WO2012073350A1 - Power supply system of vehicle - Google Patents
Power supply system of vehicle Download PDFInfo
- Publication number
- WO2012073350A1 WO2012073350A1 PCT/JP2010/071441 JP2010071441W WO2012073350A1 WO 2012073350 A1 WO2012073350 A1 WO 2012073350A1 JP 2010071441 W JP2010071441 W JP 2010071441W WO 2012073350 A1 WO2012073350 A1 WO 2012073350A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- power
- charger
- vehicle
- storage device
- power supply
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L3/00—Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
- B60L3/0023—Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
- B60L3/0038—Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to sensors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/20—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/00032—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
- H02J7/00036—Charger exchanging data with battery
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/00047—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with provisions for charging different types of batteries
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/007—Regulation of charging or discharging current or voltage
- H02J7/00712—Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
- H02J7/00714—Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery charging or discharging current
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/02—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
- H02J7/04—Regulation of charging current or voltage
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/7072—Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/10—Technologies relating to charging of electric vehicles
- Y02T90/14—Plug-in electric vehicles
Definitions
- the present invention relates to a vehicle power supply system, and more particularly to a vehicle power supply system including a power storage device that can be charged from outside the vehicle.
- vehicles using an electric motor as a drive source such as a hybrid vehicle, an electric vehicle, and a fuel cell vehicle are known.
- a vehicle is equipped with a power storage device such as a battery that stores electric power supplied to the electric motor.
- the battery stores the electric power generated during regenerative braking or the electric power generated by a generator mounted on the vehicle.
- a vehicle that supplies power to a battery mounted on the vehicle from a power source outside the vehicle, such as a power source for a house, and charges the vehicle.
- a power source such as a power source for a house
- electric power is supplied from the power source of the house to the battery of the vehicle.
- a vehicle that charges a battery mounted on a vehicle by a power source provided outside the vehicle is also referred to as a plug-in vehicle.
- the control pilot sends a square wave signal (hereinafter also referred to as a pilot signal) from the oscillator to the control pilot line, thereby instructing the vehicle that EVSE (Electric Vehicle Supply Equipment) can supply energy (electric power). It has the function to do.
- EVSE is a device that connects an external power supply and a vehicle. For example, when the EVSE plug is connected to a power supply external to the vehicle and the EVSE connector is connected to a connector provided on the vehicle, a pilot signal is output. The plug-in vehicle is notified of the current capacity that can be supplied based on the pulse width of the pilot signal. When the plug-in vehicle detects the pilot signal, it prepares to start charging (such as closing the relay).
- Patent Document 1 discloses a vehicle that uses such a pilot signal. This vehicle is provided with a current sensor for detecting a charging current, and detects a current value supplied from a power source outside the hybrid vehicle via a charging cable.
- the vehicle disclosed in Japanese Patent Laid-Open No. 2009-071897 is provided with a current sensor for detecting a charging current, and detects a current value supplied from a power source outside the hybrid vehicle via a charging cable.
- a current sensor for detecting a charging current, and detects a current value supplied from a power source outside the hybrid vehicle via a charging cable.
- the current sensor fails, and it is preferable to detect the failure of the current sensor.
- An object of the present invention is to provide a vehicle power supply system in which the number of current sensors is reduced.
- the present invention is a power supply system for a vehicle, which is a power storage device, a charger that receives power from an external power supply and charges the power storage device, a signal receiving unit that receives a charge control signal from the external power supply, and a signal reception
- the first power that can be supplied from the external power source to the vehicle is calculated based on the charge control signal, and the first power is converted into the second power that takes into account the efficiency of the charger.
- a control device that controls the charger so that the second power is output from the charger to the power storage device.
- the vehicle power supply system further includes a first current sensor that detects a current charged in the power storage device, and a first voltage sensor that detects a voltage of the power storage device.
- the control device outputs the second power to the charger as a charge command value.
- the control device calculates the actual power charged in the power storage device based on the output of the first current sensor and the output of the first voltage sensor, and when the actual power and the charge command value deviate, the charge command value Correct.
- the vehicle power supply system further includes a second voltage sensor for detecting a voltage supplied from the external power supply to the charger.
- the charger includes a second current sensor that detects a current supplied from the external power source to the charger.
- the control device calculates an estimated value of the detected value of the second current sensor based on the actual power and the output of the second voltage sensor, compares the detected value of the second current sensor with the estimated value, and calculates the second value. Determine the failure of the current sensor.
- the present invention is a vehicle including any one of the power supply systems described above.
- the present invention is a control method for a power supply system of a vehicle.
- a power supply system for a vehicle includes a power storage device and a charger that receives power from an external power source and charges the power storage device.
- the control method receives a charge control signal from an external power source, calculates a first power that can be supplied to the vehicle from the external power source based on the charge control signal, and considers the efficiency of the charger with the first power.
- the second power is converted into the second power, and the charger is controlled so that the second power is output from the charger to the power storage device.
- the vehicle power supply system further includes a first current sensor that detects a current charged in the power storage device, and a first voltage sensor that detects a voltage of the power storage device.
- the step of controlling the charger outputs the second power to the charger as a charge command value.
- the control method includes charging when the step of calculating the actual power charged in the power storage device based on the output of the first current sensor and the output of the first voltage sensor is different from the charge command value. And a step of correcting the command value.
- the vehicle power supply system further includes a second voltage sensor for detecting a voltage supplied from the external power supply to the charger.
- the charger includes a second current sensor that detects a current supplied from the external power source to the charger.
- the control method includes a step of calculating an estimated value of the detected value of the second current sensor based on the actual power and the output of the second voltage sensor, and comparing the detected value of the second current sensor with the estimated value. And determining a failure of the second current sensor.
- the cost of the vehicle can be reduced.
- the failure of the current sensor can be detected quickly.
- FIG. 1 is an overall block diagram of a hybrid vehicle shown as an example of an electric vehicle according to an embodiment of the present invention. It is a schematic block diagram of the charger 42 and the cable 55 which were shown in FIG.
- FIG. 2 is a schematic diagram showing a configuration related to plug-in charging of a vehicle 100. It is a flowchart for demonstrating the control made variable in charge electric power performed at the time of plug-in charge. It is a figure for demonstrating the relationship between requestable charging current and pilot signal CPLT. 4 is a flowchart for explaining failure detection of a current sensor 92 inside a charger 42.
- FIG. 1 is an overall block diagram of a hybrid vehicle shown as an example of an electric vehicle according to an embodiment of the present invention.
- the “hybrid vehicle” may be simply referred to as “vehicle”.
- hybrid vehicle 100 includes a power storage device 10, a system main relay 11, a converter 12, a main positive bus MPL, a main negative bus MNL, a smoothing capacitor C, a complementary capacitor.
- Machine 22 Hybrid vehicle 100 further includes inverters 30-1 and 30-2, motor generators 32-1 and 32-2, power split device 34, engine 36, and drive wheels 38.
- Hybrid vehicle 100 further includes voltage sensors 14, 18, 20, current sensor 16, and MG-ECU (Electronic Control Unit) 40.
- Hybrid vehicle 100 further includes a charger 42, an HV-ECU 46, and a power cable 50.
- Hybrid vehicle 100 further includes a power cable 53, a relay 51-2, and an inlet 54 for connecting to a connector 56 of charging cable 55.
- the charging cable 55 includes a plug 57 for connecting to a connector 59 (for example, an outlet of a house) connected to an external power source 58 and a CCID (Charging Circuit Interrupt Device) 60.
- a connector 59 for example, an outlet of a house
- CCID Charging Circuit Interrupt Device
- the power storage device 10 is a rechargeable DC power source, and includes, for example, a secondary battery such as nickel metal hydride or lithium ion, a large capacity capacitor, and the like. Power storage device 10 is connected to converter 12 via system main relay 11. System main relay 11 is provided between power storage device 10 and converter 12.
- Converter 12 is connected to main positive bus MPL and main negative bus MNL. Converter 12 performs voltage conversion between power storage device 10 and main positive bus MPL and main negative bus MNL based on signal PWC1 from MG-ECU 40.
- Auxiliary machine 22 is connected to positive line PL1 and negative line NL1 disposed between system main relay 11 and converter 12.
- Smoothing capacitor C is connected between main positive bus MPL and main negative bus MNL, and reduces power fluctuation components contained in main positive bus MPL and main negative bus MNL.
- Inverters 30-1 and 30-2 are connected in parallel to main positive bus MPL and main negative bus MNL.
- Inverter 30-1 drives motor generator 32-1 based on signal PWI1 from MG-ECU 40.
- Inverter 30-2 drives motor generator 32-2 based on signal PWI2 from MG-ECU 40.
- Motor generators 32-1 and 32-2 are AC rotating electric machines, for example, permanent magnet type synchronous motors having a rotor in which permanent magnets are embedded. Motor generators 32-1 and 32-2 are connected to power split device 34.
- Power split device 34 includes a planetary gear including a sun gear, a pinion gear, a carrier, and a ring gear.
- the pinion gear engages with the sun gear and the ring gear.
- the carrier supports the pinion gear so as to be capable of rotating, and is connected to the crankshaft of the engine 36.
- the sun gear is coupled to the rotation shaft of motor generator 32-1.
- the ring gear is connected to the rotation shaft of motor generator 32-2 and drive wheel 38.
- the motor generator 32-1 generates power using the power of the engine 36 divided by the power split device 34. For example, when the state of charge (SOC) of power storage device 10 is reduced, engine 36 is started and power is generated by motor generator 32-1, and the generated power is supplied to the power storage device.
- SOC state of charge
- motor generator 32-2 generates driving force using at least one of the electric power supplied from power storage device 10 and the electric power generated by motor generator 32-1.
- the driving force of the motor generator 32-2 is transmitted to the driving wheels 38.
- the motor generator 32-2 operates as a generator.
- motor generator 32-2 operates as a regenerative brake that converts and recovers the kinetic energy of the vehicle into electric power.
- MG-ECU 40 generates a signal PWC1 for driving converter 12 and outputs the generated signal PWC1 to converter 12.
- MG-ECU 40 generates signals PWI1 and PWI2 for driving motor generators 32-1 and 32-2, and outputs the generated signals PWI1 and PWI2 to inverters 30-1 and 30-2, respectively. .
- Charger 42 has an input end connected to power cable 50, and an output end connected to positive line PL1 and negative line NL1 disposed between system main relay 11 and converter 12.
- the charger 42 receives power supplied from a power source 58 outside the vehicle (hereinafter also referred to as “external power source”).
- Charger 42 receives charge power command value CHPW from HV-ECU 46.
- the charger 42 outputs a voltage suitable for charging the power storage device 10.
- charger 42 converts AC power from an external power source into DC power, and controls the voltage of the DC power to a voltage suitable for charging power storage device 10.
