WO2012070661A1 - Radiographic image detection apparatus, radiography apparatus, and radiography system - Google Patents
Radiographic image detection apparatus, radiography apparatus, and radiography system Download PDFInfo
- Publication number
- WO2012070661A1 WO2012070661A1 PCT/JP2011/077260 JP2011077260W WO2012070661A1 WO 2012070661 A1 WO2012070661 A1 WO 2012070661A1 JP 2011077260 W JP2011077260 W JP 2011077260W WO 2012070661 A1 WO2012070661 A1 WO 2012070661A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- radiation
- grating
- image
- ray
- dose
- Prior art date
Links
- 238000001514 detection method Methods 0.000 title claims description 181
- 238000002601 radiography Methods 0.000 title claims description 23
- 238000003384 imaging method Methods 0.000 claims abstract description 198
- 230000005855 radiation Effects 0.000 claims abstract description 175
- 238000012545 processing Methods 0.000 claims abstract description 41
- 238000012937 correction Methods 0.000 claims description 30
- 230000007246 mechanism Effects 0.000 claims description 28
- 238000009826 distribution Methods 0.000 claims description 23
- 239000000463 material Substances 0.000 claims description 22
- 230000001902 propagating effect Effects 0.000 claims description 13
- 238000000034 method Methods 0.000 abstract description 32
- 230000008569 process Effects 0.000 abstract description 11
- 238000010521 absorption reaction Methods 0.000 description 172
- 230000008859 change Effects 0.000 description 33
- 230000010363 phase shift Effects 0.000 description 26
- 238000010586 diagram Methods 0.000 description 19
- LFEUVBZXUFMACD-UHFFFAOYSA-H lead(2+);trioxido(oxo)-$l^{5}-arsane Chemical compound [Pb+2].[Pb+2].[Pb+2].[O-][As]([O-])([O-])=O.[O-][As]([O-])([O-])=O LFEUVBZXUFMACD-UHFFFAOYSA-H 0.000 description 19
- 230000003287 optical effect Effects 0.000 description 11
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 10
- 210000000481 breast Anatomy 0.000 description 9
- 230000033001 locomotion Effects 0.000 description 9
- 238000009607 mammography Methods 0.000 description 9
- 229920006395 saturated elastomer Polymers 0.000 description 9
- 230000005540 biological transmission Effects 0.000 description 8
- 230000014509 gene expression Effects 0.000 description 8
- 238000012986 modification Methods 0.000 description 8
- 230000004048 modification Effects 0.000 description 8
- 239000010931 gold Substances 0.000 description 7
- 230000002238 attenuated effect Effects 0.000 description 6
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 6
- 229910052737 gold Inorganic materials 0.000 description 6
- 239000000758 substrate Substances 0.000 description 6
- 229910052697 platinum Inorganic materials 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 4
- 238000006073 displacement reaction Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 230000010354 integration Effects 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 238000002834 transmittance Methods 0.000 description 4
- 230000003321 amplification Effects 0.000 description 3
- 239000003990 capacitor Substances 0.000 description 3
- 230000006835 compression Effects 0.000 description 3
- 238000007906 compression Methods 0.000 description 3
- 238000013016 damping Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000002594 fluoroscopy Methods 0.000 description 3
- 210000003127 knee Anatomy 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 238000003199 nucleic acid amplification method Methods 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 3
- 229910052721 tungsten Inorganic materials 0.000 description 3
- 239000010937 tungsten Substances 0.000 description 3
- 238000012935 Averaging Methods 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- 238000003745 diagnosis Methods 0.000 description 2
- 238000010894 electron beam technology Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000007689 inspection Methods 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 239000011133 lead Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- 238000007747 plating Methods 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- -1 terbium activated gadolinium oxide Chemical class 0.000 description 2
- 210000001519 tissue Anatomy 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- 208000024172 Cardiovascular disease Diseases 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 229910052771 Terbium Inorganic materials 0.000 description 1
- 239000011358 absorbing material Substances 0.000 description 1
- 230000004308 accommodation Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- ODKSFYDXXFIFQN-UHFFFAOYSA-M argininate Chemical compound [O-]C(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-M 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 210000000845 cartilage Anatomy 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 210000002414 leg Anatomy 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 239000011669 selenium Substances 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000007779 soft material Substances 0.000 description 1
