[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2012077750A1 - 高強度焼結成形体の製造方法およびその製造装置 - Google Patents

高強度焼結成形体の製造方法およびその製造装置 Download PDF

Info

Publication number
WO2012077750A1
WO2012077750A1 PCT/JP2011/078414 JP2011078414W WO2012077750A1 WO 2012077750 A1 WO2012077750 A1 WO 2012077750A1 JP 2011078414 W JP2011078414 W JP 2011078414W WO 2012077750 A1 WO2012077750 A1 WO 2012077750A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
compact
temperature
pressure molding
mold
Prior art date
Application number
PCT/JP2011/078414
Other languages
English (en)
French (fr)
Inventor
佳樹 平井
Original Assignee
アイダエンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アイダエンジニアリング株式会社 filed Critical アイダエンジニアリング株式会社
Priority to US13/992,202 priority Critical patent/US20130336830A1/en
Priority to EP11847431.1A priority patent/EP2650065A4/en
Priority to JP2012547908A priority patent/JP5539539B2/ja
Priority to KR1020137017498A priority patent/KR101532920B1/ko
Priority to CN201180058670.3A priority patent/CN103249510B/zh
Publication of WO2012077750A1 publication Critical patent/WO2012077750A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/1017Multiple heating or additional steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/105Metallic powder containing lubricating or binding agents; Metallic powder containing organic material containing inorganic lubricating or binding agents, e.g. metal salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • B22F2003/145Both compacting and sintering simultaneously by warm compacting, below debindering temperature

