WO2012075703A1 - 具有红外线热扫描功能的电子支气管镜系统 - Google Patents
具有红外线热扫描功能的电子支气管镜系统 Download PDFInfo
- Publication number
- WO2012075703A1 WO2012075703A1 PCT/CN2011/070537 CN2011070537W WO2012075703A1 WO 2012075703 A1 WO2012075703 A1 WO 2012075703A1 CN 2011070537 W CN2011070537 W CN 2011070537W WO 2012075703 A1 WO2012075703 A1 WO 2012075703A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- infrared
- thermal scanning
- infrared thermal
- probe
- electronic
- Prior art date
Links
- 239000000523 sample Substances 0.000 claims abstract description 50
- 238000012545 processing Methods 0.000 claims abstract description 15
- 230000004297 night vision Effects 0.000 claims abstract description 7
- 230000003287 optical effect Effects 0.000 claims description 11
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 4
- 229910052760 oxygen Inorganic materials 0.000 claims description 4
- 239000001301 oxygen Substances 0.000 claims description 4
- 210000004204 blood vessel Anatomy 0.000 abstract description 8
- 210000000621 bronchi Anatomy 0.000 abstract description 8
- 238000003745 diagnosis Methods 0.000 abstract description 6
- 238000005516 engineering process Methods 0.000 abstract description 6
- 230000003068 static effect Effects 0.000 abstract description 3
- 231100000915 pathological change Toxicity 0.000 abstract 1
- 230000036285 pathological change Effects 0.000 abstract 1
- 238000010438 heat treatment Methods 0.000 description 7
- 238000003331 infrared imaging Methods 0.000 description 7
- 210000004369 blood Anatomy 0.000 description 4
- 239000008280 blood Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000005286 illumination Methods 0.000 description 4
- 230000005855 radiation Effects 0.000 description 4
- 230000017531 blood circulation Effects 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 230000005856 abnormality Effects 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 230000004060 metabolic process Effects 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 208000023504 respiratory system disease Diseases 0.000 description 2
- 238000004659 sterilization and disinfection Methods 0.000 description 2
- 238000001356 surgical procedure Methods 0.000 description 2
- 230000001360 synchronised effect Effects 0.000 description 2
- 210000003437 trachea Anatomy 0.000 description 2
- 102000009027 Albumins Human genes 0.000 description 1
- 108010088751 Albumins Proteins 0.000 description 1
- 102000001554 Hemoglobins Human genes 0.000 description 1
- 108010054147 Hemoglobins Proteins 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 208000038016 acute inflammation Diseases 0.000 description 1
- 230000006022 acute inflammation Effects 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000012503 blood component Substances 0.000 description 1
- 210000001772 blood platelet Anatomy 0.000 description 1
- 230000036770 blood supply Effects 0.000 description 1
- 238000013276 bronchoscopy Methods 0.000 description 1
- 208000037976 chronic inflammation Diseases 0.000 description 1
- 230000006020 chronic inflammation Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000002059 diagnostic imaging Methods 0.000 description 1
- 238000002405 diagnostic procedure Methods 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 210000003743 erythrocyte Anatomy 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000003902 lesion Effects 0.000 description 1
- 210000004698 lymphocyte Anatomy 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000000877 morphologic effect Effects 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000007781 pre-processing Methods 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
- 230000002792 vascular Effects 0.000 description 1
- 230000006496 vascular abnormality Effects 0.000 description 1
- 231100000216 vascular lesion Toxicity 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/267—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor for the respiratory tract, e.g. laryngoscopes, bronchoscopes
- A61B1/2676—Bronchoscopes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/0059—Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
- A61B5/0082—Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes
- A61B5/0084—Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes for introduction into the body, e.g. by catheters
- A61B5/0086—Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes for introduction into the body, e.g. by catheters using infrared radiation
Definitions
- the invention belongs to the field of medical instruments, and particularly relates to an electronic bronchoscope system with infrared thermal scanning function with infrared thermal scanning function. current technology
- infrared imaging has been derived from military technology. It has been used for more than 40 years. With the development of various technologies such as medical imaging, infrared imaging, and multimedia, the temperature resolution of infrared imaging has reached 0. 05 degrees, and the spatial resolution has reached 0. 8mrad, the image sharpness has been greatly improved, the result analysis is intuitive and convenient, and its clinical application range is expanding. At present, infrared imaging diagnosis shows certain advantages in the following aspects: 1. Judging the location, extent and extent of acute and chronic inflammation; 2. Monitoring the blood supply function status of vascular lesions; 3. Tumor warning indication, full-course monitoring and efficacy evaluation. It can be seen that infrared imaging is an important complement to other morphological diagnostic methods such as B-ultrasound, CT, and MR.
- the electronic bronchoscope is a bronchoscope with an electronic CCD processing chip at the front end of the working end.
- the electronic bronchoscope is a common device for laryngological surgery.
- the electronic bronchoscope is connected with a camera host, a monitor and a cold light source host. The surgical instruments, doctors can go deep into the throat, perform throat surgery and examinations.