- 210000004872 soft tissue Anatomy 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 229910052716 thallium Inorganic materials 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 210000000779 thoracic wall Anatomy 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01T—MEASUREMENT OF NUCLEAR OR X-RADIATION
- G01T1/00—Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
- G01T1/16—Measuring radiation intensity
- G01T1/161—Applications in the field of nuclear medicine, e.g. in vivo counting
- G01T1/164—Scintigraphy
- G01T1/1641—Static instruments for imaging the distribution of radioactivity in one or two dimensions using one or several scintillating elements; Radio-isotope cameras
- G01T1/1648—Ancillary equipment for scintillation cameras, e.g. reference markers, devices for removing motion artifacts, calibration devices
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/42—Arrangements for detecting radiation specially adapted for radiation diagnosis
- A61B6/4291—Arrangements for detecting radiation specially adapted for radiation diagnosis the detector being combined with a grid or grating
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/44—Constructional features of apparatus for radiation diagnosis
- A61B6/4429—Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units
- A61B6/4452—Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units the source unit and the detector unit being able to move relative to each other
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/44—Constructional features of apparatus for radiation diagnosis
- A61B6/4429—Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units
- A61B6/4464—Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units the source unit or the detector unit being mounted to ceiling
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/48—Diagnostic techniques
- A61B6/484—Diagnostic techniques involving phase contrast X-ray imaging
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B42/00—Obtaining records using waves other than optical waves; Visualisation of such records by using optical means
- G03B42/02—Obtaining records using waves other than optical waves; Visualisation of such records by using optical means using X-rays
- G03B42/025—Positioning or masking the X-ray film cartridge in the radiographic apparatus
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/04—Positioning of patients; Tiltable beds or the like
- A61B6/0407—Supports, e.g. tables or beds, for the body or parts of the body
- A61B6/0414—Supports, e.g. tables or beds, for the body or parts of the body with compression means
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/50—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications
- A61B6/502—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications for diagnosis of breast, i.e. mammography
Definitions
- the present invention relates to a radiation image detection apparatus, and a radiation imaging apparatus and a radiation imaging system including the radiation image detection apparatus.
- X-rays are used as a probe for seeing through the inside of a subject because they have characteristics such as attenuation depending on the atomic numbers of elements constituting the substance and the density and thickness of the substance.
- X-ray imaging is widely used in fields such as medical diagnosis and non-destructive inspection.
- a subject In a general X-ray imaging system, a subject is placed between an X-ray source that emits X-rays and an X-ray image detector that detects an X-ray image, and a transmission image of the subject is captured.
- each X-ray radiated from the X-ray source toward the X-ray image detector has characteristics (atomic number, density, thickness) of the substance constituting the subject existing on the path to the X-ray image detector. ), The light is incident on the X-ray image detector. As a result, an X-ray transmission image of the subject is detected and imaged by the X-ray image detector.
- X-ray image detector there is a flat panel detector (FPD: Flat Panel Detector) using a semiconductor circuit in addition to a combination of an X-ray intensifying screen and a film, a stimulable phosphor (accumulating phosphor), and so on. Widely used.
- FPD Flat Panel Detector
- the exposure of the subject is prevented from being excessively exposed to stabilize the density of the image obtained by the X-ray image detector with respect to the required exposure amount that varies depending on the subject. Therefore, automatic exposure control is performed.
- automatic exposure control in general, the dose of X-rays transmitted through a subject is detected by a dose detector, and X-ray irradiation is stopped when the dose detected by the dose detector reaches a preset threshold value. .
- the X-ray irradiation conditions are adjusted so that the dose detected by the dose detection pixels becomes a predetermined value set in advance.
- the irradiation time is calculated based on the X-ray irradiation conditions at the time of fluoroscopy, further taking into account the tube voltage difference between fluoroscopy and imaging, and exposure control is performed based on the calculated irradiation time.