- the charging cable 55 that connects the plug-in hybrid vehicle and the external power source 58 includes a connector 56, a plug 57, and a CCID (Charging Circuit Interrupt Device) 60.
- the plug 57 of the charging cable 55 is connected to the connector 59 of the external power supply 58, and the relay 51-2 is closed.
- the charger 42 receives the power supplied from the external power source 58 via the charging cable 55, the inlet 54, and the power cables 43 and 50.
- the voltage sensor 14 detects the voltage VB of the power storage device 10 and outputs the detected value to the battery monitoring unit 24.
- Current sensor 16 detects current IB input / output to / from power storage device 10 and outputs the detected value to battery monitoring unit 24.
- the voltage sensor 18 detects the voltage VL between the positive line PL1 and the negative line NL1, and outputs the detected value to the HV-ECU 46.
- Voltage sensor 20 detects voltage VHM between main positive bus MPL and main negative bus MNL, and outputs the detected value to HV-ECU 46.
- HV-ECU 46 calculates the target value of the charging power (kW / h) of power storage device 10 based on pilot signal CPLT when power storage device 10 is charged using charging cable 55.
- the power cable 53 is provided at the input end of the charger 42.
- the HV-ECU 46 turns on the relay 51-2.
- relay 51-2 When relay 51-2 is turned on, the end of power cable 53 is electrically connected to the input end of charger 42 via power cable 50.
- the charger 42 receives the electric power supplied from the external power supply 58 through the charging cable 55, the inlet 54, and the power cables 43 and 50.
- FIG. 2 is a schematic configuration diagram of charger 42 and cable 55 shown in FIG.
- charger 42 includes a filter 81, an AC / DC conversion unit 82, a smoothing capacitor 83, a DC / AC conversion unit 84, an insulating transformer 85, a rectification unit 86, and a temperature sensor 87. And voltage sensors 91 and 93, a current sensor 92, and a microcomputer 88.
- Filter 81 is provided between vehicle inlet 54 and AC / DC converter 82 to prevent high-frequency noise from being output from vehicle inlet 54 to external power supply 58 when power storage device 10 is charged by external power supply 58.
- AC / DC converter 82 includes a single-phase bridge circuit.
- the AC / DC converter 82 converts AC power supplied from the external power supply 58 into DC power based on a drive signal from the microcomputer 88 and outputs the DC power to the positive line PLC and the negative line NLC.
- Smoothing capacitor 83 is connected between positive line PLC and negative line NLC, and reduces the power fluctuation component contained between positive line PLC and negative line NLC.
- the DC / AC converter 84 includes a single-phase bridge circuit.
- the DC / AC conversion unit 84 converts the DC power supplied from the positive line PLC and the negative line NLC into high frequency AC power based on the drive signal from the microcomputer 88 and outputs the high frequency AC power to the insulation transformer 85.
- Insulation transformer 85 includes a core including a magnetic material, and a primary coil and a secondary coil wound around the core. The primary coil and the secondary coil are electrically insulated and connected to the DC / AC converter 84 and the rectifier 86, respectively.
- Insulating transformer 85 converts high-frequency AC power received from DC / AC converter 84 into a voltage level corresponding to the turn ratio of the primary coil and the secondary coil, and outputs the voltage level to rectifier 86.
- Rectifying unit 86 rectifies the AC power output from insulation transformer 85 into DC power and outputs the DC power to positive line PL1 and negative line NL1.
- the voltage sensor 91 detects the voltage of the external power supply 58 and outputs the detected value to the microcomputer 88.
- Current sensor 92 detects a current supplied from external power supply 58 and outputs the detected value to microcomputer 88.
- Voltage sensor 93 detects the voltage between positive line PLC and negative line NLC, and outputs the detected value to microcomputer 88.
- the microcomputer 88 generates a drive signal for driving the AC / DC conversion unit 82 and the DC / AC conversion unit 84 so that the output power matches the charging power command value CHPW. Then, the microcomputer 88 outputs the generated drive signal to the AC / DC converter 82 and the DC / AC converter 84.
- the HV-ECU 46 calculates charging power from the voltage VB and current IB transmitted from the battery monitoring unit 24, and executes feedback control of the charging power command value CHPW.
- the temperature sensor 87 detects whether or not the save operation condition that the charger 42 may be overheated is satisfied. Specifically, the temperature sensor 87 detects the temperature TC of the charger 42 and transmits it to the microcomputer 88. The microcomputer 88 changes the operation mode of the charger 42 between the save mode and the normal mode based on the temperature TC output from the temperature sensor 87. The power limiting unit 80 limits the power from the power supply outside the vehicle under the control of the microcomputer 88 and supplies it as charging power to the power storage device 10.
- the charging cable 55 that connects the plug-in hybrid vehicle and the external power source 58 includes a connector 56, a plug 57, and a CCID 60.
- the connector 56 of the charging cable 55 is connected to an inlet 54 provided in the plug-in hybrid vehicle.
- the connector 56 is provided with a switch 66.
- the switch 66 is closed in a state where the connector 56 of the charging cable 55 is connected to the inlet 54 provided in the plug-in hybrid vehicle, and the connector 56 of the charging cable 55 is connected to the inlet 54 provided in the plug-in hybrid vehicle.
- a connector signal PISW indicating that the state has been achieved is input to the HV-ECU 46.
- the plug 57 of the charging cable 55 is provided in a house and connected to a connector 59 to which AC power is supplied from an external power source 58.
- CCID 60 includes a relay 62 and a control pilot circuit 64.
- the relay 62 When the relay 62 is opened, the path for supplying power from the external power source 58 of the plug-in hybrid vehicle to the plug-in hybrid vehicle is blocked.
- the relay 62 When the relay 62 is closed, power can be supplied from the external power source 58 of the plug-in hybrid vehicle to the plug-in hybrid vehicle.
- the state of the relay 62 is controlled by the HV-ECU 46 in a state where the connector 56 of the charging cable 55 is connected to the inlet 54 of the plug-in hybrid vehicle.
- the control pilot circuit 64 is connected to the control pilot line when the plug 57 of the charging cable 55 is connected to the connector 59, that is, the external power source 58, and the connector 56 is connected to the inlet 54 provided in the plug-in hybrid vehicle.
- Pilot signal CPLT is output from an oscillator (not shown) provided in control pilot circuit 64.
- the control pilot circuit 64 can output the pilot signal CPLT even if the connector 56 is disconnected from the inlet 54 provided in the plug-in hybrid vehicle.
- the HV-ECU 46 cannot detect the output pilot signal CPLT when the connector 56 is removed from the inlet 54 provided in the plug-in hybrid vehicle.
- control pilot circuit 64 When plug 57 of charging cable 55 is connected to connector 59 and connector 56 is connected to inlet 54 of the plug-in hybrid vehicle, control pilot circuit 64 provides pilot signal CPLT having a predetermined pulse width (duty cycle). Is output.
- the plug-in hybrid vehicle is notified of the current capacity that can be supplied (current capacity that can be requested by the vehicle) based on the pulse width of the pilot signal CPLT. For example, the plug-in hybrid vehicle is notified of the current capacity of the charging cable 55 and the current capacity determined from the capacity of the external power supply.
- the pulse width of the pilot signal may be different. That is, the pulse width of the pilot signal can be determined for each type of charging cable.
- power storage device 10 in a state where the plug-in hybrid vehicle and external power supply 58 are connected by charging cable 55, power storage device 10 is charged by supplying power supplied from external power supply 58 to power storage device 10. Is done. When the power storage device 10 is charged, the system main relay 11 and the relay 62 in the CCID 60 are closed.
- the AC voltage VAC of the external power source 58 is detected by a voltage sensor 91 provided inside the plug-in hybrid vehicle.
- the detected voltage VAC is transmitted to the HV-ECU 46.
- FIG. 3 is a schematic diagram showing a configuration related to plug-in charging of vehicle 100.
- FIG. 4 is a flowchart for explaining control executed when plug-in charging is performed to vary charging power.
- step S1 the HV-ECU 46 receives the pilot signal CPLT and converts the pilot signal CPLT into a requestable charging current within the HV-ECU 46.
- FIG. 5 is a diagram for explaining the relationship between the chargeable charge current and the pilot signal CPLT.
- the relationship between the duty ratio (pulse width) of pilot signal CPLT and the charging current that can be requested by the vehicle is defined.
- the current value increases as the pulse width increases.
- the HVECU 46 obtains a charging current value that can be requested by the vehicle from the pilot signal CPLT.
- the allowable current value varies depending on the thickness of the charging cable.
- the allowable current value varies depending on the capacity of the external power supply.
- the pilot signal CPLT includes information regarding these allowable currents.
- the power command value on the input side of charger 42 is calculated in step S2.
- This charge power command value is obtained by the product of the chargeable charge current calculated in step S1 and the voltage value detected by voltage sensor 91.
- a fixed value such as a voltage value (for example, 100V or 200V) supplied from an external power source may be adopted.
- step S3 charging power command value filtering processing on the input side of the charger 42 is executed.
- This filtering process prevents the charge power command value from changing suddenly when the value indicated by pilot signal CPLT fluctuates due to noise or the like.
- step S5 the HV-ECU 46 transmits the charging power command value CHPW to the charger 42.
- the charger 42 outputs charging power based on the charging power command value CHPW.
- step S 7 the HV-ECU 46 acquires the measurement values obtained by the current sensor 16 and the voltage sensor 14 from the battery monitoring unit 24.
- step S8 the HV-ECU 46 calculates the actual power value by multiplying the current IB and the voltage VB obtained from the battery monitoring unit 24.
- step S9 the HV-ECU determines whether or not the difference between the power command value and the actual power is large. Specifically, it is determined whether (power command value ⁇ ) ⁇ actual power ⁇ (power command value + ⁇ ) is satisfied.
- step S9 when the difference between the actual power and the power command value is less than ⁇ , the process ends in step S11. On the other hand, if the difference between the actual power and the power command value is larger than ⁇ in step S9, the HV-ECU 46 corrects the charge power command value in step S10, and the process ends in step S11.
- the chargeable command value on the charger input side is calculated by calculating the chargeable charge current from the pilot signal CPLT.
- the actual power obtained from the current value and the voltage value obtained via the battery monitoring unit 24 is compared with the charge power command value of the charger 42, and the command value is corrected based on the comparison result, thereby improving accuracy. Charge control can be performed well.
- FIG. 6 is a flowchart for explaining failure detection of the current sensor 92 inside the charger 42.
- HV-ECU 46 determines the actual power obtained from the product of current value IB and voltage value VB obtained via battery monitoring unit 24.
- the current value on the charger input side is estimated by dividing the value by the voltage value of the voltage sensor 91.