- the object of the present invention is to overcome the deficiencies of the prior art and provide an electronic bronchoscope system with an infrared thermal scanning function, which is an infrared thermal scanning system introduced into an electronic bronchoscope system through an infrared thermal scanning system.
- the probe scans the throat and its tissue in a stereoscopic manner, and the data obtained by the multi-plane continuous cross-cut scan is transmitted to the host of the infrared thermal scanning system for image processing, clearly displaying the stereoscopic image of the bronchial wall, and providing the doctor with a bronchial tract and
- the infrared thermal scanning image of the tissue enriches the diagnostic means of respiratory diseases and improves the accuracy of diagnosis.
- the electronic bronchoscope system with infrared thermal scanning function comprises an electronic bronchoscope and an electric a cold light source host connected to the sub-bronchoscope, a camera host, an endoscope monitor, and an infrared thermal scanning system on the electronic bronchoscope, the infrared thermal scanning system comprising an infrared thermal scanning probe, an infrared thermal scanning processing system host, and Infrared thermal scanning system monitor.
- the electronic bronchoscope employs a CCD electron optical system including a soft endoscope end, an instrument channel, an oxygen supply channel, a control handle, and a data output end.
- the diameter of the end of the soft endoscope can be bent; the diameter of the end of the soft endoscope can be bent; the diameter of the instrument channel is less than or equal to 2.5 mm;
- the electronic bronchoscope, the optical path of the electronic CCD optical system having a diameter of 1. 5 ⁇ 3.
- Omm optical lens, the CCD chip of the electronic CCD optical system is 1/4", at least 480,000 effective pixel CCD, lens
- the angle of view is 100 ° or more.
- the infrared thermal scanning probe includes a working end of the probe, an operating handle and a data line, and the working end of the probe passes through the instrument channel of the electronic bronchoscope and protrudes from the front end of the end of the soft endoscope.
- the data line is connected to the infrared thermal scanning processing system host through a connector, and the infrared thermal scanning system monitor is connected to the infrared thermal scanning processing system host.
- the infrared thermal scanning probe of the present invention has a probe working end portion having a length ranging from 500 to 2000 mm, and an outer diameter of the working end portion of the probe is less than or equal to 3.0 mm, and the probe working end portion has a probe tip end length of less than 50 mm.
- the infrared portion of the probe is designed with an infrared region, the infrared region is equipped with an infrared device, the infrared device includes an infrared light source emitter, and the infrared receiving lens; the infrared light source emitter and the infrared receiving lens form a group of infrared devices, and the working end is integrated therein.
- the three sets of infrared devices are designed to each other at 60 degrees; the infrared region can be driven by the motor to rotate, and linear and circular movements are performed to perform linear and circular scanning on the scanned object.
- the operation handle of the infrared thermal scanning probe comprises a control switch, a mode selection switch, a fine adjustment switch and the like.
- the data line is connected to the infrared heat treatment system host through a joint.
- the infrared heat treatment system host of the present invention provides rich control buttons, switches, mode selection, infrared intensity fine adjustment, monitor menu and the like on the operation panel and the operation keyboard or the handheld operation device.
- the mode selection can switch between different display modes, including the normal display mode and the night vision display mode.
- the normal display mode refers to the display mode of infrared scanning under the illumination of the endoscope cold light source and the infrared light source, and the night vision display mode means no inside. Under the illumination of the mirror cold light source and the infrared light source, depending on the radiation intensity of the tissue itself, the doctor can compare the images in the two modes to obtain a better diagnostic effect from another angle.
- the infrared heat treatment system host of the present invention has an output port externally connected to an operation keyboard or a handheld operation device, an infrared thermal scanning system monitor, etc., and the scanning of the infrared thermal scanning system monitor is consistent with the infrared thermal scanning probe scanning. Synchronous scanning.
- the infrared thermal scanning system of the present invention has the working principle: blood flow of blood vessels in the bronchial tissue, high temperature of the arterial blood, and low temperature of the venous blood, and there are some heat exchange mechanisms in the two, both of which radiate differently.
- the wavelength of infrared light whose temperature is not only affected by blood flow in the blood vessels, but also by its own metabolism, so the temperature of the part of the bronchus and its tissue that is abnormally changed may be due to the richness of blood vessels and the degree of activity of metabolism. It shows a difference, and the wavelength of infrared rays radiated from the outside is also different.
- blood components serum, plasma, hemoglobin, albumin, red blood cells, lymphocytes, platelets
- the absorption effect is very small.
- the accuracy of the infrared thermal scanning system is less than or equal to 0.05 degrees, and the spatial resolution is at least 0.8 mrad.
- the infrared thermal scanning probe scans in close proximity in the bronchus to obtain a fine and accurate infrared image.
- the infrared thermal scanning system of the present invention the working process: the blood flow in the blood vessels of the bronchial tubes and the infrared rays radiated by the tissue, after receiving through the infrared infrared detector of the infrared scanning probe inside the bronchus, the infrared receiving lens receives the light
- the signal is converted into an electrical signal, and after pre-processing (such as amplification, filtering, etc.), the preamplifier and the main amplifier are amplified to a certain level and then enter the infrared heat treatment system host.
