラッチ位置を算出する。
この算出結果を用いて変速制御部110は、第1クラッチアクチュエータ77、第2クラッチアクチュエータ78及びシフト機構701の動作を制御して、クラッチ掛け替え期間において、トルク伝達経路の変更する変速段の切り替え動作を行う。変速制御部110は、例えば、変速期間中に、掛け替え後の変速段である次段(目標変速段)のギア対にトルクを伝達する次段側のクラッチを動作して、次段側のクラッチのクラッチトルク容量を目標値に上げた後に、掛け替え前の変速段である前段のギア対にトルクを伝達する前段側のクラッチを動作して、前段側のクラッチのクラッチトルク容量を下げる。これにより、変速機70におけるトルク伝達経路を変更する。
本実施の形態では、変速制御部110は、次段側のクラッチの動作不動を固着として判定し、次段側のクラッチが故障し、前段側のギアが抜けている場合は、前段側のギアを入れた後、前段側のクラッチをエンゲージ(係合)する。
具体的には、変速制御部110は、クラッチの動作不動を固着による故障と判定し、奇数段クラッチが故障の場合は、偶数段ギアのドグ入りを判定し、偶数段ギアがドグ入りしていないとき、偶数段ギアのドグ入れ後、偶数段クラッチを係合し、偶数段クラッチが故障の場合は、奇数段ギアのドグ入りを判定し、奇数段ギアがドグ入りしていないとき、奇数段ギアのドグ入れ後、奇数段クラッチをエンゲージする。また、変速制御部110は、シフト機構701の故障を判定し、シフト機構701が故障している場合は、次段側のクラッチと前段側のクラッチの、双方のクラッチをエンゲージする。これらクラッチのエンゲージは、トルクの伝達経路の変更の最終退避動作となる。
ここで、クラッチ又はシフト機構701の故障判定は、変速する際にエンジン回転数を、次段側の入力軸の回転数に一致させるイナーシャフェーズInti_fにおいて実施される。
ところで、変速期間は、第1クラッチ74或いは第2クラッチ75の動作によってトルク伝達経路を変更する期間であり、トルク伝達準備フェーズ(ドグインフェーズDg_in_fともいう)と、トルク伝達経路変更フェーズ(トルクフェーズTrq_fともいう)と、イナーシャフェーズInti_fと、を有する。
トルク伝達準備フェーズDg_in_fは、トルク伝達準備フェーズDg_in_fより後のフェーズ、例えば、トルク伝達経路変更フェーズTrq_fにおいて即座にクラッチの掛け替え動作を行える状態にする期間である。具体的には、トルク伝達準備フェーズDg_in_fでは、第1クラッチ74及び第2クラッチ75のうちエンゲージ側のクラッチとなるクラッチを、動作指令を受けた際に直ぐにトルク容量を発生させる状態にする。すなわち、このトルク伝達準備フェーズDg_in_fでは、エンゲージ側のクラッチを、係合直前の状態(複数のクラッチプレートと複数のフリクションプレートとが互いに当接する直前の近接した状態)の位置まで移動させる。このクラッチの状態を以下ではクラッチが係合準備位置にある状態ともいう。
本実施の形態の第1及び第2クラッチアクチュエータ77、78において、トルク伝達準備フェーズDg_in_fは、エンゲージ側のクラッチ用クラッチアクチュエータのプルロッドをストロークして、エンゲージ側のクラッチを係合準備位置まで動作する期間ともいえる。
トルク伝達経路変更フェーズTrq_fは、実際にクラッチを動作する、つまり、クラッチを掛け替えることによってトルクの伝達経路を変更する期間であり、実質的な変速期間である。本実施の形態では、トルク伝達経路変更フェーズTrq_fにおいて変速制御部110は、第1クラッチアクチュエータ77及び第2クラッチアクチュエータ78を制御して、クラッチを順次掛け替える。
トルク伝達経路変更フェーズTrq_fでは、先ず、変速制御部110は、エンゲージ側のクラッチを動作して、エンゲージ側のクラッチトルク容量を目標値にした後で、リリース側のクラッチを動作して、リリース側のクラッチトルク容量を目標値にする。
本実施の形態では、エンゲージ側のクラッチにおけるクラッチトルク容量の目標値を、例えば、クラッチ部分に伝達されるエンジントルク分(|Teg|分)とし、リリース側のクラッチトルク容量の目標値を0としている。すなわち、変速制御部110は、エンゲージ側のクラッチを先に動作させて、エンゲージ側のクラッチトルク容量値を0からエンジントルク値とした後で、リリース側のクラッチを、リリース側のクラッチトルク容量値を0となるように動作させて、リリース側のクラッチを解放する。
このトルク伝達経路変更フェーズにおいて、変速制御部110によってそれぞれ動作する、エンゲージ側クラッチのクラッチトルク容量と、リリース側クラッチのクラッチトルク容量との合計は、エンジントルク分(|Teg|)以上であり、且つ、エンジントルク分(|Teg|分)の2倍以下である。
イナーシャフェーズ(「慣性相」ともいう)Inti_fは、入力される回転速度を変速後に実現すべき回転速度近傍に変更しながら回転速度変更に伴うイナーシャの補正を実施する期間である。言い換えれば、イナーシャフェーズInti_fは、変速する際に、エンジン回転数を、変速先の段(次段)側の入力軸(第1メインシャフト710又は第2メインシャフト720)の回転数に一致させる期間である。エンジン回転数と、変速先の入力軸の回転数との差がある場合、|クラッチ伝達トルク(実際に伝達しているトルク)|=クラッチトルク容量(クラッチが伝達できる最大トルク容量)となる。また、エンジン回転数と、変速先の入力軸の回転数との差が無い場合、|クラッチ伝達トルク(実際に伝達しているトルク)|≦クラッチトルク容量(クラッチが伝達できる最大トルク容量)となる。ここでは、イナーシャフェーズInti_fは、パワーオンアップシフト状態では、エンジン回転数を、エンゲージクラッチで合わせる調整を行う。
