[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2012079505A1 - 一种合成甲烷催化剂的制备方法和催化剂前驱体 - Google Patents

一种合成甲烷催化剂的制备方法和催化剂前驱体 Download PDF

Info

Publication number
WO2012079505A1
WO2012079505A1 PCT/CN2011/083949 CN2011083949W WO2012079505A1 WO 2012079505 A1 WO2012079505 A1 WO 2012079505A1 CN 2011083949 W CN2011083949 W CN 2011083949W WO 2012079505 A1 WO2012079505 A1 WO 2012079505A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
catalyst
reactor
nickel
prereduction
Prior art date
Application number
PCT/CN2011/083949
Other languages
English (en)
French (fr)
Inventor
常俊石
蒋建明
郭迎秋
次东辉
张建祥
雷志祥
刘鹏翔
孙树英
宋建平
堵俊俊
Original Assignee
新奥新能(北京)科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新奥新能(北京)科技有限公司 filed Critical 新奥新能(北京)科技有限公司
Priority to JP2013543511A priority Critical patent/JP5726323B2/ja
Priority to US13/994,243 priority patent/US9555398B2/en
Publication of WO2012079505A1 publication Critical patent/WO2012079505A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/78Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/005Spinels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/10Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with water vapour
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/12Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon dioxide with hydrogen