- the X-ray absorptivity becomes lower as a substance composed of an element having a smaller atomic number, and the difference in the X-ray absorptivity is small in a soft tissue or soft material of a living body. Therefore, a sufficient image density as an X-ray transmission image is obtained. There is a problem that (contrast) cannot be obtained. For example, most of the components of the cartilage part constituting the joint of the human body and the joint fluid in the vicinity thereof are water, and the difference in the amount of X-ray absorption between the two is small, so that it is difficult to obtain image contrast.
- an X-ray phase for obtaining an image (hereinafter referred to as a phase contrast image) based on an X-ray phase change (angle change) by an object instead of an X-ray intensity change by an object.
- Imaging research is actively conducted.
- a first diffraction grating phase type grating or absorption type grating
- a specific distance Talbot interference distance determined by the grating pitch of the first diffraction grating and the X-ray wavelength.
- the second diffraction grating (absorption type grating) is disposed only downstream, and the X-ray image detector is disposed behind the second diffraction grating.
- the Talbot interference distance is a distance at which X-rays that have passed through the first diffraction grating form a self-image due to the Talbot interference effect, and this self-image is between the X-ray source and the first diffraction grating. It is modulated by the interaction (phase change) between the arranged subject and the X-ray.
- the X-ray Talbot interferometer detects moiré fringes generated by superimposing the first image of the first diffraction grating and the second diffraction grating, and obtains subject phase information by analyzing changes in the moiré fringes caused by the subject.
- a fringe scanning method is known. According to this fringe scanning method, the second diffraction grating is substantially parallel to the surface of the first diffraction grating with respect to the first diffraction grating and substantially in the grating direction (strip direction) of the first diffraction grating.
- the angle of the X-ray refracted by the subject from the change of the pixel value of each pixel obtained by the X-ray image detector while performing a plurality of times of imaging while translating in the vertical direction at a scanning pitch obtained by equally dividing the lattice pitch.
- a distribution (differential image of phase shift) is calculated, and a phase contrast image of the subject can be obtained based on this angular distribution.
- the X-ray phase imaging by the fringe scanning method detects the phase information of the subject from the change in the pixel value of each pixel accompanying the scanning of the second diffraction grating.
- a change in the pixel value of each pixel due to another factor reduces the detection accuracy of the phase information of the subject.
- Factors that change the pixel value of each pixel include, for example, variations in irradiation dose between photographings. Therefore, the irradiation dose between photographings is kept constant, or variations in the irradiation dose between photographings are measured in advance.
- a dose detector is used, and X-ray irradiation is stopped when the dose detected by the dose detector reaches a preset threshold value. Automatic exposure control is performed.
- the patent document 1 does not particularly describe the position of the dose detector, the dose detector is generally arranged behind the FPD.
- the dose detector in the X-ray phase imaging by the fringe scanning method, the dose detector is positioned downstream of the second diffraction grating, and moire fringes are formed on the dose detector. This moire fringe moves with the scanning of the second diffraction grating, and the X-rays incident on the dose detector per unit time when the dark part of the moire fringe overlaps the dose detector and when the dark part does not overlap.
- the automatic exposure control described above extends or shortens the X-ray irradiation time so as to cancel the fluctuation of the X-ray dose incident on the dose detector per unit time. As a result, there is a variation in the irradiation dose during imaging.
- the above is also valid when a dose is detected by using some pixels of the FPD instead of the dose detector.
- the FPD is located downstream of the second diffraction grating, and moire fringes are formed on the detection surface. Therefore, as the second diffraction grating is scanned, the overlap between the dose detector and the dark portion of the moire fringe changes, and the X-ray dose incident on the dose detector per unit time changes accordingly. Therefore, even when a dose is detected using a part of the pixels of the FPD, it is still difficult to measure the variation of the irradiation dose between the images under the moire fringes.
- the present invention has been made in view of the above-described circumstances, and an object thereof is to accurately detect a dose and generate a more accurate radiation phase contrast image.
- a radiation image detector for detecting the radiation image, wherein the radiation image detector is incident with radiation propagating off at least one of the first grating region and the second grating region;
- a radiological image detection apparatus including at least one dose detection pixel used for detecting a radiation dose incident thereon.
- the radiation image detection device a radiation source that emits radiation toward the first grating, and an arithmetic processing unit that processes image data acquired by the radiation image detector.
