WO2012073362A1 - Desktop display system - Google Patents
Desktop display system Download PDFInfo
- Publication number
- WO2012073362A1 WO2012073362A1 PCT/JP2010/071553 JP2010071553W WO2012073362A1 WO 2012073362 A1 WO2012073362 A1 WO 2012073362A1 JP 2010071553 W JP2010071553 W JP 2010071553W WO 2012073362 A1 WO2012073362 A1 WO 2012073362A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- light
- optical element
- light reflecting
- top plate
- display system
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B17/00—Systems with reflecting surfaces, with or without refracting elements
- G02B17/006—Systems in which light light is reflected on a plurality of parallel surfaces, e.g. louvre mirrors, total internal reflection [TIR] lenses
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B30/00—Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
- G02B30/50—Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images the image being built up from image elements distributed over a 3D volume, e.g. voxels
- G02B30/56—Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images the image being built up from image elements distributed over a 3D volume, e.g. voxels by projecting aerial or floating images
Definitions
- the present invention relates to a desktop display system that displays an image in a space on a desktop using an optical element.
- Patent Document 1 an image of an object, which is a projection object placed on one side of an element, is formed on a position that is a surface object on the opposite side of the element by using a reflection-type plane-symmetric imaging element.
- a spatial video display device is disclosed.
- the reflection-type plane-symmetric imaging element used in this spatial image display device has a plurality of holes that penetrate a predetermined base in the thickness direction, and is a unit optical system that is composed of two mirror surface elements orthogonal to the inner wall of each hole An element is formed, and when light is transmitted from one surface direction of the substrate to the other surface direction through the hole, the light is reflected once by each of the two mirror elements.
- the light emitted from the projection is reflected by one of the two mirror elements when passing through the unit optical element of the reflective surface-symmetric imaging element, and then reflected by the mirror surface to become reflected light.
- the light is reflected by the other of the two specular elements of the unit optical element, and the projection object is imaged at a position reflected on the virtual mirror.
- FIGS. 1 to 3 are diagrams showing the configuration of a reflection-type plane-symmetric imaging element (hereinafter referred to as a light reflection optical element) proposed in Patent Document 2.
- FIG. FIG. 1 is an external view of a light reflecting optical element
- FIG. 2 is an external view of a rectangular parallelepiped material constituting the light reflecting optical element
- FIG. 3 is an external view showing a combination of two mirror sheets forming the light reflecting optical element.
- the light reflecting optical element 2 has two mirror sheets 21 and 22 each formed by closely contacting a large number of rod-shaped rectangular parallelepiped materials 20 in parallel.
- the rectangular parallelepiped material 20 is a long member, and is represented by transparent acrylic whose one side of a rectangular cross section in the direction perpendicular to the longitudinal direction, that is, in the short direction, is several hundred ⁇ m to several cm. Made of plastic or glass rod. The length varies depending on the size of the image to be projected, but is about several tens mm to several m. Note that three of the four surfaces extending in the longitudinal direction are surfaces used for light transmission or reflection, and thus are in a smooth state. About 100 to 20000 rectangular parallelepiped materials 20 are used for each of the mirror sheets 21 and 22.
- a light reflecting film 23 is formed on one surface of the rectangular parallelepiped material 20 extending in the longitudinal direction, thereby forming a light reflecting surface.
- the light reflecting film 23 is formed by vapor deposition or sputtering of aluminum or silver.
- a mirror sheet 21 is formed by bringing the opposite surface 24 opposite to the surface on which the light reflecting film 23 of one rectangular parallelepiped member 20 is formed into close contact with the light reflecting surface 23 of another rectangular parallelepiped member 20. , 22 are formed. As shown in FIG. 3, the mirror sheets 21 and 22 are bonded together in a state in which one of the rectangular parallelepiped materials 20 is rotated by 90 degrees so that the parallel directions of the rectangular parallelepiped materials 20 intersect, thereby forming the light reflecting optical element 2. Is done.
- the object 1 is disposed on one surface side of the light reflecting optical element 2, and the light reflecting optical element 2 includes the object 1 from the object 1.
- Light is incident obliquely.
- the observer's eyes E are positioned on the other surface side of the light reflecting optical element 2, and a real image 3, that is, a spatial image 3 is formed at a spatial position that is plane-symmetric with the object 1 with respect to the light reflecting optical element 2.
- the lower end A and the upper end A ′ which are both ends of the light reflecting optical element 2 in FIG. 4, correspond to the opposing angles A and A ′ of the light reflecting optical element 2 in FIG. 1. More specifically, as shown in FIG.
- each light reflecting surface 23 of the light reflecting optical element 2 has 1 each. It is designed to create a mirror image by reflecting twice, that is, twice.
- an object 1 for example, an image displayed on a screen of a display device
- a surface of the light reflecting optical element 2 are used. Since the spatial image 3 is formed at a symmetric space position, the object 1 does not exist in the space on one surface side of the light reflecting optical element 2 where the spatial image 3 is formed.
- the spatial video display device is used in a desktop environment and the space on which the spatial video 3 is formed is a desktop space, it is not necessary to arrange a display device on the desk. There is an advantage that it can be used widely.
- An object of the present invention is to provide a desktop display system capable of displaying an image in a space on a desktop.
- one aspect of the present invention is a desktop display system that displays an image in a space on a desk, and is disposed as a table top in parallel to an installation surface on which the desk is installed.
- a light transmissive top plate having a light transmission property a display unit that is disposed in a space below the light transmissive top plate, displays a predetermined image, and is disposed near the light transmissive top plate,
- a planar plate-like light reflecting optical element that reflects light from the display unit toward the space on the desk above the light transmissive top plate, and the light reflecting optical element is arranged in the thickness direction.
- a desktop display system that creates a mirror image of the predetermined image as a spatial image in the space on the desk.
- FIG. 1 is an external perspective view of a light reflecting optical element according to an embodiment of the present invention.
- FIG. 3 is a top view, a side view, and a front view of a light reflecting optical element according to an embodiment of the present invention.
- FIG. 6 is a side view showing a schematic configuration of the desktop display system 10 according to the embodiment of the present invention.
- the desktop display system 10 is a desk in which the top 4 is light transmissive, and has a function of displaying the spatial image 3 in the space above the top 4.
- the desktop display system 10 includes, as characteristic components, a light-transmitting top 4 (hereinafter referred to as a light-transmitting top 4) that is installed horizontally with respect to the ground, and a light-transmitting top 4
- the display unit 1 is arranged in a lower space of the display unit 1 and can display an image.
- the display unit 1 is disposed below the light-transmitting top plate 4 with a slight inclination with respect to the light-transmitting top plate 4 and displayed on the display unit 1.
- the desktop display system 10 will be described using the directions defined in FIG.
- the display unit 1 includes a short focus type projector 11, a flat mirror 12 that reflects light emitted from the projector 11, and a transmissive screen 13 that projects light reflected by the flat mirror 12. That is, the display unit 1 projects an image on the transmissive screen 13. In the present embodiment, the image is projected onto the transmissive screen 13, but the configuration of the display unit 1 is of course not limited to this.
- a direct-viewing type liquid crystal display may be used as the display unit 1.
- the direct-viewing type liquid crystal display may be disposed at the position of the transmissive screen 13.
- a reflective screen may be used instead of the transmissive screen 13 (the projector 11 is rearranged at a suitable position with respect to the reflective screen), and the light from the projector 11 is directly projected onto the screen. Good.
- the light reflecting optical element 2 is the light reflecting optical element 2 shown in FIGS. 1 to 5 and is formed in a flat plate shape.
- the mirror sheet 21 and the mirror sheet 22 constituting the light reflecting optical element 2 have the same shape, and the thickness of the mirror sheet 21 and the mirror sheet 22 (the length in the short direction of the light reflecting surface 23) is uniform. It has become.
- FIG. 7 is an external perspective view of the light reflecting optical element 2
- FIG. 8 is a top view, a side view, and a front view of the light reflecting optical element 2.
- FIG. FIG. 7 shows the shape of the light reflecting optical element 2 when cut along a plane parallel to the left-right direction and the front-rear direction of FIG. 1 (when cut along the dotted line P of FIG. 1).
- the directions of AA ′ shown in FIGS. 1, 6, 7, and 8 are all the same direction.
- S shown in FIG.6 and FIG.8 is a design line-of-sight direction, ie, a line-of-sight direction in which the observer can see the brightest spatial image 3.
- the design line-of-sight direction S is the AA ′ direction (from A to A ′ of the bonding surface L of the mirror sheets 21 and 22 (the surface F of the reflective optical element 2), that is, from the front to the back.
- Direction seen from the top is a direction seen obliquely from above.
- the mirror sheet 21 is also referred to as a first mirror sheet
- the mirror sheet 22 is also referred to as a second mirror sheet
- the light reflecting surface 23 of the mirror sheet 21 is a first light reflecting surface
- the light reflecting surface 23 of the mirror sheet 22 is second light reflecting. Also called a surface.
- the light beam emitted from the display unit 1 enters the light reflecting optical element 2 with an inclination of approximately 45 degrees (more precisely, the light L1 transmitted through the center of the transmissive screen 13 has an incident angle of 45).
- the display unit 1 and the light reflecting optical element 2 are arranged so that the light reflecting optical element 2 is incident on the light reflecting optical element 2 at a degree, and the light beam emitted from the display unit 1 is the first light reflecting surface of the light reflecting optical element 2.
- the light is reflected once by the second light reflecting surface and then emitted in a direction symmetrical to the incident direction with respect to the light reflecting optical element 2.
- the light emitted from the display unit 1 is imaged at a position symmetrical to the transmission screen 13 with respect to the light reflecting optical element 2, and this becomes a spatial image 3. That is, since the upside down image of the image projected on the transmissive screen 13 is displayed as a real image in the space on the desk, the observer views the information displayed on the display unit 1 by viewing the space image 3 as the real image. Can be read.
- the light reflecting optical element 2 has an optimum incident angle of light as described above. Light having an angle greatly deviating from the optimum incident angle does not become light that is reflected once on the first light reflection surface and the second light reflection surface even when incident on the light reflecting optical element 2, but becomes stray light. Therefore, it does not contribute to the image formation of the spatial image 3.
- the light reflecting optical element 2 is formed so that the optimum light incident angle is 45 degrees with respect to the direction perpendicular to the surface F of the light reflecting optical element 2 (see FIG. 8). ).
- the horizontal angle in the light reflecting optical element 2 refers to the angle in the left-right direction when the line of sight is shifted from the design line-of-sight direction S to the left-right direction
- the vertical angle in the reflection optical element 2 is the line of sight in the design. An angle in the vertical direction when the line of sight is shifted from the direction S in the vertical direction.
- the incident angle of 0 degrees in the horizontal direction means the design line-of-sight direction S. Therefore, in FIG. 9, when the line of sight is shifted from the design line-of-sight direction S to the left and right, the transmittance decreases. It is shown that. Specifically, when the line of sight is shifted from the designed line-of-sight direction S by about ⁇ 10 degrees in the left-right direction, the observer has a brightness of about 60% when viewing the spatial image 3 in the designed line-of-sight direction S. You will see spatial image 3.
- the transmission screen 13 of the present embodiment is a screen having angle directivity, and has a function of narrowing light diffusion to a certain angle. This is because the light emitted from the projector 11 can be observed only on the extension of the optical path connecting the projection lens of the projector 11 and the projection position, and as described above, the light reflecting optical element 2 has an optimum light beam. This is because the incident angle exists, and the incident light greatly deviates from the optimum incident angle does not contribute to the image formation of the spatial image 3, so as to correspond to two contradictory conditions.
- a range of up to 15 degrees with respect to the incident direction of light is sufficient in order to diffuse light in a range where the entire spatial image 3 can be seen, while minimizing the occurrence of stray light.
- a transmissive screen 13 is used which can obtain diffuse light with high intensity and hardly emits diffused light in a range exceeding 30 degrees with respect to the incident direction of light.
- FIG. 10 is a diagram showing the diffusion distribution of light incident on the transmissive screen 13, and more specifically, a graph showing the horizontal angle dependence of the intensity of light incident on the transmissive screen 13.
- the horizontal angle in the transmissive screen 13 refers to the angle in the horizontal direction with respect to the incident direction of the light incident on the transmissive screen 13
- the vertical angle refers to the vertical direction relative to the incident direction of the light incident on the transmissive screen 13. The angle.
- FIG. 10 shows that the intensity of the light gradually decreases as the light incident on the transmission screen 13 diffuses in the left-right direction. Specifically, the diffused light diffused by about ⁇ 15 degrees in the left-right direction from the incident direction of the light incident on the transmissive screen 13 becomes about half the brightness of the incident light in the incident direction.
- FIG. 11 shows how the light incident on the transmission screen 13 of this embodiment is diffused in the vertical direction.