Definitions

  • a high-strength sintered compact that produces a compacted compact with high density by pressing the mixed powder twice to form a compact compact with high density and subjecting this compacted compact to sintering treatment
  • the present invention relates to a manufacturing method and a manufacturing apparatus thereof.
  • a metal powder is pressed (compressed) to form a green compact having a predetermined shape, and then the green compact is heated to a temperature close to the melting point of the metal powder.
  • a sintered compact (such as a machine part) having a complicated shape and high dimensional accuracy can be manufactured at low cost.
  • the former belongs to a proposal that a lubricant is a carbon molecule composite in which ball-like carbon molecules and plate-like carbon molecules are combined (Patent Document 2: JP-A-2009-280908), and the penetration at 25 ° C.
  • Patent Document 3 JP 2010-37632 A
  • Both are ideas for reducing the frictional resistance between the metal powder and the mold.
  • Patent Document 4 Japanese Patent Laid-Open No. 2-156002
  • Patent Document 5 Japanese Patent Laid-Open No. Hei 4-
  • No. 231404 Japanese Patent Laid-Open No. 231404
  • Patent Document 6 Japanese Patent Laid-Open No. 2001-181701
  • the first warm forming / sintering powder metallurgy method is to preheat a metal powder mixed with a solid lubricant and a liquid lubricant to melt part (or all) of the lubricant and to apply the lubricant between the particles. Disperse.
  • the moldability is improved by reducing the frictional resistance between the particles and between the particles and the mold.
  • an iron powder mixture containing an alloying component is pressed in a die (die) to produce a green compact, and this compact is then heated to 870 ° C.
  • Pre-sintered for 5 minutes to produce a pre-sintered body pressurizing this pre-sintered body to produce a pre-sintered body that has been pressed twice, and then pre-sintered twice.
  • This is a method for producing a sintered part by sintering a body at 1000 ° C. for 5 minutes.
  • the mold is pre-heated and the lubricant is charged and adhered to the inner surface, and then the iron-based powder mixture (iron-based powder + lubricated) heated in the mold.
  • Agent powder press-molded at a predetermined temperature to form an iron-based powder molded body, then subject the iron-based powder molded body to sintering treatment, further bright quenching, and then tempering treatment. This is a method for producing an iron-based sintered body.
  • any conventional improvement measures relating to the lubricant and the pressure molding / sintering process are likely to be complicated and expensive. Handling is also cumbersome. Moreover, even if such a great disadvantage is perceived, the density of the green compact is at most about 7.4 g / cm 3 (94% of the true density). In addition, if there is a residue generated due to the combustion of the lubricant, the quality of the compacted body that has been press-molded is degraded. Therefore, the actual manufacturing density is 7.3 g / cm 3 or less. That is, the mechanical strength is insufficient.
  • Patent Document 7 JP-A-2002-343657
  • a magnetic powder whose surface is coated with a coating containing a silicone resin and a pigment is preformed to form a preform, and the preform is subjected to heat treatment at a temperature of 500 ° C. or more.
  • the heat-treated body is then subjected to compression molding. If the temperature for the heat treatment is 500 ° C. or lower, fracture is likely to occur during the subsequent compression molding, and if it is 1000 ° C.
  • the insulating coating is decomposed and the insulating properties are burned out.
  • This high temperature treatment is performed in vacuum, in an inert gas atmosphere or in a reducing gas atmosphere from the viewpoint of preventing oxidation of the preform. Therefore, it is more complicated and individualized than other proposed methods, and it is difficult to implement and implement, resulting in a significant increase in manufacturing cost. Not suitable for mass production.
  • Patent Documents 1 to 7 can meet the industry's request to reliably manufacture a sintered compact with high mechanical strength at low cost.
  • the mechanical strength depends on the final sintering process, but there are many ideas.
  • An object of the present invention is to provide a method for producing a high-strength sintered molded body and a production apparatus therefor, which can reliably and stably produce a sintered molded body having high mechanical strength at low cost.
  • the pressure molding process establishes a mixed powder as a specific form, and is considered as a pre-stage (preliminary) mechanical process of the high-temperature sintering process and has been treated as such. In other words, it is considered that the increase in strength was left to the final sintering process.
  • the density of the green compact can be greatly increased by devising the pressure molding process, which was considered to be the previous (preliminary) mechanical process, the subsequent sintering process should be kept as before. However, as a result, the mechanical strength of the sintered compact should be greatly increased.
  • the present invention relates to the effectiveness of the lubricant during pressurization, the compression limit including the lubricant powder, the spatial occupancy in the mixed powder of the lubricant powder, the spatial arrangement state of the base metal powder and the lubricant powder, Research on their behavior, residual state of residue (solidified particles of lubricant), partial diffusion of metal particles with vaporization of lubricant and final disposal of lubricant, and general pressure molding machine It was created based on the analysis of the properties, the compression limit and the influence on the density (strength) of the green compact.
  • the primary compacted body is molded by the first pressurization while maintaining the powder state of the lubricant, and then the lubricant is heated and liquefied, whereby the lubrication aspect in the primary compacted body is changed.
  • the secondary compacted body is made by modifying the primary compacted body by applying a second pressurization to increase the density, and then the secondary compacted body is sintered to obtain high strength.
  • the sintered compact is molded.
  • the present invention provides an epoch-making method and apparatus capable of reliably and stably producing a high-strength sintered compact at a low cost.
  • a method for producing a high-strength sintered compact is a pressure molding process in which a powder compact is formed by pressurizing a mixed powder that is a mixture of a base metal powder and a lubricant powder. And a sintering forming step of forming a sintered compact having high mechanical strength by sintering the green compact, and a first pressure forming step in which the pressure forming step sandwiches the heating temperature raising step, The first pressure forming step applies a first pressure to the mixed powder at a room temperature below the melting point of the lubricant powder in the first mold, and the first pressure forming step applies the primary pressure.
  • the powder compact is to be molded, and the heating temperature raising step is to heat the primary powder compact to raise the temperature of the primary powder compact to the melting point equivalent temperature of the lubricant powder,
  • the primary It is intended to mold the secondary green compact densified by a second pressing force added to the powder molded body, characterized in that.
  • the melting point of the lubricant powder can be set to a low melting point within the temperature range of 90 to 190 ° C.
  • the first pressing force is selected to be capable of compressing the density of the primary green compact to 7.0 to 7.5 g / cm 3
  • the second pressing force is selected to be the secondary pressing force. It can be selected that the density of the green compact can be compressed to 7.75 g / cm 3 .
  • the second pressure can be made equal to the first pressure.
  • An apparatus for producing a high-strength sintered compact includes a mixed powder feeder capable of supplying and filling a mixed powder, which is a mixture of a base metal powder and a low melting point lubricant powder, to the outside.
  • a first pressure molding machine for forming a primary powder compact by applying a first pressing force to the mixed powder filled in the first mold using the mixed powder feeder;
  • a heating temperature-raising machine for raising the temperature of the primary green compact taken out from the mold to a temperature corresponding to the melting point of the lubricant powder, and a second mold that can be warmed up to the temperature corresponding to the melting point in advance.
  • the heating temperature raising machine and the second pressure molding machine are formed from a heating and pressure molding machine in which these functions are integrated, and heating is applied. It is possible to form the pressure forming machine from a plurality of heat-pressure forming child machines and to form each heat-pressure forming child machine so that it can be selected and operated for each cycle.
  • a high-strength sintered compact can be reliably and stably manufactured, and the manufacturing cost can be greatly reduced.
  • the equipment economy of the pressure molding machine can be reduced, and the pressure molding process can be easily performed and handled. Indirectly, the production cost of the green compact can be further reduced.
  • the manufacturing method of the high-strength sintered molded body according to the above (1) to (5) can be surely carried out, and it is easy to implement and easy to handle.
  • the apparatus can be simplified as compared with the above embodiment (6). Simplification of the production line can be promoted and handling becomes easier. In addition, it is possible to match the tact times of the first process forming step, the heating temperature raising step, and the second pressure forming step.
  • FIG. 1 is a diagram for explaining a method for producing a high-strength sintered compact according to an embodiment of the present invention.
  • FIG. 2 is a front view for explaining an apparatus for manufacturing a high-density sintered compact and its operation according to the first embodiment of the present invention.
  • FIG. 3A is a view for explaining a molding operation of the mixed powder in the manufacturing apparatus of the high-density sintered compact according to the first embodiment of the present invention, and is a primary compacted compact with a first mold. The state which is shape
  • FIG. 3B is a view for explaining the molding operation of the mixed powder in the high density sintered compact manufacturing apparatus according to the first embodiment of the present invention, and the next mixed powder is put in the first mold.
  • FIG. 4 is a graph for explaining the relationship between the applied pressure and the density obtained by the applied pressure in the high-density sintered compact manufacturing apparatus according to the first embodiment of the present invention.
  • the solid line B shows the molding state of the second mold, and the solid line B shows the molding state of the second mold.
  • FIG. 5 is an enlarged partial cross-sectional view for explaining the internal state of the cross section of the secondary green compact in the high density sintered compact manufacturing apparatus according to the first embodiment of the present invention.
  • FIG. 6A is a view for explaining a ring-shaped sintered compact (and a secondary compacted compact, a primary compacted compact) in the high-density sintered compact manufacturing apparatus according to the first embodiment of the present invention. It is an external perspective view.
  • FIG. 6B illustrates the elongated round shaft-shaped sintered compact (and the secondary compacted compact, the primary compacted compact) in the high-density sintered compact manufacturing apparatus according to the first embodiment of the present invention.
  • FIG. FIG. 7: is a front view for demonstrating the manufacturing apparatus and operation
  • FIG. 8A is an enlarged partial cross-sectional view for explaining the internal state of the cross section of the pre-compacted compact after the heat treatment according to the conventional method and the problems thereof, and shows the case where the heat treatment is performed at 500 to 700 ° C.
  • FIG. 8B is an enlarged partial cross-sectional view for explaining the internal state of the cross section of the pre-compacted compact after the heat treatment according to the conventional method and the problems thereof, and shows a case where the heat treatment is performed at 700 to 1000 ° C.
  • the high-strength sintered compact manufacturing apparatus 1 includes a mixed powder feeder 10, a first pressure molding machine 20, a heating temperature riser 30, and a second pressure molding machine 40. And a sintering machine 80, and a pressure forming step for pressing the mixed powder 100, which is a mixture of the base metal powder and the lubricant powder, to form the green compacts 110 and 115, and the green compact 115.
  • the method for producing a high-strength sintered compact including a sintering process for forming a sintered compact 120 having a high mechanical strength by sintering can be stably and reliably performed.
  • the technical characteristics of the manufacturing method of the present high-strength sintered compact include the first pressure molding step (PR2) and the second pressure molding step in which the pressure molding step sandwiches the heating temperature raising step (PR3 in FIG. 1). (PR5) and the first pressure molding step (PR2) is performed in the first mold (lower die 21) in the first mixed powder 100 at room temperature below the melting point of the lubricant powder.
  • the primary compacting body 110 can be molded by applying the pressure P1, and the heating temperature raising step (PR3) heats the primary compacting body 110 and raises the temperature to the melting point equivalent temperature of the lubricant powder.
  • the mixed powder 100 in the present specification means a mixture of a base metal powder and a low melting point lubricant powder.
  • the base metal powder there are a case where it consists of only one kind of main metal powder and a case where it consists of one kind of main metal powder and one or a plurality of alloying component powders.
  • the case can be adapted.
  • the low melting point means that the temperature (melting point) is significantly lower than the melting point (temperature) of the base metal powder and is a temperature (temperature) at which oxidation of the base metal powder can be significantly suppressed. . Specific details will be described later.
  • the mixed powder supply machine 10 arranged on the leftmost side (upstream side) of the high-strength molding line converts the mixed powder 100 into the first pressure molding machine 20.
  • the mixed powder 100 Since it is important to uniformly and sufficiently fill the mixed powder 100 anywhere in the first mold (lower mold 21), the mixed powder 100 must be in a smooth state. That is, since the form of the internal space (cavity) of the first mold (lower mold 21) is a form according to the product form, even if the product form is complicated or has a narrow portion, the primary pressure In order to guarantee the dimensional accuracy of the powder molded body 110, non-uniform filling and insufficient filling are not allowed.
  • the primary green compact 110 (secondary green compact 115) in this embodiment has the ring shape shown in FIG. 6A, and the form of the internal space (cavity) 22 of the first mold corresponds to this. It is finished in the form to do.
  • the lubricant for reducing the frictional resistance between the particles of the base metal powder and the frictional resistance between the base metal powder and the inner surface of the mold is a solid (very small granular) in a smooth state at room temperature. Choose one.
  • the mixed powder 100 has a high viscosity and low fluidity, so uniform filling and sufficient filling cannot be performed.
  • the lubricant is solid and has a predetermined lubricating action. It must be stable. Even if there is a case where a slight temperature increase may occur due to the pressurization of the first pressurizing force P1, it should be kept stable as well.
  • the melting point of the lubricant powder is set to the melting point of the base metal powder from the viewpoint of the relationship with the heating temperature raising step (PR3) executed after the molding of the primary compact 110 and the oxidation suppression of the base metal powder. In comparison, it is necessary to have a very low melting point (low melting point).
  • the melting point of the lubricant powder is selected as a low melting point belonging to a temperature range of 90 to 190 ° C.
  • the lower temperature (90 ° C.) is an upper limit temperature (80 ° C.) of a value (70 to 80 ° C.) that will not reach this temperature even if a certain temperature rise occurs during the molding of the primary green compact.
  • the melting point (eg, 110 ° C.) of another metal soap is selected. That is, the concern that the lubricating oil powder is dissolved (liquefied) and flows out during the pressure molding of the primary compacted body is eliminated.
  • the upper temperature (190 ° C.) is a minimum value from the viewpoint of expanding selectivity with respect to the type of lubricant powder, and in particular, a maximum value from the viewpoint of suppressing oxidation of the base metal powder during the heating temperature raising step (PR3). Selected. That is, the lower temperature and the upper temperature in this temperature range (90 to 190 ° C.) should be understood as boundary values rather than limit values.
  • the lubricant powder many substances belonging to the metal soap (such as zinc stearate and magnesium stearate) can be selectively employed as the lubricant powder. Since the lubricant must be in a powder state, a viscous liquid such as zinc octylate cannot be used.
  • zinc stearate powder having a melting point of 120 ° C. was used as the lubricant powder.
  • a pressure molding is performed while using a lubricant having a temperature (melting point) lower than the mold temperature at the time of pressure molding and dissolving (liquefying) the lubricant from the beginning. The idea of performing is denied. If the dissolved lubricant flows out before the molding of the primary green compact 110, the insufficiently lubricated part is likely to occur on the way, so that sufficient pressure molding cannot be performed reliably and stably. It is.
  • the amount of lubricant powder shall be a value selected from empirical rules through test studies (0.02 to 0.12% by weight of the total amount of mixed powder). Preferably, it is 0.03 to 0.10% by weight. 0.03% by weight is a value that can ensure the best lubricating action until the molding of the primary compact 110, and 0.10% by weight is expected when the mixed powder 100 is changed to the primary compact 110. This is the best value to obtain the compression ratio.
  • 0.03% by weight is a value that can ensure the best lubricating action until the molding of the primary compact 110, and 0.10% by weight is expected when the mixed powder 100 is changed to the primary compact 110. This is the best value to obtain the compression ratio.
  • the first pressure molding machine 20 uses the mixed powder feeder 10 to apply the first pressure P1 to the mixed powder 100 filled in the first mold 21 to form the primary compact 110.
  • it is a press machine structure.
  • the mold is composed of a lower mold 21 on the bolster side and an upper mold 25 on the slide 5 side.
  • the cavity 22 of the lower mold 21 has a shape (annular cylindrical shape) corresponding to the form (ring shape) of the primary compact 110.
  • the upper mold 25 can be pushed into the lower mold 21 (22) and is moved up and down by the slide 5.
  • a movable member 23 is fitted below the cavity 22 so as to be displaced in the vertical direction.
  • the movable member 23 is displaced upward by a knockout pin (not shown) protruding through a through hole 24 provided below the ground level GL. That is, the primary compacting body 110 in the mold [21 (22)] can be pushed up to the transfer level HL.
  • the first compacting body 110 in the mold [21 (22)] serves as a first take-out means for taking out to the outside (HL).
  • the movable member 23 After the primary green compact 110 is transferred to the heating warmer 30 side, the movable member 23 returns to the initial position together with the knockout pin. But you may form the 1st extraction means from other special means.
  • the horizontal axis indicates the applied pressure P as an index.
  • the maximum capacity (pressing force P) in this embodiment is 10 Ton / cm 2, and this is taken as 100 on the horizontal axis.
  • Pb is a mold breakage pressure and has a horizontal axis index of 140 (14 Ton / cm 2 ).
  • the vertical axis indicates the density ⁇ as an index.
  • the vertical axis index (100) is the density ⁇ (7.6 g / cm 3 ).
  • the vertical axis index 102 corresponds to the density ⁇ (7.75 g / cm 3 ).
  • the density ⁇ (7.0 g / cm 3 , 7.5 g / cm 3 ) corresponds to the vertical axis index (92, 98).
  • the density ⁇ obtained by the first pressure molding machine 20 increases according to the curve indicated by the broken line A.
  • the density ⁇ is 7.6 g / cm 3 at the first pressure P1 (the horizontal axis index is 100). Even if the first pressure P1 is increased to a value higher than this, the increase in the density ⁇ is minimal. Strong risk of mold damage.
  • the primary compacting body 110 molded by the first press molding machine 20 is heated to promote dissolution (liquefaction) of the lubricant, and then the second press molding machine.
  • the second pressure forming process is performed.
  • a high density (7.75 g / cm 3 ) corresponding to the vertical axis index 102 is achieved as shown by a solid line B in FIG. it can. Details will be added in the description of the second pressure molding machine 40.
  • the heating temperature increasing device 30 heats the primary compacting body 110 taken out from the first mold 21 to positively adjust the temperature of the primary compacting body 110 to the temperature corresponding to the melting point of the lubricant powder. It is a means to raise the temperature.
  • the heating warmer 30 includes a hot air generating source (not shown), a blowing hood 31, an exhaust circulation hood 33, and the like, and the primary compacting body 110 positioned on the wire mesh holding member 32 is heated. Air is blown and heated, and the temperature is raised to the melting point equivalent temperature (120 ° C.) of the lubricant powder.
  • the melting point of zinc stearate is 120 ° C.
  • the dense portion has low friction, so the compressibility is superior and the compression is likely to proceed. Since the sparse part has high friction, the compressibility is inferior and the compression is delayed. In any case, a compression progression difficulty phenomenon occurs in accordance with a preset value of the first pressure P1. That is, a compression limit occurs. Under this condition, when the fracture surface of the primary green compact 110 taken out from the mold 21 is enlarged and observed, the base metal powder is pressed in an integral manner in the dense portion. However, lubricant powder is also mixed in. In the sparse part, a slight gap (hole) remains between the pressed base metal powders. Almost no lubricant powder is found.
  • the primary powder compact 110 after the completion of the first pressure molding is heated to a temperature corresponding to the melting point of the lubricant powder (120 ° C.) to dissolve (liquefy) the lubricant powder. Increase fluidity.
  • the lubricant that has melted out from the dense part soaks into the periphery and is replenished to the part that has been sparse. Therefore, the frictional resistance between the particles of the base metal powder can be reduced, and the pores occupied by the lubricant powder can also be compressed. The frictional resistance between the base metal powder particles and the inner surface of the mold can also be reduced.
  • a preform (corresponding to the primary compact 110) is heat-treated (strained) in a high-temperature atmosphere (500 to 1000 ° C). To be removed). Indeed, this conventional heat treatment is presumed to be the source of the deterioration of quality and the prevention of strength improvement of the green compact.
  • the lubricant melts when the green compact is heat-treated in the low temperature range (500-700 ° C) related to the above-mentioned 500-1000 ° C. Thereafter, when the temperature is returned to room temperature, the lubricant is solidified to bond the metal particles. As a result, as shown in FIG. 8A, a large amount of solidified particles of the lubricant (unnecessary material 108) remain in the voids and in the gaps between the metal particles (101) in the green compact.
  • the second compacting process is performed on the compacted article 110 in which the compacted compact is heated to the melting point of the lubricant and the temperature is maintained. Inside the green compact 110 maintained at this temperature, carbonization does not occur, and the lubricant is in a meltable and flowable state. In this state, when a pressure molding process such as a press machine is performed, the melted lubricant present inside is squeezed out and flows out from the green compact 110 to the outside. As a result, as shown in FIG. 5, almost no unnecessary matter (residue or the like) 108 remains inside the green compact (secondary green compact 115) after completion of the press molding process. That is, it is possible to mold the green compact 115 having extremely high density and high mechanical strength.
  • the second pressure molding machine 40 for executing this second compacting process has a second mold 41 that can be warmed up to the temperature corresponding to the melting point in advance, and the second mold that has been warmed up. This is a means for forming a secondary compacted green body 115 having a high density by applying a second pressure P2 to the heated primary compacted compact 110 set in the mold 41.
  • the maximum capacity (pressing force P) of the second pressure molding machine 40 in this embodiment is 10 Ton / cm 2 as in the case of the first pressure molding machine 20.
  • the first pressure molding machine 20 and the second pressure molding machine 40 are configured as one press machine, and the upper molds 25 and 45 can be moved up and down synchronously by the common slide 5 shown in FIG. Also from this point, the apparatus economy is advantageous, and the molding cost of the secondary green compact 115 can be reduced.
  • the value of the 2nd applied pressure P2 should just be more than the value of the 1st applied pressure.
  • the first pressure molding machine 20 and the second pressure molding machine 40 are constituted by two press machines, and the maximum capacity (pressure P) of the second pressure molding machine 40 and the first The maximum capacity (pressure P) of the pressure molding machine 20 may be different.
  • the mold is composed of a lower die 41 on the bolster side and an upper die 45 on the slide 5 side.
  • the cavity 42 of the lower mold 41 has a shape (annular cylindrical shape) corresponding to the shape (ring shape) of the pressure molded body 115 at the lower part, and the upper part is slightly so as to receive the primary compacted body 110. It has a large form.
  • the upper mold 45 can be pushed into the lower mold 41 (42) and is moved up and down by the slide 5.
  • a movable member 43 is fitted below the cavity 42 so as to be displaceable in the vertical direction.
  • the metal mold (41) and the metal mold (21) have been adjusted in height (position) corresponding to the vertical dimension difference between the objects to be compressed (110 and 115).
  • the movable member 43 is displaced upward by a knockout pin (not shown) that protrudes through a through hole 44 provided below the ground level GL. That is, the secondary compacting body 115 in the second mold [41 (42)] can be pushed up to the transfer level HL.
  • the second compacting body 115 in the mold [41 (42)] serves as a second take-out means for taking out to the outside (HL).
  • the second take-out means may be formed from other special means.
  • the second mold [41 (42)] is provided with a warm-up means 47 capable of changing the set temperature.
  • the warming-up means 47 allows the second mold [41 (42) to reach the melting point equivalent temperature (120 ° C.) of the lubricant powder (zinc stearate) until the primary compact 110 is received (set). )] Warms up (warms up).
  • the heated primary compact 110 can be received without being cooled. As a result, the lubricating action can be ensured while preventing re-solidification of the previously dissolved (liquefied) lubricant.
  • the warm-up means 47 can be heated until the secondary compacted body 115 is completely pressed. In this way, the fluidity of the dissolved lubricant in all directions during pressure molding can be further improved, so that the frictional resistance between the particles and the mold 41 (42) as well as between the particles is greatly increased. Can be reduced and maintained.
  • the warm-up means 47 is an electric heating system, it can also be implemented by a hot oil or hot water circulation system.
  • the density ⁇ obtained by the second pressure molding machine 40 follows a straight line indicated by a solid line B. That is, unlike the case of the first pressure molding machine 20 (broken line A), the density ⁇ does not gradually increase as the second pressure P2 is increased. That is, the density ⁇ does not increase until the final first pressure P1 (for example, the horizontal axis index 50, 75, or 85) in the first pressure molding step is exceeded. When the second pressure P2 exceeds the final first pressure P1, the density ⁇ increases at a stretch. It is understood that the second pressure molding is performed as if the first pressure molding was continuously taken over.
  • the first pressure molding step it is not necessary to perform an operation in which the first pressure P1 is increased to a value (horizontal axis index 100) corresponding to the maximum capacity at any time. That is, it is possible to eliminate energy consumption for a useless time when the first pressure molding is continued after the compression limit. This leads to reduced manufacturing costs. Moreover, since it becomes easy to avoid the overload operation exceeding the horizontal axis index 100, there is no fear of die damage. Overall, handling is easy and safe and stable operation is possible.
  • the first pressure P1 is set to an equivalent pressure (any value of the ordinate index 92 to 98) that can increase the density ⁇ to 7.0 to 7.5 g / cm 3.
  • the molding process is selected and set.
  • 7.5 g / cm 3 (vertical index 98) is the upper value that does not enter the dangerous area exceeding the vertical index 100
  • 7.0 g / cm 3 (vertical index 92) is wider than the upper value. Selected as the lower value. This is for handling (pressurization setting etc.) and facilitating operation.
  • the second pressing force P2 corresponds to the vertical axis index 92 ( ⁇ 98) to 100, and the secondary compacted body 115 having a density ⁇ (7.75 g / cm 3 ) corresponding to the vertical axis index 102.
  • the sintering machine 80 is formed from a continuous sintering furnace, and the secondary compacted body 115 introduced through the shooter 59 is continuously conveyed at a low speed by a conveyor (not shown). While being moved, the sintering process can be performed for a predetermined time at a predetermined temperature. A plurality of secondary green compacts 115 can be sintered efficiently and uniformly. That is, it is possible to manufacture a sintered molded body 120 with higher strength.
  • the sintering machine 80 is not shown. In addition, you may form the sintering processing machine 80 from a batch type sintering furnace.
  • the sintering temperature is usually about 1120 ° C for iron-based materials and about 1250 ° C for high-temperature sintering. Since the sintering proceeds even in the process of increasing the temperature, the maximum temperature holding time of about 30 minutes is sufficient.
  • the values of the sintering temperature and the sintering time (conveyor speed) are configured to be changeable.
  • the second green compact 115 is in a state where there is almost no unnecessary matter (residue or the like) 108 (high density), so that the contact area between the metal particles (101) and the metal particles (101) is large.
  • diffusion bonding can be promoted in a wider area, so that a significant improvement in mechanical properties (strength) can be expected.
  • the workpiece transfer means 50 is the predetermined compact in the heating warmer 30 for the primary compacted body 110 taken out from the first mold 21 by the first take-out means (23, 24) in FIG. 3A.
  • the first compacted green body 110 after the temperature rise can be transported from a predetermined position in the heating temperature riser 30 to the second mold 41, and can be transported to the position by the second take-out means (43, 44).
  • the secondary green compact 115 taken out from the second mold 41 is formed so as to be transportable to the discharge shooter 59.
  • the workpiece transfer means 50 of this embodiment is composed of three feed bars 51, 52, 53 that are operated synchronously as shown in FIG. 3B.
  • the feed bars 51, 52, and 53 are advanced from the depth side of the sheet of FIG. 3A to the front (FIG. 3B) transfer line at the time of a transfer request, and then move back from the left to the right and then retreat to their original positions.
  • the setting means (52, 43, 44) sets the heated primary compact 110 to the second mold 42 warmed to the melting point equivalent temperature.
  • the workpiece transfer means may include a finger or the like driven in a two-dimensional or three-dimensional direction, and may be formed from a transfer device that sequentially transfers the workpiece to each mold. Further, the secondary green compact 115 can be formed so as to be transportable to the sintering machine 80.
  • the high-strength sintered molding method is performed as follows.
  • the mixed powder 100 in a smooth state is procured by mixing the base metal powder and 0.03 ( ⁇ 0.10) wt% lubricant powder (zinc stearate powder). A predetermined amount is supplied to the mixed powder feeder 10 (step PR0 in FIG. 1).
  • the mixed powder supplier 10 is moved from a predetermined position (solid line) to a replenishment position (broken line) as shown in FIG. 3B.
  • the supply port of the mixed powder supplier 10 is opened, and a fixed amount of the mixed powder 100 is filled into the empty lower mold 21 (22) of the first pressure molding machine 20 (step PR1 in FIG. 1). For example, it can be filled in 2 seconds.
  • the supply port is closed, and the mixed powder supply machine 10 returns to a predetermined position (solid line).
  • the primary powder compact 110 is molded in the mold (21) (step PR2 in FIG. 1). Thereafter, the upper die 25 is raised by the slide 5.
  • the second pressure molding machine 40 the second pressure molding process related to the primary compacted green body 110 is performed in synchronization.
  • the first take-out means (23) works, and the primary compacted body 110 is pushed up to the transfer level HL. That is, it is taken out from the lower mold 21. Then, as shown in FIG. 3B, the workpiece transfer means 50 works, and the primary compacting body 110 is transferred toward the heating temperature riser 30 by the transfer bar 51. At this stage, the movable member 23 is returned to the initial position below. The primary compact 110 after the transfer is positioned on the wire mesh holding member (32) as shown in FIG. 3A.
  • Heating temperature In FIG. 3A, the heating warmer 30 is activated. Hot air is blown from the blowing hood 31 and the temperature of the primary green compact 110 is raised to the melting point equivalent temperature (120 ° C.) of the lubricant powder (step PR3 in FIG. 1). That is, the lubricant is dissolved, and the lubricant distribution in the primary compact 110 is uniformly modified by the flow.
  • the heating temperature raising time is, for example, 8 to 10 seconds.
  • the hot air is recirculated through the wire mesh holding member 32 and the exhaust circulation hood 33.
  • the heated primary compact 110 is transferred to the second pressure molding machine 40 by the workpiece transfer means 50 (transfer bar 52) and positioned above the lower die 41. Is set on the movable member 43 in the lower mold 41 (42) (step PR4 in FIG. 1).
  • the warm-up means 47 works, and before the primary compacting body 110 is received (set), the mold [41 (42)] is moved to the temperature corresponding to the melting point of the lubricant powder. Warm to 120 ° C. Thereafter, re-solidification of the lubricant in the temperature-primed primary compact 110 that has been received can be prevented.
  • the upper die 45 moves down together with the slide 5 of FIG. 2 as shown in FIG. 3A and starts to pressurize the primary powder compact 110 in the lower die 41 (42) with the second pressure P2.
  • Liquid lubricant provides sufficient lubrication.
  • the lubricant flows in all directions as the pressure molding proceeds, the frictional resistance between the particles and the mold can be efficiently reduced as well as between the particles.
  • the density ⁇ of the compressed primary compact 110 is increased according to the solid line B in FIG. That is, when the second pressing force P2 exceeds the horizontal axis index (for example, 95...
  • the density ⁇ suddenly increases from 7.25 g / cm 3 to the density ⁇ corresponding to the vertical axis index 102. It increases to (7.75 g / cm 3 ).
  • the second applied pressure P2 is increased to an abscissa index of 100 (10 Ton / cm 2 )
  • the density ⁇ (7.75 g / cm 3 ) becomes uniform as a whole.
  • the secondary green compact 115 is molded in the mold (41) (step PR5 in FIG. 1). Thereafter, the upper mold 45 is raised by the slide 5. Note that, in the first pressure molding machine 20, the first pressure molding process for the subsequent primary powder compact 110 is performed synchronously.
  • the 2nd taking-out means (43) works and the secondary compacting body 115 is pushed up to the transfer level HL. That is, it is taken out from the lower mold 41. Then, as shown in FIG. 3B, the workpiece transfer means 50 operates, and the secondary compacting body 115 is transferred toward the discharge chute 59 by the transfer bar 53. At this stage, the movable member 43 is returned to the initial position below.
  • the first pressure forming process, the heating temperature raising process and the second pressure forming process for the metal powder 100 supplied and filled in order can be executed synchronously. Therefore, the secondary compacted body 115 can be formed in a cycle time of 12 to 14 seconds obtained by adding a workpiece transfer time (for example, 2 to 4 seconds) to the longest heating temperature raising time (10 seconds).
  • the secondary green compact 115 introduced from the discharge chute 59 is sintered in the sintering machine 80.
  • the green compact 115 shown in FIG. 5 becomes a sintered compact 120 that is further enhanced in strength by sintering.
  • the supply of the sintered compact 120 (for example, parts for automobiles and equipment for small and light complex shapes and high mechanical strength) can be stabilized, and can greatly contribute to the reduction of production costs thereof.
  • Example 1 A mixed powder 100 was prepared by mixing 0.03 ( ⁇ 0.10) wt% of lubricant powder (zinc stearate powder) with base metal powder (pure iron powder for machine parts).
  • the primary compacted body 110 having a density of 7.0 ( ⁇ 7.5) g / cm 3 was molded by pressure molding with the first pressure P1. When the mixing amount was 0.03% by weight, the first pressure molding process could be performed most smoothly.
  • the primary green compact 110 heated to 120 ° C. is press-molded by the second pressure P2 to form a secondary green compact 115 having a density ⁇ 7.75 g / cm 3 corresponding to the longitudinal index 102. did.
  • the sintered compact 120 with increased mechanical strength was obtained by subjecting the secondary green compact 115 to a sintering treatment at 1150 ° C. for 30 minutes.
  • Mechanical strength eg, tensile force
  • the density is increased in the second pressure forming step before the sintering process as compared with the conventional method, mechanical parts with further increased mechanical strength can be efficiently manufactured by sintering. I was able to.
  • a high-strength finish can be achieved even with the elongated round shaft shape shown in FIG.
  • Example 2 Mixed powder 100 was prepared by mixing 0.03 ( ⁇ 0.10) wt% of lubricant powder (zinc stearate powder) with base metal powder (Fe—Si alloy powder).
  • the first green compact 110 having a true density ratio of 70 to 85% was molded by pressure molding with the first pressure P1. When the mixing amount was 0.03% by weight, the first pressure molding process could be performed most smoothly.
  • the primary green compact 110 heated to 120 ° C. is press-molded with the second pressure P2 to form a secondary green compact 115 having a true density ratio of 85 to 95% corresponding to the longitudinal index 102. did. Thereafter, the secondary compacted body 115 was subjected to a sintering process at 1150 ° C. for 30 minutes to obtain a sintered compact 120 with further increased mechanical strength. That is, a sintered compact having high mechanical strength as compared with a sintered compact by a conventional molding method could be efficiently produced.
  • the first pressure P1 is applied to the mixed powder 100 in the first pressure molding step (in the first mold) and at a room temperature below the melting point of the lubricant powder.
  • the primary compacted body 110 is molded, the primary compacted body 110 is heated to a temperature corresponding to the melting point of the lubricant powder in the heating temperature raising step, and then warmed up in the second pressure molding step. 2 to form a secondary green compact 115 having a higher density by applying a second pressing force P2 to the primary green compact 110 at a temperature corresponding to the melting point.
  • the high-strength sintered molded body 120 can be reliably and stably manufactured, and the manufacturing cost is greatly reduced. be able to.
  • the melting point of the lubricant powder is a low melting point within the temperature range of 90 to 190 ° C., the selectivity of the lubricant can be expanded while promoting the suppression of oxidation.
  • the sintered compact 120 having excellent mechanical strength corresponding to the type of the base metal powder. Can be manufactured efficiently and stably at a low cost.
  • the second pressing force P2 can be set to a value equal to the first pressing force P1, it is easy to perform and handle the pressure forming step, and indirectly increase the production cost of the green compact. In addition, it can be easily constructed based on, for example, a single press machine.
  • the capacity of a conventional apparatus (for example, a press machine) (the horizontal axis index 100 in FIG. 4) could not be increased beyond the density corresponding to the vertical axis index 100, according to the present invention.
  • a conventional apparatus for example, a press machine
  • the manufacturing apparatus 1 is composed of the mixed powder supply machine 10, the first pressure molding machine 20, the heating temperature raising machine 30, the second pressure molding machine 40, and the sintering machine 80, The manufacturing method of the high-strength sintered compact 120 can be reliably and stably carried out.
  • the manufacturing apparatus 1 forms the heating temperature riser 30 and the second pressure molding machine 40 in the case of the first embodiment from a heating and pressure molding machine 70 in which these functions are integrated. It is.
  • the heat-pressure molding machine 70 is formed of a plurality of (two in this embodiment) heat-pressure molding child machines 70A, 70B, and each of the heat-pressure molding child machines 70A, 70B is manufactured by control means (not shown). It is possible to select and operate sequentially for each cycle.
  • each heating and pressing molding machine 70A (70B) corresponds to the second pressing machine 40 in the first embodiment.
  • each heating and pressure molding child machine 70A (70B) has a composite function type heating means having a composite function corresponding to each function of the heating temperature riser 30 and the warming-up means 47 in the case of the first embodiment. 48 is provided.
  • the multi-function heating means 48 is an electric heating system having a set temperature switching function.
  • the lower mold 41 can be warmed up to the temperature corresponding to the melting point of the lubricant (120 ° C.) in advance (before receiving the primary green compact 110).
  • the calorific value is largely switched so that the entire primary green compact 110 can be heated to a temperature corresponding to the melting point of the lubricant (120 ° C.). It is also possible to selectively switch the heating part. After the heating temperature rise, the same second heat forming process as that of the second pressure molding machine 40 in the first embodiment is performed.
  • the multi-function heating unit 48 functions so as to be able to maintain the temperature of the primary green compact 110 at the lubricant melting point equivalent temperature (120 ° C.) or higher during the second thermoforming process.
  • each heating and pressing molding child machine 20, 70 ⁇ / b> A, 70 ⁇ / b> B has an independent press machine structure, and each slide 5, 5 ⁇ / b> A, 5 ⁇ / b> B is driven up and down by rotation control of each machine motor. . That is, when one (the other) of each of the heating and pressing child machines 70A and 70B performs a pressure molding operation, the other (one) is preheated and does not perform the pressure molding operation. The same applies to the case where the hot press molding machine 70 is formed from three or more hot press molding slaves in relation to the manufacturing cycle time.
  • the first primary compacting body 110 is being pressure-molded by the first thermoforming machine 20, while the second thermocompressing machine 70A (or 70B) is the second.
  • the first primary green compact 110 is heated and heated, and the first primary green compact 110 is set as the secondary green compact 115 by the other heating and pressing compactor 70B (or 70A). Pressure molding is performed as much as possible.
  • the sintering machine 80 is in the process of forming a sintered compact 120 by subjecting a plurality of secondary compacts 115 introduced before to the sintering process.
  • the heating and pressing molding machine 70 may be constructed from a plurality of pressing molding machines 70A and 70B having the same structure, so that it is compared with the case of the first embodiment.
  • the device can be simplified. Simplification of the production line can be promoted and handling becomes easier.
  • the tact times of the first pressurizing step, the heating temperature raising step, and the second pressurizing step can be matched.
  • the first pressure molding machine 20 and the heating and pressure molding machine 70A (or 70B) or the first pressure molding machine 20 and each of the heating and pressure molding machines 70A and 70B are combined into one press machine. It can also be constructed as a structure.
  • Manufacturing apparatus for high-strength sintered compacts 10. Mixed powder feeder, 20. First press forming machine, 30. Heating temperature riser, 40. Second press forming machine, 47. Warming-up means, 48. Multifunction heating. Means, 50 workpiece transfer means, 70 heating and pressing molding machine, 70A, 70B heating and pressing molding machine, 80 sintering processing machine, 100 mixed powder, 101 iron powder, 108 unnecessary (residue), 109 void, 110 Primary compacted compact, 115 Secondary compacted compact, 120 Sintered compact, 128 Partially sintered

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Powder Metallurgy (AREA)

Abstract

 加圧成形工程と焼結成形工程とを含む高強度焼結成形体の製造方法において、加圧成形工程が加熱昇温工程を挟む第1の加圧成形工程と第2の加圧成形工程とから形成され、第1の加圧成形工程が第1の金型内で潤滑剤粉末の融点未満の常温において混合粉末に第1の加圧力を加えて1次圧粉成形体を成形し、加熱昇温工程が1次圧粉成形体を加熱してその温度を該融点相当温度に昇温し、第2の加圧成形工程が該融点相当温度に暖機された第2の金型内でかつ当該融点相当温度において1次圧粉成形体に第2の加圧力を加えて密度を高めた2次圧粉成形体を成形する。

Description

高強度焼結成形体の製造方法およびその製造装置
 混合粉末を2回加圧により密度の高い圧粉成形体を成形し、この圧粉成形体に焼結処理を施して機械的強度を一段と高めた焼結成形体を製造する高強度焼結成形体の製造方法とその製造装置に関する。
 一般的に、粉末冶金技術は、金属粉末を加圧(圧縮)して所定形状の圧粉成形体に成形処理し、次いで圧粉成形体を当該金属粉末の融点近傍温度に加熱して粒子間結合(固化)を促す焼結処理を行う一連の技術である。これにより、形状複雑で寸法高精度の焼結成形体(機械部品等)を低コストで製造することができる。
 また、機械部品の一段の小型軽量化要請に伴い、圧粉成形体の機械的強度の向上が求められる。機械的強度は、圧粉成形体の密度を高めるにしたがって大幅(双曲線的)に高まるとされている。代表的な高強度化方法としては、金属粉末に潤滑剤を混合させることで摩擦抵抗力の低減を図りつつ加圧成形する方法が提案(例えば、特許文献1:特開平1-219101号公報)されている。さらなる高密度化を目指した幾多の提案もされている。これら提案は、潤滑剤自体の改善と、加圧成形・焼結処理に係るプロセスの改善に大別される。
 前者に属するものとしては、潤滑剤をボール状炭素分子と板状炭素分子を組み合わせた炭素分子複合体とする提案(特許文献2:特開2009-280908号公報)、25℃における針入度が0.3~10mmである潤滑剤とする提案(特許文献3:特開2010-37632号公報)を挙げることができる。いずれも金属粉末と金型との摩擦抵抗力を低減する考え方である。
 後者に属するものとしては、温間成形・焼結粉末冶金方法(特許文献4:特開平2-156002号公報)、2回プレス-2回焼結粉末冶金方法(特許文献5:特開平4-231404号公報)および1回成形-焼結粉末冶金方法(特許文献6:特開2001-181701号公報)が知られている。
 最初の温間成形・焼結粉末冶金方法は、固体潤滑剤および液体潤滑剤を混合した金属粉末を予熱することで潤滑剤の一部(または、全部)を溶融させかつ粒子間に潤滑剤を分散させる。これにより、粒子間および粒子・金型間の摩擦抵抗力を下げることで、成形性を向上しようとするものである。2回プレス-2回焼結粉末冶金方法は、合金化成分を含む鉄粉末混合物をダイ(金型)内で加圧しつつ生の圧粉成形体を生成し、この圧粉成形体を870℃で5分間だけ予備焼結して予備焼結体を生成し、この予備焼結体を加圧することで2回プレス済の予備焼結体を生成し、しかる後に2回プレス済の予備焼結体を1000℃で5分間焼結することにより焼結部品を生成する方法である。最後の1回成形-焼結粉末冶金方法は、金型を予め予熱しかつ内面に潤滑剤を帯電付着しておく、次いでこの金型内に加熱された鉄基粉末混合物(鉄基粉末+潤滑剤粉末)を充填し、所定温度で加圧成形して鉄基粉末成形体となし、次いで鉄基粉末成形体に焼結処理を施し、さらに光輝焼入れを行い、その後に焼き戻し処理を施して鉄基焼結体を製造する方法である。
 このように、潤滑剤や加圧成形・焼結処理プロセスに関するいずれの従来改善策も、複雑でコスト高となる虞が強い。取扱いも面倒である。しかも、かかる多大な不利不都合を忍受したとしても、圧粉成形体の密度は最高でも7.4g/cm(真密度の94%)程度である。しかも、潤滑剤燃焼に起因する残渣発生があると、加圧成形した圧粉成形体の品質の劣化を招く。したがって、実際製造上の密度は7.3g/cm以下である。つまり、機械的強度が不十分である。
 特に、電磁機器(モータやトランス等)用の磁心(磁芯)を圧粉成形体から作製することを考えると、この程度の密度(7.3g/cm以下)では、極めて不満足との指摘が強い。損失(鉄損、ヒステリス損)量を減少し、磁束密度を高くするには圧粉成形体の一層の高密度化が必要であること、例えば平成21年度粉体粉末冶金協会秋季大会での発表資料(株式会社豊田中央研究所殿提供)からしても、明白である。
 なお、磁心用圧粉成形体の製造に関しては、2回成形-1回焼結(1回焼鈍)粉末冶金方法(特許文献7:特開2002-343657号公報)が提案されている。この提案粉末冶金方法は、表面がシリコーン樹脂と顔料とを含む被膜で被覆された磁性粉末を予備成形して予備成形体を成形し、この予備成形体に500℃以上の温度で熱処理を施して熱処理体とし、次いでこの熱処理体に圧縮成形を施すことを特徴とする。熱処理用の温度は、500℃以下ではその後の圧縮成形時に破断が生じやすく、1000℃以上では絶縁被膜が分解して絶縁性が焼失するので、500~1000℃の範囲内とする。この高温処理は、予備成形体の酸化を防止する観点から、真空中、不活性ガス雰囲気または還元性ガス雰囲気中で行われる。したがって、他の提案方法に比較して、ますます複雑化、個別化されるとともに、具現化と実施化が難しく、製造コストの大幅高を招く。大量生産には不向きである。
 ところで、上記したいずれの提案方法・装置(特許文献1~7)においても、機械的強度の高い焼結成形体を低コストで確実に製造したいという産業界の要請に応えられない。しかも、機械的強度は、最終の焼結処理に依存するが如き考え方が多い。このことは、高温雰囲気内での焼鈍処理や焼結処理についての実施可能な記述はあるが加圧成形工程に関する詳細は定かでなく、加圧成形機の仕様・機能、加圧力と密度の関係やその限界に関する分析も新たな改善についての記載がないことからも、明らかである。
 ここに、小型軽量化に伴う一段の機械的強度が求められる点からも、高強度焼結成形体を確実・安定かつ低コストで製造できる方法・装置の開発が急務とされている。
 本発明の目的は、機械的強度の高い焼結成形体を低コストでかつ確実・安定して製造することができる高強度焼結成形体の製造方法およびその製造装置を提供することにある。
 従来、加圧成形処理は混合粉末を具体的形態として確立するものであり、高温焼結処理の前段階(予備)的な機械的処理として考えられ、そのように取り扱われてきた。つまり、高強度化は最終工程である焼結処理に委ねられていたと考えられる。
 しかし、前段階(予備)的な機械的処理とされていた加圧成形処理の工夫により圧粉成形体の密度を大幅に高めることができるならば、その後の焼結処理を従前のままとしておいても、結果として焼結成形体の機械的強度を大幅に高めることができる筈である。
 本発明は、加圧時の潤滑剤の有効性、潤滑剤粉末を含む圧縮限界性、潤滑剤粉末の混合粉末内での空間的占有性、基金属粉末と潤滑剤粉末の空間的配置状態やそれらの挙動性、残渣(潤滑剤の凝固粒)の残留状態、潤滑剤の気化に伴う金属粒同士の部分的拡散および潤滑剤の最終処分態様についての研究、並びに一般的な加圧成形機の特性、圧縮限界性および圧粉成形体の密度(強度)に及ぼす影響度についての分析に基づき、創出したものである。
 具体的には、従来方法によると、図8A及び図8Bに示すように圧粉成形体115内に大量の不要物(残渣等)108あるいは大きな空孔109が残っている。この状態では、加圧力を著しくあるいは限りなく大きくしても、圧粉成形体の密度(強度)を一定以上に高めることができないことを突き止めた。本発明は、この原因を解消しつつ圧粉成形体の密度を高めかつこれを土台として焼結による高強度化を積み重ね、結果として最終的な焼結成形体の強度を大幅に高めるものである。
 本発明は、潤滑剤の粉末状態を維持しつつ第1の加圧により1次圧粉成形体を成形し、次いで潤滑剤を加熱して液化させることにより1次圧粉成形体内の潤滑様相の改変をなし、この1次圧粉成形体に第2の加圧を施して密度を高めた2次圧粉成形体を成形し、しかる後に2次圧粉成形体に焼結を施して高強度の焼結成形体を成形するものである。すなわち、前段階(予備)的な機械的処理とされていた加圧成形において、焼結処理による高密度化のベースとなる圧粉成形体の密度を積極的かつ限界的に高めておくことにより、結果として高強度焼結成形体を確実に安定してかつ低コストで製造することのできる画期的な方法と装置を提供するものである。
 (1)本発明の一実施形態に係る高強度焼結成形体の製造方法は、基金属粉末と潤滑剤粉末との混合物である混合粉末を加圧して圧粉成形体を成形する加圧成形工程と、圧粉成形体を焼結して機械的強度の高い焼結成形体を成形する焼結成形工程と、を含み、加圧成形工程が加熱昇温工程を挟む第1の加圧成形工程と第2の加圧成形工程とから形成され、第1の加圧成形工程が第1の金型内で潤滑剤粉末の融点未満の常温において混合粉末に第1の加圧力を加えて1次圧粉成形体を成形するものとされ、加熱昇温工程が1次圧粉成形体を加熱して当該1次圧粉成形体の温度を潤滑剤粉末の融点相当温度に昇温するものとされ、第2の加圧成形工程が潤滑剤粉末の融点相当温度に暖機された第2の金型内でかつ当該融点相当温度において1次圧粉成形体に第2の加圧力を加えて密度を高めた2次圧粉成形体を成形するものとされている、ことを特徴とする。
 (2)上記高強度焼結成形体の製造方法において、潤滑剤粉末の融点が90~190℃の温度範囲内に属する低融点とすることができる。
 (3)上記高強度焼結成形体の製造方法において、前記混合粉末が前記基金属粉末である純鉄粉末に前記潤滑剤粉末であるステアリン酸亜鉛粉末を0.03~0.10重量%だけ混合したものとされ、前記第1の加圧力が前記1次圧粉成形体の密度を7.0~7.5g/cmに圧縮できるものと選択され、前記第2の加圧力が前記2次圧粉成形体の密度を7.75g/cmに圧縮できるものと選択されることができる。
 (4)上記高強度焼結成形体の製造方法において、前記混合粉末が前記基金属粉末であるFe-Si合金粉末に前記潤滑剤粉末であるステアリン酸亜鉛粉末を0.03~0.10重量%だけ混合したものとされ、前記第1の加圧力が前記1次圧粉成形体の密度を真密度比70~85%に圧縮できるものと選択され、前記第2の加圧力が前記2次圧粉成形体の密度を真密度比85~95%に圧縮できるものと選択されることができる。
 (5)上記高強度焼結成形体の製造方法において、第2の加圧力が第1の加圧力と等しくすることができる。
 (6)本発明の一実施形態に係る高強度焼結成形体の製造装置は、基金属粉末と低融点の潤滑剤粉末との混合物である混合粉末を外部に供給充填可能な混合粉末供給機と、この混合粉末供給機を用いて第1の金型に充填された混合粉末に第1の加圧力を加えて1次圧粉成形体を成形する第1の加圧成形機と、第1の金型から取出された1次圧粉成形体の温度を当該潤滑剤粉末の融点相当温度に昇温させるための加熱昇温機と、予め該融点相当温度に暖機可能な第2の金型を有し、暖機済の第2の金型にセットされかつ昇温済の1次圧粉成形体に第2の加圧力を加えて密度を高めた2次圧粉成形体を成形する第2の加圧成形機と、2次圧粉成形体に焼結処理を施して機械的強度を高めた焼結成形体を製造する焼結処理機と、を具備する。
 (7)上記高強度焼結成形体の製造装置において、前記加熱昇温機と前記第2の加圧成形機とをこれら機能を一体的に組み込んだ加熱加圧成形機から形成するとともに、加熱加圧成形機を複数台の加熱加圧成形子機から形成しかつ各加熱加圧成形子機をサイクル毎に選択順次動作可能に形成することができる。
 上記(1)の実施形態によれば、高強度焼結成形体を確実・安定して製造できかつ製造コストを大幅に低減することができる。
 上記(2)の実施形態によれば、第1の加圧工程中における潤滑剤の十分な潤滑作用を担保できる。しかも、潤滑剤の種類に関する選択性が広い。
 上記(3)及び上記(4)の実施形態によれば、従来成形方法による焼結成形体と比較して機械的強度の高い焼結成形体を能率よく製造できる。
 上記(5)の実施形態によれば、加圧成形機の設備経済を低減でき、加圧成形工程の実施およびその取扱いが容易である。間接的に圧粉成形体の製造コストを一段と低減できる。
 上記(6)の実施形態によれば、上記(1)~(5)に係る高強度焼結成形体の製造方法を確実に実施することができるとともに具現化が容易で、取扱いが簡単である。
 上記(7)の実施形態によれば、上記(6)の実施形態の場合に比較して装置簡素化を図れる。製造ラインの単純化も促進でき、取扱いも一段と容易になる。また、第1の加工成形工程、加熱昇温工程、及び第2の加圧成形工程のタクトタイムを合わせることが可能となる。
図1は、本発明の一実施形態に係る高強度焼結成形体の製造方法を説明するための図である。 図2は、本発明の第1の実施形態に係る高密度焼結成形体の製造装置およびその動作を説明するための正面図である。 図3Aは、本発明の第1の実施形態に係る高密度焼結成形体の製造装置における混合粉末の成形動作を説明するための図であって、第1の金型で1次圧粉成形体を成形している状態を示す。 図3Bは、本発明の第1の実施形態に係る高密度焼結成形体の製造装置における混合粉末の成形動作を説明するための図であって、第1の金型内に次の混合粉末を充填している状態を示す。 図4は、本発明の第1の実施形態に係る高密度焼結成形体の製造装置における加圧力と当該加圧力で得られる密度との関係を説明するためのグラフであり、破線Aは第1の金型での成形状態を、実線Bは第2の金型での成形状態を示す。 図5は、本発明の第1の実施形態に係る高密度焼結成形体の製造装置における2次圧粉成形体の断面内部状態を説明するための部分断面拡大図である。 図6Aは、本発明の第1の実施形態に係る高密度焼結成形体の製造装置におけるリング形状の焼結成形体(および2次圧粉成形体、1次圧粉成形体)を説明するための外観斜視図である。 図6Bは、本発明の第1の実施形態に係る高密度焼結成形体の製造装置における細長丸軸形状の焼結成形体(および2次圧粉成形体、1次圧粉成形体)を説明するための外観斜視図である。 図7は、本発明の第2の実施形態に係る高強度焼結成形体の製造装置およびその動作を説明するための正面図である。 図8Aは、従来方法による熱処理後の予備圧粉成形体の断面内部状態とその問題点を説明するための部分断面拡大図であって、500~700℃で熱処理した場合を示す。 図8Bは、従来方法による熱処理後の予備圧粉成形体の断面内部状態とその問題点を説明するための部分断面拡大図であって、700~1000℃で熱処理した場合を示す。
 以下、本発明を実施するための最良の形態について、図面を参照して詳細に説明する。
(第1の実施の形態)
 本高強度焼結成形体の製造装置1は、図1~図6Bに示す如く、混合粉末供給機10と第1の加圧成形機20と加熱昇温機30と第2の加圧成形機40と焼結処理機80とを具備し、基金属粉末と潤滑剤粉末との混合物である混合粉末100を加圧して圧粉成形体110、115を成形する加圧成形工程と圧粉成形体115を焼結処理して機械的強度の高い焼結成形体120を成形する焼結成形工程とを含む高強度焼結成形体の製造方法を安定・確実に実施することができる。
 本高強度焼結成形体の製造方法の技術的特徴は、加圧成形工程が加熱昇温工程(図1のPR3)を挟む第1の加圧成形工程(PR2)と第2の加圧成形工程(PR5)との2工程から形成され、第1の加圧成形工程(PR2)が第1の金型(下型21)内で潤滑剤粉末の融点未満の常温において混合粉末100に第1の加圧力P1を加えて1次圧粉成形体110を成形可能とされ、加熱昇温工程(PR3)が1次圧粉成形体110を加熱してその温度を潤滑剤粉末の融点相当温度に昇温可能とされ、第2の加圧成形工程(PR5)が潤滑剤粉末の融点相当温度に暖機された第2の金型(下型41)内でかつ当該融点相当温度において1次圧粉成形体110に第2の加圧力P2を加えて密度を高めた2次圧粉成形体115を成形可能とされている、ことである。
 この実施形態における全体的流れとしては、図1に示す如く、調製工程(PR0)で調製された混合粉末100を第1の金型に充填する混合粉末充填工程(PR1)、1次圧粉成形工程(PR2)、1次圧粉成形体110の温度を当該潤滑剤粉末の融点相当温度に積極的に昇温する加熱昇温工程(PR3)、加熱された1次圧粉成形体110を第2の金型内にセットする工程(PR4)、2次圧粉成形工程(PR5)および2次圧粉成形体115に焼結処理を施して高強度の焼結成形体120を成形する焼結処理工程(PR6)がこの順で実行される。
 本願明細書中でいう混合粉末100とは、基金属粉末と低融点の潤滑剤粉末との混合物を意味する。また、基金属粉末としては、1種の主金属粉末だけからなる場合と、1種の主金属粉末およびこれに1または複数の合金化成分粉末を混合してなる場合とがあるが、いずれの場合も適応できる。低融点とは、基金属粉末の融点(温度)に比較して温度(融点)が著しく低い温度(融点)でかつ基金属粉末の酸化を大幅に抑制できる温度(温度)であることを意味する。具体的詳細は後記する。
 高強度焼結成形体の製造装置1を示す図2において、高強度成形ラインの一番左側(上流側)に配置された混合粉末供給機10は、混合粉末100を第1の加圧成形機20の一部を構成する第1の金型(下型21)に充填する手段である。一定量の混合粉末100を保留する機能および定量供給機能を有し、全体として初期位置(図2、図3A、図3Bに実線で示した位置)と第1の金型(下型21)の上方位置(図3A、図3Bに破線で示した位置)との間を選択的に往復移動可能である。
 第1の金型(下型21)内の何処にも混合粉末100を均一かつ十分に充填させることが重要であるから、混合粉末100はサラサラ状態でなければならない。つまり、第1の金型(下型21)の内部空間(キャビティ)の形態は製品形態に応じた形態であるから、製品形態が複雑であるいは狭小部分を有する形態であっても、1次圧粉成形体110の寸法精度保証上、不均一充填や不十分充填は許されない。
 この実施の形態における1次圧粉成形体110(2次圧粉成形体115)は、図6Aに示すリング形状であり、第1の金型の内部空間(キャビティ)22の形態はこれに対応する形態に仕上げられている。
 ここに、基金属粉末の粒子間の摩擦抵抗力および基金属粉末と金型内面との摩擦抵抗力を軽減するための潤滑剤は、常温においてサラサラ状態の固形状(非常に小さな粒状)であるものを選択する。例えば液状の潤滑剤を採用すると、混合粉末100の粘度が高くかつ流動性が低くなるので、均一充填や十分充填ができない。
 次いで、常温下の第1の金型(21)内でかつ第1の加圧力P1を加えつつ実行される1次圧粉成形体110の成形中、潤滑剤は固形状で所定の潤滑作用を安定維持できなければならない。第1の加圧力P1の加圧により多少の温度上昇が生じる場合があったとしても、同様に安定維持されるべきである。
 一方において、1次圧粉成形体110の成形後に実行される加熱昇温工程(PR3)との関係および基金属粉末の酸化抑制の観点から、潤滑剤粉末の融点は当該基金属粉末の融点に比較して非常に低い融点(低融点)とする必要がある。
 この実施の形態では、潤滑剤粉末の融点は、90~190℃の温度範囲内に属する低融点として選択されている。下側温度(90℃)は、1次圧粉成形体成形中にある程度の温度上昇が発生したとしても、この温度には到達しないであろう値(70~80℃)の上限温度(80℃)に対して余裕をもたせた値(90℃)とし、さらに他の金属石鹸の融点(例えば、110℃)に着目して選択してある。つまり、1次圧粉成形体の加圧成形中に潤滑油粉末が溶解(液化)して流れ出てしまう心配を一掃する。
 上側温度(190℃)は、潤滑剤粉末の種類に関する選択性の拡大の観点からは最小値で、特に加熱昇温工程(PR3)に際する基金属粉末の酸化抑制の観点からは最大値として選択してある。つまり、この温度範囲(90~190℃)の下側温度と上側温度は、限界値ではなく境界値として理解されたい。
 かくして、金属石鹸に属する多くの物質(ステアリン酸亜鉛、ステアリン酸マグネシウム等)を潤滑剤粉末として選択的に採用することができる。なお、潤滑剤は粉末状態でなければならないので、粘性のある液体のオクチル酸亜鉛等は採用できない。
 この実施の形態では、融点120℃のステアリン酸亜鉛粉末を潤滑剤粉末として実施した。なお、本発明においては、特許文献6の発明のように加圧成形時の金型温度よりも低い温度(融点)の潤滑剤を用いかつ最初から潤滑剤を溶解(液化)させつつ加圧成形を実行する考え方は否定する。1次圧粉成形体110の成形終了以前に溶解した潤滑剤が流出してしまったのでは、途中で潤滑不足の部位が発生し易いので十分な加圧成形を確実かつ安定して行えないからである。
 また、潤滑剤粉末の量は、試験研究を通じた経験則から選択した値(混合粉末全量の0.02~0.12重量%)とする。好ましくは、0.03~0.10重量%である。0.03重量%は1次圧粉成形体110の成形終了まで最良の潤滑作用を担保できる値であり、0.10重量%は混合粉末100から1次圧粉成形体110とする際に期待する圧縮比を得るための最良の値である。下記する各実施例はこれら値を採用して実施した。
 第1の加圧成形機20は、混合粉末供給機10を用いて第1の金型21に充填された混合粉末100に第1の加圧力P1を加えて1次圧粉成形体110を成形する手段であり、この実施の形態ではプレス機械構造である。
 図2において、金型はボルスタ側の下型21とスライド5側の上型25とからなる。下型21のキャビティ22は、1次圧粉成形体110の形態(リング形状)に対応する形状(円環筒形状)とされている。上型25は下型21(22)内に押込み可能な形態とされ、スライド5により昇降運動される。キャビティ22の下方には、可動部材23が上下方向に変位可能に嵌装されている。
 可動部材23は、グランドレベルGL以下に設けられた貫通穴24を通して突き上がるノックアウトピン(図示省略)によって上方に変位される。つまり、金型[21(22)]内の1次圧粉成形体110を、移送レベルHLまで押し上げることができる。外部からみれば、金型[21(22)]内の1次圧粉成形体110を外部(HL)に取出すための第1の取出手段として働く。1次圧粉成形体110が加熱昇温機30側に移送された後に、可動部材23はノックアウトピンとともに初期位置に戻る。もっとも、他の格別の手段から第1の取出手段を形成してもよい。
 第1の加圧成形機20における加圧力P(第1の加圧力P1)とこれに対応して得られる1次圧粉成形体110の密度ρとの関係を、図4を参照して説明する。横軸は加圧力Pを指数で示してある。この実施形態における最大能力(加圧力P)は10Ton/cmあり、これを横軸指数100とする。Pbは金型破損圧力で、横軸指数140(14Ton/cm)である。縦軸は密度ρを指数で示している。縦軸指数(100)は密度ρ(7.6g/cm)である。
 因みに、縦軸指数102は密度ρ(7.75g/cm)に当たる。密度ρ(7.0g/cm、7.5g/cm)は縦軸指数(92、98)に相当する。
 第1の加圧力P1を上げて行くと、第1の加圧成形機20で得られる密度ρは、破線Aで示す曲線に従って高くなる。第1の加圧力P1(横軸指数100)で、密度ρが7.6g/cmとなる。第1の加圧力P1をこれ以上の値に上昇させても、密度ρの向上は極微である。金型破損の虞が強い。
 従来方法では、加圧成形機(プレス機械)の最大能力で加圧して得られた密度ρに満足できない場合には、一段と大型のプレス機械を装備しなければならなかった。しかし、最大能力を例えば1.5倍に大型化しても、密度ρの向上は軽微である。かくして、現在プレス機械で得られるが低い密度ρ(例えば、7.5g/cm)で妥協していたのが実状であった。
 ここに、現在プレス機械をそのまま利用して、縦軸指数100(7.6g/cm)から102(7.75g/cm)まで向上できることになれば、画期的であると理解できる。つまり、密度ρを2%向上できるなら、機械的強度を大幅に向上できる。
 以上を実現化するために、第1の加圧成形機20で成形した1次圧粉成形体110を加熱することで潤滑剤の溶解(液化)を促し、しかる後に第2の加圧成形機40で2回目の加圧成形処理を施すように形成されている。第2の加圧成形機40おいて1次圧粉成形体110を加圧すると、図4に実線Bで示すように縦軸指数102に相当する高密度(7.75g/cm)を達成できる。詳細は、第2の加圧成形機40の説明において、追記する。
 加熱昇温機30は、第1の金型21から取出された1次圧粉成形体110を加熱して当該1次圧粉成形体110の温度を当該潤滑剤粉末の融点相当温度に積極的に昇温する手段である。図2において、加熱昇温機30は、図示しない温風発生源と、吹付けフード31、排気循環フード33等を含み、金網状保持部材32に位置づけされた1次圧粉成形体110に温風を吹付けて加熱し、その温度を潤滑剤粉末の融点相当温度(120℃)に昇温する。下記する各実施例の場合も、ステアリン酸亜鉛融点120℃である。
 この低温加熱処理の技術的意義を第1の加圧成形処理との関係において説明する。下型21(22)内に充填された混合粉体100を観察してみると、基金属粉末との関係において潤滑剤粉末の存在が比較的に疎である部分(疎部分)と密である部分(密部分)とが認められる。密部分は、基金属粉末の粒子間の摩擦抵抗力および基金属粉末と金型内面との摩擦抵抗力が小さい。疎部分は、これら摩擦抵抗力が大きくなる筈である。
 第1の加圧成形機20での加圧中において、密部分は低摩擦なので圧縮性が勝り、圧縮化進行し易い。疎部分は高摩擦なので圧縮性が劣り、圧縮化が遅れる。いずれにしても、予め設定された第1の加圧力P1の値に応じた圧縮進行困難化現象が発生する。つまり、圧縮限界が生じる。この状態下で金型21から取出した1次圧粉成形体110の破断面を拡大観察すると、上記密部分であった部分は基金属粉末が一体的様相で圧接されている。しかし、潤滑剤粉末も紛れ込んでいる。疎部分であった部分は、圧接された基金属粉末間に僅かな隙間(空孔)が残っている。潤滑剤粉末は殆ど見当たらない。
 かくして、密部分であった部分から潤滑剤粉末を除去すれば、圧縮可能な隙間が生まれる。疎部分であった部分の隙間に潤滑剤を補給することができれば、その部分の圧縮性を高められる筈である。
 すなわち、第1の加圧成形終了後の1次圧粉成形体110を加熱して潤滑剤粉末の融点相当温度(120℃)に昇温することで、潤滑剤粉末を溶解(液化)させその流動性を高める。密部分であった部分から溶け出した潤滑剤はその周辺に浸み込みかつ疎部分であった部分に補給される。したがって、基金属粉末の粒子間の摩擦抵抗力を小さくでき、潤滑剤粉末が占めていた空孔も圧縮できることになるわけである。基金属粉末の粒子と金型内面との摩擦抵抗力も小さくできる。
 特筆すべきは、従来方法(例えば、上記特許文献5、上記特許文献7)と本発明の技術的思想が全く異なる点にある。
 圧粉成形を焼結成形の単なる予備(前段階)的な処理と考える従来方法においては、予備成形体(1次圧粉成形体110相当)を高温雰囲気(500~1000℃)で熱処理(歪除去)するものとされている。実に、この従来熱処理が圧粉成形体の品質劣悪化および強度向上阻止化の根源と推察される。
 試験研究によると、圧粉成形体を上記した500~1000℃に関する低温側範囲(500~700℃)で熱処理すると潤滑剤が溶融する。その後常温に戻すと潤滑剤が凝固して金属粒子同士を結合する。すると、圧粉成形体には、図8Aに示すように、空孔内や金属粒子(101)間の空隙部に潤滑剤の凝固粒が残渣(不要物108)が多く残る。
 一方の高温側範囲(700~1000℃)の熱処理では、温度が高くなるにつれて、潤滑剤が溶融・気化する過程を経る。このため、分解凝固分(108)が少なくなる傾向となるが、今度は金属粒(101)同士の接触面で拡散が始まり、一部粒界で部分的に焼結が進む。例えば、鉄粉の場合は、750~760℃で金属粒同士の接触面での部分拡散が始まる。つまり、このような高温で熱処理を行うと、図8Bに示すように、潤滑剤が気化した部分が空孔109として残り、また金属粉同士の一部に部分拡散接合部(部分焼結)128が存在した状態となる。
 かくして、熱処理後の圧粉成形体を再び圧縮処理(常温加圧処理)すると、低温側範囲の場合は、内部の残留物をその成形体の外部に排出することはできず、不要物(残渣等)108がそのまま圧粉成形体内に残る(図8A)。高温側範囲の場合は、低温側範囲の場合に較べ不要物(残渣等)108は少ないものの、金属粒界の部分焼結箇所128が発生している(図8B)ので、その焼結箇所を破壊して空孔109を減少させ、密度を上げる加工になる。部分焼結(128)が生じている場合は、2回目の加圧成形圧力が非常に高くなり、金型の強度上の限界から、圧粉成形体の密度向上には限界がある。この結果、高温雰囲気(500~1000℃)で熱処理した場合は、2回目加圧成形後の成形体は、非常にもろく機械的強度は低い。しかも、2回目の加圧成形圧力を高くしなければならないことは、加圧能力の高いプレス機および耐高圧金型が必要になるので、設備経済上、非常に不利である。
 しかるに、本発明の場合は、圧粉成形体を潤滑剤融点相当に昇温しかつ当該温度が維持された状態の圧粉成形体110に対して、2回目の圧粉成形加工が行なわれる。この温度に保たれた圧粉成形体110の内部において、炭化は発生ぜず、潤滑剤が溶融して流動可能な状態になっている。その状態で、プレス機械等の加圧成形加工を施すと、内部に存在している溶融状態の潤滑剤が搾り出されて圧粉成形体110から外部に流出する。その結果、当該加圧成形加工終了後の圧粉成形体(2次圧粉成形体115)の内部には、図5に示すように、不要物(残渣等)108が殆んど残らない。つまり、極めて密度が高く、機械的強度が高い圧粉成形体115を成形できる。
 この2回目の圧粉成形加工を実行するための第2の加圧成形機40は、予め融点相当温度に暖機可能な第2の金型41を有し、暖機済の第2の金型41にセットされた昇温済の1次圧粉成形体110に、第2の加圧力P2を加えて密度の高い2次圧粉成形体115を成形するための手段である。
 なお、この実施形態における第2の加圧成形機40の最大能力(加圧力P)は、第1の加圧成形機20の場合と同じ10Ton/cmである。かくして、第1の加圧成形機20と第2の加圧成形機40とは1台のプレス機械として構成され、図2に示す共通のスライド5により各上型25、45を同期昇降できる。この点からも、装置経済が有利で、2次圧粉成形体115の成形コストを低減できる。
 なお、第2の加圧力P2の値は第1の加圧力の値以上であればよい。例えば、第1の加圧成形機20と第2の加圧成形機40とを2台のプレス機械から構成し、第2の加圧成形機40の最大能力(加圧力P)と第1の加圧成形機20の最大能力(加圧力P)とを異なるものとしてもよい。
 図2において、金型はボルスタ側の下型41とスライド5側の上型45とからなる。下型41のキャビティ42は、下部は加圧成形体115の形態(リング状形態)に対応する形状(円環筒形状)とされ、上部が1次圧粉成形体110を受入れ可能に僅かに大きい形態とされている。上型45は下型41(42)内に押込み可能な形態とされ、スライド5により昇降運動される。キャビティ42の下方には、可動部材43が上下方向に変位可能に嵌装されている。なお、金型(41)と上記金型(21)とは、圧縮対象(110と115)との上下方向寸法差に相当する高さ(位置)調整がされている。
 可動部材43は、グランドレベルGL以下に設けられた貫通穴44を通して突き上がるノックアウトピン(図示省略)によって上方に変位される。つまり、第2の金型[41(42)]内の2次圧粉成形体115を、移送レベルHLまで押し上げることができる。外部からみれば、金型[41(42)]内の2次圧粉成形体115を外部(HL)に取出すための第2の取出手段として働く。なお、他の格別の手段から第2の取出手段を形成してもよい。2次圧粉成形体115が排出シュータ59に排出され、加熱昇温機30から新たな1次圧粉成形体110を受けた後に、可動部材43はノックアウトピンとともに初期位置に戻る。
 第2の金型[41(42)]には、設定温度変更可能な暖機手段47が設けられている。この暖機手段47は、1次圧粉成形体110を受入れる(セットされる)までに、潤滑剤粉末(ステアリン酸亜鉛)の融点相当温度(120℃)に第2の金型[41(42)]を暖める(暖機する)。昇温済の1次圧粉成形体110を冷やすこと無く受入れることができる。これにより、先に溶解(液化)した潤滑剤の再固形化を防止しつつ潤滑作用を担保することができる。
 この意味において、暖機手段47は、2次圧粉成形体115が加圧成形完了となるまで、加熱可能とされている。かくすれば、加圧成形中における溶解させた潤滑剤の全方向への流動性を一段と高められるから、粒子間のみならず粒子と金型41(42)との間の摩擦抵抗力を大幅に軽減維持できる。
 なお、暖機手段47は、電熱加熱方式とされているが、温油や温水の循環方式などでも実施することができる。
 第2の加圧成形機40における加圧力(第2の加圧力P2)とこれに対応して得られる2次圧粉成形体115の密度ρとの関係を、図4を用いて説明する。
 第2の加圧成形機40で得られる密度ρは、実線Bで示す直線に従う。すなわち、第1の加圧成形機20の場合(破線A)とは異なり、第2の加圧力P2を上げて行くに従って次第に密度ρが高まるわけでない。つまり、第1の加圧成形工程における最終の第1の加圧力P1(例えば、横軸指数50、75あるいは85)を越えるまでは密度ρは高くならない。第2の加圧力P2が最終の第1の加圧力P1を超えると、一気に密度ρが高まる。第2の加圧成形は、あたかも第1の加圧成形を連続的に引き継いで行われるものと理解される。
 かくして、第1の加圧成形工程において、第1の加圧力P1を何時でも最大能力に対応する値(横軸指数100)まで上昇させた運転をしなくてもよいことになる。つまり、圧縮限界以降に第1の加圧成形を続行した場合の無駄な時間、消費エネルギーを排斥できる。製造コスト低減に繋がる。また、横軸指数100を越える過負荷運転を回避し易くなるので、金型破損の心配がない。全体として、運転取扱いが容易で安全かつ安定運用ができる。
 下記する各実施例の場合、第1の加圧力P1を、密度ρを7.0~7.5g/cmまで高めることができる相当圧力(縦軸指数92~98のいずれかの値)に選択設定して、成形処理されている。7.5g/cm(縦軸指数98)は縦軸指数100を超えた危険領域に突入させない上側値とし、7.0g/cm(縦軸指数92)は上側値に対して幅をもたせた下側値として選択してある。取扱い(加圧設定等)および運転容易化のためである。第2の加圧力P2は、縦軸指数92(~98)~100に相当するものとされ、縦軸指数102に対応する密度ρ(7.75g/cm)の2次圧粉成形体115を成形することができる。なお、実施例2の場合は、混合比の問題から真密度比で表した。
 図2において、焼結処理機80は、この実施の形態では、連続式焼結炉から形成され、シュータ59を介して導入された2次圧粉成形体115をコンベヤ(図示省略)で低速連続移動させつつ、所定の温度で所定時間だけ焼結処理を行える。複数の2次圧粉成形体115を能率よくかつ均一に焼結処理できる。つまり、一段と高強度化した焼結成形体120を製造することができる。図3では、焼結処理機80は図示省略されている。なお、焼結処理機80は、バッチ式焼結炉から形成してもよい。
 焼結温度は、通常、鉄系では1120℃位で、高温焼結で1250℃程度である。温度の上昇過程でも焼結が進行するので、最高温度の保持時間は30分程度で十分である。この実施の形態では、焼結温度および焼結時間(コンベヤ速度)の値は設定変更可能に形成してある。
 第2圧粉成形体115は、図5に示すように不要物(残渣等)108が殆ど無い状態(高密度)であるから、金属粒(101)と金属粒(101)の接触面積が大きい。これは、従来方法の場合と比較して短い焼結時間で、従来方法と同じ面積の拡散結合を期待できることを意味する。換言すれば、接触面積が大きいが故により広い面積で拡散結合を促進できるので、機械的性質(強度)の大幅な向上が期待できるわけである。
 さらに、最終工程の焼結処理により内部(歪)応力を除去できるので、焼鈍処理は不要である。
 図3Bにおいて、ワーク移送手段50は、図3Aにおける第1の取出手段(23、24)によって第1の金型21から取出された1次圧粉成形体110を加熱昇温機30内の所定位置に移送可能で、昇温後の1次圧粉成形体110を加熱昇温機30内の所定位置から第2の金型41まで移送可能で、第2の取出手段(43、44)によって第2の金型41から取出された2次圧粉成形体115を排出シュータ59に移送可能に形成されている。
 この実施の形態のワーク移送手段50は、図3Bに示す同期運転される3つの送りバー51、52、53から構成されている。送りバー51、52、53は、移送要求時に図3Aの紙面奥行き側から手前(図3B)の移送ラインに進行され、左から右へ移動させた後に元の位置に退行する。セット手段(52、43、44)は、昇温された1次圧粉成形体110を該融点相当温度に暖機された第2の金型42にセットする。
 なお、ワーク移送手段は、2次元あるいは3次元方向に駆動されるフィンガー等を含み、各金型等にワークを順次移送するトランスファー装置などから形成してもよい。また、2次圧粉成形体115を焼結処理機80まで移送可能に形成することもできる。
 かかる実施の形態に高強度焼結成形体120の製造装置1では、次のようにして高強度焼結成形方法が実施される。
(混合粉末の調達)
 基金属粉末と0.03(~0.10)重量%の潤滑剤粉末(ステアリン酸亜鉛粉末)を混合してサラサラ状態の混合粉末100を調達する。所定量だけ混合粉末供給機10に補給する(図1の工程PR0)。
(混合粉末の充填)
 所定タイミングにおいて、混合粉末供給機10が図3Bに示すように所定位置(実線)から補給位置(破線)に移動される。次いで、混合粉末供給機10の供給口が開放され、第1の加圧成形機20の空の下型21(22)内に定量の混合粉末100が充填される(図1の工程PR1)。例えば2秒間で充填できる。充填後に供給口が閉鎖され、混合粉末供給機10は所定位置(実線)に戻る。
(1次圧粉成形体の成形)
 図2のスライド5とともに第1の加圧成形機20の上型25が下降して下型21(22)内の混合粉末100を第1の加圧力P1で加圧する第1の加圧成形処理がはじまる。固形状の潤滑剤は十分な潤滑作用を営む。圧縮された1次圧粉成形体110の密度ρは、図4の破線Aにしたがって高くなる。第1の加圧力P1が横軸指数(例えば、95)相当の圧力(9.5Ton/cm)になると、密度ρが7.25g/cm(縦軸指数95相当)に高まる。例えば8秒間の加圧成形が終了すると、図3Aに示すように金型(21)内に1次圧粉成形体110が成形されている(図1の工程PR2)。その後、スライド5により上型25が上昇する。なお、第2の加圧成形機40では、先の1次圧粉成形体110に関する第2の加圧成形処理が同期して行われている。
(1次圧粉成形体の取出し)
 第1の取出手段(23)が働き、1次圧粉成形体110が移送レベルHLに突き上げられる。つまり、下型21から取出される。すると、図3Bに示すように、ワーク移送手段50が働き、その移送バー51により1次圧粉成形体110は加熱昇温機30へ向けて移送される。この段階で、可動部材23が下方の初期位置に戻される。移送後の1次圧粉成形体110は、図3Aに示す如く金網状保持部材(32)上に位置決めされている。
(加熱昇温)
 図3Aにおいて、加熱昇温機30が起動する。吹付けフード31から温風が吹付けられ1次圧粉成形体110は、潤滑剤粉末の融点相当温度(120℃)に昇温される(図1の工程PR3)。つまり、潤滑剤が溶解され、その流動により1次圧粉成形体110内の潤滑剤分布を均一的に改変する。加熱昇温時間は例えば8~10秒である。なお、温風は金網状保持部材32、排気循環フード33を通して再循環利用される。
(昇温済の1次圧粉成形体のセット)
 昇温された1次圧粉成形体110は、図3Bに示すように、ワーク移送手段50(移送バー52)により第2の加圧成形機40へ移送され、下型41の上方に位置決めさられ、下型41(42)内の可動部材43上にセットされる(図1の工程PR4)。
(金型の暖機)
 第2の加圧成形機40において、暖機手段47が働き、1次圧粉成形体110を受入れる(セットされる)以前に、金型[41(42)]を潤滑剤粉末の融点相当温度(120℃)に暖める。その後に受入れた昇温済み1次圧粉成形体110内の潤滑剤の再固形化を防止することができる。
(2次圧粉成形体の成形)
 図2のスライド5とともに上型45が、図3Aに示すように下降して下型41(42)内の1次圧粉成形体110を第2の加圧力P2で加圧し始める。液状の潤滑剤が十分な潤滑作用を営む。特に、加圧成形の進行に伴い潤滑剤が全方向に流出するので、粒子間のみならず粒子と金型との摩擦抵抗力を効率よく軽減できる。圧縮された1次圧粉成形体110の密度ρは、図4の実線Bにしたがって高くなる。つまり、第2の加圧力P2が横軸指数(例えば、95…加圧力9.5Ton/cm)を超えると、密度ρが7.25g/cmから急激に縦軸指数102相当の密度ρ(7.75g/cm)に高まる。第2の加圧力P2を横軸指数100(10Ton/cm)まで上げると、密度ρ(7.75g/cm)は全体的に均一となる。ここで、例えば8秒間の第2の加圧成形処理が終了すると、金型(41)内に2次圧粉成形体115が成形されている(図1の工程PR5)。その後、スライド5により上型45が上昇する。なお、第1の加圧成形機20では、後の1次圧粉成形体110に関する第1の加圧成形処理が同期して行われている。
(2次圧粉成形体の取り出し)
 第2の取出手段(43)が働き、2次圧粉成形体115が移送レベルHLに突き上げられる。つまり、下型41から取出される。すると、図3B示すように、ワーク移送手段50が働き、その移送バー53により2次圧粉成形体115は排出シュート59に向けて移送される。この段階で、可動部材43が下方の初期位置に戻される。
(成形サイクル)
 以上の2つの成形工程による圧粉成形方法によれば、順番に供給充填される金属粉末100についての第1の加圧成形処理、加熱昇温処理および第2の加圧成形処理を同期実行できるので、最長の加熱昇温処理時間(10秒)にワーク移送時間(例えば、2~4秒)を加えた12~14秒のサイクル時間で2次圧粉成形体115を成形することができる。
(焼結成形体の成形)
 排出シュート59から導入された2次圧粉成形体115は、焼結処理機80において、焼結処理される。図5に示す圧粉成形体115は、焼結により一段と高強度化された焼結成形体120となる。焼結成形体120(例えば、小型軽量複雑形状で機械的強度の高い自動車用部品や機器用部品)の供給を安定化でき、それらの生産コストの低減にも大きく貢献できる。
(実施例1)
 混合粉末100を、基金属粉末(機械部品用の純鉄粉末)に潤滑剤粉末(ステアリン酸亜鉛粉末)を0.03(~0.10)重量%だけ混合して調製した。第1の加圧力P1により加圧成形して密度7.0(~7.5)g/cmの1次圧粉成形体110を成形した。混合量が0.03重量%とした場合に、第1の加圧成形工程を最も円滑に行うことができた。120℃に加熱昇温された1次圧粉成形体110を第2の加圧力P2により加圧成形して縦軸指数102に当たる密度ρ7.75g/cmの2次圧粉成形体115を成形した。しかる後に、2次圧粉成形体115に1150℃で30分の焼結処理を施して機械的強度を高めた焼結成形体120を得た。機械的強度(例えば、引張力)は密度の高さに応じて増大する。すなわち、焼結処理の前段階の第2の加圧成形工程で密度を従来方法の場合に比較して高められているので、焼結により機械的強度を一段と高めた機械部品を能率よく製造することができた。なお、基金属粉末に合金形成用金属粉末を添加した場合も同様に成形できることを確認した。かくして、図6Bに示す細長丸軸形状でも高強度仕上げできる。
(実施例2)
 混合粉末100を、基金属粉末(Fe-Si合金粉末)に潤滑剤粉末(ステアリン酸亜鉛粉末)を0.03(~0.10)重量%だけ混合して調製した。第1の加圧力P1により加圧成形して真密度比70~85%の1次圧粉成形体110を成形した。混合量が0.03重量%とした場合に、第1の加圧成形工程を最も円滑に行うことができた。120℃に加熱昇温された1次圧粉成形体110を第2の加圧力P2により加圧成形して縦軸指数102に当たる真密度比85~95%の2次圧粉成形体115を成形した。しかる後に、2次圧粉成形体115に1150℃で30分の焼結処理を施して機械的強度を一段と高めた焼結成形体120を得た。すなわち、従来成形方法による焼結成形体と比較して機械的強度の高い焼結成形体を能率よく製造できた。
 しかして、この実施の形態によれば、第1の加圧成形工程(第1の金型内)でかつ潤滑剤粉末の融点未満の常温において混合粉末100に第1の加圧力P1を加えて1次圧粉成形体110を成形し、加熱昇温工程において1次圧粉成形体110を潤滑剤粉末の融点相当温度に昇温し、次いで第2の加圧成形工程において暖機された第2の金型内でかつ当該融点相当温度で1次圧粉成形体110に第2の加圧力P2を加えて密度を高めた2次圧粉成形体115を成形し、しかる後に2次圧粉成形体115に焼結処理を施して焼結成形体を形成する高強度焼結成形体の製造方法であるから、高強度焼結成形体120を確実・安定して製造できかつ製造コストを大幅に低減することができる。
 また、潤滑剤粉末の融点が90~190℃の温度範囲内に属する低融点であるから、酸化抑制を助長しつつ潤滑剤の選択性を拡大できる。
 また、基金属粉末を純鉄粉末やFe-Si合金粉末のいずれに変更しても、他の条件を同一としても、基金属粉末の種類に対応する優れた機械的強度の高い焼結成形体120を能率よくかつ安定して低コストで製造できる。
 また、第2の加圧力P2を第1の加圧力P1と等しい値とすることができるから、加圧成形工程の実施およびその取扱いが容易で、間接的に圧粉成形体の製造コストの一層の低減にも寄与できるとともに、装置具現化に際しては例えば1台のプレス機械をベースとして簡単に構築することができる。
 顧みて、従来装置(例えば、プレス機械)の能力(図4の横軸指数100)では縦軸指数100に相当する密度以上に高めることが不可能であったのに対して、本発明によれば同一装置で縦軸指数102に相当する密度まで高めることができる。この事実は、当該技術分野において画期的なことと賞賛され得る。
 さらに、製造装置1が、混合粉末供給機10と第1の加圧成形機20と加熱昇温機30と第2の加圧成形機40と焼結処理機80とから構成されているので、上記の高強度焼結成形体120の製造方法を確実かつ安定して実施することができる。
(第2の実施の形態)
 この実施の形態は、図7に示されている。第1の実施の形態の場合に比較して、混合粉末供給機10、第1の加圧成形機20および焼結処理機80はそのままとし、加熱昇温機30と第2の加圧成形機40とを一体的に形成したことを特徴とする。
 すなわち、製造装置1は、第1の実施の形態の場合における加熱昇温機30と第2の加圧成形機40とを、これら機能を一体的に組み込んだ加熱加圧成形機70から形成してある。加熱加圧成形機70は、複数台(この実施形態では、2台)の加熱加圧成形子機70A、70Bから形成され、各加熱加圧成形子機70A、70Bは図示しない制御手段によって製造サイクル毎に選択順次動作可能とされている。
 各加熱加圧成形子機70A(70B)は、基本構造が第1の実施の形態における第2の加圧成形機40に相当するものとされている。また、各加熱加圧成形子機70A(70B)には、第1の実施形態の場合における加熱昇温機30および暖機手段47の各機能に対応する複合機能をもたせた複合機能型加熱手段48を設けてある。
 すなわち、複合機能型加熱手段48は、設定温度切換機能を有する電熱方式とされている。予め(1次圧粉成形体110を受入れる以前に)、下型41を潤滑剤融点相当温度(120℃)に暖機することができる。1次圧粉成形体110を受入れた後は、1次圧粉成形体110の全体を潤滑剤融点相当温度(120℃)に加熱昇温可能に発熱量を大きく切換える。加熱部位を選択切換えすることもできる。この加熱昇温終了後に第1の実施の形態における第2の加圧成形機40の場合と同じ第2の加熱成形処理を行う。複合機能型加熱手段48は、第2の加熱成形処理中に1次圧粉成形体110の温度を潤滑剤融点相当温度(120℃)以上に保持可能に働く。
 図7に示すように、各加熱加圧成形子機20、70A、70Bは、独立プレス機械構造とされ、各スライド5、5A、5Bは各機用モータの回転制御によりそれぞれに昇降駆動される。つまり、各加熱加圧成形子機70A、70Bの一方(他方)が加圧成形動作する場合は他方(一方)は予熱であり加圧成形動作はしない。加熱加圧成形機70を製造サイクルタイムとの関係から3台以上の加熱加圧成形子機から形成する場合も同様である。
 かかる実施の形態の装置では、第1の加熱成形機20で第3番目の1次圧粉成形体110を加圧成形中に、一方加熱加圧成形子機70A(または、70B)で第2番目の1次圧粉成形体110を加熱昇温しかつ他方加熱加圧成形子機70B(または、70A)で第1番目の1次圧粉成形体110を2次圧粉成形体115とすべく加圧成形している。また、この期間中に焼結処理機80では、それ以前に導入された複数の2次圧粉成形体115に焼結処理を施して焼結成形体120とするように成形中である。
 しかして、この実施の形態によれば、加熱加圧成形機70を同一構造の複数台の加圧成形子機70A、70Bから構築すればよいから、第1の実施形態の場合に比較して装置簡素化を図れる。製造ラインの単純化も促進でき、取扱いも一段と容易になる。また、この実施の形態によれば、第1の加圧工程、加熱昇温工程、及び第2の加圧工程のタクトタイムを合わせることができる。
 なお、第1の加圧成形機20と加熱加圧成形子機70A(または、70B)あるいは第1の加圧成形機20および各加熱加圧成形子機70A、70Bを、1台のプレス機械構造として構築することも可能である。
 上記のように、本発明の実施形態について説明したが、本発明の新規事項及び効果から実態的に逸脱しない多くの変形が可能であることは当業者には容易に理解できよう。したがって、このような変形例はすべて、本発明の範囲に含まれるものとする。
 1 高強度焼結成形体の製造装置、10 混合粉末供給機、20 第1の加圧成形機、30 加熱昇温機、40 第2の加圧成形機、47 暖機手段、48 複合機能型加熱手段、50 ワーク移送手段、70 加熱加圧成形機、70A,70B 加熱加圧成形子機、80 焼結処理機、100 混合粉末、101 鉄粉、108 不要物(残渣)、109 空孔、110 1次圧粉成形体、115 2次圧粉成形体、120 焼結成形体、128 部分焼結