- the signal input to the host also has a synchronization signal, a reference to a black body signal, and the like.
- the data obtained by multi-plane continuous cross-cut scanning is transmitted to the infrared thermal scanning system host for image processing, and output to the infrared system monitor to clearly display the bronchial stereoscopic blood vessel static image.
- the doctor can analyze the image and find abnormalities of the bronchial and peripheral tissue vessels. Abnormalities such as abundance, sparse vascular abnormalities, or the presence of vascular missing areas provide doctors with immediate diagnostic evidence.
- the infrared heat treatment system host of the present invention has an output port externally connected to an operation keyboard or a handheld operation device, an infrared thermal scanning system monitor, etc., and the scanning of the infrared thermal scanning system monitor is consistent with the infrared thermal scanning probe scanning. Synchronous scanning.
- the electronic bronchoscope system with infrared thermal scanning function has the following clinical surgical methods: the patient first prepares the appropriate position, prepares for disinfection, and then slowly inserts the electronic bronchoscope into the throat of the patient, slowly The electronic bronchoscope provides an image through the trachea and enters the bronchus for observation. After reaching the target position, the instrument end of the electronic bronchoscope is passed into the working end of the infrared thermal scanning probe, and the working end of the infrared thermal scanning probe extends out of the electron.
- the infrared thermal scanning function is activated, and the bronchoscope and the surrounding tissue are scanned while exiting the electronic bronchoscope, and output to the monitor to provide a basis for the doctor to diagnose the underlying condition of the bronchial tract.
- the current infrared imaging technology of medical infrared imaging has high precision and has been widely used in many fields, especially in the medical field.
- the electronic bronchoscope with infrared thermal scanning probe according to the invention is an electronic branch
- the bronchoscope is a platform, an infrared thermal scanning probe is introduced into the bronchus, and the infrared thermal scanning probe is used for linear and circular movement, and the infrared radiation formed by the temperature difference generated by the bronchial blood vessel blood movement is linearly and circularly scanned and monitored.
- Multi-plane continuous cross-cut scanning imaging is obtained, and then the data obtained by multi-plane continuous cross-cut scanning is transmitted to the host of the infrared thermal scanning system for image processing, and the static image of the bronchial stereoscopic blood vessel is clearly displayed, which provides a reliable diagnosis for the doctor to determine the bronchial lesion and the functional state.
- the infrared thermal scanning processing system of the present invention provides various working modes, including a normal display mode and a night vision display mode, and the doctor can make a correct diagnosis by analyzing and comparing the diagnostic images of different display modes.
- the invention greatly enriches the diagnostic means of respiratory diseases and effectively improves the accuracy of diagnosis.
- FIG. 1 is a schematic view showing the operation of an electronic bronchoscope system having an infrared thermal scanning function according to the present invention.
- Fig. 2 is a schematic view showing the appearance of an electronic bronchoscope according to the present invention.
- Fig. 3 is a schematic view showing the tip end portion of the end portion of the soft endoscope of the electronic bronchoscope of the present invention.
- FIG. 4 is a schematic view showing the appearance of an infrared thermal scanning probe of the present invention.
- Figure 5 is a schematic illustration of the tip end of the probe of the present invention.
- Figure 6 is a schematic view showing the distribution of three sets of infrared devices in the present invention. detailed description
- the electronic bronchoscope system with infrared thermal scanning function comprises an electronic bronchoscope 1, a cold light source host 3, a camera host 4 and an endoscope monitor 8, an infrared thermal scanning probe 2, and an infrared heat treatment.
- Fig. 2 is a schematic view showing the appearance of the electronic bronchoscope 1 of the present invention.
- the electronic bronchoscope 1 of the present invention comprises a soft endoscope end 11, an instrument channel 12, an oxygen supply channel 13, a control handle 14, a data output end 15, and the like.
- the outer end of the soft endoscope 11 is less than or equal to 5. 5 mm, and the length of the end portion 111 of the soft endoscope 11 can be bent; the diameter of the instrument channel is less than or equal to 2. 5 ⁇ ;
- the CCD has a lens field of view of 100 ° or more.
- Fig. 3 is a schematic view showing the tip end portion 111 of the soft endoscope end portion 11 of the present invention.
- the soft endoscope end portion 11 has an integrated design of the following parts: an optical lens 151, a light guiding fiber 152, an instrument channel outlet 121, an oxygen supply channel outlet 131, and the like.
- 4 is a schematic view showing the appearance of an infrared thermal scanning probe 2 of the present invention.
- the structure of the infrared thermal scanning probe 2 includes a probe working end portion 21, an operating handle 22 and a data line 23.
- the working end portion 21 of the probe is 50 (T2000 mm, and its outer diameter is less than or equal to 2. 5 mm;
- the operation handle 22 is designed with a control button 221, including a control switch, a mode selection switch, a fine adjustment switch, etc.; 23 is connected to the infrared heat treatment system main unit 5 through a joint.
- Fig. 5 is a structural schematic view showing the front end of the probe working end portion 21, i.e., the probe tip end portion 211, of the present invention.