Definitions

  • the present invention relates to the field of carbon oxide methylation, and more particularly to a process for preparing a catalyst for the synthesis of formamidine and a catalyst precursor. Background technique
  • Nickel-based catalysts are indispensable in the synthesis of formazan catalyst system. Nickel-based catalysts have good catalytic activity, and their activity is second only to ruthenium catalysts. At present, the commonly used synthetic ruthenium catalysts at home and abroad, the active component nickel is mostly oxidized. Nickel exists, nickel in the form of nickel oxide is relatively easy to be reduced, and most of the oxidation state of nickel can be reduced at a reduction temperature of about 450 ° C, but nickel and the carrier are weak, at high temperature, high water vapor ratio It is easy to be sintered and deactivated under the conditions.
  • nickel-aluminum-containing spinel catalyst In order to improve the problem of sintering deactivation, the applicant developed a high-temperature, hydration-resistant pre-reduction nickel-aluminum-containing spinel catalyst. Before pre-reduction, nickel mainly exists in the structure of spinel, so-called spinel. Because during the calcination process, nickel forms a uniform composition of solids with alumina through solid phase reaction and diffusion.
  • the chemical formula is ⁇ 1 2 0 4 , which belongs to the cubic system.
  • the unit cell is composed of 32 cubic cells.
  • the reduction temperature is higher than the reaction temperature, which makes the selection of equipment more stringent, which will inevitably increase the investment cost.
  • the preparation method using the following catalyst can not only ensure the performance of the catalyst, but also solve the above problem of high temperature reduction: preparing the catalyst body by, for example, a mixed precipitation method or a coprecipitation method,
  • the high-temperature calcination in the pre-reduction process forms a catalyst precursor containing nickel-aluminum spinel, and then pre-reduction, which can save a lot of energy and improve production efficiency.
  • the catalyst is desulfurized during the pre-reduction process, and the sulfur element brought in by the raw material during the preparation of the catalyst is removed, thereby eliminating the hidden string of catalyst sulfur poisoning.
  • the preparation method of the formazan catalyst comprises a step of preparing a catalyst body and a pre-reduction step, wherein the pre-reduction step comprises:
  • the catalyst body is calcined to form a catalyst precursor containing nickel aluminum spinel; and the catalyst precursor is pre-reduced to obtain the synthetic formazan catalyst.
  • the step of preparing the catalyst body comprises spray drying a slurry comprising nickel nitrate, aluminum hydroxide, and light magnesium oxide.
  • the step of preparing a catalyst body comprises neutralizing a suspension or solution comprising nickel nitrate and a magnesium compound selected from the group consisting of magnesium nitrate and light magnesium oxide with an aluminum-containing precipitation agent.
  • the aluminum-containing precipitating agent is sodium metaaluminate.
  • the calcination step is carried out at 700 to 1000 °C.
  • the calcining step comprises: replacing the system with N 2 to ensure that the volume percentage of 02 in the system is ⁇ 0.5%, and the system pressure according to the gauge pressure is maintained at 0.01 to 0.05 MPa, so that The airspeed is 50 ⁇ : ⁇ 1 ; the temperature is raised to 120 ⁇ 130°C at a speed of 50 ⁇ 70°C/h, and the temperature is 2 ⁇ 5h, so that the physical adsorption water is cleaned; the temperature is raised at 30 ⁇ 70°C/h. The temperature continues to rise to 250 °C, the temperature is 2 ⁇ 5h, so that the crystal water is cleaned; the temperature is raised at the temperature rising rate of 10 ⁇ 70 °C/h.
  • a catalyst precursor containing nickel-aluminum spinel is formed at 700 to 1000 ° C and at a constant temperature of 3 to 6 h.
  • the step of preparing a catalyst body comprises: preparing an aqueous solution of nickel nitrate;
  • the above suspension or solution is neutralized with sodium metaaluminate as a precipitating agent to obtain a precipitate; and the precipitate is dried at 110 to 140 ° C for 12 to 24 hours to obtain a catalyst body.
  • the prereduction step further comprises a step of desulfurizing the catalyst.
  • the desulfurization step comprises: detecting a sulfur content of the reducing gas in the system when the reaction temperature reaches 650 to 750 ° C in the prereduction reactor, and if the volume of the reducing gas sulfur in the reduction system When the content is ⁇ 0. lppm, the gas is switched into the desulfurization tower, and the sulfur is desulfurized at less than 800 ° C for 10 to 12 hours, thereby removing sulfur in the catalyst.
  • the synthetic formazan catalyst produced in terms of mass percent, comprises: A1 2 0 3 : 40 to 80% ; Ni: 10 to 30% ; MgO: 10 to 30 %.
  • the prereduction step is carried out in a prereduction reactor at 700 to 1100 ° C, a system pressure of 0.05 to 0.1 MPa, and a space velocity of 100 to 800 h -1 .
  • the prereduction reactor is preferably a cylindrical reactor having an aspect ratio of 1.5/1 to 5/1.
  • the method of the present invention further comprises the following steps: reducing the internal temperature of the prereduction reactor, and replacing the reducing gas in the reactor with N 2 when the internal temperature of the prereduction reactor is lowered below 50 ° C So that the volume percentage of H 2 in the reactor is ⁇ 0.5% ; pass through 0 2 , until the amount of 0 2 accounts for 0.1 ⁇ 0.2 % of the total gas volume in the reactor, while maintaining the temperature in the pre-reduction reactor not exceeding 50° C; Pass air and maintain the temperature inside the reactor not more than 50 ° C until the oxygen content of the inlet and outlet of the reactor is basically the same.
  • a second aspect of the invention provides a synthetic formazan catalyst precursor comprising nickel aluminum spinel.
  • FIG. 1 is a schematic diagram of a pre-reduction process of a nickel-aluminum spinel catalyst
  • FIG. 2 is an XRD pattern of a catalyst precursor after high-temperature calcination treatment in Example 1;
  • FIG. 3 is an XRD pattern of a catalyst precursor after high-temperature calcination treatment in Example 2; and
  • FIG. 4 is a high-temperature calcination treatment in Example 3.
  • XRD pattern of the catalyst precursor wherein 1 - heating furnace; 2 - pre-reduction reactor; 3 - heat exchanger; 4 - desulfurization tower; 5 - water condenser; 6 - water separator; Recirculating compressor.
  • catalyst body means a catalyst composition which is not calcined at a high temperature, i.e., a state before the target catalyst product is calcined at a high temperature. In the present invention, more specifically, it refers to a form of existence of the target catalyst product prior to high temperature calcination to form a catalyst precursor of nickel-containing aluminum spinel.
  • catalyst precursor means a catalyst composition which has not been subjected to reduction treatment, i.e., a state before the reduction of the target catalyst product.
  • it means a composition of a nickel-containing aluminum spinel obtained by subjecting a catalyst body to high-temperature calcination in a pre-reduction process.
  • pre-reduction refers to the process by which a fresh catalyst is reduced to a reactive metal or suboxide by hydrogen or other reducing gas at a certain temperature.
  • reduction refers to the activation process, which is mostly carried out in the reactor of the plant, sometimes at the catalyst production plant, and can be referred to as pre-reduction.
  • the catalyst body in the catalyst production process, is calcined at a high temperature in a nitrogen atmosphere to form a catalyst precursor containing nickel aluminum spinel, and then, at a suitable temperature, a mixed gas of hydrogen and nitrogen is used.
  • coke oven gas refers to a coking gas produced by coking coal with several bituminous coals, which is a by-product of the coking industry after high-temperature carbonization in a coke oven and producing coke and tar products. After purification, the main components are as follows:
  • Magnesium oxide is added to the above nickel nitrate solution, stirred to form a slurry, and then spray-dried at a spray dryer outlet temperature of 120 to 140 ° C to form (for example, by tableting) to obtain a catalyst body.
  • the green body is pre-reduced prior to use (see the next procedure for pre-reduction).
  • the mass percentage of each component in the catalyst prepared by the pre-reduction is: A1 2 0 3 : 40 ⁇ 80%; Ni: 10 ⁇ 30%; MgO: 10 ⁇ 30%.
  • nickel nitrate hexahydrate add a certain amount of distilled water, dissolve into a nickel nitrate solution, and weigh a certain amount of light magnesium oxide or magnesium nitrate hexahydrate into the above nickel nitrate solution at a stirring speed of 80 ⁇ Heating to 40 ⁇ 80 ° C at 250 rpm, and then neutralizing the above suspension or solution with a certain concentration of sodium metaaluminate as a precipitating agent, the sodium metaaluminate solution is strongly alkaline, compared with the ordinary precipitating agent. There is no need to add additional aluminum-containing raw materials, which increases the production efficiency, and the less the variety of raw materials, the more uniform the mixture of nickel and aluminum.
  • the green body is pre-reduced prior to use (see below for specific operations of pre-reduction).
  • the mass percentage of each component in the catalyst prepared by the pre-reduction is: A1 2 0 3 : 40 ⁇ 80%; Ni: 10 ⁇ 30%; MgO: 10 ⁇ 30%.
  • the catalyst body was packed into a cylindrical prereduction reactor 2 having a height to diameter ratio of 1.5/1 to 5/1. This design was designed to minimize the residence time of the water vapor concentration in the catalyst bed.
  • N 2 to ensure that the volume percentage of 0 2 in the system is ⁇ 0.5%
  • the system pressure 0.01 ⁇ 0.05MPa (gauge pressure)
  • start the compressor 7 start the compressor 7, and make the airspeed 50 ⁇ : lOOh - 50 ⁇
  • the temperature is raised at 70 ° C / h, the internal temperature of the pre-reduction reactor is raised to 120 ⁇ 130 ° C, and the temperature is kept for 2 to 5 hours. After the physical adsorption water is discharged, the temperature is further increased, and the heating rate is maintained at 30 to 70 ° C / h.
  • the temperature is raised to 250 ° C, the temperature is kept at 2 to 5 h, and the crystal water is allowed to continue to be heated, and the temperature is maintained at 10 to 70 ° C / h.
  • the temperature is raised to 700 to 1000 ° C, the temperature is maintained for 3 to 6 hours to make nickel oxide and The alumina undergoes a solid phase reaction to form a catalyst precursor containing nickel aluminum spinel. Then, the temperature is lowered at a rate of 5 to 8 ° C / h.
  • the temperature in the prereduction reactor 2 is 600 to 650 ° C, the nitrogen in the system is replaced with hydrogen, so that the pressure (gauge pressure) in the system is 0.05-0. .
  • the fine desulfurizer such as ZnO, below Desulfurization at 800 °C for 10 ⁇ 12h after desulfurization
  • the supplementary reducing gas enters the heat exchanger 3 and exchanges heat with the residual gas after reduction, enters the heating furnace 1 and heats, and then enters the reactor for reduction.
  • the remaining gas exits the bottom of the reactor and enters the heat exchanger 3 and is cooled.
  • the reducing gas is supplemented for heat exchange and cooling, and an analysis point is set here.
  • the gas is switched into the desulfurization tower 4 containing the fine desulfurizer such as ZnO. Desulfurization below 800 ° C for 10 ⁇ 12h, after desulfurization, into the water condenser 5, if the sulfur content is ⁇ 0.1 volume ppm, the gas is directly switched into the water condenser 5 to cool down to 50 ° C and then enter the water separator 6, The separated water is separated and a part is vented, and a part is recycled to the pre-reduction reactor through the recycle compressor 7 to continue to participate in the reduction, thereby saving a large amount of reducing gas.