- the light emitted from the transmissive screen 13 diffuses and travels at a suitable angle.
- the image forming position has a suitable angle. Convergence progresses until.
- FIG. 11 shows how light incident on the transmission screen 13 is diffused in the vertical direction, but the same applies to the diffusion in the horizontal direction.
- the light reflecting optical element 2 of the present embodiment is disposed with an inclination so that the near side is slightly lowered with respect to the light transmissive top plate 4.
- the optimum light incident angle in the vertical direction is 45 degrees
- the optimum human gaze direction is slightly lower than the horizontal (direction parallel to the ground). (Specifically, a direction 15 to 40 degrees below the horizontal). That is, when the light reflecting optical element 2 is horizontally arranged on the ground, the observer's line-of-sight angle is 45 degrees downward from the horizontal direction, which is further below the optimum line-of-sight direction.
- the observer's line-of-sight angle is adjusted to be 15 to 40 degrees downward from the horizontal direction.
- the direction of the line of sight when observing the spatial image 3 and the direction of the line of sight other than when observing the spatial image 3 are closer and less Since the desktop work can be done by moving, physical fatigue can be reduced. That is, the desktop system 10 can provide an environment in which the observation of the spatial video 3 and the desktop work can be compatible.
- the light emitted from the projector 11 is designed to be projected with a slight inclination in the normal m direction of the transmission screen 13. This is because the optimum line-of-sight direction when the observer observes the spatial image 3 is matched with the direction in which the spatial image 3 can be observed brightest. That is, the light emitted from the transmissive screen 13 does not depend on the inclination angle of the screen surface of the transmissive screen 13 with respect to the surface F of the light reflecting optical element 2 (hereinafter, referred to as the vertical inclination). Therefore, the vertical inclination of the transmissive screen 13 can be adjusted to the optimum line-of-sight direction when the observer observes the spatial image 3.
- the display unit 1 when a direct-view display 14 such as a liquid crystal display is used as the display unit 1, the normal direction of the display surface is the brightest direction, so that the transmissive screen 13 shown in FIG. To make the direction L1 of the light emitted from the brightest direction, the display surface of the direct-view display 14 must be further tilted downward. Accordingly, in this case, since the spatial image 3A formed by the direct-view display 14 is inclined upward as compared with the spatial image 3, the optimal viewing direction when the observer observes the spatial image 3A, and the space The direction in which the image 3A can be observed brightest does not match.
- the display unit 1 using the projector 11 and the transmissive screen 13 is provided. Is preferred.
- the light-transmitting top plate 4 Since the light-transmitting top plate 4 is arranged in parallel to the installation surface on which the desk is installed, first, it has a function as a top plate of a normal desk. At the same time, since the light-transmissive top plate 4 is formed of a black glass plate or plastic resin having a high light absorption rate, the function of eliminating the influence of reflection of external light on the surface of the light-reflecting optical element 2 (hereinafter referred to as “light-transmitting top plate 4”). The external light exclusion function).
- FIG. 13 is a schematic diagram showing the intensity ratio of the reflected light OL2 of the light IL2 constituting the spatial image 3 and the external light OL1 reflected by the light reflecting optical element 2 in the absence of the light transmissive top plate 4, and FIG. FIG.
- FIG. 10 is a schematic diagram showing the intensity ratio of the reflected light OL2 of the light IL2 constituting the spatial image 3 and the external light OL1 reflected by the light reflecting optical element 2 when there is the nature ceiling plate 4;
- permeability of the light-transmissive top plate 4 of this Embodiment is about 2%, the value of the transmittance
- the light-transmissive top plate 4 When the light-transmissive top plate 4 is not provided, as shown in FIG. 13, a part of the external light OL1 incident on the light reflecting optical element 2 is part of the surface of the light reflecting optical element 2 (the edge at the upper end of the light reflecting surface 23). Therefore, in addition to the light IL2 constituting the spatial image 3, the reflected light OL2 of the light reflecting optical element 2 of the external light OL1 also enters the observer's line of sight. For this reason, it becomes difficult for an observer to focus on the spatial image 3, and as a result, it becomes difficult to recognize the spatial image 3.
- the external light OL1 incident on the light transmissive top plate 4 is transmitted through the light transmissive top plate 4, and further, a light reflecting optical element.
- the light IL2 constituting the spatial image 3 reaching the observer's line of sight through the reflective optical element 2 and the light transmissive top plate 4 is assumed to be (all of the light incident on the light reflective optical element 2 is transmitted). ), 2% of the light IL1 emitted from the transmissive screen 13. This is because the outside light OL1 does not become the outside light OL2 that reaches the observer's line of sight unless it passes through the light transmissive top plate 4 twice, but the light IL2 emitted from the transmissive screen 13 is light transmissive top. This is because if the light passes through the plate 4 once, the light IL2 constituting the spatial image 3 is obtained.
- the contrast ratio between the light IL2 and the surface reflected light OL2 constituting the spatial image 3 is increased by about 50 times compared with the case where the spatial image 3 is not employed.
- the observer can easily recognize the spatial image 3.
- the contrast of the light constituting the spatial image 3 with respect to the external light is improved.
- the presence of the spatial image 3 can be increased.
- the light-transmissive top plate 4 is subjected to an AR (anti-reflection) grade surface treatment that reduces surface reflection, the external light OL1 is reflected by the light-transmissive top plate 4 itself. Is also suppressed. Furthermore, since the light-transmissive top plate 4 is also subjected to MR grade surface treatment with high scratch resistance, it is also suitable for desktop work.
- AR anti-reflection
- the entire portion of the one-dot chain line below the light-transmissive top plate 4 shown in FIG. This is a countermeasure against stray light, and the influence of undesirable light (for example, light other than light constituting the spatial image 3 such as external light) caused by causes other than normal reflection and refraction of light emitted from the display unit 1 is affected. This is to eliminate it.
- undesirable light for example, light other than light constituting the spatial image 3 such as external light
- the configuration of the light reflecting optical element 2 is not limited to the configuration shown in FIG. 7, but is an optical that forms an entity (projected object) as a real image at a plane symmetric with respect to the light reflecting optical element. Any configuration may be used as long as it is an element.
- the configuration of the light reflecting optical element shown in Patent Document 1 may be used.
- FIG. 15 is an external perspective view of such a light reflecting optical element 5. More specifically, the light reflecting optical element 5 includes a plurality of holes 52 penetrating a predetermined base 51 in the thickness direction, and is a unit optical unit composed of two specular elements 54 a and 54 b orthogonal to the inner wall of each hole 52.
- the element 53 is formed, and when light is transmitted from one surface direction to the other surface direction of the base 51 through the hole, the light is reflected once by the two mirror surface elements 54a and 54b. Also good. Further, as disclosed in Japanese Patent Application Laid-Open No. 58-21702, two sets of imaging elements each having a double-sided reflection band arranged in parallel are combined so that each reflection band is orthogonal to each other. It is good also as a light reflection optical element comprised so that it might become a grating
- FIGS. 16 and 17 are top views showing the appearances of light reflecting optical elements 5A and 5B, which are modifications of the light reflecting optical element 5, respectively.
- the light reflecting optical element 5A includes two unit optical elements 53 as one set, and each unit from the reference direction (specifically, the AA ′ direction shown in FIG. 6) in the surface of the light reflecting optical element 5A.
- the optical element 53 is formed by giving a rotational angle deviation of ⁇ 10 degrees in the diagonal direction including the intersection of the specular elements 54a and 54b.
- the peak value of the maximum luminance of the spatial image 3 is lowered, but the maximum luminance of the spatial image 3 is secured in the P1 and P2 directions that are slightly shifted in the left and right directions from the AA ′ direction.
- the brightness of the spatial image 3 can be ensured with respect to the horizontal direction (the left-right direction in FIG. 6) of the light reflecting optical element 5A.
- FIG. 18 is a diagram showing the light utilization efficiency of the light reflecting optical element 5A. More specifically, the light reflecting optical element 5A is reflected once by the mirror elements 54a and 54b of the unit optical element 53 and then transmitted through the light reflecting optical element 5A. It is a graph which shows the horizontal angle dependence of the ratio of light. Compared with the horizontal angle dependency of the transmittance of the light reflecting optical element 2 shown in FIG. 9, the brightness when the spatial image 3 is viewed in the design viewing direction S is reduced, but the design viewing Brightness maximum points appear in the line-of-sight directions shifted ⁇ 10 degrees in the left-right direction from the direction S, and the brightness of the spatial image 3 with respect to the horizontal direction (left-right direction in FIG. 6) relative to the light reflecting optical element 2. It can be seen that is secured.
- FIG. 19 is a graph showing the light utilization efficiency of the light reflecting optical element 5A when the transmissive screen 13 having the horizontal angle dependency of FIG. 10 and the light reflecting optical element 5A shown in FIG. 18 are combined. 10 is displayed in comparison with the light utilization efficiency of the light reflecting optical element 2 in the case where the transmissive screen 13 having the horizontal angle dependency of FIG. 10 and the light reflecting optical element 2 shown in FIG. 9 are combined.
- the bidirectional element shown by the solid line in FIG. 19 shows the case where the light reflecting optical element 5A is used
- the unidirectional element shown by the dotted line shows the case where the light reflecting optical element 2 is used.
- FIG. 19 shows that when the light reflecting optical element 5A is used, a spatial image 3 having a substantially constant brightness can be obtained in the line-of-sight direction within ⁇ 10 degrees from the design line-of-sight direction S in the left-right direction. Show.
- the light reflecting optical element 5B includes three unit optical elements 53 as one set, and from the reference direction (specifically, the AA ′ direction shown in FIG. 6) in the surface of the light reflecting optical element 5B.
- the unit optical element 53 is formed with a rotational angle deviation of 0 degrees and ⁇ 30 degrees in the diagonal direction including the intersection of the mirror elements 54a and 54b.
- the brightness of the spatial image 3 can be secured further in the horizontal direction (left and right direction in FIG. 6) than when the light reflecting optical element 5A is used.
- the light reflecting optical elements 5A and 5B are suitable for viewing a large spatial image 3 from a wide range.
- the plane of the spatial video 3 (hereinafter referred to as the spatial video plane) is formed so as to be optimal in the observer's line-of-sight direction, but the elevation angle of the spatial video plane is the observer. Therefore, a mechanism for changing the elevation angle of the spatial image plane may be provided. When such a mechanism is provided, an effect of further reducing the physical fatigue of the observer can be expected.
- FIG. 20 is a diagram showing the inclination of the spatial image 3 when the elevation angle of the spatial image plane is varied by varying the vertical tilt angle of the transmissive screen 13.
- the transmissive screen 13 when the transmissive screen 13 is rotated in the clockwise A1 direction, the spatial image plane is rotated in the counterclockwise B1 direction.
- the spatial image plane rotates in the clockwise B2 direction, so that the spatial image plane gradually falls down.
- the elevation angle of the spatial image plane may be made variable in accordance with the viewer's preference.
- the installation position of the light reflecting optical element 2 is fixed, but the inclination angle of the surface F of the light reflecting optical element 2 with respect to the light transmitting top plate 4 (inclination angle in the vertical direction) is set. It may be variable. In other words, it has been explained that the optimal human gaze direction is slightly below the horizontal (specifically, 15 to 40 degrees below the horizontal), but the sitting height and the distance from the space image plane to the eyes Since there are individual differences, it may be possible to adjust the line-of-sight direction optimal for each observer.
- FIG. 21 is a diagram showing the position of the spatial image plane when the vertical inclination angle of the light reflecting optical element 2 is varied.
- the spatial image plane when the light reflecting optical element 2 is rotated in the clockwise A1 direction, the spatial image plane is rotated in the clockwise C1 direction.
- the spatial image plane rotates in the counterclockwise C2 direction. The position moves downward, and the downward line-of-sight direction has a gentle inclination.
- FIG. 22 is a diagram illustrating a schematic configuration and a light traveling direction when a direct-view display 14 equipped with a peep prevention film is used as the display unit 1.
- the direct-view display 14 is used as the display unit 1
- the stray light in the light reflecting optical element 2 is reduced by sticking the peeping prevention film to the display surface, and the spatial image 3 is imaged. More light may be contributed.
- the configuration of the display unit 1 is not limited to the direct view type display 14.
- FIG. 23 is a side view showing a schematic configuration of the desktop display system 30 when such a sensor 6 is provided.
- the sensor 6 is, for example, an infrared sensor provided immediately below the transmissive top plate 4 and detects the presence of an object in the vicinity region N of the spatial image 3.
- a predetermined object for example, a hand when the observer performs an action of reaching for the spatial image 3
- an image for controlling the image displayed on the display unit 1 A detection signal may be output to the control unit 7, and the video control unit 7 may control the content of the video in accordance with the detection signal.
- the video control unit 7 may control the content of the video in accordance with the detection signal.
- the desktop system can be applied to various desks, for example, OA desks, conference tables, window reception desks, guidance tables at stations, museums, and the like.
- the spatial image itself is not accompanied by an entity (because the spatial image is displayed separately from the display unit that is the entity), it can also be used for evacuation guidance display and display in poor environments where contamination and theft are a concern. Is preferred.
- the spatial image is visible only from a limited line-of-sight direction, it can also be applied to information display such as a device that needs to prevent peeping from the surroundings, such as a cash dispenser.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Optical Elements Other Than Lenses (AREA)
Abstract
Provided is a desktop display system (10) for displaying images in the space above a desk. The desktop display system (10) is provided with: a light-transmitting top plate (4) which is positioned parallel to the ground surface, as the top plate of the desk; a display (1) which is positioned in the space below the light-transmitting top plate (4) and displays images; and a light-reflecting optical element (2) which is provided close to and below the light-transmitting top plate (4) and reflects light from the display (1) toward the space above the desk above the light-transmitting top plate (4). The light-reflecting optical element (2) is provided with a plurality of unit optical elements comprising a first light-reflecting face and a second light-reflecting face perpendicular to the first light-reflecting face. Light from the display (1) is reflected once by each of the first light-reflecting face and the second light-reflecting face within a prescribed unit optical element to form a mirror image corresponding to a prescribed image, as a spatial image (3) in the space above the desk.
Description
本発明は、光学素子を用いてデスクトップ上の空間に映像を表示するデスクトップディスプレイシステムに関する。
The present invention relates to a desktop display system that displays an image in a space on a desktop using an optical element.
従来、リアルな3次元空中映像を実現するために、様々な光学素子が開発されている。例えば、特許文献1には、反射型面対称結像素子を用いてその素子の一方側に置かれた被投影物である物体の像を素子の反対側の面対象となる位置に結像させる空間映像表示装置が開示されている。この空間映像表示装置で用いられる反射型面対称結像素子は、所定の基盤を厚み方向に貫通させた複数の穴を備え、各穴の内壁に直交する2つの鏡面要素から構成される単位光学素子を形成したものであって、その穴を通じて基盤の一方の面方向から他方の面方向へ光が透過する際に、2つの鏡面要素でそれぞれ1回ずつ反射させるものである。被投影物から発せられた光は反射型面対称結像素子の単位光学素子を通過する際に2つの鏡面要素の一方で反射した後、鏡面で反射して反射光となり、その反射光が更に単位光学素子の2つの鏡面要素の他方で反射して、被投影物を仮想鏡に映した位置に結像することになる。
Conventionally, various optical elements have been developed to realize realistic 3D aerial images. For example, in Patent Document 1, an image of an object, which is a projection object placed on one side of an element, is formed on a position that is a surface object on the opposite side of the element by using a reflection-type plane-symmetric imaging element. A spatial video display device is disclosed. The reflection-type plane-symmetric imaging element used in this spatial image display device has a plurality of holes that penetrate a predetermined base in the thickness direction, and is a unit optical system that is composed of two mirror surface elements orthogonal to the inner wall of each hole An element is formed, and when light is transmitted from one surface direction of the substrate to the other surface direction through the hole, the light is reflected once by each of the two mirror elements. The light emitted from the projection is reflected by one of the two mirror elements when passing through the unit optical element of the reflective surface-symmetric imaging element, and then reflected by the mirror surface to become reflected light. The light is reflected by the other of the two specular elements of the unit optical element, and the projection object is imaged at a position reflected on the virtual mirror.
しかしながら、上記の光学素子には非常に微細な加工技術が要求されるため、このような光学素子を用いた空間映像表示装置では製造コストがかかるという問題がある。そこで、本出願人は、製造コストがかからない反射型面対称結像素子を特許文献2において提案している。
However, since the optical element described above requires a very fine processing technique, there is a problem in that a spatial image display device using such an optical element is expensive to manufacture. In view of this, the present applicant has proposed a reflection-type plane-symmetric imaging element that does not require manufacturing costs in Patent Document 2.
図1~図3は、特許文献2で提案された反射型面対称結像素子(以下、光反射光学素子という)の構成を示す図である。図1は光反射光学素子の外観図、図2は光反射光学素子を構成する直方体材の外観図、図3は光反射光学素子を形成する2つのミラーシートの組合せを示す外観図である。
FIGS. 1 to 3 are diagrams showing the configuration of a reflection-type plane-symmetric imaging element (hereinafter referred to as a light reflection optical element) proposed in Patent Document 2. FIG. FIG. 1 is an external view of a light reflecting optical element, FIG. 2 is an external view of a rectangular parallelepiped material constituting the light reflecting optical element, and FIG. 3 is an external view showing a combination of two mirror sheets forming the light reflecting optical element.
光反射光学素子2は、図1及び図3に示すように、各々が多数の棒状の直方体材20を並列に密着させることにより形成された2つのミラーシート21、22を有する。
As shown in FIGS. 1 and 3, the light reflecting optical element 2 has two mirror sheets 21 and 22 each formed by closely contacting a large number of rod-shaped rectangular parallelepiped materials 20 in parallel.
直方体材20は、図2に示すように、長手部材であり、長手方向に垂直な方向、すなわち、短手方向の四角形の断面の一辺が数百μmないし数cm前後の透明なアクリルに代表されるプラスチックまたはガラスの棒からなる。長さは投影する画像の大きさによって変化するが、数十mm~数m程度である。なお、長手方向に伸長した4面のうちの3面は光の透過または反射に使用する面であるため、滑らかな状態とする。直方体材20はミラーシート21、22各々で100本~20000本程度用いられる。
As shown in FIG. 2, the rectangular parallelepiped material 20 is a long member, and is represented by transparent acrylic whose one side of a rectangular cross section in the direction perpendicular to the longitudinal direction, that is, in the short direction, is several hundred μm to several cm. Made of plastic or glass rod. The length varies depending on the size of the image to be projected, but is about several tens mm to several m. Note that three of the four surfaces extending in the longitudinal direction are surfaces used for light transmission or reflection, and thus are in a smooth state. About 100 to 20000 rectangular parallelepiped materials 20 are used for each of the mirror sheets 21 and 22.
図2に示すように、直方体材20の長手方向に伸長した1面には光反射膜23が形成され、それにより光反射面となっている。光反射膜23はアルミや銀の蒸着あるいはスパッタなどによって形成される。
As shown in FIG. 2, a light reflecting film 23 is formed on one surface of the rectangular parallelepiped material 20 extending in the longitudinal direction, thereby forming a light reflecting surface. The light reflecting film 23 is formed by vapor deposition or sputtering of aluminum or silver.
このような複数の直方体材20について、1つの直方体材20の光反射膜23を形成した面とは反対側の対向面24と別の直方体材20の光反射面23を密着させてミラーシート21、22が形成される。ミラーシート21、22は、図3に示すように、直方体材20の並列方向が交差するようにいずれか一方を90度回転させた状態で貼り合わせられ、それによって、光反射光学素子2が形成される。ミラーシート21の各直方体材20とミラーシート22の各直方体材20とが交差する部分が微小ミラーユニット(単位光学素子)を構成し、各微小ミラーユニットのミラーシート21の光反射面23が第1光反射面となり、ミラーシート22の光反射面23が第2光反射面となる。
With respect to such a plurality of rectangular parallelepiped members 20, a mirror sheet 21 is formed by bringing the opposite surface 24 opposite to the surface on which the light reflecting film 23 of one rectangular parallelepiped member 20 is formed into close contact with the light reflecting surface 23 of another rectangular parallelepiped member 20. , 22 are formed. As shown in FIG. 3, the mirror sheets 21 and 22 are bonded together in a state in which one of the rectangular parallelepiped materials 20 is rotated by 90 degrees so that the parallel directions of the rectangular parallelepiped materials 20 intersect, thereby forming the light reflecting optical element 2. Is done. A portion where each rectangular parallelepiped material 20 of the mirror sheet 21 and each rectangular parallelepiped material 20 of the mirror sheet 22 intersect constitutes a minute mirror unit (unit optical element), and the light reflecting surface 23 of the mirror sheet 21 of each minute mirror unit is the first. The light reflecting surface 23 of the mirror sheet 22 becomes the second light reflecting surface.
かかる光反射光学素子2を用いた空間映像表示装置においては、図4に示すように、物体1が光反射光学素子2の一方の面側に配置され、光反射光学素子2には物体1からの光が斜めに入射するようになっている。光反射光学素子2の他方の面側には観察者の目Eが位置し、光反射光学素子2について物体1と面対称となる空間位置に実像3、すなわち空間映像3が形成される。なお、図4における光反射光学素子2の両端部である下端A、上端A’は、図1の光反射光学素子2の対向角A、A’に対応している。より詳しくは、図5に示すように、物体1からの光は矢印Y1の方向でミラーシート22の光反射面23(第2光反射面)に反射し、その反射光は矢印Y2の方向でミラーシート21の光反射面23(第1光反射面)に反射し、その反射光は矢印Y3の方向で観察者に向けて進むので、光反射光学素子2の各光反射面23でそれぞれ1回、つまり2回反射して鏡映像を作り出すようになっている。
In the spatial image display device using the light reflecting optical element 2, as shown in FIG. 4, the object 1 is disposed on one surface side of the light reflecting optical element 2, and the light reflecting optical element 2 includes the object 1 from the object 1. Light is incident obliquely. The observer's eyes E are positioned on the other surface side of the light reflecting optical element 2, and a real image 3, that is, a spatial image 3 is formed at a spatial position that is plane-symmetric with the object 1 with respect to the light reflecting optical element 2. Note that the lower end A and the upper end A ′, which are both ends of the light reflecting optical element 2 in FIG. 4, correspond to the opposing angles A and A ′ of the light reflecting optical element 2 in FIG. 1. More specifically, as shown in FIG. 5, the light from the object 1 is reflected on the light reflecting surface 23 (second light reflecting surface) of the mirror sheet 22 in the direction of the arrow Y1, and the reflected light is reflected in the direction of the arrow Y2. Since the light is reflected on the light reflecting surface 23 (first light reflecting surface) of the mirror sheet 21 and the reflected light travels toward the observer in the direction of the arrow Y3, each light reflecting surface 23 of the light reflecting optical element 2 has 1 each. It is designed to create a mirror image by reflecting twice, that is, twice.
特許文献1や特許文献2に示すような光反射光学素子を用いた空間映像表示装置においては、光反射光学素子2について物体1(例えば、ディスプレイ装置の画面上に表示された映像など)と面対称となる空間位置に空間映像3を形成するので、空間映像3が形成される光反射光学素子2の一方の面側の空間には物体1は存在しない。この特徴を利用して、空間映像表示装置をデスクトップ環境に用い、空間映像3が形成される側の空間を机上の空間とした場合には、机上にディスプレイ装置を配置しなくてよく、机上を広く使えるという利点がある。
In a spatial image display device using a light reflecting optical element as shown in Patent Document 1 or Patent Document 2, an object 1 (for example, an image displayed on a screen of a display device) and a surface of the light reflecting optical element 2 are used. Since the spatial image 3 is formed at a symmetric space position, the object 1 does not exist in the space on one surface side of the light reflecting optical element 2 where the spatial image 3 is formed. Using this feature, when the spatial video display device is used in a desktop environment and the space on which the spatial video 3 is formed is a desktop space, it is not necessary to arrange a display device on the desk. There is an advantage that it can be used widely.
本発明は上記の事情を鑑みてなされたものであり、その課題の一例としては、面対称位置に実像を形成する光反射光学素子を用いることにより、ディスプレイ装置を机上に配置しなくても、デスクトップ上の空間に映像を表示することができるデスクトップディスプレイシステムを提供することにある。
The present invention has been made in view of the above circumstances, and as an example of the problem, by using a light reflecting optical element that forms a real image at a plane-symmetrical position, even if the display device is not arranged on a desk, An object of the present invention is to provide a desktop display system capable of displaying an image in a space on a desktop.
上記の課題を達成するため、本発明の一態様は、机上の空間に映像を表示するデスクトップディスプレイシステムであって、机の天板として、机を設置する設置面に平行に配設され、光の透過性を有する光透過性天板と、前記光透過性天板の下方の空間に配置され、所定の映像を表示するディスプレイ部と、前記光透過性天板の下方に近設され、前記ディスプレイ部からの光を、前記光透過性天板の上方の前記机上の空間に向けて反射する平面板状の光反射光学素子と、を備え、前記光反射光学素子は、板厚方向に第1光反射面及び前記第1光反射面と直交する第2光反射面を備え、前記第1光反射面及び第2光反射面により構成された単位光学素子を複数備えてなり、板面の一方の側に配置された前記ディスプレイ部から入射した光を、所定の前記単位光学素子内の前記第1光反射面及び前記第2反射面にそれぞれ1回ずつ反射させて、前記板面の他方の側に出射し、前記光透過性天板を透過させて、前記所定の映像に対する鏡映像を前記机上の空間に空間映像として作り出すデスクトップディスプレイシステムである。
In order to achieve the above object, one aspect of the present invention is a desktop display system that displays an image in a space on a desk, and is disposed as a table top in parallel to an installation surface on which the desk is installed. A light transmissive top plate having a light transmission property, a display unit that is disposed in a space below the light transmissive top plate, displays a predetermined image, and is disposed near the light transmissive top plate, A planar plate-like light reflecting optical element that reflects light from the display unit toward the space on the desk above the light transmissive top plate, and the light reflecting optical element is arranged in the thickness direction. A first light reflecting surface and a second light reflecting surface orthogonal to the first light reflecting surface, and a plurality of unit optical elements composed of the first light reflecting surface and the second light reflecting surface. Light incident from the display unit arranged on one side, The light is reflected once on each of the first light reflecting surface and the second reflecting surface in the fixed unit optical element, emitted to the other side of the plate surface, and transmitted through the light transmissive top plate. A desktop display system that creates a mirror image of the predetermined image as a spatial image in the space on the desk.
以下、本発明の実施の形態を図面を用いて説明する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
図6は、本発明の実施の形態に係るデスクトップディスプレイシステム10の概略構成を示す側面図である。デスクトップディスプレイシステム10は、天板4が光透過性を有する机であって、天板4の上方空間に空間映像3を表示する機能を有している。デスクトップディスプレイシステム10は、特徴的な構成要素として、地面に対して水平に設置された光透過性を有する天板4(以下、光透過性天板4と称する)と、光透過性天板4の下方空間に配置され、映像を表示可能なディスプレイ部1と、光透過性天板4の下方に光透過性天板4に対してやや傾斜して近設され、ディスプレイ部1に表示された映像を、光透過性天板4の上方空間に空間映像3として表示させる光反射光学素子2と、を備えている。なお、本実施形態では、図6で定義された方向を用いてデスクトップディスプレイシステム10について説明する。
FIG. 6 is a side view showing a schematic configuration of the desktop display system 10 according to the embodiment of the present invention. The desktop display system 10 is a desk in which the top 4 is light transmissive, and has a function of displaying the spatial image 3 in the space above the top 4. The desktop display system 10 includes, as characteristic components, a light-transmitting top 4 (hereinafter referred to as a light-transmitting top 4) that is installed horizontally with respect to the ground, and a light-transmitting top 4 The display unit 1 is arranged in a lower space of the display unit 1 and can display an image. The display unit 1 is disposed below the light-transmitting top plate 4 with a slight inclination with respect to the light-transmitting top plate 4 and displayed on the display unit 1. A light reflecting optical element 2 for displaying an image as a spatial image 3 in a space above the light-transmissive top plate 4. In the present embodiment, the desktop display system 10 will be described using the directions defined in FIG.
ディスプレイ部1は、短焦点型のプロジェクタ11と、プロジェクタ11から出射された光を反射する平面ミラー12と、平面ミラー12で反射された光を投影する透過型スクリーン13と、を備えている。すなわち、ディスプレイ部1は、透過型スクリーン13上に映像を投影する。なお、本実施の形態では、透過型スクリーン13に映像を投影する構成としたが、ディスプレイ部1の構成は勿論、これに限定されるものではない。例えば、ディスプレイ部1として直視型液晶ディスプレイを用いてもよく、この場合には、透過型スクリーン13の位置に直視型液晶ディスプレイを配置すればよい。また、透過型スクリーン13の代わりに反射型スクリーンを用いてもよく(プロジェクタ11は反射型スクリーンに対して好適な位置に再配置される)、プロジェクタ11からの光を直接スクリーンに投影する構成でもよい。
The display unit 1 includes a short focus type projector 11, a flat mirror 12 that reflects light emitted from the projector 11, and a transmissive screen 13 that projects light reflected by the flat mirror 12. That is, the display unit 1 projects an image on the transmissive screen 13. In the present embodiment, the image is projected onto the transmissive screen 13, but the configuration of the display unit 1 is of course not limited to this. For example, a direct-viewing type liquid crystal display may be used as the display unit 1. In this case, the direct-viewing type liquid crystal display may be disposed at the position of the transmissive screen 13. Further, a reflective screen may be used instead of the transmissive screen 13 (the projector 11 is rearranged at a suitable position with respect to the reflective screen), and the light from the projector 11 is directly projected onto the screen. Good.
光反射光学素子2は、図1から図5で示した光反射光学素子2であり、平面板状に形成されている。なお、光反射光学素子2を構成するミラーシート21及びミラーシート22は同一形状であり、かつ、ミラーシート21及びミラーシート22の厚さ(光反射面23の短手方向の長さ)は均一となっている。
The light reflecting optical element 2 is the light reflecting optical element 2 shown in FIGS. 1 to 5 and is formed in a flat plate shape. The mirror sheet 21 and the mirror sheet 22 constituting the light reflecting optical element 2 have the same shape, and the thickness of the mirror sheet 21 and the mirror sheet 22 (the length in the short direction of the light reflecting surface 23) is uniform. It has become.
図7は、光反射光学素子2の外観斜視図、図8は、光反射光学素子2の上面図、側面図及び前面図である。なお、図7は、光反射光学素子2を、図1の左右方向及び前後方向に平行な面で切断した場合(図1の点線Pで切断した場合)の形状を示している。ここで、図1、図6、図7及び図8に示したAA’の方向はすべて同一の方向である。また、図6及び図8に示すSは、設計上の視線方向、すなわち、観察者が最も明るい空間映像3を見ることができる視線方向となっている。本実施の形態では、設計上の視線方向Sは、ミラーシート21、22の貼り合わせ面L(反射光学素子2の表面F)のAA’方向(AからA’に向けて、つまり手前から奥に向けて見た方向)を斜め上から見た方向である。以下、ミラーシート21を第1ミラーシート、ミラーシート22を第2ミラーシートとも称し、ミラーシート21の光反射面23を第1光反射面、ミラーシート22の光反射面23を第2光反射面とも称する。
7 is an external perspective view of the light reflecting optical element 2, and FIG. 8 is a top view, a side view, and a front view of the light reflecting optical element 2. FIG. FIG. 7 shows the shape of the light reflecting optical element 2 when cut along a plane parallel to the left-right direction and the front-rear direction of FIG. 1 (when cut along the dotted line P of FIG. 1). Here, the directions of AA ′ shown in FIGS. 1, 6, 7, and 8 are all the same direction. Moreover, S shown in FIG.6 and FIG.8 is a design line-of-sight direction, ie, a line-of-sight direction in which the observer can see the brightest spatial image 3. In the present embodiment, the design line-of-sight direction S is the AA ′ direction (from A to A ′ of the bonding surface L of the mirror sheets 21 and 22 (the surface F of the reflective optical element 2), that is, from the front to the back. Direction seen from the top) is a direction seen obliquely from above. Hereinafter, the mirror sheet 21 is also referred to as a first mirror sheet, the mirror sheet 22 is also referred to as a second mirror sheet, the light reflecting surface 23 of the mirror sheet 21 is a first light reflecting surface, and the light reflecting surface 23 of the mirror sheet 22 is second light reflecting. Also called a surface.
本実施の形態では、ディスプレイ部1から出射された光線群は概ね45度の傾きで光反射光学素子2に入射する(正確には、透過型スクリーン13の中心を透過した光L1が入射角45度で光反射光学素子2に入射する)ようにディスプレイ部1及び光反射光学素子2は配置されており、ディスプレイ部1から出射された光線群は、光反射光学素子2の第1光反射面及び第2光反射面にそれぞれ1回ずつ反射された後、光反射光学素子2に対して入射方向とは面対称な方向に出射される。この結果、ディスプレイ部1から出射された光は、光反射光学素子2に対して透過型スクリーン13と面対称な位置に結像され、これが空間映像3となる。すなわち、透過型スクリーン13に投影された映像の上下反転映像が机上の空間に実像として表示されるので、観察者はこの実像としての空間映像3を見ることにより、ディスプレイ部1に表示された情報を読み取ることができる。
In the present embodiment, the light beam emitted from the display unit 1 enters the light reflecting optical element 2 with an inclination of approximately 45 degrees (more precisely, the light L1 transmitted through the center of the transmissive screen 13 has an incident angle of 45). The display unit 1 and the light reflecting optical element 2 are arranged so that the light reflecting optical element 2 is incident on the light reflecting optical element 2 at a degree, and the light beam emitted from the display unit 1 is the first light reflecting surface of the light reflecting optical element 2. The light is reflected once by the second light reflecting surface and then emitted in a direction symmetrical to the incident direction with respect to the light reflecting optical element 2. As a result, the light emitted from the display unit 1 is imaged at a position symmetrical to the transmission screen 13 with respect to the light reflecting optical element 2, and this becomes a spatial image 3. That is, since the upside down image of the image projected on the transmissive screen 13 is displayed as a real image in the space on the desk, the observer views the information displayed on the display unit 1 by viewing the space image 3 as the real image. Can be read.
光反射光学素子2には、上述したように設計上の最適な光の入射角度が存在する。最適な入射角度から大きく外れた角度の光は、光反射光学素子2に入射しても第1光反射面及び第2光反射面にそれぞれ1回ずつ反射する光とならず、迷光となってしまい、空間映像3の結像に寄与しない。本実施の形態の場合、光反射光学素子2の表面Fに垂直な方向に関して言えば、最適な光の入射角度が45度となるように光反射光学素子2は形成されている(図8参照)。
The light reflecting optical element 2 has an optimum incident angle of light as described above. Light having an angle greatly deviating from the optimum incident angle does not become light that is reflected once on the first light reflection surface and the second light reflection surface even when incident on the light reflecting optical element 2, but becomes stray light. Therefore, it does not contribute to the image formation of the spatial image 3. In the case of the present embodiment, the light reflecting optical element 2 is formed so that the optimum light incident angle is 45 degrees with respect to the direction perpendicular to the surface F of the light reflecting optical element 2 (see FIG. 8). ).
図9は、光反射光学素子2の光利用効率(=光反射光学素子2から出射する出射光量/光反射光学素子2に入射する入射光量であって、透過率ともいう)を示す図であり、より詳しくは、ミラーシート21、22においてそれぞれ1回ずつ反射して、光反射光学素子2を透過する光の比率の水平角度依存性を示すグラフである。なお、光反射光学素子2における水平角度とは、設計上の視線方向Sから左右方向に視線をずらしたときの左右方向の角度をいい、反射光学素子2における垂直角度とは、設計上の視線方向Sから上下方向に視線をずらしたときの上下方向の角度をいう。
FIG. 9 is a diagram showing the light utilization efficiency of the light reflecting optical element 2 (= the amount of light emitted from the light reflecting optical element 2 / the amount of incident light incident on the light reflecting optical element 2 and also referred to as transmittance). More specifically, it is a graph showing the horizontal angle dependency of the ratio of the light reflected by the mirror sheets 21 and 22 once and transmitted through the light reflecting optical element 2. The horizontal angle in the light reflecting optical element 2 refers to the angle in the left-right direction when the line of sight is shifted from the design line-of-sight direction S to the left-right direction, and the vertical angle in the reflection optical element 2 is the line of sight in the design. An angle in the vertical direction when the line of sight is shifted from the direction S in the vertical direction.
図9のグラフにおいて、水平方向の入射角度0度は、設計上の視線方向Sを意味するので、図9は、設計上の視線方向Sから左右方向に視線をずらすと、透過率は減少することを示している。具体的には、設計上の視線方向Sから左右方向に±10度程度視線をずらすと、観察者は、設計上の視線方向Sで空間映像3を見たときの60%程度の明るさで空間映像3を見ることになる。
In the graph of FIG. 9, the incident angle of 0 degrees in the horizontal direction means the design line-of-sight direction S. Therefore, in FIG. 9, when the line of sight is shifted from the design line-of-sight direction S to the left and right, the transmittance decreases. It is shown that. Specifically, when the line of sight is shifted from the designed line-of-sight direction S by about ± 10 degrees in the left-right direction, the observer has a brightness of about 60% when viewing the spatial image 3 in the designed line-of-sight direction S. You will see spatial image 3.
ここで、本実施の形態の透過型スクリーン13は、角度指向性を有するスクリーンであり、光の拡散をある一定の角度に狭める機能を有している。これは、プロジェクタ11から出射された光は、プロジェクタ11の投影レンズとその投影位置を結ぶ光路の延長上でしか観察できないこと、及び上述したように、光反射光学素子2には最適な光の入射角度が存在し、最適な入射角度から大きく外れて入射した光は空間映像3の結像に寄与しないことの相反する2つの条件に対応させるためである。本実施形態では、空間映像3全体を見渡せる範囲に光を拡散させる一方、迷光の発生を最小限に抑えるために、具体的には、光の入射方向に対して15度までの範囲では十分な強度の拡散光が得られ、光の入射方向に対して30度を超える範囲ではほとんど拡散光が出力されない透過型スクリーン13を用いている。
Here, the transmission screen 13 of the present embodiment is a screen having angle directivity, and has a function of narrowing light diffusion to a certain angle. This is because the light emitted from the projector 11 can be observed only on the extension of the optical path connecting the projection lens of the projector 11 and the projection position, and as described above, the light reflecting optical element 2 has an optimum light beam. This is because the incident angle exists, and the incident light greatly deviates from the optimum incident angle does not contribute to the image formation of the spatial image 3, so as to correspond to two contradictory conditions. In the present embodiment, specifically, a range of up to 15 degrees with respect to the incident direction of light is sufficient in order to diffuse light in a range where the entire spatial image 3 can be seen, while minimizing the occurrence of stray light. A transmissive screen 13 is used which can obtain diffuse light with high intensity and hardly emits diffused light in a range exceeding 30 degrees with respect to the incident direction of light.
図10は、透過型スクリーン13に入射した光の拡散分布を示す図であり、より詳しくは、透過型スクリーン13に入射した光の強度の水平角度依存性を示すグラフである。なお、透過型スクリーン13における水平角度とは、透過型スクリーン13に入射した光の入射方向に対する左右方向の角度をいい、垂直角度とは、透過型スクリーン13に入射した光の入射方向に対する上下方向の角度をいう。
FIG. 10 is a diagram showing the diffusion distribution of light incident on the transmissive screen 13, and more specifically, a graph showing the horizontal angle dependence of the intensity of light incident on the transmissive screen 13. FIG. The horizontal angle in the transmissive screen 13 refers to the angle in the horizontal direction with respect to the incident direction of the light incident on the transmissive screen 13, and the vertical angle refers to the vertical direction relative to the incident direction of the light incident on the transmissive screen 13. The angle.
図10は、透過型スクリーン13に入射した光が左右方向に拡散するに従って、光の強度は徐々に減少することを示している。具体的には、透過型スクリーン13に入射した光の入射方向から左右方向に±15度程度拡散した拡散光は、入射した光の入射方向の明るさの約半分程度の明るさとなる。
FIG. 10 shows that the intensity of the light gradually decreases as the light incident on the transmission screen 13 diffuses in the left-right direction. Specifically, the diffused light diffused by about ± 15 degrees in the left-right direction from the incident direction of the light incident on the transmissive screen 13 becomes about half the brightness of the incident light in the incident direction.
図11に本実施の形態の透過型スクリーン13に入射した光の垂直方向の拡散の様子を示す。この結果、図11に示すように、透過型スクリーン13から出射された光は好適な角度をもって拡散進行していく一方、光反射光学素子2を通過すると、今度は、好適な角度をもって結像位置まで収束進行していく。なお、図11は、透過型スクリーン13に入射した光の垂直方向の拡散の様子を示しているが、水平方向の拡散も同様である。
FIG. 11 shows how the light incident on the transmission screen 13 of this embodiment is diffused in the vertical direction. As a result, as shown in FIG. 11, the light emitted from the transmissive screen 13 diffuses and travels at a suitable angle. On the other hand, when the light passes through the light reflecting optical element 2, this time, the image forming position has a suitable angle. Convergence progresses until. Note that FIG. 11 shows how light incident on the transmission screen 13 is diffused in the vertical direction, but the same applies to the diffusion in the horizontal direction.
また、本実施の形態の光反射光学素子2は、図6に示すように、光透過性天板4に対して、手前側がやや下がるように傾斜をつけて配置されている。これは、上述したように光反射光学素子2においては、垂直方向の最適な光の入射角度が45度であること、人間の最適な視線方向は、水平(地面と平行な方向)からやや下の方向(具体的には、水平から15~40度下の方向)であることに基づいている。すなわち、光反射光学素子2を地面に水平に配置すると、観察者の視線角度は水平方向から下向きに45度の角度となり、最適な視線方向よりもさらに下方向となってしまうので、光反射光学素子2の手前側をやや下げて傾斜させることにより、観察者の視線角度を水平方向から下向きに15~40度の角度となるように調整したものである。この結果、空間映像3を観察するときの視線の方向と、空間映像3を観察するとき以外(例えば、本を読む、署名をするなどのデスクトップ作業時)の視線の方向が近づき、より少ない視線の移動でデスクトップ作業を行えるようになるので、身体的な疲労を軽減することができる。すなわち、デスクトップシステム10は、空間映像3の観察とデスクトップ作業が両立し得る環境を提供することができる。
Further, as shown in FIG. 6, the light reflecting optical element 2 of the present embodiment is disposed with an inclination so that the near side is slightly lowered with respect to the light transmissive top plate 4. This is because, as described above, in the light reflecting optical element 2, the optimum light incident angle in the vertical direction is 45 degrees, and the optimum human gaze direction is slightly lower than the horizontal (direction parallel to the ground). (Specifically, a direction 15 to 40 degrees below the horizontal). That is, when the light reflecting optical element 2 is horizontally arranged on the ground, the observer's line-of-sight angle is 45 degrees downward from the horizontal direction, which is further below the optimum line-of-sight direction. By tilting the front side of the element 2 slightly downward, the observer's line-of-sight angle is adjusted to be 15 to 40 degrees downward from the horizontal direction. As a result, the direction of the line of sight when observing the spatial image 3 and the direction of the line of sight other than when observing the spatial image 3 (for example, at the time of desktop work such as reading a book or signing) are closer and less Since the desktop work can be done by moving, physical fatigue can be reduced. That is, the desktop system 10 can provide an environment in which the observation of the spatial video 3 and the desktop work can be compatible.
また、本実施の形態では、図6に示すように、プロジェクタ11から出射された光は、透過型スクリーン13の法線m方向にやや傾きをもって投影されるように設計されている。これは、観察者が空間映像3を観察するときの最適な視線方向と、空間映像3を最も明るく観察できる方向を一致させるためである。すなわち、透過型スクリーン13から出射された光は、透過型スクリーン13のスクリーン面の光反射光学素子2の表面Fに対する傾斜角度(以下、上下方向の傾きという)によらず、空間映像3の明るさは均一となるから、透過型スクリーン13のこの上下方向の傾きを、観察者が空間映像3を観察するときの最適な視線方向に合わせることが可能となっている。
In the present embodiment, as shown in FIG. 6, the light emitted from the projector 11 is designed to be projected with a slight inclination in the normal m direction of the transmission screen 13. This is because the optimum line-of-sight direction when the observer observes the spatial image 3 is matched with the direction in which the spatial image 3 can be observed brightest. That is, the light emitted from the transmissive screen 13 does not depend on the inclination angle of the screen surface of the transmissive screen 13 with respect to the surface F of the light reflecting optical element 2 (hereinafter, referred to as the vertical inclination). Therefore, the vertical inclination of the transmissive screen 13 can be adjusted to the optimum line-of-sight direction when the observer observes the spatial image 3.
なお、図12に示すように、ディスプレイ部1として液晶ディスプレイなどの直視型ディスプレイ14を用いた場合には、ディスプレイ面の法線方向が最も明るい方向となるから、図12に示す透過型スクリーン13から出射された光の方向L1を最も明るい方向とするには、直視型ディスプレイ14のディスプレイ面をさらに下方向に傾けなければならない。したがって、この場合には、直視型ディスプレイ14が形成する空間映像3Aは、空間映像3に比べてより上向きに傾斜するので、観察者が空間映像3Aを観察するときの最適な視線方向と、空間映像3Aを最も明るく観察できる方向が一致しない。したがって、観察者の空間映像3を観察するときの最適な視線方向と、空間映像3を最も明るく観察できる方向を一致させるという観点からは、プロジェクタ11及び透過型スクリーン13を用いたディスプレイ部1が好適である。
As shown in FIG. 12, when a direct-view display 14 such as a liquid crystal display is used as the display unit 1, the normal direction of the display surface is the brightest direction, so that the transmissive screen 13 shown in FIG. To make the direction L1 of the light emitted from the brightest direction, the display surface of the direct-view display 14 must be further tilted downward. Accordingly, in this case, since the spatial image 3A formed by the direct-view display 14 is inclined upward as compared with the spatial image 3, the optimal viewing direction when the observer observes the spatial image 3A, and the space The direction in which the image 3A can be observed brightest does not match. Therefore, from the viewpoint of matching the optimal line-of-sight direction when observing the observer's spatial image 3 with the direction in which the spatial image 3 can be observed brightest, the display unit 1 using the projector 11 and the transmissive screen 13 is provided. Is preferred.
光透過性天板4は、机を設置する設置面に対して平行に配設されているため、まず第1に、通常の机の天板としての機能を有している。と同時に、光透過性天板4は、光吸収率の高い黒色のガラス板またはプラスチック性樹脂で形成されているため、光反射光学素子2表面における外光の反射の影響を排除する機能(以下、外光排除機能という)を有している。
Since the light-transmitting top plate 4 is arranged in parallel to the installation surface on which the desk is installed, first, it has a function as a top plate of a normal desk. At the same time, since the light-transmissive top plate 4 is formed of a black glass plate or plastic resin having a high light absorption rate, the function of eliminating the influence of reflection of external light on the surface of the light-reflecting optical element 2 (hereinafter referred to as “light-transmitting top plate 4”). The external light exclusion function).
図13及び図14を用いて、光透過性天板4の外光排除機能を説明する。図13は、光透過性天板4がない場合における空間映像3を構成する光IL2と外光OL1の光反射光学素子2による反射光OL2の強度比を示す模式図、図14は、光透過性天板4がある場合における空間映像3を構成する光IL2と外光OL1の光反射光学素子2による反射光OL2の強度比を示す模式図である。なお、本実施の形態の光透過性天板4の透過率は約2%であるが、透過率の値はこれに限定されるものではない。
The outside light exclusion function of the light-transmissive top plate 4 will be described with reference to FIGS. FIG. 13 is a schematic diagram showing the intensity ratio of the reflected light OL2 of the light IL2 constituting the spatial image 3 and the external light OL1 reflected by the light reflecting optical element 2 in the absence of the light transmissive top plate 4, and FIG. FIG. 10 is a schematic diagram showing the intensity ratio of the reflected light OL2 of the light IL2 constituting the spatial image 3 and the external light OL1 reflected by the light reflecting optical element 2 when there is the nature ceiling plate 4; In addition, although the transmittance | permeability of the light-transmissive top plate 4 of this Embodiment is about 2%, the value of the transmittance | permeability is not limited to this.
光透過性天板4がない場合には、図13に示すように、光反射光学素子2に入射した外光OL1の一部は、光反射光学素子2の表面(光反射面23上端のエッジ部分)に反射されるため、観察者の視線には、空間映像3を構成する光IL2のほか、外光OL1の光反射光学素子2における反射光OL2も入ってきてしまう。このため、観察者は空間映像3に焦点を合わせにくくなり、結果として空間映像3を認識し難くなる。
When the light-transmissive top plate 4 is not provided, as shown in FIG. 13, a part of the external light OL1 incident on the light reflecting optical element 2 is part of the surface of the light reflecting optical element 2 (the edge at the upper end of the light reflecting surface 23). Therefore, in addition to the light IL2 constituting the spatial image 3, the reflected light OL2 of the light reflecting optical element 2 of the external light OL1 also enters the observer's line of sight. For this reason, it becomes difficult for an observer to focus on the spatial image 3, and as a result, it becomes difficult to recognize the spatial image 3.
一方、光透過性天板4がある場合には、図14に示すように、光透過性天板4に入射した外光OL1が、光透過性天板4を透過し、さらに光反射光学素子2の表面に反射されて、再度、光透過性天板4を透過して観察者の視線に届く外光OL2となるのは、(光反射光学素子2に入射した光のすべてが反射したとして)光透過性天板4に入射した光OL1の0.04%(=2%×2%)である。これに対して、反射光学素子2及び光透過性天板4を介して観察者の視線に届く空間映像3を構成する光IL2は(光反射光学素子2に入射した光のすべてが透過したとして)、透過型スクリーン13から出射された光IL1の2%である。これは、外光OL1は光透過性天板4を2回透過しなければ観察者の視線に届く外光OL2にはならないが、透過型スクリーン13から出射された光IL2は、光透過性天板4を1回透過すれば、空間映像3を構成する光IL2となるからである。この結果、光透過性天板4を採用した場合には、空間映像3を構成する光IL2と表面反射光OL2のコントラスト比は、採用しなかった場合に比べて約50倍に増大するので、観察者は空間映像3の認識が容易となる。このように本実施の形態では、光透過性天板4を設置し、かつ光透過性天板4の透過率を下げることにより、空間映像3を構成する光の外光に対するコントラストが改善し、空間映像3の存在感を増大させることができる。
On the other hand, when there is the light transmissive top plate 4, as shown in FIG. 14, the external light OL1 incident on the light transmissive top plate 4 is transmitted through the light transmissive top plate 4, and further, a light reflecting optical element. The external light OL2 that is reflected by the surface 2 and passes through the light-transmissive top plate 4 again and reaches the observer's line of sight is that (all of the light incident on the light-reflecting optical element 2 is reflected). ) 0.04% (= 2% × 2%) of the light OL1 incident on the light-transmissive top plate 4. On the other hand, the light IL2 constituting the spatial image 3 reaching the observer's line of sight through the reflective optical element 2 and the light transmissive top plate 4 is assumed to be (all of the light incident on the light reflective optical element 2 is transmitted). ), 2% of the light IL1 emitted from the transmissive screen 13. This is because the outside light OL1 does not become the outside light OL2 that reaches the observer's line of sight unless it passes through the light transmissive top plate 4 twice, but the light IL2 emitted from the transmissive screen 13 is light transmissive top. This is because if the light passes through the plate 4 once, the light IL2 constituting the spatial image 3 is obtained. As a result, when the light transmissive top plate 4 is employed, the contrast ratio between the light IL2 and the surface reflected light OL2 constituting the spatial image 3 is increased by about 50 times compared with the case where the spatial image 3 is not employed. The observer can easily recognize the spatial image 3. As described above, in the present embodiment, by setting the light transmissive top plate 4 and lowering the transmittance of the light transmissive top plate 4, the contrast of the light constituting the spatial image 3 with respect to the external light is improved. The presence of the spatial image 3 can be increased.
また、これに加えて、光透過性天板4は、表面反射を低減するAR(アンチリフレクション)グレード表面処理が施されているので、外光OL1が光透過性天板4自体で反射することも抑制されている。さらには、光透過性天板4は、耐擦傷性が高いMRグレード表面処理も施されているので、デスクトップ作業にも好適となっている。
In addition, since the light-transmissive top plate 4 is subjected to an AR (anti-reflection) grade surface treatment that reduces surface reflection, the external light OL1 is reflected by the light-transmissive top plate 4 itself. Is also suppressed. Furthermore, since the light-transmissive top plate 4 is also subjected to MR grade surface treatment with high scratch resistance, it is also suitable for desktop work.
なお、本実施の形態では、図6に示す光透過性天板4より下方の一点鎖線部分全体を、黒い枠体8で覆っている。これは、迷光対策であり、ディスプレイ部1から出射された光の正規の反射や屈折以外の原因から生じる望ましくない光(例えば、外光など空間映像3を構成する光以外の光)の影響を排除するためである。このように、ディスプレイ部1のプロジェクタ11から出射される光線群の光路の外側は黒い枠体8で覆われており、ディスプレイ部1には外光が入射しないように配慮されているので、観察者は空間映像3を認識しやすくなっている。
In the present embodiment, the entire portion of the one-dot chain line below the light-transmissive top plate 4 shown in FIG. This is a countermeasure against stray light, and the influence of undesirable light (for example, light other than light constituting the spatial image 3 such as external light) caused by causes other than normal reflection and refraction of light emitted from the display unit 1 is affected. This is to eliminate it. In this way, the outside of the optical path of the light beam emitted from the projector 11 of the display unit 1 is covered with the black frame 8, and consideration is given so that external light does not enter the display unit 1. The person can easily recognize the spatial image 3.
なお、光反射光学素子2の構成は、図7に示す構成に限定されるものではなく、実体(被投影物)を、光反射光学素子に対して面対称な位置に実像として結像させる光学素子であれば、いずれの構成でもよい。例えば、特許文献1に示した光反射光学素子の構成でもよい。図15は、このような光反射光学素子5の外観斜視図である。より詳しくは、光反射光学素子5は、所定の基盤51を厚み方向に貫通させた複数の穴52を備え、各穴52の内壁に直交する2つの鏡面要素54a及び54bから構成される単位光学素子53を形成したものであって、その穴を通じて基盤51の一方の面方向から他方の面方向へ光が透過する際に、2つの鏡面要素54a及び54bでそれぞれ1回ずつ反射させるようにしてもよい。また、特開昭58-21702号公報に示すように、両面反射帯を平行に配設してなる結像素子の2組をそれぞれの反射帯が互いに直交するように組み合わせて、碁盤目状の格子となるように構成された光反射光学素子としてもよい。
The configuration of the light reflecting optical element 2 is not limited to the configuration shown in FIG. 7, but is an optical that forms an entity (projected object) as a real image at a plane symmetric with respect to the light reflecting optical element. Any configuration may be used as long as it is an element. For example, the configuration of the light reflecting optical element shown in Patent Document 1 may be used. FIG. 15 is an external perspective view of such a light reflecting optical element 5. More specifically, the light reflecting optical element 5 includes a plurality of holes 52 penetrating a predetermined base 51 in the thickness direction, and is a unit optical unit composed of two specular elements 54 a and 54 b orthogonal to the inner wall of each hole 52. The element 53 is formed, and when light is transmitted from one surface direction to the other surface direction of the base 51 through the hole, the light is reflected once by the two mirror surface elements 54a and 54b. Also good. Further, as disclosed in Japanese Patent Application Laid-Open No. 58-21702, two sets of imaging elements each having a double-sided reflection band arranged in parallel are combined so that each reflection band is orthogonal to each other. It is good also as a light reflection optical element comprised so that it might become a grating | lattice.
また、光反射光学素子5を用いる場合には、空間映像3に対する視野角をより広げるため、単位光学素子53の配置に工夫をこらしてもよい。図16及び図17は、それぞれ、光反射光学素子5の変形例である光反射光学素子5A及び5Bの外観を示す上面図である。光反射光学素子5Aは、2つの単位光学素子53を1セットとして、光反射光学素子5Aの表面内において、基準とする方向(具体的には図6に示すAA’方向)から、それぞれの単位光学素子53の鏡面要素54a及び54bの交点を含む対角線方向に±10度の回転角度偏倚を与えて形成されている。この結果、光反射光学素子5Aにおいては、空間映像3の最大輝度のピーク値は下がるが、AA’方向から左右方向にややずれたP1及びP2方向に空間映像3の最大輝度が確保されるので、光反射光学素子5Aの水平方向(図6の左右方向)に対して空間映像3の明るさを確保することができる。
Further, when the light reflecting optical element 5 is used, the arrangement of the unit optical elements 53 may be devised in order to further widen the viewing angle with respect to the spatial image 3. FIGS. 16 and 17 are top views showing the appearances of light reflecting optical elements 5A and 5B, which are modifications of the light reflecting optical element 5, respectively. The light reflecting optical element 5A includes two unit optical elements 53 as one set, and each unit from the reference direction (specifically, the AA ′ direction shown in FIG. 6) in the surface of the light reflecting optical element 5A. The optical element 53 is formed by giving a rotational angle deviation of ± 10 degrees in the diagonal direction including the intersection of the specular elements 54a and 54b. As a result, in the light reflecting optical element 5A, the peak value of the maximum luminance of the spatial image 3 is lowered, but the maximum luminance of the spatial image 3 is secured in the P1 and P2 directions that are slightly shifted in the left and right directions from the AA ′ direction. The brightness of the spatial image 3 can be ensured with respect to the horizontal direction (the left-right direction in FIG. 6) of the light reflecting optical element 5A.
図18は、光反射光学素子5Aの光利用効率を示す図であり、より詳しくは、単位光学素子53の鏡面要素54a及び54bにおいてそれぞれ1回ずつ反射して、光反射光学素子5Aを透過する光の比率の水平角度依存性を示すグラフである。図9に示した光反射光学素子2の透過率の水平角度依存性と比較すると、設計上の視線方向Sで空間映像3を見たときの明るさは減少しているが、設計上の視線方向Sから左右方向に±10度ずらした視線方向にそれぞれ明るさの極大点が現われており、光反射光学素子2よりも水平方向(図6の左右方向)に対して空間映像3の明るさが確保されていることがわかる。
FIG. 18 is a diagram showing the light utilization efficiency of the light reflecting optical element 5A. More specifically, the light reflecting optical element 5A is reflected once by the mirror elements 54a and 54b of the unit optical element 53 and then transmitted through the light reflecting optical element 5A. It is a graph which shows the horizontal angle dependence of the ratio of light. Compared with the horizontal angle dependency of the transmittance of the light reflecting optical element 2 shown in FIG. 9, the brightness when the spatial image 3 is viewed in the design viewing direction S is reduced, but the design viewing Brightness maximum points appear in the line-of-sight directions shifted ± 10 degrees in the left-right direction from the direction S, and the brightness of the spatial image 3 with respect to the horizontal direction (left-right direction in FIG. 6) relative to the light reflecting optical element 2. It can be seen that is secured.
また、図19は、図10の水平角度依存性を有する透過型スクリーン13と、図18に示した光反射光学素子5Aを組み合わせた場合の光反射光学素子5Aの光利用効率を示すグラフであり、図10の水平角度依存性を有する透過型スクリーン13と、図9に示した光反射光学素子2を組み合わせた場合の光反射光学素子2の光利用効率と対比して表示している。ここで、図19の実線で示された二方向素子は、光反射光学素子5Aを用いた場合、点線で示された一方向素子は、光反射光学素子2を用いた場合を示している。図19は、光反射光学素子5Aを用いた場合には、設計上の視線方向Sから左右方向に±10度以内の視線方向においては、略一定の明るさの空間映像3が得られることを示している。
FIG. 19 is a graph showing the light utilization efficiency of the light reflecting optical element 5A when the transmissive screen 13 having the horizontal angle dependency of FIG. 10 and the light reflecting optical element 5A shown in FIG. 18 are combined. 10 is displayed in comparison with the light utilization efficiency of the light reflecting optical element 2 in the case where the transmissive screen 13 having the horizontal angle dependency of FIG. 10 and the light reflecting optical element 2 shown in FIG. 9 are combined. Here, the bidirectional element shown by the solid line in FIG. 19 shows the case where the light reflecting optical element 5A is used, and the unidirectional element shown by the dotted line shows the case where the light reflecting optical element 2 is used. FIG. 19 shows that when the light reflecting optical element 5A is used, a spatial image 3 having a substantially constant brightness can be obtained in the line-of-sight direction within ± 10 degrees from the design line-of-sight direction S in the left-right direction. Show.
なお、光反射光学素子5Bは、3つの単位光学素子53を1セットとして、光反射光学素子5Bの表面内において、基準とする方向(具体的には図6に示すAA’方向)から、それぞれの単位光学素子53の鏡面要素54a及び54bの交点を含む対角線方向に0度、±30度の回転角度偏倚を与えて形成されている。光反射光学素子5Bを用いた場合には、光反射光学素子5Aを用いた場合よりもさらに水平方向(図6の左右方向)に対して空間映像3の明るさを確保することができる。このように複数の単位光学素子53を1セットとし、基準とする方向からそれぞれの単位光学素子53に回転角度偏倚を与えた場合には、基準とする方向から左右方向に視線を移してみても、空間映像の明るさの変化を少なくすることができるので、空間映像3を視認可能な視野角を広くとることができる。すなわち、光反射光学素子5Aや5Bは、大きな空間映像3を広い範囲から見る場合に適している。
The light reflecting optical element 5B includes three unit optical elements 53 as one set, and from the reference direction (specifically, the AA ′ direction shown in FIG. 6) in the surface of the light reflecting optical element 5B. The unit optical element 53 is formed with a rotational angle deviation of 0 degrees and ± 30 degrees in the diagonal direction including the intersection of the mirror elements 54a and 54b. When the light reflecting optical element 5B is used, the brightness of the spatial image 3 can be secured further in the horizontal direction (left and right direction in FIG. 6) than when the light reflecting optical element 5A is used. In this way, when a plurality of unit optical elements 53 are set as one set and a rotation angle deviation is given to each unit optical element 53 from the reference direction, even if the line of sight is shifted from the reference direction to the left and right directions, Since the change in the brightness of the spatial image can be reduced, a wide viewing angle for viewing the spatial image 3 can be taken. That is, the light reflecting optical elements 5A and 5B are suitable for viewing a large spatial image 3 from a wide range.
また、上記実施の形態では、観察者の視線方向に最適となるように空間映像3の面(以下、空間映像面という)をやや上方に向けて形成したが、空間映像面の仰角は観察者の嗜好により異なるので、空間映像面の仰角を可変とする機構を設けてもよい。このような機構を設けた場合には、さらに観察者の身体的な疲労を軽減する効果が期待できる。
In the above embodiment, the plane of the spatial video 3 (hereinafter referred to as the spatial video plane) is formed so as to be optimal in the observer's line-of-sight direction, but the elevation angle of the spatial video plane is the observer. Therefore, a mechanism for changing the elevation angle of the spatial image plane may be provided. When such a mechanism is provided, an effect of further reducing the physical fatigue of the observer can be expected.
図20は、透過型スクリーン13の上下方向の傾き角度を可変させることにより、空間映像面の仰角を可変させた場合の空間映像3の傾きを示す図である。図20に示すように、透過型スクリーン13を右回りのA1方向に回転させると、空間映像面は左回りのB1方向に回転するので、空間映像面は徐々に立ってくる一方、透過型スクリーン13を左回りのA2方向に回転させると、空間映像面は右回りのB2方向に回転するので、空間映像面は徐々に倒れていく。このように観察者の嗜好に合わせて、空間映像面の仰角を可変できるようにしてもよい。
FIG. 20 is a diagram showing the inclination of the spatial image 3 when the elevation angle of the spatial image plane is varied by varying the vertical tilt angle of the transmissive screen 13. As shown in FIG. 20, when the transmissive screen 13 is rotated in the clockwise A1 direction, the spatial image plane is rotated in the counterclockwise B1 direction. When 13 is rotated in the counterclockwise direction A2, the spatial image plane rotates in the clockwise B2 direction, so that the spatial image plane gradually falls down. In this manner, the elevation angle of the spatial image plane may be made variable in accordance with the viewer's preference.
さらには、上記実施の形態では、光反射光学素子2の設置位置は固定されていたが、光反射光学素子2の表面Fの光透過性天板4に対する傾斜角度(上下方向の傾斜角度)を可変可能としてもよい。すなわち、人間の最適な視線方向は水平からやや下の方向(具体的には、水平から15~40度下の方向)であると説明したが、座高や空間映像面から目までの距離には個人差があるため、それぞれの観察者にとって最適な視線方向を調整できるようにしてもよい。
Furthermore, in the above-described embodiment, the installation position of the light reflecting optical element 2 is fixed, but the inclination angle of the surface F of the light reflecting optical element 2 with respect to the light transmitting top plate 4 (inclination angle in the vertical direction) is set. It may be variable. In other words, it has been explained that the optimal human gaze direction is slightly below the horizontal (specifically, 15 to 40 degrees below the horizontal), but the sitting height and the distance from the space image plane to the eyes Since there are individual differences, it may be possible to adjust the line-of-sight direction optimal for each observer.
図21は、光反射光学素子2の上下方向の傾斜角度を可変させた場合の空間映像面の位置を示す図である。この場合には、図21に示すように、光反射光学素子2を右回りのA1方向に回転させると、空間映像面は右回りのC1方向に回転するので、空間映像3の位置は上方に移動し、下方への視線方向は傾きが急になる一方、光反射光学素子2を左回りのA2方向に回転させると、空間映像面は左回りのC2方向に回転するので、空間映像3の位置は下方に移動し、下方への視線方向は傾きが緩やかになる。
FIG. 21 is a diagram showing the position of the spatial image plane when the vertical inclination angle of the light reflecting optical element 2 is varied. In this case, as shown in FIG. 21, when the light reflecting optical element 2 is rotated in the clockwise A1 direction, the spatial image plane is rotated in the clockwise C1 direction. When the light reflecting optical element 2 is rotated in the counterclockwise A2 direction, the spatial image plane rotates in the counterclockwise C2 direction. The position moves downward, and the downward line-of-sight direction has a gentle inclination.
また、ディスプレイ部1として直視型ディスプレイ14を用いる場合には、覗き見防止フィルムを画面に貼付して、光の拡散角度を狭めるように制御してもよい。図22は、ディスプレイ部1として、覗き見防止フィルムを装着した直視型ディスプレイ14を用いた場合の概略構成及び光の進行方向を示す図である。このように、ディスプレイ部1として直視型ディスプレイ14を用いる場合には、覗き見防止フィルムをディスプレイ表面に貼付することにより、光反射光学素子2内における迷光を少なくし、空間映像3の結像に寄与する光を多くしてもよい。なお、覗き見防止フィルムのより効果的な使用としては、光透過性天板4に貼付するのがよい。上述したように迷光は光反射光学素子2内で発生しているため、光反射光学素子2から出射された光に対して直接光の拡散角度を制御した方が好適であるためである。また、光透過性天板4に覗き見防止フィルム用いる場合には、ディスプレイ部1の構成は直視型ディスプレイ14に限定されない。
Further, when the direct-view display 14 is used as the display unit 1, a peeping prevention film may be attached to the screen so that the light diffusion angle is narrowed. FIG. 22 is a diagram illustrating a schematic configuration and a light traveling direction when a direct-view display 14 equipped with a peep prevention film is used as the display unit 1. As described above, when the direct-view display 14 is used as the display unit 1, the stray light in the light reflecting optical element 2 is reduced by sticking the peeping prevention film to the display surface, and the spatial image 3 is imaged. More light may be contributed. In addition, as a more effective use of the peep prevention film, it is preferable to affix it to the light transmissive top plate 4. This is because stray light is generated in the light reflecting optical element 2 as described above, and it is preferable to control the light diffusion angle directly with respect to the light emitted from the light reflecting optical element 2. Further, when the peep prevention film is used for the light transmissive top plate 4, the configuration of the display unit 1 is not limited to the direct view type display 14.
また、空間映像3が表示される位置近傍における観察者の手を検知可能なセンサを設けてもよい。図23は、このようなセンサ6を設けた場合のデスクトップディスプレイシステム30の概略構成を示す側面図である。センサ6は、例えば、透過性天板4の直下に設けられた赤外線センサであり、空間映像3の近傍領域Nにおける物体の存在を検知するようになっている。そして、センサ6が所定の物体(例えば、観察者が空間映像3に向かって手を伸ばす行為を行ったときの手など)を検知した場合には、ディスプレイ部1が表示する映像を制御する映像制御部7に検知信号を出力し、映像制御部7は、この検知信号に応じて映像の内容を制御するようにしてもよい。これにより、観察者の行為に応じたインタラクティブな空間映像3を提供することが可能となる。
Further, a sensor capable of detecting the observer's hand near the position where the spatial image 3 is displayed may be provided. FIG. 23 is a side view showing a schematic configuration of the desktop display system 30 when such a sensor 6 is provided. The sensor 6 is, for example, an infrared sensor provided immediately below the transmissive top plate 4 and detects the presence of an object in the vicinity region N of the spatial image 3. When the sensor 6 detects a predetermined object (for example, a hand when the observer performs an action of reaching for the spatial image 3), an image for controlling the image displayed on the display unit 1 A detection signal may be output to the control unit 7, and the video control unit 7 may control the content of the video in accordance with the detection signal. Thereby, it is possible to provide an interactive spatial image 3 according to the act of the observer.
以上から、上記実施の形態によれば、面対称位置に実像を形成する光反射光学素子を用いることによりディスプレイ装置を机上に配置しなくても、デスクトップ上の空間に映像を表示することができるので、机上を広く使えるという効果を得ることができる。また、観察者にとって最適な視線方向に空間映像3を表示可能としているので、快適にデスクトップ作業を行うことができる。
As described above, according to the above-described embodiment, it is possible to display an image in a space on a desktop without using a display device on a desk by using a light reflecting optical element that forms a real image at a plane-symmetric position. So you can get the effect of using the desk widely. In addition, since the spatial video 3 can be displayed in the line-of-sight direction optimal for the observer, desktop work can be performed comfortably.
したがって、上記実施の形態に係るデスクトップシステムは、種々の机、例えば、OA用デスク、会議用テーブル、窓口受付用デスク、駅や博物館などの案内用テーブルなどに適用できる。また、空間映像自体は実体を伴わないので(空間映像は、実体であるディスプレイ部とは遊離されて表示されるため)、避難誘導表示や汚染や盗難が懸念される劣悪な環境における表示にも好適である。さらには、空間映像は限られた視線方向からのみ視認可能なので、周囲からの覗き見を防止する必要がある装置、例えば、現金自動支払機などの情報表示にも適用できる。
Therefore, the desktop system according to the above embodiment can be applied to various desks, for example, OA desks, conference tables, window reception desks, guidance tables at stations, museums, and the like. In addition, since the spatial image itself is not accompanied by an entity (because the spatial image is displayed separately from the display unit that is the entity), it can also be used for evacuation guidance display and display in poor environments where contamination and theft are a concern. Is preferred. Furthermore, since the spatial image is visible only from a limited line-of-sight direction, it can also be applied to information display such as a device that needs to prevent peeping from the surroundings, such as a cash dispenser.
以上、本発明の実施の形態について説明してきたが、本発明は、上述した実施の形態に限られるものではなく、本発明の要旨を逸脱しない範囲において、本発明の実施の形態に対して種々の変形や変更を施すことができ、そのような変形や変更を伴うものもまた、本発明の技術的範囲に含まれるものである。
Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various modifications can be made to the embodiments of the present invention without departing from the gist of the present invention. Such modifications and changes can be made, and those accompanying such modifications and changes are also included in the technical scope of the present invention.
1 ディスプレイ部
2,5,5A,5B 光反射光学素子
3 空間映像(実像)
6 センサ
7 映像制御部
8 枠体
10,30 デスクトップディスプレイシステム
11 プロジェクタ
12 平面ミラー
13 透過型スクリーン
14 直視型ディスプレイ
20 直方体材
21,22 ミラーシート
23 光反射面 DESCRIPTION OFSYMBOLS 1 Display part 2, 5, 5A, 5B Light reflection optical element 3 Spatial image (real image)
6Sensor 7 Video Control Unit 8 Frame 10, 30 Desktop Display System 11 Projector 12 Flat Mirror 13 Transmission Screen 14 Direct View Display 20 Rectangular Solid Material 21, 22 Mirror Sheet 23 Light Reflecting Surface
2,5,5A,5B 光反射光学素子
3 空間映像(実像)
6 センサ
7 映像制御部
8 枠体
10,30 デスクトップディスプレイシステム
11 プロジェクタ
12 平面ミラー
13 透過型スクリーン
14 直視型ディスプレイ
20 直方体材
21,22 ミラーシート
23 光反射面 DESCRIPTION OF
6
Claims (10)
- 机上の空間に映像を表示するデスクトップディスプレイシステムであって、
机の天板として、机を設置する設置面に平行に配設され、光の透過性を有する光透過性天板と、
前記光透過性天板の下方の空間に配置され、所定の映像を表示するディスプレイ部と、
前記光透過性天板の下方に近設され、前記ディスプレイ部からの光を、前記光透過性天板の上方の前記机上の空間に向けて反射する平面板状の光反射光学素子と、
を備え、
前記光反射光学素子は、
板厚方向に第1光反射面及び前記第1光反射面と直交する第2光反射面を備え、前記第1光反射面及び第2光反射面により構成された単位光学素子を複数備えてなり、板面の一方の側に配置された前記ディスプレイ部から入射した光を、所定の前記単位光学素子内の前記第1光反射面及び前記第2反射面にそれぞれ1回ずつ反射させて、前記板面の他方の側に出射し、前記光透過性天板を透過させて、前記所定の映像に対する鏡映像を前記机上の空間に空間映像として作り出すデスクトップディスプレイシステム。 A desktop display system for displaying images in a space on a desk,
As a desk top plate, a light transmissive top plate that is arranged in parallel to the installation surface on which the desk is installed and has light transmission,
A display unit disposed in a space below the light-transmissive top plate and displaying a predetermined image;
A flat plate-like light reflecting optical element that is disposed near the light-transmitting top plate and reflects light from the display unit toward the space on the desk above the light-transmitting top plate;
With
The light reflecting optical element is
A first light reflecting surface and a second light reflecting surface orthogonal to the first light reflecting surface are provided in a plate thickness direction, and a plurality of unit optical elements each including the first light reflecting surface and the second light reflecting surface are provided. The light incident from the display unit disposed on one side of the plate surface is reflected once each on the first light reflecting surface and the second reflecting surface in the predetermined unit optical element, A desktop display system that emits light to the other side of the plate surface and transmits the light-transmissive top plate to create a mirror image of the predetermined image as a spatial image in the space on the desk. - 前記光透過性天板は、入射した光の一部を吸収する一方、入射した光の残部を透過させる特性を有するガラス板または樹脂板で形成されている請求項1記載のデスクトップディスプレイシステム。 The desktop display system according to claim 1, wherein the light transmissive top plate is formed of a glass plate or a resin plate having a characteristic of absorbing a part of incident light and transmitting a remaining part of the incident light.
- 前記光反射光学素子の前記板面は、前記光透過性天板に対して傾斜して配設されている請求項1又は2記載のデスクトップディスプレイシステム。 The desktop display system according to claim 1 or 2, wherein the plate surface of the light reflecting optical element is inclined with respect to the light transmissive top plate.
- 前記光反射光学素子の前記板面の、前記光透過性天板に対する傾斜角度を可変とする可変機構をさらに備えることを特徴とする請求項3記載のデスクトップディスプレイシステム。 4. The desktop display system according to claim 3, further comprising a variable mechanism for changing an inclination angle of the plate surface of the light reflecting optical element with respect to the light transmissive top plate.
- 前記ディスプレイ部は、前記ディスプレイ部から出射される光の放射角度に制限を設けている請求項1乃至4のいずれか1項に記載のデスクトップディスプレイシステム。 The desktop display system according to any one of claims 1 to 4, wherein the display unit has a restriction on a radiation angle of light emitted from the display unit.
- 前記空間映像の表示位置の近傍領域に進入した所定の物体の存在を検出するセンサ部と、
前記センサ部の検出内容に応じて前記ディスプレイ部に表示する映像を制御する映像制御部と、
をさらに備える請求項1乃至5のいずれか1項に記載のデスクトップディスプレイシステム。 A sensor unit that detects the presence of a predetermined object that has entered a region near the display position of the spatial image;
A video control unit for controlling video displayed on the display unit according to the detection content of the sensor unit;
The desktop display system according to any one of claims 1 to 5, further comprising: - 前記ディスプレイ部が表示する前記所定の映像の映像面の、前記光反射光学素子の前記板面に対する傾きを可変とする可変機構をさらに備える請求項1乃至6のいずれか1項に記載のデスクトップディスプレイシステム。 The desktop display according to any one of claims 1 to 6, further comprising a variable mechanism that varies a tilt of an image plane of the predetermined image displayed by the display unit with respect to the plate surface of the light reflecting optical element. system.
- 前記光反射光学素子は、
予め定められた複数の前記単位光学素子を合わせて構成されたグループ光学素子を複数備えてなり、
前記グループ光学素子を構成する前記複数の単位光学素子それぞれは、
前記単位光学素子の前記板面内において、基準とする方向からそれぞれ予め定められた角度回転した方向に規則的に配置されている請求項1乃至7のいずれか1項に記載のデスクトップディスプレイシステム。 The light reflecting optical element is
Comprising a plurality of group optical elements configured by combining a plurality of predetermined unit optical elements;
Each of the plurality of unit optical elements constituting the group optical element is
The desktop display system according to any one of claims 1 to 7, wherein the unit optical element is regularly arranged in a direction rotated by a predetermined angle from a reference direction within the plate surface of the unit optical element. - 前記光透過性天板は、
耐擦傷性表面処理または表面反射低減処理のうち少なくともいずれか一方が施されている請求項1乃至8のいずれか1項に記載のデスクトップディスプレイシステム。 The light transmissive top plate is
The desktop display system according to any one of claims 1 to 8, wherein at least one of a scratch-resistant surface treatment and a surface reflection reduction treatment is performed. - 前記光透過性天板の下方空間において前記ディスプレイ部から出射される光の光路の外側を覆う黒い枠体をさらに備える1乃至9のいずれか1項に記載のデスクトップディスプレイシステム。 10. The desktop display system according to any one of 1 to 9, further comprising a black frame body that covers an outside of an optical path of light emitted from the display unit in a lower space of the light transmissive top plate.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2010/071553 WO2012073362A1 (en) | 2010-12-02 | 2010-12-02 | Desktop display system |
JP2012546632A JP5427961B2 (en) | 2010-12-02 | 2010-12-02 | Desktop display system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2010/071553 WO2012073362A1 (en) | 2010-12-02 | 2010-12-02 | Desktop display system |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012073362A1 true WO2012073362A1 (en) | 2012-06-07 |
Family
ID=46171347
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/071553 WO2012073362A1 (en) | 2010-12-02 | 2010-12-02 | Desktop display system |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5427961B2 (en) |
WO (1) | WO2012073362A1 (en) |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014006479A (en) * | 2012-06-27 | 2014-01-16 | Seiko Epson Corp | Display device, photographing method, and display method |
JP2014067071A (en) * | 2012-09-10 | 2014-04-17 | Askanet:Kk | Floating touch panel |
JP2015018038A (en) * | 2013-07-09 | 2015-01-29 | 株式会社アスカネット | Image reproduction method |
JP2015079170A (en) * | 2013-10-18 | 2015-04-23 | 増田 麻言 | Scanning projection device, and portable projection device |
JP2016006447A (en) * | 2014-06-20 | 2016-01-14 | 船井電機株式会社 | Image display device |
JP2016006564A (en) * | 2014-06-20 | 2016-01-14 | 船井電機株式会社 | Image display device |
JP2016009204A (en) * | 2014-06-20 | 2016-01-18 | 船井電機株式会社 | Image display device |
JP2016065940A (en) * | 2014-09-24 | 2016-04-28 | 日本電気硝子株式会社 | Optical imaging member and manufacturing method therefor |
JP2016103028A (en) * | 2015-12-21 | 2016-06-02 | 増田 麻言 | Scanning projector and handheld projection device |
JP2016133577A (en) * | 2015-01-17 | 2016-07-25 | 有限会社オプトセラミックス | Aerial image formation device |
WO2016199540A1 (en) * | 2015-06-11 | 2016-12-15 | コニカミノルタ株式会社 | Aerial image display device |
JP2017156469A (en) * | 2016-02-29 | 2017-09-07 | 株式会社ニコン | Imaging optical system, optical system, display, electronic apparatus, display method, and program |
JP2017167224A (en) * | 2016-03-14 | 2017-09-21 | 大日本印刷株式会社 | Space floating video display device |
JP2017207566A (en) * | 2016-05-17 | 2017-11-24 | 国立研究開発法人情報通信研究機構 | Three-dimensional display |
JP2017207560A (en) * | 2016-05-16 | 2017-11-24 | パナソニックIpマネジメント株式会社 | Aerial display device and building material |
JP2018127884A (en) * | 2017-02-09 | 2018-08-16 | 株式会社福山コンサルタント | Reverse run and wrong entry prevention device, reverse run and wrong entry prevention system, and method of reverse run and wrong entry prevention on the road |
JP2020144237A (en) * | 2019-03-06 | 2020-09-10 | 国立大学法人電気通信大学 | Aerial image formation device |
JP2021124524A (en) * | 2020-01-31 | 2021-08-30 | 住友電気工業株式会社 | Display device |
JP2022132259A (en) * | 2021-02-27 | 2022-09-08 | 株式会社アーティフィス | Information input device having bio-reactant adhesion prevention unit |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006061959A1 (en) * | 2004-12-09 | 2006-06-15 | Pioneer Corporation | 3-d two-dimensional image display unit and 3-d two-dimensional image displaying method |
JP2006171042A (en) * | 2004-12-13 | 2006-06-29 | Pioneer Electronic Corp | Image display device |
WO2007116639A1 (en) * | 2006-03-23 | 2007-10-18 | National Institute Of Information And Communications Technology | Imageing element and display |
WO2008041616A1 (en) * | 2006-10-02 | 2008-04-10 | National Institute Of Information And Communications Technology | Two-point image formation optical device |
WO2008123500A1 (en) * | 2007-03-30 | 2008-10-16 | National Institute Of Information And Communications Technology | Mid-air video interaction device and its program |
-
2010
- 2010-12-02 WO PCT/JP2010/071553 patent/WO2012073362A1/en active Application Filing
- 2010-12-02 JP JP2012546632A patent/JP5427961B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006061959A1 (en) * | 2004-12-09 | 2006-06-15 | Pioneer Corporation | 3-d two-dimensional image display unit and 3-d two-dimensional image displaying method |
JP2006171042A (en) * | 2004-12-13 | 2006-06-29 | Pioneer Electronic Corp | Image display device |
WO2007116639A1 (en) * | 2006-03-23 | 2007-10-18 | National Institute Of Information And Communications Technology | Imageing element and display |
WO2008041616A1 (en) * | 2006-10-02 | 2008-04-10 | National Institute Of Information And Communications Technology | Two-point image formation optical device |
WO2008123500A1 (en) * | 2007-03-30 | 2008-10-16 | National Institute Of Information And Communications Technology | Mid-air video interaction device and its program |
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014006479A (en) * | 2012-06-27 | 2014-01-16 | Seiko Epson Corp | Display device, photographing method, and display method |
JP2014067071A (en) * | 2012-09-10 | 2014-04-17 | Askanet:Kk | Floating touch panel |
JP2015018038A (en) * | 2013-07-09 | 2015-01-29 | 株式会社アスカネット | Image reproduction method |
JP2015079170A (en) * | 2013-10-18 | 2015-04-23 | 増田 麻言 | Scanning projection device, and portable projection device |
JP2016006447A (en) * | 2014-06-20 | 2016-01-14 | 船井電機株式会社 | Image display device |
JP2016006564A (en) * | 2014-06-20 | 2016-01-14 | 船井電機株式会社 | Image display device |
JP2016009204A (en) * | 2014-06-20 | 2016-01-18 | 船井電機株式会社 | Image display device |
JP2016065940A (en) * | 2014-09-24 | 2016-04-28 | 日本電気硝子株式会社 | Optical imaging member and manufacturing method therefor |
JP2016133577A (en) * | 2015-01-17 | 2016-07-25 | 有限会社オプトセラミックス | Aerial image formation device |
WO2016199540A1 (en) * | 2015-06-11 | 2016-12-15 | コニカミノルタ株式会社 | Aerial image display device |
JPWO2016199540A1 (en) * | 2015-06-11 | 2018-03-29 | コニカミノルタ株式会社 | Aerial video display |
JP2016103028A (en) * | 2015-12-21 | 2016-06-02 | 増田 麻言 | Scanning projector and handheld projection device |
JP2017156469A (en) * | 2016-02-29 | 2017-09-07 | 株式会社ニコン | Imaging optical system, optical system, display, electronic apparatus, display method, and program |
JP2017167224A (en) * | 2016-03-14 | 2017-09-21 | 大日本印刷株式会社 | Space floating video display device |
JP2017207560A (en) * | 2016-05-16 | 2017-11-24 | パナソニックIpマネジメント株式会社 | Aerial display device and building material |
US10642064B2 (en) | 2016-05-17 | 2020-05-05 | National Institute Of Information And Communications Technology | Three-dimensional display |
JP2017207566A (en) * | 2016-05-17 | 2017-11-24 | 国立研究開発法人情報通信研究機構 | Three-dimensional display |
JP2018127884A (en) * | 2017-02-09 | 2018-08-16 | 株式会社福山コンサルタント | Reverse run and wrong entry prevention device, reverse run and wrong entry prevention system, and method of reverse run and wrong entry prevention on the road |
JP2020144237A (en) * | 2019-03-06 | 2020-09-10 | 国立大学法人電気通信大学 | Aerial image formation device |
JP7186438B2 (en) | 2019-03-06 | 2022-12-09 | 国立大学法人電気通信大学 | Aerial image forming device |
JP2021124524A (en) * | 2020-01-31 | 2021-08-30 | 住友電気工業株式会社 | Display device |
JP7272294B2 (en) | 2020-01-31 | 2023-05-12 | 住友電気工業株式会社 | Display device |
JP2022132259A (en) * | 2021-02-27 | 2022-09-08 | 株式会社アーティフィス | Information input device having bio-reactant adhesion prevention unit |
Also Published As
Publication number | Publication date |
---|---|
JP5427961B2 (en) | 2014-02-26 |
JPWO2012073362A1 (en) | 2014-05-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5427961B2 (en) | Desktop display system | |
US10473947B2 (en) | Directional flat illuminators | |
JP6305987B2 (en) | Directional backlight, display device, and display device | |
CN107850701B (en) | Optical device and display unit | |
US20150153569A1 (en) | Optical device and virtual image display apparatus | |
KR20200123175A (en) | Directional backlight | |
US20230288724A1 (en) | Aerial floating image information display system and light source apparatus used in the same | |
JP6726743B2 (en) | Projection type video display | |
JP2013182121A (en) | Display device | |
WO2018154849A1 (en) | Spatial video output device | |
WO2019030991A1 (en) | Aerial image display device | |
JPWO2017221528A1 (en) | Transparent screen and image display system | |
CN117581149A (en) | Aerial suspension image display device | |
JPWO2017221527A1 (en) | Transparent screen and image display system | |
WO2021197060A1 (en) | Head-mounted display device | |
JP2012042599A (en) | Reflective front screen having recursive property and reflective screen for stereoscopic display | |
US9874802B2 (en) | Image display apparatus and image display method | |
JP4627334B1 (en) | Stereoscopic image display device | |
US8654442B2 (en) | Refelctive front screen | |
JP2022150245A (en) | Display device | |
JP2000352695A (en) | Video display device | |
JP7564311B2 (en) | Light source device for use in a space floating image information display system | |
KR101741912B1 (en) | Image magnifier | |
WO2024042761A1 (en) | Space floating video display device | |
JP7367148B2 (en) | Space floating video display device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10860298 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2012546632 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10860298 Country of ref document: EP Kind code of ref document: A1 |