- step S22 the HV-ECU 46 compares the estimated current value on the charger input side with the required charge current value converted from the pilot signal CPLT, and determines whether the current sensor 92 is normal / failed. That is, it is determined whether or not the current value estimated in step S21 is within ⁇ ⁇ % of the requestable charge current value.
- step S24 If the estimated current value is within ⁇ ⁇ % of the chargeable current value that can be requested, it is determined that the current sensor 92 is normal, and the process ends in step S24. On the other hand, if the estimated current value is not within ⁇ ⁇ % of the requestable charging current value in step S22, the process proceeds to step S23. In step S23, it is determined that the current sensor 92 inside the charger has failed. In step S24, the process ends. If a failure of the current sensor 92 is detected, measures such as turning on the warning lamp or stopping plug-in charging are taken.
- the failure of the current sensor 92 it is possible to determine the failure of the current sensor 92 by estimating the input current and comparing it with the chargeable current value that can be requested. Note that the failure may be determined by comparing the input current estimated value with the detected value of the current sensor 92. By performing such processing, a failure of the current sensor can be quickly determined.
- the voltage may decrease and the current may increase, causing the cable to heat up.However, according to the present embodiment, if the current sensor has failed, it will be charged without knowing. Can be prevented.
- 10 power storage device 11 system main relay, 12 converter, 14, 18, 20, 91, 93 voltage sensor, 16, 92 current sensor, 22 auxiliary machine, 24 battery monitoring unit, 30 inverter, 32 motor generator, 34 power split device , 36 engine, 38 drive wheel, 42 charger, 43, 50, 53 power cable, 51, 62 relay, 54 inlet, 55 charging cable, 56, 59 connector, 57 plug, 58 power supply, 64 control pilot circuit, 66 switch , 80 power limiting unit, 81 filter, 82, 84 conversion unit, 83, C smoothing capacitor, 85 insulation transformer, 86 rectification unit, 87 temperature sensor, 88 microcomputer, 100 hybrid vehicle, MNL main negative bus, MPL main positive Line, NL1, NLC negative electrode line, PL1, PLC positive line.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
Abstract
A power supply system of a vehicle comprises: an electrical storage device (10); a battery charger (42) that receives power from an external power supply and charges the electrical storage device; a signal receiving unit (54) that receives a charge control signal from the external power supply; and a control device (46) that receives a charge control signal from the signal receiving unit, calculates a first power that can be supplied to a vehicle from the external power supply on the basis of the charge control signal, converts the first power to a second power that takes into account the efficiency of the battery charger, and controls the battery charger so that the second power is output to the electrical storage device from the battery charger.
Description
この発明は、車両の電源システムに関し、特に車両外部から充電が可能な蓄電装置を備えた車両の電源システムに関する。
The present invention relates to a vehicle power supply system, and more particularly to a vehicle power supply system including a power storage device that can be charged from outside the vehicle.
従来より、ハイブリッド車、電気自動車、燃料電池車など、電動モータを駆動源として用いる車両が知られている。このような車両には、電動モータに供給する電力を蓄えるバッテリなどの蓄電装置が搭載される。バッテリには、回生制動時に発電された電力、もしくは車両に搭載された発電機が発電した電力が蓄えられる。
Conventionally, vehicles using an electric motor as a drive source such as a hybrid vehicle, an electric vehicle, and a fuel cell vehicle are known. Such a vehicle is equipped with a power storage device such as a battery that stores electric power supplied to the electric motor. The battery stores the electric power generated during regenerative braking or the electric power generated by a generator mounted on the vehicle.
ところで、たとえば家屋の電源など、車両の外部の電源から車両に搭載されたバッテリに電力を供給して充電する車両もある。家屋に設けられたコンセントと、車両に設けられたコネクタとをケーブルで連結することにより、家屋の電源から車両のバッテリに電力が供給される。以下、車両の外部に設けられた電源により車両に搭載されたバッテリを充電する車両をプラグイン車とも記載する。
By the way, there is also a vehicle that supplies power to a battery mounted on the vehicle from a power source outside the vehicle, such as a power source for a house, and charges the vehicle. By connecting the outlet provided in the house and the connector provided in the vehicle with a cable, electric power is supplied from the power source of the house to the battery of the vehicle. Hereinafter, a vehicle that charges a battery mounted on a vehicle by a power source provided outside the vehicle is also referred to as a plug-in vehicle.
プラグイン車の規格は、日本においては「電気自動車用コンダクティブ充電システム一般要求事項」により制定され、アメリカ合衆国においては「エスエーイー エレクトリック ビークル コンダクティブ チャージ カプラ」により制定される。
The standard for plug-in vehicles is established in Japan by “General Requirements for Conductive Charging Systems for Electric Vehicles” and in the United States by “SA Electric Vehicle Conductive Charge Coupler”.
「電気自動車用コンダクティブ充電システム一般要求事項」および「エスエーイー エレクトリック ビークル コンダクティブ チャージ カプラ」においては、一例として、コントロールパイロットに関する規格を定める。コントロールパイロットは、コントロールパイロット線に発振器から方形波信号(以下、パイロット信号とも記載する)を送ることによって、EVSE(Electric Vehicle Supply Equipment)がエネルギー(電力)を供給できる状態にあることを車両に指示する機能を有する。EVSEは、外部の電源と車両とを連結する機器である。たとえば、EVSEのプラグが車両の外部の電源に接続され、かつEVSEのコネクタが車両に設けられたコネクタに接続されると、パイロット信号が出力される。パイロット信号のパルス幅により、供給可能な電流容量がプラグイン車に通知される。プラグイン車は、パイロット信号を検出すると、充電を開始するための準備(リレーを閉じるなど)を行なう。
「“ General requirements for electric vehicle conductive charging system ”and“ SA Electric Vehicle Conductive Charge Coupler ”, as an example, define the standards for control pilots. The control pilot sends a square wave signal (hereinafter also referred to as a pilot signal) from the oscillator to the control pilot line, thereby instructing the vehicle that EVSE (Electric Vehicle Supply Equipment) can supply energy (electric power). It has the function to do. EVSE is a device that connects an external power supply and a vehicle. For example, when the EVSE plug is connected to a power supply external to the vehicle and the EVSE connector is connected to a connector provided on the vehicle, a pilot signal is output. The plug-in vehicle is notified of the current capacity that can be supplied based on the pulse width of the pilot signal. When the plug-in vehicle detects the pilot signal, it prepares to start charging (such as closing the relay).
特開2009-071897号公報(特許文献1)にはこのようなパイロット信号を使用する車両が開示されている。この車両は、充電電流検出用の電流センサを設けて、充電ケーブルを介してハイブリッド車の外部の電源から供給される電流値を検出する。
Japanese Unexamined Patent Application Publication No. 2009-071897 (Patent Document 1) discloses a vehicle that uses such a pilot signal. This vehicle is provided with a current sensor for detecting a charging current, and detects a current value supplied from a power source outside the hybrid vehicle via a charging cable.
特開2009-071897号公報に開示された車両は、充電電流検出用の電流センサを設けて、充電ケーブルを介してハイブリッド車の外部の電源から供給される電流値を検出する。しかしながら、車両のコストダウンのためには、電流センサをむやみに設けるのは好ましくない。電流センサの数を減らすことを検討することが求められる。
The vehicle disclosed in Japanese Patent Laid-Open No. 2009-071897 is provided with a current sensor for detecting a charging current, and detects a current value supplied from a power source outside the hybrid vehicle via a charging cable. However, in order to reduce the cost of the vehicle, it is not preferable to provide a current sensor as much as possible. It is required to consider reducing the number of current sensors.
さらに電流センサが故障する場合も考えられ、電流センサの故障を検出することが好ましい。
Further, there may be a case where the current sensor fails, and it is preferable to detect the failure of the current sensor.
この発明の目的は、電流センサの数を減らした車両の電源システムを提供することである。
An object of the present invention is to provide a vehicle power supply system in which the number of current sensors is reduced.
この発明は、要約すると、車両の電源システムであって、蓄電装置と、外部電源から電力を受け蓄電装置に充電を行なう充電器と、外部電源から充電制御信号を受ける信号受信部と、信号受信部から充電制御信号を受け、充電制御信号に基づいて外部電源から車両に対して供給可能な第1の電力を算出し、第1の電力を充電器の効率を考慮した第2の電力に変換し、第2の電力が充電器から蓄電装置に出力されるように充電器を制御する制御装置とを備える。
In summary, the present invention is a power supply system for a vehicle, which is a power storage device, a charger that receives power from an external power supply and charges the power storage device, a signal receiving unit that receives a charge control signal from the external power supply, and a signal reception The first power that can be supplied from the external power source to the vehicle is calculated based on the charge control signal, and the first power is converted into the second power that takes into account the efficiency of the charger. And a control device that controls the charger so that the second power is output from the charger to the power storage device.
好ましくは、車両の電源システムは、蓄電装置に充電される電流を検出する第1の電流センサと、蓄電装置の電圧を検出する第1の電圧センサとをさらに備える。制御装置は、第2の電力を充電器に充電指令値として出力する。制御装置は、第1の電流センサの出力および第1の電圧センサの出力に基づいて蓄電装置に充電される実電力を算出し、実電力と充電指令値とが乖離する場合には充電指令値を補正する。
Preferably, the vehicle power supply system further includes a first current sensor that detects a current charged in the power storage device, and a first voltage sensor that detects a voltage of the power storage device. The control device outputs the second power to the charger as a charge command value. The control device calculates the actual power charged in the power storage device based on the output of the first current sensor and the output of the first voltage sensor, and when the actual power and the charge command value deviate, the charge command value Correct.
より好ましくは、車両の電源システムは、外部電源が充電器に供給する電圧を検出する第2の電圧センサをさらに備える。充電器は、外部電源から充電器に供給される電流を検出する第2の電流センサを含む。制御装置は、実電力と第2の電圧センサの出力とに基づいて第2の電流センサの検出値の推定値を算出し、第2の電流センサの検出値を推定値と比較して第2の電流センサの故障を判定する。
More preferably, the vehicle power supply system further includes a second voltage sensor for detecting a voltage supplied from the external power supply to the charger. The charger includes a second current sensor that detects a current supplied from the external power source to the charger. The control device calculates an estimated value of the detected value of the second current sensor based on the actual power and the output of the second voltage sensor, compares the detected value of the second current sensor with the estimated value, and calculates the second value. Determine the failure of the current sensor.