  • the fine desulfurizer such as ZnO.
  • the pre-reduction reactor is uniformly arranged with four temperature points in the radial direction, and a temperature point is arranged in the axial half-meter distance to ensure uniform temperature in the reactor.
  • the grain size of the elemental nickel reduced by X-ray diffractometry is: (111) The grain size of the surface is 5.0 to 15.0 nm, and the grain size of the nickel (200) surface is 5.0 to 15.0 nm.
  • Nickel (220) The grain size of the surface is 5.0 to 15.0 nm.
  • Catalyst composition analyzed by American PE company Optima2100DV inductively coupled plasma spectrometer;
  • composition of the catalyst to be used in terms of mass percentage is: A1 2 0 3 : 60%; Ni: 20%; MgO: 20%
  • Figure 2 shows the XRD pattern of the catalyst precursor after high-temperature calcination treatment. It can be seen that the characteristic peak of nickel-aluminum spinel has appeared, and the mass percentage of nickel-aluminum spinel in the precursor is 5%. The diffraction angles of the nickel-aluminum spinel are 37°, 45.1° and 65.7°, respectively.
  • the temperature in the prereduction reactor 2 is 600 ° C, the nitrogen in the system is replaced with hydrogen.
  • the pressure in the system is 0.06 MPa, and the space velocity is 200 h.
  • the temperature of the prereduction reactor 2 was maintained at 800 ° C, and the temperature was maintained for 3 h, and most of the nickel was reduced. Then start to cool at 8 °C / h, when the temperature in the pre-reduction reactor is below 50 °C, replace the system with N 2 to ensure that the volume percentage of the system is ⁇ 0.5%, and enter 0 2 , 0 2 accounted for 0.1 to 0.2% by volume of the total gas in the system, observe the temperature rise, ensure that the temperature in the pre-reduction reactor does not exceed 50 ° C, gradually increase the concentration of 0 2 , until the temperature is passed through the pre-reduction reactor Not exceeding 50 ° C, and the oxygen content of the reactor inlet and outlet is basically the same, the passivation operation is finished, and the pre-reduction is also finished, which is denoted as A.
  • the grain size of the reduced elemental nickel was determined by X-ray diffractometry. The grain size of the (111) plane was 10.1 nm, and the grain size
  • the application of the catalyst is carried out in a fixed bed.
  • the pre-reduced catalyst is placed in the middle of the constant temperature zone of the reactor, and the stainless steel mesh and quartz sand are used as supports.
  • the catalyst is subjected to the above-mentioned reduction operation on the reactor before the synthesis operation, and the entire process takes 5 to 7 days before the synthesis of the formamidine is carried out, and the maximum temperature at the time of reduction is 800 ° C.
  • the material requirements for the entire synthesis reactor are quite high, which inevitably increases production costs.
  • the pre-reduced catalyst only needs to be activated by coke oven gas at 250 ° C for 2 h and then heated to 600 ° C for the synthesis of formazan, the reaction pressure is 2 MPa, the air velocity.
  • composition of the catalyst to be used in terms of mass percentage is: A1 2 0 3 : 58%; Ni: 20%; MgO: 22%
  • the volume percentage of 2 is ⁇ 0.5%, the system pressure is maintained at 0.03MPa (gauge pressure), the compressor 7 is started, the air velocity is 60h - the temperature is raised at 55 °C/h, and the temperature is raised to 120 ⁇ 130 °C. After constant temperature for 3h, the physical adsorption water will be heated and then continue to heat up. When the temperature is raised to 250 °C, the temperature will be kept at 3 °C. After the crystal water is cleaned, the temperature will continue to rise, and the temperature rise rate will be 40 °C/h, and the temperature will be raised to 850 °C. 3 ⁇ 6h, solid phase reaction between nickel oxide and aluminum oxide The catalyst precursor-aluminum spinel.
  • Figure 3 shows the XRD pattern of the catalyst precursor after high temperature treatment. It can be seen that the characteristic peak of nickel-aluminum spinel has appeared, and the mass percentage of nickel-aluminum spinel in the precursor is 75 %. The diffraction angles of the nickel-aluminum spinel are 37°, 45.1° and 65.7°, respectively.
  • the temperature in the prereduction reactor 2 is 630 ° C
  • the nitrogen in the system is replaced with hydrogen
  • the pressure in the system is 0.08 MPa
  • the heating rate is 15 °C / h
  • the reaction temperature reaches 700 ° C
  • detect the sulfur content in the system when the sulfur content ⁇ 0.1 volume ppm
  • the gas is switched into the desulfurization tower 4 containing the ZnO fine desulfurizer, it is desulfurized at less than 800 ° C for 10 to 12 hours and then desulfurized and then enters the water condenser 5 . If the sulfur content is ⁇ 0.1 volume ppm, the gas is directly switched. Inlet condenser 5.
  • the temperature in the pre-reduction reactor was maintained at 950 ° C, and the temperature was maintained for 4 h, and most of the nickel was reduced. Then start to cool at 15 °C / h, when the temperature in the pre-reduction reactor is below 50 °C, replace the system with N 2 to ensure that the volume percentage of the system is ⁇ 0.5%, and enter 0 2 , 0 2 accounted for 0.1 ⁇ 0.2% by volume of the total gas in the system, observe the temperature rise, and ensure the pre-reduction The temperature in the reactor does not exceed 50 ° C, and the concentration of 0 2 is gradually increased until the temperature in the prereduction reactor does not exceed 50 ° C through the air.
  • the grain size of the reduced elemental nickel was analyzed by X-ray diffractometry.
  • the grain size of the (111) plane was 7.0 nm (200).
  • the grain size of the surface was 7.1 (220).
  • the grain size of the surface was 7.3 nm.
  • the application of the catalyst is carried out in a fixed bed.
  • the catalyst is placed in the middle of the constant temperature zone of the reactor, and stainless steel mesh and quartz sand are used as supports for the upper and lower sides.
  • the catalyst is subjected to the above reduction operation on the reactor before the synthesis operation, and the entire process takes 5 7 days before the synthesis of the formazan is carried out, and the maximum temperature at the time of reduction is 900 ° C,
  • the material requirements of the entire synthetic reaction unit are quite high, which inevitably increases production costs.
  • the pre-reduced catalyst only needs to be activated by coke oven gas at 250 ° C for 2 h, then the temperature is raised to 650 ° C, the reaction pressure is 2 MPa, and the space velocity is 7000 h. After purifying the coke oven gas, the amount of steam introduced into the raw material volume is 20%, and the carbon monoxide conversion rate is determined to be 83.2% and the selectivity is 99.3%. Carbon dioxide conversion rate is 70%
  • composition of the catalyst to be used in terms of mass percentage is: A1 2 0 3 : 65% Ni: 20% MgO: 15%
  • the stirring speed is Heated to 60 ° C at 100 rpm, then weighed 55 kg of sodium metaaluminate, dissolved in 680 L of distilled water, formulated into a 1 mol / L sodium metaaluminate solution, and then used this concentration of sodium metasilicate as a precipitate
  • the above suspension is neutralized, and after titration is completed, it is filtered, washed, dried, pulverized, and tableted to obtain a catalyst body which is charged into a cylindrical reactor having a height to diameter ratio of 4/1, and the upper layer of the catalyst is charged into 10 20 cm.
  • the pre-reduced catalyst is used as the activator, and the system is replaced by N 2 to ensure that the volume percentage of 0 2 in the system is ⁇ 0.5%, the system pressure is maintained at 0.04 MPa (gauge pressure), and the compressor 7 is started to make the space velocity 70h—heating at a rate of 60°C/h, the internal temperature of the pre-reduction reactor is raised to 120 130°C, and the temperature is kept constant for 3 hours. After the physical adsorption water is removed, the temperature is raised. When the temperature is raised to 250°C, the temperature is kept for 3 hours.
  • the speed is 40 ° C / h, and the temperature is raised to 900 ° C for 3 to 6 h, and the nickel oxide and alumina are solid-phase reacted to form a catalyst precursor containing nickel aluminum spinel.
  • Figure 4 shows the XRD pattern of the catalyst precursor after high temperature treatment. It can be seen that the characteristic peak of nickel-aluminum spinel has appeared, and the mass percentage of nickel-aluminum spinel in the precursor is 56%. The diffraction angles of the nickel-aluminum spinel are 37°, 45.1° and 65.7°, respectively.
  • the reaction temperature reaches 750 ° C, detect the sulfur content in the system, when the sulfur content is ⁇ 0.1 volume ppm
  • the gas is switched into the desulfurization tower 4 containing the ZnO fine desulfurizer, and is desulfurized at less than 800 ° C for 10 to 12 hours, and then desulfurized and then enters the water condenser 5 . If the sulfur content is ⁇ 0.1 volume ppm, the gas is directly switched into Water condenser 5.
  • the temperature in the pre-reduction reactor was maintained at 1000 ° C, and the temperature was maintained for 5 h, and most of the nickel was reduced. Then start to cool at 20 °C / h, when the temperature in the pre-reduction reactor is below 50 °C, replace the system with N 2 to ensure that the volume percentage of the system is ⁇ 0.5%, and enter 0 2 , 0 2 accounted for 0.1 to 0.2% by volume of the total gas in the system, observe the temperature rise, ensure that the temperature in the pre-reduction reactor does not exceed 50 ° C, gradually increase the concentration of 0 2 , until the air passes through the system, the temperature does not exceed At 50 ° C, while the oxygen content of the reactor inlet and outlet is substantially the same, the passivation operation is completed, and the pre-reduction is also completed, which is denoted as C.
  • the grain size of the reduced elemental nickel was determined by X-ray diffractometry: the grain size of the (111) plane was 9.4 nm, the grain size of the (200) plane was 11.3 nm, and the grain size of the (220) plane was It is 13.5 nm.
  • the application of the catalyst is carried out in a fixed bed.
  • the catalyst is placed in the middle of the constant temperature zone of the reactor, and stainless steel mesh and quartz sand are used as supports for the upper and lower sides.
  • the catalyst is not subjected to pre-reduction, the catalyst is subjected to the above-mentioned reduction operation on the reactor before the synthesis operation, and the entire process takes 5 to 7 days before the synthesis of the formazan is carried out, and the maximum temperature at the time of reduction is 1000 ° C.
  • the material requirements for the entire synthesis reactor are quite high, which inevitably increases production costs.
  • the catalyst solves the above problems after pre-reduction treatment.
  • the pre-reduced catalyst only needs to be heated at 250 ° C for 2 h, then heated to 700 ° C, the reaction pressure is 2 MPa, the air velocity VOOOh- 1 , and the volume fraction of the feed gas is CO 12.5%, C0 2 10%, 3 ⁇ 4 is 77.5%, the amount of water vapor is 20% of the volume of the raw material, and the carbon monoxide conversion rate is determined to be 79.9%.
  • the selectivity is 99.5% and the carbon dioxide conversion rate is 66.5%.
  • each catalyst was reacted for 720 hours, there was no significant change in the activity of each catalyst. After the reaction was stopped, each catalyst was removed and subjected to X-ray diffraction (XRD) and thermogravimetric analysis (DTG) analysis for comparison.
  • XRD X-ray diffraction
  • TTG thermogravimetric analysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)