- An infrared region 212 is disposed in the probe tip end portion 211, and an infrared device 213 is included in the infrared region 212.
- the infrared device 213 includes an infrared light source emitter and an infrared receiving lens.
- the infrared light source emitter and the infrared structure lens form a group of infrared devices 213.
- the infrared portion 212 of the probe tip portion 211 is integrated with three sets of the same infrared device 213, and the three groups of infrared devices 213 are designed to be 60 degrees of each other; the infrared region 212 can be driven by the motor to rotate and linearly and cyclically move, thereby The scanned body performs linear and circular scanning (as shown in Figure 6).
- the clinical surgical method of the electronic bronchoscope system with infrared thermal scanning function is as follows: The patient first prepares the appropriate position, prepares for disinfection, and then slowly inserts into the patient's throat 9.
- the electronic bronchoscope 1 slowly passes through the trachea 91 under the image provided by the electron bronchoscope 1, enters the bronchus 10 for observation, and reaches the target position, and then passes through the instrument channel 12 of the electronic bronchoscope 1 into the working end of the infrared thermal scanning probe 2.
- the probe working end portion 21 of the infrared thermal scanning probe 2 extends a certain distance from the distal end portion 111 of the electronic bronchoscope 1, and then activates the infrared thermal scanning function, and exits the electronic bronchoscope 1, and scans the bronchus 10 and surrounding tissues. , output to the monitor, to provide a basis for the doctor to diagnose the underlying disease of the bronchial tract 10.
- the infrared processing host 5 of the present invention provides rich control buttons, switches, mode selection, infrared intensity fine adjustment, monitor menu and the like.
- Mode selection can switch between different display modes, including normal display mode and night vision display mode.
- the normal display mode refers to the display mode of infrared scanning under the illumination of the endoscope cold light source 3 and the infrared light source, and the night vision display mode means no. Under the illumination of the endoscope cold light source and the infrared light source, depending on the radiation intensity of the tissue itself, the doctor can compare the images in the two modes to obtain a better diagnostic effect from another angle.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Veterinary Medicine (AREA)
- Biophysics (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Pathology (AREA)