この発明は、他の局面では、上記いずれかに記載の電源システムを備える車両である。
この発明は、さらに他の局面では、車両の電源システムの制御方法である。車両の電源システムは、蓄電装置と、外部電源から電力を受け蓄電装置に充電を行なう充電器とを含む。制御方法は、外部電源から充電制御信号を受け、充電制御信号に基づいて外部電源から車両に対して供給可能な第1の電力を算出するステップと、第1の電力を充電器の効率を考慮した第2の電力に変換するステップと、第2の電力が充電器から蓄電装置に出力されるように充電器を制御するステップとを備える。 In another aspect, the present invention is a vehicle including any one of the power supply systems described above.
In still another aspect, the present invention is a control method for a power supply system of a vehicle. A power supply system for a vehicle includes a power storage device and a charger that receives power from an external power source and charges the power storage device. The control method receives a charge control signal from an external power source, calculates a first power that can be supplied to the vehicle from the external power source based on the charge control signal, and considers the efficiency of the charger with the first power. The second power is converted into the second power, and the charger is controlled so that the second power is output from the charger to the power storage device.
この発明は、さらに他の局面では、車両の電源システムの制御方法である。車両の電源システムは、蓄電装置と、外部電源から電力を受け蓄電装置に充電を行なう充電器とを含む。制御方法は、外部電源から充電制御信号を受け、充電制御信号に基づいて外部電源から車両に対して供給可能な第1の電力を算出するステップと、第1の電力を充電器の効率を考慮した第2の電力に変換するステップと、第2の電力が充電器から蓄電装置に出力されるように充電器を制御するステップとを備える。 In another aspect, the present invention is a vehicle including any one of the power supply systems described above.
In still another aspect, the present invention is a control method for a power supply system of a vehicle. A power supply system for a vehicle includes a power storage device and a charger that receives power from an external power source and charges the power storage device. The control method receives a charge control signal from an external power source, calculates a first power that can be supplied to the vehicle from the external power source based on the charge control signal, and considers the efficiency of the charger with the first power. The second power is converted into the second power, and the charger is controlled so that the second power is output from the charger to the power storage device.
好ましくは、車両の電源システムは、蓄電装置に充電される電流を検出する第1の電流センサと、蓄電装置の電圧を検出する第1の電圧センサとをさらに含む。充電器を制御するステップは、第2の電力を充電器に充電指令値として出力する。制御方法は、第1の電流センサの出力および第1の電圧センサの出力に基づいて蓄電装置に充電される実電力を算出するステップと、実電力と充電指令値とが乖離する場合には充電指令値を補正するステップとをさらに備える。
Preferably, the vehicle power supply system further includes a first current sensor that detects a current charged in the power storage device, and a first voltage sensor that detects a voltage of the power storage device. The step of controlling the charger outputs the second power to the charger as a charge command value. The control method includes charging when the step of calculating the actual power charged in the power storage device based on the output of the first current sensor and the output of the first voltage sensor is different from the charge command value. And a step of correcting the command value.
より好ましくは、車両の電源システムは、外部電源が充電器に供給する電圧を検出する第2の電圧センサをさらに含む。充電器は、外部電源から充電器に供給される電流を検出する第2の電流センサを含む。制御方法は、実電力と第2の電圧センサの出力とに基づいて第2の電流センサの検出値の推定値を算出するステップと、第2の電流センサの検出値を推定値と比較して第2の電流センサの故障を判定するステップとをさらに備える。
More preferably, the vehicle power supply system further includes a second voltage sensor for detecting a voltage supplied from the external power supply to the charger. The charger includes a second current sensor that detects a current supplied from the external power source to the charger. The control method includes a step of calculating an estimated value of the detected value of the second current sensor based on the actual power and the output of the second voltage sensor, and comparing the detected value of the second current sensor with the estimated value. And determining a failure of the second current sensor.
本発明によれば、電流センサの数が減るので車両のコストを低減させることができる。また、電流センサの故障を速やかに発見できる場合もある。
According to the present invention, since the number of current sensors is reduced, the cost of the vehicle can be reduced. In some cases, the failure of the current sensor can be detected quickly.
以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰返さない。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals and description thereof will not be repeated.
図1は、この発明の実施の形態による電動車両の一例として示されるハイブリッド車両の全体ブロック図である。なお、以下では「ハイブリッド車両」を単に「車両」と呼ぶこともある。
FIG. 1 is an overall block diagram of a hybrid vehicle shown as an example of an electric vehicle according to an embodiment of the present invention. Hereinafter, the “hybrid vehicle” may be simply referred to as “vehicle”.
図1を参照して、ハイブリッド車両100は、蓄電装置10と、システムメインリレー(System Main Relay)11と、コンバータ12と、主正母線MPLと、主負母線MNLと、平滑コンデンサCと、補機22とを備える。また、ハイブリッド車両100は、インバータ30-1,30-2と、モータジェネレータ(Motor Generator)32-1,32-2と、動力分割装置34と、エンジン36と、駆動輪38とをさらに備える。
Referring to FIG. 1, hybrid vehicle 100 includes a power storage device 10, a system main relay 11, a converter 12, a main positive bus MPL, a main negative bus MNL, a smoothing capacitor C, a complementary capacitor. Machine 22. Hybrid vehicle 100 further includes inverters 30-1 and 30-2, motor generators 32-1 and 32-2, power split device 34, engine 36, and drive wheels 38.
ハイブリッド車両100は、さらに、電圧センサ14,18,20と、電流センサ16と、MG-ECU(Electronic Control Unit)40とを備える。さらに、ハイブリッド車両100は、充電器42と、HV-ECU46と、電力ケーブル50とを含む。
Hybrid vehicle 100 further includes voltage sensors 14, 18, 20, current sensor 16, and MG-ECU (Electronic Control Unit) 40. Hybrid vehicle 100 further includes a charger 42, an HV-ECU 46, and a power cable 50.
ハイブリッド車両100は、さらに、電力ケーブル53と、リレー51-2と、充電ケーブル55のコネクタ56に接続するためのインレット54とを備える。充電ケーブル55は、外部電源58に接続されたコネクタ59(例えば家屋のコンセントなど)に接続するためのプラグ57およびCCID(Charging Circuit Interrupt Device)60とを備える。
Hybrid vehicle 100 further includes a power cable 53, a relay 51-2, and an inlet 54 for connecting to a connector 56 of charging cable 55. The charging cable 55 includes a plug 57 for connecting to a connector 59 (for example, an outlet of a house) connected to an external power source 58 and a CCID (Charging Circuit Interrupt Device) 60.
蓄電装置10は、再充電可能な直流電源であり、たとえば、ニッケル水素やリチウムイオン等の二次電池や、大容量のキャパシタ等を含むものである。蓄電装置10は、システムメインリレー11を介してコンバータ12に接続される。システムメインリレー11は、蓄電装置10とコンバータ12との間に設けられる。
The power storage device 10 is a rechargeable DC power source, and includes, for example, a secondary battery such as nickel metal hydride or lithium ion, a large capacity capacitor, and the like. Power storage device 10 is connected to converter 12 via system main relay 11. System main relay 11 is provided between power storage device 10 and converter 12.
コンバータ12は、主正母線MPLおよび主負母線MNLに接続される。コンバータ12は、MG-ECU40からの信号PWC1に基づいて、蓄電装置10と主正母線MPLおよび主負母線MNLとの間で電圧変換を行なう。
Converter 12 is connected to main positive bus MPL and main negative bus MNL. Converter 12 performs voltage conversion between power storage device 10 and main positive bus MPL and main negative bus MNL based on signal PWC1 from MG-ECU 40.
補機22は、システムメインリレー11とコンバータ12との間に配設される正極線PL1および負極線NL1に接続される。平滑コンデンサCは、主正母線MPLと主負母線MNLとの間に接続され、主正母線MPLおよび主負母線MNLに含まれる電力変動成分を低減する。
Auxiliary machine 22 is connected to positive line PL1 and negative line NL1 disposed between system main relay 11 and converter 12. Smoothing capacitor C is connected between main positive bus MPL and main negative bus MNL, and reduces power fluctuation components contained in main positive bus MPL and main negative bus MNL.
インバータ30-1,30-2は、並列的に主正母線MPLおよび主負母線MNLに接続される。インバータ30-1は、MG-ECU40からの信号PWI1に基づいてモータジェネレータ32-1を駆動する。インバータ30-2は、MG-ECU40からの信号PWI2に基づいてモータジェネレータ32-2を駆動する。
Inverters 30-1 and 30-2 are connected in parallel to main positive bus MPL and main negative bus MNL. Inverter 30-1 drives motor generator 32-1 based on signal PWI1 from MG-ECU 40. Inverter 30-2 drives motor generator 32-2 based on signal PWI2 from MG-ECU 40.
モータジェネレータ32-1,32-2は、交流回転電機であり、たとえば、永久磁石が埋設されたロータを備える永久磁石型同期電動機である。モータジェネレータ32-1,32-2は、動力分割装置34に連結される。動力分割装置34は、サンギヤと、ピニオンギヤと、キャリアと、リングギヤとを含む遊星歯車を含む。ピニオンギヤは、サンギヤおよびリングギヤと係合する。キャリアは、ピニオンギヤを自転可能に支持するとともに、エンジン36のクランクシャフトに連結される。サンギヤは、モータジェネレータ32-1の回転軸に連結される。リングギヤは、モータジェネレータ32-2の回転軸および駆動輪38に連結される。この動力分割装置34によって、エンジン36が発生する動力は、駆動輪38へ伝達される経路と、モータジェネレータ32-1へ伝達される経路とに分割される。
Motor generators 32-1 and 32-2 are AC rotating electric machines, for example, permanent magnet type synchronous motors having a rotor in which permanent magnets are embedded. Motor generators 32-1 and 32-2 are connected to power split device 34. Power split device 34 includes a planetary gear including a sun gear, a pinion gear, a carrier, and a ring gear. The pinion gear engages with the sun gear and the ring gear. The carrier supports the pinion gear so as to be capable of rotating, and is connected to the crankshaft of the engine 36. The sun gear is coupled to the rotation shaft of motor generator 32-1. The ring gear is connected to the rotation shaft of motor generator 32-2 and drive wheel 38. By this power split device 34, the power generated by the engine 36 is divided into a path transmitted to the drive wheels 38 and a path transmitted to the motor generator 32-1.
そして、モータジェネレータ32-1は、動力分割装置34によって分割されたエンジン36の動力を用いて発電する。たとえば、蓄電装置10の充電状態SOC(State Of Charge)が低下すると、エンジン36が始動してモータジェネレータ32-1により発電が行なわれ、その発電された電力が蓄電装置へ供給される。
The motor generator 32-1 generates power using the power of the engine 36 divided by the power split device 34. For example, when the state of charge (SOC) of power storage device 10 is reduced, engine 36 is started and power is generated by motor generator 32-1, and the generated power is supplied to the power storage device.