Description

一种合成甲垸催化剂的制备方法和催化剂前驱体 技术领域
本发明涉及碳氧化物甲垸化领域,特别涉及一种合成甲垸用催化剂的 制备方法和催化剂前驱体。 背景技术
在合成甲垸催化剂体系中, 镍系催化剂是不可缺少的, 镍系催化剂 具有良好的催化活性, 其活性仅次于钌催化剂, 目前国内外常用的合成甲 垸催化剂, 活性组分镍大多以氧化镍形式存在, 以氧化镍形式存在的镍比 较容易被还原出来, 还原温度在 450°C左右就能还原出大部分的氧化态的 镍, 但是镍与载体作用很弱, 在高温、 高水汽比的条件下容易烧结失活。
还原的方程式如下:
NiO+¾ Ni+¾0+3.52KJ/mol
因此, 还需要提供一种新的催化剂制备方法。 发明内容
为了改进烧结失活的问题, 本申请人开发了耐高温、 耐水合的预还原 前含镍铝尖晶石的催化剂, 预还原前镍主要以尖晶石的结构存在, 所谓尖 晶石, 是由于在焙烧过程中, 镍通过固相反应和扩散逐歩与氧化铝形成了 一种组成均匀的固体, 化学分子式为 ΝιΑ1204, 属立方晶系, 其单位晶胞 由 32个立方密堆积的氧阴离子 02-和 16个在八面体空隙中的铝离子 Al3+ 以及 8个在四面体空隙中的镍离子 Νι2+组成, 氧有 4个金属配位, 其中 3 个处于八面体中, 剩下一个处于四面体中, 镍铝尖晶石的饱和结构使镍更 多地和本体接触, 作用力很强, 金属镍从尖晶石中还原出来以后, 一般分 散很均匀、 分散度高, 晶粒度小, 活性高, 在高温、 高水汽比的条件下不 容易烧结失活。 但是尖晶石态的镍需要较高的还原温度才能被还原出来, 一般在 700°C以上。
在如此高的还原温度下进行还原, 会带来如下几个问题: 1、 还原温度高, 升温时间长, 造成开车周期长, 生产效率低, 加大 开车风险。
2、 还原温度比反应温度还要高, 这就对设备的选材要求更严格, 势 必增加投资成本。
3、反应器前的电加热器的功率要很高才能加热到所需要的还原温度, 而在后续反应阶段,甲垸合成反应所放出的热量就足以维持反应所需要的 温度, 电加热器几乎处于无用状态, 这就造成资源严重浪费的问题。
为了解决上述问题, 本发明的发明人出人意料地发现, 采用如下催 化剂的制备方法不仅能够保证催化剂的性能,又能解决上述高温还原的问 题: 用例如混合沉淀法或者共沉淀法制备催化剂坯体, 在预还原过程中高 温煅烧形成含镍铝尖晶石的催化剂前驱体, 然后进行预还原, 这样能节省 大量能源和提高生产效率。 同时, 在预还原的过程中还进行催化剂脱硫, 把在制备催化剂过程中原料带进的硫元素脱出,消除了催化剂硫中毒的隐 串 由此, 本发明的第一个方面提供了一种合成甲垸催化剂的制备方法, 包括制备催化剂坯体的歩骤和预还原歩骤, 其中预还原歩骤包括:
煅烧所述催化剂坯体, 形成含镍铝尖晶石的催化剂前驱体; 和 预还原所述催化剂前驱体, 得到所述合成甲垸催化剂。
根据某些优选的实施方案,所述制备催化剂坯体的歩骤包括喷雾干燥 包含硝酸镍、 氢氧化铝和轻质氧化镁的浆状物的歩骤。
根据某些优选的实施方案,所述制备催化剂坯体的歩骤包括用含铝沉 淀剂中和包含硝酸镍和选自硝酸镁和轻质氧化镁的镁化合物的悬浮液或 溶液的歩骤。 根据某些更优选的实施方案, 所述含铝沉淀剂为偏铝酸钠。 根据某些优选的实施方案, 所述煅烧歩骤在 700〜1000°C下进行。
根据某些优选的实施方案, 所述煅烧歩骤包括: 用 N2置换系统, 保 证系统内 02的体积百分含量≤0.5%, 按表压计的系统压力保持为 0.01〜 0.05MPa,使空速为 50〜: ΙΟΟΙι·1 ;以 50〜70°C/h的速度升温到 120〜130°C, 恒温 2〜5h, 使物理吸附水出净; 以 30〜70°C/h 的升温速度继续升温到 250 °C , 恒温 2〜5h, 使结晶水出净; 以 10〜70°C/h的升温速度继续升温 到 700〜1000°C, 恒温 3〜6h, 形成含镍铝尖晶石的催化剂前驱体。
根据某些优选的实施方案, 所述制备催化剂坯体的歩骤包括: 配制硝酸镍水溶液;
将轻质氧化镁或者六水硝酸镁加入上述硝酸镍水溶液中,在搅拌速度 为 80〜250转 /min下加热到 40〜80°C, 得到悬浮液或溶液;
用偏铝酸钠作为沉淀剂中和上述悬浮液或溶液得到沉淀物; 和 将沉淀物在 110〜140°C下干燥 12〜24小时, 得到催化剂坯体。
根据某些优选的实施方案,其中所述预还原歩骤还包括对催化剂进行 脱硫的歩骤。根据某些更优选的实施方案, 其中所述脱硫歩骤包括: 在预 还原反应器内反应温度达到 650〜750°C时,检测系统中还原气体硫含量, 若还原系统中还原气体硫的体积含量≥0. lppm时, 气体被切换进脱硫塔, 在低于 800°C下脱硫 10〜12h, 从而脱出催化剂中的硫。
根据某些优选的实施方案, 其中制得的所述合成甲垸催化剂, 按质量 百分含量计, 包含: A1203 : 40〜80%; Ni: 10〜30%; MgO: 10〜30%。
根据某些优选的实施方案, 其中所述预还原歩骤在 700〜1100°C, 系 统压力 0.05〜0.1MPa, 空速为 100〜800h— 1下在预还原反应器中进行。 预 还原反应器优选为一个高径比为 1.5/1〜5/1的圆柱型反应器。
根据某些优选的实施方案, 本发明方法还包括如下终止歩骤: 降低预 还原反应器内部温度, 当预还原反应器内部温度降低到 50°C以下时, 用 N2置换反应器内还原气体使得反应器内 H2的体积百分含量≤0.5%; 通入 02, 直至 02量占反应器中总气体体积量的 0.1〜0.2 %, 同时维持预还原 反应器内温度不超过 50°C ; 通入空气并维持反应器内温度不超过 50°C, 直至反应器进出口的氧含量基本一致。
根据某些实施方案的甲垸合成催化剂的制备方法,其特征在于按体积 比计, 预还原时系统内 H2/N2=l/10〜: 10/1。
本发明的第二个方面提供了一种合成甲垸催化剂前驱体,该催化剂前 驱体包含镍铝尖晶石。
根据某些实施方案的催化剂前驱体,其中所述镍铝尖晶石在前驱体中 附图说明
图 1为镍铝尖晶石催化剂预还原流程示意图;
图 2为实施例 1中高温煅烧处理后的催化剂前驱体的 XRD图; 图 3为实施例 2中高温煅烧处理后的催化剂前驱体的 XRD图; 和 图 4为实施例 3中高温煅烧处理后的催化剂前驱体的 XRD图; 其中 1——加热炉; 2——预还原反应器; 3——换热器; 4——脱硫 塔; 5—水冷凝器; 6—水分离器; 7—循环压缩机。
图 2-4中, "intensity"表示 "强度", " Thate/degree "表示 "Θ/度"。 具体实施方式
本发明中, 除非特别指明:
术语"催化剂坯体"是指未经高温煅烧的催化剂组合物, 即目标催化剂 产品高温煅烧前的状态。在本发明中, 更确切地说, 是指目标催化剂产品 在高温煅烧形成含镍铝尖晶石的催化剂前驱体之前的一种存在形式。
术语"催化剂前驱体 "是指未经还原处理的催化剂组合物, 即目标催化 剂产品还原前的状态。在本发明中, 更确切地说, 是指催化剂坯体经过在 预还原过程中高温煅烧得到的含镍铝尖晶石的组合物。
术语"预还原 "是指新鲜催化剂在一定温度下, 用氢气或其他还原性气 体还原成为活泼金属或低价氧化物的过程。 通常称的还原是指活化过程, 它大多数在使用厂的反应器中进行,有时在催化剂生产厂进行, 可称为预 还原。在本发明中, 在催化剂生产过程中, 催化剂坯体在氮气的气氛下经 高温煅烧形成含镍铝尖晶石的催化剂前驱体, 然后在适宜的温度下, 用 氢气和氮气的混和气体把含镍铝尖晶石的催化剂前驱体中的镍还原成低 价态的镍或金属镍的过程。
术语 "焦炉气"是指用几种烟煤配制成炼焦用煤, 在炼焦炉中经过高 温干馏后, 在产出焦炭和焦油产品的同时所产生的一种可燃性气体, 是炼 焦工业的副产品, 净化后, 其主要成分如下表:
Figure imgf000006_0001
催化剂坯体的具体制备方法过程可以举例如下: 一、 混合沉淀法:
首先按催化剂中各组分质量百分含量计算各物质用量,称取一定量的 六水硝酸镍, 加入一定量的蒸馏水, 溶解成硝酸镍溶液, 再称取一定量的 氢氧化铝和轻质氧化镁加入上述硝酸镍溶液中, 搅拌均匀形成浆状物, 然 后在喷雾干燥器出口温度为 120〜140°C下进行喷雾干燥, 成型 (例如通 过打片) , 得到催化剂坯体。 该坯体在使用前进行预还原(预还原的具体 操作见下) 。