- Animal Behavior & Ethology (AREA)
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Pulmonology (AREA)
- Otolaryngology (AREA)
- Radiology & Medical Imaging (AREA)
- Optics & Photonics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Physiology (AREA)
- Endoscopes (AREA)
Description
具有红外线热扫描功能的电子支气管镜系统 技术领域
本发明属于医用器械领域,具体涉及具有红外线热扫描功能的具有红外线热扫描功能 的电子支气管镜系统。 现有技术
医用红外线成像来源于军工技术, 使用已有 40多年的历史, 随着医学、红外线成像、 及多媒体等多种技术的发展, 红外线成像的温度分辨率已经达到 0. 05度, 空间分辨能力 已经达到 0. 8mrad, 图像清晰度有了很大的提高, 结果分析直观方便, 其在临床上的应用 范围正在扩大。 目前红外线成像诊断在以下方面显示出一定优势: 1, 判断急、慢性炎症 的部位、 范围、 程度; 2, 监测血管性病变的供血功能状态; 3, 肿瘤预警指示、 全程监视 及疗效评估。 由此可见, 红外线成像时对 B超、 CT、 MR等其他形态学诊断方法的重要补 充。
电子支气管镜是工作端部前端装置有电子 CCD处理芯片的支气管镜,电子支气管镜是 进行喉科手术的常用器械, 电子支气管镜连接有摄像主机、监视器和冷光源主机, 配合各 种各样的手术器械, 医生可以深入喉内, 进行喉科手术及检查等。
目前尚没有出现将红外线热扫描探头结合电子支气管镜两者结合进行使用的内窥镜 系统。因此,设计一种将红外线热扫描技术与电子支气管镜结合使用的具有红外线热扫描 功能的电子支气管镜系统技术迫在眉睫。 发明内容
本发明的目的是克服现有技术的不足,提供一种具有红外线热扫描功能的电子支气管 镜系统,该电子支气管镜系统是将红外线热扫描系统引进电子支气管镜系统中,通过红外 线热扫描系统的探头对喉及其组织进行立体的扫描,多平面连续横切扫描得到的数据传输 至红外线热扫描系统主机进行图像处理,清晰显示支气管壁的立体血管静态图像,为医生 提供一幅支气管道及其组织的红外线热扫描图像,丰富呼吸道疾病的诊断手段,提高诊断 的准确性。
为了实现上述技术目的, 本发明是通过以下技术方案来实现的:
本发明所述的具有红外线热扫描功能的电子支气管镜系统,包括电子支气管镜及与电
子支气管镜连接的冷光源主机、摄像主机、 内镜监视器, 所述电子支气管镜上还设有红外 线热扫描系统,所述红外线热扫描系统包括红外线热扫描探头、红外线热扫描处理系统主 机和红外线热扫描系统监视器。
本发明中,所述电子支气管镜采用 CCD电子光学系统,该电子支气管镜包括包括软质 内镜端部、器械通道、供氧通道、控制手把和数据输出端。所述软质内镜端部的外径小于 等于 5. 5mm, 其长度小于等于 700mm, 所述软质内镜端部的先端部能弯曲; 所述器械通 道的直径小于等于 2.5mm; 所述电子支气管镜, 其光路采用直径为 1. 5〜3. Omm光学镜头 的电子 CCD光学系统, 其该电子 CCD光学系统的 CCD芯片的尺寸采用 1/4" ,至少 48万 有效像素的 CCD, 镜头视场角 100 ° 或以上。
在本发明中, 所述红外线热扫描探头包括探头工作端部、操作手把和数据线, 所述探 头工作端部穿过电子支气管镜的器械通道并从软质内镜端部的前端伸出,所述数据线通过 接头与红外线热扫描处理系统主机连接,所述红外线热扫描系统监视器与红外线热扫描处 理系统主机连接。
本发明所述的红外线热扫描探头, 其探头工作端部长度范围为 500〜2000mm, 该探头 工作端部的外径小于等于 3. 0mm,所述探头工作端部前端即探头先端部长度小于 50mm,所 述探头先端部里设计有红外区, 红外区装有红外装置, 红外装置包括红外光源发射器, 红 外接收镜头;红外光源发射器和红外接收镜头组成一组红外装置,工作端部里面集成有三 组相同的红外装置, 三组红外装置互成 60度设计; 红外区可以受电机的驱动旋转, 并做 线性和环形的移动, 从而对被扫描体做线性和环形的扫描。
本发明所述的红外线热扫描探头的操作手把, 其结构包括控制开关, 模式选择开关, 微调开关等。 所述的数据线通过接头与红外线热处理系统主机连接。
本发明所述的红外线热处理系统主机,其操作面板和操作键盘或手持操作设备提供丰 富的控制按钮, 开关、 模式选择、 红外强度微调、 监视器菜单等按钮。 模式选择可以切换 不同的显示模式,包括普通显示模式和夜视显示模式,普通显示模式是指红外扫描在内镜 冷光源和红外光源的照射下进行的显示模式,夜视显示模式是指没有内镜冷光源和红外光 源的照射下,依靠组织物的自身不同辐射强度来成像,医生对两种模式下的图像对比分析, 可以得到另外一个角度的更好的诊断效果。
本发明所述的红外线热处理系统主机,其后面板的输出端口外接操作键盘或手持操作 设备、红外线热扫描系统监视器等,红外线热扫描系统监视器的扫描与红外线热扫描探头 扫描相一致, 实现同步扫描。
本发明所述的红外线热扫描系统, 其工作原理: 支气管组织内血管的血流, 动脉血温 度较高,静脉血温度较低,两者存在某种热交换机制,两者都向外辐射不同波长的红外线, 其温度不但受到血管内血流的影响,也受自身的新陈代谢的影响,所以支气管及其组织内 发生异变的部分的温度会由于血管丰富与否和新陈代谢的活跃程度的不同而表现出差异 性, 对外辐射的红外线的波长也各不相同。 研究表明, 血液中的成分(血清、 血浆、 血红 蛋白、 白蛋白、 红细胞、 淋巴细胞、 血小板)在光谱中对红外光的吸收最低, 意味着血液 除了对外辐射红外线外,还对周围组织的红外线的吸收影响很小,红外线热扫描系统的精 度小于等于 0.05度, 空间分辨能力至少达到 0.8mrad, 红外线热扫描探头在支气管内作近 距离进行扫描, 得到精细精确的红外图像。