一方、モータジェネレータ32-2は、蓄電装置10から供給される電力およびモータジェネレータ32-1により発電された電力の少なくとも一方を用いて駆動力を発生する。モータジェネレータ32-2の駆動力は、駆動輪38に伝達される。なお、車両の制動時には、車両の運動エネルギーが駆動輪38からモータジェネレータ32-2に伝達されてモータジェネレータ32-2が駆動され、モータジェネレータ32-2が発電機として作動する。これにより、モータジェネレータ32-2は、車両の運動エネルギーを電力に変換して回収する回生ブレーキとして作動する。
On the other hand, motor generator 32-2 generates driving force using at least one of the electric power supplied from power storage device 10 and the electric power generated by motor generator 32-1. The driving force of the motor generator 32-2 is transmitted to the driving wheels 38. When the vehicle is braked, the kinetic energy of the vehicle is transmitted from the drive wheel 38 to the motor generator 32-2 to drive the motor generator 32-2, and the motor generator 32-2 operates as a generator. Thus, motor generator 32-2 operates as a regenerative brake that converts and recovers the kinetic energy of the vehicle into electric power.
MG-ECU40は、コンバータ12駆動するための信号PWC1を生成し、その生成した信号PWC1をコンバータ12へ出力する。また、MG-ECU40は、モータジェネレータ32-1,32-2をそれぞれ駆動するための信号PWI1,PWI2を生成し、その生成した信号PWI1,PWI2をそれぞれインバータ30-1,30-2へ出力する。
MG-ECU 40 generates a signal PWC1 for driving converter 12 and outputs the generated signal PWC1 to converter 12. MG-ECU 40 generates signals PWI1 and PWI2 for driving motor generators 32-1 and 32-2, and outputs the generated signals PWI1 and PWI2 to inverters 30-1 and 30-2, respectively. .
充電器42は、電力ケーブル50に入力端が接続され、システムメインリレー11とコンバータ12との間に配設される正極線PL1および負極線NL1に出力端が接続される。充電器42は、車両外部の電源58(以下「外部電源」とも称する。)から供給される電力を受ける。そして、充電器42は、HV-ECU46から充電電力指令値CHPWを受ける。充電器42は、蓄電装置10の充電に適する電圧を出力する。具体的には充電器42は、外部電源からの交流電力を直流電力に変換するとともに、その直流電力の電圧を蓄電装置10の充電に適する電圧に制御する。
Charger 42 has an input end connected to power cable 50, and an output end connected to positive line PL1 and negative line NL1 disposed between system main relay 11 and converter 12. The charger 42 receives power supplied from a power source 58 outside the vehicle (hereinafter also referred to as “external power source”). Charger 42 receives charge power command value CHPW from HV-ECU 46. The charger 42 outputs a voltage suitable for charging the power storage device 10. Specifically, charger 42 converts AC power from an external power source into DC power, and controls the voltage of the DC power to a voltage suitable for charging power storage device 10.
プラグインハイブリッド車と外部電源58とを連結する充電ケーブル55は、コネクタ56と、プラグ57と、CCID(Charging Circuit Interrupt Device)60とを含む。
The charging cable 55 that connects the plug-in hybrid vehicle and the external power source 58 includes a connector 56, a plug 57, and a CCID (Charging Circuit Interrupt Device) 60.
ハイブリッド車両100のインレット54が充電ケーブル55のコネクタ56に接続され、かつ、充電ケーブル55のプラグ57が外部電源58のコネクタ59に接続され、かつ、リレー51-2が閉状態である場合には、充電器42は、外部電源58から供給される電力を、充電ケーブル55、インレット54および電力ケーブル43,50を介して受ける。
When the inlet 54 of the hybrid vehicle 100 is connected to the connector 56 of the charging cable 55, the plug 57 of the charging cable 55 is connected to the connector 59 of the external power supply 58, and the relay 51-2 is closed. The charger 42 receives the power supplied from the external power source 58 via the charging cable 55, the inlet 54, and the power cables 43 and 50.
電圧センサ14は、蓄電装置10の電圧VBを検出し、その検出値を電池監視ユニット24へ出力する。電流センサ16は、蓄電装置10に対して入出力される電流IBを検出し、その検出値を電池監視ユニット24へ出力する。
The voltage sensor 14 detects the voltage VB of the power storage device 10 and outputs the detected value to the battery monitoring unit 24. Current sensor 16 detects current IB input / output to / from power storage device 10 and outputs the detected value to battery monitoring unit 24.
電圧センサ18は、正極線PL1と負極線NL1との間の電圧VLを検出し、その検出値をHV-ECU46へ出力する。電圧センサ20は、主正母線MPLと主負母線MNLとの間の電圧VHMを検出し、その検出値をHV-ECU46へ出力する。
The voltage sensor 18 detects the voltage VL between the positive line PL1 and the negative line NL1, and outputs the detected value to the HV-ECU 46. Voltage sensor 20 detects voltage VHM between main positive bus MPL and main negative bus MNL, and outputs the detected value to HV-ECU 46.
HV-ECU46は、充電ケーブル55を用いた蓄電装置10の充電時において、蓄電装置10の充電電力(kW/h)の目標値をパイロット信号CPLTに基づいて算出する。
HV-ECU 46 calculates the target value of the charging power (kW / h) of power storage device 10 based on pilot signal CPLT when power storage device 10 is charged using charging cable 55.
電力ケーブル53は、充電器42の入力端に設けられる。インレット54が充電ケーブル55のコネクタ56に接続され、かつ、充電ケーブル55のプラグ57が外部電源58のコネクタ59に接続された場合には、HV-ECU46はリレー51-2をオン状態にする。リレー51-2がオン状態となることにより、電力ケーブル53の端部は電力ケーブル50を介して充電器42の入力端に電気的に接続される。これにより充電器42は、外部電源58から供給される電力を、充電ケーブル55、インレット54および電力ケーブル43,50を介して受ける。
The power cable 53 is provided at the input end of the charger 42. When the inlet 54 is connected to the connector 56 of the charging cable 55 and the plug 57 of the charging cable 55 is connected to the connector 59 of the external power supply 58, the HV-ECU 46 turns on the relay 51-2. When relay 51-2 is turned on, the end of power cable 53 is electrically connected to the input end of charger 42 via power cable 50. Thereby, the charger 42 receives the electric power supplied from the external power supply 58 through the charging cable 55, the inlet 54, and the power cables 43 and 50.
図2は、図1に示した充電器42およびケーブル55の概略構成図である。
図2を参照して、充電器42は、フィルタ81と、AC/DC変換部82と、平滑コンデンサ83と、DC/AC変換部84と、絶縁トランス85と、整流部86と、温度センサ87と、電圧センサ91,93と、電流センサ92と、マイコン(マイクロコンピュータ)88とを含む。 FIG. 2 is a schematic configuration diagram ofcharger 42 and cable 55 shown in FIG.
Referring to FIG. 2,charger 42 includes a filter 81, an AC / DC conversion unit 82, a smoothing capacitor 83, a DC / AC conversion unit 84, an insulating transformer 85, a rectification unit 86, and a temperature sensor 87. And voltage sensors 91 and 93, a current sensor 92, and a microcomputer 88.
図2を参照して、充電器42は、フィルタ81と、AC/DC変換部82と、平滑コンデンサ83と、DC/AC変換部84と、絶縁トランス85と、整流部86と、温度センサ87と、電圧センサ91,93と、電流センサ92と、マイコン(マイクロコンピュータ)88とを含む。 FIG. 2 is a schematic configuration diagram of
Referring to FIG. 2,
フィルタ81は、車両インレット54とAC/DC変換部82との間に設けられ、外部電源58による蓄電装置10の充電時に、車両インレット54から外部電源58へ高周波のノイズが出力されるのを防止する。AC/DC変換部82は、単相ブリッジ回路を含む。AC/DC変換部82は、マイコン88からの駆動信号に基づいて、外部電源58から供給される交流電力を直流電力に変換して正極線PLCおよび負極線NLCへ出力する。平滑コンデンサ83は、正極線PLCと負極線NLCとの間に接続され、正極線PLCおよび負極線NLC間に含まれる電力変動成分を低減する。
Filter 81 is provided between vehicle inlet 54 and AC / DC converter 82 to prevent high-frequency noise from being output from vehicle inlet 54 to external power supply 58 when power storage device 10 is charged by external power supply 58. To do. AC / DC converter 82 includes a single-phase bridge circuit. The AC / DC converter 82 converts AC power supplied from the external power supply 58 into DC power based on a drive signal from the microcomputer 88 and outputs the DC power to the positive line PLC and the negative line NLC. Smoothing capacitor 83 is connected between positive line PLC and negative line NLC, and reduces the power fluctuation component contained between positive line PLC and negative line NLC.
DC/AC変換部84は、単相ブリッジ回路を含む。DC/AC変換部84は、マイコン88からの駆動信号に基づいて、正極線PLCおよび負極線NLCから供給される直流電力を高周波の交流電力に変換して絶縁トランス85へ出力する。絶縁トランス85は、磁性材を含むコアと、コアに巻回された一次コイルおよび二次コイルを含む。一次コイルおよび二次コイルは、電気的に絶縁されており、それぞれDC/AC変換部84および整流部86に接続される。そして、絶縁トランス85は、DC/AC変換部84から受ける高周波の交流電力を一次コイルおよび二次コイルの巻数比に応じた電圧レベルに変換して整流部86へ出力する。整流部86は、絶縁トランス85から出力される交流電力を直流電力に整流して正極線PL1および負極線NL1へ出力する。
The DC / AC converter 84 includes a single-phase bridge circuit. The DC / AC conversion unit 84 converts the DC power supplied from the positive line PLC and the negative line NLC into high frequency AC power based on the drive signal from the microcomputer 88 and outputs the high frequency AC power to the insulation transformer 85. Insulation transformer 85 includes a core including a magnetic material, and a primary coil and a secondary coil wound around the core. The primary coil and the secondary coil are electrically insulated and connected to the DC / AC converter 84 and the rectifier 86, respectively. Insulating transformer 85 converts high-frequency AC power received from DC / AC converter 84 into a voltage level corresponding to the turn ratio of the primary coil and the secondary coil, and outputs the voltage level to rectifier 86. Rectifying unit 86 rectifies the AC power output from insulation transformer 85 into DC power and outputs the DC power to positive line PL1 and negative line NL1.
電圧センサ91は、外部電源58の電圧を検出し、その検出値をマイコン88へ出力する。電流センサ92は、外部電源58から供給される電流を検出し、その検出値をマイコン88へ出力する。電圧センサ93は、正極線PLCと負極線NLCとの間の電圧を検出し、その検出値をマイコン88へ出力する。
The voltage sensor 91 detects the voltage of the external power supply 58 and outputs the detected value to the microcomputer 88. Current sensor 92 detects a current supplied from external power supply 58 and outputs the detected value to microcomputer 88. Voltage sensor 93 detects the voltage between positive line PLC and negative line NLC, and outputs the detected value to microcomputer 88.