经过预还原后制备的催化剂中各组分质量百分含量分别为: A1203 : 40〜80%; Ni: 10 〜30%; MgO: 10〜30%。
二、 共沉淀法:
称取一样量的六水硝酸镍,加入一定量的蒸馏水,溶解成硝酸镍溶液, 再称取一定量的轻质氧化镁或者六水硝酸镁加入上述硝酸镍溶液中,在搅 拌速度为 80〜250转 /min下加热到 40〜80°C, 然后用一定浓度的偏铝酸 钠作为沉淀剂中和上述悬浮液或溶液, 偏铝酸钠溶液呈强碱性, 与普通沉 淀剂相比, 不需要另外加入含铝的原料, 提高了生产效率, 而且原料的品 种越少, 镍和铝混合越均匀。 然后经过滤、 洗涤、 干燥、 粉碎, 用常用方 法成型, 如打片或挤出成型得到催化剂坯体。该坯体在使用前进行预还原 (预还原的的具体操作见下) 。
经过预还原后制备的催化剂中各组分质量百分含量分别为: A1203 : 40〜80%; Ni: 10〜30%; MgO: 10〜30%。
预还原的具体操作可以举例如下:
催化剂坯体装填入一个高径比为 1.5/1〜5/1的圆柱型预还原反应器 2 中, 这个设计是为了尽可能的缩短水汽浓度在催化剂床层的停留时间。用 N2置换系统, 保证系统内 02的体积百分含量≤0.5%, 保持系统压力为 0.01〜0.05MPa (表压) , 启动压缩机 7, 使空速为 50〜: lOOh— 以 50〜 70°C/h的速度升温, 预还原反应器内温升到 120〜130°C, 恒温 2〜5h, 使 物理吸附水出净后继续升温, 保持升温速度为 30〜70°C/h, 升温到 250°C 时,恒温 2〜5h,使结晶水出净后继续升温,保持升温速度为 10〜70°C/h, 升温到 700〜1000°C时恒温 3〜6h, 使氧化镍和氧化铝发生固相反应, 形 成含镍铝尖晶石的催化剂前驱体。 然后以 5〜8°C/h的速度降温,当预还原反应器 2内温度为 600〜650°C 时, 用氢气置换系统内的氮气, 使系统内的压力 (表压) 为 0.05-0. IMPa, 增大循环量, 使空速为 100-80011-1, 使系统内 ¾/N2=l/10〜10/l体积比:)后 继续升温,保持升温速度为 10〜70°C/h,当反应温度达到 650〜750°C时, 检测系统内硫的含量, 当硫的含量≥0.1ppm体积)时, 气体被切换进内装 精脱硫剂例如 ZnO的脱硫塔 4,在低于 800°C下脱硫 10〜12h经脱硫后进 入水冷凝器 5, 若硫的含量≤0.1ppm体积:)时, 气体直接被切换进水冷凝器 最后使预还原反应器 2的温度维持在 700〜1100°C, 恒温 2〜24h, 大 部分的镍被还原出来。 然后开始以 5〜20°C/h的速度降温, 预还原反应器 内温度为 50°C以下时, 用 N2置换系统内 ¾, 保证系统内 ¾的体积百分 含量≤0.5%, 通入 02, 02量占系统中总气体量的 0.1〜0.2体积%, 观察温 升, 保证预还原反应器内温度不超过 50°C, 逐渐提高 02浓度, 直到通过 空气, 预还原反应器内温度也不超过 50°C, 同时反应器进出口氧含量基 本一致后, 钝化操作结束, 预还原到此也结束。
在上述的工艺操作中, 其工艺流程描述如下:
补充的还原气体进入换热器 3 与还原后的剩余气体进行热交换后进 入加热炉 1进一歩加热, 然后进入反应器进行还原, 剩余气体从反应器底 出来后进入换热器 3与冷的补充还原气体进行换热降温,在此处设置一个 分析点, 待预还原反应器内温度达到 650〜750°C时, 检测系统内硫的含 量, 因为催化剂中在制备过程中可能引进硫酸根, 在氢气的环境下, 在反 应温度达到 650〜750°C时硫酸根中的硫被还原,当硫的含量≥0.1体积 ppm 时, 气体被切换进内装精脱硫剂例如 ZnO的脱硫塔 4, 在低于 800°C下脱 硫 10〜12h经脱硫后进去水冷凝器 5,若硫的含量≤0.1体积 ppm时,气体 直接被切换进水冷凝器 5降温到 50°C后进入水分离器 6,把还原出来的水 分离后一部分放空,一部分经循环压缩机 7循环回预还原反应器中继续参 与还原,节省了大量的还原气体。预还原反应器径向均匀布设 4个温度点, 轴向半米距离布设一个温度点, 以保证反应器内温度均匀。 通过 X射线 衍射仪分析, 还原出的单质镍的晶粒度为: (111 ) 面的晶粒度为 5.0〜 15.0nm, 镍 (200) 面的晶粒度为 5.0〜15.0nm, 镍 (220) 面的晶粒度为 5.0〜15.0nm。
本发明所用的分析测试方法:
1.催化剂和催化剂前驱体中镍的晶相和晶粒度: 采用日本理学 D/max-2200PC X射线衍射仪分析 (XRD);
2. 催化剂组分:采用美国 PE公司 Optima2100DV电感耦合等离子光 谱发射仪分析;
3. 催化剂相变和积碳分析:采用德国耐弛 STA449F3热分析仪热重分 析 (DTG) 。
4. 产物组成:采用美国安捷伦公司 6890N气相色谱仪,按着国标 GB/T 13610-2003分析。
下面结合说明书附图对本发明做进一歩的描述,以下仅为本发明的较 佳实施例而已, 不能以此限定本发明的范围。即凡是依本发明申请专利范 围所作的变化与修饰, 皆应仍属本发明专利涵盖的范围内。本文中, 除非 特别指明, 所有涉及气体的百分含量、 比例、 份数均以体积计, 所有涉及 固体和液体的百分含量、 比例、 份数均以重量计。
实施例 1
欲使催化剂按质量百分含量计的组成为: A1203 : 60%; Ni: 20%; MgO: 20%
称取 40kg的六水硝酸镍, 加入 40L的蒸馏水, 不停搅拌直到六水硝 酸镍完全溶解, 再称取 32kg的氢氧化铝和 8kg的轻质氧化镁, 加入到上 述硝酸镍溶液中, 搅拌均匀, 形成浆状物, 然后用喷雾干燥器进行干燥, 出口温度为 130°C, 干燥后硝酸镍和氢氧化铝都分解为氧化物, 打片得到 催化剂坯体装填入一个高径比为 2/1的圆柱型反应器中,用 N2置换系统, 保证系统内 02的体积百分含量≤0.5%,保持系统压力为 O.OlMPa (表压), 启动压缩机 7, 使空速为 50h— 以 50°C/h的速度升温, 预还原反应器内 温升到 120〜130°C,恒温 3h,使物理吸附水出净后继续升温,升温到 250°C 时, 恒温 3h, 使结晶水出净后, 继续升温, 保持升温速度为 30°C/h, 升 温到 700°C时恒温 3〜6h, 使氧化镍和氧化铝发生固相反应, 形成含镍铝 尖晶石的催化剂前驱体。
图 2为高温煅烧处理后的催化剂前驱体的 XRD图, 可见镍铝尖晶石的特 征峰已出现, 镍铝尖晶石在前驱体中的质量百分含量为 5 %。 镍铝尖晶石 的衍射角分别为 37°、 45.1°和 65.7°。
然后以 6°C/h的速度降温, 当预还原反应器 2内温度为 600°C时, 用 氢气置换系统内的氮气, 系统内的压力为 0.06MPa, 空速为 200h— 使系 统内 H2 /N2=1/5体积比:)后继续升温, 保持升温速度为 10°C/h, 在反应温 度达到 650°C时, 检测系统内硫的含量, 当硫的含量≥0.1体积 ppm时, 气 体被切换进内装 ZnO精脱硫剂的脱硫塔 4, 在低于 800°C下脱硫 10〜12h 经脱硫后进入水冷凝器 5,若硫的含量≤0.1体积 ppm时,气体直接被切换 进水冷凝器 5。
最后使预还原反应器 2温度维持在 800°C, 恒温 3h, 大部分的镍被还 原出来。然后开始以 8°C/h的速度降温, 预还原反应器内温度为 50°C以下 时, 用 N2置换系统内 ¾, 保证系统内 ¾的体积百分含量≤0.5%, 通入 02, 02量占系统中总气体量的 0.1〜0.2体积%, 观察温升, 保证预还原 反应器内温度不超过 50°C, 逐渐提高 02浓度, 直到通过空气, 预还原反 应器内温度也不超过 50°C, 同时反应器进出口氧含量基本一致后, 钝化 操作结束, 预还原到此也结束, 记为 A。 通过 X射线衍射仪分析, 还原 出的单质镍的晶粒度为: (111 ) 面的晶粒度为 lO.lnm, (200) 面的晶粒 度为 12.8匪, (220) 面的晶粒度为 14.9匪。
催化剂的应用是在固定床中进行的,预还原后的催化剂置于反应器恒 温区中部, 上下用不锈钢网和石英砂做支撑物。