本发明所述的红外线热扫描系统,其工作过程:支气管内血管中血流及组织辐射的红 外线, 通过进入支气管内的红外扫描探头的精密红外探测器-红外接收镜头接收后, 处理 芯片将光信号转换成电信号, 经过预处理 (如放大、 滤波等;), 由前置放大器和主放大器放 大到一定电平之后便进入红外线热处理系统主机。同时输入主机的信号还有同步信号、参 照黑体信号等。多平面连续横切扫描得到的数据传输至红外线热扫描系统主机进行图像处 理, 输出到红外线系统监视器, 清晰显示支气管立体血管静态图像, 医生可通过图像进行 分析,可以发现支气管及周边组织血管异常丰富、血管异常稀疏或者存在血管缺失区域等 异常情况, 给医生及时提供即时的诊断依据。
本发明所述的红外线热处理系统主机,其后面板的输出端口外接操作键盘或手持操作 设备、红外线热扫描系统监视器等,红外线热扫描系统监视器的扫描与红外线热扫描探头 扫描相一致, 实现同步扫描。
本发明所述的具有红外线热扫描功能的电子支气管镜系统, 其临床手术方法如下所 述:患者首先做适当体位,做好消毒等准备工作,然后向患者喉部缓慢插入电子支气管镜, 缓慢在电子支气管镜提供图像下经过气管,进入支气管中进行观察,到达目标位置固定后, 从电子支气管镜的器械通道通入红外线热扫描探头的工作端部,红外线热扫描探头的工作 端部伸出电子支气管镜的先端部若干距离后,启动红外线热扫描功能,边退出电子支气管 镜, 边对支气管及周围组织进行扫描, 输出到监视器, 提供医生对支气管道潜在病症诊断 的依据。
与现有技术相比, 本发明的有益效果是:
目前的医用红外成像技术的红外分辨率的精度高, 而且已经逐渐广泛应用在很多领 域, 特别是医疗领域。本发明所述的具有红外线热扫描探头的电子支气管镜, 是以电子支
气管镜为平台, 引入红外线热扫描探头进入支气管内,利用红外线热扫描探头做线性和环 形的移动,对支气管壁血管血液运动产生的温度差异而形成的红外线辐射进行线性和环形 的扫描监测, 以得到多平面连续横切扫描成像,然后将多平面连续横切扫描得到的数据传 输至红外线热扫描系统主机进行图像处理,清晰显示支气管立体血管静态图像,为医生判 断支气管病变及功能状态提供可靠的客观依据。此外,本发明红外线热扫描处理系统提供 多种工作模式,包括普通显示模式和夜视显示模式, 医生可以通过分析和比较不同显示模 式的诊断图像, 做出正确诊断。本发明极大地丰富呼吸道疾病的诊断手段, 有效地提高诊 断的准确性。 附图说明
图 1是本发明的具有红外线热扫描功能的电子支气管镜系统的手术示意图。
图 2是本发明中电子支气管镜的外观结构示意图。
图 3是本发明的电子支气管镜的软质内镜端部的先端部示意图。
图 4是本发明的红外线热扫描探头外观结构示意图。
图 5是本发明的探头先端部示意图。
图 6是本发明中三组红外装置分布示意图。 具体实施方式
下面结合附图对本发明作进一步的详述:
如图 1所示,本发明所述的具有红外线热扫描功能的电子支气管镜系统包括电子支气 管镜 1, 冷光源主机 3, 摄像主机 4及内镜监视器 8,红外线热扫描探头 2, 红外线热处理 系统主机 5,操作键盘或手持操作设备 6,红外线热扫描系统监视器 7。
图 2为本发明中的电子支气管镜 1的外观结构示意图。本发明所述的电子支气管镜 1, 其结构包括软质内镜端部 11, 器械通道 12, 供氧通道 13, 控制手把 14, 数据输出端 15 等。所述软质内镜端部 11的外径小于等于 5. 5mm, 其长度小于等于 700mm, 所述软质内镜 端部 11的先端部 111能弯曲; 所述器械通道的直径小于等于 2. 5mm; 所述电子支气管镜, 其光路采用直径为 1. 5〜3. 0mm光学镜头的电子 CCD光学系统, 其该电子 CCD光学系统的 CCD芯片的尺寸采用 1/4" ,至少 48万有效像素的 CCD, 镜头视场角 100 ° 或以上。
图 3所示为本发明中所述的软质内镜端部 11的先端部 111示意图。 所述软质内镜端 部 11先端部 111集成设计了以下各个部分: 光学镜头 151, 导光光纤 152, 器械通道出口 121, 供氧通道出口 131等。
图 4为本发明中红外线热扫描探头 2的外观结构示意图。红外线热扫描探头 2结构包 括探头工作端部 21, 操作手把 22和数据线 23。 所述探头工作端部 21长 50(T2000mm, 其 外径小于等于 2. 5mm; 所述的操作手把 22设计控制按钮 221, 包括控制开关, 模式选择开 关, 微调开关等; 所述的数据线 23通过接头与红外线热处理系统主机 5连接。
图 5所示为本发明中所述探头工作端部 21的前端即探头先端部 211的结构示意图。 所述探头先端部 211内设计有红外区 212, 红外区 212装有红外装置 213, 红外装置 213 包括红外光源发射器,红外接收镜头;红外光源发射器和红外结构镜头组成一组红外装置 213, 所述探头先端部 211红外区 212里面集成有三组相同的红外装置 213, 三组红外装 置 213互成 60度设计; 红外区 212可以受电机的驱动旋转, 并做线性和环形的移动, 从 而对被扫描体做线性和环形的扫描 (如图 6所示)。
如图 1所示,本发明所述的具有红外线热扫描功能的电子支气管镜系统的临床手术方 法如下所述: 患者首先做适当体位, 做好消毒等准备工作, 然后向患者喉部 9缓慢插入电 子支气管镜 1, 缓慢在电子支气管镜 1提供图像下经过气管 91, 进入支气管 10中进行观 察, 到达目标位置固定后, 从电子支气管镜 1的器械通道 12通入红外线热扫描探头 2的 工作端部 21, 红外线热扫描探头 2的探头工作端部 21伸出电子支气管镜 1的先端部 111 若干距离后, 启动红外线热扫描功能, 边退出电子支气管镜 1, 边对支气管 10及周围组 织进行扫描, 输出到监视器, 提供医生对支气管道 10潜在病症诊断的依据。
如图 1所示, 本发明所述的红外线处理主机 5, 其操作面板和操作键盘或手持操作设 备 6提供丰富的控制按钮, 开关、 模式选择、 红外强度微调、 监视器菜单等按钮。 模式选 择可以切换不同的显示模式,包括普通显示模式和夜视显示模式,普通显示模式是指红外 扫描在内镜冷光源 3和红外光源的照射下进行的显示模式,夜视显示模式是指没有内镜冷 光源和红外光源的照射下,依靠组织物的自身不同辐射强度来成像, 医生对两种模式下的 图像对比分析, 可以得到另外一个角度的更好的诊断效果。
Claims