マイコン88は、出力電力が充電電力指令値CHPWに一致するように、AC/DC変換部82およびDC/AC変換部84を駆動するための駆動信号を生成する。そして、マイコン88は、その生成した駆動信号をAC/DC変換部82およびDC/AC変換部84へ出力する。
The microcomputer 88 generates a drive signal for driving the AC / DC conversion unit 82 and the DC / AC conversion unit 84 so that the output power matches the charging power command value CHPW. Then, the microcomputer 88 outputs the generated drive signal to the AC / DC converter 82 and the DC / AC converter 84.
HV-ECU46は、電池監視ユニット24から送信される電圧VB、電流IBから充電電力を算出し、充電電力指令値CHPWのフィードバック制御を実行する。
The HV-ECU 46 calculates charging power from the voltage VB and current IB transmitted from the battery monitoring unit 24, and executes feedback control of the charging power command value CHPW.
温度センサ87は、充電器42が過熱状態に至るおそれがあるというセーブ運転条件が成立しているか否かを検出する。具体的には、温度センサ87は、充電器42の温度TCを検出しマイコン88に送信する。マイコン88は、温度センサ87の出力する温度TCに基づいて、セーブモードと通常モードとの間で充電器42の動作モードを変更する。電力制限部80は、マイコン88の制御の下で車両外部の電源からの電力を制限して蓄電装置10への充電電力として供給する。
The temperature sensor 87 detects whether or not the save operation condition that the charger 42 may be overheated is satisfied. Specifically, the temperature sensor 87 detects the temperature TC of the charger 42 and transmits it to the microcomputer 88. The microcomputer 88 changes the operation mode of the charger 42 between the save mode and the normal mode based on the temperature TC output from the temperature sensor 87. The power limiting unit 80 limits the power from the power supply outside the vehicle under the control of the microcomputer 88 and supplies it as charging power to the power storage device 10.
プラグインハイブリッド車と外部電源58とを連結する充電ケーブル55は、コネクタ56と、プラグ57と、CCID60とを含む。
The charging cable 55 that connects the plug-in hybrid vehicle and the external power source 58 includes a connector 56, a plug 57, and a CCID 60.
充電ケーブル55のコネクタ56は、プラグインハイブリッド車に設けられたインレット54に接続される。コネクタ56には、スイッチ66が設けられる。充電ケーブル55のコネクタ56が、プラグインハイブリッド車に設けられたインレット54に接続された状態でスイッチ66が閉じられ、充電ケーブル55のコネクタ56が、プラグインハイブリッド車に設けられたインレット54に接続された状態であることを表すコネクタ信号PISWがHV-ECU46に入力される。
The connector 56 of the charging cable 55 is connected to an inlet 54 provided in the plug-in hybrid vehicle. The connector 56 is provided with a switch 66. The switch 66 is closed in a state where the connector 56 of the charging cable 55 is connected to the inlet 54 provided in the plug-in hybrid vehicle, and the connector 56 of the charging cable 55 is connected to the inlet 54 provided in the plug-in hybrid vehicle. A connector signal PISW indicating that the state has been achieved is input to the HV-ECU 46.
充電ケーブル55のプラグ57は、家屋に設けられ、外部電源58から交流電力が供給されるコネクタ59に接続される。
The plug 57 of the charging cable 55 is provided in a house and connected to a connector 59 to which AC power is supplied from an external power source 58.
CCID60は、リレー62およびコントロールパイロット回路64を含む。リレー62が開いた状態では、プラグインハイブリッド車の外部電源58からプラグインハイブリッド車へ電力を供給する経路が遮断される。リレー62が閉じた状態では、プラグインハイブリッド車の外部電源58からプラグインハイブリッド車へ電力の供給が可能になる。リレー62の状態は、充電ケーブル55のコネクタ56がプラグインハイブリッド車のインレット54に接続された状態でHV-ECU46により制御される。
CCID 60 includes a relay 62 and a control pilot circuit 64. When the relay 62 is opened, the path for supplying power from the external power source 58 of the plug-in hybrid vehicle to the plug-in hybrid vehicle is blocked. When the relay 62 is closed, power can be supplied from the external power source 58 of the plug-in hybrid vehicle to the plug-in hybrid vehicle. The state of the relay 62 is controlled by the HV-ECU 46 in a state where the connector 56 of the charging cable 55 is connected to the inlet 54 of the plug-in hybrid vehicle.
コントロールパイロット回路64は、充電ケーブル55のプラグ57がコネクタ59、すなわち外部電源58に接続され、かつコネクタ56がプラグインハイブリッド車に設けられたインレット54に接続された状態において、コントロールパイロット線にパイロット信号CPLTを送る。パイロット信号CPLTは、コントロールパイロット回路64内に設けられた発振器(図示せず)から出力される。
The control pilot circuit 64 is connected to the control pilot line when the plug 57 of the charging cable 55 is connected to the connector 59, that is, the external power source 58, and the connector 56 is connected to the inlet 54 provided in the plug-in hybrid vehicle. Send signal CPLT. Pilot signal CPLT is output from an oscillator (not shown) provided in control pilot circuit 64.
コントロールパイロット回路64は、充電ケーブル55のプラグ57がコネクタ59に接続されると、コネクタ56がプラグインハイブリッド車に設けられたインレット54から外されていても、パイロット信号CPLTを出力し得る。ただし、コネクタ56がプラグインハイブリッド車に設けられたインレット54から外された状態では、HV-ECU46は出力されたパイロット信号CPLTを検出することはできない。
When the plug 57 of the charging cable 55 is connected to the connector 59, the control pilot circuit 64 can output the pilot signal CPLT even if the connector 56 is disconnected from the inlet 54 provided in the plug-in hybrid vehicle. However, the HV-ECU 46 cannot detect the output pilot signal CPLT when the connector 56 is removed from the inlet 54 provided in the plug-in hybrid vehicle.
充電ケーブル55のプラグ57がコネクタ59に接続され、かつコネクタ56がプラグインハイブリッド車のインレット54に接続されると、コントロールパイロット回路64は、予め定められたパルス幅(デューティサイクル)のパイロット信号CPLTを出力する。
When plug 57 of charging cable 55 is connected to connector 59 and connector 56 is connected to inlet 54 of the plug-in hybrid vehicle, control pilot circuit 64 provides pilot signal CPLT having a predetermined pulse width (duty cycle). Is output.
パイロット信号CPLTのパルス幅により、供給可能な電流容量(車両が要求可能な電流容量)がプラグインハイブリッド車に通知される。たとえば、充電ケーブル55の電流容量や、外部電源の能力から定まる電流容量がプラグインハイブリッド車に通知される。
The plug-in hybrid vehicle is notified of the current capacity that can be supplied (current capacity that can be requested by the vehicle) based on the pulse width of the pilot signal CPLT. For example, the plug-in hybrid vehicle is notified of the current capacity of the charging cable 55 and the current capacity determined from the capacity of the external power supply.
一方、用いられる充電ケーブルの種類が異なれば、パイロット信号のパルス幅は異なり得る。すなわち、パイロット信号のパルス幅は、充電ケーブルの種類毎に定められ得る。
On the other hand, if the type of charging cable used is different, the pulse width of the pilot signal may be different. That is, the pulse width of the pilot signal can be determined for each type of charging cable.
本実施の形態においては、充電ケーブル55によりプラグインハイブリッド車と外部電源58とが連結された状態において、外部電源58から供給された電力が蓄電装置10に供給されることで蓄電装置10が充電される。蓄電装置10の充電時には、システムメインリレー11およびCCID60内のリレー62が閉じられる。
In the present embodiment, in a state where the plug-in hybrid vehicle and external power supply 58 are connected by charging cable 55, power storage device 10 is charged by supplying power supplied from external power supply 58 to power storage device 10. Is done. When the power storage device 10 is charged, the system main relay 11 and the relay 62 in the CCID 60 are closed.
外部電源58の交流電圧VACは、プラグインハイブリッド車の内部に設けられた電圧センサ91により検出される。検出された電圧VACは、HV-ECU46に送信される。
The AC voltage VAC of the external power source 58 is detected by a voltage sensor 91 provided inside the plug-in hybrid vehicle. The detected voltage VAC is transmitted to the HV-ECU 46.
図3は、車両100のプラグイン充電に関連する構成を示した概略図である。
図4は、プラグイン充電時に実行される、充電電力を可変とする制御を説明するためのフローチャートである。 FIG. 3 is a schematic diagram showing a configuration related to plug-in charging ofvehicle 100.
FIG. 4 is a flowchart for explaining control executed when plug-in charging is performed to vary charging power.
図4は、プラグイン充電時に実行される、充電電力を可変とする制御を説明するためのフローチャートである。 FIG. 3 is a schematic diagram showing a configuration related to plug-in charging of
FIG. 4 is a flowchart for explaining control executed when plug-in charging is performed to vary charging power.
図3、図4を参照して、プラグ57が外部電源に接続されコネクタ56がインレット54に接続されると、処理が開始される。まずステップS1において、パイロット信号CPLTをHV-ECU46が受信し、HV-ECU46の内部でパイロット信号CPLTを要求可能充電電流に変換する。
3 and 4, when the plug 57 is connected to the external power source and the connector 56 is connected to the inlet 54, the processing is started. First, in step S1, the HV-ECU 46 receives the pilot signal CPLT and converts the pilot signal CPLT into a requestable charging current within the HV-ECU 46.
図5は、要求可能充電電流とパイロット信号CPLTとの関係を説明するための図である。
FIG. 5 is a diagram for explaining the relationship between the chargeable charge current and the pilot signal CPLT.
図5に示すように、パイロット信号CPLTのデューティ比(パルス幅)と、車両側が要求可能な充電電流との関係が定められている。パルス幅が広いほど電流値は大きくなる。この予め定められた関係に基づいてHVECU46は車両側が要求可能な充電電流値をパイロット信号CPLTから得る。たとえば、充電ケーブルの太さによって許容される電流値が異なる。また、外部電源の容量によっても許容される電流値が異なる。パイロット信号CPLTには、これらの許容される電流に関する情報が含まれている。
As shown in FIG. 5, the relationship between the duty ratio (pulse width) of pilot signal CPLT and the charging current that can be requested by the vehicle is defined. The current value increases as the pulse width increases. Based on this predetermined relationship, the HVECU 46 obtains a charging current value that can be requested by the vehicle from the pilot signal CPLT. For example, the allowable current value varies depending on the thickness of the charging cable. The allowable current value varies depending on the capacity of the external power supply. The pilot signal CPLT includes information regarding these allowable currents.