若催化剂没有经过预还原,那么催化剂在合成操作之前就要在反应器 上进行上述还原操作, 整个过程需要 5〜7天, 然后才能进行甲垸合成操 作,还原时的最高温度是 800°C,对整个合成反应装置的材质要求相当高, 势必增加生产成本。催化剂经过了预还原处理后就解决了上述问题, 预还 原后的催化剂只需在 250°C下用焦炉气启活 2h后升温到 600°C进行甲垸合 成实验,反应压力 2MPa, 空速 7000h— 原料气用体积比为 H2/CO=3/l 的 合成气,通入水蒸汽量为原料体积气量的 20%,—氧化碳转化率为 93.4%, 选择性 99.7%。 实施例 2
欲使催化剂按质量百分含量计的组成为: A1203 : 58%; Ni: 20%; MgO: 22%
称取 40kg的六水硝酸镍, 加入 40L的蒸馏水, 不停搅拌直到六水硝 酸镍完全溶解, 再称取 8.8kg的轻质氧化镁加入上述硝酸镍溶液中, 在搅 拌速度为 100转 /min下加热到 60 °C,然后称取 30kg的偏铝酸钠,用 370L 的蒸馏水溶解, 配成 lmol/L的偏铝酸钠溶液, 然后用此浓度的偏铝酸钠 作为沉淀剂中和上述悬浮液, 待滴定完成, 然后经过滤、 洗涤、 干燥、 粉 碎, 打片得到催化剂坯体填入一个高径比为 3/1 的圆柱型反应器中, 用 N2置换系统, 保证系统内 02的体积百分含量≤0.5%, 保持系统压力为 0.03MPa (表压),启动压缩机 7,使空速为 60h— 以 55°C/h的速度升温, 升到 120〜130°C,恒温 3h,使物理吸附水出净后继续升温, 升温到 250°C 时, 恒温 3h, 使结晶水出净后, 继续升温, 保持升温速度为 40°C/h, 升 温到 850°C时恒温 3〜6h, 使氧化镍和氧化铝发生固相反应, 形成含镍铝 尖晶石的催化剂前驱体。
图 3为高温处理后的催化剂前驱体的 XRD图, 可见镍铝尖晶石的特 征峰已出现, 镍铝尖晶石在前驱体中的质量百分含量为 75 %。 镍铝尖晶 石的衍射角分别为 37°、 45.1°和 65.7°。
然后以 7°C/h的速度降温, 当预还原反应器 2内温度为 630°C时, 用 氢气置换系统内的氮气, 系统内的压力为 0.08MPa, 空速为 400h— 使系 统内 H2 /N2=1/1体积比:)后继续升温, 保持升温速度为 15°C/h, 在反应温 度达到 700°C时, 检测系统内硫的含量, 当硫的含量≥0.1体积 ppm时, 气 体被切换进内装 ZnO精脱硫剂的脱硫塔 4, 在低于 800°C下脱硫 10〜12h 经脱硫后进入水冷凝器 5,若硫的含量≤0.1体积 ppm时,气体直接被切换 进水冷凝器 5。
最后预还原反应器内温度保持在 950°C, 恒温 4h, 大部分的镍还原出 来被。 然后开始以 15°C/h的速度降温, 预还原反应器内温度为 50°C以下 时, 用 N2置换系统内 ¾, 保证系统内 ¾的体积百分含量≤0.5%, 通入 02, 02量占系统中总气体量的 0.1〜0.2体积%, 观察温升, 保证预还原 反应器内温度不超过 50°C, 逐渐提高 02浓度, 直到通过空气, 预还原反 应器内温度也不超过 50°C, 同时反应器进出口氧含量基本一致后, 钝化 操作结束, 预还原到此也结束, 记为 B。通过 X射线衍射仪分析, 还原出 的单质镍的晶粒度为: (111 ) 面的晶粒度为 7.0nm (200) 面的晶粒度为 7.1 (220 ) 面的晶粒度为 7.3nm
催化剂的应用是在固定床中进行的, 催化剂置于反应器恒温区中部, 上下用不锈钢网和石英砂做支撑物。
若催化剂没有经过预还原,那么催化剂在合成操作之前就要在反应器 上进行上述还原操作, 整个过程需要 5 7天, 然后才能进行甲垸合成操 作,还原时的最高温度是 900°C,对整个合成反应装置的材质要求相当高, 势必增加生产成本。催化剂经过了预还原处理后就解决了上述问题, 预还 原后的催化剂只需在 250°C下用焦炉气启活 2h后升温到 650°C,反应压力 2MPa, 空速 7000h— 原料气用净化后的焦炉气, 通入水蒸汽量为原料体 积气量的 20%, 经测定, 一氧化碳转化率为 83.2%, 选择性 99.3%。 二氧 化碳转化率为 70%
实施例 3
欲使催化剂按质量百分含量计的组成为: A1203 : 65% Ni: 20% MgO: 15%
称取 40kg的六水硝酸镍, 加入 40L的蒸馏水, 不停搅拌直到六水硝 酸镍完全溶解, 再称取 38.5kg的六水硝酸镁加入上述硝酸镍溶液中, 完 全溶解后, 在搅拌速度为 100转 /min下加热到 60°C, 然后称取 55kg的偏 铝酸钠, 用 680L的蒸馏水溶解, 配成 lmol/L的偏铝酸钠溶液, 然后用此 浓度的偏铝酸钠作为沉淀剂中和上述悬浮液, 待滴定完成, 然后经过滤、 洗涤、 干燥、 粉碎, 打片得到催化剂坯体装入高径比为 4/1的圆柱型反应 器中, 催化剂的上层装入 10 20cm已经预还原的催化剂作为引活剂, 用 N2置换系统, 保证系统内 02的体积百分含量≤0.5%, 保持系统压力为 0.04MPa (表压),启动压缩机 7,使空速为 70h— 以 60°C/h的速度升温, 预还原反应器内温升到 120 130°C, 恒温 3h, 使物理吸附水出净后继续 升温, 升温到 250°C时, 恒温 3h, 使结晶水出净后, 继续升温, 保持升温 速度为 40°C/h, 升温到 900°C时恒温 3〜6h, 使氧化镍和氧化铝发生固相 反应, 形成含镍铝尖晶石的催化剂前驱体。
图 4为高温处理后的催化剂前驱体的 XRD图, 可见镍铝尖晶石的特 征峰已出现, 镍铝尖晶石在前驱体中的质量百分含量为 56 %。 镍铝尖晶 石的衍射角分别为 37°、 45.1°和 65.7°。
然后以 8°C/h的速度降温, 当预还原反应器 2内温度为 650°C时, 用 氢气置换系统内的氮气, 系统内的压力为 0.09MPa, 空速为 600h— 使系 统内 ¾ /N2=5/1体积比:)后继续升温, 保持升温速度为 20°C/h, 在反应温 度达到 750°C时, 检测系统内硫的含量, 当硫的含量≥0.1体积 ppm时, 气 体被切换进内装 ZnO精脱硫剂的脱硫塔 4, 在低于 800°C下脱硫 10〜12h 经脱硫后进入水冷凝器 5,若硫的含量≤0.1体积 ppm时,气体直接被切换 进水冷凝器 5。
最后预还原反应器内温度保持在 1000°C, 恒温 5h, 大部分的镍还原 出来被。 然后开始以 20°C/h的速度降温, 预还原反应器内温度为 50°C以 下时, 用 N2置换系统内 ¾, 保证系统内 ¾的体积百分含量≤0.5%, 通入 02, 02量占系统中总气体量的 0.1〜0.2体积%, 观察温升, 保证预还原 反应器内温度不超过 50°C, 逐渐提高 02浓度, 直到通过空气, 系统内温 度也不超过 50°C,同时反应器进出口氧含量基本一致后,钝化操作结束, 预还原到此也结束, 记为 C。通过 X射线衍射仪分析, 还原出的单质镍的 晶粒度为:(111 )面的晶粒度为 9.4nm,(200)面的晶粒度为 11.3nm,(220) 面的晶粒度为 13.5nm。
催化剂的应用是在固定床中进行的, 催化剂置于反应器恒温区中部, 上下用不锈钢网和石英砂做支撑物。
若催化剂没有经过预还原,那么催化剂在合成操作之前就要在反应器 上进行上述还原操作, 整个过程需要 5〜7天, 然后才能进行甲垸合成操 作, 还原时的最高温度是 1000°C, 对整个合成反应装置的材质要求相当 高, 势必增加生产成本。 催化剂经过了预还原处理后就解决了上述问题, 预还原后的催化剂只需在 250°C下还原 2h后升温到 700°C,反应压力 2MPa, 空速 VOOOh—1 ,原料气体积百分组成为 CO 12.5%, C02 10%, ¾为 77.5%, 通入水蒸汽量为原料体积气量的 20%, 经测定,一氧化碳转化率为 79.9%, 选择性 99.5%, 二氧化碳转化率为 66.5%。 实施例 4
将各催化剂反应 720小时后, 各催化剂活性没有明显变化, 停止反应 后, 各催化剂卸下后进行 X射线衍射 (XRD) 和热重分析 (DTG) 分析 进行对比。
Figure imgf000014_0001