イナーシャフェーズInti_fは、例えば、パワーオンアップシフト状態では、リリース側からエンゲージ側へのクラッチの掛け替えが完了した後で、変速機の伝達経路において実際に変速が進行し、入力軸(第1又は第2メインシャフト710、720)の回転数を低下させる。すなわち、変速制御部110は、イナーシャフェーズInti_fにおいて、エンゲージ側のクラッチを係合状態にし、エンゲージ側のクラッチを介してドライブシャフト730に動力を伝達させる。一方、このイナーシャフェーズInti_fにおけるリリース側のクラッチは、変速制御部110によって、変速前の変速を行っていたドグを抜くために解放される。イナーシャフェーズInti_fにおけるリリース側のクラッチは、ドグが抜かれてニュートラルの状態(空回り)となった後で、締結される。
このように変速制御部110によって行われる、第1クラッチ74及び第2クラッチ75の動作を含む変速段の切り替え動作は、運転者の変速指令に応じて、4つの変速制御モード(以下「制御モード」とも称する)からモードを選択することによって行われる。
4つの変速制御モードは、車両の加速中におけるダウンシフト、加速中におけるアップシフト、減速中におけるダウンシフト及び減速中におけるアップシフトをそれぞれ行う各変速パターンに応じたモードである。
これら4つの変速制御モードの各制御モードにおける変速期間において、変速制御部110は、第1アクチュエータ77を介して第1クラッチ74の動作を制御したり、第2アクチュエータ78を介して第2クラッチ75の動作を制御したりして変速制御を行う。なお、各制御モードの変速期間は、それぞれトルク伝達準備フェーズDg_in_f、トルク伝達経路変更フェーズTrq_f及びイナーシャフェーズInti_fから構成される。
図3は、変速制御を行う際の制御パターンである制御モード象限を示す図である。図3において、「クラッチ掛け替え」は、トルク伝達経路変更フェーズTrq_fにおけるクラッチ動作を示し、「係合」は、イナーシャフェーズにおける動作を示し、エンゲージ側のクラッチを介して動力が伝達されるクラッチの係合状態を示す。
図3の第1象限が示す制御モード1は、エンジントルクを正負で表す場合のエンジントルク正(パワーオンという)の状態で、且つ、変速段を上げている状態(アップシフト)である。これをパワーオンアップシフト状態という。
このパワーオンアップシフト状態は、例えば、車両走行中に1速から2速へのアップシフトを行うなど、加速中に変速段を上げていく状態である。第1象限が示す制御モード1の変速期間では、トルク伝達準備フェーズDg_in_f、トルク伝達経路変更フェーズTrq_f、イナーシャフェーズInti_fの順に変移する。
図3の第2象限が示す制御モード2は、エンジントルクを正負で表す場合のエンジントルク正(パワーオンという)の状態で、且つ、変速段を下げている状態(ダウンシフト)である。所謂、キックダウン操作による状態であり、この状態を、パワーオンダウンシフト状態という。
このパワーオンダウンシフト状態は、例えば、変速段を低くして駆動輪のトルクを増加させる状態であり、坂道を登る場合など駆動輪への負荷が大きくなる状態である。第2象限が示す制御モード2の変速期間では、第1象限が示す制御モード1と比較して、トルク伝達経路変更フェーズTrq_fとイナーシャフェーズInti_fとが入れ替わる。つまり、第2象限が示す制御モード2の変速期間では、トルク伝達準備フェーズDg_in_f、イナーシャフェーズInti_f、トルク伝達経路変更フェーズTrq_fの順に変移する。
図3の第3象限が示す制御モード3は、エンジントルクを正負で表す場合のエンジントルク負(パワーオフという)の状態で、且つ、変速段を下げる状態(ダウンシフト)である。これをパワーオフダウンシフト状態という。
このパワーオフダウンシフト状態は、例えば、車両走行中に2速から1速へのシフトダウンを行うなど、減速中に変速段を下げていく状態である。第3象限が示す制御モード3の変速期間では、トルク伝達準備フェーズDg_in_f、トルク伝達経路変更フェーズTrq_f、イナーシャフェーズInti_fの順に変移する。
図3の第4象限が示す制御モード4は、エンジントルクを正負で表す場合のエンジントルク負(パワーオフという)の状態で、且つ、変速段を上げている状態(アップシフト)である。これをパワーオフアップシフト状態という。
このパワーオフアップシフト状態は、例えば、キックダウンすることによって加速していき、車速が上がり、アクセルを緩めた状態であり、変速段を高くしつつ、駆動輪への負荷が小さくなる状態である。
第4象限が示す制御モード4の変速期間では、第3象限が示す制御モード3と比較して、トルク伝達経路変更フェーズTrq_fとイナーシャフェーズInti_fとが入れ替わる。つまり、第4象限が示す制御モード4の変速期間では、トルク伝達準備フェーズDg_in_f、イナーシャフェーズInti_f、トルク伝達経路変更フェーズTrq_fの順に変移する。
図4は、クラッチ固着判定方法を説明する図である。図4縦軸にクラッチ位置電圧、横軸にクラッチ動作の経過時間をとる。
本実施の形態では、下記条件1~3がすべて成立した場合、クラッチ固着発生と判定する。
条件1:クラッチ位置目標値とクラッチ実位置との偏差が0.2V以上
条件2:クラッチ実位置がクラッチ位置目標値に追従する速度の差分が0.08V/5ms以下
条件3:クラッチ実位置がクラッチ位置目標値に追従する速度が50ms継続
なお、上記条件1~3は、一例である。また、条件1~3を選択的に組み合わせてもよい。
条件2:クラッチ実位置がクラッチ位置目標値に追従する速度の差分が0.08V/5ms以下
条件3:クラッチ実位置がクラッチ位置目標値に追従する速度が50ms継続
なお、上記条件1~3は、一例である。また、条件1~3を選択的に組み合わせてもよい。
このように構成された制御システム10を備える走行中の二輪車において、DTC変速後半における変速機70の変速制御を図5を用いて説明する。
図5は、DTC変速後半におけるクラッチの動作に対応するトルク変化と回転数変化を示すタイムチャートである。