再び図3、図4を参照して、続いてステップS2において充電器42の入力側での電力指令値の算出が行なわれる。この充電電力指令値は、ステップS1において算出された要求可能充電電流と、電圧センサ91で検出された電圧値の積によって求められる。なお、電圧センサ91での検出値に代えて、外部電源から供給される電圧値(たとえば100Vまたは200V)のように固定値を採用してもよい。
Referring to FIGS. 3 and 4 again, the power command value on the input side of charger 42 is calculated in step S2. This charge power command value is obtained by the product of the chargeable charge current calculated in step S1 and the voltage value detected by voltage sensor 91. Instead of the detection value of voltage sensor 91, a fixed value such as a voltage value (for example, 100V or 200V) supplied from an external power source may be adopted.
続いてステップS3において、充電器42の入力側での充電電力指令値のフィルタ処理が実行される。このフィルタ処理により、パイロット信号CPLTが示す値がノイズなどにより変動した場合に充電電力指令値が急変することが防止される。
Subsequently, in step S3, charging power command value filtering processing on the input side of the charger 42 is executed. This filtering process prevents the charge power command value from changing suddenly when the value indicated by pilot signal CPLT fluctuates due to noise or the like.
なお、この実施の形態においては、充電器42は、充電電力指令値CHPWによって与えられた電力値を出力するように動作するものである。そこで、さらにステップS4において、充電器の入力側での電力指令値に、充電器効率を掛算して、充電出力側での電力指令値を算出することが行なわれる。すなわち、充電器出力側での充電電力指令値Po、充電器入力側での充電電力指令値Pi、充電器効率ηとすると、次式で表すことができる。
Po=Pi×η
続いてステップS5において、HV-ECU46は、充電電力指令値CHPWを充電器42に送信する。そしてステップS6において充電器42は充電電力指令値CHPWに基づいて充電電力を出力する。 In this embodiment,charger 42 operates to output a power value given by charging power command value CHPW. Therefore, in step S4, the power command value on the input side of the charger is multiplied by the charger efficiency to calculate the power command value on the charge output side. That is, when the charging power command value Po on the charger output side, the charging power command value Pi on the charger input side, and the charger efficiency η, it can be expressed by the following equation.
Po = Pi × η
Subsequently, in step S5, the HV-ECU 46 transmits the charging power command value CHPW to the charger 42. In step S6, the charger 42 outputs charging power based on the charging power command value CHPW.
Po=Pi×η
続いてステップS5において、HV-ECU46は、充電電力指令値CHPWを充電器42に送信する。そしてステップS6において充電器42は充電電力指令値CHPWに基づいて充電電力を出力する。 In this embodiment,
Po = Pi × η
Subsequently, in step S5, the HV-
そしてステップS7では、HV-ECU46は、電池監視ユニット24から電流センサ16および電圧センサ14での計測値を取得する。そしてステップS8においてHV-ECU46は、電池監視ユニット24から得た電流IBおよび電圧VBの掛算により実電力値を計算する。そしてステップS9において、HV-ECUは、電力指令値と実電力との乖離が大きいか否かを判断する。具体的には、(電力指令値-α)<実電力<(電力指令値+α)が成立するか否かを判断する。
In step S 7, the HV-ECU 46 acquires the measurement values obtained by the current sensor 16 and the voltage sensor 14 from the battery monitoring unit 24. In step S8, the HV-ECU 46 calculates the actual power value by multiplying the current IB and the voltage VB obtained from the battery monitoring unit 24. In step S9, the HV-ECU determines whether or not the difference between the power command value and the actual power is large. Specifically, it is determined whether (power command value−α) <actual power <(power command value + α) is satisfied.
ステップS9において、実電力と電力指令値との乖離がαよりも少ない場合にはステップS11において処理は終了する。一方ステップS9において、実電力と電力指令値の乖離がαよりも大きい場合には、ステップS10において、HV-ECU46は、充電電力指令値を補正し、ステップS11において処理が終了する。
In step S9, when the difference between the actual power and the power command value is less than α, the process ends in step S11. On the other hand, if the difference between the actual power and the power command value is larger than α in step S9, the HV-ECU 46 corrects the charge power command value in step S10, and the process ends in step S11.
以上説明したように、本実施の形態では、パイロット信号CPLTから、要求可能充電電流を算出して充電器入力側の充電電力指令値を算出する。これにより、充電器42の入力側すなわちインレットから充電器に至る経路に電流センサを設けずに外部充電の制御が可能となる。また電池監視ユニット24を経由して得た電流値および電圧値から求められる充電実電力と充電器42の充電電力指令値とを比較して、比較結果に基づいて指令値を補正することで精度よく充電制御が行なえる。
As described above, in this embodiment, the chargeable command value on the charger input side is calculated by calculating the chargeable charge current from the pilot signal CPLT. As a result, it is possible to control external charging without providing a current sensor on the input side of the charger 42, that is, the path from the inlet to the charger. Further, the actual power obtained from the current value and the voltage value obtained via the battery monitoring unit 24 is compared with the charge power command value of the charger 42, and the command value is corrected based on the comparison result, thereby improving accuracy. Charge control can be performed well.
ところで、充電器42内部の電流センサ92が故障した場合には、速やかに検出して充電を停止する等の処置を行なう必要がある。
By the way, when the current sensor 92 in the charger 42 breaks down, it is necessary to quickly detect and stop the charging.
図6は、充電器42内部の電流センサ92の故障検出を説明するためのフローチャートである。
FIG. 6 is a flowchart for explaining failure detection of the current sensor 92 inside the charger 42.
図3、図6を参照して、まず処理が開始されると、ステップS21において、HV-ECU46は、電池監視ユニット24を経由して得た電流値IBおよび電圧値VBの積から求まる実電力値を、電圧センサ91の電圧値で割算することによって充電器入力側の電流値を推定する。
Referring to FIGS. 3 and 6, first, when the process is started, in step S21, HV-ECU 46 determines the actual power obtained from the product of current value IB and voltage value VB obtained via battery monitoring unit 24. The current value on the charger input side is estimated by dividing the value by the voltage value of the voltage sensor 91.
そしてステップS22においてHV-ECU46は、推定した充電器入力側の電流値をパイロット信号CPLTから変換された要求可能充電電流値と比較して電流センサ92の正常/故障の判断を行なう。すなわちステップS21において推定した電流値は要求可能充電電流値の±α%以内であるか否かが判断される。
In step S22, the HV-ECU 46 compares the estimated current value on the charger input side with the required charge current value converted from the pilot signal CPLT, and determines whether the current sensor 92 is normal / failed. That is, it is determined whether or not the current value estimated in step S21 is within ± α% of the requestable charge current value.
推定した電流値が要求可能充電電流値の±α%以内であった場合には電流センサ92は正常であると判断されてステップS24で処理が終了する。一方、ステップS22において推定電流値が要求可能充電電流値の±α%以内でなかった場合にはステップS23に処理が進む。ステップS23では、充電器内部の電流センサ92が故障しているという判定がなされる。そしてステップS24において処理が終了する。なお、電流センサ92の故障が検出された場合には、警告ランプが点灯されたり、プラグイン充電が中止されたりするなどの措置が採られる。
If the estimated current value is within ± α% of the chargeable current value that can be requested, it is determined that the current sensor 92 is normal, and the process ends in step S24. On the other hand, if the estimated current value is not within ± α% of the requestable charging current value in step S22, the process proceeds to step S23. In step S23, it is determined that the current sensor 92 inside the charger has failed. In step S24, the process ends. If a failure of the current sensor 92 is detected, measures such as turning on the warning lamp or stopping plug-in charging are taken.
このように、入力電流を推定し、要求可能充電電流値と比較することで電流センサ92の故障を判断することが可能となる。なお、入力電流推定値を電流センサ92の検出値と比較して故障を判断してもよい。このような処理を行なうことにより、速やかに電流センサの故障が判定できる。
In this way, it is possible to determine the failure of the current sensor 92 by estimating the input current and comparing it with the chargeable current value that can be requested. Note that the failure may be determined by comparing the input current estimated value with the detected value of the current sensor 92. By performing such processing, a failure of the current sensor can be quickly determined.
電流センサが故障したまま充電すると、電圧が低下し電流が大きくなりケーブルが加熱する可能性があるが、本実施の形態によれば、電流センサが故障していた場合に、そのままわからずに充電をすることを防止できる。
If charging is performed with the current sensor failed, the voltage may decrease and the current may increase, causing the cable to heat up.However, according to the present embodiment, if the current sensor has failed, it will be charged without knowing. Can be prevented.
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
10 蓄電装置、11 システムメインリレー、12 コンバータ、14,18,20,91,93 電圧センサ、16,92 電流センサ、22 補機、24 電池監視ユニット、30 インバータ、32 モータジェネレータ、34 動力分割装置、36 エンジン、38 駆動輪、42 充電器、43,50,53 電力ケーブル、51,62 リレー、54 インレット、55 充電ケーブル、56,59 コネクタ、57 プラグ、58 電源、64 コントロールパイロット回路、66 スイッチ、80 電力制限部、81 フィルタ、82,84 変換部、83,C 平滑コンデンサ、85 絶縁トランス、86 整流部、87 温度センサ、88 マイコン、100 ハイブリッド車両、MNL 主負母線、MPL 主正母線、NL1,NLC 負極線、PL1,PLC 正極線。
10 power storage device, 11 system main relay, 12 converter, 14, 18, 20, 91, 93 voltage sensor, 16, 92 current sensor, 22 auxiliary machine, 24 battery monitoring unit, 30 inverter, 32 motor generator, 34 power split device , 36 engine, 38 drive wheel, 42 charger, 43, 50, 53 power cable, 51, 62 relay, 54 inlet, 55 charging cable, 56, 59 connector, 57 plug, 58 power supply, 64 control pilot circuit, 66 switch , 80 power limiting unit, 81 filter, 82, 84 conversion unit, 83, C smoothing capacitor, 85 insulation transformer, 86 rectification unit, 87 temperature sensor, 88 microcomputer, 100 hybrid vehicle, MNL main negative bus, MPL main positive Line, NL1, NLC negative electrode line, PL1, PLC positive line.