Claims

权 利 要 求
1. 一种合成甲垸催化剂的制备方法, 包括制备催化剂坯体的歩骤和 预还原歩骤, 其中, 预还原歩骤包括:
煅烧所述催化剂坯体, 形成含镍铝尖晶石的催化剂前驱体; 和 预还原所述催化剂前驱体, 得到所述合成甲垸催化剂。
2. 根据权利要求 1的制备方法, 所述制备催化剂坯体的歩骤包括: 喷雾干燥包含硝酸镍、 氢氧化铝和轻质氧化镁的浆状物。
3. 根据权利要求 1的制备方法, 所述制备催化剂坯体的歩骤包括: 用含铝沉淀剂中和包含硝酸镍和选自硝酸镁和轻质氧化镁的镁化合 物的悬浮液或溶液。
4. 根据权利要求 3的制备方法, 所述含铝沉淀剂为偏铝酸钠。
5. 根据权利要求 1的制备方法,所述煅烧歩骤在 700〜1000°C下进行。
6. 根据权利要求 1的制备方法,所述煅烧歩骤包括:用 N2置换系统, 保证系统内 02的体积百分含量≤0.5%,按表压计的系统压力保持为 0.01〜 0.05MPa,使空速为 50〜: ΙΟΟΙι·1;以 50〜70°C/h的速度升温到 120〜130°C, 恒温 2〜5h, 使物理吸附水出净; 以 30〜70°C/h 的升温速度继续升温到 250 °C , 恒温 2〜5h, 使结晶水出净; 以 10〜70°C/h的升温速度继续升温 到 700〜1000°C, 恒温 3〜6h, 形成含镍铝尖晶石的催化剂前驱体。
7. 根据权利要求 1 的制备方法, 其中所述预还原歩骤还包括对催化 剂进行脱硫的歩骤, 其中所述脱硫歩骤包括: 在预还原反应器内反应温度 达到 650〜750°C时, 检测系统中还原气体硫含量, 若还原系统中还原气 体硫的体积含量0. lppm时, 气体被切换进脱硫塔, 在低于 800°C下脱硫 10〜12h, 从而脱出催化剂中的硫。
8. 根据权利要求 1 的制备方法, 其中所述合成甲垸催化剂, 按质量 百分含量计, 包含: A1203 : 40〜80%; Ni: 10〜30%; MgO: 10〜30%。
9. 根据权利要求 1的制备方法,其中所述预还原歩骤在 700〜1100°C, 系统压力 0.05〜0.1MPa, 空速为 100〜800h— 1下在预还原反应器中进行。
10. 根据权利要求 1 的制备方法, 其中所述预还原歩骤中采用 H2作 为还原气体, 并且按体积计 H2/N2=l/10〜10/l。
11. 根据权利要求 9的制备方法, 还包括如下终止歩骤: 降低预还原 反应器内部温度, 当预还原反应器内部温度降低到 50°C以下时, 用 N2置 换反应器内还原气体使得反应器内 ¾的体积百分含量≤0.5%; 通入 02, 直至 02量占反应器中总气体体积量的 0.1〜0.2%, 同时维持预还原反应 器内温度不超过 50°C ; 通入空气并维持反应器内温度不超过 50°C, 直至 反应器进出口的氧含量基本一致。
12. 一种合成甲垸催化剂前驱体, 该催化剂前驱体包含镍铝尖晶石。
13. 根据权利要求 12 的催化剂前驱体, 其中所述镍铝尖晶石在前驱 体中的质量百分含量为 5-75 %。
PCT/CN2011/083949 2010-12-15 2011-12-14 一种合成甲烷催化剂的制备方法和催化剂前驱体 WO2012079505A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013543511A JP5726323B2 (ja) 2010-12-15 2011-12-14 メタン合成触媒及びその前駆体の製造方法並びに触媒前駆体
US13/994,243 US9555398B2 (en) 2010-12-15 2011-12-14 Methane synthesis catalyst preparation method and catalyst precursor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010605823.9 2010-12-15
CN2010106058239A CN102125849B (zh) 2010-12-15 2010-12-15 一种合成甲烷催化剂的制备方法和催化剂前驱体