1.具有红外线热扫描功能的电子支气管镜系统,包括电子支气管镜及与电子支气管镜 连接的冷光源主机、摄像主机、 内镜监视器, 其特征在于: 所述电子支气管镜上还设有红 外线热扫描系统,所述红外线热扫描系统包括红外线热扫描探头、红外线热扫描处理系统 主机和红外线热扫描系统监视器。
2.根据权利要求 1所述的具有红外线热扫描功能的电子支气管镜系统, 其特点在于: 所述电子支气管镜采用 CCD电子光学系统,所述电子支气管镜包括软质内镜端部、器械通 道、 供氧通道、 控制手把和数据输出端。
3.根据权利要求 2所述的具有红外线热扫描功能的电子支气管镜系统, 其特征在于: 所述红外线热扫描探头包括探头工作端部、操作手把和数据线,所述探头工作端部穿过电 子支气管镜的器械通道并从软质内镜端部的前端伸出,所述数据线通过接头与红外线热扫 描处理系统主机连接, 所述红外线热扫描系统监视器与红外线热扫描处理系统主机连接。
4.根据权利要求 3所述的具有红外线热扫描功能的电子支气管镜系统, 其特征在于: 所述探头工作端部的前端为探头先端部,探头先端部里设有红外区,红外区里至少安装有 一组红外装置, 所述红外装置包括红外光源发射器和红外接收镜头。
5.根据权利要求 4所述的具有红外线热扫描功能的电子支气管镜系统, 其特征在于: 所述红外区的红外装置为三组, 该三组红外装置互成 60度设计, 且该三组红外装置隐藏 在探头先端部的内部。
6.根据权利要求 3所述的具有红外线热扫描功能的电子支气管镜系统, 其特征在于: 所述探头工作端部长 500〜2000讓, 所述探头工作端部外径小于等于 3. 0讓, 所述探头先 端部长度小于 50mm。
7.根据权利要求 3所述的具有红外线热扫描功能的电子支气管镜系统, 其特征在于: 所述红外线热扫描探头的操作手把包括控制开关、 模式选择开关和微调开关。
8.根据权利要求 1所述的具有红外线热扫描功能的电子支气管镜系统, 其特征在于: 所述红外线热扫描处理系统主机还包括与其连接的操作面板、 操作键盘或手持操作设备, 所述操作面板、操作键盘或手持操作设备上设有控制按钮、开关按钮、具有普通显示模式 和夜视显示模式的模式选择按钮、 红外强度微调功能按钮和监视器菜单按钮。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201010581792 CN102100524A (zh) | 2010-12-10 | 2010-12-10 | 具有红外线热扫描功能的电子支气管镜系统 |
CN201010581792.8 | 2010-12-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012075703A1 true WO2012075703A1 (zh) | 2012-06-14 |
Family
ID=44153752
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2011/070537 WO2012075703A1 (zh) | 2010-12-10 | 2011-01-24 | 具有红外线热扫描功能的电子支气管镜系统 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN102100524A (zh) |
WO (1) | WO2012075703A1 (zh) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103750806A (zh) * | 2011-12-30 | 2014-04-30 | 广州宝胆医疗器械科技有限公司 | 具有夜视功能的气管镜系统 |
CN104225797A (zh) * | 2014-08-21 | 2014-12-24 | 爱特普生物科技(北京)股份有限公司 | Atp光鼻腔粘膜无创治疗仪 |
US10242548B2 (en) * | 2017-05-23 | 2019-03-26 | Biosense Webster (Israel) Ltd. | Medical tool puncture warning method and apparatus |
CN115998408B (zh) * | 2023-03-24 | 2023-07-14 | 中日友好医院(中日友好临床医学研究所) | 用于支气管迷走神经阻断术的冷冻消融探头及手术设备 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001286436A (ja) * | 2000-04-06 | 2001-10-16 | Olympus Optical Co Ltd | 内視鏡 |
CN2551172Y (zh) * | 2002-06-14 | 2003-05-21 | 台群科技股份有限公司 | 具有红外线的内视镜 |
CN2576258Y (zh) * | 2002-10-16 | 2003-10-01 | 任洪涛 | 胃镜、支气管镜检查或手术的供氧装置 |
US20030187319A1 (en) * | 2002-03-29 | 2003-10-02 | Olympus Optical Co., Ltd. | Sentinel lymph node detecting apparatus, and method thereof |
CN101019758A (zh) * | 2007-03-23 | 2007-08-22 | 天津大学 | 近红外漫射光无创早期宫颈癌检测系统及其检测方法 |
JP2008212317A (ja) * | 2007-03-02 | 2008-09-18 | Seiko Epson Corp | 光学装置及びモニタ装置 |
CN201905863U (zh) * | 2010-12-10 | 2011-07-27 | 广州宝胆医疗器械科技有限公司 | 具有红外线热扫描功能的电子支气管镜系统 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05228098A (ja) * | 1992-02-20 | 1993-09-07 | Asahi Optical Co Ltd | 測温内視鏡 |
CN2659340Y (zh) * | 2003-12-08 | 2004-12-01 | 王勤 | 无线肠胃探测胶囊 |