図5において、Tc_rは、リリース側(図中R側と略記する)のクラッチのトルク容量、Tc_eは、エンゲージ側(図中E側と略記する)のクラッチのトルク容量、Tc_tは、クラッチ双方の合計伝達トルク、Negは、エンジン回転数、-Teg、Tegはエンジントルク値である。また、変速期間のうち、トルク伝達準備フェーズをDg_in_f、トルク伝達経路変更フェーズをTrq_f、イナーシャフェーズをInti_fで示している。また、図5()内の数値は、各期間の時間(ms)を示している。
なお、図5において、同一の横軸で重なる複数のグラフは、水平に重なる部分を、便宜上、若干ずらした状態で図示している。例えば、図5のトルク伝達経路変更フェーズTrq_fにおけるグラフTeg、Tc_r、Tc_e部分等は、実際には重なっているものとする。
変速制御部110は、入力される情報に基づいて、第1アクチュエータ77を介して第1クラッチ74の駆動を制御し、第2アクチュエータ78を介して第2クラッチ75の駆動を制御する。このように第1クラッチ74及び第2クラッチ75の駆動を制御することによって、変速制御部110は、トルク伝達中であるクラッチの解放と、シフト後のギア対にトルクを伝達するクラッチの締結とを行う。
先ず、トルク伝達準備フェーズDg_in_fにおいてトルク伝達準備動作を行う。
すなわち、変速制御部110は、制御モード1では、トルク伝達準備フェーズDg_in_fにおいて、第1クラッチ74及び第2クラッチ75のうちトルク伝達中のクラッチ(「リリース側のクラッチ」ともいう)を制御して、伝達トルク(双方のクラッチを介してメインシャフトに伝達されるクラッチの合計トルクTc_t)は下げずに、リリース側のクラッチのトルク容量Tc_rを下げる。また、制御モード1におけるトルク伝達準備フェーズDg_in_fにおいて、変速制御部110は、次のトルク伝達を行うクラッチ(「エンゲージ側のクラッチ」ともいう)に対しても、伝達トルク(双方のクラッチを介してメインシャフトに伝達されるクラッチの合計トルクTc_t)は下げずに、エンゲージ側のクラッチのトルク容量Tc_eを下げる制御を行う。
詳細には、トルク伝達準備フェーズDg_in_fでは、エンゲージ側のクラッチは、トルクを伝達していない、つまり、エンゲージ側のクラッチの動力伝達経路上におけるドグが抜かれた状態で、繋がっている状態である。よって、変速制御部110は、トルク伝達準備フェーズDg_in_fにおいて、エンゲージ側のクラッチを制御して、繋がっているエンゲージ側のクラッチを解放して次段のギアを入れて(詳細にはドグを入れる)掛け替えるための準備位置に移動して、ドグを入れる。
また、制御モード1におけるトルク伝達準備フェーズDg_in_fでは、変速制御部110は、リリース側のクラッチを制御して、リリース側のクラッチのトルク容量Tc_rを、エンジントルクTegと同等のトルクまで下げる。
そして、変速制御部110は、トルク伝達経路変更フェーズTrq_fにおいて、リリース側のクラッチのトルク容量Tc_rをエンジントルクTegに維持しつつ、エンゲージ側のクラッチを動作してエンゲージ側のクラッチのクラッチ容量Tc_eを0から目標値(ここでは、エンジントルクTeg)まで上げる。
このように、変速制御部110は、図5に示すように、トルク伝達経路変更フェーズTrq_fにおいて、エンゲージ側のクラッチのクラッチ容量Tc_eをエンジントルク分(Teg)にした後で、リリース側のクラッチを動作して切る、つまり、エンジントルク分(Teg)に維持されているリリース側のクラッチのクラッチ容量Tc_rを下げて0にする。
このようにして、変速制御部110は、トルク伝達経路変更フェーズTrq_fにおいて、クラッチの掛け替えを行い、変速機におけるトルク伝達経路を変更する。
次に、イナーシャフェーズInti_fにおいて、変速制御部110は、ドライブシャフト730に、係合状態のエンゲージ側のクラッチを介して動力を伝達する制御を行っており、このフェーズにおけるエンゲージ側のクラッチのトルク容量Tc_eをエンジントルクTeg以上にする。
また、イナーシャフェーズInti_fでは、変速制御部110は、リリース側のクラッチを解放している間に、シフト機構701を駆動して、リリース側のクラッチを含む伝達経路のドグを抜いてニュートラルの状態(空回り)にし、その後で、リリース側のクラッチを締結する。また、このイナーシャフェーズInti_fでは、エンジン回転数がエンゲージ側のクラッチを介した伝達経路の回転数に同期する。
このエンジン回転数Negの変化によってイナーシャトルクが発生することとなり、この状態において、リリース側のクラッチ側の伝達経路において駆動力を伝達していた1速側のドグを抜いてリリース側のクラッチTc_rをニュートラルにした後でクラッチを締結している。なお、この動作は、変速機のシステムによって異なり、例えば、プリシフト式のシステムでは、先に次段のギア対にトルクを伝達するドグを入れておき、次段のギア対にトルクを伝達可能なクラッチを切って待機している。
以下、イナーシャフェーズInti_fにおいて、DCT変速後半でのクラッチのフェールセーフ制御について説明する。
[DCT変速後半でのフェールセーフ制御]
図5に示すように、DCT変速後半に、エンゲージ側のトルクに故障が起きた場合に、挙動として最も厳しいのは、図3の3象限が示す制御モード3である。
図5に示すように、DCT変速後半に、エンゲージ側のトルクに故障が起きた場合に、挙動として最も厳しいのは、図3の3象限が示す制御モード3である。
イナーシャフェーズInti_fにおいて、エンゲージ側のクラッチが故障(機械的固着)し、リリース側ギアが抜けている場合、両方のクラッチを繋げる制御を実施しても十分なトルクを伝達できない。
エンゲージ側のクラッチが固着した場合、最終退避動作しようとしても、ギアを抜いてしまっている場合(例えば、図5に示す2速から1速にダウンしている場合)、イナーシャフェーズInti_fに入ると、リリース側(ここでは2段側)のギアを抜いて、リリース側を再係合しようとしてもできない。すなわち、ギアを抜いた後に、最終退避動作しても、クラッチは繋げるものの、ギアは抜けているので繋がらない。つまり、ドクが抜けており、エンゲージ側のクラッチは固着しているので、繋げにいっても、ドクが抜けておりトルク伝達はできない。なお、BTL付きクラッチ(逆方向のクラッチ)を備えるDCTでないと、繋げる動作自体ができない。BTLがない場合には、故障したときクラッチを切るしかない。BTL動作によるリリース側のクラッチ係合の詳細については、後述する。
パワーオフダウンシフト状態のときであるため、そのまますぐに問題は起きない。しかし、その後加速しようとしたときに、エンゲージ側のクラッチのトルクが少ない状態になるので、駆動が抜けたような感覚となる。
すなわち、イナーシャフェーズInti_fにおいては、減速の場合はトルクが小さい。そこからライダーがアクセルを上げるとエンジンが吹けてしまう。例えば、減速してコーナリングして、そこから加速して車体を起こしたいときに、車体が起きない。
本実施の形態では、DCT変速後半に、エンゲージ側のトルクに故障が起きた場合のフェールセーフ制御を提供する。
具体的には、イナーシャフェーズInti_fにおいて、エンゲージ側のクラッチが固着した場合、最終退避動作しようとしても、ギアを抜いてしまっており(図5では2から1にダウンしている)、リリース側2段側のギアを抜いて、リリース側を再係合しようとしてもできない不具合に対し、本実施の形態では、固着判定後、ドグを入れなおして、リリース側を再係合することで、パワーオフダウンシフト状態で、加速しようとしたときに、必要トルクを確保する。上記コーナリングの例では、コーナリング減速後、加速して車体を起こしたいときに駆動を保ち、転倒を防止する。
本実施の形態では、変速制御部110は、図5に示すように、クラッチの故障を判定し、次段側のクラッチが故障し、前段側のギアが抜けている場合は、前段側のギアを入れた後、前段側のクラッチを係合して、トルクの伝達経路の変更の最終退避動作とする。
[BTL動作によるリリース側のクラッチ係合]
BTL動作によるリリース側のクラッチの係合について説明する。
BTL動作によるリリース側のクラッチの係合について説明する。
ダウンシフトにおいて、エンゲージ側のクラッチが固着し、本フェールセーフ動作をした場合を例に採る。
BTLは、エンゲージ側クラッチトルクが、バックトルクリミッタが動作するトルクより大きい場合に動作する。この場合、リリース側クラッチトルクの方が上回って、リリース側が係合する。
エンゲージ側クラッチトルクをTc_e、リリース側クラッチトルクをTc_r、エンジントルクをTe、エンジンイナーシャトルクを-Je*dwe/dtとすると、その関係は次式(1)で示される。
Tc_r+Tc_e=Te-Je*dwe/dt …(1)
パワーオフダウンシフトにおいて、本DCT変速後半でのフェールセーフ制御のように、変速後半にエンゲージ側クラッチが固着した場合は、Tc_rは上流側の方が回転数が高いので正、Tc_eは逆で負、Tegはパワーオフなので負となる。
いま、リリース側クラッチをエンゲージさせたいので、エンジン回転数を下げ(dwe/dtを負にする)、-Je*dwe/dtが正になるようにTc_rを制御する。
Tc_r,Tc_e≫Teであるため、分かり易いように、Teを無視すると、式(1)は、次式(2)に変形することができる。
-Je*dwe/dt=Tc_r+Tc_e-Te>0 …(2)
上記式(2)が成り立つ、すなわちリリース側クラッチが係合するためには、Tc_r>-Tc_eである必要がある。
しかし、エンゲージ側のクラッチが最大トルク容量に近い値で固着した場合は、Tc_r>-Tc_eを満足させることはできない。
そこでBTLが必要となる。BTLは、-100Nm程度で動作するようになっており、クラッチの最大トルク容量は240Nmであるので、どのようなトルクでエンゲージ側が固着しても、十分にリリース側クラッチをエンゲージさせることができる。すなわち、BTLは、-100Nm以下で固着した場合に動作せず、それ以上で固着した場合に動作する。
よって、変速制御部110は、リリース側のドグを入れて、リリース側のクラッチトルク容量を適切な値に制御する一方で、BTLが、条件により動作してリリース側のクラッチを係合する。このように、変速制御部110は、BTLと協働して、リリース側のギアを入れた後、リリース側のクラッチを係合する。
なお、本DCT変速後半でのフェールセーフ制御は、BTL付きDCTを前提とする。しかし、BTLは必ずしも動作する訳ではなく、BTLだけではリリース側のクラッチを係合させることはできない。特に、エンゲージ側トルクが小さい値で固着した場合、BTLは動作しない場合が多いと考えられる。
図6は、DCT変速後半でのフェールセーフ制御動作を行う際のフローチャートである。図中、Sはフローの各ステップを示す。
ステップS1では、変速制御部110は、クラッチ又はシフト機構701の故障を判定する。クラッチの故障は、図4のクラッチの固着発生の判定である。クラッチ又はシフト機構701の故障箇所により、ステップS11、ステップS21、ステップS31に移行する。
奇数段クラッチが故障の場合は、ステップS11で変速制御部110は、正常側である偶数段ギアのドグ入りか否かを判別する。ここで、ドグ入りは、シフトポテンシャルで判定する。シフトカムが動くと、ドラムの回転角のポテンシャル、すなわちシフトポテンシャルが変わり、ドクが入っているか否かを判定することができる。
偶数段ギアのドグ入りがない場合は、ステップS12で変速制御部110は、偶数段ギアのドグ入れ後、ステップS13に移行する。また、上記ステップS11で偶数段ギアのドグ入りがある場合は、そのままステップS13に移行する。
ステップS13では、変速制御部110は、偶数段クラッチをエンゲージして、トルクの伝達経路の変更の最終退避動作を行って本フローを終了する。
例えば、図5では、故障(固着判定)時、N-1であり、ドグを入れなおして、2-1すなわち2速を入れる。つまり1速が壊れている場合は、2速を入れて繋ぐ。
偶数段クラッチが故障の場合は、ステップS21で変速制御部110は、正常側である奇数段ギアのドグ入りか否かを判別する。
奇数段ギアのドグ入りがない場合は、ステップS22で変速制御部110は、奇数段ギアのドグ入れ後、ステップS23に移行する。また、上記ステップS21で奇数段ギアのドグ入りがある場合は、そのままステップS23に移行する。
ステップS23では、変速制御部110は、奇数段クラッチをエンゲージして、トルクの伝達経路の変更の最終退避動作を行って本フローを終了する。なお、最終退避動作からのドク入れは、ドグが入り難いばかりか無理にドグ入れするとショックが発生する。
一方、シフト機構701が故障している場合は、ステップS31で変速制御部110は、次段側のクラッチと前段側のクラッチの、双方のクラッチをエンゲージして、トルクの伝達経路の変更の最終退避動作を行って本フローを終了する。
以上詳細に説明したように、本実施の形態の複式クラッチ変速機70は、変速制御部110は、次段側のクラッチの動作不動を固着として判定し、次段側のクラッチが故障し、前段側のギアが抜けている場合は、前段側のギアを入れた後、前段側のクラッチトルク容量を所定値に制御し、且つ、BTLが、所定条件により動作して前段側のクラッチを係合する。つまり、奇数段クラッチが故障の場合は、偶数段ギアのドグ入りを判定し、偶数段ギアがドグ入りしていないとき、偶数段ギアのドグ入れ後、偶数段クラッチをエンゲージし、偶数段クラッチが故障の場合は、奇数段ギアのドグ入りを判定し、奇数段ギアがドグ入りしていないとき、奇数段ギアのドグ入れ後、奇数段クラッチをエンゲージして、トルクの伝達経路の変更の最終退避動作を行う。
元々、BTLに依って二重係合が実現され安全である。しかし、エンゲージ側のクラッチが固着し、ギアが抜けていると二重係合できない。本実施の形態では、固着判定し、ドグを入れなおしてリリース側のクラッチを再係合する。
これにより、エンゲージ側のクラッチが故障(機械的固着)し、リリース側ギアが抜けている場合であっても、リリース側のギアを入れた後、リリース側のクラッチを繋ぐことで、十分なトルクを伝達することができ、クラッチ故障による車両影響を最小限にすることができる。
ここで、本実施の形態では、図5に示すように、リリース側にエンジン回転数を係合させるために必要なトルクにして、係合させる。具体的には、変速制御部110は、回転数差、目標係合時間(約250ms:参考値)、及びエンゲージ側クラッチトルク容量を基に、必要なリリース側クラッチトルク容量を計算し、そのトルクになるようにリリース側クラッチを制御する。BTLに依って二重係合が実現されるとしても、二重係合の一方が0であると、二重係合が有効に発揮されない。トルク制御で、ある時間を掛けてエンゲージすることで、二重係合の一方にトルクを付与し、車両の制御の実効を図っている。
本発明に係る複式クラッチ変速機の制御装置は上記実施の形態に限定されず、種々変更して実施することが可能である。
なお、ここでは、本発明をハードウェアで構成する場合を例にとって説明したが、本発明をソフトウェアで実現することも可能である。例えば、本発明に係る複式クラッチ変速機の制御方法のアルゴリズムをプログラム言語によって記述し、このプログラムをメモリに記憶しておいて、複式クラッチ変速機が搭載された二輪車の制御部によって実行させることにより、本発明に係る複式クラッチ変速機の制御装置と同様の機能を実現することができる。
また、上記実施の形態の説明に用いた変速制御部110は、典型的には集積回路であるLSI等を用いて実現される。変速制御部110の有する各機能は個別に1チップ化されてもよいし、一部又は全てを含むように1チップ化されてもよい。ここでは、LSIとしたが、集積度の違いにより、IC、システムLSI、スーパーLSI、ウルトラLSIと呼称されることもある。
2010年12月15日出願の特願2010-279433の日本出願に含まれる明細書、図面及び要約書の開示内容は、すべて本願に援用される。
本発明に係る複式クラッチ変速機の制御装置及び複式クラッチ変速機の制御方法は、複式クラッチ変速機をもつ車両等に於いて、クラッチが故障した場合に、その挙動を最小限に抑えることができる効果を有し、ツインクラッチ式の変速機を搭載した自動二輪車における変速制御装置として有用である。
10 制御システム
70 変速機
74 第1クラッチ
75 第2クラッチ
77 第1クラッチアクチュエータ
78 第2クラッチアクチュエータ
110 変速制御部
200 エンジン制御部
300 制御部
700 変速機構
701 シフト機構
70 変速機
74 第1クラッチ
75 第2クラッチ
77 第1クラッチアクチュエータ
78 第2クラッチアクチュエータ
110 変速制御部
200 エンジン制御部
300 制御部
700 変速機構
701 シフト機構
Claims (8)
- 奇数段の変速ギアを有する第1主軸と、エンジントルクを前記第1主軸に伝達又は遮断する第1クラッチと、偶数段の変速ギアを有する第2主軸と、前記エンジントルクを前記第2主軸に伝達又は遮断する第2クラッチと、前記奇数段の変速ギア及び前記偶数段の変速ギアに歯合する各被動側ギアを有し、且つ、前記第1主軸又は前記第2主軸からの回転を駆動輪に伝達する出力軸と、変速機側から逆向きに伝達されるバックトルクを解放してクランク軸側に過大なバックトルクが伝達されるのを阻止するバックトルクリミッタと、クラッチの掛け替え期間に前記第1クラッチ及び前記第2クラッチを制御することによってトルクの伝達経路を変更して変速段を前段から次段に切り換える変速制御手段と、
を備え、
前記変速制御手段は、前記次段側のクラッチの動作不動を固着として判定し、前記次段側のクラッチが故障し、前段側のギアが抜けている場合は、前記前段側のギアを入れた後、前記前段側のクラッチトルク容量を所定値に制御し、且つ、前記バックトルクリミッタが、所定条件により動作して前記前段側のクラッチを係合する、
複式クラッチ変速機の制御装置。 - 前記変速制御手段は、奇数段クラッチが故障の場合は、偶数段ギアのドグ入りを判定し、偶数段ギアがドグ入りしていないとき、偶数段ギアのドグ入れ後、偶数段クラッチを係合し、
偶数段クラッチが故障の場合は、奇数段ギアのドグ入りを判定し、奇数段ギアがドグ入りしていないとき、奇数段ギアのドグ入れ後、奇数段クラッチを係合する、
請求項1記載の複式クラッチ変速機の制御装置。 - 前記変速制御手段は、シフト機構の故障を判定し、前記シフト機構が故障している場合は、次段側のクラッチと前段側のクラッチの、双方のクラッチを係合する、
請求項1記載の複式クラッチ変速機の制御装置。 - 前記変速制御手段は、変速する際にエンジン回転数を、次段側の入力軸の回転数に一致させるイナーシャフェーズにおいて、前記クラッチの故障を判定する、
請求項1記載の複式クラッチ変速機の制御装置。 - 前記変速制御手段は、前記クラッチの係合を、前記トルクの伝達経路の変更の最終退避動作とする、
請求項1記載の複式クラッチ変速機の制御装置。 - 前記変速制御手段は、クラッチ位置目標値とクラッチ実位置との偏差、前記クラッチ実位置が前記クラッチ位置目標値に追従する速度、前記速度が所定期間継続する時間のうち、少なくともいずれか一つが成立した場合に前記固着であると判定する、
請求項2記載の複式クラッチ変速機の制御装置。 - 請求項1記載の複式クラッチ変速機の制御装置を備える、
自動二輪車。 - 奇数段の変速ギアを有する第1主軸と、エンジントルクを前記第1主軸に伝達又は遮断する第1クラッチと、偶数段の変速ギアを有する第2主軸と、前記エンジントルクを前記第2主軸に伝達又は遮断する第2クラッチと、前記奇数段の変速ギア及び前記偶数段の変速ギアに歯合する各被動側ギアを有し、且つ、前記第1主軸又は前記第2主軸からの回転を駆動輪に伝達する出力軸と、変速機側から逆向きに伝達されるバックトルクを解放してクランク軸側に過大なバックトルクが伝達されるのを阻止するバックトルクリミッタと、クラッチの掛け替え期間に前記第1クラッチ及び前記第2クラッチを制御することによってトルクの伝達経路を変更して変速段を前段から次段に切り換える複式クラッチ変速機の制御方法であって、
イナーシャフェーズにおいて、前記次段側のクラッチの動作不動を固着として判定し、前記次段側のクラッチが故障し、前段側のギアが抜けている場合は、前記前段側のギアを入れた後、前記前段側のクラッチトルク容量を所定値に制御し、且つ、前記バックトルクリミッタが、所定条件により動作して前記前段側のクラッチを係合する、
複式クラッチ変速機の制御方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP11848009.4A EP2653754B1 (en) | 2010-12-15 | 2011-12-05 | Control device for dual clutch transmission and control method for dual clutch transmission |
US13/994,226 US9032824B2 (en) | 2010-12-15 | 2011-12-05 | Control device for dual clutch transmission and control method for dual clutch transmission |
JP2012523757A JP5460870B2 (ja) | 2010-12-15 | 2011-12-05 | 複式クラッチ変速機の制御装置及び複式クラッチ変速機の制御方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010-279433 | 2010-12-15 | ||
JP2010279433 | 2010-12-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012081191A1 true WO2012081191A1 (ja) | 2012-06-21 |
Family
ID=46244311
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/006793 WO2012081191A1 (ja) | 2010-12-15 | 2011-12-05 | 複式クラッチ変速機の制御装置及び複式クラッチ変速機の制御方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US9032824B2 (ja) |
EP (1) | EP2653754B1 (ja) |
JP (1) | JP5460870B2 (ja) |
WO (1) | WO2012081191A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101704279B1 (ko) * | 2015-11-05 | 2017-02-07 | 현대자동차주식회사 | Dct의 클러치 고장진단방법 |
US10030721B2 (en) | 2014-11-24 | 2018-07-24 | Hyundai Autron Co., Ltd. | Method and apparatus for controlling dual clutch transmission |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3119335B1 (en) | 2014-03-17 | 2019-07-03 | Intuitive Surgical Operations, Inc. | Detection pins to determine presence of surgical instrument and adapter on manipulator |
EP4331526A3 (en) | 2014-03-17 | 2024-06-05 | Intuitive Surgical Operations, Inc. | Systems and methods for confirming disc engagement |
CN105090479B (zh) * | 2014-05-15 | 2017-05-24 | 上海汽车集团股份有限公司 | 一种车辆动力控制方法及装置 |
KR101765618B1 (ko) * | 2015-12-14 | 2017-08-07 | 현대자동차 주식회사 | 하이브리드 차량의 엔진 클러치 위험 방지 방법 |
JP6624974B2 (ja) * | 2016-03-03 | 2019-12-25 | 株式会社クボタ | 多目的車両 |
KR20180067783A (ko) * | 2016-12-12 | 2018-06-21 | 현대자동차주식회사 | Dct 차량의 제어방법 |
KR101834924B1 (ko) | 2017-04-26 | 2018-03-06 | 콘티넨탈 오토모티브 게엠베하 | 클러치 고착 진단 방법 및 장치 |
CN108150642B (zh) * | 2017-11-27 | 2019-08-06 | 同济大学 | 六速干式dct升挡过程离合器作动电机故障容错控制方法 |
KR101990046B1 (ko) * | 2018-04-13 | 2019-06-17 | 콘티넨탈 오토모티브 시스템 주식회사 | 클러치 고착 진단 방법 및 장치 |
TWI682871B (zh) | 2018-08-28 | 2020-01-21 | 財團法人工業技術研究院 | 變速控制系統 |
CN111911623B (zh) * | 2020-09-14 | 2024-07-12 | 江苏沃得农业机械股份有限公司 | 一种双离合预置挡位操纵机构 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000055086A (ja) | 1998-08-05 | 2000-02-22 | Yamaha Motor Co Ltd | クラッチ装置のバックトルクリミッタ機構 |
JP2004251456A (ja) | 2003-02-21 | 2004-09-09 | Borgwarner Inc | 複式クラッチ変速機の制御方法 |
JP2004308841A (ja) | 2003-04-09 | 2004-11-04 | Nissan Motor Co Ltd | 多段式自動変速機の変速制御装置 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5966989A (en) * | 1998-09-15 | 1999-10-19 | Chrysler Corporation | Shift actuator for an electro-mechanical automatic transmission |
JP3896976B2 (ja) * | 2003-03-19 | 2007-03-22 | 日産自動車株式会社 | マニュアルトランスミッションの自動変速制御装置 |
JP4257350B2 (ja) * | 2006-07-31 | 2009-04-22 | ジヤトコ株式会社 | 自動変速機の制御装置及び方法 |
DE102006054253A1 (de) * | 2006-11-17 | 2008-05-21 | Zf Friedrichshafen Ag | Verfahren zur Notbetätigung eines automatisierten Fahrzeug-Doppelkupplungsgetriebes |
JP4969386B2 (ja) * | 2007-09-26 | 2012-07-04 | 本田技研工業株式会社 | ツインクラッチ式変速制御装置 |
JP4696105B2 (ja) * | 2007-11-30 | 2011-06-08 | 本田技研工業株式会社 | 自動二輪車のクラッチ制御装置 |
JP5368253B2 (ja) * | 2008-10-30 | 2013-12-18 | ヤマハ発動機株式会社 | ツインクラッチ式の変速装置およびそれを備えた車両 |
EP2182254A1 (en) * | 2008-10-30 | 2010-05-05 | Yamaha Hatsudoki Kabushiki Kaisha | Shift mechanism, and vehicle equipped therewith |
JP5180778B2 (ja) * | 2008-10-30 | 2013-04-10 | ヤマハ発動機株式会社 | エンジンユニットおよびこれを備えた自動二輪車 |
JP5264415B2 (ja) * | 2008-10-30 | 2013-08-14 | ヤマハ発動機株式会社 | ツインクラッチ式の変速装置、それを備えた車両及び自動二輪車 |
US8402859B2 (en) * | 2009-11-04 | 2013-03-26 | GM Global Technology Operations LLC | Barrel cam shift mechanism |
US8578803B2 (en) * | 2010-07-22 | 2013-11-12 | GM Global Technology Operations LLC | Synchronizer actuation assembly |
JP5546069B2 (ja) * | 2010-12-15 | 2014-07-09 | ヤマハ発動機株式会社 | 複式クラッチ変速機の制御装置及び複式クラッチ変速機の制御方法 |
-
2011
- 2011-12-05 EP EP11848009.4A patent/EP2653754B1/en active Active
- 2011-12-05 US US13/994,226 patent/US9032824B2/en active Active
- 2011-12-05 WO PCT/JP2011/006793 patent/WO2012081191A1/ja active Application Filing
- 2011-12-05 JP JP2012523757A patent/JP5460870B2/ja active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000055086A (ja) | 1998-08-05 | 2000-02-22 | Yamaha Motor Co Ltd | クラッチ装置のバックトルクリミッタ機構 |
JP2004251456A (ja) | 2003-02-21 | 2004-09-09 | Borgwarner Inc | 複式クラッチ変速機の制御方法 |
JP2004308841A (ja) | 2003-04-09 | 2004-11-04 | Nissan Motor Co Ltd | 多段式自動変速機の変速制御装置 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10030721B2 (en) | 2014-11-24 | 2018-07-24 | Hyundai Autron Co., Ltd. | Method and apparatus for controlling dual clutch transmission |
KR101704279B1 (ko) * | 2015-11-05 | 2017-02-07 | 현대자동차주식회사 | Dct의 클러치 고장진단방법 |
US9702420B2 (en) | 2015-11-05 | 2017-07-11 | Hyundai Motor Company | Diagnostic method for determining clutch failure of DCT |
Also Published As
Publication number | Publication date |
---|---|
US9032824B2 (en) | 2015-05-19 |
JPWO2012081191A1 (ja) | 2014-05-22 |
JP5460870B2 (ja) | 2014-04-02 |
US20130274062A1 (en) | 2013-10-17 |
EP2653754B1 (en) | 2019-07-17 |
EP2653754A4 (en) | 2018-04-18 |
EP2653754A1 (en) | 2013-10-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5460870B2 (ja) | 複式クラッチ変速機の制御装置及び複式クラッチ変速機の制御方法 | |
JP3598998B2 (ja) | ツィンクラッチ式歯車変速機の歯車打音防止装置 | |
US7494442B2 (en) | Shift control device and method for automated manual transmission | |
JP5546069B2 (ja) | 複式クラッチ変速機の制御装置及び複式クラッチ変速機の制御方法 | |
JP2011047511A (ja) | 複式クラッチ変速機の制御装置及び複式クラッチ変速機の制御方法 | |
JP5262210B2 (ja) | 車両用デュアルクラッチ式変速機の発進制御装置 | |
JP5847521B2 (ja) | デュアルクラッチ式自動変速機 | |
US9267574B2 (en) | Dual clutch transmission control method, dual clutch transmission, and vehicle mounted therewith | |
JP5285813B2 (ja) | 複式クラッチ変速装置及び発進制御方法 | |
JP6263332B2 (ja) | 変速制御装置 | |
JPWO2011148566A1 (ja) | 複式クラッチ変速装置、自動二輪車及び発進制御方法 | |
JP5424953B2 (ja) | 車両の動力伝達制御装置 | |
JP5912327B2 (ja) | デュアルクラッチ式自動変速機 | |
JP4502103B2 (ja) | 自動変速機 | |
JP4924385B2 (ja) | 車両の変速制御装置 | |
JP2013047532A (ja) | デュアルクラッチ式自動変速機 | |
JP2013053732A (ja) | 自動変速機 | |
JP2007255466A (ja) | 複数クラッチ式変速機の変速制御装置 | |
JP2007092815A (ja) | 複数クラッチ式変速機の制御装置 | |
JP5085289B2 (ja) | 変速機の制御装置 | |
JP5239760B2 (ja) | 車両の変速制御装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 2012523757 Country of ref document: JP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11848009 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13994226 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011848009 Country of ref document: EP |