Publications (1)

Publication Number Publication Date
WO2012079505A1 true WO2012079505A1 (zh) 2012-06-21

Family

ID=44264273

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/083949 WO2012079505A1 (zh) 2010-12-15 2011-12-14 一种合成甲烷催化剂的制备方法和催化剂前驱体

Country Status (4)

Country Link
US (1) US9555398B2 (zh)
JP (1) JP5726323B2 (zh)
CN (1) CN102125849B (zh)
WO (1) WO2012079505A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102125849B (zh) * 2010-12-15 2013-03-20 新奥新能(北京)科技有限公司 一种合成甲烷催化剂的制备方法和催化剂前驱体
CN103242921B (zh) * 2012-02-09 2014-12-10 中国科学院大连化学物理研究所 一种合成气制天然气的工艺
CN104888783A (zh) * 2014-03-03 2015-09-09 中国石油化工股份有限公司 一种甲烷化催化剂及其制备方法和应用
CN104667931B (zh) * 2014-09-01 2017-06-13 大唐国际化工技术研究院有限公司 一种完全甲烷化催化剂的预还原方法
JP6456204B2 (ja) * 2015-03-24 2019-01-23 千代田化工建設株式会社 芳香族炭化水素の水素化触媒及びそれを用いた水素化処理方法
CN107537508B (zh) * 2016-06-23 2019-11-15 中国石油化工股份有限公司 复合铁锌催化剂前驱体、由其合成的催化剂及其制备方法和应用
CN108686666A (zh) * 2017-04-06 2018-10-23 中国石油化工股份有限公司 一种焦炉气制甲烷用催化剂的制备方法
CN107282048B (zh) * 2017-06-26 2019-05-10 厦门大学 一种通过原子置换制备高稳定性纳米催化剂的方法
EP4251316A1 (en) * 2020-11-24 2023-10-04 Topsoe A/S Process and catalyst for the catalytic hydrogenation of organic carbonyl compounds
CN114452979A (zh) * 2021-12-31 2022-05-10 大连理工大学 一种具有尖晶石骨架及表面修饰的耐酸耐水型加氢催化剂的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2188251A (en) * 1986-03-24 1987-09-30 Atomic Energy Authority Uk Methanation and steam reforming catalyst
CN101391218A (zh) * 2008-10-31 2009-03-25 西南化工研究设计院 一种焦炉气甲烷化催化剂及其制备方法
CN102125849A (zh) * 2010-12-15 2011-07-20 新奥新能(北京)科技有限公司 一种合成甲烷催化剂的制备方法和催化剂前驱体

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4713300A (en) * 1985-12-13 1987-12-15 Minnesota Mining And Manufacturing Company Graded refractory cermet article
CN1016146B (zh) * 1988-12-17 1992-04-08 南京化学工业公司研究院 含稀土甲烷化催化剂
US7097786B2 (en) * 2001-02-16 2006-08-29 Conocophillips Company Supported rhodium-spinel catalysts and process for producing synthesis gas
JP4488178B2 (ja) * 2004-02-26 2010-06-23 戸田工業株式会社 メタン化触媒及びその製造方法、並びに該メタン化触媒を用いた一酸化炭素をメタン化する方法
CN101433863B (zh) * 2007-11-15 2012-08-29 中国石油化工股份有限公司 一种复合氧化物载体及其制备方法
CN101844080A (zh) * 2010-06-02 2010-09-29 华东理工大学 一种用于合成气制甲烷的催化剂及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2188251A (en) * 1986-03-24 1987-09-30 Atomic Energy Authority Uk Methanation and steam reforming catalyst
CN101391218A (zh) * 2008-10-31 2009-03-25 西南化工研究设计院 一种焦炉气甲烷化催化剂及其制备方法
CN102125849A (zh) * 2010-12-15 2011-07-20 新奥新能(北京)科技有限公司 一种合成甲烷催化剂的制备方法和催化剂前驱体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MURTHY, 1. A. P. S. ET AL.: "Catalytic Behaviour of NiAl2O4 Spinel upon Hydrogen Treatment.", JOURNAL OF MATERIALS SCIENCE., vol. 28, no. 5, 1993, pages 1194 - 1198 *

Also Published As

Publication number Publication date
JP2014506183A (ja) 2014-03-13
US9555398B2 (en) 2017-01-31
US20140031199A1 (en) 2014-01-30
JP5726323B2 (ja) 2015-05-27
CN102125849B (zh) 2013-03-20
CN102125849A (zh) 2011-07-20

Similar Documents

Publication Publication Date Title
WO2012079505A1 (zh) 一种合成甲烷催化剂的制备方法和催化剂前驱体
Shao et al. Heterojunction-redox catalysts of Fe x Co y Mg 10 CaO for high-temperature CO 2 capture and in situ conversion in the context of green manufacturing
CN102139218A (zh) 一种煤制合成气完全甲烷化的催化剂及其制备方法
CN106512999B (zh) 一种甲烷干气重整催化剂及其制备方法
WO2023035697A1 (zh) 一种金属铜催化剂及其制备方法和应用
CN111111675A (zh) 一种Ni-CeO2催化剂的制备方法
Bian et al. CaO/Ca (OH) 2 heat storage performance of hollow nanostructured CaO-based material from Ca-looping cycles for CO2 capture
CN114015472A (zh) 一种逆水煤气变换反应及其与电解水制氢耦合的煤制甲醇工艺
CN109675543B (zh) 一种海泡石-氧化铝复合载体及使用其的抗高温烧结型甲烷化催化剂
CN101693203B (zh) 一种用于甲烷部分氧化制合成气的Ni基催化剂的制备方法
CN102259004B (zh) 用于煤制天然气甲烷化反应器的催化剂及其制备方法
CN109908931B (zh) 一种Al修饰活性炭为载体的催化剂及其制备方法
CN112844388B (zh) 镁铝尖晶石型复合氧化物载体及其制备方法和蒸汽重整催化剂
CN102259005B (zh) 用于煤制天然气辅助甲烷化反应器的催化剂及其制备方法
CN109603838B (zh) 一种天然气现场制氢的催化剂及其制备方法
CN116809070A (zh) 一种低温逆水汽变换的单原子催化剂及其制备方法
CN110038574B (zh) 一种海泡石衍生的具有尖晶石型结构的催化剂及其制备方法和应用
CN107649142A (zh) 一种低密度铁铬系co变换催化剂
CN115010086A (zh) 一种制氢用裂解剂、其制备方法及使用其制备氢气的方法
JP2023544675A (ja) 水素化方法
PL240039B1 (pl) S posób katalitycznej konwersji tlenku lub dwutlenku węgla do metanu oraz złoże katalityczne do realizacji tego sposobu
CN113731422A (zh) 一种浆态床甲烷合成催化剂的制备方法
CN114160150B (zh) 一种大型化高压氨分解催化剂及其制备方法
CN115555022B (zh) 一种二氧化碳加氢制烃催化剂的制备方法
CN114160141B (zh) 一种吸附制氢复合催化剂及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11848407

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013543511

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13994243

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11848407

Country of ref document: EP

Kind code of ref document: A1