Claims (7)
- 車両の電源システムであって、
蓄電装置(10)と、
外部電源から電力を受け前記蓄電装置に充電を行なう充電器(42)と、
前記外部電源から充電制御信号を受ける信号受信部(54)と、
前記信号受信部から前記充電制御信号を受け、前記充電制御信号に基づいて前記外部電源から前記車両に対して供給可能な第1の電力を算出し、前記第1の電力を前記充電器の効率を考慮した第2の電力に変換し、前記第2の電力が前記充電器から前記蓄電装置に出力されるように前記充電器を制御する制御装置(46)とを備える、車両の電源システム。 A vehicle power supply system,
A power storage device (10);
A charger (42) for receiving power from an external power source and charging the power storage device;
A signal receiver (54) for receiving a charge control signal from the external power source;
The charging control signal is received from the signal receiving unit, first electric power that can be supplied from the external power source to the vehicle is calculated based on the charging control signal, and the first electric power is calculated as the efficiency of the charger. And a control device (46) for controlling the charger so that the second power is output from the charger to the power storage device. - 前記蓄電装置に充電される電流を検出する第1の電流センサ(16)と、
前記蓄電装置の電圧を検出する第1の電圧センサ(14)とをさらに備え、
前記制御装置は、前記第2の電力を前記充電器に充電指令値として出力し、
前記制御装置は、前記第1の電流センサの出力および前記第1の電圧センサの出力に基づいて前記蓄電装置に充電される実電力を算出し、前記実電力と前記充電指令値とが乖離する場合には前記充電指令値を補正する、請求の範囲第1項に記載の車両の電源システム。 A first current sensor (16) for detecting a current charged in the power storage device;
A first voltage sensor (14) for detecting the voltage of the power storage device,
The control device outputs the second power to the charger as a charge command value,
The control device calculates the actual power charged in the power storage device based on the output of the first current sensor and the output of the first voltage sensor, and the actual power and the charge command value deviate from each other. The power supply system for a vehicle according to claim 1, wherein the charging command value is corrected in a case. - 前記外部電源が前記充電器に供給する電圧を検出する第2の電圧センサ(91)をさらに備え、
前記充電器は、
前記外部電源から前記充電器に供給される電流を検出する第2の電流センサ(92)を含み、
前記制御装置は、前記実電力と前記第2の電圧センサの出力とに基づいて前記第2の電流センサの検出値の推定値を算出し、前記第2の電流センサの検出値を前記推定値と比較して前記第2の電流センサの故障を判定する、請求の範囲第2項に記載の車両の電源システム。 A second voltage sensor (91) for detecting a voltage supplied from the external power source to the charger;
The charger is
A second current sensor (92) for detecting a current supplied from the external power source to the charger;
The control device calculates an estimated value of a detection value of the second current sensor based on the actual power and an output of the second voltage sensor, and calculates the detection value of the second current sensor as the estimated value. The power supply system for a vehicle according to claim 2, wherein a failure of the second current sensor is determined in comparison with the second power sensor. - 請求の範囲第1項~第3項のいずれか1項に記載の電源システムを備える車両。 A vehicle comprising the power supply system according to any one of claims 1 to 3.
- 車両の電源システムの制御方法であって、
車両の電源システムは、蓄電装置(10)と、外部電源から電力を受け前記蓄電装置に充電を行なう充電器(42)とを含み、
前記制御方法は、
前記外部電源から充電制御信号を受け、前記充電制御信号に基づいて前記外部電源から前記車両に対して供給可能な第1の電力を算出するステップ(S1,S2)と、
前記第1の電力を前記充電器の効率を考慮した第2の電力に変換するステップ(S4)と、
前記第2の電力が前記充電器から前記蓄電装置に出力されるように前記充電器を制御するステップ(S5)とを備える、車両の電源システムの制御方法。 A control method for a power supply system of a vehicle,
The power supply system for a vehicle includes a power storage device (10) and a charger (42) that receives power from an external power source and charges the power storage device.
The control method is:
Receiving a charge control signal from the external power source and calculating first power that can be supplied from the external power source to the vehicle based on the charge control signal (S1, S2);
Converting the first power into second power in consideration of the efficiency of the charger (S4);
A control method for a vehicle power supply system, comprising: controlling the charger so that the second power is output from the charger to the power storage device (S5). - 前記車両の電源システムは、前記蓄電装置に充電される電流を検出する第1の電流センサ(16)と、前記蓄電装置の電圧を検出する第1の電圧センサ(14)とをさらに含み、
前記充電器を制御するステップ(S5)は、前記第2の電力を前記充電器に充電指令値として出力し、
前記制御方法は、
前記第1の電流センサの出力および前記第1の電圧センサの出力に基づいて前記蓄電装置に充電される実電力を算出するステップ(S7,S8)と、
前記実電力と前記充電指令値とが乖離する場合には前記充電指令値を補正するステップ(S9,S10)とをさらに備える、請求の範囲第5項に記載の車両の電源システムの制御方法。 The vehicle power supply system further includes a first current sensor (16) for detecting a current charged in the power storage device, and a first voltage sensor (14) for detecting a voltage of the power storage device,
The step of controlling the charger (S5) outputs the second power to the charger as a charge command value,
The control method is:
Calculating actual power charged in the power storage device based on the output of the first current sensor and the output of the first voltage sensor (S7, S8);
The vehicle power system control method according to claim 5, further comprising a step (S9, S10) of correcting the charge command value when the actual power deviates from the charge command value. - 前記車両の電源システムは、前記外部電源が前記充電器に供給する電圧を検出する第2の電圧センサ(91)をさらに含み、
前記充電器は、前記外部電源から前記充電器に供給される電流を検出する第2の電流センサ(92)を含み、
前記制御方法は、前記実電力と前記第2の電圧センサの出力とに基づいて前記第2の電流センサの検出値の推定値を算出するステップ(S21)と、
前記第2の電流センサの検出値を前記推定値と比較して前記第2の電流センサの故障を判定するステップ(S22,S23)とをさらに備える、請求の範囲第6項に記載の車両の電源システムの制御方法。 The vehicle power supply system further includes a second voltage sensor (91) for detecting a voltage supplied from the external power supply to the charger,
The charger includes a second current sensor (92) for detecting a current supplied from the external power source to the charger;
The control method calculates an estimated value of a detection value of the second current sensor based on the actual power and an output of the second voltage sensor (S21);
The vehicle according to claim 6, further comprising a step (S22, S23) of comparing a detected value of the second current sensor with the estimated value to determine a failure of the second current sensor. Power system control method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2010/071441 WO2012073350A1 (en) | 2010-12-01 | 2010-12-01 | Power supply system of vehicle |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2010/071441 WO2012073350A1 (en) | 2010-12-01 | 2010-12-01 | Power supply system of vehicle |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012073350A1 true WO2012073350A1 (en) | 2012-06-07 |
Family
ID=46171335
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/071441 WO2012073350A1 (en) | 2010-12-01 | 2010-12-01 | Power supply system of vehicle |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2012073350A1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015050898A (en) * | 2013-09-04 | 2015-03-16 | 株式会社デンソー | Abnormality detection method for current sensor, and vehicle |
FR3010796A1 (en) * | 2013-09-17 | 2015-03-20 | Renault Sa | DEVICE FOR MONITORING A MOTOR VEHICLE BATTERY CHARGER AND METHOD THEREOF |
EP2947763A4 (en) * | 2013-01-15 | 2016-12-21 | Sumitomo Electric Industries | Convertor, failure determination method and control program |
JP2017011904A (en) * | 2015-06-23 | 2017-01-12 | 三菱自動車工業株式会社 | Electric motor car |
CN109936204A (en) * | 2017-12-18 | 2019-06-25 | 现代自动车株式会社 | Charging system and diagnostic application with sensor diagnostic function are in the method for its sensor |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005027379A (en) * | 2003-06-30 | 2005-01-27 | Honda Motor Co Ltd | Motor driver |
JP2009071897A (en) * | 2007-09-10 | 2009-04-02 | Toyota Motor Corp | Automobile and method of charging automobile |
JP2009213246A (en) * | 2008-03-04 | 2009-09-17 | Honda Motor Co Ltd | Method for detecting failure of dc/dc converter |
JP2010200530A (en) * | 2009-02-26 | 2010-09-09 | Omron Corp | Charging controller and method, charger and method, and program |
-
2010
- 2010-12-01 WO PCT/JP2010/071441 patent/WO2012073350A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005027379A (en) * | 2003-06-30 | 2005-01-27 | Honda Motor Co Ltd | Motor driver |
JP2009071897A (en) * | 2007-09-10 | 2009-04-02 | Toyota Motor Corp | Automobile and method of charging automobile |
JP2009213246A (en) * | 2008-03-04 | 2009-09-17 | Honda Motor Co Ltd | Method for detecting failure of dc/dc converter |
JP2010200530A (en) * | 2009-02-26 | 2010-09-09 | Omron Corp | Charging controller and method, charger and method, and program |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2947763A4 (en) * | 2013-01-15 | 2016-12-21 | Sumitomo Electric Industries | Convertor, failure determination method and control program |
JP2015050898A (en) * | 2013-09-04 | 2015-03-16 | 株式会社デンソー | Abnormality detection method for current sensor, and vehicle |
FR3010796A1 (en) * | 2013-09-17 | 2015-03-20 | Renault Sa | DEVICE FOR MONITORING A MOTOR VEHICLE BATTERY CHARGER AND METHOD THEREOF |
JP2017011904A (en) * | 2015-06-23 | 2017-01-12 | 三菱自動車工業株式会社 | Electric motor car |
CN109936204A (en) * | 2017-12-18 | 2019-06-25 | 现代自动车株式会社 | Charging system and diagnostic application with sensor diagnostic function are in the method for its sensor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5343981B2 (en) | Vehicle charging system | |
JP5348334B2 (en) | Power supply device for electric vehicle and control method thereof | |
US8368347B2 (en) | Vehicular charging system | |
JP4930653B2 (en) | Vehicle charging device | |
US8666572B2 (en) | Charging control apparatus for power storage device and method for controlling charging of power storage device | |
JP5327235B2 (en) | Vehicle charging system and charging system control method | |
JP5182434B2 (en) | Charger | |
US20130088198A1 (en) | Electric charging system and electric charging method | |
US9315105B2 (en) | Electrically-driven vehicle and method for controlling the same | |
JP5454697B2 (en) | VEHICLE POWER SUPPLY DEVICE, VEHICLE EQUIPPED WITH THE SAME AND CONTROL METHOD FOR CAR | |
JP2014143817A (en) | Vehicular power system | |
JP2013034349A (en) | Charging system and vehicle mounting the same, and control method of charger | |
JP5696615B2 (en) | Charging device, vehicle, and charging device control method | |
US9834093B2 (en) | Electrically-powered vehicle | |
WO2012073350A1 (en) | Power supply system of vehicle | |
JP5673504B2 (en) | Vehicle charging device | |
JP5772357B2 (en) | CHARGE SYSTEM, VEHICLE MOUNTING THE SAME, AND CHARGING DEVICE CONTROL METHOD | |
WO2012164681A1 (en) | Vehicle and method for controlling vehicle | |
JP5682509B2 (en) | Vehicle charging device, charging line communication system | |
JP6274147B2 (en) | vehicle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10860275 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10860275 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |