[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2012076426A1 - Method for producing an aqueous polymer product dispersion - Google Patents

Method for producing an aqueous polymer product dispersion Download PDF

Info

Publication number
WO2012076426A1
WO2012076426A1 PCT/EP2011/071681 EP2011071681W WO2012076426A1 WO 2012076426 A1 WO2012076426 A1 WO 2012076426A1 EP 2011071681 W EP2011071681 W EP 2011071681W WO 2012076426 A1 WO2012076426 A1 WO 2012076426A1
Authority
WO
WIPO (PCT)
Prior art keywords
bis
ylidene
imidazolidin
monomer
imidazolin
Prior art date
Application number
PCT/EP2011/071681
Other languages
German (de)
French (fr)
Inventor
Kevin MÜLLER
Ulrich Berens
Hans J. Schanz
Original Assignee
Basf Se
University Of Southern Mississippi Research Foundation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Se, University Of Southern Mississippi Research Foundation filed Critical Basf Se
Publication of WO2012076426A1 publication Critical patent/WO2012076426A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • C08G61/04Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms
    • C08G61/06Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms prepared by ring-opening of carbocyclic compounds
    • C08G61/08Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms prepared by ring-opening of carbocyclic compounds of carbocyclic compounds containing one or more carbon-to-carbon double bonds in the ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • C07F15/0046Ruthenium compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L65/00Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/10Polymerisation reactions involving at least dual use catalysts, e.g. for both oligomerisation and polymerisation
    • B01J2231/12Olefin polymerisation or copolymerisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/821Ruthenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1805Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing nitrogen
    • B01J31/181Cyclic ligands, including e.g. non-condensed polycyclic ligands, comprising at least one complexing nitrogen atom as ring member, e.g. pyridine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2265Carbenes or carbynes, i.e.(image)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2265Carbenes or carbynes, i.e.(image)
    • B01J31/2269Heterocyclic carbenes
    • B01J31/2273Heterocyclic carbenes with only nitrogen as heteroatomic ring members, e.g. 1,3-diarylimidazoline-2-ylidenes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2265Carbenes or carbynes, i.e.(image)
    • B01J31/2278Complexes comprising two carbene ligands differing from each other, e.g. Grubbs second generation catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/24Phosphines, i.e. phosphorus bonded to only carbon atoms, or to both carbon and hydrogen atoms, including e.g. sp2-hybridised phosphorus compounds such as phosphabenzene, phosphole or anionic phospholide ligands
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/41Organometallic coupling reactions
    • C08G2261/418Ring opening metathesis polymerisation [ROMP]
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/41Organometallic coupling reactions
    • C08G2261/419Acyclic diene metathesis [ADMET]

Definitions

  • the present invention is a process for the preparation of an aqueous polymer dispersion by polymerization of at least one ethylenically unsaturated monomer MON in an aqueous medium in the presence of at least one dispersant DP, optionally a low water-soluble organic solvent OL and at least one metal carbene complex K of the general formula (I )
  • X 1 , X 2 independently of one another for halide, pseudohalide, alkoxide, acetate, sulfate,
  • L 1 , L 2 L 3 independently of one another for 1, 3-bis (C 1 -C 5 -alkyl) imidazolidin-2-ylidene, 1, 3-bis (aryl) imidazolidin-2-ylidene, 1, 3-bis (2,4,6-trimethylphenyl) -imidazolidin-2-ylidene, 1,3-bis (2,4,6-tri-C 1 -C 5 -alkylphenyl) -imidazolidin-2-ylidene, 1, 3-bis (2 , 4-diisopropylphenyl) imidazolidin-2-ylidene, 1,3-bis (2,4-di-C 1 -C 5 -alkylphenyl) -imidazolidin-2-ylidene, 1,3-bis (2,6-diisopropylphenyl) -4,5-imidazolin-2-ylidene, 1,3-bis (2,6-diisopropylphenyl) imi
  • R 1 , R 2 independently of one another represent hydrogen, C 1 -C 20 -alkyl, C 2 -C 20 -alkenyl, C 4 -C 8 -alkyl,
  • the alkyl radicals of the groups L 1 , L 2 , L 3 , R 1 , R 2 , R 3 and R 4 optionally with 1, 2 or 3 groups selected from Ci-Cs-alkyl, aryl, halogen, hydroxy, mercapto, Ci Cs-alkoxy and C 1 -C 8 -alkoxycarbonyl, aminooxy, hydrazino, carboxy, carboxyamido, acetamido, amino, nitro, cyano, sulfamoyl, amidino, hydroxycarbamoyl, carbamoyl, phosphonamino, hydroxyphosphinoyl, phosphono, sulfino, sulfo, dithiocarboxy, thi ocarboxy, furyl, pyridinyl, piperidinyl, furfuryl, pyrazolyl, isothiazolyl, pyrazinyl, pyrimidinium,
  • Z represents proton, alkali metal cation or ammonium
  • A, B, C independently of one another represent hydrogen, C 1 -C 8 -alkyl, aryl, and
  • a , B and D are an anion, or in at least one of the Cs-Ce-cycloalkyl groups of tri-Cs-Ce-cycloalkylphosphine L 1 , L 2 and / or L 3 a methylene group is replaced by a secondary ammonium group (> NABD) and thereby A , B and D have the meanings given above, which is characterized in that a) in a vessel
  • the monomer macroemulsion is converted into a monomer miniemulsion having an average droplet diameter ⁇ 1500 nm, and thereafter
  • the invention likewise provides aqueous polymer dispersions which are obtained by the process according to the invention, the polymer powders obtainable from the aqueous polymer dispersions and the use of the aqueous polymer dispersions or the polymer powders obtainable therefrom.
  • metathesis reaction Under a metathesis reaction is generally understood a chemical reaction between two compounds in which a group is exchanged between the two reactants. If this is an organic metathesis reaction, the substituents on a double bond are formally exchanged (see JC Mol, Industrial applications of olefin metathesis, Journal of Molecular Catalysis A: Chemical 213 (2004) pages 39 to 45).
  • ring opening metathesis polymerization or ROMP
  • DE-A 19859191 discloses a ring-opening metathesis reaction in an aqueous medium using low water-soluble metal carbene complexes.
  • the ring-opening metathesis reaction takes place in such a way that water, dispersant are introduced into a polymerization vessel, metal carbene complex is dissolved in the cycloolefin, the cycloolefin / metal complex solution is introduced into the aqueous dispersant solution and the cycloolefin / metal complex macroemulsion formed is converted into a cycloolefin / metal complex miniemulsion. leads and this was reacted at room temperature to an aqueous polyolefin dispersion. Due to the rapid reaction of the catalyst with the cycloolefin used, however, only low polymerization conversions and often high coagulum values can be achieved.
  • Claverie et al. in Macromolecules 2001, 34, pages 382 to 388 disclose ring-opening metathesis reactions using both water-soluble, ionic-group metal carbene complexes and using water-insoluble, hydrophobically-built metal carbene complexes.
  • the emulsion polymerization (diameter of the monomer droplets> 2 ⁇ m) by means of the water-soluble metal-carbene complexes only works well in the case of highly strained norbornene, while the less strained cyclooctadiene-1, 5 or cyclooctene with the water-soluble metal carbene complexes gave only moderate polymer yields.
  • the ring-opening metathesis reaction takes place in such a way that norbornene, dissolved in a hexadecane / dichloromethane solvent mixture, is introduced into an aqueous dispersant solution, the resulting aqueous norbornene / solvent macroemulsion is converted by ultrasound into a norbornene / solvent miniemulsion and into the norbornene / Solvent miniemulsion at Polymerization temperature, the respective hydrophilic nonionic polyethylene oxide functionalized metal carbene complexes were metered.
  • EP-A 993465 indicates that ROMP reactions with the disclosed specific pentagonal or hexagonal metal carbene complexes can in principle be carried out with or without a solvent. If solvents are used, these solvents can be polar protic nature and include, for example, water. However, these ROMP reactions are preferably carried out without solvent, the specific metal carbene complexes being dissolved in an excess of cyclic olefin.
  • US Pat. No. 6,759,537 discloses specific hexagonal metal carbene complexes and their use in metathesis reactions such as ROMP, ring-closing metathesis reactions or so-called crossed metathesis reactions. These different metathesis reactions should in principle be carried out with or without solvent. All solvents which are inert under reaction conditions are protic and aprotic organic solvents and aqueous systems. However, for the disclosed metal carbene complexes, aprotic solvents such as toluene or a mixture of benzene and dichloromethane are particularly preferred.
  • the object of the present invention was to provide a further metathesis process for the preparation of aqueous polymer dispersions using metal-carbene complexes.
  • M stands for Os, Mo, W or Ru in the valence states + II, + III, + IV or + VI, but the valence states + II, + III or + IV are preferred. Most preferably, M is Ru in valence state + II.
  • X 1 and X 2 independently represent a halide, pseudohalide, alkoxide, acetate, sulfate or phosphate.
  • Suitable pseudohalides are, for example, cyanates, thiocyanates (rhodanides), selenocyanates, tellurocyanates, azides, isocyanates, cyanides.
  • Suitable alkoxides are, for example, methoxide, ethoxide, n-propoxide, isopropoxide, n-butoxide or tert-butoxide.
  • X 1 and X 2 independently represent a halide, such as fluoride, chloride, bromide or iodide, but chloride is particularly preferred.
  • L 1 , L 2 and L 3 are each independently 1,3-bis (C 1 -C 5 -alkyl) -imidazolidin-2-ylidene, 1, 3-bis (aryl) -imidazolidin-2-ylidene, 1, 3 Bis (2,4,6-trimethylphenyl) -imidazolidin-2-ylidene, 1, 3 Bis (2,4,6-tri-C 1 -C 5 -alkylphenyl) -imidazolidin-2-ylidene, 1, 3-bis (2,6-diisopropylphenyl) -4,5-imidazolin-2-ylidene, 1, 3 bis (2,6-diisopropylphenyl) imidazolidin-2-ylidene, 1,3-bis (2,4-diisopropylphenyl) -imidazolidin-2-ylidene, 1,3-bis (2,4-di-cis) C5-alkylphenyl) imid
  • R 1 and R 2 independently of one another represent hydrogen, C 1 -C 20 -alkyl, C 2 -C 20 -alkenyl, C 4 -C 8 -cycloalkenyl, C 2 -C 20 -alkynyl, aryl, indenyl, 2-isopropoxyphenyl, 2-isopropoxy-5- ( 2,2,2-trifluoroacetamido) phenyl, C 1 -C 20 -alkoxyphenyl, C 1 -C 20 -alkoxyamino, C 1 -C 20 -alkoxy, C 1 -C 20 -alkoxycarbonyl, C 2 -C 20 -alkenyloxy, C 2 -C 20 -alkynyloxy, aryloxy, C 1 -C 20 -alkylthio, arylthio, C 1 -C 20 -alkylsulfonyl, C 1 -C 20 -alkylsulfin
  • R 1 and R 2 are aryl, hydrogen, arylthio, indenyl, 2-isopropoxyphenyl or C 2 -C 20 -alkenyl, with aryl, in particular phenyl, arylthio, in particular thiophenyl, 2-isopropoxyphenyl and hydrogen being particularly preferred.
  • the alkyl radicals of the groups L 1 , L 2 , L 3 , R 1 , R 2 , R 3 and R 4 optionally with 1, 2 or 3 groups selected from Ci-Cs-alkyl, aryl, halogen, hydroxy, mercapto , C 1 -C 5 -alkoxy and C 1 -C -alkoxycarbonyl, aminooxy, hydrazino, 4-sulfamoylanilino, sulfanilamido, carboxy, carboxyamido, acetamido, amino, nitro, cyano, sulfamoyl, amidino, hydroxycarbamoyl, carbamoyl, phosphonamino, hydroxyphosphinoyl, Phosphono, sulfino, sulfo, dithiocarboxy, thiocarboxy, furyl, pyridinyl, piperidinyl, furfuryl,
  • alkali metal cation such as in particular sodium or potassium cation, or
  • A, B, C independently of one another represent hydrogen, C 1 -C 8 -alkyl, aryl, and
  • an anion such as a halide, in particular chloride or fluoride
  • PCI ⁇ Hexachlorophosphate
  • PF ⁇ hexafluorophosphate
  • ASF ⁇ hexafluoroarsenate
  • AICk tetrachloroaluminate
  • chloride or hexafluorophosphate (PF ⁇ ) being preferred
  • L 1 , L 2 and / or L 3 is a tri-Cs-Ce-cycloalkylphosphine
  • at least one of the Cs-Ce-cycloalkyl groups to have a methylene group replaced by a secondary ammonium group (> NABD) and A, B and D have the meanings given above.
  • a group which is ionically dissociable in the aqueous reaction medium under polymerization conditions is understood to mean any of the abovementioned groups which, in the aqueous reaction medium, split off either a group Z or a group D under polymerization conditions, in the first case the ionized metal carbene complex formed having at least one negative charge and in the second Case has at least one positive charge.
  • a group is ionically dissociable under polymerization conditions can, in case of doubt, be determined in a simple manner known to the person skilled in the art, for example by conductivity measurements or solubility measurements in water.
  • an aliphatic alkyl group having 1 to 20 carbon atoms in particular methyl, ethyl, n-propyl, n-butyl, n-pentyl, n-hexyl, n-heptyl, n-octyl
  • a C 1 -C 20 -alkyl group n-nonyl, n-decyl, n-undecyl, n-dodecyl, n-tridecyl, n-tetradecyl, n-pentadecyl, n-hexadecyl, n-heptadecyl, n-octadecyl, n-nonadecyl, n-eicosyl and their isomers
  • Metal carbene complexes K of the general formula (I) can be prepared, for example, by functionalizations of the corresponding functionalization known to the person skilled in the art, for example in EP-A 993465, in particular the compounds of the general formula (I'b) and also Example 4 or in US Pat. No.
  • Metal carbene complex K can also be prepared according to the abovementioned synthesis principles for the preparation of hexagonal metal carbene complexes using specific complex precursors bearing functional groups.
  • a metal carbene complex K which comprises a dimethylammonium reaction product prepared from a metal carbene complex which is selected from the group comprising dichloro-1,3-bis (2,6-dimethyl-4-dimethylaminophenyl) imidazolidine-2 -ylidene bis (4-dimethylaminopyridine) benzylidene ruthenium (II), dichloro-1,3-bis (2,6-dimethyl-4-dimethylaminophenyl) imidazolin-2-ylidene bis (4-dimethylaminopyridine) - benzylidene ruthenium (II), dichloro-1,3,3-bis (2,6-dimethyl-4-dimethylaminophenyl) -imidazolidin-2-ylidene bis (4-dimethylaminopyridine) -phenylthiomethylene-ruthenium (II) and / or Dichloro-1
  • the dimethylammonium reaction products are prepared in such a way that dichloro-1,3-bis (2,6-dimethyl-4-dimethylaminophenyl) imidazolidin-2-ylidene bis (4-dimethylaminopyridine) benzylidene ruthenium (II) (Complex compound 1), dichloro-1,3-bis (2,6-dimethyl-4-dimethylaminophenyl) imidazolin-2-ylidene bis (4-dimethylaminopyridine) benzylidene ruthenium (II) (Complex Compound 2), dichloro -1, 3-bis (2,6-dimethyl-4-dimethylaminophenyl) imidazolidin-2-ylidene bis (4-dimethylaminopyridine) -phenylthiomethylene-ruthenium (II) (complex 3) and / or dichloro-1,3 bis (2,6-dimethyl-4-dimethylamin
  • Organic, inorganic protic acids and alkylating reagents are used as Bronsted acid compounds.
  • Particularly suitable protic acids are those which have a pKa value ⁇ 5, such as organic carboxylic acids or sulfonic acids, or inorganic acids based on the elements of the 5th, 6th and 7th main group of the periodic table, such as phosphoric acid, sulfuric acid and / or hydrochloric acid.
  • the Bronsted acid compounds have no oxidizing properties.
  • the type and quantity of the Bronsted acid compound are such that at least one, preferably at least two and particularly preferably all of the dimethylamino groups present in the complex compounds 1 to 4 are present in the form of the corresponding dimethylammonium groups.
  • the monomer macroemulsion is converted into a monomer miniemulsion having an average droplet diameter ⁇ 1500 nm, and thereafter
  • clear water but especially deionized water
  • process step a1) at least a subset of the water is introduced into a vessel and the residual amount of the remaining water, if any, added in process step c1).
  • > 50% by weight, particularly advantageously> 70% by weight and in particular advantageously> 90% by weight of the total amount of water in process step a1) is initially introduced into the vessel.
  • the total amount of water is> 10 and ⁇ 9900 parts by weight, advantageously> 20 and ⁇ 1900 parts by weight and particularly advantageously> 30 and ⁇ 900 parts by weight per 100 parts by weight of monomers MON.
  • dispersants DP are generally used which keep both the monomer droplets or monomer / solvent droplets of the corresponding macro- and miniemulsions and the polymer particles formed dispersed in the aqueous polymerization medium and thus ensure the stability of the aqueous polymer dispersions produced.
  • Suitable dispersants DP are both the protective colloids customarily used for carrying out free-radical aqueous emulsion polymerizations and emulsifiers.
  • Suitable protective colloids can be found in Houben-Weyl, Methods of Organic Chemistry, Volume XIV / 1, Macromolecular Materials, Georg Thieme Verlag, Stuttgart, 1961, pages 411 to 420.
  • Suitable neutral protective colloids are, for example, polyvinyl alcohols, polyalkylene glycols, polyvinylpyrrolidones, cellulose, starch and gelatin derivatives.
  • protective colloids whose dispersing component has at least one negative electrical charge include, for example, polyacrylic acids and polymethacrylic acids and their alkali metal salts, acrylic acid, methacrylic acid, itaconic acid, 2-acrylamido-2-methylpropanesulfonic acid, 4-styrenesulfonic acid and / or maleic anhydride-containing copolymers and their alkali metal salts and alkali metal salts of sulfonic acids of high molecular weight compounds, such as polystyrene, into consideration.
  • polyacrylic acids and polymethacrylic acids and their alkali metal salts acrylic acid, methacrylic acid, itaconic acid, 2-acrylamido-2-methylpropanesulfonic acid, 4-styrenesulfonic acid and / or maleic anhydride-containing copolymers and their alkali metal salts and alkali metal salts of sulfonic acids of high molecular weight compounds, such as polystyrene
  • Suitable cationic protective colloids are, for example, the nitrogen-protonated and / or alkylated derivatives of N-vinylpyrrolidone, N-vinylcaprolactam, N-vinylformamide, N-vinylacetamide, N-vinylcarbazole, 1-vinylimidazole, 2 Vinylimidazole, 2-vinylpyridine, 4-vinylpyridine, acrylamide, methacrylamide, amines group-bearing acrylates, methacrylates, acrylamides and / or methacrylamides containing homopolymers and copolymers.
  • mixtures of emulsifiers and / or protective colloids can be used.
  • dispersing agents are exclusively emulsifiers whose relative molecular weights, in contrast to the protective colloids, are usually below 1500 g / mol.
  • the individual components must be compatible with each other, which can be checked in case of doubt by hand on fewer preliminary tests.
  • An overview of suitable emulsifiers can be found in Houben-Weyl, Methods of Organic Chemistry, Volume XIV / 1, Macromolecular Materials, Georg Thieme Verlag, Stuttgart, 1961, pages 192 to 208.
  • Nonionic emulsifiers are, for example, ethoxylated mono-, di- and tri-alkylphenols (EO degree: 2 to 50, alkyl radical: C 4 to C 12) and also ethoxylated fatty alcohols (EO degree: 2 to 80, alkyl radical: Ce to C 3 H 6 ).
  • Examples are the Eumulgin ® B brands (cetyl / Stearylalkoholethoxilate) Dehydol LS ® brands (fatty alcohol ethoxylates, EO units: 1 to 10) of Cognis GmbH, as well as the Lutensol ® A grades (C 2 C 4 fatty alcohol ethoxylates , EO units: 3 to 8), Lutensol ® AO grades (C 3 -C 5 -Oxoalkoholethoxilate, EO units: 3 to 30), Lutensol ® AT-grades (C 6 C 8 fatty alcohol ethoxylates, EO units: 1 1 to 80), Lutensol ® ON brands (C10 Oxoalkoholethoxilate, EO units: 3 to 11) and the Lutensol ® tO brands (C13 Oxoalkoholethoxilate, EO units: 3 to 20) of BASF SE.
  • Lutensol ® A grades C 2 C 4 fatty alcohol ethoxylates
  • low molecular weight, random and water-soluble ethylene oxide and propylene oxide copolymers and their derivatives low molecular weight, random and water-soluble ethylene oxide and propylene oxide copolymers and their derivatives, low molecular weight, water-soluble ethylene oxide and propylene oxide block copolymers (for example Pluronic ® PE having a molecular weight of 1000 to 4000 g / mol and Pluronic ® RPE BASF SE having a molecular weight of from 2000 to 4000 g / mol) and derivatives thereof.
  • Pluronic ® PE having a molecular weight of 1000 to 4000 g / mol
  • Pluronic ® RPE BASF SE having a molecular weight of from 2000 to 4000 g / mol
  • Typical anionic emulsifiers are, for example, alkali metal and ammonium salts of alkyl sulfates (alkyl radical: Ce to C12), of sulfuric monoesters of ethoxylated alkanols (EO degree: 4 to 30, alkyl radical: C12 to Cie) and ethoxylated alkylphenols (EO degree: 3 to 50, Alkyl radical: C 4 to C 12), of alkylsulfonic acids (alkyl radical: C 12 to Cie) and of alkylarylsulfonic acids (alkyl radical: Cg to
  • R a and R b hydrogen atoms or C 4 - to C2 4 alkyl, and simultaneously hydrogen atoms are not, and ⁇ ⁇ and alkali metal ions and / or may be ammonium ions.
  • R a and R b are preferably linear or branched alkyl radicals having 6 to 18 C atoms, in particular having 6, 12 and 16 C atoms or -H, wherein R a and R b are not both simultaneously H Atoms are.
  • ⁇ and ⁇ are sodium, potassium or ammonium, with sodium being particularly preferred.
  • Particularly advantageous compounds (II) are those in which ⁇ and ⁇ are sodium, R a is a branched alkyl radical having 12 C atoms and R b is an H atom or R a .
  • Industrial mixtures are used which contain from 50 to 90 wt .-% of the monoalkylated product, such as, for example, Dowfax ® 2A1 (trademark of Dow Chemical Corp.).
  • the compounds (II) are well known, for example from US-A 4,269,749, and commercially available.
  • Suitable cationic emulsifiers are generally a C 1 - to C 18 -alkyl-, aralkyl- or heterocyclic radical-containing primary, secondary, tertiary or quaternary ammonium salts, alkanolammonium salts, pyridinium salts, imidazolinium salts, oxazolinium salts, morpholine salts, thiazolinium salts and salts of amine oxides, Quinolinium salts, isoquinolinium salts, tropylium salts, sulfonium salts and phosphonium salts.
  • Examples are dodecylammonium acetate or the corresponding hydrochloride, the chlorides or acetates of the various 2- (N, N, N-trimethylammonium) ethyl paraffins, N-cetylpyridinium chloride, N-laurylpyridinium sulfate and N-cetyl-N, N, N-trimethylammonium bromide, N-dodecyl-N, N, N-trimethylammonium bromide, N-octyl-N, N, N-trimethylammonium bromide, N, N-distearyl-N, N-dimethylammonium chloride and the gemini surfactant ⁇ , ⁇ '-
  • step a2) at least a partial amount of the dispersant DP is introduced into the vessel and the remaining amount of the dispersant DP remaining in process step c2) is metered in, if appropriate.
  • > 50% by weight, particularly advantageously> 70% by weight and in particular advantageously> 90% by weight of the total amount of dispersant in process step a2) is initially charged in the vessel.
  • the total amount of the dispersant DP is presented in process step a2).
  • the total amount of dispersant is according to the invention> 0.1 and ⁇ 10 wt .-%, preferably> 0.3 and ⁇ 8 wt .-% and particularly advantageously> 0.5 and ⁇ 6 wt .-%, each based on the total amount of the monomers MON.
  • emulsifiers in particular nonionic and / or cationic emulsifiers. With particular advantage nonionic emulsifiers are used.
  • Suitable ethylenically unsaturated monomers MON are essentially aliphatic linear or branched C 3 - to C 30 -alkenes and mono- or polycyclic olefins with one or more ethylenically unsaturated double bonds, which may optionally also have functional groups.
  • the monomers MON besides carbon and hydrogen have no further elements.
  • the monomers MON include, for example, the linear alkenes propene, n-butene-1, n-butene-2, 2-methylpropene, 2-methylbutene-1, 3-methylbutene-1, 3,3-dimethyl-2-isopropylbutene-1 , 2-methylbutene-2, 3-methylbutene-2, pentene-1, 2-methylpentene-1, 3-methylpentene-1, 4-methylpentene-1, pentene-2, 2-methylpentene-2, 3-methylpentene-2 , 4-methylpentene-2, 2-ethyl-pentene-1, 3-ethyl-pentene-1, 4-ethyl-pentene-1, 2-ethyl-pentene-2, 3-ethyl-pentene-2, 4-ethyl-pentene-2, 2,4,4- Trimethylpentene-1, 2,4,4-trimethylpentene-2, 3-ethyl-2-methylpentene-1, 3,4,4-trimethylpentene-2,
  • Methyldecene-1 6-methyldecene-1, 7-methyldecene-1, 8-methyldecene-1, 9-methyldecene-1-decene
  • linear alkenes or cyclic olefins which are liquid under polymerization conditions and have low water solubility and are present in the aqueous polymerization medium under polymerization conditions as a separate phase.
  • Preference according to the invention is given to using monocyclic or polycyclic aliphatic olefins and particularly preferably cis-cyclooctene, trans-cyclooctene and / or dicyclopentadiene.
  • the total amount of monomers MON (total monomer amount MON) is> 1 and ⁇ 90 wt .-%, preferably> 5 and ⁇ 80 wt .-% and particularly advantageously> 10 and ⁇ 70 wt .-%, each based on the total amount the resulting aqueous polymer dispersion.
  • process step a3) at least a partial amount of the at least one ethylenically unsaturated monomer MON is initially charged and, in process step c3), the optionally remaining amount of the at least one monomer MON remaining is added.
  • the total amount of monomers MON in process step a3) is presented.
  • organic solvents OL are optionally used which have a low water solubility even under polymerization conditions (given pressure and given temperature), ie a solubility ⁇ 10 g, advantageously ⁇ 1 g and particularly advantageously ⁇ 0.2 g per liter of deionized water ,
  • the organic solvents can serve to dissolve the monomers MON and thus lower their concentration in the macro- or miniemulsion droplets and, on the other hand, to ensure the stability of the thermodynamically unstable miniemulsion droplets (by preventing the so-called Ostwald ripening).
  • Suitable organic solvents OL are liquid aliphatic and aromatic hydrocarbons having 5 to 30 C atoms, such as, for example, n-pentane and isomers, cyclopentane, n-hexane and isomers, cyclohexane, n-heptane and isomers, n-octane and isomers.
  • Nonane and isomers Nonane and isomers, n-decane and isomers, n-dodecane and isomers, n-tetradecane and isomers, n-hexadecane and isomers, n-octadecane and isomers, benzene, toluene, ethylbenzene, cumene, o-, m- or p- Xylene, and generally hydrocarbon mixtures in the boiling range of 30 to 250 ° C.
  • esters such as fatty acid esters having 10 to 28 carbon atoms in the acid moiety and 1 to 10 carbon atoms in the alcohol moiety or esters of carboxylic acids and fatty alcohols having 1 to 10 carbon atoms in the carboxylic acid moiety and 10 to 28 carbon atoms in the alcohol moiety , Of course it is also possible to use mixtures of the abovementioned solvents.
  • the organic solvent OL is selected from the group comprising n-hexane, n-octane, n-decane, n-tetradecane, n-hexadecane and their isomeric compounds, benzene, toluene and / or ethylbenzene.
  • non-water-soluble oligomers or polymers for preventing Ostwald ripening can be used which, even under polymerization conditions (at a given pressure and given temperature) have a low water solubility, i. have a solubility ⁇ 10 g, preferably ⁇ 1 g and particularly advantageously ⁇ 0.2 g per liter of deionized water.
  • Suitable substances here are, for example, polystyrene, polystearyl acrylate, polybutadiene, polyisobutylene, polynorbornene, polyoctenamer, polydicyclopentadiene or styrene-butadiene rubber.
  • process step a4) optionally at least a partial amount of the organic solvent OL is initially charged, and in process step c4) the residual amount of organic solvent OL which may be left is metered in.
  • the total amount of organic solvent OL is presented in process step a4).
  • the total amount of organic solvent OL is> 0.1 and ⁇ 15 wt .-%, advantageously> 0.5 and ⁇ 10 wt .-% and particularly advantageously> 1 and ⁇ 8 wt .-%, each based on the total monomer MON.
  • a monomer macroemulsion is formed whose mean Droplet diameter> 2 ⁇ , often> 5 ⁇ and often> 10 microns.
  • the mean droplet diameter can be determined in a simple manner familiar to the person skilled in the art, for example by the method of dynamic light scattering (DLS).
  • the monomer macro emulsion is converted into a monomer miniemulsion having an average droplet diameter of ⁇ 1500 nm.
  • high-pressure homogenizers can be used for this purpose.
  • the fine distribution of the components is achieved in these machines by a high local energy input.
  • Two variants have proven particularly useful in this regard.
  • the aqueous macroemulsion is compressed via a piston pump to over 1000 bar and then expanded through a narrow gap.
  • the effect is based on an interaction of high shear and pressure gradients and cavitation in the gap.
  • An example of a high-pressure homogenizer that works on this principle is the Niro-Soavi high-pressure homogenizer type NS1001 L Panda.
  • the compressed aqueous macroemulsion is expanded into two mixing nozzles via two nozzles directed towards one another.
  • the fine distribution effect is mainly dependent on the hydrodynamic conditions in the mixing chamber.
  • An example of this homogenizer type is the microfluidizer type M 120 E Microfluidics Corp.
  • the aqueous macroemulsion is compressed by means of a pneumatically operated piston pump to pressures of up to 1200 atm and released via a so-called interaction chamber.
  • the emulsion beam is split into two beams in a microchannel system, which are guided at an angle of 180 °.
  • Another example of a homogenizer operating according to this type of homogenization is the Nanojet Type Expo from Nanojet Engineering GmbH. However, in the Nanojet, instead of a fixed duct system, two homogenizing valves are installed, which can be adjusted mechanically.
  • the homogenization can also be carried out, for example, by using ultrasound (eg Branson Sonifier II 450).
  • ultrasound eg Branson Sonifier II 450
  • the fine distribution is based here on cavitation mechanisms.
  • the devices described in GB-A 22 50 930 and US Pat. No. 5,108,654 are also suitable in principle.
  • the quality of the aqueous miniemulsion produced in the sound field does not only depend on the sound power applied, but also on other factors, such as the intensity of the sound. sticiansver notorious of ultrasound in the mixing chamber, the residence time, the temperature and the physical properties of the substances to be emulsified, for example on the toughness, the interfacial tension and the vapor pressure.
  • the resulting droplet size depends, inter alia, on the concentration of the dispersant and of the energy introduced during the homogenization and can therefore be specifically adjusted, for example, by a corresponding change in the homogenization pressure or the corresponding ultrasound energy.
  • the device described in the earlier German patent application DE 197 56 874 has proven itself.
  • This is a device which has a reaction space or a flow-through reaction channel and at least one means for transmitting ultrasonic waves to the reaction space or the flow-through reaction channel, wherein the means for transmitting ultrasonic waves is designed such that the entire reaction space, or the Flow reaction channel in a section, can be uniformly irradiated with ultrasonic waves.
  • the radiating surface of the means for transmitting ultrasonic waves is designed so that it substantially corresponds to the surface of the reaction space or, when the reaction space is a partial section of a flow-through reaction channel, extending over substantially the entire width of the channel, and the depth of the reaction space, which is substantially perpendicular to the emission surface, is less than the maximum effective depth of the ultrasound transmission means.
  • depth of the reaction space is understood here essentially to mean the distance between the emission surface of the ultrasound transmission medium and the bottom of the reaction space.
  • Preferred reaction depths are up to 100 mm.
  • the depth of the reaction space should not be more than 70 mm and particularly advantageously not more than 50 mm.
  • the reaction spaces may in principle also have a very small depth, but preference is given to reaction depths which are substantially greater than, for example, the usual gap heights in high-pressure homogenizers and are usually over 10 mm in view of the lowest possible risk of clogging and easy cleanability and high product throughput ,
  • the depth of the reaction space is advantageously variable, for example, by different depth deep into the housing ultrasonic transmitting agent.
  • the emitting surface of the means for transmitting ultrasound essentially corresponds to the surface of the reaction space.
  • This embodiment serves for the batch production of the miniemulsions used according to the invention.
  • ultrasound can act on the entire reaction space.
  • a turbulent flow is created by the axial sound radiation pressure, which causes an intensive cross-mixing.
  • such a device has a flow cell.
  • the housing is designed as a flow-through reaction channel, which has an inflow and an outflow, wherein the reaction space is a subsection of the flow-through reaction channel.
  • the width of the channel is the channel extent extending essentially perpendicular to the flow direction.
  • the radiating surface covers the entire width of the flow channel transversely to the flow direction.
  • the length of the radiating surface perpendicular to this width that is to say the length of the radiating surface in the direction of flow, defines the effective range of the ultrasound.
  • the flow-through reaction channel has a substantially rectangular cross-section. If a likewise rectangular ultrasonic transmission medium with appropriate dimensions is installed in one side of the rectangle, a particularly effective and uniform sound is guaranteed.
  • due to the turbulent flow conditions prevailing in the ultrasonic field it is also possible, for example, to use a round transmission medium without disadvantages.
  • a plurality of separate transmission means can be arranged, which are connected in series in the flow direction.
  • the means for transmitting ultrasonic waves is designed as a sonotrode whose end facing away from the free emitting surface is coupled to an ultrasonic transducer.
  • the ultrasonic waves may be generated, for example, by utilizing the reverse piezoelectric effect.
  • high-frequency electrical oscillations usually in the range of 10 to 100 kHz, preferably between 20-40 kHz see
  • converted via a piezoelectric transducer into mechanical vibrations of the same frequency and with the sonotrode as a transmission element in the sonicated Medium coupled.
  • the sonotrode is designed as a rod-shaped, axially radiating ⁇ / 2 (or multiple of A / 2) longitudinal oscillator.
  • a sonotrode can be fastened, for example, by means of a flange provided on one of its vibration nodes in an opening in the housing.
  • the implementation of the sonotrode can be formed in the housing pressure-tight, so that the sound can be carried out under elevated pressure in the reaction chamber.
  • the oscillation amplitude of the sonotrode is adjustable, that is, the respectively set oscillation amplitude is checked online and optionally readjusted automatically.
  • the checking of the current oscillation amplitude can be done for example by a mounted on the sonotrode piezoelectric transducer or a strain gauge with downstream evaluation.
  • internals for improving the throughflow and mixing behavior are provided in the reaction space. hen. These internals may be, for example, simple baffles or different, porous body.
  • the mixing can be further intensified by an additional agitator.
  • the reaction space is temperature controlled.
  • the average diameters of the monomer droplets in the monomer miniemulsion according to process step b) are ⁇ 1500 nm, advantageously> 100 and ⁇ 1300 nm and in particular advantageously> 120 and ⁇ 900 nm.
  • monomer macroemulsion or monomermineral emulsion should of course also include the macroemulsions or miniemulsions of the corresponding monomer MON / solvent OL mixtures.
  • the average diameters of the monomer droplets are determined in principle within the scope of this document on the principle of quasi-elastic dynamic light scattering at room temperature (the so-called z-mean droplet diameter d z of the unimodal analysis of the autocorrelation function being indicated) and by means of a Coulter N4 Plus particle analyzer from Coulter Scientific Instruments.
  • the measurements are carried out on dilute aqueous (mini / macro) monomer emulsions whose content of disperse constituents is about 0.005 to 0.01% by weight.
  • the dilution is carried out by means of deionized water, which had previously been saturated with the monomers MON contained in the aqueous (mineral / macro) monomer emulsion and, if appropriate, slightly water-soluble organic solvents OL at room temperature.
  • the latter measure is intended to prevent the dilution from resulting in a change in the droplet diameter.
  • Wt .-% advantageously> 90 wt .-% and particularly advantageously> 95 wt .-% polymerized.
  • reaction steps c1) to c5) do not necessarily represent an order, so that it may also be advantageous, depending on the metal carbene complex K or the monomers MON to be polymerized, first the total amount of the metal complex K according to c5) obtained in process step b) Monomerenminiemulsion add at polymerization and only then any remaining amounts of water according to c1), dispersant DP according to c2) monomers MON according to c3) and / or solvent OL according to c4) metered discontinuously or continuously with uniform or changing quantitative genstrom.
  • the total amount of the metal carbene complex K is first dissolved in a subset of the water and then the resulting aqueous metal carbene complex solution of the monomer miniemulsion in process step c5) is added with intensive mixing.
  • the polymerization temperature is> 0 and ⁇ 150 ° C, advantageously> 10 and ⁇ 100 ° C and particularly advantageously> 20 and ⁇ 90 ° C. If the polymerization temperature is> 100 ° C., it is advantageous that the atmospheric pressure above the aqueous polymerization medium is chosen to be so large (> 1 atm absolute) that a disadvantageous boiling of the polymerization mixture is suppressed. It is important that the invention
  • Ammonium complexes based on the complex compounds 3 and 4 at a temperature> 50 ° C and preferably at a temperature> 80 ° C are particularly active, resulting in high ROMP reaction rates.
  • these reaction temperatures have advantages that the reaction energy liberated in the ROMP reaction can be easily removed by conventional cooling water; Energy-consuming cooling brines with temperatures ⁇ 0 ° C or expensive liquefied gases are not required.
  • the handling of the metal carbene complexes K itself as well as the polymerization reaction take place advantageously under an oxygen-free inert gas atmosphere, for example under a nitrogen or argon atmosphere.
  • the molar ratio of monomer MON to metal ion complex K is> 1000, in particular> 5000 and particularly advantageously> 10000.
  • the pH of the aqueous polymerization medium during and after the addition of the metal carbene complex K in process step c5) is ⁇ 6, in particular ⁇ 5 and particularly advantageously ⁇ 4.
  • the adjustment of the pH is carried out with non-interfering conventional dilute acids or bases, such as sulfuric acid, phosphoric acid, hydrochloric acid, ammonium hydroxide or sodium or potassium hydroxide solution.
  • the pH values are measured at 20 to 25 ° C (room temperature) with a calibrated pH meter.
  • auxiliaries such as, for example, biocides, thickeners, defoamers, buffer substances etc.
  • the polymerization reaction according to the invention with the formation of an aqueous polymer dispersion proceeds very rapidly, the monomer conversion being able to be monitored in a manner familiar to the person skilled in the art, for example by means of a reaction calorimeter.
  • the process according to the invention makes stable aqueous polymer dispersions accessible within short polymerization times and under mild polymerization conditions.
  • the aqueous polymer dispersions according to the invention which are obtainable by the process according to the invention can be used for the production of adhesives, sealants, plastic plasters, paper coating slips, nonwoven fabrics, paints and impact modifiers, and for the consolidation of sand, textile finishing, leather finishing, or for the modification of mineral binders and plastics become.
  • the corresponding polymer powders can be obtained in a simple manner from the novel aqueous polymer dispersions (for example freeze drying or spray drying).
  • These polymer powders obtainable according to the invention can likewise be used for the production of adhesives, sealants, plastic plasters, paper coating slips, fiber fillers, paints and impact modifiers, and for the consolidation of sand, textile finishing, leather finishing, or for the modification of mineral binders and plastics.
  • the contents of the Schlenk flask were cooled to room temperature and the solvent was removed by applying reduced pressure (0.1 mbar absolute, 30 minutes). Thereafter, the Schlenk flask was vented with ambient air atmosphere and 50 ml of a water / isopropanol mixture (1: 1 v / v) was added. The Schlenk flask was then placed in an ultrasonic bath for 30 minutes to disperse the precipitate and then the resulting suspension was filtered off.
  • the Schlenk flask was submerged again in a water bath at a temperature of 60 ° C, as long as negative pressure applied until the flask contents boiled, then closed the tap to the vacuum line and the resulting reaction mixture stirred for 6 days under these conditions. During this time, a light pink precipitate formed. Thereafter, the reaction mixture was cooled to room temperature and the resulting precipitate was filtered off. The resulting precipitate was washed twice with 10 ml of n-heptane and then dried for 2 hours in a vacuum oven at 60 ° C and 30 mbar (absolute).
  • the filter residue was suspended in a 100 ml glass flask in 50 ml of a 3: 1 (v / v) mixture of isopropanol and 0.5 molar aqueous ammonium chloride solution and then the flask was placed in an ultrasonic bath at 30 ° C for 60 minutes. The solid was then filtered off from the suspension, the filter residue washed twice with 10 ml of methanol and then dried for 3 hours at 60 ° C and 30 mbar (absolute) in a vacuum oven.
  • the precipitate was filtered off in air and washed with 20 ml of a 1 millimolar DMAP / tert-butyl methyl ether solution.
  • the resulting filter residue was then dried for 2 hours in a vacuum oven at 60 ° C and 30 mbar (absolute).
  • the negative pressure in the Schlenk flask was quenched with nitrogen, the resulting mixture under nitrogen atmosphere 992 mg (1, 16 mmol) of the ruthenium complex 9 was added and the flask sealed with a septum. Thereafter, the Schlenk flask was again immersed in a water bath having a temperature of 60 ° C, as long as applied negative pressure until the flask contents boil, then closed the tap to the vacuum line and the resulting reaction mixture for 4 days under these conditions. During this time, a pink-brown precipitate formed.
  • the reaction mixture was cooled to room temperature, the precipitate formed filtered off, see the filter residue obtained washed twice with 10 ml of n-heptane and then dried for 2 hours in a vacuum oven at 60 ° C and 30 mbar (absolute).
  • the filter residue was suspended in 50 ml of methanol in a 100 ml glass flask, and then the flask was placed in an ultrasonic bath at room temperature for 30 minutes. The solid was then filtered off from the suspension, the filter residue washed twice with 10 ml of methanol and then dried for 3 hours at 60 ° C and 30 mbar (absolute) in a vacuum oven.
  • the resulting aqueous Monomerenminiemulsion was transferred under nitrogen atmosphere in a temperature-controlled equipped with stirrer, thermometer, reflux condenser and feed vessels 500 ml glass flask and heated to 35 ° C with stirring.
  • 20.6 mg (0.023 mmol) of ruthenium complex 3 were used to form the corresponding dissolving dimethylammonium compound in 13.6 g of a 0.1 molar aqueous hydrochloric acid solution.
  • the aforementioned dimethylammonium complex compound was added to the monomer miniemulsion within one minute, and the resulting polymerization mixture was stirred for 2 hours at this temperature. Thereafter, the resulting aqueous polymer dispersion was cooled to room temperature and filtered through a 20 ⁇ filter. The dispersion had a coagulum content of 0.1% by weight.
  • the aqueous polymer dispersion obtained had a solids content of 14.3% by weight.
  • the mean particle size was determined to be 315 nm.
  • the solids contents were generally determined by drying a defined amount of the aqueous polymer dispersion (about 0.8 g) with the aid of moisture meter HR73 from Mettler Toledo at a temperature of 130 ° C. to constant weight (about 2 hours). In each case two measurements were carried out. The values given represent the mean values of these measurements.
  • the z-average droplet diameter of the aqueous monomer miniemulsions and the average particle diameter of the Polymerisatteilchen was generally determined by dynamic light scattering on a 0.005 to 0.01 weight percent aqueous dispersion at 23 ° C by means of an Autosizers NC from. Malvern Instruments, England. Indicated is the mean diameter of the cumulant (cumulant zaverage) of the measured autocorrelation function (ISO standard 13321).
  • the preparation of the polymer dispersion 2 was carried out completely analogously to the preparation of the polymer dispersion 1, but with the difference that a solution of 20.1 mg (0.023 mmol) of ruthenium complex 1 and 13.6 g of a 0.1 molar aqueous hydrochloric acid solution instead of the corresponding ruthenium complex 3 solution were used.
  • the aqueous polymer dispersion obtained had a solids content of 14.8% by weight and a coagulum content of 0.4% by weight.
  • the mean particle size was determined to be 269 nm.
  • the preparation of the polymer dispersion 3 was carried out completely analogously to the preparation of the polymer dispersion 1, but with the difference that a solution of 20.1 mg (0.023 mmol) of ruthenium complex 2 and 13.6 g of a 0.1 molar aqueous hydrochloric acid solution instead of the corresponding ruthenium complex 3 solution were used.
  • the aqueous polymer dispersion obtained had a solids content of 14.6% by weight and a coagulum content of 0.4% by weight.
  • the mean particle size was determined to be 295 nm.
  • the preparation of the polymer dispersion 4 was carried out completely analogously to the preparation of the polymer dispersion 1, but with the difference that a solution of 20.6 mg (0.023 mmol) of ruthenium complex 4 and 13.6 g of a 0.1 molar aqueous hydrochloric acid solution instead of the corresponding ruthenium complex 3 solution were used.
  • the aqueous polymer dispersion obtained had a solids content of 14.2% by weight and a coagulum content of 0.1% by weight.
  • the mean particle size was determined to be 267 nm.
  • the preparation of the polymer dispersion 5 was carried out completely analogously to the preparation of the polymer dispersion 1, but with the difference that the reaction temperature was 65 ° C. instead of 35 ° C. and the reaction time was only 1 hour.
  • the aqueous polymer dispersion obtained had a solids content of 15.1% by weight and a coagulum content of 0.1% by weight.
  • the mean particle size was determined to be 264 nm.
  • the preparation of the polymer dispersion 6 was completely analogous to the preparation of the polymer dispersion 2, but with the difference that the reaction temperature was 65 ° C instead of 35 ° C.
  • the aqueous polymer dispersion obtained had a solids content of 15.1% by weight and a coagulum content of 1.0% by weight.
  • the mean particle size was determined to be 278 nm.
  • the preparation of the polymer dispersion 7 was completely analogous to the preparation of the polymer dispersion 3, but with the difference that the reaction temperature was 55 ° C instead of 35 ° C.
  • the aqueous polymer dispersion obtained had a solids content of 15.0% by weight and a coagulum content of 0.9% by weight.
  • the mean particle size was determined to be 285 nm.
  • the preparation of the polymer dispersion 8 was carried out completely analogously to the preparation of the polymer dispersion 4, but with the difference that the reaction temperature was 65 ° C. instead of 35 ° C. and the reaction time was only 1 hour.
  • the aqueous polymer dispersion obtained had a solids content of 14.9% by weight and a coagulum content of 0.2% by weight.
  • the mean particle size was determined to be 260 nm.
  • the preparation of the polymer dispersion 9 was carried out completely analogously to the preparation of the polymer dispersion 1, but with the difference that a mixture of 8.4 g (63.5 mmol) of dicyclopentadiene and 7.2 g (65.3 mmol) of cis-cyclooctene instead of 15.3 g of dicyclopentadiene was used.
  • the aqueous polymer dispersion obtained had a solids content of 13.4% by weight and a coagulum content of 0.1% by weight.
  • the mean particle size was determined to be 255 nm.
  • the preparation of the polymer dispersion 10 was carried out completely analogously to the preparation of the polymer dispersion 2, but with the difference that a mixture of 8.4 g (63.5 mmol) dicyclopentadiene and 7.2 g (65.3 mmol) cis-cyclooctene instead of 15.3 g of dicyclopentadiene was used.
  • the aqueous polymer dispersion obtained had a solids content of 14.8% by weight and a coagulum content of 0.4% by weight.
  • the average particle size was determined to be 270 nm.
  • the polymer dispersion 1 1 was prepared completely analogously to the preparation of the polymer dispersion 3, but with the difference that a mixture of 8.4 g (63.5 mmol) of dicyclopentadiene and 7.2 g (65.3 mmol) of cis Cyclooctene was used instead of 15.3 g of dicyclopentadiene.
  • the aqueous polymer dispersion obtained had a solids content of 12.6% by weight and a coagulum content of 0.3% by weight.
  • the mean particle size was determined to be 254 nm.
  • the preparation of the polymer dispersion 12 was carried out completely analogously to the preparation of the polymer dispersion 4, but with the difference that a mixture of 8.4 g (63.5 mmol) dicyclopentadiene and 7.2 g (65.3 mmol) cis-cyclooctene instead of 15.3 g of dicyclopentadiene was used.
  • the aqueous polymer dispersion obtained had a solids content of 12.1% by weight and a coagulum content of 0.2% by weight.
  • the mean particle size was determined to be 265 nm.
  • the preparation of the polymer dispersion 13 was carried out completely analogously to the preparation of the polymer dispersion 9, but with the difference that a reaction temperature was 65 ° C. instead of 35 ° C. and the reaction time was only 1 hour.
  • the aqueous polymer dispersion obtained had a solids content of 14.8% by weight and a coagulum content of 0.1% by weight.
  • the mean particle size was determined to be 290 nm.
  • the preparation of the polymer dispersion 14 was carried out completely analogously to the preparation of the polymer dispersion 10, but with the difference that a reaction temperature was 65.degree. C. instead of 35.degree.
  • the aqueous polymer dispersion obtained had a solids content of 14.7% by weight and a coagulum content of 1.5% by weight.
  • the mean particle size was determined to be 264 nm.
  • the preparation of the polymer dispersion 15 was carried out completely analogously to the preparation of the polymer dispersion 11, but with the difference that a reaction temperature was 65.degree. C. instead of 35.degree.
  • the aqueous polymer dispersion obtained had a solids content of 13.5% by weight and a coagulum content of 1.6% by weight.
  • the mean particle size was determined to be 262 nm.
  • the preparation of the polymer dispersion 16 was completely analogous to the preparation of the polymer dispersion 12, but with the difference that a reaction temperature of 65 ° C instead of 35 ° C and the reaction time was only 1 hour.
  • the aqueous polymer dispersion obtained had a solids content of 13.4% by weight and a coagulum content of 0.1% by weight.
  • the mean particle size was determined to be 268 nm.
  • Comparative Example 1 The procedure of Comparative Example 1 was carried out completely analogously to the preparation of Polymerisatdispersion 1, but with the difference that 20.6 mg (0.023 mmol) of Complex Compound 13 were used instead of Rutheniumkomplex 3.
  • the aqueous polymer dispersion obtained had a solids content of 0.9% by weight and a coagulum content of 1.1% by weight.
  • the mean particle size was determined to be 441 nm. 11.V2 Comparative Example 2
  • Comparative Example 2 The performance of Comparative Example 2 was completely analogous to the preparation of polymer dispersion 1, but with the difference that the total amount of ruthenium complex 3 in 13.6 g of deionized water was added to form a suspension.
  • Comparative Example 3 Comparative Example 3 was carried out completely analogously to the preparation of polymer dispersion 1, but with the difference that the total amount of ruthenium complex 3 in a solution consisting of 6.8 g of deionized water and 6, 8 g of methanol was added to form a suspension. No aqueous polymer dispersion was obtained
  • Comparative Example 4 was carried out completely analogously to the preparation of polymer dispersion 1, but with the difference that the total amount of ruthenium complex 3 was taken up in 13.6 g of methanol.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)

Abstract

The invention relates to a method for producing aqueous polymer product dispersions by means of miniemulsion polymerisation using metal carbene complexes having at least one ionically dissociable group. The metal carbene complexes have six ligands and are likewise claimed.

Description

Verfahren zur Herstellung einer wässrigen Polymerisatdispersion  Process for the preparation of an aqueous polymer dispersion
Beschreibung description
Gegenstand der vorliegenden Erfindung ist ein Verfahren zur Herstellung einer wässrigen Polymerisatdispersion durch Polymerisation wenigstens eines ethylenisch ungesättigten Monomeren MON in einem wässrigen Medium in Anwesenheit wenigstens eines Dispergiermittels DP, gegebenenfalls eines gering in Wasser löslichen organischen Lösungsmittels OL und wenigstens eines Metallcarbenkomplexes K der allgemeinen Formel (I), The present invention is a process for the preparation of an aqueous polymer dispersion by polymerization of at least one ethylenically unsaturated monomer MON in an aqueous medium in the presence of at least one dispersant DP, optionally a low water-soluble organic solvent OL and at least one metal carbene complex K of the general formula (I )
ΜΧ1Χ2|_1 |_2 L3[=CR1R2] (I), worin ΜΧ 1 Χ 2 | _1 | _2 L 3 [ = CR 1 R 2 ] (I), in which
M: für Os, Mo, W oder Ru in den Wertigkeitsstufen +II, +III, +IV oder +VI, M: for Os, Mo, W or Ru in the valence states + II, + III, + IV or + VI,
X1, X2: unabhängig voneinander für Halogenid, Pseudohalogenid, Alkoxid, Acetat, Sulfat, X 1 , X 2 : independently of one another for halide, pseudohalide, alkoxide, acetate, sulfate,
Phosphat,  Phosphate,
L1, L2 L3: unabhängig voneinander für 1 ,3-Bis(Ci-C5-alkyl)-imidazolidin-2-yliden, 1 ,3-Bis(aryl)- imidazolidin-2-yliden, 1 ,3-Bis(2,4,6-trimethylphenyl)-imidazolidin-2-yliden, 1 ,3- Bis(2,4,6-tri-Ci-C5-alkylphenyl)-imidazolidin-2-yliden, 1 ,3-Bis(2,4,-diisopropylphenyl)- imidazolidin-2-yliden, 1 ,3-Bis(2,4-di-Ci-C5-alkylphenyl)-imidazolidin-2-yliden, 1 ,3- bis(2,6-diisopropylphenyl)-4,5-imidazolin-2-yliden,1 ,3-bis(2,6- diisopropylphenyl)imidazolidin-2-yliden, 1 ,3-Bis(2,4,6-tri-C5-C8-cycloalkylphenyl)- imidazolidin-2-yliden, 1 ,3-Bis(Ci-C5-alkyl)-imidazolin-2-yliden, 1 ,3-Bis(aryl)-imidazolin- 2-yliden, 1 ,3-Bis(2,4,6-trimethylphenyl)-imidazolin-2-yliden, 1 ,3-Bis(2,4,6-tri-Ci-C5- alkylphenyl)-imidazolin-2-yliden, 1 ,3-Bis(2,4,-diisopropylphenyl)-imidazolin-2-yliden, 1 ,3-Bis(2,4-di-Ci-C5-alkylphenyl)-imidazolin-2-yliden, 1 ,3-Bis(2,4,6-tri-C5-C8- cycloalkylphenyl)-imidazolin-2-yliden, 3-Brompyridin, 3-Chlorpyridin, 3-Fluorpyridin, 2- Dimethylaminopyridin, 3-Ci-C5-Alkylpyridin, Di-Ci-C2o-alkylether, D1-C3-C20- cycloalkylether, 2-lsopropoxyphenylmethylen, 2-lsopropoxypyridin, Triarylphosphin, Tri-Cs-Ce-cycloalkylphosphin, Tri-d-Cs-alkylphosphin oder Diaryl-Ci-Cs- alkylphosphin, und L 1 , L 2 L 3 : independently of one another for 1, 3-bis (C 1 -C 5 -alkyl) imidazolidin-2-ylidene, 1, 3-bis (aryl) imidazolidin-2-ylidene, 1, 3-bis (2,4,6-trimethylphenyl) -imidazolidin-2-ylidene, 1,3-bis (2,4,6-tri-C 1 -C 5 -alkylphenyl) -imidazolidin-2-ylidene, 1, 3-bis (2 , 4-diisopropylphenyl) imidazolidin-2-ylidene, 1,3-bis (2,4-di-C 1 -C 5 -alkylphenyl) -imidazolidin-2-ylidene, 1,3-bis (2,6-diisopropylphenyl) -4,5-imidazolin-2-ylidene, 1,3-bis (2,6-diisopropylphenyl) imidazolidin-2-ylidene, 1,3-bis (2,4,6-tri-C5-C8-cycloalkylphenyl) - imidazolidin-2-ylidene, 1,3-bis (C 1 -C 5 -alkyl) -imidazolin-2-ylidene, 1, 3-bis (aryl) -imidazolin-2-ylidene, 1, 3-bis (2,4, 6-trimethylphenyl) -imidazolin-2-ylidene, 1,3-bis (2,4,6-tri-C 1 -C 5 -alkylphenyl) imidazolin-2-ylidene, 1, 3-bis (2,4, -methyl) diisopropylphenyl) -imidazolin-2-ylidene, 1,3-bis (2,4-di-C 1 -C 5 -alkylphenyl) -imidazolin-2-ylidene, 1, 3-bis (2,4,6-tri-C 5 -C 8 - cycloalkylphenyl) imidazoline-2-ylidene, 3-bromopyridine, 3-chloropyridine, 3-fluoropyridine, 2-dimethylaminopyridine, 3-Ci-C5 alky 1-pyridine, di-C 1 -C 20 -alkyl ethers, C 1 -C 3 -C 20 -cycloalkyl ethers, 2-isopropoxyphenylmethylene, 2-isopropoxypyridine, triarylphosphine, tris-C 1 -C 6 -cycloalkylphosphine, tri-d-C 5 -alkylphosphine or diaryl-C 1 -C 5 -synyl alkylphosphine, and
R1, R2: unabhängig voneinander für Wasserstoff, Ci-C2o-Alkyl, C2-C2o-Alkenyl, C4-C8-R 1 , R 2 independently of one another represent hydrogen, C 1 -C 20 -alkyl, C 2 -C 20 -alkenyl, C 4 -C 8 -alkyl,
Cycloalkenyl C2-C2o-Alkinyl, Aryl, Indenyl, 2-lsopropoxyphenyl, 2-lsopropoxy-5-(2,2,2- trifluoroacetamido)phenyl, Ci-C2o-Alkoxyphenyl, C 1 -C20- AI koxyamino, Ci-C2o-Alkoxy, Ci-C2o-Alkoxycarbonyl, C2-C2o-Alkenyloxy, C2-C2o-Alkinyloxy, Aryloxy, C1-C20- Alkylthio, Arylthio, Ci-C2o-Alkylsulfonyl, Ci-C2o-Alkylsulfinyl oder gemeinsam für einen Rest [=CR3R4] stehen, wobei R3 und R4 unabhängig voneinander für Wasserstoff , Ci-C2o-Alkyl, C2-C2o-Alkenyl, C2-C2o-Alkinyl, Aryl, Indenyl, Isopropoxyphenyl, C1-C20- Alkoxyphenyl, C1-C20-AI koxyamino, Ci-C2o-Alkoxy, Ci-C2o-Alkoxycarbonyl, C2-C20- Alkenyloxy, C2-C2o-Alkinyloxy, Aryloxy, Ci-C2o-Alkylthio, Arylthio, Ci-C2o-Alkylsulfonyl, Ci-C2o-Alkylsulfinyl stehen, Cycloalkenyl C 2 -C 20 -alkynyl, aryl, indenyl, 2-isopropoxyphenyl, 2-isopropoxy-5- (2,2,2-trifluoroacetamido) -phenyl, C 1 -C 20 -alkoxyphenyl, C 1 -C 20 -alkoxyamino, C 1 -C 20 -alkyl Alkoxy, C 1 -C 20 -alkoxycarbonyl, C 2 -C 20 -alkenyloxy, C 2 -C 20 -alkynyloxy, aryloxy, C 1 -C 20 -alkylthio, arylthio, C 1 -C 20 -alkylsulfonyl, C 1 -C 20 -alkylsulfinyl or together for a radical [= CR 3 R 4 ], where R 3 and R 4 independently of one another are hydrogen, C 1 -C 20 -alkyl, C 2 -C 20 -alkenyl, C 2 -C 20 -alkynyl, aryl, indenyl, isopropoxyphenyl, C 1 -C 20 -alkoxyphenyl, C 1 -C 20- Al koxyamino, C 1 -C 20 -alkoxy, C 1 -C 20 -alkoxycarbonyl, C 2 -C 20 -alkenyloxy, C 2 -C 20 -alkynyloxy, aryloxy, C 1 -C 20 -alkylthio, arylthio, C 1 -C 20 -alkylsulfonyl, C 1 -C 20 -alkylsulfinyl,
wobei generell die Alkylreste der Gruppen L1, L2, L3,R1, R2, R3 und R4 gegebenenfalls mit 1 , 2 oder 3 Gruppen ausgewählt aus Ci-Cs-Alkyl, Aryl, Halogen, Hydroxy, Mercapto, Ci- Cs-Alkoxy und Ci-Cs-Alkoxycarbonyl, Aminooxy, Hydrazino, Carboxy, Carboxyamido, Acetamido, Amino, Nitro, Cyan, Sulfamoyl-, Amidino, Hydroxycarbamoyl, Carbamoyl, Phosphonamino, Hydroxyphosphinoyl, Phosphono, Sulfino, Sulfo, Dithiocarboxy, Thi- ocarboxy, Furyl, Pyridinyl, Piperidinyl, Furfuryl, Pyrazolyl, Isothiazolyl, Pyrazinyl, Py- rimidinyl, Pyridazinyl, Isoindolyl sowie Indolyl und die Arylreste der Gruppen L1, L2, L3,R1, R2, R3 und R4 gegebenenfalls mit 1 , 2 oder 3 Gruppen ausgewählt aus C1-C5- Alkyl, Aryl, Halogen, Hydroxy, Mercapto, Ci-Cs-Alkoxy und Ci-Cs-Alkoxycarbonyl, Hydrazino, Carboxy, Carboxyamido, Acetamido, Amino, Nitro, Cyan, Sulfamoyl, Amidino, Hydroxycarbamoyl, Carbamoyl, Phosphonamino, Hydroxyphosphinoyl, Phosphono, Sulfino, Sulfo, Dithiocarboxy, Thiocarboxy, Furyl, Pyridinyl, Piperidinyl, Furfuryl, Pyrazolyl, Isothiazolyl, Pyrazinyl, Pyrimidinyl, Pyridazinyl, Isoindolyl sowie Indolyl substituiert sein können, mit der Maßgabe, dass wenigstens eine der Gruppen L1, L2, L3, R1, R2, R3 und R4, mit wenigstens einer im wässrigen Reaktionsmedium unter Polymerisationsbedingungen ionisch dissoziierbaren Gruppe ausgewählt aus der Gruppe umfassend Carboxylat (-CO2Z), Sulfonat (-SO3Z), Ammonium (-NABCD), Phosphat (-PO3Z), Phosphonium (-PABCD), Imidazolylium (- ImidazolylAD), Pyridylium (-PyridylAD), Piperidylium(-PiperidylABD), Pyrylium (-PyryliumD), Pyrazolylium (-PyrazolylAD), Isothiazolylium (-IsothiazolylAD), Pyrazinylium (-PyrazinylAD), Pyrimidinylium (-PyrimidinylAD) oder Pyridazinylium (-PyrazinylAD) substituiert ist, in which in general, the alkyl radicals of the groups L 1 , L 2 , L 3 , R 1 , R 2 , R 3 and R 4 optionally with 1, 2 or 3 groups selected from Ci-Cs-alkyl, aryl, halogen, hydroxy, mercapto, Ci Cs-alkoxy and C 1 -C 8 -alkoxycarbonyl, aminooxy, hydrazino, carboxy, carboxyamido, acetamido, amino, nitro, cyano, sulfamoyl, amidino, hydroxycarbamoyl, carbamoyl, phosphonamino, hydroxyphosphinoyl, phosphono, sulfino, sulfo, dithiocarboxy, thi ocarboxy, furyl, pyridinyl, piperidinyl, furfuryl, pyrazolyl, isothiazolyl, pyrazinyl, pyrimidinium, pyridazinyl, isoindolyl and indolyl and the aryl radicals of the groups L 1 , L 2 , L 3 , R 1 , R 2 , R 3 and R 4 optionally with 1, 2 or 3 groups selected from C 1 -C 5 -alkyl, aryl, halogen, hydroxyl, mercapto, C 1 -C 8 -alkoxy and C 1 -C 8 -alkoxycarbonyl, hydrazino, carboxy, carboxyamido, acetamido, amino, nitro, cyano, Sulfamoyl, amidino, hydroxycarbamoyl, carbamoyl, phosphonamino, hydroxyphosphinoyl, phosphono, sulfino, sulfo, dithiocarboxy, thiocarboxy, furyl, pyridinyl l, piperidinyl, furfuryl, pyrazolyl, isothiazolyl, pyrazinyl, pyrimidinyl, pyridazinyl, isoindolyl and indolyl, with the proviso that at least one of L 1 , L 2 , L 3 , R 1 , R 2 , R 3 and R 4 , with at least one in the aqueous reaction medium under polymerization ionically dissociable group selected from the group comprising carboxylate (-CO2Z), sulfonate (-SO3Z), ammonium (-NABCD), phosphate (-PO3Z), phosphonium (-PABCD), imidazolylium (- imidazolylAD), pyridylium (-PyridylAD), piperidylium (- piperidylABD), pyrylium (- pyrylium), pyrazolylium (- pyrazolylAD), isothiazolylium (- isothiazolylAD), pyrazinylium (- pyrazinylAD), pyrimidinylium (- pyrimidinylAD) or pyridazinylium (- Pyrazinyl AD) is substituted,
wobei Z: für Proton, Alkalimetallkation oder Ammonium, where Z: represents proton, alkali metal cation or ammonium,
A, B, C: unabhängig voneinander für Wasserstoff, Ci-Cs-Alkyl, Aryl, und  A, B, C independently of one another represent hydrogen, C 1 -C 8 -alkyl, aryl, and
D: für ein Anion steht, oder bei wenigstens einer der Cs-Ce-Cycloalkylgruppen der Tri-Cs-Ce-cycloalkylphosphine L1, L2 und/oder L3 eine Methylengruppe durch eine sekundäre Ammoniumgruppe (>NABD) ersetzt ist und dabei A, B und D die voran angegebenen Bedeutungen haben, welches dadurch gekennzeichnet ist, dass a) in einem Gefäß D: is an anion, or in at least one of the Cs-Ce-cycloalkyl groups of tri-Cs-Ce-cycloalkylphosphine L 1 , L 2 and / or L 3 a methylene group is replaced by a secondary ammonium group (> NABD) and thereby A , B and D have the meanings given above, which is characterized in that a) in a vessel
a1 ) wenigstens eine Teilmenge des Wassers, a1) at least a subset of the water,
a2) wenigstens eine Teilmenge des wenigstens einen Dispergiermittels DP, a2) at least a subset of the at least one dispersant DP,
a3) wenigstens eine Teilmenge des wenigstens einen ethylenisch ungesättigten Monomeren MON, sowie a3) at least a portion of the at least one ethylenically unsaturated monomer MON, and
a4) gegebenenfalls wenigstens eine Teilmenge des organischen Lösungsmittels OL a5) in Form einer wässrigen Monomerenmakroemulsion mit einem mittleren Tröpfchendurchmesser > 2 μιτι vorgelegt werden, danach a4) optionally at least a partial amount of the organic solvent OL a5) in the form of an aqueous monomer macroemulsion having an average droplet diameter> 2 μm, thereafter
b) unter Energieeintrag die Monomerenmakroemulsion in eine Monomerenminiemulsion mit einem mittleren Tröpfchendurchmesser < 1500 nm überführt wird, und danach b) with energy input, the monomer macroemulsion is converted into a monomer miniemulsion having an average droplet diameter <1500 nm, and thereafter
c) der erhaltenen Monomerenminiemulsion bei Polymerisationstemperatur c) the resulting monomer miniemulsion at the polymerization temperature
c1 ) die gegebenenfalls verbliebene Restmenge des Wassers, c1) any remaining amount of water,
c2) die gegebenenfalls verbliebene Restmenge des wenigstens einen Dispergiermittels DP, c3) die gegebenenfalls verbliebene Restmenge des wenigstens einen Monomeren MON, c4) die gegebenenfalls verbliebene Restmenge des organischen Lösungsmittels OL, und c5) die Gesamtmenge des Metallcarbenkomplexes K c2) any residual amount of the at least one dispersing agent DP, c3) remaining residual amount of the at least one monomer MON, c4) any remaining amount of the organic solvent OL, and c5) the total amount of the metal carbene complex K.
zugegeben werden und das wenigstens eine Monomere MON bis zu einem Monomere- numsatz > 80 Gew.-% polymerisiert wird.  are added and the at least one monomer MON polymerized to a monomer number> 80 wt .-%.
Gegenstand der Erfindung sind ebenfalls wässrige Polymerisatdispersionen, welche nach dem erfindungsgemäßen Verfahren erhalten werden, die aus den wässrigen Polymerisatdispersionen zugänglichen Polymerisatpulver sowie die Verwendung der wässrigen Polymerisatdispersionen oder der daraus zugänglichen Polymerisatpulver. The invention likewise provides aqueous polymer dispersions which are obtained by the process according to the invention, the polymer powders obtainable from the aqueous polymer dispersions and the use of the aqueous polymer dispersions or the polymer powders obtainable therefrom.
Unter einer Metathesereaktion wird ganz allgemein eine chemische Reaktion zwischen zwei Verbindungen verstanden, bei der eine Gruppe zwischen beiden Reaktionspartnern ausgetauscht wird. Handelt es sich dabei um eine organische Metathesereaktion, werden formal die Substituenten an einer Doppelbindung ausgetauscht (siehe J.C. Mol, Industrial applications of olefin metathesis, Journal of Molecular Catalysis A: Chemical 213 (2004) Seiten 39 bis 45). Von besonderer Bedeutung ist jedoch die metallkomplexkatalysierte ringöffnende Metathesereaktion von organischen Cycloolefinverbindungen („ring opening metathesis polymerization" kurz ROMP), durch die polymere Polyolefine zugänglich werden. Als katalytische Metallkomplexe werden insbesondere Metallcarbenkomplexe der allgemeinen Struktur Met=CR2 eingesetzt. Die ringöffnende Polymerisation verläuft dann nach dem allgemeinen Reaktionsschema: =CR2 + HC = CH > Met =CH CH=CR2 Under a metathesis reaction is generally understood a chemical reaction between two compounds in which a group is exchanged between the two reactants. If this is an organic metathesis reaction, the substituents on a double bond are formally exchanged (see JC Mol, Industrial applications of olefin metathesis, Journal of Molecular Catalysis A: Chemical 213 (2004) pages 39 to 45). Of particular importance, however, is the metal-complex-catalyzed ring-opening metathesis reaction of organic cycloolefin compounds ("ring opening metathesis polymerization" or ROMP), which makes polymeric polyolefins accessible.The catalytic metal complexes used are, in particular, metal carbene complexes of the general structure Met = CR 2 the general reaction scheme: = CR 2 + HC = CH> Met = CH CH = CR 2
Figure imgf000004_0001
Figure imgf000004_0001
Aufgrund der hohen Hydrolyseempfindlichkeit der Metallcarbenkomplexe werden die Metathesereaktionen häufig in wasserfreien organischen Lösungsmitteln oder den Olefinen selbst durchgeführt (siehe beispielsweise US-A 2008234451 , EP-A 0824125, C.W. Bielawski, R.H. Grubbs in Prog. Polym. Sei. 32 (2007), Seiten 1 bis 29, N. L. Wagner, F. J. Timmers, D. J. Arrio la, G. Jueptner, B. G. Landes in Macromol. Rapid Commun. 2008, 29, Seite 1438). Nachteilig an diesen Verfahren ist, dass die erhaltenen Polymere entweder große Mengen an Lösungsmittel oder an nichtumgesetzten Olefin enthalten, welche in aufwendigen Trennungsschritten abgetrennt werden müssen. Because of the high sensitivity to hydrolysis of the metal carbene complexes, the metathesis reactions are often carried out in anhydrous organic solvents or the olefins themselves (see, for example, US-A-2008234451, EP-A 0824125, CW Bielawski, RH Grubbs in Prog. Polym., 32: 2007) 1 to 29, NL Wagner, FJ Timmers, DJ Arrio la, G. Jueptner, BG Landes in Macromol. Rapid Commun. 2008, 29, page 1438). A disadvantage of this process is that the polymers obtained either contain large amounts of solvent or unreacted olefin, which must be separated in complex separation steps.
Bei der Durchführung von Metathesereaktionen von Olefinen in wässrigem Medium ist von folgendem Stand der Technik auszugehen. When carrying out metathesis reactions of olefins in an aqueous medium, the following state of the art can be assumed.
So offenbart die DE-A 19859191 eine ringöffnende Metathesereaktion in wässrigem Medium unter Verwendung gering in Wasser löslicher Metallcarbenkomplexe. Dabei erfolgt die ringöffnende Metathesereaktion dergestalt, dass Wasser, Dispergiermittel in einem Polymerisationsgefäß vorgelegt, Metallcarbenkomplex im Cycloolefin gelöst, die Cycloole- fin/Metallkomplexlösung in die wässrige Dispergiermittellösung eingebracht, die dabei gebildete Cycloolefin/Metallkomplex-Makroemulsion in eine Cycloolefin/Metallkomplex-Miniemulsion über- führt und diese bei Raumtemperatur zu einer wässrigen Polyolefin-Dispersion umgesetzt wurde. Bedingt durch die schnelle Reaktion des Katalysators mit dem eingesetzten Cycloolefin sind allerdings nur geringe Polymerisationsumsätze und oftmals hohe Koagulatwerte zu erreichen. Thus, DE-A 19859191 discloses a ring-opening metathesis reaction in an aqueous medium using low water-soluble metal carbene complexes. The ring-opening metathesis reaction takes place in such a way that water, dispersant are introduced into a polymerization vessel, metal carbene complex is dissolved in the cycloolefin, the cycloolefin / metal complex solution is introduced into the aqueous dispersant solution and the cycloolefin / metal complex macroemulsion formed is converted into a cycloolefin / metal complex miniemulsion. leads and this was reacted at room temperature to an aqueous polyolefin dispersion. Due to the rapid reaction of the catalyst with the cycloolefin used, however, only low polymerization conversions and often high coagulum values can be achieved.
Claverie et al. offenbaren in Macromolecules 2001 , 34, Seiten 382 bis 388 ringöffnende Meta- thesereaktionen sowohl unter Verwendung wasserlöslicher, ionische Gruppen aufweisender Metallcarbenkomplexe, als auch unter Verwendung wasserunlöslicher, hydrophob aufgebauter Metallcarbenkomplexe. Dabei gelingt die Emulsionspolymerisation (Druchmesser der Monome- rentröpfchen > 2 μιτι) mittels der wasserlöslichen Metallcarbenkomplexe nur gut beim stark gespannten Norbornen, während das weniger gespannte Cyclooctadien-1 ,5 oder Cycloocten mit den wasserlöslichen Metallcarbencomplexen lediglich mäßige Polymerausbeuten lieferten. Zur erfolgreichen ringöffnenden Metathesereaktion von Cyclooctadien-1 ,5 oder Cycloocten setzten Claverie et al. wasserunlösliche, hydrophob aufgebaute Metallcarbenkomplexe ein, welche zuerst in gering in Wasser löslichen organischen Lösungsmitteln gelöst, diese Lösung anschließend in einer wässrigen Dispergiermittellösung in eine Metallcarbenkomplex/organisches Lö- sungsmittel-Miniemulsion (Durchmesser Tröpfchengröße < 1000 nm) überführt und danach dieser Metallkomplex/Lösungsmittel-Miniemulsion das entsprechende Cycloolefin bei Polymerisationstemperatur zudosiert wurde. Claverie et al. in Macromolecules 2001, 34, pages 382 to 388 disclose ring-opening metathesis reactions using both water-soluble, ionic-group metal carbene complexes and using water-insoluble, hydrophobically-built metal carbene complexes. The emulsion polymerization (diameter of the monomer droplets> 2 μm) by means of the water-soluble metal-carbene complexes only works well in the case of highly strained norbornene, while the less strained cyclooctadiene-1, 5 or cyclooctene with the water-soluble metal carbene complexes gave only moderate polymer yields. For the successful ring-opening metathesis reaction of cyclooctadiene-1, 5 or cyclooctene, Claverie et al. water-insoluble, hydrophobically structured metal carbene complexes, which are first dissolved in low-water-soluble organic solvents, then converted into an aqueous dispersant solution in a metal carbene complex / organic solvent miniemulsion (diameter droplet size <1000 nm) and then this metal complex / solvent Miniemulsion the corresponding cycloolefin was added at polymerization temperature.
Ringöffnende Metathesereaktionen vom gespannten Norbornen in wässriger Miniemulsion un- ter Verwendung von hydrophilen nichtionischen Polyethylenoxid-funktionalisierten Metallcar- benkomplexen werden von Y. Gnanou et al. in Journal of Polymer Science: Part A: Polymer Chemistry, 2006 (44), Seiten 2784 bis 2793, offenbart. Dabei erfolgt die ringöffnende Metathesereaktion dergestalt, dass Norbornen, gelöst in einem Hexadecan/Dichlormethan- Lösungsmittelgemisch, in eine wässrige Dispergiermittellösung eingebracht, die erhaltene wässrige Norbornen/Lösungsmittel-Makroemulsion mittels Ultraschalleinwirkung in eine Norbor- nen/Lösungsmittel-Miniemulsion überführt und in die Norbornen/Lösungsmittel-Miniemulsion bei Polymerisationstemperatur die jeweiligen hydrophilen nichtionischen Polyethylenoxid- funktionalisierten Metallcarbenkomplexe eindosiert wurden. Ring-opening metathesis reactions of strained norbornene in aqueous miniemulsion using hydrophilic nonionic polyethylene oxide-functionalized metal-carbene complexes are described by Y. Gnanou et al. in Journal of Polymer Science: Part A: Polymer Chemistry, 2006 (44), pages 2784 to 2793. The ring-opening metathesis reaction takes place in such a way that norbornene, dissolved in a hexadecane / dichloromethane solvent mixture, is introduced into an aqueous dispersant solution, the resulting aqueous norbornene / solvent macroemulsion is converted by ultrasound into a norbornene / solvent miniemulsion and into the norbornene / Solvent miniemulsion at Polymerization temperature, the respective hydrophilic nonionic polyethylene oxide functionalized metal carbene complexes were metered.
In der EP-A 993465 findet sich der Hinweis, dass ROMP-Reaktionen mit den offenbarten spezi- fischen pentagonalen oder hexagonalen Metallcarbenkomplexen prinzipiell mit oder ohne Lösungsmittel durchgeführt werden können. Werden Lösungsmittel eingesetzt, so können diese Lösungsmittel polarer protischer Natur sein und beispielsweise Wasser mit umfassen. Bevorzugt erfolgen diese ROMP-Reaktionen jedoch ohne Lösungsmittel, wobei die spezifischen Metallcarbenkomplexe in einem Überschuss an cyclischen Olefin gelöst werden. EP-A 993465 indicates that ROMP reactions with the disclosed specific pentagonal or hexagonal metal carbene complexes can in principle be carried out with or without a solvent. If solvents are used, these solvents can be polar protic nature and include, for example, water. However, these ROMP reactions are preferably carried out without solvent, the specific metal carbene complexes being dissolved in an excess of cyclic olefin.
Gemäß der US-B 6,759,537 werden spezifische hexagonale Metallcarbenkomplexe und deren Verwendung in Metathesereaktionen, wie beispielsweise ROMP, ringschließende Metathesereaktionen oder sogenannte gekreuzte Metathesereaktionen offenbart. Diese verschiedenen Metathesereaktionen sollen prinzipiell mit oder ohne Lösungsmittel durchgeführt werden können. Als Lösungsmittel sollen alle unter Reaktionsbedingungen inerten protischen und aprotischen organischen Lösungsmittel sowie wässrige Systeme geeignet sein. Für die offenbarten Metallcarbenkomplexe werden jedoch aprotische Lösungsmittel, wie Toluol oder eine Mischung aus Benzol und Dichlormethan, als besonders bevorzugt empfohlen. Aufgabe der vorliegenden Erfindung war es, ein weiteres Metatheseverfahren zur Herstellung wässriger Polymerisatdispersionen unter Verwendung von Metallcarbenkomplexen zur Verfügung zu stellen. US Pat. No. 6,759,537 discloses specific hexagonal metal carbene complexes and their use in metathesis reactions such as ROMP, ring-closing metathesis reactions or so-called crossed metathesis reactions. These different metathesis reactions should in principle be carried out with or without solvent. All solvents which are inert under reaction conditions are protic and aprotic organic solvents and aqueous systems. However, for the disclosed metal carbene complexes, aprotic solvents such as toluene or a mixture of benzene and dichloromethane are particularly preferred. The object of the present invention was to provide a further metathesis process for the preparation of aqueous polymer dispersions using metal-carbene complexes.
Demgemäß wurde das eingangs definierte Verfahren gefunden. Accordingly, the method defined above was found.
Verfahrensessentiell ist der Metalcarbenkomplex K der allgemeinen Formel (I) Process essential is the metal carbene complex K of the general formula (I)
ΜΧ1Χ2|_1 |_2 L3[=CR1R2] (I). Dabei steht M für Os, Mo, W oder Ru in den Wertigkeitsstufen +II, +III, +IV oder +VI, wobei jedoch die Wertigkeitsstufen +II, +III oder +IV bevorzugt sind. Insbesondere bevorzugt steht M für Ru in der Wertigkeitsstufe +II. ΜΧ 1 Χ 2 | _1 | _2 L 3 [ = CR 1 R 2 ] (I). M stands for Os, Mo, W or Ru in the valence states + II, + III, + IV or + VI, but the valence states + II, + III or + IV are preferred. Most preferably, M is Ru in valence state + II.
X1 und X2 stehen unabhängig voneinander für ein Halogenid, Pseudohalogenid, Alkoxid, Acetat, Sulfat oder Phosphat. Geeignete Pseudohalogenide sind beispielsweise Cyanate, Thiocyanate (Rhodanide), Selenocyanate, Tellurocyanate, Azide, Isocyanate, Cyanide. Geeignete Alkoxide sind beispielsweise Methoxid, Ethoxid, n-Propoxid, Isopropoxid, n-Butoxid oder tert-Butoxid. Vorzugsweise stehen X1 und X2 unabhängig voneinander für ein Halogenid, wie beispielsweise Fluorid, Chlorid, Bromid oder Jodid, wobei jedoch Chlorid insbesondere bevorzugt ist. X 1 and X 2 independently represent a halide, pseudohalide, alkoxide, acetate, sulfate or phosphate. Suitable pseudohalides are, for example, cyanates, thiocyanates (rhodanides), selenocyanates, tellurocyanates, azides, isocyanates, cyanides. Suitable alkoxides are, for example, methoxide, ethoxide, n-propoxide, isopropoxide, n-butoxide or tert-butoxide. Preferably, X 1 and X 2 independently represent a halide, such as fluoride, chloride, bromide or iodide, but chloride is particularly preferred.
L1, L2 und L3 stehen unabhängig voneinander für 1 ,3-Bis(Ci-C5-alkyl)-imidazolidin-2-yliden, 1 ,3- Bis(aryl)-imidazolidin-2-yliden, 1 ,3-Bis(2,4,6-trimethylphenyl)-imidazolidin-2-yliden, 1 ,3- Bis(2,4,6-tri-Ci-C5-alkylphenyl)-imidazolidin-2-yliden, 1 ,3-bis(2,6-diisopropylphenyl)-4,5- imidazolin-2-yliden,1 ,3-bis(2,6-diisopropylphenyl)imidazo!idin-2-yliden, 1 ,3-Bis(2,4,- diisopropylphenyl)-imidazolidin-2-yliden, 1 ,3-Bis(2,4-di-Ci-C5-alkylphenyl)-imidazolidin-2-yliden, 1 ,3-Bis(2,4,6-tri-C5-C8-cycloalkylphenyl)-imidazolidin-2-yliden, 1 ,3-Bis(Ci-C5-alkyl)-imidazolin-2- yliden, 1 ,3-Bis(aryl)-imidazolin-2-yliden, 1 ,3-Bis(2,4,6-trimethylphenyl)-imidazolin-2-yliden, 1 ,3- Bis(2,4,6-tri-Ci-C5-alkylphenyl)-imidazolin-2-yliden, 1 ,3-Bis(2,4,-diisopropylphenyl)-imidazolin-2- yliden, 1 ,3-Bis(2,4-di-Ci-C5-alkylphenyl)-imidazolin-2-yliden, 1 ,3-Bis(2,4,6-tri-C5-C8- cycloalkylphenyl)-imidazolin-2-yliden, 3-Brompyridin, 3-Chlorpyridin, 3-Fluorpyridin, 4- Dimethylaminopyridin, 3-Ci-C5-Alkylpyridin, Di-Ci-C2o-alkylether, Di-C3-C2o-cycloalkylether, 2- Isopropoxyphenylmethylen, 2-lsopropoxypyridin, Triarylphosphin, Tri-Cs-Ce-cycloalkylphosphin, Tri-Ci-C5-alkylphosphin oder Diaryl-Ci-Cs-alkylphosphin, wobei (1 ,3-Bis(2,4,6-trimethylphenyl)- imidazolidin-2-yliden, 1 ,3-Bis(2,4,6-tri-Ci-C5-alkylphenyl)-imidazolidin-2-yliden, 4- Dimethylaminopyridin, Pyridin, Triisopropylphosphin und/oder Tricyclohexylphosphin bevorzugt sind. Insbesondere bevorzugt sind jedoch 1 ,3-Bis(2,4,6-trimethylphenyl)-imidazolidin-2-yliden, Tricyclohexylphosphin und/oder 4-Dimethylaminopyridin. L 1 , L 2 and L 3 are each independently 1,3-bis (C 1 -C 5 -alkyl) -imidazolidin-2-ylidene, 1, 3-bis (aryl) -imidazolidin-2-ylidene, 1, 3 Bis (2,4,6-trimethylphenyl) -imidazolidin-2-ylidene, 1, 3 Bis (2,4,6-tri-C 1 -C 5 -alkylphenyl) -imidazolidin-2-ylidene, 1, 3-bis (2,6-diisopropylphenyl) -4,5-imidazolin-2-ylidene, 1, 3 bis (2,6-diisopropylphenyl) imidazolidin-2-ylidene, 1,3-bis (2,4-diisopropylphenyl) -imidazolidin-2-ylidene, 1,3-bis (2,4-di-cis) C5-alkylphenyl) imidazolidin-2-ylidene, 1, 3, 5-bis C8-cycloalkylphenyl) imidazolidin-2-ylidene (2,4,6-tri-C, 1, 3-bis (Ci-C 5 - alkyl) -imidazolin-2-ylidene, 1,3-bis (aryl) imidazolin-2-ylidene, 1,3-bis (2,4,6-trimethylphenyl) -imidazolin-2-ylidene, 1,3-bis (2,4,6-tri-C 1 -C 5 -alkylphenyl) -imidazolin-2-ylidene, 1, 3-bis (2,4-diisopropylphenyl) -imidazolin-2-ylidene, 1, 3-bis (2, 4-di-Ci-C 5 -alkylphenyl) -imidazolin-2-ylidene, 1, 3-bis (2,4,6-tri-C 5 -C 8 - cycloalkylphenyl) -imidazolin-2-ylidene, 3-bromopyridine , 3-chloropyridine, 3-fluoropyridine, 4-dimethylaminopyridine, 3-C 1 -C 5 -alkylpyridine, di-C 1 -C 20 -alkyl ether, di-C 3 -C 20 -cycloalkyl ether, 2-isopropoxyphenylmethylene, 2-isopropoxypyridine, triarylphosphine, tri-Cs -Ce-cycloalkylphosphine, tri-Ci-C5-alkylphosphine or diar yl-Ci-Cs-alkylphosphine, wherein (1, 3-bis (2,4,6-trimethylphenyl) imidazolidin-2-ylidene, 1, 3-bis (2,4,6-tri-Ci-C5-alkylphenyl ) -imidazolidin-2-ylidene, 4-dimethylaminopyridine, pyridine, triisopropylphosphine and / or tricyclohexylphosphine are preferred. However, particularly preferred are 1, 3-bis (2,4,6-trimethylphenyl) -imidazolidin-2-ylidene, tricyclohexylphosphine and / or 4-dimethylaminopyridine.
R1 und R2 stehen unabhängig voneinander für Wasserstoff, Ci-C2o-Alkyl, C2-C2o-Alkenyl, C4-C8- Cycloalkenyl, C2-C2o-Alkinyl, Aryl, Indenyl, 2-lsopropoxyphenyl, 2-isopropoxy-5-(2,2,2- trifluoroacetamido)phenyl, Ci-C2o-Alkoxyphenyl, C 1 -C20- AI koxyamino, Ci-C2o-Alkoxy, C1-C20- Alkoxycarbonyl, C2-C2o-Alkenyloxy, C2-C2o-Alkinyloxy, Aryloxy, Ci-C2o-Alkylthio, Arylthio, C1-C20- Alkylsulfonyl, Ci-C2o-Alkylsulfinyl oder gemeinsam für einen Rest [=CR3R4] stehen, wobei R3 und R4 unabhängig voneinander für Wasserstoff , Ci-C2o-Alkyl, C2-C2o-Alkenyl, C2-C2o-Alkinyl, Aryl, Indenyl, Isopropoxyphenyl, Ci-C2o-Alkoxyphenyl, Ci-C2o-Alkoxyamino, Ci-C2o-Alkoxy, Ci- C2o-Alkoxycarbonyl, C2-C2o-Alkenyloxy, C2-C2o-Alkinyloxy, Aryloxy, Ci-C2o-Alkylthio, Arylthio, Ci- C2o-Alkylsulfonyl, Ci-C2o-Alkylsulfinyl stehen. Bevorzugt stehen R1 und R2 für Aryl, Wasserstoff, Arylthio, Indenyl, 2-lsopropoxyphenyl oder C2-C2o-Alkenyl, wobei Aryl, insbesondere Phenyl, Arylthio, insbesondere Thiophenyl, 2-lsopropoxyphenyl und Wasserstoff insbesondere bevorzugt sind. Dabei können generell die Alkylreste der Gruppen L1, L2, L3, R1, R2, R3 und R4 gegebenenfalls mit 1 , 2 oder 3 Gruppen ausgewählt aus Ci-Cs-Alkyl, Aryl, Halogen, Hydroxy, Mercapto, C1-C5- Alkoxy und Ci-Cs-Alkoxycarbonyl, Aminooxy, Hydrazino, 4-Sulfamoylanilino, Sulfanilamido, Car- boxy, Carboxyamido, Acetamido, Amino, Nitro, Cyan, Sulfamoyl-, Amidino, Hydroxycarbamoyl, Carbamoyl, Phosphonamino, Hydroxyphosphinoyl, Phosphono, Sulfino, Sulfo, Dithiocarboxy, Thiocarboxy, Furyl, Pyridinyl, Piperidinyl, Furfuryl, Pyrazolyl, Isothiazolyl, Pyrazinyl, Pyrimidinyl, Pyridazinyl, Isoindolyl sowie Indolyl und die Arylreste der Gruppen L1, L2, L3, R1, R2, R3 und R4 gegebenenfalls mit 1 , 2 oder 3 Gruppen ausgewählt aus Ci-Cs-Alkyl, Aryl, Halogen, Hydroxy, Mercapto, Ci-Cs-Alkoxy und Ci-Cs-Alkoxycarbonyl, Aminooxy, Hydrazino, 4-Sulfamoylanilino, Sulfanilamido, Carboxy, Carboxyamido, Acetamido, Amino, Nitro, Cyan, Sulfamoyl, Amidino, Hydroxycarbamoyl, Carbamoyl, Phosphonamino, Hydroxyphosphinoyl, Phosphono, Sulfino, Sulfo, Dithiocarboxy, Thiocarboxy, Furyl, Pyridinyl, Piperidinyl, Furfuryl, Pyrazolyl, Isothiazolyl, Pyrazinyl, Pyrimidinyl, Pyridazinyl, Isoindolyl sowie Indolyl substituiert sein. Erfindungswesentlich ist jedoch, dass wenigstens eine der Gruppen L1, L2, L3, R1, R2, R3 und R4, mit wenigstens einer im wässrigen Reaktionsmedium unter Polymerisationsbedingungen ionisch dissoziierbaren Gruppe ausgewählt aus der Gruppe umfassend Carboxylat (-CO2Z), Sulfonat (-SO3Z), Ammonium (-NABCD), Phosphat (-PO3Z), Phosphonium (-PABCD), Imidazo- lylium (-ImidazolylAD), Pyridylium (-PyridylAD), Piperidylium(-PiperidylABD), Pyrylium (- PyryliumD), Pyrazolylium (-PyrazolylAD), Isothiazolylium (-IsothiazolylAD), Pyrazinylium (- PyrazinylAD), Pyrimidinylium (-PyrimidinylAD) oder Pyridazinylium (-PyrazinylAD) substituiert ist, wobei R 1 and R 2 independently of one another represent hydrogen, C 1 -C 20 -alkyl, C 2 -C 20 -alkenyl, C 4 -C 8 -cycloalkenyl, C 2 -C 20 -alkynyl, aryl, indenyl, 2-isopropoxyphenyl, 2-isopropoxy-5- ( 2,2,2-trifluoroacetamido) phenyl, C 1 -C 20 -alkoxyphenyl, C 1 -C 20 -alkoxyamino, C 1 -C 20 -alkoxy, C 1 -C 20 -alkoxycarbonyl, C 2 -C 20 -alkenyloxy, C 2 -C 20 -alkynyloxy, aryloxy, C 1 -C 20 -alkylthio, arylthio, C 1 -C 20 -alkylsulfonyl, C 1 -C 20 -alkylsulfinyl or together represent a radical [= CR 3 R 4 ], where R 3 and R 4 independently of one another represent hydrogen, C 1 -C 20 -alkyl, C 2 -C 20 -alkenyl, C 2 -C 20 -alkynyl, aryl, indenyl, isopropoxyphenyl, C 1 -C 20 -alkoxyphenyl, C 1 -C 20 -alkoxyamino, C 1 -C 20 -alkoxy, C 1 -C 20 -alkoxycarbonyl, C 2 -C 20 -alkenyloxy, C 2- C 2 o -alkynyloxy, aryloxy, C 1 -C 20 -alkylthio, arylthio, C 1 -C 20 -alkylsulfonyl, C 1 -C 20 -alkylsulfinyl. Preferably, R 1 and R 2 are aryl, hydrogen, arylthio, indenyl, 2-isopropoxyphenyl or C 2 -C 20 -alkenyl, with aryl, in particular phenyl, arylthio, in particular thiophenyl, 2-isopropoxyphenyl and hydrogen being particularly preferred. In this case, in general, the alkyl radicals of the groups L 1 , L 2 , L 3 , R 1 , R 2 , R 3 and R 4 optionally with 1, 2 or 3 groups selected from Ci-Cs-alkyl, aryl, halogen, hydroxy, mercapto , C 1 -C 5 -alkoxy and C 1 -C -alkoxycarbonyl, aminooxy, hydrazino, 4-sulfamoylanilino, sulfanilamido, carboxy, carboxyamido, acetamido, amino, nitro, cyano, sulfamoyl, amidino, hydroxycarbamoyl, carbamoyl, phosphonamino, hydroxyphosphinoyl, Phosphono, sulfino, sulfo, dithiocarboxy, thiocarboxy, furyl, pyridinyl, piperidinyl, furfuryl, pyrazolyl, isothiazolyl, pyrazinyl, pyrimidinyl, pyridazinyl, isoindolyl and indolyl and the aryl radicals of the groups L 1 , L 2 , L 3 , R 1 , R 2 , R 3 and R 4 optionally with 1, 2 or 3 groups selected from C 1 -C 8 -alkyl, aryl, halogen, hydroxyl, mercapto, C 1 -C 8 -alkoxy and C 1 -C 8 -alkoxycarbonyl, aminooxy, hydrazino, 4-sulfamoylanilino, Sulfanilamido, carboxy, carboxyamido, acetamido, amino, nitro, cyano, sulfamoyl, amidino, hydroxycarbamoyl, carbamoyl, phosphonamine o, hydroxyphosphinoyl, phosphono, sulfino, sulfo, dithiocarboxy, thiocarboxy, furyl, pyridinyl, piperidinyl, furfuryl, pyrazolyl, isothiazolyl, pyrazinyl, pyrimidinyl, pyridazinyl, isoindolyl and indolyl. However, essential to the invention that at least one of the groups L 1, L 2, L 3, R 1, R 2, R 3 and R 4, having at least one in the aqueous reaction medium under polymerization ionically dissociable group selected from the group comprising carboxylate (-CO2Z ), Sulfonate (-SO 3 Z), ammonium (-NABCD), phosphate (-PO 3 Z), phosphonium (-PABCD), imidazolylium (-imidazolylAD), pyridylium (-PyridylAD), piperidylium (piperidylABD), Pyrylium (pyrylium D), pyrazolylium (pyrazolylAD), isothiazolylium (isothiazolyl AD), pyrazinylium (pyrazinyl AD), pyrimidinylium (pyrimidinyl AD) or pyridazinylium (pyrazinyl AD), where
Z: für ein Proton, Alkalimetallkation wie insbesondere Natrium- oder Kaliumkation, oder Z: for a proton, alkali metal cation such as in particular sodium or potassium cation, or
Ammonium,  Ammonium,
A, B, C: unabhängig voneinander für Wasserstoff, Ci-Cs-Alkyl, Aryl, und A, B, C independently of one another represent hydrogen, C 1 -C 8 -alkyl, aryl, and
D: für ein Anion, wie beispielsweise ein Halogenid, insbesondere Chlorid oder Fluorid,  D: an anion, such as a halide, in particular chloride or fluoride,
Hexachlorophosphat (PCIÖ ), Hexafluorophosphat (PFÖ ), Hexafluoroarsenat (ASFÖ ) oder Tetrachloroaluminat (AICk), wobei Chlorid oder Hexafluorophosphat (PFÖ ) bevorzugt sind,  Hexachlorophosphate (PCIÖ), hexafluorophosphate (PFÖ), hexafluoroarsenate (ASFÖ) or tetrachloroaluminate (AICk), chloride or hexafluorophosphate (PFÖ) being preferred,
steht. stands.
Steht L1, L2 und/oder L3 für ein Tri-Cs-Ce-cycloalkylphosphin, so ist es erfindungsgemäß auch möglich, dass bei wenigstens einer der Cs-Ce-Cycloalkylgruppen eine Methylengruppe durch eine sekundäre Ammoniumgruppe (>NABD) ersetzt ist und dabei A, B und D die voran angege- benen Bedeutungen haben. If L 1 , L 2 and / or L 3 is a tri-Cs-Ce-cycloalkylphosphine, it is also possible according to the invention for at least one of the Cs-Ce-cycloalkyl groups to have a methylene group replaced by a secondary ammonium group (> NABD) and A, B and D have the meanings given above.
Unter einer im wässrigen Reaktionsmedium unter Polymerisationsbedingungen ionisch dissoziierbaren Gruppe ist jede der voran genannten Gruppen zu verstehen, welche im wässrigen Reaktionsmedium unter Polymerisationsbedingungen entweder eine Gruppe Z oder eine Gruppe D abspaltet, wobei im ersten Fall der gebildete ionisierte Metallcarbenkomplex wenigstens eine negative Ladung und im zweiten Fall wenigstens eine positive Ladung aufweist. Ob eine Gruppe unter Polymerisationsbedingungen ionisch dissoziierbar ist oder nicht, lässt sich im Zweifelsfall in einfacher, dem Fachmann geläufigen Art, beispielsweise durch Leitfähigkeitsmessungen oder Löslichkeitsmessungen in Wasser, ermitteln. A group which is ionically dissociable in the aqueous reaction medium under polymerization conditions is understood to mean any of the abovementioned groups which, in the aqueous reaction medium, split off either a group Z or a group D under polymerization conditions, in the first case the ionized metal carbene complex formed having at least one negative charge and in the second Case has at least one positive charge. Whether or not a group is ionically dissociable under polymerization conditions can, in case of doubt, be determined in a simple manner known to the person skilled in the art, for example by conductivity measurements or solubility measurements in water.
Im Rahmen dieser Schrift soll unter einer Ci-C2o-Alkylgruppe eine aliphatische Alkylgruppe mit 1 bis 20 Kohlenstoffatomen, insbesondere Methyl, Ethyl, n-Propyl, n-Butyl, n-Pentyl, n-Hexyl, n- Heptyl, n-Octyl, n-Nonyl, n-Decyl, n-Undecyl, n-Dodecyl, n-Tridecyl, n-Tetradecyl, n-Pentadecyl, n-Hexadecyl, n-Heptadecyl, n-Octadecyl, n-Nonadecyl, n-Eicosyl sowie deren isomeren Verbin- düngen, beispielsweise, iso-Propyl, tert.-Butyl, unter einer Arylgruppe im Wesentlichen eine Phenyl-, Anthranyl- oder Phenanthrylgruppe, bevorzugt jedoch eine Phenylgruppe und unter einer C3-C2o-Cycloalkylgruppe eine cycloaliphatische Gruppe mit 3 bis 20 Kohlenstoffatomen, beispielsweise Cyclopropyl, Cyclobutyl, Cyclopentyl, Cyclohexyl, Cycloheptyl oder Cyclooctyl verstanden werden. In the context of this document, an aliphatic alkyl group having 1 to 20 carbon atoms, in particular methyl, ethyl, n-propyl, n-butyl, n-pentyl, n-hexyl, n-heptyl, n-octyl, is to be understood as meaning a C 1 -C 20 -alkyl group, n-nonyl, n-decyl, n-undecyl, n-dodecyl, n-tridecyl, n-tetradecyl, n-pentadecyl, n-hexadecyl, n-heptadecyl, n-octadecyl, n-nonadecyl, n-eicosyl and their isomers Compound, for example iso-propyl, tert-butyl, an aryl group being essentially a phenyl, anthranyl or phenanthryl group, but preferably a phenyl group and, under a C 3 -C 20 -cycloalkyl group, a cycloaliphatic group having 3 to 20 carbon atoms, For example, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl or cyclooctyl be understood.
Metallcarbenkomplexe K der allgemeinen Formel (I) lassen sich beispielsweise herstellen durch dem Fachmann bekannte Funktionalisierungsreaktionen der entsprechenden, beispielsweise in der EP-A 993465, insbesondere die Verbindungen der allgemeinen Formel (l'b) sowie Beispiel 4 oder in der US-B 6,759,537, insbesondere die Metallcarbencomplexe 5 bis 29 (Spalten 15 bis 19) sowie der Beispiele in Spalte 32, Zeilen 49 und 62, Spalte 33, Zeilen 29 und 42, Spalte 34, Zeilen 1 , 44 und 57, Spalte 35, Zeilen 22 und 35, Spalte 36, Zeilen 28, 29, 41 ,42, 54 und 55, Spalte 37, Zeilen 14, 15, 27, 28, 41 , 42, 54 und 55, Spalte 38, Zeilen 19, 20, 33 und 34, Spalte 39, Zeilen 3, 4,17, 18, 60 und 61 sowie Spalte 40, Zeile 24 offenbarten Verbindungen. Durch ihre ausdrückliche Bezugnahme sollen sie als Bestandteil dieser Schrift angesehen werden. Metallcarbenkomplex K lassen sich ebenfalls herstellen nach den vorgenannten Syntheseprinzipien zur Herstellung hexagonaler Metallcarbenkomplexe unter Verwendung spezifischer, ent- sprechende funktionelle Gruppen tragender Komplexvorstufen. Metal carbene complexes K of the general formula (I) can be prepared, for example, by functionalizations of the corresponding functionalization known to the person skilled in the art, for example in EP-A 993465, in particular the compounds of the general formula (I'b) and also Example 4 or in US Pat. No. 6,759,537, in particular the metal carbene complexes 5 to 29 (columns 15 to 19) and the examples in column 32, lines 49 and 62, column 33, lines 29 and 42, column 34, lines 1, 44 and 57, column 35, lines 22 and 35, Column 36, lines 28, 29, 41, 42, 54 and 55, column 37, lines 14, 15, 27, 28, 41, 42, 54 and 55, column 38, lines 19, 20, 33 and 34, column 39 , Lines 3, 4, 17, 18, 60 and 61 and column 40, line 24. Their express reference should be construed as part of this document. Metal carbene complex K can also be prepared according to the abovementioned synthesis principles for the preparation of hexagonal metal carbene complexes using specific complex precursors bearing functional groups.
Im erfindungsgemäßen Verfahren wird vorteilhaft ein Metallcarbenkomplex K eingesetzt, welcher ein Dimethylammonium-Reaktionsprodukt, hergestellt aus einem Metallcarbenkomplex, welcher ausgewählt ist aus der Gruppe umfassend Dichloro-1 ,3-bis(2,6-dimethyl-4- dimethylaminophenyl)-imidazolidin-2-yliden-bis(4-dimethylaminopyridin)-benzyliden-ruthenium- (II), Dichloro-1 ,3-bis(2,6-dimethyl-4-dimethylaminophenyl)-imidazolin-2-yliden-bis(4- dimethylaminopyridin)-benzyliden-ruthenium-(ll), Dichloro-1 ,3-bis(2, 6-dimethyl-4- dimethylaminophenyl)-imidazolidin-2-yliden-bis(4-dimethylaminopyridin)-phenylthiomethylen- ruthenium-(ll) und/oder Dichloro-1 ,3-bis(2,6-dimethyl-4-dimethylaminophenyl)-imidazolin-2- yliden-bis(4-dimethylaminopyridin)-phenylthiomethylen-ruthenium-(ll), ist. In the process according to the invention, a metal carbene complex K is advantageously used which comprises a dimethylammonium reaction product prepared from a metal carbene complex which is selected from the group comprising dichloro-1,3-bis (2,6-dimethyl-4-dimethylaminophenyl) imidazolidine-2 -ylidene bis (4-dimethylaminopyridine) benzylidene ruthenium (II), dichloro-1,3-bis (2,6-dimethyl-4-dimethylaminophenyl) imidazolin-2-ylidene bis (4-dimethylaminopyridine) - benzylidene ruthenium (II), dichloro-1,3,3-bis (2,6-dimethyl-4-dimethylaminophenyl) -imidazolidin-2-ylidene bis (4-dimethylaminopyridine) -phenylthiomethylene-ruthenium (II) and / or Dichloro-1,3-bis (2,6-dimethyl-4-dimethylaminophenyl) -imidazolin-2-ylidene-bis (4-dimethylaminopyridine) -phenylthiomethylene-ruthenium (II).
Mit besonderem Vorteil werden Dichloro-1 ,3-bis(2, 6-dimethyl-4-dimethylaminophenyl)- imidazolidin-2-yliden-bis(4-dimethylaminopyridin)-phenylthiomethylen-ruthenium-(ll) und/oder Dichloro-1 ,3-bis(2, 6-dimethyl-4-dimethylaminophenyl)-imidazolin-2-yliden-bis(4- dimethylaminopyridin)-phenylthiomethylen-ruthenium-(ll) zur Herstellung des Metallcarben- komplexes K eingesetzt. With particular advantage, dichloro-1,3-bis (2,6-dimethyl-4-dimethylaminophenyl) imidazolidin-2-ylidene bis (4-dimethylaminopyridine) -phenylthiomethylene-ruthenium (II) and / or dichloro-1, 3-bis (2,6-dimethyl-4-dimethylaminophenyl) -imidazolin-2-ylidene-bis (4-dimethylaminopyridine) -phenylthiomethylene-ruthenium (II) used to prepare the metal carbene complex K.
Dabei erfolgt die Herstellung der Dimethylammonium-Reaktionsprodukte dergestalt, dass Dichloro-1 ,3-bis(2, 6-dimethyl-4-dimethylaminophenyl)-imidazolidin-2-yliden-bis(4- dimethylaminopyridin)-benzyliden-ruthenium-(ll) (Komplexverbindung 1), Dichloro-1 ,3-bis(2, 6- dimethyl-4-dimethylaminophenyl)-imidazolin-2-yliden-bis(4-dimethylaminopyridin)-benzyliden- ruthenium-(ll) (Komplexverbindung 2), Dichloro-1 ,3-bis(2, 6-dimethyl-4-dimethylaminophenyl)- imidazolidin-2-yliden-bis(4-dimethylaminopyridin)-phenylthiomethylen-ruthenium-(ll) (Komplexverbindung 3) und/oder Dichloro-1 ,3-bis(2, 6-dimethyl-4-dimethylaminophenyl)-imidazolin-2- yliden-bis(4-dimethylaminopyridin)-phenylthiomethylen-ruthenium-(ll) (Komplexverbindung 4) derart mit einer Brönstedt-Säureverbindung in einer dem Fachmann geläufigen Art und Menge unter solchen Reaktionsbedingungen umgesetzt werden, dass wenigstens eine der in den Komplexverbindungen 1 bis 4 vorliegenden Dimethylaminogruppen in die entsprechende Di- methylammoniumgruppe umgewandelt wird. The dimethylammonium reaction products are prepared in such a way that dichloro-1,3-bis (2,6-dimethyl-4-dimethylaminophenyl) imidazolidin-2-ylidene bis (4-dimethylaminopyridine) benzylidene ruthenium (II) (Complex compound 1), dichloro-1,3-bis (2,6-dimethyl-4-dimethylaminophenyl) imidazolin-2-ylidene bis (4-dimethylaminopyridine) benzylidene ruthenium (II) (Complex Compound 2), dichloro -1, 3-bis (2,6-dimethyl-4-dimethylaminophenyl) imidazolidin-2-ylidene bis (4-dimethylaminopyridine) -phenylthiomethylene-ruthenium (II) (complex 3) and / or dichloro-1,3 bis (2,6-dimethyl-4-dimethylaminophenyl) imidazolin-2-ylidene bis (4-dimethylaminopyridine) -phenylthiomethylene-ruthenium (II) (Complex Compound 4) such as with a Bronsted acid compound in a manner known to those skilled in the art and amount are reacted under such reaction conditions that at least one of the in the Complex compounds 1 to 4 present dimethylamino groups is converted into the corresponding dimethylammonium group.
Figure imgf000010_0001
Figure imgf000010_0001
Als Brönstedt-Säureverbindungen finden organsiche, anorganische Protonensäuren sowie Alky- lierungsreagenzien Verwendung. Als Protonensäuren eignen sich insbesondere solche, welchen einen pKs-Wert < 5 aufweisen, wie beispielsweise organische Carbonsäuren oder Sulfon- säuren, oder anorgansiche Säuren auf Basis der Elemente der 5., 6. und 7. Hauptgruppe des Periodensystems, wie beispielsweise Phosphorsäure, Schwefelsäure und/oder Salzsäure. Mit Vorteil weisen die Brönstedt-Säureverbindungen keine oxidierenden Eigenschaften auf. Dabei wird die Brönstedt-Säureverbindung in Art und Menge so bemessen, dass wenigstens eine, bevorzugt wenigstens zwei und insbesondere bevorzugt alle der in den Komplexverbindungen 1 bis 4 vorhandenen Dimethylaminogruppen in Form der entsprechenden Dimethylammoni- umgruppen vorliegen. Organic, inorganic protic acids and alkylating reagents are used as Bronsted acid compounds. Particularly suitable protic acids are those which have a pKa value <5, such as organic carboxylic acids or sulfonic acids, or inorganic acids based on the elements of the 5th, 6th and 7th main group of the periodic table, such as phosphoric acid, sulfuric acid and / or hydrochloric acid. Advantageously, the Bronsted acid compounds have no oxidizing properties. The type and quantity of the Bronsted acid compound are such that at least one, preferably at least two and particularly preferably all of the dimethylamino groups present in the complex compounds 1 to 4 are present in the form of the corresponding dimethylammonium groups.
Selbstverständlich ist es erfindungsgemäß auch möglich, dass ein Gemisch unterschiedlicher, sich nicht störender Metallcarbenkomplexe M eingesetzt wird. Erfindungswesentlich ist, dass Of course, it is also possible according to the invention for a mixture of different, non-interfering metal carbene complexes M to be used. Essential to the invention is that
a) in einem Gefäß a) in a vessel
a1 ) wenigstens eine Teilmenge des Wassers, a1) at least a subset of the water,
a2) wenigstens eine Teilmenge des wenigstens einen Dispergiermittels DP, a2) at least a subset of the at least one dispersant DP,
a3) wenigstens eine Teilmenge des wenigstens einen ethylenisch ungesättigten Monomeren MON, sowie a3) at least a portion of the at least one ethylenically unsaturated monomer MON, and
a4) gegebenenfalls wenigstens eine Teilmenge des organischen Lösungsmittels OL a5) in Form einer wässrigen Monomerenmakroemulsion mit einem mittleren Tröpfchendurchmesser > 2 μιτι vorgelegt werden, danach a4) optionally at least a partial amount of the organic solvent OL a5) in the form of an aqueous monomer macroemulsion having an average droplet diameter> 2 μm are initially introduced, thereafter
b) unter Energieeintrag die Monomerenmakroemulsion in eine Monomerenminiemulsion mit einem mittleren Tröpfchendurchmesser < 1500 nm überführt wird, und danach b) with energy input, the monomer macroemulsion is converted into a monomer miniemulsion having an average droplet diameter <1500 nm, and thereafter
c) der erhaltenen Monomerenminiemulsion bei Polymerisationstemperatur c) the resulting monomer miniemulsion at the polymerization temperature
c1 ) die gegebenenfalls verbliebene Restmenge des Wassers, c1) any remaining amount of water,
c2) die gegebenenfalls verbliebene Restmenge des wenigstens einen Dispergiermittels DP, c3) die gegebenenfalls verbliebene Restmenge des wenigstens einen Monomeren MON, c4) die gegebenenfalls verbliebene Restmenge des organischen Lösungsmittes OL, und c5) die Gesamtmenge des Metallcarbenkomplexes K c2) any residual amount of the at least one dispersing agent DP, c3) the residual amount of the at least one monomer MON remaining, c4) the remaining amount of the organic solvent OL, if any, and c5) the total amount of the metal carbene complex K.
zugegeben werden und das wenigstens eine Monomere MON bis zu einem Monomere- numsatz > 80 Gew.-% polymerisiert wird.  are added and the at least one monomer MON polymerized to a monomer number> 80 wt .-%.
Erfindungsgemäß wird klares Wasser, insbesondere jedoch entionisiertes Wasser eingesetzt. Dabei wird in Verfahrensschritt a1 ) wenigstens eine Teilmenge des Wassers in einem Gefäß vorgelegt und die gegebenenfalls verbliebene Restmenge des Wassers im Verfahrensschritt c1 ) zudosiert. Vorteilhaft werden > 50 Gew.-%, besonders vorteilhaft > 70 Gew.-% und insbesonde- re vorteilhaft > 90 Gew.-% der Gesamtwassermenge in Verfahrensschritt a1 ) im Gefäß vorgelegt. Dabei beträgt die Gesamwassermenge > 10 und < 9900 Gew.-Teile, vorteilhaft > 20 und < 1900 Gew.-Teile und insbesondere vorteilhaft > 30 und < 900 Gew.-Teile pro 100 Gew.-Teilen Monomeren MON. Bei der erfindungsgemäßen Herstellung der wässrigen Polymerisatdispersionen werden allgemein Dispergierhilfsmittel DP mitverwendet, die sowohl die Monomerentröpfchen bzw. Monomeren/Lösungsmitteltröpfchen der entsprechenden Makro- und Miniemulsionen, wie auch die gebildeten Polymerisatpartikel im wässrigen Polymerisationsmedium dispers verteilt halten und so die Stabilität der erzeugten wässrigen Polymerisatdispersionen gewährleisten. Als Disper- gierhilfsmittel DP kommen sowohl die zur Durchführung von radikalischen wässrigen Emulsionspolymerisationen üblicherweise eingesetzten Schutzkolloide, wie auch Emulgatoren in Betracht. According to the invention, clear water, but especially deionized water, is used. In this case, in process step a1), at least a subset of the water is introduced into a vessel and the residual amount of the remaining water, if any, added in process step c1). Advantageously,> 50% by weight, particularly advantageously> 70% by weight and in particular advantageously> 90% by weight of the total amount of water in process step a1) is initially introduced into the vessel. The total amount of water is> 10 and <9900 parts by weight, advantageously> 20 and <1900 parts by weight and particularly advantageously> 30 and <900 parts by weight per 100 parts by weight of monomers MON. In the preparation according to the invention of the aqueous polymer dispersions, dispersants DP are generally used which keep both the monomer droplets or monomer / solvent droplets of the corresponding macro- and miniemulsions and the polymer particles formed dispersed in the aqueous polymerization medium and thus ensure the stability of the aqueous polymer dispersions produced. Suitable dispersants DP are both the protective colloids customarily used for carrying out free-radical aqueous emulsion polymerizations and emulsifiers.
Eine ausführliche Beschreibung geeigneter Schutzkolloide findet sich in Houben-Weyl, Metho- den der organischen Chemie, Band XIV/1 , Makromolekulare Stoffe, Georg-Thieme-Verlag, Stuttgart, 1961 , Seiten 411 bis 420. Geeignete neutrale Schutzkolloide sind beispielsweise Polyvinylalkohole, Polyalkylenglykole, Polyvinylpyrrolidone, Cellulose-, Stärke- und Gelatinederivate. A detailed description of suitable protective colloids can be found in Houben-Weyl, Methods of Organic Chemistry, Volume XIV / 1, Macromolecular Materials, Georg Thieme Verlag, Stuttgart, 1961, pages 411 to 420. Suitable neutral protective colloids are, for example, polyvinyl alcohols, polyalkylene glycols, polyvinylpyrrolidones, cellulose, starch and gelatin derivatives.
Als anionische Schutzkolloide, d.h. Schutzkolloide, deren dispergierend wirkende Komponente wenigstens eine negative elektrische Ladung aufweist, kommen beispielsweise Polyacrylsäuren und Polymethacrylsäuren und deren Alkalimetallsalze, Acrylsäure, Methacrylsäure, Itaconsäure, 2-Acrylamido-2-methylpropansulfonsäure, 4-Styrolsulfonsäure und/oder Maleinsäureanhydrid enthaltende Copolymerisate und deren Alkalimetallsalze sowie Alkalimetallsalze von Sulfonsäu- ren hochmolekularer Verbindungen, wie beispielsweise Polystyrol, in Betracht. As anionic protective colloids, i. Protective colloids whose dispersing component has at least one negative electrical charge include, for example, polyacrylic acids and polymethacrylic acids and their alkali metal salts, acrylic acid, methacrylic acid, itaconic acid, 2-acrylamido-2-methylpropanesulfonic acid, 4-styrenesulfonic acid and / or maleic anhydride-containing copolymers and their alkali metal salts and alkali metal salts of sulfonic acids of high molecular weight compounds, such as polystyrene, into consideration.
Geeignete kationische Schutzkolloide, d.h. Schutzkolloide, deren dispergierend wirkende Komponente wenigstens eine positive elektrische Ladung aufweist, sind beispielsweise die am Stickstoff protonierten und/oder alkylierten Derivate von N-Vinylpyrrolidon, N-Vinylcaprolactam, N-Vinylformamid, N-Vinylacetamid, N-Vinylcarbazol, 1-Vinylimidazol, 2-Vinylimidazol, 2- Vinylpyridin, 4-Vinylpyridin, Acrylamid, Methacrylamid, amingruppentragende Acrylate, Methac- rylate, Acrylamide und/oder Methacrylamide enthaltenden Homo- und Copolymerisate. Suitable cationic protective colloids, i. Protective colloids whose dispersing component has at least one positive electrical charge are, for example, the nitrogen-protonated and / or alkylated derivatives of N-vinylpyrrolidone, N-vinylcaprolactam, N-vinylformamide, N-vinylacetamide, N-vinylcarbazole, 1-vinylimidazole, 2 Vinylimidazole, 2-vinylpyridine, 4-vinylpyridine, acrylamide, methacrylamide, amines group-bearing acrylates, methacrylates, acrylamides and / or methacrylamides containing homopolymers and copolymers.
Selbstverständlich können auch Gemische aus Emulgatoren und/oder Schutzkolloiden eingesetzt werden. Häufig werden als Dispergierhilfsmittel ausschließlich Emulgatoren eingesetzt, deren relative Molekulargewichte im Unterschied zu den Schutzkolloiden üblicherweise unter 1500 g/mol liegen. Selbstverständlich müssen im Falle der Verwendung von Gemischen grenzflächenaktiver Substanzen die Einzelkomponenten miteinander verträglich sein, was im Zweifelsfall an Hand weniger Vorversuche überprüft werden kann. Eine Übersicht geeigneter Emulgatoren findet sich in Houben-Weyl, Methoden der organischen Chemie, Band XIV/1 , Makromo- lekulare Stoffe, Georg-Thieme-Verlag, Stuttgart, 1961 , Seiten 192 bis 208. Of course, mixtures of emulsifiers and / or protective colloids can be used. Frequently used as dispersing agents are exclusively emulsifiers whose relative molecular weights, in contrast to the protective colloids, are usually below 1500 g / mol. Of course, in the case of the use of mixtures of surfactants, the individual components must be compatible with each other, which can be checked in case of doubt by hand on fewer preliminary tests. An overview of suitable emulsifiers can be found in Houben-Weyl, Methods of Organic Chemistry, Volume XIV / 1, Macromolecular Materials, Georg Thieme Verlag, Stuttgart, 1961, pages 192 to 208.
Gebräuchliche nichtionische Emulgatoren sind z.B. ethoxilierte Mono-, Di- und Tri-Alkylphenole (EO-Grad: 2 bis 50, Alkylrest: C4 bis C12) sowie ethoxilierte Fettalkohole (EO-Grad: 2 bis 80; Alkylrest: Ce bis C36). Beispiele hierfür sind die Eumulgin® B-Marken (Cetyl- /Stearylalkoholethoxilate), Dehydol® LS-Marken (Fettalkoholethoxylate, EO-Grad: 1 bis 10) der COGNIS GmbH, sowie die Lutensol® A-Marken (Ci2Ci4-Fettalkoholethoxilate, EO-Grad: 3 bis 8), Lutensol® AO-Marken (Ci3Ci5-Oxoalkoholethoxilate, EO-Grad: 3 bis 30), Lutensol® AT- Marken (Ci6Ci8-Fettalkoholethoxilate, EO-Grad: 1 1 bis 80), Lutensol® ON-Marken (C10- Oxoalkoholethoxilate, EO-Grad: 3 bis 11 ) und die Lutensol® TO-Marken (C13- Oxoalkoholethoxilate, EO-Grad: 3 bis 20) der BASF SE. Alternativ können auch niedermolekulare, statistische und wasserlösliche Ethylenoxid- und Propylenoxid-Copolymere und deren Derivate, niedermolekulare, wasserlösliche Ethylenoxid- und Propylenoxid-Blockcopolymerisate (zum Beispiel Pluronic® PE mit einem Molekulargewicht von 1000 bis 4000 g/mol und Pluronic® RPE der BASF SE mit einem Molekulargewicht von 2000 bis 4000 g/mol) und deren Derivate eingesetzt werden. Übliche anionische Emulgatoren sind z.B. Alkalimetall- und Ammoniumsalze von Alkylsulfaten (Alkylrest: Ce bis C12), von Schwefelsäurehalbestern ethoxylierter Alkanole (EO-Grad: 4 bis 30, Alkylrest: C12 bis Cie) und ethoxilierter Alkylphenole (EO-Grad: 3 bis 50, Alkylrest: C4 bis C12), von Alkylsulfonsäuren (Alkylrest: C12 bis Cie) und von Alkylarylsulfonsäuren (Alkylrest: Cg bis Common nonionic emulsifiers are, for example, ethoxylated mono-, di- and tri-alkylphenols (EO degree: 2 to 50, alkyl radical: C 4 to C 12) and also ethoxylated fatty alcohols (EO degree: 2 to 80, alkyl radical: Ce to C 3 H 6 ). Examples are the Eumulgin ® B brands (cetyl / Stearylalkoholethoxilate) Dehydol LS ® brands (fatty alcohol ethoxylates, EO units: 1 to 10) of Cognis GmbH, as well as the Lutensol ® A grades (C 2 C 4 fatty alcohol ethoxylates , EO units: 3 to 8), Lutensol ® AO grades (C 3 -C 5 -Oxoalkoholethoxilate, EO units: 3 to 30), Lutensol ® AT-grades (C 6 C 8 fatty alcohol ethoxylates, EO units: 1 1 to 80), Lutensol ® ON brands (C10 Oxoalkoholethoxilate, EO units: 3 to 11) and the Lutensol ® tO brands (C13 Oxoalkoholethoxilate, EO units: 3 to 20) of BASF SE. Alternatively, low molecular weight, random and water-soluble ethylene oxide and propylene oxide copolymers and their derivatives, low molecular weight, water-soluble ethylene oxide and propylene oxide block copolymers (for example Pluronic ® PE having a molecular weight of 1000 to 4000 g / mol and Pluronic ® RPE BASF SE having a molecular weight of from 2000 to 4000 g / mol) and derivatives thereof. Typical anionic emulsifiers are, for example, alkali metal and ammonium salts of alkyl sulfates (alkyl radical: Ce to C12), of sulfuric monoesters of ethoxylated alkanols (EO degree: 4 to 30, alkyl radical: C12 to Cie) and ethoxylated alkylphenols (EO degree: 3 to 50, Alkyl radical: C 4 to C 12), of alkylsulfonic acids (alkyl radical: C 12 to Cie) and of alkylarylsulfonic acids (alkyl radical: Cg to
Als weitere anionische Emulgatoren haben sich ferner Verbindungen der allgemeinen Formel (II) Further anionic emulsifiers further compounds of the general formula (II)
Figure imgf000013_0001
worin Ra und Rb H-Atome oder C4- bis C24-Alkyl bedeuten und nicht gleichzeitig H-Atome sind, und Δ und Θ Alkalimetallionen und/oder Ammoniumionen sein können, erwiesen. In der allgemeinen Formel (II) bedeuten Ra und Rb bevorzugt lineare oder verzweigte Alkylreste mit 6 bis 18 C-Atomen, insbesondere mit 6, 12 und 16 C-Atomen oder -H, wobei Ra und Rb nicht beide gleichzeitig H-Atome sind. Δ und Θ sind bevorzugt Natrium, Kalium oder Ammonium, wobei Natrium besonders bevorzugt ist. Besonders vorteilhaft sind Verbindungen (II), in denen Δ und Θ Natrium, Ra ein verzweigter Alkylrest mit 12 C-Atomen und Rb ein H-Atom oder Ra ist. Häufig werden technische Gemische verwendet, die einen Anteil von 50 bis 90 Gew.-% des monoalky- lierten Produktes aufweisen, wie beispielsweise Dowfax® 2A1 (Marke der Dow Chemical Corp.). Die Verbindungen (II) sind allgemein bekannt, z.B. aus US-A 4 269 749, und im Handel erhältlich.
Figure imgf000013_0001
wherein R a and R b hydrogen atoms or C 4 - to C2 4 alkyl, and simultaneously hydrogen atoms are not, and Δ Θ and alkali metal ions and / or may be ammonium ions. In the general formula (II) R a and R b are preferably linear or branched alkyl radicals having 6 to 18 C atoms, in particular having 6, 12 and 16 C atoms or -H, wherein R a and R b are not both simultaneously H Atoms are. Preferably, Δ and Θ are sodium, potassium or ammonium, with sodium being particularly preferred. Particularly advantageous compounds (II) are those in which Δ and Θ are sodium, R a is a branched alkyl radical having 12 C atoms and R b is an H atom or R a . Industrial mixtures are used which contain from 50 to 90 wt .-% of the monoalkylated product, such as, for example, Dowfax ® 2A1 (trademark of Dow Chemical Corp.). The compounds (II) are well known, for example from US-A 4,269,749, and commercially available.
Geeignete kationenaktive Emulgatoren sind in der Regel einen Ce- bis Ci8-Alkyl-, -Aralkyl- oder heterocyclischen Rest aufweisende primäre, sekundäre, tertiäre oder quartäre Ammoniumsalze, Alkanolammoniumsalze, Pyridiniumsalze, Imidazoliniumsalze, Oxazoliniumsalze, Morpholini- umsalze, Thiazoliniumsalze sowie Salze von Aminoxiden, Chinoliniumsalze, Isochinoliniumsal- ze, Tropyliumsalze, Sulfoniumsalze und Phosphoniumsalze. Beispielhaft genannt seien Dode- cylammoniumacetat oder das entsprechende Hydrochlorid, die Chloride oder Acetate der verschiedenen 2-(N,N,N-Trimethylammonium)ethylparaffinsäureester, N-Cetylpyridiniumchlorid, N- Laurylpyridiniumsulfat sowie N-Cetyl-N,N,N-trimethylammoniumbromid, N-Dodecyl-N,N,N- trimethylammoniumbromid, N-Octyl-N,N,N-trimethlyammoniumbromid, N,N-Distearyl-N,N- dimethylammoniumchlorid sowie das Gemini-Tensid Ν,Ν'-Suitable cationic emulsifiers are generally a C 1 - to C 18 -alkyl-, aralkyl- or heterocyclic radical-containing primary, secondary, tertiary or quaternary ammonium salts, alkanolammonium salts, pyridinium salts, imidazolinium salts, oxazolinium salts, morpholine salts, thiazolinium salts and salts of amine oxides, Quinolinium salts, isoquinolinium salts, tropylium salts, sulfonium salts and phosphonium salts. Examples are dodecylammonium acetate or the corresponding hydrochloride, the chlorides or acetates of the various 2- (N, N, N-trimethylammonium) ethyl paraffins, N-cetylpyridinium chloride, N-laurylpyridinium sulfate and N-cetyl-N, N, N-trimethylammonium bromide, N-dodecyl-N, N, N-trimethylammonium bromide, N-octyl-N, N, N-trimethylammonium bromide, N, N-distearyl-N, N-dimethylammonium chloride and the gemini surfactant Ν, Ν'-
(Lauryldimethyl)ethylendiamindibromid. Zahlreiche weitere Beispiele finden sich in H. Stäche, Tensid-Taschenbuch, Carl-Hanser-Verlag, München, Wien, 1981 und in McCutcheon's, Emulsi- fiers & Detergents, MC Publishing Company, Glen Rock, 1989. Erfindungsgemäß wird in Verfahrensschritt a2) wenigstens eine Teilmenge des Dispergiermittels DP im Gefäß vorgelegt und die gegebenenfalls verbliebene Restmenge des Dispergiermittels DP im Verfahrensschritt c2) zudosiert. Vorteilhaft werden > 50 Gew.-%, besonders vorteil- haft > 70 Gew.-% und insbesondere vorteilhaft > 90 Gew.-% der Dispergiermittelgesamtmenge in Verfahrensschritt a2) im Gefäß vorgelegt. Mit besonderem Vorteil wird die Gesamtmenge des Dispergiermittels DP im Verfahrensschritt a2) vorgelegt. (Lauryl) ethylendiamindibromid. Numerous other examples can be found in H. Stäche, Tensid-Taschenbuch, Carl-Hanser-Verlag, Munich, Vienna, 1981 and in McCutcheon's, Emulsifiers & Detergents, MC Publishing Company, Glen Rock, 1989. According to the invention, in step a2) at least a partial amount of the dispersant DP is introduced into the vessel and the remaining amount of the dispersant DP remaining in process step c2) is metered in, if appropriate. Advantageously,> 50% by weight, particularly advantageously> 70% by weight and in particular advantageously> 90% by weight of the total amount of dispersant in process step a2) is initially charged in the vessel. With particular advantage, the total amount of the dispersant DP is presented in process step a2).
Die Dispergiermittelgesamtmenge beträgt erfindungsgemäß > 0,1 und < 10 Gew.-%, vorteilhaft > 0,3 und < 8 Gew.-% und besonders vorteilhaft > 0,5 und < 6 Gew.-%, jeweils bezogen auf die Gesamtmenge der Monomeren MON. Bevorzugt werden Emulgatoren, insbesondere nichtionische und/oder kationische Emulgatoren verwendet. Mit besonderem Vorteil werden nichtionische Emulgatoren eingesetzt. Als ethylenisch ungesättigte Monomeren MON kommen im Wesentlichen aliphatische lineare oder verzweigte C3- bis C30-Alkene sowie mono- oder polycyclische Olefine, mit einer oder mehreren ethylenisch ungesättigten Doppelbindungen in Betracht, welche gegebenenfalls noch funktionelle Gruppen aufweisen können. Vorteilhaft weisen die die Monomeren MON neben Kohlenstoff und Wasserstoff keine weiteren Elemente auf. Zu den Monomeren MON zählen beispielsweise die linearen Alkene Propen, n-Buten-1 , n-Buten-2, 2-Methylpropen, 2- Methylbuten-1 , 3-Methylbuten-1 , 3,3-Dimethyl-2-isopropylbuten-1 , 2-Methylbuten-2, 3- Methylbuten-2, Penten-1 , 2-Methylpenten-1 , 3-Methylpenten-1 , 4-Methylpenten-1 , Penten-2, 2- Methylpenten-2, 3-Methylpenten-2, 4-Methylpenten-2, 2-Ethylpenten-1 , 3-Ethylpenten-1 , 4- Ethylpenten-1 , 2-Ethylpenten-2, 3-Ethyl penten-2, 4-Ethylpenten-2, 2,4,4-Trimethylpenten-1 , 2,4,4-Trimethylpenten-2, 3-Ethyl-2-methylpenten-1 , 3,4,4-Trimethylpenten-2, 2-Methyl-3- ethylpenten-2, Hexen-1 , 2-Methylhexen-1 , 3-Methylhexen-1 , 4-Methylhexen-1 , 5-Methylhexen- 1 , Hexen-2, 2-Methylhexen-2, 3-Methylhexen-2, 4-Methylhexen-2, 5-Methylhexen-2, Hexen-3, 2-Methylhexen-3, 3-Methylhexen-3, 4-Methylhexen-3, 5-Methylhexen-3, 2,2-Dimethylhexen-3, 2,3-Dimethylhexen-2, 2,5-Dimethylhexen-3, 2,5-Dimethylhexen-2, 3,4-Dimethylhexen-1 , 3,4- Dimethylhexen-3, 5,5-Dimethylhexen-2, 2,4-Dimethylhexen-1 , Hepten-1 , 2-Methylhepten-1 , 3- Methylhepten-1 , 4-Methylhepten-1 , 5-Methylhepten-1 , 6-Methylhepten-1 , Hepten-2, 2- Methylhepten-2, 3-Methylhepten-2, 4-Methylhepten-2, 5-Methylhepten-2, 6-Methylhepten-2, Hepten-3, 2-Methylhepten-3, 3-Methylhepten-3, 4-Methylhepten-3, 5-Methylhepten-3, 6- Methylhepten-3, 6,6-Dimethylhepten-1 , 3,3-Dimethylhepten-1 , 3,6-Dimethylhepten-1 , 2,6- Dimethylhepten-2, 2,3-Dimethylhepten-2, 3,5-Dimethylhepten-2, 4,5-Dimethylhepten-2, 4,6- Dimethylhepten-2, 4-Ethylhepten-3, 2,6-Dimethylhepten-3, 4,6-Dimethylhepten-3, 2,5- Dimethylhepten-4, Octen-1 , 2-Methylocten-1 , 3-Methylocten-1 , 4-Methylocten-1 , 5-Methylocten- 1 , 6-Methylocten-1 , 7-Methylocten-1 , Octen-2, 2-Methylocten-2, 3-Methylocten-2, 4- Methylocten-2, 5-Methylocten-2, 6-Methylocten-2, 7-Methylocten-2, Octen-3, 2-Methylocten-3, 3-Methylocten-3, 4-Methylocten-3, 5-Methylocten-3, 6-Methylocten-3, 7-Methylocten-3,Octen-4, 2-Methylocten-4, 3-Methylocten-4, 4-Methylocten-4, 5-Methylocten-4, 6-Methylocten-4, 7- Methylocten-4, 7,7-Dimethylocten-1 , 3,3-Dimethylocten-1 , 4,7-Dimethylocten-1 , 2,7- Dimethylocten-2, 2,3-Dimethylocten-2, 3,6-Dimethylocten-2, 4,5-Dimethylocten-2, 4,6- Dimethylocten-2, 4,7-Dimethylocten-2, 4-Ethylocten-3, 2,7-Dimethylocten-3, 4,7-Dimethylocten-The total amount of dispersant is according to the invention> 0.1 and <10 wt .-%, preferably> 0.3 and <8 wt .-% and particularly advantageously> 0.5 and <6 wt .-%, each based on the total amount of the monomers MON. Preference is given to using emulsifiers, in particular nonionic and / or cationic emulsifiers. With particular advantage nonionic emulsifiers are used. Suitable ethylenically unsaturated monomers MON are essentially aliphatic linear or branched C 3 - to C 30 -alkenes and mono- or polycyclic olefins with one or more ethylenically unsaturated double bonds, which may optionally also have functional groups. Advantageously, the monomers MON besides carbon and hydrogen have no further elements. The monomers MON include, for example, the linear alkenes propene, n-butene-1, n-butene-2, 2-methylpropene, 2-methylbutene-1, 3-methylbutene-1, 3,3-dimethyl-2-isopropylbutene-1 , 2-methylbutene-2, 3-methylbutene-2, pentene-1, 2-methylpentene-1, 3-methylpentene-1, 4-methylpentene-1, pentene-2, 2-methylpentene-2, 3-methylpentene-2 , 4-methylpentene-2, 2-ethyl-pentene-1, 3-ethyl-pentene-1, 4-ethyl-pentene-1, 2-ethyl-pentene-2, 3-ethyl-pentene-2, 4-ethyl-pentene-2, 2,4,4- Trimethylpentene-1, 2,4,4-trimethylpentene-2, 3-ethyl-2-methylpentene-1, 3,4,4-trimethylpentene-2, 2-methyl-3-ethylpentene-2, hexene-1, 2- Methylhexene-1, 3-methylhexene-1, 4-methylhexene-1, 5-methylhexene-1, hexene-2, 2-methylhexene-2, 3-methylhexene-2, 4-methylhexene-2, 5-methylhexene-2, Hexene-3, 2-methylhexene-3, 3-methylhexene-3, 4-methylhexene-3, 5-methylhexene-3, 2,2-dimethylhexene-3, 2,3-dimethylhexene-2, 2,5-dimethylhexene 3, 2,5-dimethylhexene-2, 3,4-dimethylhexene-1, 3,4-dimethylhexene-3, 5,5-dimethylhexene-2, 2,4-dimethylhexene-1, hepte n-1, 2-methylheptene-1, 3-methylheptene-1, 4-methylheptene-1, 5-methylheptene-1, 6-methylheptene-1, heptene-2, 2-methylheptene-2, 3-methylheptene-2, 4-methylhepten-2, 5-methylhepten-2, 6-methylhepten-2, heptene-3, 2-methylhepten-3, 3-methylhepten-3, 4-methylhepten-3, 5-methylhepten-3, 6-methylheptene 3,6,6-dimethylheptene-1,3,3-dimethylheptene-1, 3,6-dimethylheptene-1, 2,6-dimethylheptene-2, 2,3-dimethylheptene-2, 3,5-dimethylheptene-2, 4,5-dimethylheptene-2, 4,6-dimethylheptene-2, 4-ethylheptene-3, 2,6-dimethylheptene-3, 4,6-dimethylheptene-3, 2,5-dimethylheptene-4, octene-1, 2-Methyloctene-1,3-methyloctene-1,4-methyloctene-1,5-methyl-octene-1,6-methyloctene-1,1,7-methyl-octene-1, octene-2,2-methyl-octene-2,3-methyl-octene 2, 4-Methyloctene-2, 5-Methyloctene-2, 6-Methyloctene-2, 7-Methyloctene-2, octene-3, 2-Methyloctene-3, 3-Methyloctene-3, 4-Methyloctene-3, 5 Methyloctene-3,6-Methyloctene-3,7-Methyloctene-3, Octene-4,2-Methyloctene-4,3-Methyloctene-4,4-Methyloctene-4,5-Methyloctene-4,6-Methyloctene 4, 7-Methyloctene-4, 7,7-Dimethyloctene-1,3,3-Dimethyloctene-1, 4,7-Dimethyloctene-1, 2,7- Dimethyloctene-2, 2,3-dimethyloctene-2, 3,6-dimethyloctene-2, 4,5-dimethyloctene-2, 4,6-dimethyloctene-2, 4,7-dimethyloctene-2,4-ethyloctene-3, 2,7-Dimethyloctene-3, 4,7-dimethyloctene
3, 2,5-Dimethylocten-4, Nonen-1 , 2-Methylnonen-1 , 3-Methylnonen-1 , 4-Methylnonen-1 , 5- Methylnonen-1 , 6-Methylnonen-1 , 7-Methylnonen-1 , 8-Methylnonen-1 , Nonen-2, 2- Methylnonen-2, 3-Methylnonen-2, 4-Methylnonen-2, 5-Methylnonen-2, 6-Methylnonen-2, 7- Methylnonen-2, 8-Methylnonen-2, Nonen-3, 2-Methylnonen-3, 3-Methylnonen-3, 4- Methylnonen-3, 5-Methylnonen-3, 6-Methylnonen-3, 7-Methylnonen-3, 8-Methylnonen-3, No- nen-4, 2-Methylnonen-4, 3-Methylnonen-4, 4-Methylnonen-4, 5-Methylnonen-4, 6-Methylnonen-3, 2,5-dimethyloctene-4, nonene-1, 2-methylnone-1, 3-methylnone-1, 4-methylnone-1, 5-methylnone-1, 6-methylnone-1, 7-methylnone-1, 8-Methylnone-1, Nonen-2, 2-Methylnonen-2, 3-Methylnonen-2, 4-Methylnonen-2, 5-Methylnonen-2, 6-Methylnonen-2, 7-Methylnonen-2, 8-Methylnonen- 2, Nonen-3, 2-Methylnonen-3, 3-Methylnonen-3, 4-Methylnonen-3, 5-Methylnonen-3, 6-Methylnonen-3, 7-Methylnonen-3, 8-Methylnonen-3, N- NEN-4, 2-Methylnonen-4, 3-Methylnonen-4, 4-Methylnonen-4, 5-Methylnonen-4, 6-Methylnonen-
4, 7-Methylnonen-4, 8-Methylnonen-4, 4,8-Dimethylnonen-1 , 4,8-Dimethylnonen-4, 2,8- Dimethylnonen-4, Decen-1 , 2-Methyldecen-1 , 3-Methyldecen-1 , 4-Methyldecen-1 , 5-4,7-Methylnone-4,8-methylnone-4,8,8-dimethylnone-1,4,8-dimethylnone-4,8,2-dimethylnone-4-decene-1,2-methyldecene-1,3 Methyldecene-1, 4-methyldecene-1, 5
Methyldecen-1 , 6-Methyldecen-1 , 7-Methyldecen-1 , 8-Methyldecen-1 , 9-Methyldecen-1 Decen-Methyldecene-1, 6-methyldecene-1, 7-methyldecene-1, 8-methyldecene-1, 9-methyldecene-1-decene
2, 2-Methyldecen-2, 3-Methyldecen-2, 4-Methyldecen-2, 5-Methyldecen-2, 6-Methyldecen-2, 7- Methyldecen-2, 8-Methyldecen-2, 9-Methyldecen-2, Decen-3, 2-Methyldecen-3, 3-Methyldecen-2, 2-methyldecene-2, 3-methyldecene-2, 4-methyldecene-2, 5-methyldecene-2, 6-methyldecene-2, 7-methyldecene-2, 8-methyldecene-2, 9-methyldecene-2, Decene-3, 2-methyldecen-3, 3-methyldecene
3, 4-Methyldecen-3, 5-Methyldecen-3, 6-Methyldecen-3, 7-Methyldecen-3, 8-Methyldecen-3, 9- Methyldecen-3, Decen-4, 2-Methyldecen-4, 3-Methyldecen-4, 4-Methyldecen-4, 5-Methyldecen-3, 4-methyldecen-3, 5-methyldecene-3, 6-methyldecen-3, 7-methyldecene-3, 8-methyldecen-3, 9-methyldecen-3, decene-4, 2-methyldecen-4, 3 Methyldecene-4, 4-methyldecene-4, 5-methyldecene
4, 6-Methyldecen-4, 7-Methyldecen-4, 8-Methyldecen-4, 9-Methyldecen-4, Decen-5, 2- Methyldecen-5, 3-Methyldecen-5, 4-Methyldecen-5, 5-Methyldecen-5, 6-Methyldecen-5, 7- Methyldecen-5, 8-Methyldecen-5, 9-Methyldecen-5, 2,4-Dimethyldecen-1 , 2,4-Dimethyldecen-2, 4,8-Dimethyldecen-1 , Undecen-1 , 2-Methylundecen-1 , 3-Methylundecen-1 , 4-Methylundecen-1 , 5-Methylundecen-1 , 6-Methylundecen-1 , 7-Methylundecen-1 , 8-Methylundecen-1 , 9-4, 6-methyldecen-4, 7-methyldecene-4, 8-methyldecen-4, 9-methyldecene-4, decene-5, 2-methyldecen-5, 3-methyldecen-5, 4-methyldecene-5, 5 Methyldecene-5, 6-methyldecene-5, 7-methyldecene-5, 8-methyldecene-5, 9-methyldecene-5, 2,4-dimethyldecene-1, 2,4-dimethyldecene-2, 4,8-dimethyldecene 1, undecene-1, 2-methylundecene-1, 3-methylundecene-1, 4-methylundecene-1, 5-methylundecene-1, 6-methylundecene-1, 7-methylundecene-1, 8-methylundecene-1, 9-
Methylundecen-1 , 10-Methylundecen-1 , Undecen-2, 2-Methylundecen-2, 3-Methylundecen-2, 4- Methylundecen-2, 5-Methylundecen-2, 6-Methylundecen-2, 7-Methylundecen-2, 8- Methylundecen-2, 9-Methylundecen-2, 10-Methylundecen-2, Undecen-3, 2-Methylundecen-3, 3- Methylundecen-3, 4-Methylundecen-3, 5-Methylundecen-3, 6-Methylundecen-3, 7- Methylundecen-3, 8-Methylundecen-3, 9-Methylundecen-3, 10-Methylundecen-3, Undecen-4, 2- Methylundecen-4, 3-Methylundecen-4, 4-Methylundecen-4, 5-Methylundecen-4, 6- Methylundecen-4, 7-Methylundecen-4, 8-Methylundecen-4, 9-Methylundecen-4, 10- Methylundecen-4, Undecen-5, 2-Methylundecen-5, 3-Methylundecen-5, 4-Methylundecen-5, 5- Methylundecen-5, 6-Methylundecen-5, 7-Methylundecen-5, 8-Methylundecen-5, 9- Methylundecen-5, 10-Methylundecen-5, Dodecen-1 , Dodecen-2, Dodecen-3, Dodecen-4, Do- decen-5, Dodecen-6, 4,8-Dimethyldecen-1 , 4-Ethyldecen-1 , 6-Ethyldecen-1 , 8-Ethyldecen-1 , 2,5,8-Trimethylnonen-1 , Tridecen-1 , Tridecen-2, Tridecen-3, T decen-4, Tridecen-5, Tridecen- 6, 2-Methyldodecen-1 , 1 1-Methyldodecen-1 , 2,5-Dimethylundecen-2, 6,10-Dimethylundecen-1 , Tetradecen-1 , Tetradecen-2, Tetradecen-3, Tetradecen-4, Tetradecen-5, Tetradecen-6, Tetra- decen-7, 2-Methylt decen-1 , 2-Ethyldodecen-1 , 2,6,10-Trimethylundecen-1 , 2,6- Dimethyldodecen-2, 11-Methyltridecen-1 , 9-Methylt decen-1 , 7-Methylt decen-1 , 8- Ethyldodecen-1 , 6-Ethyldodecen-1 , 4-Ethyldodecen-1 , 6-Butyldecen-1 , Pentadecen-1 , Penta- decen-2, Pentadecen-3, Pentadecen-4, Pentadecen-5, Pentadecen-6, Pentadecen-7, 2- Methyltetradecen-1 , 3,7,11-Trimethyldodecen-1 , 2,6,10-Trimethyldodecen-1 , Hexadecen-1 , Hexadecen-2, Hexadecen-3, Hexadecen-4, Hexadecen-5, Hexadecen-6, Hexadecen-7, Hexa- decen-8, 2-Methylpentadecen-1 , 3,7,11-Trimethyltridecen-1 , 4,8,12-Trimethyltridecen-1 , 1 1- Methylpentadecen-1 , 13-Methylpentadecen-1 , 7-Methylpentadecen-1 , 9-Methylpentadecen-1 , 12-Ethyltetradecen-1 , 8-Ethyltetradecen-1 , 4-Ethyltetradecen-1 , 8-Butyldodecen-1 , 6- Butyldodecen-1 Heptadecen-1 , Heptadecen-2, Heptadecen-3, Heptadecen-4, Heptadecen-5, Heptadecen-6, Heptadecen-7, Heptadecen-8, 2-Methylhexadecen-1 , 4,8,12- Trimethyltetradecen-1 , Octadecen-1 , Octadecen-2, Octadecen-3, Octadecen-4, Octadecen-5, Octadecen-6, Octadecen-7, Octadecen-8, Octadecen-9, 2-Methylheptadecen-1 , 13-Methylundecene-1, 10-methylundecene-1, undecene-2, 2-methylundecene-2, 3-methylundecene-2, 4-methylundecene-2, 5-methylundecene-2, 6-methylundecene-2, 7-methylundecene-2, 8-methylundecene-2, 9-methylundecene-2, 10-methylundecene-2, undecene-3, 2-methylundecene-3, 3-methylundecene-3, 4-methylundecene-3, 5-methylundecene-3, 6-methylundecene 3, 7-methylundecene-3, 8-methylundecene-3, 9-methylundecene-3, 10-methylundecene-3, undecene-4, 2-methylundecene-4, 3-methylundecene-4, 4-methylundecene-4, 5 Methylundecene-4,6-methylundecene-4,7-methylundecene-4,8-methylundecene-4,9-methylundecene-4,10-methylundecene-4, undecene-5,2-methylundecene-5,3-methylundecene-5, 4-methylundecene-5, 5-methylundecene-5, 6-methylundecene-5, 7-methylundecene-5, 8-methylundecene-5, 9-methylundecene-5, 10-methylundecene-5, dodecene-1, dodecene-2, Dodecene-3, dodecene-4, dodecene-5, dodecene-6, 4,8-dimethyldecene-1, 4-ethyldecene-1, 6-ethyldecene-1, 8-ethyldecene-1, 2,5,8- Trimethylnone-1, tridecene-1, tridecene-2, tridecene-3, T decene-4, tride cen-5, tridecene-6, 2-methyldodecene-1, 1-methyldodecene-1, 2,5-dimethylundecene-2, 6,10-dimethylundecene-1, tetradecene-1, tetradecene-2, tetradecene-3, tetradecene -4, tetradecene-5, tetradecene-6, tetra-decene-7,2-methyl-decene-1,2-ethyldodecene-1, 2,6,10-trimethylundecene-1, 2,6-dimethyldodecene-2, 11- Methyltridecene-1, 9-methyl-1-decene-1, 7-methyl-1-decene-1, 8-ethyldodecene-1, 6-ethyldodecene-1, 4-ethyldodecene-1, 6-butyldecene-1, pentadecene-1, penta-decene 2, pentadecene-3, pentadecene-4, pentadecene-5, pentadecene-6, pentadecene-7, 2-methyltetradecene-1, 3,7,11-trimethyldodecene-1, 2,6,10-trimethyldodecene-1, hexadecene-1. 1, hexadecene-2, hexadecene-3, hexadecene-4, hexadecene-5, hexadecene-6, hexadecene-7, hexadecene-8, 2-methylpentadecen-1, 3,7,11-trimethyltridecene-1, 4, 8,12-trimethyl tridecene-1, 1-methyl-pentadecene-1, 13-methyl-pentadecene-1, 7-methyl-pentadecene-1, 9-methyl-pentadecene-1, 12-ethyl-tetradecene-1, 8-ethyl-tetradecene-1, 4-ethyl-tetradecene-1, 8-butyl-dodecene-1, 6-butyl-dodecene-1 heptadecene-1, heptadecene-2, heptadecene-3, heptadecene-4, heptadecene-5, heptadecene -6, heptadecene-7, heptadecene-8, 2-methylhexadecene-1, 4,8,12-trimethyltetradecen-1, octadecene-1, octadecene-2, octadecene-3, octadecene-4, octadecene-5, octadecene-6 , Octadecene-7, octadecene-8, octadecene-9, 2-methylheptadecene-1, 13-
Methylheptadecen-1 , 10-Butyltetradecen-1 , 6-Butyltetradecen-1 , 8-Butyltetradecen-1 , 10- Ethlyhexadecen-1 , Nonadecen-1 , Nonadecen-2, 1-Methyloctadecen-1 , 7,11 ,15- Trimethylhexadecen-1 , Eicosen-1 , Eicosen-2, 2,6,10,14-Tetramethylhexadecen-2, 3,7,11 ,15- Tetramethylhexadecen-2, 2,7,11 ,15-Tetramethylhedexacen-1 , Docosen-1 , Docosen-2, Doco- sen-7, 4,9,13,17-Tetramethyloctadecen-1 , Tetracosen-1 , Tetracosen-2, Tetracosen-9, Hexaco- sen-1 , Hexacosene-2, Hexacosen-9, Triaconten-1 , Dotriaconten-1 oder Tritriaconten-1 sowie die mono- oder polycyclischen aliphatischen Olefine Cyclopenten, Cyclopentadien-1 ,3, Dicyclo- pentadien (3a,4,7,7a-Tetrahydro-1 H-4,7-methano-inden), 2-Methylcyclopenten-1 , 3- Methylcyclopenten-1 , 4-Methylcyclopenten-1 , 3-Butylcyclopenten-1 , Vinylcyclopentan, Cyclohe- xen, 2-Methylcyclohexen-1 , 3-Methylcyclohexen-1 , 4-Methylcyclohexen-1 , 1 ,4-Methylheptadecen-1, 10-butyltetradecen-1, 6-butyltetradecen-1, 8-butyltetradecen-1, 10-ethylhexadecen-1, nonadecen-1, nonadecen-2, 1-methyloctadecen-1, 7,11, 15-trimethylhexadecene- 1, eicosene-1, eicosene-2, 2,6,10,14-tetramethylhexadecene-2, 3,7,11,15-tetramethylhexadecene-2, 2,7,11,15-tetramethylhedexacene-1, docosen-1, Docoses-2, docoses-7, 4,9,13,17-tetramethyloctadecen-1, tetracoses-1, tetracoses-2, tetracoses-9, hexacosene-1, hexacosene-2, hexacosene-9, triacontane-1 1, dotriaconten-1 or tritriaconten-1 and the mono- or polycyclic aliphatic olefins cyclopentene, cyclopentadiene-1, 3, dicyclopentadiene (3a, 4,7,7a-tetrahydro-1H-4,7-methano-indene) , 2-methylcyclopentene-1, 3-methylcyclopentene-1, 4-methylcyclopentene-1, 3-butylcyclopentene-1, vinylcyclopentane, cyclohexene, 2-methylcyclohexene-1, 3-methylcyclohexene-1, 4-methylcyclohexene-1, 1 , 4-
Dimethylcyclohexen-1 , 3,3,5-Trimethylcyclohexen-1 , 4-Cyclopentylcyclohexen-1 , Vinylcyclohe- xan, Cyclohepten, 1 ,2-Dimethylcyclohepten-1 , cis-Cycloocten, trans-Cycloocten, 2- Methylcycloocten-1 , 3-Methylcycloocten-1 , 4-Methylcycloocten-1 , 5-Methylcycloocten-1 , Cyc- looctadien-1 ,5, Cyclononen, Cyclodecen, Cycloundecen, Cyclododecen, Bicyclo[2.2.1]hepten-2, 5-Ethylbicyclo[2.2.1]hepten-2, 2-Methylbicyclo[2.2.2]octen-2, Bicyclo[3.3.1]nonen-2 oder Bicyc- lo[3.2.2]nonen-6. Selbstverständlich können erfindungsgemäß auch Gemische vorgenannter Monomere MON eingesetzt werden. Erfindungsgemäß vorteilhaft werden lineare Alkene oder cyclische Olefine eingesetzt, welche unter Polymerisationsbedingungen flüssig sind und eine geringe Wasserlöslichkeit aufweisen und so im wässrigen Polymerisationsmedium unter Poly- merisationsbediungen als separate Phase vorliegen. Erfindungsgemäß bevorzugt werden mono- oder polycyclischen aliphatischen Olefine und insbesondere bevorzugt cis-Cycloocten, trans-Cycloocten und/oder Dicyclopentadien eingesetzt. Die Gesamtmenge an Monomeren MON (Gesamtmonomerenmenge MON) beträgt > 1 und < 90 Gew.-%, vorteilhaft > 5 und < 80 Gew.-% und insbesondere vorteilhaft > 10 und < 70 Gew.-%, jeweils bezogen auf die Gesamt- menge der resultierenden wässrigen Polymerisatdispersion. Dimethylcyclohexene-1,3,3,5-trimethylcyclohexene-1,4-cyclopentylcyclohexene-1, vinylcyclohexane, cycloheptene, 1,2-dimethylcycloheptene-1, cis-cyclooctene, trans-cyclooctene, 2-methylcyclooctene-1, 3 Methylcyclooctene-1, 4-methylcyclooctene-1, 5-methylcyclooctene-1, cyclooctadiene-1, 5, cyclonones, cyclodecene, cycloundecene, cyclododecene, bicyclo [2.2.1] heptene-2, 5-ethylbicyclo [2.2.1] heptene-2, 2-methylbicyclo [2.2.2] octene-2, bicyclo [3.3.1] nonene-2 or bicyclo [3.2.2] nonene-6. Of course, according to the invention it is also possible to use mixtures of the abovementioned monomers MON. Advantageously used according to the invention are linear alkenes or cyclic olefins which are liquid under polymerization conditions and have low water solubility and are present in the aqueous polymerization medium under polymerization conditions as a separate phase. Preference according to the invention is given to using monocyclic or polycyclic aliphatic olefins and particularly preferably cis-cyclooctene, trans-cyclooctene and / or dicyclopentadiene. The total amount of monomers MON (total monomer amount MON) is> 1 and <90 wt .-%, preferably> 5 and <80 wt .-% and particularly advantageously> 10 and <70 wt .-%, each based on the total amount the resulting aqueous polymer dispersion.
In Verfahrensschritt a3) wird wenigstens eine Teilmenge des wenigstens einen ethylenisch ungesättigten Monomeren MON vorgelegt und in Verfahrensschritt c3) die gegebenenfalls verbliebene Restmenge des wenigstens einen Monomeren MON zudosiert. Vorteilhaft werden > 50 Gew.-%, besonders vorteilhaft > 70 Gew.-% und insbesondere vorteilhaft > 90 Gew.-% der Gesamtmenge der Monomeren MON in Verfahrensschritt a3) vorgelegt. Mit besonderem Vorteil wird die Gesamtmenge der Monomeren MON im Verfahrensschritt a3) vorgelegt. In process step a3), at least a partial amount of the at least one ethylenically unsaturated monomer MON is initially charged and, in process step c3), the optionally remaining amount of the at least one monomer MON remaining is added. Advantageously,> 50 wt .-%, more preferably> 70 wt .-% and particularly advantageously> 90 wt .-% of the total amount of monomers MON in step a3) submitted. With particular advantage, the total amount of monomers MON in process step a3) is presented.
Im erfindungsgemäßen Verfahren werden optional organische Lösungsmittel OL eingesetzt, welche selbst unter Polymerisationsbedingungen (bei gegebenem Druck und gegebener Temperatur) eine geringe Wasserlöslichkeit, d.h. eine Löslichkeit < 10 g, vorteilhaft < 1 g und insbesondere vorteilhaft < 0,2 g pro Liter entionisiertem Wasser aufweisen. Die organischen Lö- sungsmittel OL können einerseits dazu dienen, die Monomeren MON zu lösen und damit deren Konzentration in den Makro- bzw. Miniemulsionströpfchen zu erniedrigen und andererseits dazu, die Stabilität der thermodynamisch instabilen Miniemulsionströpfchen zu gewährleisten (durch Verhinderung der sogenannten Ostwald-Reifung). In the process according to the invention, organic solvents OL are optionally used which have a low water solubility even under polymerization conditions (given pressure and given temperature), ie a solubility <10 g, advantageously <1 g and particularly advantageously <0.2 g per liter of deionized water , The organic solvents On the one hand, OL can serve to dissolve the monomers MON and thus lower their concentration in the macro- or miniemulsion droplets and, on the other hand, to ensure the stability of the thermodynamically unstable miniemulsion droplets (by preventing the so-called Ostwald ripening).
Geeignete organische Lösungsmittel OL sind flüssige aliphatische und aromatische Kohlenwasserstoffe mit 5 bis 30 C-Atomen, wie beispielsweise n-Pentan und Isomere, Cyclopentan, n- Hexan und Isomere, Cyclohexan, n-Heptan und Isomere, n-Octan und Isomere, n-Nonan und Isomere, n-Decan und Isomere, n-Dodecan und Isomere, n-Tetradecan und Isomere, n- Hexadecan und Isomere, n-Octadecan und Isomere, Benzol, Toluol, Ethylbenzol, Cumol, o-, m- oder p-Xylol, sowie allgemein Kohlenwasserstoffgemische im Siedebereich von 30 bis 250 °C. Ebenfalls einsetzbar sind Ester, wie beispielsweise Fettsäureester mit 10 bis 28 C-Atomen im Säureteil und 1 bis 10 C-Atomen im Alkoholteil oder Ester aus Carbonsäuren und Fettalkoholen mit 1 bis 10 C-Atomen im Carbonsäureteil und 10 bis 28 C-Atomen im Alkoholteil. Selbstver- ständlich ist es auch möglich, Gemische vorgenannter Lösemittel einzusetzen. Suitable organic solvents OL are liquid aliphatic and aromatic hydrocarbons having 5 to 30 C atoms, such as, for example, n-pentane and isomers, cyclopentane, n-hexane and isomers, cyclohexane, n-heptane and isomers, n-octane and isomers. Nonane and isomers, n-decane and isomers, n-dodecane and isomers, n-tetradecane and isomers, n-hexadecane and isomers, n-octadecane and isomers, benzene, toluene, ethylbenzene, cumene, o-, m- or p- Xylene, and generally hydrocarbon mixtures in the boiling range of 30 to 250 ° C. Also usable are esters such as fatty acid esters having 10 to 28 carbon atoms in the acid moiety and 1 to 10 carbon atoms in the alcohol moiety or esters of carboxylic acids and fatty alcohols having 1 to 10 carbon atoms in the carboxylic acid moiety and 10 to 28 carbon atoms in the alcohol moiety , Of course it is also possible to use mixtures of the abovementioned solvents.
Vorteilhaft wird das organische Lösungsmittel OL ausgewählt aus der Gruppe umfassend n- Hexan, n-Octan, n-Decan, n-Tetradecan, n-Hexadecan sowie deren isomeren Verbindungen, Benzol, Toluol und/oder Ethylbenzol. Advantageously, the organic solvent OL is selected from the group comprising n-hexane, n-octane, n-decane, n-tetradecane, n-hexadecane and their isomeric compounds, benzene, toluene and / or ethylbenzene.
Alternativ lassen sich, ähnlich zu organischen Lösungsmitteln OL, auch nicht-wasserlösliche Oligomere oder Polymere zur Verhinderung der Ostwaldreifung einsetzen, welche selbst unter Polymerisationsbedingungen (bei gegebenem Druck und gegebener Temperatur) eine geringe Wasserlöslichkeit, d.h. eine Löslichkeit < 10 g, vorteilhaft < 1 g und insbesondere vorteilhaft < 0,2 g pro Liter entionisiertem Wasser aufweisen. Geeignete Substanzen sind hierbei beispielsweise Polystyrol, Polystearylacrylat, Polybutadien, Polyisobutylen, Polynorbornen, Polyoctena- mer, Polydicyclopentadien oder Styrol-Butadien-Kautschuk. Alternatively, similar to organic solvents OL, non-water-soluble oligomers or polymers for preventing Ostwald ripening can be used which, even under polymerization conditions (at a given pressure and given temperature) have a low water solubility, i. have a solubility <10 g, preferably <1 g and particularly advantageously <0.2 g per liter of deionized water. Suitable substances here are, for example, polystyrene, polystearyl acrylate, polybutadiene, polyisobutylene, polynorbornene, polyoctenamer, polydicyclopentadiene or styrene-butadiene rubber.
In Verfahrensschritt a4) wird optional wenigstens eine Teilmenge des organischen Lösungsmit- tels OL vorgelegt und in Verfahrensschritt c4) die gegebenenfalls verbliebene Restmenge des organischen Lösungsmittels OL zudosiert. Vorteilhaft werden > 50 Gew.-%, besonders vorteilhaft > 70 Gew.-% und insbesondere vorteilhaft > 90 Gew.-% der Gesamtmenge organischen Lösungsmittels OL in Verfahrensschritt a4) vorgelegt. Mit besonderem Vorteil wird die Gesamtmenge organischen Lösungsmittels OL im Verfahrensschritt a4) vorgelegt. In process step a4), optionally at least a partial amount of the organic solvent OL is initially charged, and in process step c4) the residual amount of organic solvent OL which may be left is metered in. Advantageously,> 50% by weight, particularly advantageously> 70% by weight and in particular advantageously> 90% by weight of the total amount of organic solvent OL in process step a4). With particular advantage, the total amount of organic solvent OL is presented in process step a4).
Die Gesamtmenge organischen Lösungsmittels OL beträgt > 0,1 und < 15 Gew.-%, vorteilhaft > 0,5 und < 10 Gew.-% und insbesondere vorteilhaft > 1 und < 8 Gew.-%, jeweils bezogen auf die Gesamtmonomerenmenge MON. Durch einfaches Mischen oder Rühren der in den Verfahrensschritten a1 ) bis a4) in einem Gefäß vorgelegten Komponenten Wasser, Dispergiermittel DP, Monomeren MON sowie gegebenenfalls Lösungsmittel OL wird eine Monomerenmakroemulsion ausgebildet, deren mittlerer Tröpfchendurchmesser > 2 μιτι, häufig > 5 μιη und oft > 10 μm beträgt. Der mittlere Tröpfchendurchmesser lässt sich in einfacher, dem Fachmann geläufigen Art, beispielsweise nach der Methode der dynamischen Lichtstreuung (DLS) ermitteln. Durch Energieeintrag wird im erfindungsgemäßen Verfahrensschritt b) die Monomerenmakroe- mulsion in eine Monomerenminiemulsion mit einem mittleren Tröpfchendurchmesser < 1500 nm überführt. The total amount of organic solvent OL is> 0.1 and <15 wt .-%, advantageously> 0.5 and <10 wt .-% and particularly advantageously> 1 and <8 wt .-%, each based on the total monomer MON. By simply mixing or stirring the water, dispersing agent DP, monomers MON and, if appropriate, solvent OL which are initially introduced in process steps a1) to a4) into a vessel, a monomer macroemulsion is formed whose mean Droplet diameter> 2 μιτι, often> 5 μιη and often> 10 microns. The mean droplet diameter can be determined in a simple manner familiar to the person skilled in the art, for example by the method of dynamic light scattering (DLS). By energy input in the process step b) according to the invention, the monomer macro emulsion is converted into a monomer miniemulsion having an average droplet diameter of <1500 nm.
Die allgemeine Herstellung von wässrigen Miniemulsionen aus wässrigen Makroemulsionen oder Mischungen unter Energieeintrag ist dem Fachmann hinreichend bekannt (siehe beispielsweise M.S. El-Aasser et al., Journal of Applied Polymer Science, Vol. 43, Seiten 1059 bis 1066 [1991] oder WO-A 2006/053712). The general preparation of aqueous miniemulsions from aqueous macroemulsions or mixtures with energy input is well known to the person skilled in the art (see, for example, MS El-Aasser et al., Journal of Applied Polymer Science, Vol. 43, pages 1059 to 1066 [1991] or WO-A 2006/053712).
Zu diesem Zweck können beispielsweise Hochdruckhomogenisatoren angewendet werden. Die Feinverteilung der Komponenten wird in diesen Maschinen durch einen hohen lokalen Energieeintrag erzielt. Zwei Varianten haben sich diesbezüglich besonders bewährt. For example, high-pressure homogenizers can be used for this purpose. The fine distribution of the components is achieved in these machines by a high local energy input. Two variants have proven particularly useful in this regard.
Bei der ersten Variante wird die wässrige Makroemulsion über eine Kolbenpumpe auf über 1000 bar verdichtet und anschließend durch einen engen Spalt entspannt. Die Wirkung beruht hier auf einem Zusammenspiel von hohen Scher- und Druckgradienten und Kavitation im Spalt. Ein Beispiel für einen Hochdruckhomogenisator, der nach diesem Prinzip funktioniert, ist der Niro-Soavi Hochdruckhomogenisator Typ NS1001 L Panda. In the first variant, the aqueous macroemulsion is compressed via a piston pump to over 1000 bar and then expanded through a narrow gap. The effect is based on an interaction of high shear and pressure gradients and cavitation in the gap. An example of a high-pressure homogenizer that works on this principle is the Niro-Soavi high-pressure homogenizer type NS1001 L Panda.
Bei der zweiten Variante wird die verdichtete wässrige Makroemulsion über zwei gegeneinan- der gerichtete Düsen in eine Mischkammer entspannt. Die Feinverteilungswirkung ist hier vor allem von den hydrodynamischen Verhältnissen in der Mischkammer abhängig. Ein Beispiel für diesen Homogenisatortyp ist der Microfluidizer Typ M 120 E der Microfluidics Corp. In diesem Hochdruckhomogenisator wird die wässrige Makroemulsion mittels einer pneumatisch betriebenen Kolbenpumpe auf Drücke von bis zu 1200 atm komprimiert und über eine sogenannte "in- teraction Chamber" entspannt. In der "interaction Chamber" wird der Emulsionsstrahl in einem Mikrokanalsystem in zwei Strahlen aufgeteilt, die unter einem Winkel von 180° aufeinanderge- führt werden. Ein weiteres Beispiel für einen nach dieser Homogenisierungsart arbeitenden Homogenisator ist der Nanojet Typ Expo der Nanojet Engineering GmbH. Allerdings sind beim Nanojet anstatt eines festen Kanalsystems zwei Homogenisierventile eingebaut, die mecha- nisch verstellt werden können. In the second variant, the compressed aqueous macroemulsion is expanded into two mixing nozzles via two nozzles directed towards one another. The fine distribution effect is mainly dependent on the hydrodynamic conditions in the mixing chamber. An example of this homogenizer type is the microfluidizer type M 120 E Microfluidics Corp. In this high-pressure homogenizer, the aqueous macroemulsion is compressed by means of a pneumatically operated piston pump to pressures of up to 1200 atm and released via a so-called interaction chamber. In the "interaction chamber", the emulsion beam is split into two beams in a microchannel system, which are guided at an angle of 180 °. Another example of a homogenizer operating according to this type of homogenization is the Nanojet Type Expo from Nanojet Engineering GmbH. However, in the Nanojet, instead of a fixed duct system, two homogenizing valves are installed, which can be adjusted mechanically.
Neben den zuvor erläuterten Prinzipien kann die Homogenisierung aber z.B. auch durch Anwendung von Ultraschall (z.B. Branson Sonifier II 450) erfolgen. Die Feinverteilung beruht hier auf Kavitationsmechanismen. Für die Homogenisierung mittels Ultraschall sind grundsätzlich auch die in der GB-A 22 50 930 und der US-A 5,108,654 beschriebenen Vorrichtungen geeignet. Die Qualität der im Schallfeld erzeugten wässrigen Miniemulsion hängt dabei nicht nur von der eingebrachten Schallleistung, sondern auch noch von anderen Faktoren, wie z.B. der Inten- sitätsverteilung des Ultraschalls in der Mischkammer, der Verweilzeit, der Temperatur und den physikalischen Eigenschaften der zu emulgierenden Stoffe, beispielsweise von der Zähigkeit, der Grenzflächenspannung und dem Dampfdruck ab. Die resultierende Tröpfchengröße hängt dabei u.a. von der Konzentration des Dispergiermittels sowie von der bei der Homogenisierung eingetragenen Energie ab und ist daher z.B. durch entsprechende Veränderung des Homogenisierungsdrucks bzw. der entsprechenden Ultraschallenergie gezielt einstellbar. In addition to the principles described above, however, the homogenization can also be carried out, for example, by using ultrasound (eg Branson Sonifier II 450). The fine distribution is based here on cavitation mechanisms. For the homogenization by means of ultrasound, the devices described in GB-A 22 50 930 and US Pat. No. 5,108,654 are also suitable in principle. The quality of the aqueous miniemulsion produced in the sound field does not only depend on the sound power applied, but also on other factors, such as the intensity of the sound. sitätsverteilung of ultrasound in the mixing chamber, the residence time, the temperature and the physical properties of the substances to be emulsified, for example on the toughness, the interfacial tension and the vapor pressure. The resulting droplet size depends, inter alia, on the concentration of the dispersant and of the energy introduced during the homogenization and can therefore be specifically adjusted, for example, by a corresponding change in the homogenization pressure or the corresponding ultrasound energy.
Für die Herstellung der erfindungsgemäß vorteilhaft verwendeten wässrigen Miniemulsion aus konventionellen Makroemulsionen mittels Ultraschall hat sich insbesondere die in der älteren deutschen Patentanmeldung DE 197 56 874 beschriebene Vorrichtung bewährt. Hierbei handelt es sich um eine Vorrichtung, die einen Reaktionsraum oder einen Durchflussreaktionskanal und wenigstens ein Mittel zum Übertragen von Ultraschallwellen auf den Reaktionsraum bzw. den Durchflussreaktionskanal aufweist, wobei das Mittel zum Übertragen von Ultraschallwellen so ausgestaltet ist, dass der gesamte Reaktionsraum, bzw. der Durchflussreaktionskanal in einem Teilabschnitt, gleichmäßig mit Ultraschallwellen bestrahlt werden kann. Zu diesem Zweck ist die Abstrahlfläche des Mittels zum Übertragen von Ultraschallwellen so ausgestaltet, dass sie im Wesentlichen der Oberfläche des Reaktionsraums entspricht bzw., wenn der Reaktionsraum ein Teilabschnitt eines Durchfluss-Reaktionskanals ist, sich im Wesentlichen über die gesamte Breite des Kanals erstreckt, und dass die zu der Abstrahlfläche im Wesentlichen senkrechte Tiefe des Reaktionsraums geringer als die maximale Wirkungstiefe der Ultraschallübertragungsmittel ist. For the preparation of the aqueous miniemulsion from conventional macroemulsions by means of ultrasound advantageously used according to the invention, in particular the device described in the earlier German patent application DE 197 56 874 has proven itself. This is a device which has a reaction space or a flow-through reaction channel and at least one means for transmitting ultrasonic waves to the reaction space or the flow-through reaction channel, wherein the means for transmitting ultrasonic waves is designed such that the entire reaction space, or the Flow reaction channel in a section, can be uniformly irradiated with ultrasonic waves. For this purpose, the radiating surface of the means for transmitting ultrasonic waves is designed so that it substantially corresponds to the surface of the reaction space or, when the reaction space is a partial section of a flow-through reaction channel, extending over substantially the entire width of the channel, and the depth of the reaction space, which is substantially perpendicular to the emission surface, is less than the maximum effective depth of the ultrasound transmission means.
Unter dem Begriff "Tiefe des Reaktionsraums" versteht man hier im Wesentlichen den Abstand zwischen der Abstrahlfläche des Ultraschallübertragungsmittels und dem Boden des Reaktions- raums. The term "depth of the reaction space" is understood here essentially to mean the distance between the emission surface of the ultrasound transmission medium and the bottom of the reaction space.
Bevorzugt werden Reaktionsraumtiefen bis zu 100 mm. Vorteilhaft sollte die Tiefe des Reaktionsraums nicht mehr als 70 mm und besonders vorteilhaft nicht mehr als 50 mm betragen. Die Reaktionsräume können prinzipiell auch eine sehr geringe Tiefe aufweisen, jedoch sind im Hin- blick auf eine möglichst geringe Verstopfungsgefahr und eine leichte Reinigbarkeit sowie einen hohen Produktdurchsatz Reaktionsraumtiefen bevorzugt, die wesentlich größer als beispielsweise die üblichen Spalthöhen bei Hochdruckhomogenisatoren sind und meist über 10 mm betragen. Die Tiefe des Reaktionsraums ist vorteilhafterweise veränderbar, beispielsweise durch unterschiedlich tief in das Gehäuse eintauchenden Ultraschallübertragungsmittel. Preferred reaction depths are up to 100 mm. Advantageously, the depth of the reaction space should not be more than 70 mm and particularly advantageously not more than 50 mm. The reaction spaces may in principle also have a very small depth, but preference is given to reaction depths which are substantially greater than, for example, the usual gap heights in high-pressure homogenizers and are usually over 10 mm in view of the lowest possible risk of clogging and easy cleanability and high product throughput , The depth of the reaction space is advantageously variable, for example, by different depth deep into the housing ultrasonic transmitting agent.
Gemäß einer ersten Ausführungsform dieser Vorrichtung entspricht die Abstrahlfläche des Mittels zum Übertragen von Ultraschall im Wesentlichen der Oberfläche des Reaktionsraums. Diese Ausführungsform dient zum absatzweisen Herstellen der erfindungsgemäß eingesetzten Miniemulsionen. Mit dieser Vorrichtung kann Ultraschall auf den gesamten Reaktionsraum ein- wirken. Im Reaktionsraum wird durch den axialen Schallstrahlungsdruck eine turbulente Strömung erzeugt, die eine intensive Quervermischung bewirkt. Gemäß einer zweiten Ausführungsform weist eine derartige Vorrichtung eine Durchflusszelle auf. Dabei ist das Gehäuse als Durchfluss-Reaktionskanal ausgebildet, der einen Zufluss und einen Abfluss aufweist, wobei der Reaktionsraum ein Teilabschnitt des Durchflussreaktionska- nals ist. Die Breite des Kanals ist die im Wesentlichen senkrecht zur Strömungsrichtung verlau- fende Kanalausdehnung. Hierin überdeckt die Abstrahlfläche die gesamte Breite des Strömungskanals quer zur Strömungsrichtung. Die zu dieser Breite senkrechte Länge der Abstrahlfläche, das heißt die Länge der Abstrahlfläche in Strömungsrichtung, definiert den Wirkungsbereich des Ultraschalls. Gemäß einer vorteilhaften Variante dieser ersten Ausführungsform, hat der Durchfluss-Reaktionskanal einen im Wesentlichen rechteckigen Querschnitt. Wird in einer Seite des Rechtecks ein ebenfalls rechteckiges Ultraschallübertragungsmittel mit entsprechenden Abmessungen eingebaut, so ist eine besonders wirksame und gleichmäßige Beschallung gewährleistet. Aufgrund der im Ultraschallfeld herrschenden turbulenten Strömungsverhältnisse, kann jedoch auch beispielsweise ein rundes Übertragungsmittel ohne Nachteile eingesetzt werden. Außerdem können anstelle eines einzigen Ultraschallübertragungsmittels mehrere se- parate Übertragungsmittel angeordnet werden, die in Strömungsrichtung gesehene hintereinander geschaltet sind. Dabei können sowohl die Abstrahlflächen als auch die Tiefe des Reaktionsraums, das heißt der Abstand zwischen der Abstrahlfläche und dem Boden des Durchflusskanals variieren. Besonders vorteilhaft ist das Mittel zum Übertragen von Ultraschallwellen als Sonotrode ausgebildet, deren der freien Abstrahlfläche abgewandtes Ende mit einem Ultraschallwandler gekoppelt ist. Die Ultraschallwellen können beispielsweise durch Ausnutzung des umgekehrten piezoelektrischen Effekts erzeugt werden. Dabei werden mit Hilfe von Generatoren hochfrequente elektrische Schwingungen (üblicherweise im Bereich von 10 bis 100 kHz, vorzugsweise zwi- sehen 20 und 40 kHz) erzeugt, über einen piezoelektrischen Wandler in mechanische Schwingungen gleicher Frequenz umgewandelt und mit der Sonotrode als Übertragungselement in das zu beschallende Medium eingekoppelt. According to a first embodiment of this device, the emitting surface of the means for transmitting ultrasound essentially corresponds to the surface of the reaction space. This embodiment serves for the batch production of the miniemulsions used according to the invention. With this device, ultrasound can act on the entire reaction space. In the reaction space a turbulent flow is created by the axial sound radiation pressure, which causes an intensive cross-mixing. According to a second embodiment, such a device has a flow cell. In this case, the housing is designed as a flow-through reaction channel, which has an inflow and an outflow, wherein the reaction space is a subsection of the flow-through reaction channel. The width of the channel is the channel extent extending essentially perpendicular to the flow direction. Herein, the radiating surface covers the entire width of the flow channel transversely to the flow direction. The length of the radiating surface perpendicular to this width, that is to say the length of the radiating surface in the direction of flow, defines the effective range of the ultrasound. According to an advantageous variant of this first embodiment, the flow-through reaction channel has a substantially rectangular cross-section. If a likewise rectangular ultrasonic transmission medium with appropriate dimensions is installed in one side of the rectangle, a particularly effective and uniform sound is guaranteed. However, due to the turbulent flow conditions prevailing in the ultrasonic field, it is also possible, for example, to use a round transmission medium without disadvantages. In addition, instead of a single ultrasound transmission means, a plurality of separate transmission means can be arranged, which are connected in series in the flow direction. In this case, both the radiating surfaces and the depth of the reaction space, that is, the distance between the radiating surface and the bottom of the flow channel vary. Particularly advantageously, the means for transmitting ultrasonic waves is designed as a sonotrode whose end facing away from the free emitting surface is coupled to an ultrasonic transducer. The ultrasonic waves may be generated, for example, by utilizing the reverse piezoelectric effect. In this case, by means of generators high-frequency electrical oscillations (usually in the range of 10 to 100 kHz, preferably between 20-40 kHz see) generated, converted via a piezoelectric transducer into mechanical vibrations of the same frequency and with the sonotrode as a transmission element in the sonicated Medium coupled.
Besonders bevorzugt ist die Sonotrode als stabförmiger, axial abstrahlender λ/2 (bzw. Vielfache von A/2)-Längsschwinger ausgebildet. Eine solche Sonotrode kann beispielsweise mittels eines an einem ihrer Schwingungsknoten vorgesehenen Flansches in einer Öffnung des Gehäuses befestigt werden. Damit kann die Durchführung der Sonotrode in das Gehäuse druckdicht ausgebildet werden, so dass die Beschallung auch unter erhöhtem Druck im Reaktionsraum durchgeführt werden kann. Vorzugsweise ist die Schwingungsamplitude der Sonotrode regelbar, das heißt die jeweils eingestellte Schwingungsamplitude wird online überprüft und gegebenenfalls automatisch nachgeregelt. Die Überprüfung der aktuellen Schwingungsamplitude kann beispielsweise durch einen auf der Sonotrode angebrachten piezoelektrischen Wandler oder einen Dehnungsmessstreifen mit nachgeschalteter Auswerteelektronik erfolgen. Gemäß einer weiteren vorteilhaften Ausbildung derartiger Vorrichtungen sind im Reaktionsraum Einbauten zur Verbesserung des Durchströmungs- und Durchmischungsverhaltens vorgese- hen. Bei diesen Einbauten kann es sich beispielsweise um einfache Ablenkplatten oder unterschiedlichste, poröse Körper handeln. Particularly preferably, the sonotrode is designed as a rod-shaped, axially radiating λ / 2 (or multiple of A / 2) longitudinal oscillator. Such a sonotrode can be fastened, for example, by means of a flange provided on one of its vibration nodes in an opening in the housing. Thus, the implementation of the sonotrode can be formed in the housing pressure-tight, so that the sound can be carried out under elevated pressure in the reaction chamber. Preferably, the oscillation amplitude of the sonotrode is adjustable, that is, the respectively set oscillation amplitude is checked online and optionally readjusted automatically. The checking of the current oscillation amplitude can be done for example by a mounted on the sonotrode piezoelectric transducer or a strain gauge with downstream evaluation. According to a further advantageous embodiment of such devices, internals for improving the throughflow and mixing behavior are provided in the reaction space. hen. These internals may be, for example, simple baffles or different, porous body.
Im Bedarfsfall kann die Vermischung außerdem durch ein zusätzliches Rührwerk weiter intensi- viert werden. Vorteilhafterweise ist der Reaktionsraum temperierbar. If necessary, the mixing can be further intensified by an additional agitator. Advantageously, the reaction space is temperature controlled.
Ebenfalls zur vorteilhaften Herstellung einer Monomerenminiemusion dient ein Verfahren, wie es in der WO-A 2006/053712, Seite 3, Zeile 13 bis Seite 6, Zeile 24 offenbart ist. Durch seine ausdrückliche Bezugnahme soll dieses Verfahren als Bestandteil dieser Schrift angesehen wer- den. Also for the advantageous production of a monomer miniemusion is a method as disclosed in WO-A 2006/053712, page 3, line 13 to page 6, line 24. By expressly referring to it, this procedure is considered to be part of this document.
Aus den vorgenannten Ausführungen wird klar, dass erfindungsgemäß nur solche organischen Lösungsmittel OL und/oder Monomere MON eingesetzt werden können, deren Löslichkeit im wässrigen Medium unter Polymerisationsbedingungen klein genug ist, um mit den angegebe- nen Mengen Lösungsmittel- und/oder Monomerentröpfchen < 1500 nm als separate Phase auszubilden. It is clear from the above statements that according to the invention only those organic solvents OL and / or MON monomers can be used whose solubility in the aqueous medium under polymerization conditions is low enough to produce solvent and / or monomer droplets <1500 nm with the stated amounts as a separate phase.
Die mittleren Durchmesser der Monomerentröpfchen in der Monomerenminiemulsion nach Verfahrensschritt b) betragen < 1500 nm, vorteilhaft > 100 und < 1300 nm und insbesondere vor- teilhaft > 120 und < 900 nm. The average diameters of the monomer droplets in the monomer miniemulsion according to process step b) are <1500 nm, advantageously> 100 and <1300 nm and in particular advantageously> 120 and <900 nm.
Wesentlich ist, dass im Rahmen dieser Schrift die Begriffe Monomerenmakroemulsion bzw. Monomerenminieemulsion selbstverständlich auch die Makroemulsionen bzw. Miniemulsionen der entsprechenden Monomer MON/Lösungsmittel OL-Mischungen mit umfassen sollen. It is essential that within the scope of this document the terms monomer macroemulsion or monomermineral emulsion should of course also include the macroemulsions or miniemulsions of the corresponding monomer MON / solvent OL mixtures.
Die mittleren Durchmesser der Monomerentröpfchen werden im Rahmen dieser Schrift prinzipiell nach dem Prinzip der quasielastischen dynamischen Lichtstreuung bei Raumtemperatur bestimmt (wobei der sogenannte z-mittlere Tröpfchendurchmesser dz der unimodalen Analyse der Autokorrelationsfunktion angegeben wird), und mittels eines Coulter N4 Plus Particle Analy- sers der Fa. Coulter Scientific Instruments, gemessen. Die Messungen werden an verdünnten wässrigen (Minie/Makro)Monomerenemulsionen vorgenommen, deren Gehalt an dispersen Bestandteilen ca. 0,005 bis 0,01 Gew.-% beträgt. Die Verdünnung wird dabei mittels entionisiertem Wasser vorgenommen, das zuvor mit den in der wässrigen (Mi- nie/Makro)Monomerenemulsion enthaltenen Monomeren MON sowie gegebenenfalls gering in Wasser löslichen organischen Lösungsmitteln OL bei Raumtemperatur gesättigt worden war. Letztere Maßnahme soll verhindern, dass mit der Verdünnung eine Änderung der Tröpfchendurchmesser einhergeht. The average diameters of the monomer droplets are determined in principle within the scope of this document on the principle of quasi-elastic dynamic light scattering at room temperature (the so-called z-mean droplet diameter d z of the unimodal analysis of the autocorrelation function being indicated) and by means of a Coulter N4 Plus particle analyzer from Coulter Scientific Instruments. The measurements are carried out on dilute aqueous (mini / macro) monomer emulsions whose content of disperse constituents is about 0.005 to 0.01% by weight. The dilution is carried out by means of deionized water, which had previously been saturated with the monomers MON contained in the aqueous (mineral / macro) monomer emulsion and, if appropriate, slightly water-soluble organic solvents OL at room temperature. The latter measure is intended to prevent the dilution from resulting in a change in the droplet diameter.
In einem Gefäß werden danach c) der erhaltenen Monomerenminiemulsion bei Polymerisationstemperatur Thereafter, in a vessel, c) the resulting monomer miniemulsion are subjected to polymerization
c1 ) die gegebenenfalls verbliebene Restmenge des Wassers, c2) die gegebenenfalls verbliebene Restmenge des wenigstens einen Dispergiermittels DP, c3) die gegebenenfalls verbliebene Restmenge des wenigstens einen Monomeren MON, c4) die gegebenenfalls verbliebene Restmenge des organischen Lösungsmittes OL, und c5) die Gesamtmenge des Metallcarbenkomplexes K c1) any remaining amount of water, c2) any residual amount of the at least one dispersing agent DP, c3) the residual amount of the at least one monomer MON remaining, c4) the remaining amount of the organic solvent OL, if any, and c5) the total amount of the metal carbene complex K.
zugegeben und das wenigstens eine Monomere M bis zu einem Monomerenumsatz > 80 added and the at least one monomer M up to a monomer conversion> 80
Gew.-%, vorteilhaft > 90 Gew.-% und insbesondere vorteilhaft > 95 Gew.-%polymerisiert. Wt .-%, advantageously> 90 wt .-% and particularly advantageously> 95 wt .-% polymerized.
Dabei stellen die Reaktionsschritte c1 ) bis c5) nicht notwendigerweise eine Reihenfolge dar, so dass es - abhängig vom Metallcarbenkomplex K oder den zu polymerisierenden Monomeren MON - auch vorteilhaft sein kann, zuerst die Gesamtmenge des Metallkomplexes K gemäß c5) der in Verfahrensschritt b) erhaltenen Monomerenminiemulsion bei Polymerisationstemperatur zuzugeben und erst danach die gegebenenfalls verbliebenden Restmengen an Wasser gemäß c1 ), Dispergiermittel DP gemäß c2), Monomeren MON gemäß c3) und/oder Lösungsmittel OL gemäß c4) diskontinuierlich oder kontinuierlich mit gleichmäßigen oder sich ändernden Men- genstrom zuzudosieren. The reaction steps c1) to c5) do not necessarily represent an order, so that it may also be advantageous, depending on the metal carbene complex K or the monomers MON to be polymerized, first the total amount of the metal complex K according to c5) obtained in process step b) Monomerenminiemulsion add at polymerization and only then any remaining amounts of water according to c1), dispersant DP according to c2) monomers MON according to c3) and / or solvent OL according to c4) metered discontinuously or continuously with uniform or changing quantitative genstrom.
Vorteilhaft ist es jedoch, wenn die Gesamtmenge des Metallcarbenkomplexes K zuerst in einer Teilmenge des Wassers gelöst und danach die erhaltene wässrige Metallcarbenkomplex- Lösung der Monomerenminiemulsion in Verfahrensschritt c5) unter intensiver Vermischung zu- gegeben wird. However, it is advantageous if the total amount of the metal carbene complex K is first dissolved in a subset of the water and then the resulting aqueous metal carbene complex solution of the monomer miniemulsion in process step c5) is added with intensive mixing.
Dabei ist es im Rahmen der vorliegenden Erfinding selbstverständlich, dass die Verfahrensschritte gemäß der Untergruppen a), b) sowie c) in ein und demselbem Gefäß oder in unterschiedlichen Gefäßen durchgeführt werden können. It is understood in the context of the present invention that the process steps according to subgroups a), b) and c) can be carried out in one and the same vessel or in different vessels.
Erfindungsgemäß beträgt die Polymerisationstemperatur > 0 und < 150 °C, vorteilhaft > 10 und < 100 °C und insbesondere vorteilhaft > 20 und < 90 °C. Beträgt die Polymerisationstemperatur > 100 °C, so ist es vorteilhaft, dass der Atmosphärendruck über dem wässrigen Polymerisationsmedium so groß (> 1 atm absolut) gewählt wird, dass ein nachteiliges Sieden des Polymeri- sationsgemisches unterdrückt wird. Von Bedeutung dabei ist, dass die erfindungsgemäßenAccording to the invention, the polymerization temperature is> 0 and <150 ° C, advantageously> 10 and <100 ° C and particularly advantageously> 20 and <90 ° C. If the polymerization temperature is> 100 ° C., it is advantageous that the atmospheric pressure above the aqueous polymerization medium is chosen to be so large (> 1 atm absolute) that a disadvantageous boiling of the polymerization mixture is suppressed. It is important that the invention
Ammoniumkomplexe auf Basis der Komplexverbindungen 3 und 4 bei einer Temperatur > 50 °C und bevorzugt bei einer Temperatur > 80 °C besonders aktiv sind, woraus hohe ROMP- Reaktionsgeschwindigkeiten resultieren. Insbesondere im industriellen Maßstab weisen diese Reaktionstemperaturen Vorteile auf, das sich die bei der ROMP-Reaktion frei werdende Reakti- onsenergie durch übliches Kühlwasser in einfacher Weise austragen lässt; ernergieaufwendige Kühlsolen mit Temperaturen < 0 °C oder teure Flüssiggase werden nicht benötigt. Ammonium complexes based on the complex compounds 3 and 4 at a temperature> 50 ° C and preferably at a temperature> 80 ° C are particularly active, resulting in high ROMP reaction rates. In particular, on an industrial scale, these reaction temperatures have advantages that the reaction energy liberated in the ROMP reaction can be easily removed by conventional cooling water; Energy-consuming cooling brines with temperatures <0 ° C or expensive liquefied gases are not required.
Aufgrund der Sauerstoffempfindlichkeit der Metallcarbenkomplexe K erfolgt das Handling der Metallcarbenkomplexe K selbst, wie auch die Polymerisationsreaktion vorteilhaft unter einer sauerstofffreien Inertgasatmosphäre, beispielsweise unter einer Stickstoff- oder Argonatmosphäre. Erfindungsgemäß vorteilhaft beträgt das molare Mengenverhältnis von Monomer MON zum Metallionenkomplex K > 1000, insbesondere > 5000 und besonders vorteilhaft > 10000. Owing to the oxygen sensitivity of the metal carbene complexes K, the handling of the metal carbene complexes K itself as well as the polymerization reaction take place advantageously under an oxygen-free inert gas atmosphere, for example under a nitrogen or argon atmosphere. Advantageously in accordance with the invention, the molar ratio of monomer MON to metal ion complex K is> 1000, in particular> 5000 and particularly advantageously> 10000.
Ebenfalls erfindungsgemäß vorteilhaft ist es, wenn der pH-Wert des wässrigen Polymerisati- onsmediums während und nach der Zugabe des Metallcarbenkomplexes K in Verfahrensschritt c5) < 6, insbesondere < 5 und besonders vorteilhaft < 4 ist. Die Einstellung des pH-Wertes erfolgt mit nicht störenden üblichen verdünnten Säuren oder Basen, wie beispielsweise Schwefelsäure, Phosphorsäure, Salzsäure, Ammoniumhydroxid oder Natron- bzw. Kalilauge. Die Messung der pH-Werte erfolgt bei 20 bis 25 °C (Raumtemperatur) mit einem geeichten pH-Meter. It is likewise advantageous according to the invention if the pH of the aqueous polymerization medium during and after the addition of the metal carbene complex K in process step c5) is <6, in particular <5 and particularly advantageously <4. The adjustment of the pH is carried out with non-interfering conventional dilute acids or bases, such as sulfuric acid, phosphoric acid, hydrochloric acid, ammonium hydroxide or sodium or potassium hydroxide solution. The pH values are measured at 20 to 25 ° C (room temperature) with a calibrated pH meter.
Neben den vorgenannten Komponenten können der Monomerenmakroemulsion, der Monome- renminiemulsion und/oder der wässrigen Polymerisatdispersion erfindungsgemäß gegebenenfalls noch weitere übliche Hilfsmittel, wie beispielsweise Biozide, Verdickungsmittel, Entschäumer, Puffersubstanzen etc. zugesetzt werden. In addition to the abovementioned components, it is also possible, according to the invention, to add further customary auxiliaries, such as, for example, biocides, thickeners, defoamers, buffer substances etc. to the monomer macroemulsion, the monomer mineral emulsion and / or the aqueous polymer dispersion.
Die erfindungsgemäße Polymerisationsreaktion unter Ausbildung einer wässrigen Polymerisatdispersion verläuft in der Regel sehr rasch, wobei der Monomerenumsatz in einer dem Fachmann geläufigen Art und Weise, beispielsweise mittels eines Reaktionskalorimeters, verfolgt werden kann. As a rule, the polymerization reaction according to the invention with the formation of an aqueous polymer dispersion proceeds very rapidly, the monomer conversion being able to be monitored in a manner familiar to the person skilled in the art, for example by means of a reaction calorimeter.
Nach dem erfindungsgemäßen Verfahren werden innerhalb kurzer Polymerisationszeiten und unter milden Polymerisationsbedingungen stabile wässrige Polymerisatdispersionen zugänglich. Selbstverständlich können die nach dem erfindungsgemäßen Verfahren zugänglichen erfindungsgemäßen wässrigen Polymerisatdispersionen zur Herstellung von Klebstoffen, Dichtmassen, Kunststoffputzen, Papierstreichmassen, Faservliesen, Anstrichmitteln und Schlagzähmodi- fier, sowie zur Verfestigung von Sand, Textilveredelung, Lederveredelung, oder zur Modifizierung von mineralischen Bindemitteln und Kunststoffen, eingesetzt werden. The process according to the invention makes stable aqueous polymer dispersions accessible within short polymerization times and under mild polymerization conditions. Of course, the aqueous polymer dispersions according to the invention which are obtainable by the process according to the invention can be used for the production of adhesives, sealants, plastic plasters, paper coating slips, nonwoven fabrics, paints and impact modifiers, and for the consolidation of sand, textile finishing, leather finishing, or for the modification of mineral binders and plastics become.
Ferner sind aus den erfindungsgemäßen wässrigen Polymerisatdispersionen in einfacher Weise (beispielsweise Gefrier- oder Sprühtrocknung) die entsprechenden Polymerisatpulver zugänglich. Diese erfindungsgemäß zugänglichen Polymerisatpulver lassen sich ebenfalls zur Herstellung von Klebstoffen, Dichtmassen, Kunststoffputzen, Papierstreichmassen, Faservlie- sen, Anstrichmitteln und Schlagzähmodifier, sowie zur Verfestigung von Sand, Textilveredelung, Lederveredelung, oder zur Modifizierung von mineralischen Bindemitteln und Kunststoffen einsetzen. Furthermore, the corresponding polymer powders can be obtained in a simple manner from the novel aqueous polymer dispersions (for example freeze drying or spray drying). These polymer powders obtainable according to the invention can likewise be used for the production of adhesives, sealants, plastic plasters, paper coating slips, fiber fillers, paints and impact modifiers, and for the consolidation of sand, textile finishing, leather finishing, or for the modification of mineral binders and plastics.
Die Erfindung soll anhand nachfolgender nicht einschränkender Beispiele erläutert werden. The invention will be illustrated by the following non-limiting examples.
Beispiele I Herstellung der Komplexverbindungen Examples I Preparation of complex compounds
1.1 Herstellung der Komplexverbindungen 1 und 2 1.1 Preparation of complex compounds 1 and 2
1.1.1 Herstellung von Dichloro-bis(tricyclohexylphosphin)-benzyliden-ruthenium-(ll) (5) 1.1.1 Preparation of dichloro-bis (tricyclohexylphosphine) -benzylidene-ruthenium (II) (5)
Figure imgf000024_0001
Figure imgf000024_0001
(5)  (5)
Die Herstellung der Dichloroverbindung 5 erfolgte wie in Beispiel 9 der US-A 5,912,376 beschrieben. Dabei steht in den Strukturformeln der Beispiele„Cy" für einen Cyclohexylrest.  The preparation of the dichloro compound 5 was carried out as described in Example 9 of US Pat. No. 5,912,376. In this case, in the structural formulas of the examples "Cy" stands for a cyclohexyl radical.
1.1.2 Herstellung von Dichloro-1 ,3-bis(2,6-dimethyl-4-dimethylaminophenyl)-imidazolidin-2- yliden-tricyclohexylphosphin-benzyliden-ruthenium-(ll) (6) 1.1.2 Preparation of Dichloro-1,3-bis (2,6-dimethyl-4-dimethylaminophenyl) -imidazolidin-2-ylidene-tricyclohexylphosphine-benzylidene-ruthenium (II) (6)
Figure imgf000024_0002
Figure imgf000024_0002
(6)  (6)
Ausgehend von der Dichloroverbindung 5 erfolgte die Herstellung der Rutheniumkomplexes 6 wie in S. L. Balof, S. J. P'Pool, N. J. Berger, E. J. Valente, A. M. Shiller, H.-J. Schanz, Dalton Trans., 2008, Seiten 5791 bis 5799 beschrieben.  Starting from the dichloro compound 5, the preparation of the ruthenium complex 6 was carried out as described in S.L. Balof, S.J. P'Pool, N.J. Berger, E.J. Valente, A.M. Shiller, H.-J. Schanz, Dalton Trans., 2008, pp. 5791-5799.
1.1.3 Herstellung von Dichloro-1 ,3-bis(2,6-dimethyl-4-dimethylaminophenyl)-imidazolidin-2- yliden-bis(4-dimethylaminopyridin)-benzyliden-ruthenium-(ll) (1 ) 1.1.3 Preparation of Dichloro-1,3-bis (2,6-dimethyl-4-dimethylaminophenyl) imidazolidin-2-ylidene bis (4-dimethylaminopyridine) benzylidene ruthenium (II) (1)
488 mg (4,00 mmol) 4-Dimethylaminopyridin (DM AP) wurden zu einer Suspension aus 1232 mg (1 ,36 mmol) Dichloro-1 ,3-bis(2,6-dimethyl-4-dimethylaminophenyl)-imidazolidin-2-yliden- tricyclohexylphosphin-benzyliden-ruthenium-(ll) (6) und 50 ml tert.-Butylmethylether gegeben und das erhaltene Gemisch für 16 Stunden bei Raumtemperatur (20 bis 25 °C) unter Stickstoffatmosphäre gerührt. Während dieser Zeit fiel ein hell-grüner Niederschlag aus und die anfangs leicht braune, überstehende Lösung entfärbte sich. Daran anschließend wurde der erhaltene Niederschlag an der Luft abfiltriert und einmal mit 20 ml einer 1 millimolaren (0,122 g/l) 488 mg (4.00 mmol) of 4-dimethylaminopyridine (DM AP) were added to a suspension of 1232 mg (1.36 mmol) of dichloro-1,3-bis (2,6-dimethyl-4-dimethylaminophenyl) imidazolidine-2 -ylidene-tricyclohexylphosphine-benzylidene-ruthenium (II) (6) and 50 ml of tert-butyl methyl ether and the resulting mixture stirred for 16 hours at room temperature (20 to 25 ° C) under a nitrogen atmosphere. During this time, a light-green precipitate fell out and the initially slightly brown, supernatant solution decoloured. The resulting precipitate was then filtered off in air and washed once with 20 ml of a 1 millimolar (0.122 g / l)
DMAP/tert.-Butylmethylether-Lösung gewaschen. Der erhaltene Filterrückstand wurde an- schließend in Vakuumofen bei 60 °C und 30 mbar (absolut) für 4 Stunden getrocknet. Es wurden 1065 mg (1 ,22 mmol, entsprechend einer Ausbeute von 90 mol-%) Komplexverbindung 1 erhalten {NMR-spektroskopische Charakterisierung: 1H NMR (300.1 MHz, C6D6, 20 °C): δ 19.81 (s, Ru=CH), 8.57 (d, 3J[1H1H] = 7.2 Hz, 2H), 7.23 (t, 3J[1H1H] = 8.4 Hz, 1 H), 7.01 (m, 2H, =CH- C6H5), 8.29 (d, 3J[1H1H] = 7.5 Hz, 2H), 8.18 (d, 3J[1H1H] = 6.3 Hz, 2H), 6.08 (d, 3J[1H1H] = 7.5 Hz, 2H), 5.43 (d, 3J[1H1H] = 6.3 Hz, 2H, 2 χ C5NH4), 6.59 (s, 2H), 6.34 (s, 2H, 2 χ C6H2), 3.57 (m, 2H), 3.48 (m, 2H, CH2-CH2), 3.01 (s, 6H), 2.61 (s, 6H), 2.58 (s, 6H), 2.54 (s, 6H, 4 χ DMAP / tert-butyl methyl ether solution. The filter residue obtained was then dried in vacuum oven at 60 ° C and 30 mbar (absolute) for 4 hours. 1065 mg (1.22 mmol, corresponding to a yield of 90 mol%) of complex compound 1 were obtained {NMR spectroscopic characterization: 1 H NMR (300.1 MHz, C 6 D 6 , 20 ° C.): δ 19.81 (s, Ru = CH), 8.57 (d, 3 J [ 1 H 1 H] = 7.2 Hz, 2H), 7.23 (t, 3 J [ 1 H 1 H] = 8.4 Hz, 1 H), 7.01 (m, 2H, = CH- C 6 H 5 ), 8.29 (d, 3 J [ 1 H 1 H] = 7.5 Hz, 2H), 8.18 (d, 3 J [ 1 H 1 H] = 6.3 Hz, 2H), 6.08 (i.e. , 3 J [ 1 H 1 H] = 7.5 Hz, 2H), 5.43 (d, 3 J [ 1 H 1 H] = 6.3 Hz, 2H, 2 χ C 5 NH 4 ), 6.59 (s, 2H), 6.34 (s, 2H, 2 χ C 6 H 2), 3:57 (m, 2H), 3:48 (m, 2H, CH 2 -CH 2), 3.01, (s, 6H), 2.61 (s, 6H), 2:58 (s , 6H), 2.54 (s, 6H, 4 χ
N(CH3)2), 2.20 (s, 6H), 1 .80 (s, 6H, 2 χ C6H2(CH3)2); 13C {1H} NMR (75.9 MHz, c/ benzene, 20 °C): 5 309.8 (Ru=CH), 221 .2 (N-C-N), 153.7, 153.5, 152.5 (2 Signals), 152.1 , 150.5 (2 Signals), 150.4, 140.8, 138.7, 130.9, 130.6, 128.9, 128.6, 1 13.1 , 1 12.6, 106.7, 106.2 (aryl-C), 51 .9, 51 .1 (N-CH2-CH2-N), 40.5, 40.3, 38.2, 37.8 (N-CH3), 21.7, 19.6 (C6H2(CH3)2)}. N (CH 3 ) 2 ), 2.20 (s, 6H), 1 .80 (s, 6H, 2 χ C 6 H 2 (CH 3 ) 2 ); 13 C { 1 H} NMR (75.9 MHz, c / benzene, 20 ° C): 5309.8 (Ru = CH), 221.2 (NCN), 153.7, 153.5, 152.5 (2 signals), 152.1, 150.5 (2 Signal), 150.4, 140.8, 138.7, 130.9, 130.6, 128.9, 128.6, 1 13.1, 1 12.6, 106.7, 106.2 (aryl-C), 51.9, 51 .1 (N-CH 2 -CH 2 -N) , 40.5, 40.3, 38.2, 37.8 (N-CH 3 ), 21.7, 19.6 (C 6 H 2 (CH 3 ) 2 )}.
1.1.4 Herstellung von 1 ,3-Bis(2,6-dimethyl-4-dimethylaminophenyl)-imidazolium-chlorid (7) 1.1.4 Preparation of 1,3-bis (2,6-dimethyl-4-dimethylaminophenyl) imidazolium chloride (7)
Figure imgf000025_0001
Figure imgf000025_0001
Zu einer Lösung aus 3556 mg (10,16 mmol) Glyoxalbis(2,6-dimethyl-4- dimethylaminophenyl)imin (dessen Herstellung gemäß S. L. Balof, S. J. P'Pool, N. J. Berger, E. J. Valente, A. M. Shiller, H.-J. Schanz, Dalton Trans., 2008, Seiten 5791 bis 5799 erfolgte) und 100 ml Ethylacetat wurden bei 75 °C 501 mg (15,0 mmol) Paraformaldehyd zugegeben und die erhaltene Mischung für 5 Minuten gerührt. Daran anschließend wurde der erhaltenen Mischung bei gleichbleibender Temperatur unter Rühren eine Lösung aus 1352 mg (12,5 mmol) Tri- methylsilylchlorid in 50 ml Ethylacetat über einen Zeitraum von 8 Stunden kontinuierlich mit gleichbleibendem Mengenstrom zugegeben. Während dieser Zeit bildete sich ein heller Nieder- schlag. Das Reaktionsgemisch wurde für weitere 12 Stunden bei 75 °C gerührt. Danach wurde die erhaltene Suspension auf Raumtemperatur abgekühlt und der Niederschlag abfiltriert. Der erhaltene Filterrückstand wurde zweimal mit 30 ml Ethylacetat gewaschen und anschließend für 16 Stunden im Vakuumofen bei 60 °C und 30 mbar (absolut) getrocknet. Es wurden 3435 mg (8,61 mmol, 85 mol-% Ausbeute) der Ligandenverbindung 7 erhalten {NMR-spektroskopische Charakterisierung: 1H NMR (300.1 MHz, CDCI3, 20 °C): δ 10.09 (t, 3J[1H1H] = 1 .5 Hz, 1 H), 7.67 (d, 3J[1H1H] = 1 .5 Hz, 2H, C3H3N2), 6.46 (s, 4H, 2 χ C6H2), 3.00 (s, 12H, 2 χ N(CH3)2), 2.17 (s, 12H, 2 x C6H2(CH3)2); 13C {1H} NMR (75.9 MHz, CDCI3, 20°C): δ 151 .3, 138.9, 121 .8, 1 1 1 .6 (C6H2), 134.7, 125.3 (C3H3N2), 40.2 (N(CH3)2), 18.2 (C6H2(CH3)2)}. 1.1.4 Herstellung von Dichloro-1 ,3-bis(2,6-dimethyl-4-dimethylaminophenyl)-imidazolin-2-yliden- (tricyclohexylphosphin)-benzyliden-ruthenium-(ll) (8) To a solution of 3556 mg (10.16 mmol) of glyoxal bis (2,6-dimethyl-4-dimethylaminophenyl) imine (its preparation according to SL Balof, SJ P'Pool, NJ Berger, EJ Valente, AM Shiller, H.-J Schanz, Dalton Trans., 2008, pages 5791 to 5799) and 100 ml of ethyl acetate were added at 75 ° C 501 mg (15.0 mmol) paraformaldehyde and the resulting mixture stirred for 5 minutes. Subsequently, a solution of 1352 mg (12.5 mmol) of trimethylsilyl chloride in 50 ml of ethyl acetate over a period of 8 hours continuously with constant flow rate was added to the resulting mixture at a constant temperature with stirring. During this time a bright precipitate formed. The reaction mixture was stirred for a further 12 hours at 75 ° C. Thereafter, the resulting suspension was cooled to room temperature and the precipitate was filtered off. The resulting filter residue was washed twice with 30 ml of ethyl acetate and then dried for 16 hours in a vacuum oven at 60 ° C and 30 mbar (absolute). There were obtained 3435 mg (8.61 mmol, 85 mol% yield) of the ligand compound 7 {NMR spectroscopic characterization: 1 H NMR (300.1 MHz, CDCl 3 , 20 ° C): δ 10.09 (t, 3 J [ 1 H 1 H] = 1 .5 Hz, 1 H), 7.67 (d, 3 J [ 1 H 1 H] = 1 .5 Hz, 2H, C 3 H 3 N 2 ), 6.46 (s, 4H, 2 χ C 6 H 2 ), 3.00 (s, 12H, 2 χN (CH 3 ) 2 ), 2.17 (s, 12H, 2 x C 6 H 2 (CH 3 ) 2 ); 13 C { 1 H} NMR (75.9 MHz, CDCl 3 , 20 ° C): δ 151 .3, 138.9, 121 .8, 1 1 1 .6 (C 6 H 2 ), 134.7, 125.3 (C 3 H 3 N 2 ), 40.2 (N (CH 3 ) 2 ), 18.2 (C 6 H 2 (CH 3 ) 2 )}. 1.1.4 Preparation of Dichloro-1,3-bis (2,6-dimethyl-4-dimethylaminophenyl) imidazolin-2-ylidene (tricyclohexylphosphine) benzylidene ruthenium (II) (8)
Figure imgf000026_0001
Figure imgf000026_0001
(8)  (8th)
In einen Schlenkkolben wurden unter Stickstoffatmosphäre 303 mg (0,76 mmol) Ligandenver- bindung 7 und 93 mg (0,83 mmol) Kalium-tert.-butoxid sowie 40 ml n-Heptan gegeben. Daran anschließend wurde der Schlenkkolben in ein Wasserbad mit einer Temperatur von 60 °C getaucht, solange Unterdruck angelegt, bis der Kolbeninhalt zu Sieden anfing, dann der Hahn zur Vakuumleitung geschlossen und der Kolbeninhalt unter diesen Bedingungen für 60 Minuten gerührt. Nach dem Abkühlen auf Raumtemperatur, wurde der Unterdruck im Schlenkkolben mit Stickstoff aufgehoben, der erhaltenen Mischung unter Stickstoffatmosphäre 400 mg (0,49 mmol) Dichloro-bis(tricyclohexylphosphin)-benzyliden-ruthenium-(ll) (5) zugegeben und der Kolben mit einem Septum verschlossen. Daran anschließend wurde der Schlenkkolben erneut in ein Wasserbad mit einer Temperatur von 60 °C getaucht, solange Unterdruck angelegt, bis der Kolbeninhalt zu Sieden anfing, dann der Hahn zur Vakuumleitung geschlossen und das erhaltene Reaktionsgemisch 24 Stunden unter diesen Bedingungen gerührt. Während dieser Zeit bildete sich ein orangebrauner Niederschlag. Daran anschließend wurde der Inhalt des Schlenkkolbens auf Raumtemperatur abgekühlt und das Lösungsmittel durch Anlegen von Unterdruck (0,1 mbar absolut; 30 Minuten) entfernt. Danach wurde der Schlenkkolben mit Umgebungsluftatmosphäre belüftet und 50 ml eines Wasser/Isopropanol-Gemisches (1 :1 v/v) zuge- geben. Anschließend wurde der Schlenkkolben zur Dispergierung des Niederschlags für 30 Minuten in ein Ultraschallbad gegeben und danach die erhaltene Suspension abfiltriert. Der erhaltene Filterrückstand wurde zweimal mit 30 ml eines Wasser/Isopropanol-Gemisches (1 :1 v/v) und zweimal mit 10 ml Methanol gewaschen und anschließend für 12 Stunden im Vakuumofen bei 60 °C und 30 mbar (absolut) getrocknet. Es wurden 379 mg (0,42 mmol, 86 mol-% Ausbeute) der Komplexverbindung 8 als orangebraunes Pulver erhalten {N MR- spektroskopische Charakterisierung: 1HNMR (300.1 MHz, 20 °C, C6D6): δ 20.01 (s, Ru=CH), 7.19 (br. m, 1 H), 7.12 (br. m, 2H, =CH-C6H5), 7.02 (br. m, 2H), 6.53 (br. s, 4H, C6H2), 6.35 (m, 1 H), 6.30 (m, 1 H, N-CH=CH-N), 2.68 (s, 12H, 2 x N(CH3)2), 2.47 (s, 12H, 2 x C6H2(CH3)2), 2.60 (m, 3 H) 1.73 (br. m, 6H), 1 .55 (br. m, 9H), 1 .12 (br. m, 15H, PCy3); 13C {1H} NMR (75.9 MHz, CD2CI2, 20 °C): 5 294.7 (br., Ru=CH), 190.4 (d, 2J[31P13C] = 84.8 Hz, N-C-N), 152.1 , 150.6,303 mg (0.76 mmol) of ligand compound 7 and 93 mg (0.83 mmol) of potassium tert-butoxide and 40 ml of n-heptane were added to a Schlenk flask under a nitrogen atmosphere. Thereafter, the Schlenk flask was immersed in a water bath at a temperature of 60 ° C, as long as negative pressure applied until the flask contents boiled, then closed the tap to the vacuum line and the flask contents stirred under these conditions for 60 minutes. After cooling to room temperature, the negative pressure in the Schlenk flask was quenched with nitrogen, the resulting mixture under nitrogen atmosphere 400 mg (0.49 mmol) dichloro-bis (tricyclohexylphosphine) benzyliden ruthenium (II) (5) was added and the flask with closed by a septum. Thereafter, the Schlenk flask was submerged again in a water bath at a temperature of 60 ° C, as long as negative pressure applied until the flask contents boiled, then closed the tap to the vacuum line and the resulting reaction mixture stirred for 24 hours under these conditions. During this time, an orange-brown precipitate formed. Subsequently, the contents of the Schlenk flask were cooled to room temperature and the solvent was removed by applying reduced pressure (0.1 mbar absolute, 30 minutes). Thereafter, the Schlenk flask was vented with ambient air atmosphere and 50 ml of a water / isopropanol mixture (1: 1 v / v) was added. The Schlenk flask was then placed in an ultrasonic bath for 30 minutes to disperse the precipitate and then the resulting suspension was filtered off. The resulting filter residue was washed twice with 30 ml of a water / isopropanol mixture (1: 1 v / v) and twice with 10 ml of methanol and then dried for 12 hours in a vacuum oven at 60 ° C and 30 mbar (absolute). 379 mg (0.42 mmol, 86 mol% yield) of the complex compound 8 were obtained as an orange-brown powder {N MR spectroscopic characterization: 1 HNMR (300.1 MHz, 20 ° C., C 6 D 6 ): δ 20.01 (cf. , Ru = CH), 7.19 (br, m, 1H), 7.12 (br, m, 2H, = CH-C 6 H 5 ), 7.02 (br, m, 2H), 6.53 (br, s, 4H, C 6 H 2 ), 6.35 (m, 1H), 6.30 (m, 1H, N-CH = CH-N), 2.68 (s, 12H, 2 x N (CH 3 ) 2 ), 2.47 (s, 12H, 2 x C 6 H 2 (CH 3) 2), 2.60 (m, 3 H) 1.73 (br. m, 6H), 1 .55 (br. m, 9H), 1 .12 (br. m, 15H, PCy 3 ); 13 C { 1 H} NMR (75.9 MHz, CD 2 Cl 2 , 20 ° C): 5 294.7 (br, Ru = CH), 190.4 (d, 2 J [ 31 P 13 C] = 84.8 Hz, NCN) , 152.1, 150.6,
150.2, 138.8, 137.4, 137.3, 128.9, 128.0, 127.7, 125.3 (2 Signale), 124.9, 1 1 1.3, 1 10.7 (s, aryl- C + N-CH=CH-N), 40.1 (2 Signale, N-CH3), 20.2, 18.8 (C6H2(CH3)2), 31 .5 (d, 1J[31P13C] = 17.2 Hz), 29.4 (br. s), 28.0 (d, 2J[31P13C] = 9.6 Hz), 26.5 (s, PCy3); 31P {1H} NMR (121 .4 MHz, C6D6, 20°C): δ 32.4(s)}. 1.1.5 Herstellung von Dichloro-1 ,3-bis(2,6-dimethyl-4-dimethylaminophenyl)-imidazolin-2-yliden- bis(4-dimethylaminopyridin)-benzyliden-ruthenium-(ll) (2) 150.2, 138.8, 137.4, 137.3, 128.9, 128.0, 127.7, 125.3 (2 signals), 124.9, 1 1 1.3, 1 10.7 (s, aryl-C + N-CH = CH-N), 40.1 (2 signals, N -CH 3 ), 20.2, 18.8 (C 6 H 2 (CH 3 ) 2 ), 31 .5 (d, 1 J [ 31 P 13 C] = 17.2 Hz), 29.4 (br. S), 28.0 (d, 2 J [ 31 P 13 C] = 9.6 Hz), 26.5 (s, PCy 3 ); 31 P { 1 H} NMR (121.4 MHz, C 6 D 6 , 20 ° C): δ 32.4 (s)}. 1.1.5 Preparation of Dichloro-1,3-bis (2,6-dimethyl-4-dimethylaminophenyl) imidazolin-2-ylidene bis (4-dimethylaminopyridine) benzylidene ruthenium (II) (2)
165 mg (1 ,36 mmol) DMAP wurden bei Raumtemperatur und unter Stickstoffatmosphäre in ei- nen Kolben, enthaltend eine Suspension aus 300 mg (0,33 mmol) Dichloro-1 ,3-bis(2,6-dimethyl- 4-dimethylaminophenyl)-imidazolin-2-yliden-(tricyclohexylphosphin)-benzyliden-ruthenium-(ll) (8) und 50 ml tert.-Butylmethylether gegeben. Daran anschließend wurde der das erhaltene Gemisch enthaltende Kolben bei Raumtemperatur für 60 Minuten in ein Ultraschallbad gegeben. Daran anschließend wurde der Kolbeninhalt für 16 Stunden bei Raumtemperatur gerührt. Während dieser Zeit fiel ein hellgrüner Niederschlag aus und die anfangs leicht braune, überstehende Lösung entfärbte sich. Anschließend wurde der Niederschlag an der Luft abfiltriert und mit 20 ml einer 1 millimolaren DMAP/tert.-Butylmethylether-Lösung gewaschen. Der erhaltene Filterrückstand wurde anschließend für 16 Stunden im Vakuumofen bei 60 °C und 30 mbar (absolut) getrocknet. Es wurden 251 mg (0,28 mmol, 84 mol-% Ausbeute) an Komplexverbin- dung 2 als hellgrünes Pulver erhalten {NMR-spektroskopische Charakterisierung: 1H NMR (300.1 MHz, C6D6, 20 °C): 5 20.18 (s, 1 H, Ru=CH), 8.82 (br., 2H), 7.26 (m, 1 H), 7.04 (m, 2H, =CH-C6H5), 8.36 (d, 3J[1H1H] = 7.5 Hz, 2H), 8.18 (d, 3J[1H1H] = 7.2 Hz, 2H), 6.00 (d, 3J[1H1H] = 7.5 Hz, 2H), 5.43 (d, 3J[1H1H] = 6.3 Hz, 2H, 2 χ C5NH4), 6.50 (s, 2H, N-CH=CH-N), 6.45 (br., 2H), 6.38 (br., 2H, 2 χ C6H2), 2.87 (br. s, 6H), 2.58 (s, 12H), 2.51 (br. s, 6H, 4 χ N(CH3)2), 2.12 (s, 6H), 1.76 (s, 6H, 2 χ C6H2(CH3)2)}. 165 mg (1.36 mmol) of DMAP were placed at room temperature and under nitrogen in a flask containing a suspension of 300 mg (0.33 mmol) of dichloro-1,3-bis (2,6-dimethyl-4-dimethylaminophenyl ) -imidazolin-2-ylidene- (tricyclohexylphosphine) benzylidene ruthenium (II) (8) and 50 ml of tert-butyl methyl ether. Thereafter, the flask containing the resulting mixture was placed in an ultrasonic bath at room temperature for 60 minutes. Subsequently, the contents of the flask were stirred for 16 hours at room temperature. During this time a light green precipitate precipitated and the initially slightly brown, supernatant solution decoloured. The precipitate was then filtered off in air and washed with 20 ml of a 1 millimolar DMAP / tert-butyl methyl ether solution. The resulting filter residue was then dried for 16 hours in a vacuum oven at 60 ° C and 30 mbar (absolute). 251 mg (0.28 mmol, 84 mol% yield) of complex 2 were obtained as a bright green powder {NMR spectroscopic characterization: 1 H NMR (300.1 MHz, C 6 D 6 , 20 ° C): 5 20.18 (s, 1 H, Ru = CH), 8.82 (br., 2H), 7.26 (m, 1H), 7.04 (m, 2H, = CH-C 6 H 5 ), 8.36 (d, 3 J [ 1 H 1 H] = 7.5 Hz, 2H), 8.18 (d, 3 J [ 1 H 1 H] = 7.2 Hz, 2H), 6.00 (d, 3 J [ 1 H 1 H] = 7.5 Hz, 2H), 5.43 (d, 3 J [ 1 H 1 H] = 6.3 Hz, 2H, 2 χ C 5 NH 4 ), 6.50 (s, 2H, N-CH = CH-N), 6.45 (br., 2H), 6.38 ( br., 2H, 2 χ C 6 H 2 ), 2.87 (br, s, 6H), 2.58 (s, 12H), 2.51 (br, s, 6H, 4 χ N (CH 3 ) 2 ), 2.12 (s , 6H), 1.76 (s, 6H, 2 χ C 6 H 2 (CH 3 ) 2 )}.
I.2 Herstellung der Komplexverbindungen 3 und 4 I.2 Preparation of complex compounds 3 and 4
1.2.1 Herstellung von Dichloro-bis(tricyclohexylphosphin)-(phenylthio)methylen-ruthenium(ll) (9) 1.2.1 Preparation of dichloro-bis (tricyclohexylphosphine) - (phenylthio) methylene-ruthenium (II) (9)
Figure imgf000027_0001
Figure imgf000027_0001
(9)  (9)
Die Herstellung des Rutheniumkomplexes 9 erfolgte gemäß Beispiel 1 der EP-A 993465. I.2.2 Herstellung von 1 ,3-Bis(2,6-dimethyl-4-dimethylaminophenyl)-imidazolidinium Chlorid (10)
Figure imgf000027_0002
The preparation of the ruthenium complex 9 was carried out according to Example 1 of EP-A 993465. I.2.2 Preparation of 1, 3-bis (2,6-dimethyl-4-dimethylaminophenyl) -imidazolidinium chloride (10)
Figure imgf000027_0002
(10) Die Herstellung der Ligandenverbindung 10 erfolgte gemäß S. L. Balof, S. J. P'Pool, N. J. Berger, E. J. Valente, A. M. Shiller, H.-J. Schanz, Dalton Trans., 2008, Seiten 5791 bis 5799. (10) The preparation of ligand compound 10 was carried out according to SL Balof, SJ P'Pool, NJ Berger, EJ Valente, AM Shiller, H.-J. Schanz, Dalton Trans., 2008, pages 5791 to 5799.
I.2.3 Herstellung von Dichloro-1 ,3-bis(2,6-dimethyl-4-dimethylaminophenyl)-imidazolidin-2- yliden-tricyclohexylphosphin-(phenylthio)methylen-ruthenium-(ll) (1 1) I.2.3 Preparation of Dichloro-1,3-bis (2,6-dimethyl-4-dimethylaminophenyl) imidazolidin-2-ylidene-tricyclohexylphosphine (phenylthio) methylene ruthenium (II) (11)
Figure imgf000028_0001
Figure imgf000028_0001
(1 1 )  (1 1)
In einen Schlenkkolben wurden unter Stickstoffatmosphäre 374 mg (0,93 mmol) Ligandenver- bindung 10 und 120 mg (1 ,07 mmol) Kalium-tert.-butoxid sowie 60 ml n-Heptan gegeben. Daran anschließend wurde der Schlenkkolben in ein Wasserbad mit einer Temperatur von 60 °C getaucht, solange Unterdruck angelegt, bis der Kolbeninhalt zu Sieden anfing, dann der Hahn zur Vakuumleitung geschlossen und der Kolbeninhalt unter diesen Bedingungen für 60 Minuten gerührt. Nach dem Abkühlen auf Raumtemperatur, wurde der Unterdruck im Schlenkkolben mit Stickstoff aufgehoben, der erhaltenen Mischung unter Stickstoffatmosphäre 606 mg (0,77 mmol) Rutheniumkomplex 9 zugegeben und der Kolben mit einem Septum verschlossen. Daran anschließend wurde der Schlenkkolben erneut in ein Wasserbad mit einer Temperatur von 60 °C getaucht, solange Unterdruck angelegt, bis der Kolbeninhalt zu Sieden anfing, dann der Hahn zur Vakuumleitung geschlossen und das erhaltene Reaktionsgemisch für 6 Tage unter diesen Bedingungen gerührt. Während dieser Zeit bildete sich ein hellpinker Niederschlag. Danach wurde das Reaktionsgemisch auf Raumtemperatur abgekühlt und der entstandene Niederschlag abfiltriert. Der erhaltene Niederschlag wurde zweimal mit mit je 10 ml n-Heptan gewaschen und anschließend für 2 Stunden im Vakuumofen bei 60 °C und 30 mbar (absolut) getrockent. Der Filterrückstand wurde in einem 100 ml-Glaskolben in 50 ml einer 3:1 (v/v)- Mischung aus Isopropanol und 0,5 molarer wässriger Ammoniumchlorid Lösung suspendiert und danach der Kolben für 60 Minuten bei 30 °C in ein Ultraschallbad gegeben. Anschließend wurde der Feststoff von der Suspension abfiltriert, der Filterrückstand zweimal mit je 10 ml Methanol gewaschen und danach für 3 Stunden bei 60 °C und 30 mbar (absolut) im Vakuumofen getrocknet. Es wurden 474 mg (0,50 mmol, 65 mol-% Ausbeute) des Rutheniumkomplexes 11 erhalten {NMR-spektroskopische Charakterisierung: 1H NMR (300.1 MHz, C6D6, 20 °C): δ 17.98 (s, Ru=CH), 7.21 (d, 3J[1H1H] = 7.2 Hz, 2H), 6.97 (t, 3J[1H1H] = 8.4 Hz, 1 H), 6.88 (m, 2H, =CH- C6H5), 6.50 (s, 2H), 6.13 (s, 2H, 2 χ C6H2), 3.35 (m, 4H, CH2-CH2), 2.90 (s, 6H), 2.75 (s, 6H, 2 χ N(CH3)2), 2.60 (s, 6H), 2.28 (s, 6H, 2 χ C6H2(CH3)2), 2.57 (br., m, 3H), 1.88 (br., m, 6H), 1.65 (br., m, 6H), 1.55 (br., m, 3H), 1.45-1.02 (br., m, 18H, PCy3); 13C {1H} NMR (75.9 MHz, C6D6, 20 °C): δ 272.2 (br., Ru=CH), 219.4 (d, 2J[31P13C] = 81.6 Hz, N-C-N), 150.5, 149.5, 141.8, 140.4, 138.6, 129.3, 128.7, 126.5, 125.5, 125.4, 1 12.7, 11 1.9 (s, aryl-C), 52.3, 52.1 (s, N-CH2-CH2-N), 40.5, 40.3, 40.0, 39.6 (N-CH3), 21.0, 20.0 (C6H2(CH3)2), 32.3 (d, 1J[31P13C] = 15.6 Hz), 29.7 (s), 28.1 (d, 2J[31P13C] = 10.2 Hz), 26.7 (s, PCy3); 31P {1H} NMR (121.4 MHz, C6D6, 20°C): δ 23.4 (s)}. 374 mg (0.93 mmol) of ligand compound 10 and 120 mg (1.70 mmol) of potassium tert-butoxide and 60 ml of n-heptane were added to a Schlenk flask under a nitrogen atmosphere. Thereafter, the Schlenk flask was immersed in a water bath at a temperature of 60 ° C, as long as negative pressure applied until the flask contents boiled, then closed the tap to the vacuum line and the flask contents stirred under these conditions for 60 minutes. After cooling to room temperature, the negative pressure in the Schlenk flask was quenched with nitrogen, 606 mg (0.77 mmol) of ruthenium complex 9 were added to the resulting mixture under nitrogen atmosphere and the flask was closed with a septum. Thereafter, the Schlenk flask was submerged again in a water bath at a temperature of 60 ° C, as long as negative pressure applied until the flask contents boiled, then closed the tap to the vacuum line and the resulting reaction mixture stirred for 6 days under these conditions. During this time, a light pink precipitate formed. Thereafter, the reaction mixture was cooled to room temperature and the resulting precipitate was filtered off. The resulting precipitate was washed twice with 10 ml of n-heptane and then dried for 2 hours in a vacuum oven at 60 ° C and 30 mbar (absolute). The filter residue was suspended in a 100 ml glass flask in 50 ml of a 3: 1 (v / v) mixture of isopropanol and 0.5 molar aqueous ammonium chloride solution and then the flask was placed in an ultrasonic bath at 30 ° C for 60 minutes. The solid was then filtered off from the suspension, the filter residue washed twice with 10 ml of methanol and then dried for 3 hours at 60 ° C and 30 mbar (absolute) in a vacuum oven. 474 mg (0.50 mmol, 65 mol% yield) of the ruthenium complex 11 were obtained {NMR spectroscopic characterization: 1 H NMR (300.1 MHz, C 6 D 6 , 20 ° C): δ 17.98 (s, Ru = CH), 7.21 (d, 3 J [ 1 H 1 H] = 7.2 Hz, 2H), 6.97 (t, 3 J [ 1 H 1 H] = 8.4 Hz, 1 H), 6.88 (m, 2H, = CH - C 6 H 5 ), 6.50 (s, 2H), 6.13 (s, 2H, 2 χ C 6 H 2 ), 3.35 (m, 4H, CH 2 -CH 2 ), 2.90 (s, 6H), 2.75 ( s, 6H, 2 χ N (CH 3) 2), 2.60 (s, 6H), 2.28 (s, 6H, 2 χ C 6 H 2 (CH 3) 2), 2:57 (br., m, 3H), 1.88 (br, m, 6H), 1.65 (br, m, 6H), 1.55 (br, m, 3H), 1.45-1.02 (br, m, 18H, PCy 3 ); 13 C { 1 H} NMR (75.9 MHz, C 6 D 6 , 20 ° C): δ 272.2 (br, Ru = CH), 219.4 (d, 2 J [ 31 P 13 C] = 81.6 Hz, NCN) , 150.5, 149.5, 141.8, 140.4, 138.6, 129.3, 128.7, 126.5, 125.5, 125.4, 1 12.7, 11 1.9 (s, aryl-C), 52.3, 52.1 (s, N-CH 2 -CH 2 -N), 40.5, 40.3, 40.0, 39.6 ( N-CH 3 ), 21.0, 20.0 (C 6 H 2 (CH 3 ) 2 ), 32.3 (d, 1 J [ 31 P 13 C] = 15.6 Hz), 29.7 (s), 28.1 (d, 2 J [ 31 P 13 C] = 10.2 Hz), 26.7 (s, PCy 3 ); 31 P { 1 H} NMR (121.4 MHz, C 6 D 6 , 20 ° C): δ 23.4 (s)}.
I.2.4 Herstellung Dichloro-1 ,3-bis(2,6-dimethyl-4-dimethylaminophenyl)-imidazolidin-2-yliden- bis(4-dimethylaminopyridin)-(phenylthio)methylen-ruthenium-(ll) (3) I.2.4 Preparation of dichloro-1,3-bis (2,6-dimethyl-4-dimethylaminophenyl) imidazolidin-2-ylidene bis (4-dimethylaminopyridine) - (phenylthio) methylene ruthenium (II) (3)
412 mg (3,38 mmol) DMAP wurden bei Raumtemperatur und unter Stickstoffatmosphäre in ei- nen Kolben, enthaltend eine Suspension aus 1237 mg (1 ,32 mmol) Rutheniumkomplex 1 1 und 50 ml tert.-Butylmethylether gegeben. Daran anschließend wurde der das erhaltene Gemisch enthaltende Kolben bei 30 °C für 2 Stunden in ein Ultraschallbad gegeben. Anschließend wurde der Kolbeninhalt für weitere 16 Stunden bei Raumtemperatur gerührt. Während dieser Zeit fiel ein graugrüner Niederschlag aus und die anfangs leicht braune, überstehende Lösung entfärbte sich. Daran anschließend wurde der Niederschlag an der Luft abfiltriert und mit 20 ml einer 1 millimolaren DMAP/tert.-Butylmethylether-Lösung gewaschen. Der erhaltene Filterrückstand wurde anschließend für 2 Stunden im Vakuumofen bei 60 °C und 30 mbar (absolut) getrocknet. Es wurden 11 10 mg (1 ,23 mmol, 93 Gew.-% Ausbeute) an Komplexverbindung 3 als graugrünes Pulver erhalten {NMR-spektroskopische Charakterisierung: 1H NMR (300.1 MHz, CDCI3, 20°C): δ 17.33 (s, Ru=CH), 8.26 (br., 2H), 7.16 (br., 2H), 6.49 (br., 2H), 6.22 (br., 2H, 2 χ 412 mg (3.38 mmol) of DMAP were added at room temperature and under a nitrogen atmosphere to a flask containing a suspension of 1237 mg (1.32 mmol) of ruthenium complex 11 and 50 ml of tert-butyl methyl ether. Subsequently, the flask containing the resulting mixture was placed in an ultrasonic bath at 30 ° C for 2 hours. Subsequently, the contents of the flask were stirred for a further 16 hours at room temperature. During this time, a gray-green precipitate precipitated and the initially slightly brown, supernatant solution decoloured. Subsequently, the precipitate was filtered off in air and washed with 20 ml of a 1 millimolar DMAP / tert-butyl methyl ether solution. The resulting filter residue was then dried for 2 hours in a vacuum oven at 60 ° C and 30 mbar (absolute). There were 11 10 mg (1, 23 mmol, 93 wt .-% yield) of complex Compound 3 as a gray-green powder {NMR spectroscopic characterization: 1 H NMR (300.1 MHz, CDCl 3 , 20 ° C): δ 17.33 (s , Ru = CH), 8.26 (br., 2H), 7.16 (br., 2H), 6.49 (br., 2H), 6.22 (br., 2H, 2 χ
C5NH4), 6.47 (s, 2H), 6.15 (s, 2H, 2 χ C6H2), 7.13 (m, 5H, S-C6H5), 4.11 (m, 2H), 3.98 (m, 2H, CH2-CH2), 3.00 (s, 6H), 2.96 (s, 6H), 2.90 (s, 6H), 2.69 (s, 6H, 4 χ N(CH3)2), 2.60 (s, 6H), 2.40 (s, 6H, 2 x C6H2(CH3)2)}. Mittels Röntgenstrukturanalyse (ΜοΚα-Strahlung mit Charge-Coupled- Detektor (CCD), Messinstrument: Oxford Diffraction Systems Gemini S) wurde die in Abbildung 1 angegebene Kristallstruktur mit nachfolgenden Kristall- und Strukturdaten ermittelt. C 5 NH 4 ), 6.47 (s, 2H), 6.15 (s, 2H, 2 χ C 6 H 2 ), 7.13 (m, 5H, SC 6 H 5 ), 4.11 (m, 2H), 3.98 (m, 2H, CH2-CH2), 3:00 (s, 6H), 2.96 (s, 6H), 2.90 (s, 6H), 2.69 (s, 6H, 4 χ N (CH 3) 2), 2.60 (s, 6H) , 2.40 (s, 6H, 2 x C6H 2 (CH 3 ) 2 )}. The X-ray structure analysis (ΜοΚα radiation with charge-coupled detector (CCD), measuring instrument: Oxford Diffraction Systems Gemini S) was used to determine the crystal structure shown in Figure 1 with the following crystal and structural data.
Kristall- und Strukturdaten der Komplexyerbindung 3 Crystal and Structure Data of Complexity 3
Temperatur [K] 300(2)  Temperature [K] 300 (2)
Wellenlänge [Ä] 0,71073 Wavelength [Ä] 0.71073
Kristallsystem Triclinisch Crystal System Triclinic
Dimensionen [Ä] a = 10,2523(5) Dimensions [Ä] a = 10,2523 (5)
b = 12,3752(6)  b = 12.3752 (6)
c = 18,3356(9)  c = 18,3356 (9)
Volumen [Ä3] 2275,91 (19) Volume [A 3 ] 2275,91 (19)
Z; Dichte berechnet [mg nr3] 2; 1 ,344 Z; Density calculated [mg nr 3 ] 2; 1, 344
Absorptionskoeffizient [m nr1] 0,550 Absorption coefficient [m nr 1 ] 0,550
F(000) 964 F (000) 964
R1 = 0,0555, wR2  R1 = 0.0555, wR2
R-Wert [l>2sigma(l)] 0,0925  R value [l> 2sigma (l)] 0.0925
R1 = 0,1525, wR2  R1 = 0.1525, wR2
R-Wert (alle Daten) 0,0987 Ausgewählte Bindungslängen [Ä] R value (all data) 0.0987 Selected bond lengths [A]
S-C(1) 1.721(3)  S-C (1) 1,721 (3)
S-C(2) 1.771(4)  S-C (2) 1.771 (4)
Ru-C(1) 1.849(3)  Ru-C (1) 1,849 (3)
Ru-C(15) 2.031(3)  Ru-C (15) 2,031 (3)
Ru-N(7) 2.184(3)  Ru-N (7) 2.184 (3)
Ru-N(1) 2.272(3)  Ru-N (1) 2.272 (3)
Ru-Cl(1) 2.4132(9)  Ru-Cl (1) 2.4132 (9)
Ru-Cl(2) 2.4255(9)  Ru-Cl (2) 2.4255 (9)
Ausgewählte Bindungswinkel [Grad] Selected bond angles [degrees]
C(1)-S-C(2) 105.61(17)  C (1) -S-C (2) 105.61 (17)
C(1)-Ru-C(15) 96.05(13)  C (1) -Ru-C (15) 96.05 (13)
C(1)-Ru-N(7) 86.23(12)  C (1) -Ru-N (7) 86.23 (12)
C(15)-Ru-N(7) 177.13(13)  C (15) -Ru-N (7) 177.13 (13)
C(1)-Ru-N(1) 163.82(10)  C (1) -Ru-N (1) 163.82 (10)
C(15)-Ru-N(1) 99.26(11)  C (15) -Ru-N (1) 99.26 (11)
N(7)-Ru-N(1) 78.32(10)  N (7) -Ru-N (1) 78.32 (10)
C(1)-Ru-Cl(1) 92.79(10)  C (1) -Ru-Cl (1) 92.79 (10)
C(15)-Ru-Cl(1) 92.20(9)  C (15) -Ru-Cl (1) 92.20 (9)
N(7)-Ru-Cl(1) 89.44(8)  N (7) -Ru-Cl (1) 89.44 (8)
N(1)-Ru-Cl(1) 91.83(7)  N (1) -Ru-Cl (1) 91.83 (7)
C(1)-Ru-Cl(2) 86.46(10)  C (1) -Ru-Cl (2) 86.46 (10)
C(15)-Ru-Cl(2) 87.84(9)  C (15) -Ru-Cl (2) 87.84 (9)
N(7)-Ru-Cl(2) 90.55(8)  N (7) -Ru-Cl (2) 90.55 (8)
N(1)-Ru-Cl(2) 88.90(7)  N (1) -Ru-Cl (2) 88.90 (7)
Cl(1)-Ru-Cl(2) 179.25(4)  Cl (1) -Ru-Cl (2) 179.25 (4)
S-C(1)-Ru 128.00(19)  S-C (1) -Ru 128.00 (19)
I.2.5 Herstellung von Dichloro-1,3-bis(2,6-dimethyl-4-dimethylaminophenyl)-imidazolin (tricyclohexylphosphin)-(phenylthio)methylen-ruthenium-(ll) (12) I.2.5 Preparation of dichloro-1,3-bis (2,6-dimethyl-4-dimethylaminophenyl) imidazoline (tricyclohexylphosphine) - (phenylthio) methylene ruthenium (II) (12)
Figure imgf000030_0001
In einen Schlenkkolben wurden unter Stickstoffatmosphäre 599 mg (1 ,50 mmol) Ligandenver- bindung 7 und 193 mg (1 ,72 mmol) Kalium-tert.-butoxid sowie 60 ml n-Heptan gegeben Daran anschließend wurde der Schlenkkolben in ein Wasserbad mit einer Temperatur von 80 °C getaucht, solange Unterdruck angelegt, bis der Kolbeninhalt zu Sieden anfing, dann der Hahn zur Vakuumleitung geschlossen und der Kolbeninhalt unter diesen Bedingungen für 90 Minuten gerührt. Nach dem Abkühlen auf Raumtemperatur, wurde der Unterdruck im Schlenkkolben mit Stickstoff aufgehoben, der erhaltenen Mischung unter Stickstoffatmosphäre 992 mg (1 ,16 mmol) des Rutheniumkomplexes 9 zugegeben und der Kolben mit einem Septum verschlossen. Daran anschließend wurde der Schlenkkolben erneut in ein Wasserbad mit einer Temperatur von 60 °C getaucht, solange Unterdruck angelegt, bis der Kolbeninhalt zu Sieden anfing, dann der Hahn zur Vakuumleitung geschlossen und das erhaltene Reaktionsgemisch für 4 Tage unter diesen Bedingungen gerührt. Während dieser Zeit bildete sich ein pinkbrauner Niederschlag. Daran anschließend wurde das Reaktionsgemisch auf Raumtemperatur abgekühlt, der gebildete Niederschlag abfiltriert, der erhaltene Filterrückstand zweimal mit je 10 ml n-Heptan gewa- sehen und anschließend für 2 Stunden im Vakuumofen bei 60 °C und 30 mbar (absolut) getrocknet. Danach wurde der Filterrückstand in einem 100 ml-Glaskolben in 50 ml Methanol suspendiert und danach der Kolben für 30 Minuten bei Raumtemperatur in ein Ultraschallbad gegeben. Anschließend wurde der Feststoff von der Suspension abfiltriert, der Filterrückstand zweimal mit je 10 ml Methanol gewaschen und danach für 3 Stunden bei 60 °C und 30 mbar (absolut) im Vakuumofen getrocknet. Es wurden 820 mg (0,91 mmol, 78 mol-% Ausbeute) des Rutheniumkomplexes 12 als pinkfarbenes Pulver erhalten {NMR-spektroskopische Charakterisierung: 1H NMR (300.1 MHz, C6D6, 20 °C): δ 18.21 (s, Ru=CH), 7.25 (d, 3J[1H1H] = 7.5 Hz, 2H), 6.99 (t, 3J[1H1H] = 7.5 Hz, 2H), 6.89 (t, 3J[1H1H] = 7.5 Hz, 1 H, =CH-C6H5), 6.48 (s, 2H), 6.1 1 (s, 2H, 2 x C6H2), 6.29 (m, 1 H), 6.27 (m, 1 H, N-CH=CH-N), 2.73 (s, 3H), 2.60 (s, 3H), 2.57 (s, 3H), 2.28 (s, 3H , 2 x N(CH3)2 + 2 χ C6H2(CH3)2), 2.61 (br., m, 3H), 1.93 (br., m, 6H), 1.64 (br., m, 6H), 1.52 (br., m, 3H), 1.45-1.08 (br., m, 18H, PCy3); 13C {1H} NMR (75.9 MHz, C6D6, 20 °C): δ 272.6 (br., Ru=CH), 189.5 (d, 2J[31P13C] = 87.6 Hz, N-C-N), 150.8, 150.0, 141.9, 139.3, 138.0, 129.2, 128.7, 127.1 , 125.6, 125.4, 124.9, 124.8, 112.0, 1 11.3 (s, aryl-C + N-CH=CH-N), 39.9, 39.5, (N-CH3), 20.7, 19.8 (C6H2(CH3)2), 32.5 (d, 1J[31P13C] = 16.1 Hz), 29.8 (s), 28.1 (d,
Figure imgf000030_0001
599 mg (1.50 mmol) of ligand compound 7 and 193 mg (1.72 mmol) of potassium tert-butoxide and 60 ml of n-heptane were placed under nitrogen in a Schlenk flask. Then the Schlenk flask was placed in a water bath with a Submerged at 80 ° C, as long as negative pressure applied until the contents of the flask began to boil, then closed the tap to the vacuum line and the contents of the flask stirred under these conditions for 90 minutes. After cooling to room temperature, the negative pressure in the Schlenk flask was quenched with nitrogen, the resulting mixture under nitrogen atmosphere 992 mg (1, 16 mmol) of the ruthenium complex 9 was added and the flask sealed with a septum. Thereafter, the Schlenk flask was again immersed in a water bath having a temperature of 60 ° C, as long as applied negative pressure until the flask contents boil, then closed the tap to the vacuum line and the resulting reaction mixture for 4 days under these conditions. During this time, a pink-brown precipitate formed. Thereafter, the reaction mixture was cooled to room temperature, the precipitate formed filtered off, see the filter residue obtained washed twice with 10 ml of n-heptane and then dried for 2 hours in a vacuum oven at 60 ° C and 30 mbar (absolute). Thereafter, the filter residue was suspended in 50 ml of methanol in a 100 ml glass flask, and then the flask was placed in an ultrasonic bath at room temperature for 30 minutes. The solid was then filtered off from the suspension, the filter residue washed twice with 10 ml of methanol and then dried for 3 hours at 60 ° C and 30 mbar (absolute) in a vacuum oven. 820 mg (0.91 mmol, 78 mol% yield) of the ruthenium complex 12 were obtained as a pink powder {NMR spectroscopic characterization: 1 H NMR (300.1 MHz, C 6 D 6 , 20 ° C): δ 18.21 (s , Ru = CH), 7.25 (d, 3 J [ 1 H 1 H] = 7.5 Hz, 2H), 6.99 (t, 3 J [ 1 H 1 H] = 7.5 Hz, 2H), 6.89 (t, 3 J [ 1 H 1 H] = 7.5 Hz, 1 H, = CH-C 6 H 5 ), 6.48 (s, 2H), 6.1 1 (s, 2H, 2 x C 6 H 2 ), 6.29 (m, 1 H ), 6.27 (m, 1H, N-CH = CH-N), 2.73 (s, 3H), 2.60 (s, 3H), 2.57 (s, 3H), 2.28 (s, 3H, 2 x N (CH 3 ) 2 + 2χC 6 H 2 (CH 3 ) 2 ), 2.61 (br., M, 3H), 1.93 (br., M, 6H), 1.64 (br., M, 6H), 1.52 (br ., m, 3H), 1.45-1.08 (br., m, 18H, PCy 3 ); 13 C { 1 H} NMR (75.9 MHz, C 6 D 6 , 20 ° C): δ 272.6 (br, Ru = CH), 189.5 (d, 2 J [ 31 P 13 C] = 87.6 Hz, NCN) , 150.8, 150.0, 141.9, 139.3, 138.0, 129.2, 128.7, 127.1, 125.6, 125.4, 124.9, 124.8, 112.0, 1 11.3 (s, aryl-C + N-CH = CH-N), 39.9, 39.5, ( N-CH 3 ), 20.7, 19.8 (C 6 H 2 (CH 3 ) 2 ), 32.5 (d, 1 J [ 31 P 13 C] = 16.1 Hz), 29.8 (s), 28.1 (d,
2J[31P13C] = 10.2 Hz), 26.7 (s, PCy3); 31P {1H} NMR (121.4 MHz, C6D6, 20 °C): δ 26.0 (s)}. 2J [ 31 P 13 C] = 10.2 Hz), 26.7 (s, PCy 3 ); 31 P { 1 H} NMR (121.4 MHz, C 6 D 6 , 20 ° C): δ 26.0 (s)}.
I.2.6 Herstellung von Dichloro-1 ,3-bis(2,6-dimethyl-4-dimethylaminophenyl)-imidazolin-2-yliden- bis(4-dimethylaminopyridin)-(phenylthio)methylen-ruthenium-(ll) (4) 244 mg (2,00 mmol) DMAP wurden bei Raumtemperatur und unter Stickstoffatmosphäre in einen Kolben, enthaltend eine Suspension aus 601 mg (0,64 mmol) Rutheniumkomplex 12 und 30 ml tert.-Butylmethylether gegeben. Daran anschließend wurde der das erhaltene Gemisch enthaltende Kolben bei 30 °C für zwei Stunden in ein Ultraschallbad gegeben. Anschließend wurde der Kolbeninhalt für weitere 16 Stunden bei Raumtemperatur gerührt. Während dieser Zeit fiel ein hellgrüner Niederschlag aus und die anfangs leicht braune, überstehende Lösung entfärbte sich. Daran anschließend wurde der Niederschlag abfiltriert und mit 10 ml einer 1 mil- limolaren DMAP/tert.-Butylmethylether-Lösung gewaschen. Der erhaltene Filterrückstand wurde anschließend für 2 Stunden im Vakuumofen bei 60 °C und 30 mbar (absolut) getrocknet. Es wurden 498 mg (0,55 mmol, 86 mol-% Ausbeute) an Komplexverbindung 3 als hellgrünes Pulver erhalten {NMR-spektroskopische Charakterisierung: 1H NMR (300.1 MHz, CDCI3, 20°C): δ 17.68 (s, 1 H, Ru=CH), 7.17 (m, 5H, S-C6H5), 6.85 (br., 2H, N-CH=CH-N), 8.61 (br., 2H), 8.03 (br., 2H), 6.09 (br., 8H, 2 χ C5NH4 + 2 χ C6H2), 2.93 (br., 12H), 2.77 (br., 6H), 2.65 (br., 6H, 4 χ N(CH3)2), 2.27 (br., 12H, 2 χ C6H2(CH3)2)}. I.2.6 Preparation of Dichloro-1,3-bis (2,6-dimethyl-4-dimethylaminophenyl) imidazolin-2-ylidene bis (4-dimethylaminopyridine) - (phenylthio) methylene ruthenium (II) (4) 244 mg (2.00 mmol) of DMAP were added at room temperature and under a nitrogen atmosphere to a flask containing a suspension of 601 mg (0.64 mmol) of ruthenium complex 12 and 30 ml of tert-butyl methyl ether. Thereafter, the flask containing the resulting mixture was placed in an ultrasonic bath at 30 ° C for two hours. Subsequently, the contents of the flask were stirred for a further 16 hours at room temperature. During this time a light green precipitate precipitated and the initially slightly brown, supernatant solution decoloured. Thereafter, the precipitate was filtered off and washed with 10 ml of a 1-mil-molar DMAP / tert-butyl methyl ether solution. The resulting filter residue was then dried for 2 hours in a vacuum oven at 60 ° C and 30 mbar (absolute). There were 498 mg (0.55 mmol, 86 mol% yield) of complex Compound 3 as a light green powder {NMR spectroscopic characterization: 1 H NMR (300.1 MHz, CDCl 3 , 20 ° C): δ 17.68 (s, 1 H, Ru = CH), 7.17 (m, 5H, SC 6 H 5 ), 6.85 (br., 2H, N-CH = CH-N), 8.61 (br., 2H), 8.03 (br., 2H) , 6:09 (br., 8H, 2 χ C 5 NH 4 + 2 χ C 6 H 2), 2.93 (br., 12H), 2.77 (br., 6H), 2.65 (br., 6H, 4 χ N ( CH 3 ) 2 ), 2.27 (br., 12H, 2 χC 6 H 2 (CH 3 ) 2 )}.
I.3 Herstellung von Dichloro-1 ,3-bis(2,4,6-trimethylphenyl)-imidazolidin-2-yliden-bis(3- brompyridin)-benzyliden-ruthenium-(ll) (13) als Vergleichskomplex I.3 Preparation of dichloro-1,3-bis (2,4,6-trimethylphenyl) imidazolidin-2-ylidene bis (3-bromopyridine) benzylidene ruthenium (II) (13) as comparative complex
Figure imgf000032_0001
Figure imgf000032_0001
13  13
Die Herstellung des Vergleichsrutheniumkomplexes 13 erfolgte wie in der US-A 6,759,537, Spalte 32, beschrieben. The preparation of the comparative ruthenium complex 13 was carried out as described in US Pat. No. 6,759,537, column 32.
II Herstellung der wässrigen Polymerisatdispersionen 11.1 Polymerisatdispersion 1 Ein Gemisch bestehend aus 73,1 g entionisiertem Wasser und 8,3 g einer 10 gew.-%igen wäss- rigen Lösung eines Ci6Ci8-Fettalkoholpolyethoxylats (Eumulgin® B3 der Fa. COGNIS GmbH), 0,75 g (3,3 mmol) n-Hexadecan und 15,3 g (1 15,9 mmol) Dicyclopentadien (98 gew.-%ig) wurden bei 20 bis 25 °C (Raumtemperatur) unter Stickstoffatmosphäre in eine 150 ml Glasflasche mit Magnetrührstäbchen eingewogen und das Gemisch für eine Stunde unter Ausbildung einer homogenen Monomerenmakroemulsion stark gerührt. Anschließend wurde die entstandene Monomerenmakroemulsion mittels eines Ultraschallprozessors UP 400s (Sonotrode H7, 100 % Leistung) für eine Dauer von fünf Minuten homogenisiert. Die entstandene Monomerenminie- mulsion wies einen mittleren Tröpfchendurchmesser von 305 nm auf. Daran anschließend wurde die erhaltene wässrige Monomerenminiemulsion unter Stickstoffatmosphäre in einen temperierbaren, mit Rührer, Thermometer, Rückflusskühler und Zulaufgefäßen ausgestatteten 500 ml-Glaskolben überführt und unter Rühren auf 35 °C aufgeheizt. Parallel hierzu wurden 20,6 mg (0,023 mmol) Rutheniumkomplex 3 unter Ausbildung der entspre- chenden Dimethylammoniumverbindung in 13,6 g einer 0,1 molaren wässrigen Salzsäurelösung gelöst. Unter Rühren und Aufrechterhalten der Temperatur wurde innerhalb von einer Minute die vorgenannte Dimethylammonium-Komplexverbindung zur Monomerenminiemulsion zugegeben und das erhaltene Polymerisationsgemisch für 2 Stunden bei dieser Temperatur gerührt. Daran anschließend wurde die erhaltene wässrige Polymerisatdispersion auf Raumtemperatur abgekühlt und über ein 20 μιτι-Filter filtriert. Die Dispersion wies einen Koagulatan- teil von 0,1 Gew.-% auf. II Preparation of polymer aqueous polymer 11.1 1 A mixture consisting of 73.1 g deionized water and 8.3 g of a 10 wt .-% aqueous solution of a Ci6Ci8-Fettalkoholpolyethoxylats (Eumulgin B3 ® of the company. Cognis GmbH), 0 , 75 g (3.3 mmol) of n-hexadecane and 15.3 g (1.159 mmol) of dicyclopentadiene (98 wt .-%) were at 20 to 25 ° C (room temperature) under a nitrogen atmosphere in a 150 ml glass bottle Weighed with magnetic stir bars and the mixture stirred vigorously for one hour to form a homogeneous monomer macroemulsion. Subsequently, the resulting monomer macroemulsion was homogenized by means of an ultrasonic processor UP 400s (Sonotrode H7, 100% power) for a period of five minutes. The resulting monomer miniemulsion had an average droplet diameter of 305 nm. Subsequently, the resulting aqueous Monomerenminiemulsion was transferred under nitrogen atmosphere in a temperature-controlled equipped with stirrer, thermometer, reflux condenser and feed vessels 500 ml glass flask and heated to 35 ° C with stirring. In parallel, 20.6 mg (0.023 mmol) of ruthenium complex 3 were used to form the corresponding dissolving dimethylammonium compound in 13.6 g of a 0.1 molar aqueous hydrochloric acid solution. While stirring and maintaining the temperature, the aforementioned dimethylammonium complex compound was added to the monomer miniemulsion within one minute, and the resulting polymerization mixture was stirred for 2 hours at this temperature. Thereafter, the resulting aqueous polymer dispersion was cooled to room temperature and filtered through a 20 μιτι filter. The dispersion had a coagulum content of 0.1% by weight.
Die erhaltene wässrige Polymerisatdispersion wies einen Feststoffgehalt von 14,3 Gew.-% auf. Die mittlere Teilchengröße wurde zu 315 nm bestimmt. The aqueous polymer dispersion obtained had a solids content of 14.3% by weight. The mean particle size was determined to be 315 nm.
Die Feststoffgehalte wurden generell bestimmt, indem eine definierte Menge der wässrigen Polymerisatdispersion (ca. 0,8 g) mit Hilfe Feuchtebestimmer HR73 der Firma Mettler Toledo bei einer Temperatur von 130 °C bis zur Gewichtskonstanz getrocknet wurde (ca. 2 Stunden). Es wurden jeweils zwei Messung durchgeführt. Die angegebenen Werte stellen die Mittelwerte dieser Messungen dar. The solids contents were generally determined by drying a defined amount of the aqueous polymer dispersion (about 0.8 g) with the aid of moisture meter HR73 from Mettler Toledo at a temperature of 130 ° C. to constant weight (about 2 hours). In each case two measurements were carried out. The values given represent the mean values of these measurements.
Der z-mittlere Tröpfchendurchmesser der wässrigen Monomerenminiemulsionen und der mittlere Teilchendurchmesser der Polymerisatteilchen wurde generell durch dynamische Lichtstreu- ung an einer 0,005 bis 0,01 gewichtsprozentigen wässrigen Dispersion bei 23 °C mittels eines Autosizers NC der Fa. Malvern Instruments, England, ermittelt. Angegeben ist der mittlere Durchmesser der Kumulantenauswertung (cumulant zaverage) der gemessenen Autokorrelationsfunktion (ISO-Norm 13321 ). II.2 Polymerisatdispersion 2 The z-average droplet diameter of the aqueous monomer miniemulsions and the average particle diameter of the Polymerisatteilchen was generally determined by dynamic light scattering on a 0.005 to 0.01 weight percent aqueous dispersion at 23 ° C by means of an Autosizers NC from. Malvern Instruments, England. Indicated is the mean diameter of the cumulant (cumulant zaverage) of the measured autocorrelation function (ISO standard 13321). II.2 Polymer Dispersion 2
Die Herstellung der Polymerisatdispersion 2 erfolgte völlig analog der Herstellung der Polymerisatdispersion 1 , jedoch mit dem Unterschied, dass eine Lösung aus 20,1 mg (0,023 mmol) von Rutheniumkomplex 1 und 13,6 g einer 0,1 molaren wässrigen Salzsäurelösung anstelle der entsprechenden Rutheniumkomplex 3-Lösung eingesetzt wurden. The preparation of the polymer dispersion 2 was carried out completely analogously to the preparation of the polymer dispersion 1, but with the difference that a solution of 20.1 mg (0.023 mmol) of ruthenium complex 1 and 13.6 g of a 0.1 molar aqueous hydrochloric acid solution instead of the corresponding ruthenium complex 3 solution were used.
Die erhaltene wässrige Polymerisatdispersion wies einen Feststoffgehalt von 14,8 Gew.-% und einen Koagulatanteil von 0,4 Gew.-% auf. Die mittlere Teilchengröße wurde zu 269 nm bestimmt. The aqueous polymer dispersion obtained had a solids content of 14.8% by weight and a coagulum content of 0.4% by weight. The mean particle size was determined to be 269 nm.
II.3 Polymerisatdispersion 3 II.3 Polymer Dispersion 3
Die Herstellung der Polymerisatdispersion 3 erfolgte völlig analog der Herstellung der Polymerisatdispersion 1 , jedoch mit dem Unterschied, dass eine Lösung aus 20,1 mg (0,023 mmol) von Rutheniumkomplex 2 und 13,6 g einer 0,1 molaren wässrigen Salzsäurelösung anstelle der entsprechenden Rutheniumkomplex 3-Lösung eingesetzt wurden. Die erhaltene wässrige Polymerisatdispersion wies einen Feststoffgehalt von 14,6 Gew.-% und einen Koagulatanteil von 0,4 Gew.-% auf. Die mittlere Teilchengröße wurde zu 295 nm bestimmt. II.4 Polymerisatdispersion 4 The preparation of the polymer dispersion 3 was carried out completely analogously to the preparation of the polymer dispersion 1, but with the difference that a solution of 20.1 mg (0.023 mmol) of ruthenium complex 2 and 13.6 g of a 0.1 molar aqueous hydrochloric acid solution instead of the corresponding ruthenium complex 3 solution were used. The aqueous polymer dispersion obtained had a solids content of 14.6% by weight and a coagulum content of 0.4% by weight. The mean particle size was determined to be 295 nm. II.4 Polymer Dispersion 4
Die Herstellung der Polymerisatdispersion 4 erfolgte völlig analog der Herstellung der Polymerisatdispersion 1 , jedoch mit dem Unterschied, dass eine Lösung aus 20,6 mg (0,023 mmol) von Rutheniumkomplex 4 und 13,6 g einer 0,1 molaren wässrigen Salzsäurelösung anstelle der entsprechenden Rutheniumkomplex 3-Lösung eingesetzt wurden. The preparation of the polymer dispersion 4 was carried out completely analogously to the preparation of the polymer dispersion 1, but with the difference that a solution of 20.6 mg (0.023 mmol) of ruthenium complex 4 and 13.6 g of a 0.1 molar aqueous hydrochloric acid solution instead of the corresponding ruthenium complex 3 solution were used.
Die erhaltene wässrige Polymerisatdispersion wies einen Feststoffgehalt von 14,2 Gew.-% und einen Koagulatanteil von 0,1 Gew.-% auf. Die mittlere Teilchengröße wurde zu 267 nm bestimmt. The aqueous polymer dispersion obtained had a solids content of 14.2% by weight and a coagulum content of 0.1% by weight. The mean particle size was determined to be 267 nm.
11.5 Polymerisatdispersion 5 11.5 Polymer Dispersion 5
Die Herstellung der Polymerisatdispersion 5 erfolgte völlig analog der Herstellung der Polymerisatdispersion 1 , jedoch mit dem Unterschied, dass die Reaktionstemperatur 65 °C statt 35 °C und die Reaktionszeit lediglich 1 Stunde betrug. The preparation of the polymer dispersion 5 was carried out completely analogously to the preparation of the polymer dispersion 1, but with the difference that the reaction temperature was 65 ° C. instead of 35 ° C. and the reaction time was only 1 hour.
Die erhaltene wässrige Polymerisatdispersion wies einen Feststoffgehalt von 15,1 Gew.-% und einen Koagulatanteil von 0,1 Gew.-% auf. Die mittlere Teilchengröße wurde zu 264 nm bestimmt. The aqueous polymer dispersion obtained had a solids content of 15.1% by weight and a coagulum content of 0.1% by weight. The mean particle size was determined to be 264 nm.
11.6 Polymerisatdispersion 6 11.6 Polymer dispersion 6
Die Herstellung der Polymerisatdispersion 6 erfolgte völlig analog der Herstellung der Polymerisatdispersion 2, jedoch mit dem Unterschied, dass die Reaktionstemperatur 65 °C statt 35 °C betrug. The preparation of the polymer dispersion 6 was completely analogous to the preparation of the polymer dispersion 2, but with the difference that the reaction temperature was 65 ° C instead of 35 ° C.
Die erhaltene wässrige Polymerisatdispersion wies einen Feststoffgehalt von 15,1 Gew.-% und einen Koagulatanteil von 1 ,0 Gew.-% auf. Die mittlere Teilchengröße wurde zu 278 nm bestimmt. The aqueous polymer dispersion obtained had a solids content of 15.1% by weight and a coagulum content of 1.0% by weight. The mean particle size was determined to be 278 nm.
11.7 Polymerisatdispersion 7 11.7 Polymer Dispersion 7
Die Herstellung der Polymerisatdispersion 7 erfolgte völlig analog der Herstellung der Polymerisatdispersion 3, jedoch mit dem Unterschied, dass die Reaktionstemperatur 55 °C statt 35 °C betrug. Die erhaltene wässrige Polymerisatdispersion wies einen Feststoffgehalt von 15,0 Gew.-% und einen Koagulatanteil von 0,9 Gew.-% auf. Die mittlere Teilchengröße wurde zu 285 nm bestimmt. II.8 Polymerisatdispersion 8 The preparation of the polymer dispersion 7 was completely analogous to the preparation of the polymer dispersion 3, but with the difference that the reaction temperature was 55 ° C instead of 35 ° C. The aqueous polymer dispersion obtained had a solids content of 15.0% by weight and a coagulum content of 0.9% by weight. The mean particle size was determined to be 285 nm. II.8 Polymer Dispersion 8
Die Herstellung der Polymerisatdispersion 8 erfolgte völlig analog der Herstellung der Polymerisatdispersion 4, jedoch mit dem Unterschied, dass die Reaktionstemperatur 65 °C statt 35 °C und die Reaktionszeit lediglich 1 Stunde betrug. The preparation of the polymer dispersion 8 was carried out completely analogously to the preparation of the polymer dispersion 4, but with the difference that the reaction temperature was 65 ° C. instead of 35 ° C. and the reaction time was only 1 hour.
Die erhaltene wässrige Polymerisatdispersion wies einen Feststoffgehalt von 14,9 Gew.-% und einen Koagulatanteil von 0,2 Gew.-% auf. Die mittlere Teilchengröße wurde zu 260 nm bestimmt. II.9 Polymerisatdispersion 9 The aqueous polymer dispersion obtained had a solids content of 14.9% by weight and a coagulum content of 0.2% by weight. The mean particle size was determined to be 260 nm. II.9 Polymer Dispersion 9
Die Herstellung der Polymerisatdispersion 9 erfolgte völlig analog der Herstellung der Polymerisatdispersion 1 , jedoch mit dem Unterschied, dass ein Gemisch aus 8,4 g (63,5 mmol) Dicyclo- pentadien und 7,2 g (65,3 mmol) cis-Cycloocten anstelle von 15,3 g Dicyclopentadien einge- setzt wurde. The preparation of the polymer dispersion 9 was carried out completely analogously to the preparation of the polymer dispersion 1, but with the difference that a mixture of 8.4 g (63.5 mmol) of dicyclopentadiene and 7.2 g (65.3 mmol) of cis-cyclooctene instead of 15.3 g of dicyclopentadiene was used.
Die erhaltene wässrige Polymerisatdispersion wies einen Feststoffgehalt von 13,4 Gew.-% und einen Koagulatanteil von 0,1 Gew.-% auf. Die mittlere Teilchengröße wurde zu 255 nm bestimmt. The aqueous polymer dispersion obtained had a solids content of 13.4% by weight and a coagulum content of 0.1% by weight. The mean particle size was determined to be 255 nm.
11.10 Polymerisatdispersion 10 11.10 Polymer dispersion 10
Die Herstellung der Polymerisatdispersion 10 erfolgte völlig analog der Herstellung der Polymerisatdispersion 2, jedoch mit dem Unterschied, dass ein Gemisch aus 8,4 g (63,5 mmol) Dicyc- lopentadien und 7,2 g (65,3 mmol) cis-Cycloocten anstelle von 15,3 g Dicyclopentadien eingesetzt wurde. The preparation of the polymer dispersion 10 was carried out completely analogously to the preparation of the polymer dispersion 2, but with the difference that a mixture of 8.4 g (63.5 mmol) dicyclopentadiene and 7.2 g (65.3 mmol) cis-cyclooctene instead of 15.3 g of dicyclopentadiene was used.
Die erhaltene wässrige Polymerisatdispersion wies einen Feststoffgehalt von 14,8 Gew.-% und einen Koagulatanteil von 0,4 Gew.-% auf. Die mittlere Teilchengröße wurde zu 270 nm be- stimmt. The aqueous polymer dispersion obtained had a solids content of 14.8% by weight and a coagulum content of 0.4% by weight. The average particle size was determined to be 270 nm.
11.11 Polymerisatdispersion 1 1 11.11 Polymer dispersion 1 1
Die Herstellung der Polymerisatdispersion 1 1 erfolgte völlig analog der Herstellung der Polyme- risatdispersion 3, jedoch mit dem Unterschied, dass ein Gemisch aus 8,4 g (63,5 mmol) Dicyclopentadien und 7,2 g (65,3 mmol) cis-Cycloocten anstelle von 15,3 g Dicyclopentadien eingesetzt wurde. Die erhaltene wässrige Polymerisatdispersion wies einen Feststoffgehalt von 12,6 Gew.-% und einen Koagulatanteil von 0,3 Gew.-% auf. Die mittlere Teilchengröße wurde zu 254 nm bestimmt. The polymer dispersion 1 1 was prepared completely analogously to the preparation of the polymer dispersion 3, but with the difference that a mixture of 8.4 g (63.5 mmol) of dicyclopentadiene and 7.2 g (65.3 mmol) of cis Cyclooctene was used instead of 15.3 g of dicyclopentadiene. The aqueous polymer dispersion obtained had a solids content of 12.6% by weight and a coagulum content of 0.3% by weight. The mean particle size was determined to be 254 nm.
11.12 Polymerisatdispersion 12 11.12 Polymer dispersion 12
Die Herstellung der Polymerisatdispersion 12 erfolgte völlig analog der Herstellung der Polymerisatdispersion 4, jedoch mit dem Unterschied, dass ein Gemisch aus 8,4 g (63,5 mmol) Dicyc- lopentadien und 7,2 g (65,3 mmol) cis-Cycloocten anstelle von 15,3 g Dicyclopentadien eingesetzt wurde. The preparation of the polymer dispersion 12 was carried out completely analogously to the preparation of the polymer dispersion 4, but with the difference that a mixture of 8.4 g (63.5 mmol) dicyclopentadiene and 7.2 g (65.3 mmol) cis-cyclooctene instead of 15.3 g of dicyclopentadiene was used.
Die erhaltene wässrige Polymerisatdispersion wies einen Feststoffgehalt von 12,1 Gew.-% und einen Koagulatanteil von 0,2 Gew.-% auf. Die mittlere Teilchengröße wurde zu 265 nm be- stimmt. The aqueous polymer dispersion obtained had a solids content of 12.1% by weight and a coagulum content of 0.2% by weight. The mean particle size was determined to be 265 nm.
11.13 Polymerisatdispersion 13 11.13 Polymer dispersion 13
Die Herstellung der Polymerisatdispersion 13 erfolgte völlig analog der Herstellung der Polyme- risatdispersion 9, jedoch mit dem Unterschied, dass eine Reaktionstemperatur 65 °C statt 35 °C und die Reaktionszeit lediglich 1 Stunde betrug. The preparation of the polymer dispersion 13 was carried out completely analogously to the preparation of the polymer dispersion 9, but with the difference that a reaction temperature was 65 ° C. instead of 35 ° C. and the reaction time was only 1 hour.
Die erhaltene wässrige Polymerisatdispersion wies einen Feststoffgehalt von 14,8 Gew.-% und einen Koagulatanteil von 0,1 Gew.-% auf. Die mittlere Teilchengröße wurde zu 290 nm be- stimmt. The aqueous polymer dispersion obtained had a solids content of 14.8% by weight and a coagulum content of 0.1% by weight. The mean particle size was determined to be 290 nm.
11.14 Polymerisatdispersion 14 11.14 Polymer Dispersion 14
Die Herstellung der Polymerisatdispersion 14 erfolgte völlig analog der Herstellung der Polyme- risatdispersion 10, jedoch mit dem Unterschied, dass eine Reaktionstemperatur 65 °C statt 35 °C betrug. The preparation of the polymer dispersion 14 was carried out completely analogously to the preparation of the polymer dispersion 10, but with the difference that a reaction temperature was 65.degree. C. instead of 35.degree.
Die erhaltene wässrige Polymerisatdispersion wies einen Feststoffgehalt von 14,7 Gew.-% und einen Koagulatanteil von 1 ,5 Gew.-% auf. Die mittlere Teilchengröße wurde zu 264 nm be- stimmt. The aqueous polymer dispersion obtained had a solids content of 14.7% by weight and a coagulum content of 1.5% by weight. The mean particle size was determined to be 264 nm.
11.15 Polymerisatdispersion 15 11.15 Polymer dispersion 15
Die Herstellung der Polymerisatdispersion 15 erfolgte völlig analog der Herstellung der Polyme- risatdispersion 11 , jedoch mit dem Unterschied, dass eine Reaktionstemperatur 65 °C statt 35 °C betrug. Die erhaltene wässrige Polymerisatdispersion wies einen Feststoffgehalt von 13,5 Gew.-% und einen Koagulatanteil von 1 ,6 Gew.-% auf. Die mittlere Teilchengröße wurde zu 262 nm bestimmt. 11.16 Polymerisatdispersion 16 The preparation of the polymer dispersion 15 was carried out completely analogously to the preparation of the polymer dispersion 11, but with the difference that a reaction temperature was 65.degree. C. instead of 35.degree. The aqueous polymer dispersion obtained had a solids content of 13.5% by weight and a coagulum content of 1.6% by weight. The mean particle size was determined to be 262 nm. 11.16 Polymer Dispersion 16
Die Herstellung der Polymerisatdispersion 16 erfolgte völlig analog der Herstellung der Polymerisatdispersion 12, jedoch mit dem Unterschied, dass eine Reaktionstemperatur 65 °C statt 35 °C und die Reaktionszeit lediglich 1 Stunde betrug. The preparation of the polymer dispersion 16 was completely analogous to the preparation of the polymer dispersion 12, but with the difference that a reaction temperature of 65 ° C instead of 35 ° C and the reaction time was only 1 hour.
Die erhaltene wässrige Polymerisatdispersion wies einen Feststoffgehalt von 13,4 Gew.-% und einen Koagulatanteil von 0,1 Gew.-% auf. Die mittlere Teilchengröße wurde zu 268 nm bestimmt. II.V1 Vergleichsbeispiel 1 The aqueous polymer dispersion obtained had a solids content of 13.4% by weight and a coagulum content of 0.1% by weight. The mean particle size was determined to be 268 nm. II.V1 Comparative Example 1
Die Durchführung des Vergleichsbeispiels 1 erfolgte völlig analog zur Herstellung von Polymerisatdispersion 1 , jedoch mit dem Unterschied, dass 20,6 mg (0,023 mmol) Komplexverbindung 13 anstelle von Rutheniumkomplex 3 eingesetzt wurden. The procedure of Comparative Example 1 was carried out completely analogously to the preparation of Polymerisatdispersion 1, but with the difference that 20.6 mg (0.023 mmol) of Complex Compound 13 were used instead of Rutheniumkomplex 3.
Die erhaltene wässrige Polymerisatdispersion wies einen Feststoffgehalt von 0,9 Gew.-% und einen Koagulatanteil von 1 ,1 Gew.-% auf. Die mittlere Teilchengröße wurde zu 441 nm bestimmt. 11.V2 Vergleichsbeispiel 2 The aqueous polymer dispersion obtained had a solids content of 0.9% by weight and a coagulum content of 1.1% by weight. The mean particle size was determined to be 441 nm. 11.V2 Comparative Example 2
Die Durchführung des Vergleichsbeispiels 2 erfolgte völlig analog zur Herstellung von Polymerisatdispersion 1 , jedoch mit dem Unterschied, dass die Gesamtmenge an Rutheniumkomplex 3 in 13,6 g entionisiertem Wasser unter Ausbildung einer Suspension aufgenommen wurde. The performance of Comparative Example 2 was completely analogous to the preparation of polymer dispersion 1, but with the difference that the total amount of ruthenium complex 3 in 13.6 g of deionized water was added to form a suspension.
Es wurde keine wässrige Polymerisatdispersion erhalten II.V3 Vergleichsbeispiel 3 Die Durchführung des Vergleichsbeispiels 3 erfolgte völlig analog zur Herstellung von Polymerisatdispersion 1 , jedoch mit dem Unterschied, dass die Gesamtmenge an Rutheniumkomplex 3 in einer Lösung bestehend aus 6,8 g entionisiertem Wasser und 6,8 g Methanol unter Ausbildung einer Suspension aufgenommen wurde. Es wurde keine wässrige Polymerisatdispersion erhalten No aqueous polymer dispersion was obtained. Comparative Example 3 Comparative Example 3 was carried out completely analogously to the preparation of polymer dispersion 1, but with the difference that the total amount of ruthenium complex 3 in a solution consisting of 6.8 g of deionized water and 6, 8 g of methanol was added to form a suspension. No aqueous polymer dispersion was obtained
II.V4 Vergleichsbeispiel 4 Die Durchführung des Vergleichsbeispiels 4 erfolgte völlig analog zur Herstellung von Polymerisatdispersion 1 , jedoch mit dem Unterschied, dass die Gesamtmenge an Rutheniumkomplex 3 in 13,6 g Methanol aufgenommen wurde. II.V4 Comparative Example 4 Comparative Example 4 was carried out completely analogously to the preparation of polymer dispersion 1, but with the difference that the total amount of ruthenium complex 3 was taken up in 13.6 g of methanol.
Es wurde keine wässrige Polymerisatdispersion erhalten. No aqueous polymer dispersion was obtained.
Abbildung 1 : K stallstruktur der Komplexverbindung 3 Figure 1: K st structure of the complex compound 3
Figure imgf000039_0001
Figure imgf000039_0001