Claims (7)

  1.  基金属粉末と潤滑剤粉末との混合物である混合粉末を加圧して圧粉成形体を成形する加圧成形工程と、圧粉成形体を焼結して機械的強度の高い焼結成形体を成形する焼結成形工程と、を含み、
     前記加圧成形工程が加熱昇温工程を挟む第1の加圧成形工程と第2の加圧成形工程とから形成され、
     第1の加圧成形工程が第1の金型内で前記潤滑剤粉末の融点未満の常温において前記混合粉末に第1の加圧力を加えて1次圧粉成形体を成形するものとされ、
     加熱昇温工程が1次圧粉成形体を加熱して当該1次圧粉成形体の温度を前記潤滑剤粉末の融点相当温度に昇温するものとされ、
     第2の加圧成形工程が前記潤滑剤粉末の融点相当温度に暖機された第2の金型内でかつ当該融点相当温度において1次圧粉成形体に第2の加圧力を加えて密度を高めた2次圧粉成形体を成形するものとされている、高強度焼結成形体の製造方法。
  2.  前記潤滑剤粉末の融点が90~190℃の温度範囲内に属する低融点とされている、請求項1記載の高強度焼結成形体の製造方法。
  3.  前記混合粉末が前記基金属粉末である純鉄粉末に前記潤滑剤粉末であるステアリン酸亜鉛粉末を0.03~0.10重量%だけ混合したものとされ、前記第1の加圧力が前記1次圧粉成形体の密度を7.0~7.5g/cmに圧縮できるものと選択され、前記第2の加圧力が前記2次圧粉成形体の密度を7.75g/cmに圧縮できるものと選択されている、請求項1または2記載の高強度焼結成形体の製造方法。
  4.  前記混合粉末が前記基金属粉末であるFe-Si合金粉末に前記潤滑剤粉末であるステアリン酸亜鉛粉末を0.03~0.10重量%だけ混合したものとされ、前記第1の加圧力が前記1次圧粉成形体の密度を真密度比70~85%に圧縮できるものと選択され、前記第2の加圧力が前記2次圧粉成形体の密度を真密度比85~95%に圧縮できるものと選択されている、請求項1または2記載の高強度焼結成形体の製造方法。
  5.  前記第2の加圧力が前記第1の加圧力と等しい値に選択されている、請求項1または2に記載された高強度焼結成形体の製造方法。
  6.  基金属粉末と低融点の潤滑剤粉末との混合物である混合粉末を外部に供給充填可能な混合粉末供給機と、
     この混合粉末供給機を用いて第1の金型に充填された混合粉末に第1の加圧力を加えて1次圧粉成形体を成形する第1の加圧成形機と、
     第1の金型から取出された1次圧粉成形体の温度を当該潤滑剤粉末の融点相当温度に昇温させるための加熱昇温機と、
     予め該融点相当温度に暖機可能な第2の金型を有し、暖機済の第2の金型にセットされかつ昇温済の1次圧粉成形体に第2の加圧力を加えて密度を高めた2次圧粉成形体を成形する第2の加圧成形機と、
     2次圧粉成形体に焼結処理を施して機械的強度を高めた焼結成形体を製造する焼結処理機と、を具備する高強度焼結成形体の製造装置。
  7.  前記加熱昇温機と前記第2の加圧成形機とをこれら機能を一体的に組み込んだ加熱加圧成形機から形成するとともに、加熱加圧成形機を複数台の加熱加圧成形子機から形成しかつ各加熱加圧成形子機をサイクル毎に選択順次動作可能に形成されている請求項6記載の高強度焼結成形体の製造装置。
PCT/JP2011/078414 2010-12-08 2011-12-08 高強度焼結成形体の製造方法およびその製造装置 WO2012077750A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US13/992,202 US20130336830A1 (en) 2010-12-08 2011-12-08 Method for producing high-strength sintered compact and high-strength sintered compact production system
EP11847431.1A EP2650065A4 (en) 2010-12-08 2011-12-08 METHOD FOR THE PRODUCTION OF HIGH-DEFINED SINTERING PRESSURE RINGS AND DEVICE FOR THEIR PRODUCTION
JP2012547908A JP5539539B2 (ja) 2010-12-08 2011-12-08 高強度焼結成形体の製造方法およびその製造装置
KR1020137017498A KR101532920B1 (ko) 2010-12-08 2011-12-08 고강도 소결성형체의 제조방법 및 그 제조장치
CN201180058670.3A CN103249510B (zh) 2010-12-08 2011-12-08 高强度烧结成形体的制造方法及其制造装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010273174 2010-12-08
JP2010-273174 2010-12-08

Publications (1)

Publication Number Publication Date
WO2012077750A1 true WO2012077750A1 (ja) 2012-06-14

Family

ID=46207233

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/078414 WO2012077750A1 (ja) 2010-12-08 2011-12-08 高強度焼結成形体の製造方法およびその製造装置

Country Status (6)

Country Link
US (1) US20130336830A1 (ja)
EP (1) EP2650065A4 (ja)
JP (1) JP5539539B2 (ja)
KR (1) KR101532920B1 (ja)
CN (1) CN103249510B (ja)
WO (1) WO2012077750A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013154146A1 (ja) * 2012-04-12 2013-10-17 アイダエンジニアリング株式会社 混合粉末の高密度成形方法および高密度成形装置
WO2013154145A1 (ja) * 2012-04-12 2013-10-17 アイダエンジニアリング株式会社 混合粉末の高密度成形方法および高密度成形装置
WO2013161746A1 (ja) * 2012-04-23 2013-10-31 アイダエンジニアリング株式会社 混合粉末の高密度成形方法および高密度成形装置
WO2013161745A1 (ja) * 2012-04-23 2013-10-31 アイダエンジニアリング株式会社 混合粉末の高密度成形方法および高密度成形装置
WO2013161747A1 (ja) * 2012-04-23 2013-10-31 アイダエンジニアリング株式会社 混合粉末の高密度成形方法、高密度成形装置および高密度3層構造圧粉体
WO2013161744A1 (ja) * 2012-04-23 2013-10-31 アイダエンジニアリング株式会社 混合粉末の高密度成形方法および高密度成形装置
WO2020218069A1 (ja) * 2019-04-24 2020-10-29 住友電気工業株式会社 焼結体の製造方法、および圧粉成形体

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106512233B (zh) * 2015-09-11 2018-12-04 南京中硼联康医疗科技有限公司 用于中子捕获治疗的射束整形体
CN106252056A (zh) * 2016-08-31 2016-12-21 和瑞电子(中山)有限公司 一种一体式电感制造方法
CN106158248A (zh) * 2016-08-31 2016-11-23 和瑞电子(中山)有限公司 一种线包植入方法
JP7124081B2 (ja) * 2018-07-04 2022-08-23 住友電気工業株式会社 圧粉磁心の製造方法
CN109166717B (zh) * 2018-09-03 2020-03-20 横店集团东磁股份有限公司 一体成型电感成型方法
WO2021085114A1 (ja) * 2019-10-31 2021-05-06 パナソニックIpマネジメント株式会社 リチウム遷移金属複合酸化物の製造方法
CN112692968B (zh) * 2020-12-24 2022-04-15 佛山市东鹏陶瓷有限公司 一种新型压机模具结构

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61166903A (ja) * 1985-01-19 1986-07-28 Hitachi Metals Ltd 金属粉末プレス成形方法
JPH11267893A (ja) * 1998-03-17 1999-10-05 Hitachi Powdered Metals Co Ltd 圧粉体の成形方法
JP2000087104A (ja) * 1998-09-04 2000-03-28 Hitachi Powdered Metals Co Ltd 圧粉体の成形方法
JP2001252793A (ja) * 2000-03-09 2001-09-18 Hitachi Powdered Metals Co Ltd 圧粉体の成形方法
JP2005526178A (ja) * 2002-01-29 2005-09-02 ジーケイエヌ ジンテル メタルズ ゲゼルシャフト ミット ベシュレンクテル ハフツング 焼結性材料から焼結部材を製造するための方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0816066B2 (ja) * 1986-07-18 1996-02-21 エーザイ株式会社 持続性薬効製剤
SE9401922D0 (sv) * 1994-06-02 1994-06-02 Hoeganaes Ab Lubricant for metal powder compositions, metal powder composition containing th lubricant, method for making sintered products by using the lubricant, and the use of same
US8048191B2 (en) * 2005-12-28 2011-11-01 Advanced Technology & Material Co., Ltd. Compound magnetic powder and magnetic powder cores, and methods for making them thereof
JP2007327075A (ja) * 2006-06-06 2007-12-20 Hitachi Powdered Metals Co Ltd 圧粉体のシュート
JP5539159B2 (ja) * 2010-11-04 2014-07-02 アイダエンジニアリング株式会社 混合粉末の高密度成形方法および高密度成形装置。

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61166903A (ja) * 1985-01-19 1986-07-28 Hitachi Metals Ltd 金属粉末プレス成形方法
JPH11267893A (ja) * 1998-03-17 1999-10-05 Hitachi Powdered Metals Co Ltd 圧粉体の成形方法
JP2000087104A (ja) * 1998-09-04 2000-03-28 Hitachi Powdered Metals Co Ltd 圧粉体の成形方法
JP2001252793A (ja) * 2000-03-09 2001-09-18 Hitachi Powdered Metals Co Ltd 圧粉体の成形方法
JP2005526178A (ja) * 2002-01-29 2005-09-02 ジーケイエヌ ジンテル メタルズ ゲゼルシャフト ミット ベシュレンクテル ハフツング 焼結性材料から焼結部材を製造するための方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2650065A4 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013154145A1 (ja) * 2012-04-12 2015-12-17 アイダエンジニアリング株式会社 混合粉末の高密度成形方法および高密度成形装置
WO2013154145A1 (ja) * 2012-04-12 2013-10-17 アイダエンジニアリング株式会社 混合粉末の高密度成形方法および高密度成形装置
WO2013154146A1 (ja) * 2012-04-12 2013-10-17 アイダエンジニアリング株式会社 混合粉末の高密度成形方法および高密度成形装置
JPWO2013154146A1 (ja) * 2012-04-12 2015-12-17 アイダエンジニアリング株式会社 混合粉末の高密度成形方法および高密度成形装置
JPWO2013161744A1 (ja) * 2012-04-23 2015-12-24 アイダエンジニアリング株式会社 混合粉末の高密度成形方法および高密度成形装置
WO2013161744A1 (ja) * 2012-04-23 2013-10-31 アイダエンジニアリング株式会社 混合粉末の高密度成形方法および高密度成形装置
WO2013161747A1 (ja) * 2012-04-23 2013-10-31 アイダエンジニアリング株式会社 混合粉末の高密度成形方法、高密度成形装置および高密度3層構造圧粉体
WO2013161745A1 (ja) * 2012-04-23 2013-10-31 アイダエンジニアリング株式会社 混合粉末の高密度成形方法および高密度成形装置
WO2013161746A1 (ja) * 2012-04-23 2013-10-31 アイダエンジニアリング株式会社 混合粉末の高密度成形方法および高密度成形装置
JPWO2013161746A1 (ja) * 2012-04-23 2015-12-24 アイダエンジニアリング株式会社 混合粉末の高密度成形方法および高密度成形装置
JPWO2013161745A1 (ja) * 2012-04-23 2015-12-24 アイダエンジニアリング株式会社 混合粉末の高密度成形方法および高密度成形装置
JPWO2013161747A1 (ja) * 2012-04-23 2015-12-24 アイダエンジニアリング株式会社 混合粉末の高密度成形方法、高密度成形装置および高密度3層構造圧粉体
WO2020218069A1 (ja) * 2019-04-24 2020-10-29 住友電気工業株式会社 焼結体の製造方法、および圧粉成形体
JPWO2020218069A1 (ja) * 2019-04-24 2020-10-29
JP7374184B2 (ja) 2019-04-24 2023-11-06 住友電気工業株式会社 焼結体の製造方法、および圧粉成形体
US12076791B2 (en) 2019-04-24 2024-09-03 Sumitomo Electric Industries, Ltd. Method of making sintered body, and powder compact

Also Published As

Publication number Publication date
KR20130100366A (ko) 2013-09-10
EP2650065A1 (en) 2013-10-16
EP2650065A4 (en) 2014-06-04
CN103249510B (zh) 2016-05-18
CN103249510A (zh) 2013-08-14
JPWO2012077750A1 (ja) 2014-05-22
US20130336830A1 (en) 2013-12-19
KR101532920B1 (ko) 2015-07-01
JP5539539B2 (ja) 2014-07-02

Similar Documents

Publication Publication Date Title
JP5539539B2 (ja) 高強度焼結成形体の製造方法およびその製造装置
JP5539159B2 (ja) 混合粉末の高密度成形方法および高密度成形装置。
JP5881817B2 (ja) 混合粉末の高密度成形方法および高密度成形装置
US20150118511A1 (en) Mixed powder high-density molding method, mixed powder high-density molding system, and high-density three-layer green compact
JP5881816B2 (ja) 混合粉末の高密度成形方法および高密度成形装置
JP5881820B2 (ja) 混合粉末の高密度成形方法および高密度成形装置
JP5881821B2 (ja) 混合粉末の高密度成形方法および高密度成形装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11847431

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012547908

Country of ref document: JP

REEP Request for entry into the european phase

Ref document number: 2011847431

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137017498

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13992202

Country of ref document: US