CN2870730Y (zh) * | 2006-01-02 | 2007-02-21 | 刘中凯 | 一种新型支气管镜 |
US8774902B2 (en) * | 2006-06-01 | 2014-07-08 | Passive Imaging Medical Systems Engineering Ltd. (Pims) | Method of infrared thermography for earlier diagnosis of gastric colorectal and cervical cancer |
CN201197704Y (zh) * | 2007-12-09 | 2009-02-25 | 罗和国 | 便携式视频支气管镜 |
WO2010114920A1 (en) * | 2009-03-31 | 2010-10-07 | Ohio University | Automatically adjustable endoscopes |
CN201558099U (zh) * | 2009-12-15 | 2010-08-25 | 广州宝胆医疗器械科技有限公司 | 微型超声硬质多通道电子胆囊镜系统 |
-
2010
- 2010-12-10 CN CN 201010581792 patent/CN102100524A/zh active Pending
-
2011
- 2011-01-24 WO PCT/CN2011/070537 patent/WO2012075703A1/zh active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001286436A (ja) * | 2000-04-06 | 2001-10-16 | Olympus Optical Co Ltd | 内視鏡 |
US20030187319A1 (en) * | 2002-03-29 | 2003-10-02 | Olympus Optical Co., Ltd. | Sentinel lymph node detecting apparatus, and method thereof |
CN2551172Y (zh) * | 2002-06-14 | 2003-05-21 | 台群科技股份有限公司 | 具有红外线的内视镜 |
CN2576258Y (zh) * | 2002-10-16 | 2003-10-01 | 任洪涛 | 胃镜、支气管镜检查或手术的供氧装置 |
JP2008212317A (ja) * | 2007-03-02 | 2008-09-18 | Seiko Epson Corp | 光学装置及びモニタ装置 |
CN101019758A (zh) * | 2007-03-23 | 2007-08-22 | 天津大学 | 近红外漫射光无创早期宫颈癌检测系统及其检测方法 |
CN201905863U (zh) * | 2010-12-10 | 2011-07-27 | 广州宝胆医疗器械科技有限公司 | 具有红外线热扫描功能的电子支气管镜系统 |
Also Published As
Publication number | Publication date |
---|---|
CN102100524A (zh) | 2011-06-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2012075713A1 (zh) | 具有红外线热扫描功能的电子食管镜系统 | |
WO2012075703A1 (zh) | 具有红外线热扫描功能的电子支气管镜系统 | |
CN201996523U (zh) | 具有红外线热扫描功能的阴道镜系统 | |
WO2012075704A1 (zh) | 一体化红外线热扫描食管镜系统 | |
CN201905863U (zh) | 具有红外线热扫描功能的电子支气管镜系统 | |
WO2012075710A1 (zh) | 一体化红外线热扫描膀胱镜系统 | |
WO2012075700A1 (zh) | 具有红外线热扫描功能的结肠镜系统 | |
WO2012075702A1 (zh) | 具有红外线热扫描功能的电子胃镜系统 | |
WO2012075708A1 (zh) | 一体化红外线热扫描结肠镜系统 | |
CN102100530B (zh) | 一体化红外线热扫描十二指肠镜系统 | |
WO2012075705A1 (zh) | 一体化红外线热扫描胃镜系统 | |
CN201996527U (zh) | 具有红外线热扫描功能的电子腹腔镜系统 | |
WO2012075706A1 (zh) | 一体化红外线热扫描胆囊镜系统 | |
WO2012075712A1 (zh) | 一体化红外线热扫描宫腔镜系统 | |
WO2012075715A1 (zh) | 可变形的红外线热扫描探头系统 | |
CN201939325U (zh) | 具有红外线热扫描功能的关节镜系统 | |
CN201905864U (zh) | 具有红外线热扫描功能的电子食管镜系统 | |
WO2012075696A1 (zh) | 具有红外线热扫描功能的胆囊镜系统 | |
WO2012075709A1 (zh) | 一体化红外线热扫描肛肠镜系统 | |
CN201894634U (zh) | 具有红外线热扫描功能的膀胱镜系统 | |
WO2012075711A1 (zh) | 一体化红外线热扫描阴道镜系统 | |
CN201912042U (zh) | 具有红外线热扫描功能的电子输卵管镜系统 | |
CN201977768U (zh) | 具有红外线热扫描功能的结肠镜系统 | |
CN201939320U (zh) | 一体化红外线热扫描喉镜系统 | |
CN201920697U (zh) | 一体化红外线热扫描膀胱镜系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11847270 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11847270 Country of ref document: EP Kind code of ref document: A1 |