Claims

Patentansprüche claims
Verfahren zur Herstellung einer wässrigen Polymerisatdispersion durch Polymerisation wenigstens eines ethylenisch ungesättigten Monomeren MON in einem wässrigen Medium in Anwesenheit wenigstens eines Dispergiermittels DP, gegebenenfalls eines gering in Wasser löslichen organischen Lösungsmittels OL und wenigstens eines Metallcarben- komplexes K der allgemeinen Formel (I), Process for the preparation of an aqueous polymer dispersion by polymerization of at least one ethylenically unsaturated monomer MON in an aqueous medium in the presence of at least one dispersant DP, optionally a slightly water-soluble organic solvent OL and at least one metal carbene complex K of the general formula (I),
ΜΧ1Χ2|_1 |_2 |_3[=CR1R2] worin ΜΧ 1 Χ 2 | _1 | _2 | _3 [= CR 1 R 2 ] wherein
M: für Os, Mo, W oder Ru in den Wertigkeitsstufen +II, +III, +IV oder +VI, M: for Os, Mo, W or Ru in the valence states + II, + III, + IV or + VI,
X1, X2: unabhängig voneinander für Halogenid, Pseudohalogenid, Alkoxid, Acetat, Sul- fat, Phosphat, X 1 , X 2 : independently of one another for halide, pseudohalide, alkoxide, acetate, sulfate, phosphate,
L1, L2 L3: unabhängig voneinander für 1 ,3-Bis(Ci-C5-alkyl)-imidazolidin-2-yliden, 1 ,3- Bis(aryl)-imidazolidin-2-yliden, 1 ,3-Bis(2,4,6-trimethylphenyl)-imidazolidin-2- yliden, 1 ,3-Bis(2,4,6-tri-Ci-C5-alkylphenyl)-imidazolidin-2-yliden, 1 ,3-Bis(2,4,- diisopropylphenyl)-imidazolidin-2-yliden, 1 ,3-Bis(2,4-di-Ci-C5-alkylphenyl)- imidazolidin-2-yliden, 1 ,3-bis(2,6-diisopropylphenyl)-4,5-imidazolin-2-yliden,1 ,3- bis(2,6-diisopropylphenyl)imidazolidin-2-yliden, 1 ,3-Bis(2,4,6-tri-C5-C8- cycloalkylphenyl)-imidazolidin-2-yliden, 1 ,3-Bis(Ci-C5-alkyl)-imidazolin-2-yliden, 1 ,3-Bis(aryl)-imidazolin-2-yliden, 1 ,3-Bis(2,4,6-trimethylphenyl)-imidazolin-2- yliden, 1 ,3-Bis(2,4,6-tri-Ci-C5-alkylphenyl)-imidazolin-2-yliden, 1 ,3-Bis(2,4,- diisopropylphenyl)-imidazolin-2-yliden, 1 ,3-Bis(2,4-di-Ci-C5-alkylphenyl)- imidazolin-2-yliden, 1 ,3-Bis(2,4,6-tri-C5-C8-cycloalkylphenyl)-imidazolin-2- yliden, 3-Brompyridin, 3-Chlorpyridin, 3-Fluorpyridin, 4-Dimethylaminopyridin, 3-Ci-C5-Alkylpyridin, Di-Ci-C20-alkylether, Di-C3-C2o-cycloalkylether, 2- Isopropoxyphenylmethylen, 2-lsopropoxypyridin, Triarylphosphin, Tri-Cs-Ce- cycloalkylphosphin, Tri-d-Cs-alkylphosphin oder Diaryl-Ci-Cs-alkylphosphin, und L 1 , L 2 L 3 : independently of one another for 1, 3-bis (C 1 -C 5 -alkyl) -imidazolidin-2-ylidene, 1, 3-bis (aryl) -imidazolidin-2-ylidene, 1, 3-bis (2,4,6-trimethylphenyl) -imidazolidin-2-ylidene, 1, 3-bis (2,4,6-tri-C 1 -C 5 -alkylphenyl) -imidazolidin-2-ylidene, 1, 3-bis ( 2,4, -diisopropylphenyl) -imidazolidin-2-ylidene, 1, 3-bis (2,4-di-Ci-C5-alkylphenyl) - imidazolidin-2-ylidene, 1, 3-bis (2,6-diisopropylphenyl ) -4,5-imidazolin-2-ylidene, 1,3-bis (2,6-diisopropylphenyl) imidazolidin-2-ylidene, 1,3-bis (2,4,6-tri-C5-C8-cycloalkylphenyl) -imidazolidin-2-ylidene, 1,3-bis (C 1 -C 5 -alkyl) -imidazolin-2-ylidene, 1, 3-bis (aryl) -imidazolin-2-ylidene, 1, 3-bis (2,4 , 6-trimethylphenyl) -imidazolin-2-ylidene, 1, 3-bis (2,4,6-tri-C 1 -C 5 -alkylphenyl) imidazolin-2-ylidene, 1, 3-bis (2,4, diisopropylphenyl) imidazolin-2-ylidene, 1,3-bis (2,4-di-Ci-C5-alkylphenyl) -imidazolin-2-ylidene, 1, 3-bis (2,4,6-tri-C5 -C 8 -cycloalkylphenyl) -imidazolin-2-ylidene, 3-bromopyridine, 3-chloropyridine, 3-fluoropyridine, 4-dimethylaminopyridine, 3-C 1 -C 5 -alkylp yridine, di-C 1 -C 20 -alkyl ethers, di-C 3 -C 2 o-cycloalkyl ethers, 2-isopropoxyphenylmethylene, 2-isopropoxypyridine, triarylphosphine, tri-C 1 -C 6 -cycloalkylphosphine, tri-d-C 5 -alkylphosphine or diaryl- Ci-Cs-alkylphosphine, and
R1, R2: unabhängig voneinander für Wasserstoff, Ci-C2o-Alkyl, C2-C2o-Alkenyl, C4-C8- Cycloalkenyl C2-C2o-Alkinyl, Aryl, Indenyl, 2-lsopropoxyphenyl, 2-lsopropoxy-5- (2,2,2-trifluoroacetamido)phenyl, Ci-C2o-Alkoxyphenyl, Ci-C2o-Alkoxyamino, Ci- C2o-Alkoxy, Ci-C2o-Alkoxycarbonyl, C2-C2o-Alkenyloxy, C2-C2o-Alkinyloxy, Arylo- xy, Ci-C2o-Alkylthio, Arylthio, Ci-C2o-Alkylsulfonyl, Ci-C2o-Alkylsulfinyl oder gemeinsam für einen Rest [=CR3R4] stehen, wobei R3 und R4 unabhängig voneinander für Wasserstoff , Ci-C20-Alkyl, C2-C20-Alkenyl, C2-C20-Alkinyl, Aryl, Indenyl, Isopropoxyphenyl, Ci-C2o-Alkoxyphenyl, Ci-C2o-Alkoxyamino, C1-C20- Alkoxy, Ci-C2o-Alkoxycarbonyl, C2-C2o-Alkenyloxy, C2-C2o-Alkinyloxy, Aryloxy,R 1 , R 2 independently of one another represent hydrogen, C 1 -C 20 -alkyl, C 2 -C 20 -alkenyl, C 4 -C 8 -cycloalkenyl C 2 -C 20 -alkynyl, aryl, indenyl, 2-isopropoxyphenyl, 2-isopropoxy-5- (2 , 2,2-trifluoroacetamido) phenyl, C 1 -C 20 -alkoxyphenyl, C 1 -C 20 -alkoxyamino, C 1 -C 20 -alkoxy, C 1 -C 20 -alkoxycarbonyl, C 2 -C 20 -alkenyloxy, C 2 -C 20 -alkynyloxy, aryloxy, Ci C 2o-alkylthio, arylthio, C 1 -C 20 -alkylsulfonyl, C 1 -C 20 -alkylsulfinyl or together represent a radical [= CR 3 R 4 ], where R 3 and R 4 independently of one another represent hydrogen, C 1 -C 20 -alkyl, C 2 -C 20 -alkenyl, C 2 -C 20 -alkynyl, aryl, indenyl, isopropoxyphenyl, C 1 -C 20 -alkoxyphenyl, C 1 -C 20 -alkoxyamino, C 1 -C 20 -alkoxy, C 1 -C 20 -alkoxycarbonyl, C 2 -C 20 -alkenyloxy, C2-C2o-alkynyloxy, aryloxy,
Ci-C20-Alkylthio, Arylthio, Ci-C20-Alkylsulfonyl, Ci-C20-Alkylsulfinyl stehen, wobei C 1 -C 20 -alkylthio, arylthio, C 1 -C 20 -alkylsulfonyl, C 1 -C 20 -alkylsulfinyl, where
generell die Alkylreste der Gruppen L1, L2, L3,R1, R2, R3 und R4 gegebenenfalls mit 1 , 2 oder 3 Gruppen ausgewählt aus Ci-Cs-Alkyl, Aryl, Halogen, Hydroxy, Mercapto, Ci-Cs-Alkoxy und Ci-Cs-Alkoxycarbonyl, Aminooxy, Hydrazino, Car- boxy, Carboxyamido, Acetamido, Amino, Nitro, Cyan, Sulfamoyl-, Amidino, Hydroxycarbamoyl, Carbamoyl, Phosphonamino, Hydroxyphosphinoyl, Phosphono, Sulfino, Sulfo, Dithiocarboxy, Thiocarboxy, Furyl, Pyridinyl, Piperi- dinyl, Furfuryl, Pyrazolyl, Isothiazolyl, Pyrazinyl, Pyrimidinyl, Pyridazinyl, Isoin- dolyl sowie Indolyl und die Arylreste der Gruppen L1, L2, L3,R1, R2, R3 und R4 gegebenenfalls mit 1 , 2 oder 3 Gruppen ausgewählt aus Ci-Cs-Alkyl, Aryl, Halogen, Hydroxy, Mercapto, Ci-Cs-Alkoxy und Ci-Cs-Alkoxycarbonyl, Hydrazino, Carboxy, Carboxyamido, Acetamido, Amino, Nitro, Cyan, Sulfamoyl, Amidino, Hydroxycarbamoyl, Carbamoyl, Phosphonamino, Hydroxyphosphinoyl, Phosphono, Sulfino, Sulfo, Dithiocarboxy, Thiocarboxy, Furyl, Pyridinyl, Piperi- dinyl, Furfuryl, Pyrazolyl, Isothiazolyl, Pyrazinyl, Pyrimidinyl, Pyridazinyl, Isoin- dolyl sowie Indolyl substituiert sein können, mit der Maßgabe, dass wenigstens eine der Gruppen L1, L2, L3, R1, R2, R3 und R4, mit wenigstens einer im wässrigen Reaktionsmedium unter Polymerisationsbedingungen ionisch dissoziierbaren Gruppe ausgewählt aus der Gruppe umfassend Carboxylat (-CO2Z), Sulfonat (-SO3Z), Ammonium (-NABCD), Phosphat (-PO3Z), Phosphonium (-PABCD), I- midazolylium (-ImidazolylAD), Pyridylium (-PyridylAD), Piperidylium(-PiperidylABD), Pyry- lium (-PyryliumD), Pyrazolylium (-PyrazolylAD), Isothiazolylium (-IsothiazolylAD), Pyrazi- nylium (-PyrazinylAD), Pyrimidinylium (-PyrimidinylAD) oder Pyridazinylium (- PyrazinylAD) substituiert ist, in general the alkyl radicals of the groups L 1 , L 2 , L 3 , R 1 , R 2 , R 3 and R 4 optionally with 1, 2 or 3 groups selected from C 1 -C 8 -alkyl, aryl, halogen, hydroxyl, Mercapto, C 1 -C 8 -alkoxy and C 1 -C 8 -alkoxycarbonyl, aminooxy, hydrazino, carboxy, carboxyamido, acetamido, amino, nitro, cyano, sulfamoyl, amidino, hydroxycarbamoyl, carbamoyl, phosphonamino, hydroxyphosphinoyl, phosphono, sulfino, sulfo , Dithiocarboxy, thiocarboxy, furyl, pyridinyl, piperidinyl, furfuryl, pyrazolyl, isothiazolyl, pyrazinyl, pyrimidinyl, pyridazinyl, isoindolyl and also indolyl and the aryl radicals of the groups L 1 , L 2 , L 3 , R 1 , R 2 , R 3 and R 4 optionally with 1, 2 or 3 groups selected from Ci-Cs-alkyl, aryl, halogen, hydroxy, mercapto, Ci-Cs-alkoxy and Ci-Cs-alkoxycarbonyl, hydrazino, carboxy, carboxamido, acetamido, amino , Nitro, cyano, sulfamoyl, amidino, hydroxycarbamoyl, carbamoyl, phosphonamino, hydroxyphosphinoyl, phosphono, sulfino, sulfo, dithiocarboxy, thiocarboxy, furyl, pyridinyl, piperidinyl, furfuryl, pyrazolyl, isothiazolyl, pyrazinyl, pyrimidinyl, pyridazinyl, isoindolyl and indolyl may be substituted, with the proviso that whom at least one of the groups L 1 , L 2 , L 3 , R 1 , R 2 , R 3 and R 4 , having at least one ionically dissociable group in the aqueous reaction medium under polymerization conditions selected from the group comprising carboxylate (-CO 2 Z), sulfonate (- SO3Z), ammonium (-NABCD), phosphate (-PO3Z), phosphonium (-PABCD), imidazolylium (-imidazolylAD), pyridylium (-PyridylAD), piperidylium (-PiperidylABD), pyyllium (-PyryliumD), pyrazolylium (PyrazolylAD), isothiazolylium (-IsothiazolylAD), pyrazinyl nylium (-PyrazinylAD), pyrimidinylium (-PyrimidinylAD) or pyridazinylium (- pyrazinyl AD) is substituted,
wobei in which
Z: für Proton, Alkalimetallkation oder Ammonium, Z: for proton, alkali metal cation or ammonium,
A, B, C: unabhängig voneinander für Wasserstoff, Ci-Cs-Alkyl, Aryl, und  A, B, C independently of one another represent hydrogen, C 1 -C 8 -alkyl, aryl, and
D: für ein Anion steht, oder bei wenigstens einer der Cs-Ce-Cycloalkylgruppen der Tri-Cs-Ce-cycloalkylphosphine L1, L2 und/oder L3 eine Methylengruppe durch eine sekundäre Ammoniumgruppe D: is an anion, or at least one of the Cs-Ce-cycloalkyl groups of tri-Cs-Ce-cycloalkylphosphine L 1 , L 2 and / or L 3 is a methylene group by a secondary ammonium group
(>NABD) ersetzt ist und dabei A, B und D die voran angegebenen Bedeutungen haben, dadurch gekennzeichnet, dass a) in einem Gefäß (> NABD) is replaced and A, B and D have the meanings given above, characterized in that a) in a vessel
a1 ) wenigstens eine Teilmenge des Wassers, a1) at least a subset of the water,
a2) wenigstens eine Teilmenge des wenigstens einen Dispergiermittels DP, a2) at least a subset of the at least one dispersant DP,
a3) wenigstens eine Teilmenge des wenigstens einen ethylenisch ungesättigten Monomeren MON, sowie a3) at least a portion of the at least one ethylenically unsaturated monomer MON, and
a4) gegebenenfalls wenigstens eine Teilmenge des organischen Lösungsmittels OL a5) in Form einer wässrigen Monomerenmakroemulsion mit einem mittleren Tröpfchendurchmesser > 2 μιτι vorgelegt werden, danach b) unter Energieeintrag die Monomerenmakroemulsion in eine Monomerenminiemulsi- on mit einem mittleren Tröpfchendurchmesser < 1500 nm überführt wird, und danach a4) optionally at least a partial amount of the organic solvent OL a5) in the form of an aqueous monomer macroemulsion having an average droplet diameter> 2 μm are initially introduced, thereafter b) with energy input, the monomer macroemulsion is converted into a monomer miniemulsion having an average droplet diameter <1500 nm, and thereafter
c) der erhaltenen Monomerenminiemulsion bei Polymerisationstemperatur c) the resulting monomer miniemulsion at the polymerization temperature
c1 ) die gegebenenfalls verbliebene Restmenge des Wassers, c1) any remaining amount of water,
c2) die gegebenenfalls verbliebene Restmenge des wenigstens einen Dispergiermittels DP, c2) any residual amount of the at least one dispersant DP remaining,
c3) die gegebenenfalls verbliebene Restmenge des wenigstens einen Monomeren MON, c3) the residual amount, if any, of the at least one monomer MON,
c4) die gegebenenfalls verbliebene Restmenge des organischen Lösungsmittels OL, und c4) any residual amount of the organic solvent OL, and
c5) die Gesamtmenge des Metallcarbenkomplexes K c5) the total amount of the metal carbene complex K
zugegeben werden und das wenigstens eine Monomere MON bis zu einem Monomere- numsatz > 80 Gew.-% polymerisiert wird. are added and the at least one monomer MON polymerized to a monomer number> 80 wt .-%.
Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass das wenigstens eine ethyle- nisch ungesättigte Monomere MON ein mono- oder polycyclisches aliphatisches Olefin ist. A method according to claim 1, characterized in that the at least one ethylenically unsaturated monomer MON is a mono- or polycyclic aliphatic olefin.
Verfahren nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass das Monomere MON cis-Cycloocten, trans-Cycloocten und/oder Dicyclopentadien ist. Process according to one of Claims 1 or 2, characterized in that the monomer MON is cis-cyclooctene, trans-cyclooctene and / or dicyclopentadiene.
Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der Metall- carbenkomplex K ein Dimethylammonium-Reaktionsprodukt, hergestellt aus einem Me- tallcarbenkomplex, welcher ausgewählt ist aus der Gruppe umfassend Dichloro-1 ,3- bis(2,6-dimethyl-4-dimethylaminophenyl)-imidazolidin-2-yliden-bis(4- dimethylaminopyridin)-benzyliden-ruthenium-(ll), Dichloro-1 ,3-bis(2, 6-dimethyl-4- dimethylaminophenyl)-imidazolin-2-yliden-bis(4-dimethylaminopyridin)-benzyliden- ruthenium-(ll), Dichloro-1 ,3-bis(2,6-dimethyl-4-dimethylaminophenyl)-imidazolidin-2- yliden-bis(4-dimethylaminopyridin)-phenylthiomethylen-ruthenium-(ll) und/oder Dichloro- 1 ,3-bis(2,6-dimethyl-4-dimethylaminophenyl)-imidazolin-2-yliden-bis(4- dimethylaminopyridin)-phenylthiomethylen-ruthenium-(ll), ist. Method according to one of claims 1 to 3, characterized in that the metal carbene complex K is a dimethylammonium reaction product prepared from a Metallcarbenkomplex which is selected from the group comprising dichloro-1, 3 bis (2,6-dimethyl 4-dimethylaminophenyl) imidazolidin-2-ylidene bis (4-dimethylaminopyridine) benzylidene ruthenium (II), dichloro-1,3-bis (2,6-dimethyl-4-dimethylaminophenyl) imidazoline-2-one ylidene bis (4-dimethylaminopyridine) benzylidene ruthenium (II), dichloro-1,3-bis (2,6-dimethyl-4-dimethylaminophenyl) imidazolidin-2-ylidene bis (4-dimethylaminopyridine) phenylthiomethylene ruthenium (II) and / or dichloro-1,3-bis (2,6-dimethyl-4-dimethylaminophenyl) imidazolin-2-ylidene bis (4-dimethylaminopyridine) phenylthiomethylene ruthenium (II) ,
Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das molare Mengenverhältnis von Monomer MON zum Metallcarbenkomplex K > 1000 beträgt. Method according to one of claims 1 to 4, characterized in that the molar ratio of monomer MON to the metal carbene complex K> 1000.
Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass das organische Lösungsmittel OL ausgewählt ist aus der Gruppe umfassend n-Hexan, n-Octan, n- Decan, n-Tetradecan, n-Hexadecan sowie deren verzweigte Isomere, Benzol, Toluol und/oder Ethylbenzol. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass in Verfahrensschritt a2) die Gesamtmenge des wenigstens einen Dispergiermittels DP und in Verfahrensschritt a3) die Gesamtmenge des wenigstens einen Monomeren MON eingesetzt werden. Method according to one of claims 1 to 5, characterized in that the organic solvent OL is selected from the group comprising n-hexane, n-octane, n-decane, n-tetradecane, n-hexadecane and their branched isomers, benzene, toluene and / or ethylbenzene. Method according to one of claims 1 to 6, characterized in that in process step a2) the total amount of the at least one dispersant DP and in process step a3) the total amount of the at least one monomer MON are used.
Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass als Dispergiermittel DP ein kationischer und/oder nichtionischer Emulgator eingesetzt wird. Method according to one of claims 1 to 7, characterized in that a cationic and / or nonionic emulsifier is used as the dispersant DP.
Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Polymerisationstemperatur > 10 und < 120 °C beträgt. Method according to one of claims 1 to 8, characterized in that the polymerization temperature is> 10 and <120 ° C.
10. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass der pH-Wert des wässrigen Polymerisationsmediums < 6 ist. 1 1. Verfahren nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass in Verfahrensschritt b) Monomerentröpfchen mit einem mittleren Durchmesser > 50 und < 1300 nm hergestellt werden. 10. The method according to any one of claims 1 to 9, characterized in that the pH of the aqueous polymerization medium is <6. 1 1. The method according to any one of claims 1 to 10, characterized in that in process step b) monomer droplets having a mean diameter> 50 and <1300 nm are produced.
12. Verfahren nach einem der Ansprüche 1 bis 1 1 , dadurch gekennzeichnet, dass pro 100 Gew.-Teilen Monomeren MON > 30 und < 900 Gew.-Teile Wasser eingesetzt werden. 12. The method according to any one of claims 1 to 1 1, characterized in that per 100 parts by weight of monomers MON> 30 and <900 parts by weight of water are used.
13. Wässrige Polymerisatdispersion erhältlich nach einem Verfahren gemäß einem der Ansprüche 1 bis 12. 14. Polymerisatpulver erhältlich durch Trocknung einer wässrigen Polymerisatdispersion gemäß Anspruch 13. 13. Aqueous polymer dispersion obtainable by a process according to any one of claims 1 to 12. 14. Polymer powder obtainable by drying an aqueous polymer dispersion according to claim 13.
Verwendung einer wässrigen Polymerisatdispersion gemäß Anspruch 13 oder eines Polymerisatpulvers gemäß Anspruch 14 zur Herstellung von Klebstoffen, Dichtmassen, Kunststoffputzen, Papierstreichmassen, Faservliesen, Anstrichmitteln und Schlagzähmo- difier, sowie zur Verfestigung von Sand, Textilveredelung, Lederveredelung, oder zur Modifizierung von mineralischen Bindemitteln und Kunststoffen. Use of an aqueous polymer dispersion according to claim 13 or a polymer powder according to claim 14 for the preparation of adhesives, sealants, plastic plasters, paper coating slips, nonwoven fabrics, paints and impact modifiers, and for the consolidation of sand, textile finishing, leather finishing, or for the modification of mineral binders and plastics ,
16. Metallcarbenkomplex ausgewählt ist aus der Gruppe umfassend Dichloro-1 ,3-bis(2,6- dimethyl-4-dimethylaminophenyl)-imidazolidin-2-yliden-bis(4-dimethylaminopyridin)- benzyliden-ruthenium-(ll), Dichloro-1 ,3-bis(2,6-dimethyl-4-dimethylaminophenyl)- imidazolin-2-yliden-bis(4-dimethylaminopyridin)-benzyliden-ruthenium-(ll), Dichloro-1 ,3- bis(2,6-dimethyl-4-dimethylaminophenyl)-imidazolidin-2-yliden-bis(4- dimethylaminopyridin)-phenylthiomethylen-ruthenium-(ll) und/oder Dichloro-1 ,3-bis(2,6- dimethyl-4-dimethylaminophenyl)-imidazolin-2-yliden-bis(4-dimethylaminopyridin)- phenylthiomethylen-ruthenium-(ll). 16. metal carbene complex is selected from the group comprising dichloro-1, 3-bis (2,6-dimethyl-4-dimethylaminophenyl) imidazolidin-2-ylidene bis (4-dimethylaminopyridine) benzylidene ruthenium (II), dichloro -1, 3-bis (2,6-dimethyl-4-dimethylaminophenyl) imidazolin-2-ylidene bis (4-dimethylaminopyridine) benzylidene ruthenium (II), dichloro-1,3-bis (2,6 -dimethyl-4-dimethylaminophenyl) -imidazolidin-2-ylidene-bis (4-dimethylaminopyridine) -phenylthiomethylene-ruthenium (II) and / or dichloro-1,3-bis (2,6-dimethyl-4-dimethylaminophenyl) - imidazolin-2-ylidene-bis (4-dimethylaminopyridine) -phenylthiomethylene-ruthenium (II).
PCT/EP2011/071681 2010-12-08 2011-12-05 Method for producing an aqueous polymer product dispersion WO2012076426A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP10194182 2010-12-08
EP10194182.1 2010-12-08

Publications (1)

Publication Number Publication Date
WO2012076426A1 true WO2012076426A1 (en) 2012-06-14

Family

ID=45099085

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/071681 WO2012076426A1 (en) 2010-12-08 2011-12-05 Method for producing an aqueous polymer product dispersion

Country Status (1)

Country Link
WO (1) WO2012076426A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017081233A1 (en) 2015-11-13 2017-05-18 Basf Se Aqueous compositions based on polyalkenamers
US10808047B2 (en) 2015-08-21 2020-10-20 G&P Holding, Inc. Silver and copper itaconates and poly itaconates

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4269749A (en) 1979-04-30 1981-05-26 The Dow Chemical Company Method of imparting salt and/or mechanical stability to aqueous polymer microsuspensions
US5108654A (en) 1987-11-20 1992-04-28 Vittorio Ragaini Method for conducting chemical reactions in polyphase systems
GB2250930A (en) 1990-12-20 1992-06-24 Bandelin Electronic Gmbh & Co Flow vessel for a disintegrator
EP0824125A1 (en) 1996-08-13 1998-02-18 Ciba SC Holding AG Covering composition based on dicyclopentadiene derivatives
US5912376A (en) 1996-11-01 1999-06-15 Ciba Specialty Chemicals Corporation Process for the preparation of catalysts
DE19756874A1 (en) 1997-12-19 1999-06-24 Basf Ag Ultrasonic mixing device
EP0993465A1 (en) 1997-06-25 2000-04-19 Ciba SC Holding AG Ruthenium and osmium carbene catalysts
DE19859191A1 (en) 1998-12-21 2000-06-29 Basf Ag Aqueous polyalkylene dispersion useful for production of coatings, adhesives and binders is prepared by ring opening metathesis polymerization of poorly water soluble cyclic olefin
US6284852B1 (en) * 1997-10-30 2001-09-04 California Institute Of Technology Acid activation of ruthenium metathesis catalysts and living ROMP metathesis polymerization in water
US6759537B2 (en) 2001-03-23 2004-07-06 California Institute Of Technology Hexacoordinated ruthenium or osmium metal carbene metathesis catalysts
WO2006053712A2 (en) 2004-11-17 2006-05-26 Basf Aktiengesellschaft Process and device for producing finely divided liquid-liquid formulations, and the uses of these liquid-liquid formulations
US20080234451A1 (en) 2004-12-23 2008-09-25 Imperial Chemical Industries Plc Olefin Metathesis Polymerisation

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4269749A (en) 1979-04-30 1981-05-26 The Dow Chemical Company Method of imparting salt and/or mechanical stability to aqueous polymer microsuspensions
US5108654A (en) 1987-11-20 1992-04-28 Vittorio Ragaini Method for conducting chemical reactions in polyphase systems
GB2250930A (en) 1990-12-20 1992-06-24 Bandelin Electronic Gmbh & Co Flow vessel for a disintegrator
EP0824125A1 (en) 1996-08-13 1998-02-18 Ciba SC Holding AG Covering composition based on dicyclopentadiene derivatives
US5912376A (en) 1996-11-01 1999-06-15 Ciba Specialty Chemicals Corporation Process for the preparation of catalysts
EP0993465A1 (en) 1997-06-25 2000-04-19 Ciba SC Holding AG Ruthenium and osmium carbene catalysts
US6284852B1 (en) * 1997-10-30 2001-09-04 California Institute Of Technology Acid activation of ruthenium metathesis catalysts and living ROMP metathesis polymerization in water
DE19756874A1 (en) 1997-12-19 1999-06-24 Basf Ag Ultrasonic mixing device
DE19859191A1 (en) 1998-12-21 2000-06-29 Basf Ag Aqueous polyalkylene dispersion useful for production of coatings, adhesives and binders is prepared by ring opening metathesis polymerization of poorly water soluble cyclic olefin
US6759537B2 (en) 2001-03-23 2004-07-06 California Institute Of Technology Hexacoordinated ruthenium or osmium metal carbene metathesis catalysts
WO2006053712A2 (en) 2004-11-17 2006-05-26 Basf Aktiengesellschaft Process and device for producing finely divided liquid-liquid formulations, and the uses of these liquid-liquid formulations
US20080234451A1 (en) 2004-12-23 2008-09-25 Imperial Chemical Industries Plc Olefin Metathesis Polymerisation

Non-Patent Citations (16)

* Cited by examiner, † Cited by third party
Title
"J.C. Mol, Industrial applications of olefin metathesis", JOURNAL OF MOLECULAR CATALYSIS A: CHEMICAL, vol. 213, 2004, pages 39 - 45
"McCutcheon's, Emulsifiers & Detergents", 1989, MC PUBLISHING COMPANY
C.W. BIELAWSKI; R.H. GRUBBS, PROG. POLYM. SCI., vol. 32, 2007, pages 1 - 29
CLAVERIE ET AL., MACROMOLECULES, vol. 34, 2001, pages 392 - 388
CLAVERIE J P ET AL: "Catalytic polymerizations in aqueous medium", PROGRESS IN POLYMER SCIENCE, PERGAMON PRESS, OXFORD, GB, vol. 28, no. 4, 1 April 2003 (2003-04-01), pages 619 - 662, XP027102537, ISSN: 0079-6700, [retrieved on 20030401] *
CLAVERIE J P ET AL: "Ring-Opening Metathesis Polymerization in Emulsion", MACROMOLECULES, AMERICAN CHEMICAL SOCIETY, WASHINGTON, DC; US, vol. 34, 20 January 2001 (2001-01-20), pages 382 - 388, XP002619493, ISSN: 0024-9297, [retrieved on 20010105], DOI: 10.1021/MA001570M *
H. STACHE: "Tensid-Taschenbuch", 1981, CARL-HANSER-VERLAG
HOUBEN-WEYL: "Makromolekulare Stoffe", vol. XIV, 1961, GEORG-THIEME-VERLAG, article "Methoden der organischen Chemie", pages: 192 - 208
HOUBEN-WEYL: "Makromolekulare Stoffe", vol. XIV, 1961, GEORG-THIEME-VERLAG, article "Methoden der organischen Chemie", pages: 411 - 420
M.S. EI-AASSER ET AL., JOURNAL OF APPLIED POLYMER SCIENCE, vol. 43, 1991, pages 1059 - 1066
N. L. WAGNER; F. J. TIMMERS; D. J. ARRIO LA; G. JUEPTNER; B. G. LANDES, MACROMOL. RAPID COMMUN., vol. 29, 2008, pages 1438
QUEMENER D ET AL: "Synthesis of latex particles by ring-opening metathesis polymerization", POLYMER, ELSEVIER SCIENCE PUBLISHERS B.V, GB, vol. 46, no. 4, 7 February 2005 (2005-02-07), pages 1067 - 1075, XP004721905, ISSN: 0032-3861, DOI: 10.1016/J.POLYMER.2004.11.096 *
S. L. BALOF; S. J. P'POOL; N. J. BERGER; E. J. VALENTE; A. M. SHILLER; H.-J. SCHANZ, DALTON TRANS., 2008, pages 5791 - 5799
SAMANTA, D. ET AL.: "A Synthesis of PED- and Phosphorylcholine-Substituted Pyridines To Afford Water-Soluble Ruthenium Benzylidene Metathesis Catalysts", MACROMOLECULES, vol. 41, no. 3, 12 January 2008 (2008-01-12), pages 530 - 532, XP002666385, DOI: 10.1021/ma7019732 *
SHAWNA L BALOF ET AL: "Olefin metathesis catalysts bearing a pH-responsive NHC ligand: a feasible approach to catalyst separation from RCM products", DALTON TRANSACTIONS, RSC PUBLISHING, CAMBRIDGE, GB, no. 42, 12 September 2008 (2008-09-12), pages 5791 - 5799, XP002619490, ISSN: 1477-9226, [retrieved on 20080912], DOI: 10.1039/B809793C *
Y. GNANOU ET AL., JOURNAL OF POLYMER SCIENCE: PART A: POLYMER CHEMISTRY, 2006, pages 2784 - 2793

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10808047B2 (en) 2015-08-21 2020-10-20 G&P Holding, Inc. Silver and copper itaconates and poly itaconates
WO2017081233A1 (en) 2015-11-13 2017-05-18 Basf Se Aqueous compositions based on polyalkenamers

Similar Documents

Publication Publication Date Title
WO2011051374A1 (en) Method for producing an aqueous polymer dispersion
DE69220058T2 (en) COARSE GRANULAR POLYOLEFIN, METHOD FOR PRODUCING THE SAME AND THE PRE-APPLICABLE CATALYST CONTAINER CONTAINING A TRANSESTER PRODUCT OF A LOW ALCOHOL AND DIOKTYLPHTALATE
EP2054448B1 (en) Process for producing carbon nanotube-polymer mixtures by means of gas-phase polymerization
EP2654954B1 (en) Use of supported ruthenium carbene complexes in continuous operated reactors
WO2006131479A1 (en) Method for producing an aqueous polymer dispersion
DE19859191A1 (en) Aqueous polyalkylene dispersion useful for production of coatings, adhesives and binders is prepared by ring opening metathesis polymerization of poorly water soluble cyclic olefin
WO2012076426A1 (en) Method for producing an aqueous polymer product dispersion
WO2006106138A1 (en) Method for producing an aqueous polymer dispersion
WO2006082234A1 (en) Method for the production of an aqueous polymer dispersion
US20120149840A1 (en) Process for producing an aqueous polymer dispersion
WO2003006528A1 (en) Method for producing aqueous copolymer dispersions of copolymers consisting of carbon monoxide and olefinically unsaturated compounds
WO2004020478A1 (en) Method for the production of aqueous polymer dispersions
EP1856160B1 (en) Process for preparing an aqueous addition-polymer dispersion
EP1527103B1 (en) Method for the emulsion polymerization of olefins
EP1819754A2 (en) Method for producing an aqueous polyamide dispersion
DE1803124C3 (en)
WO2004067603A1 (en) Method for producing aqueous polymer dispersions based on olefins by means of metal complex catalytic polymerization
WO2004005354A1 (en) Method for producing an aqueous polymer dispersion
DE1420482B2 (en) PROCESS FOR POLYMERIZATION OF A PYRROLIDONE OR A PIPERIDON
WO2004087772A1 (en) Method for producing an aqueous polymer dispersion using a water-insoluble polymerisation catalyst
EP1626998B1 (en) Method for producing aqueous polymer dispersions
WO2005014668A1 (en) Method for emulsion polymerizing olefins
DE3839813A1 (en) METHOD FOR THE CONTINUOUS PRODUCTION OF CATALYSTS FOR THE LOW PRESSURE POLYMERIZATION OF OLEFINS
DE10252658A1 (en) Aqueous polymer dispersions, e.g. for paper coating or carpet backing, obtained by polymerisation of olefin in presence of dispersant and activated catalyst based on special transition metal-neutral ligand complexes
EP1687344A1 (en) Method for emulsion polymerisation of olefins

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11791541

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11791541

Country of ref document: EP

Kind code of ref document: A1