- An object is disposed between the radiation source and the first grating or between the first grating and the second grating, and the second grating is in phase with the radiation image.
- a radiography system that corrects brightness based on the dose detected by a pixel.
- the present invention radiation that propagates out of at least one of the first grating and the second grating is detected by the dose detection pixel, and the radiation image of the first grating is detected on the dose detection pixel.
- the moire fringes are not formed by superimposing the second grating and the second grating, so that the dose can be accurately detected by the dose detection pixels without being affected by the moire fringes.
- 3 is a flowchart for explaining a phase contrast image generation process by the radiation imaging system of FIG. 1.
- FIG. 1 shows a configuration of an example of a radiation imaging system for explaining an embodiment of the present invention
- FIG. 2 shows a control block of the radiation imaging system of FIG.
- the X-ray imaging system 10 is an X-ray diagnostic apparatus that images a subject (patient) H in a standing position, and is disposed opposite to the X-ray source 11 that emits X-rays to the subject H, and the X-ray source 11.
- An imaging unit (radiation image detection device) 12 that detects X-rays transmitted through the subject H from the X-ray source 11 and generates image data, and an exposure operation and an imaging unit of the X-ray source 11 based on the operation of the operator
- the console 13 is roughly divided into a console 13 that controls the image capturing operation 12 and calculates the image data acquired by the image capturing unit 12 to generate a phase contrast image.
- the X-ray source 11 is held movably in the vertical direction (x direction) by an X-ray source holding device 14 suspended from the ceiling.
- the photographing unit 12 is held by a standing stand 15 installed on the floor so as to be movable in the vertical direction.
- the X-ray source 11 is emitted from the X-ray tube 18 that generates X-rays according to the high voltage applied from the high voltage generator 16, and the X-ray tube 18.
- the X-ray includes a collimator unit 19 including a movable collimator 19a that limits an irradiation field so as to shield a portion of the X-ray that does not contribute to imaging of the inspection area of the subject H.
- the X-ray tube 18 is of an anode rotating type, and emits an electron beam from a filament (not shown) as an electron emission source (cathode) and collides with a rotating anode 18a rotating at a predetermined speed, thereby causing X-rays. Is generated.
- the colliding portion of the rotating anode 18a with the electron beam becomes the X-ray focal point 18b.
- the X-ray source holding device 14 includes a carriage portion 14a configured to be movable in a horizontal direction (z direction) by a ceiling rail (not shown) installed on the ceiling, and a plurality of support column portions 14b connected in the vertical direction. It consists of.
- a motor (not shown) that changes the position of the X-ray source 11 in the vertical direction is provided on the carriage unit 14 a by expanding and contracting the column unit 14 b.
- the standing stand 15 includes a main body 15a installed on the floor, and a holding portion 15b that holds the photographing unit 12 is attached to be movable in the vertical direction.
- the holding portion 15b is connected to an endless belt 15d that is suspended between two pulleys 15c that are spaced apart in the vertical direction, and is driven by a motor (not shown) that rotates the pulley 15c.
- the driving of the motor is controlled by the control device 20 of the console 13 described later based on the setting operation by the operator.
- the standing stand 15 is provided with a position sensor (not shown) such as a potentiometer that detects the position of the photographing unit 12 in the vertical direction by measuring the movement amount of the pulley 15c or the endless belt 15d. .
- the detection value of this position sensor is supplied to the X-ray source holding device 14 by a cable or the like.
- the X-ray source holding device 14 moves the X-ray source 11 so as to follow the vertical movement of the imaging unit 12 by expanding and contracting the support column 14 b based on the supplied detection value.
- the console 13 is provided with a control device 20 comprising a CPU, ROM, RAM and the like.
- the control device 20 includes an input device 21 through which an operator inputs an imaging instruction and the content of the instruction, an arithmetic processing unit 22 that performs arithmetic processing on the image data acquired by the imaging unit 12 and generates an X-ray image, and X A storage unit 23 for storing line images, a monitor 24 for displaying X-ray images and the like, and an interface (I / F) 25 connected to each unit of the X-ray imaging system 10 are connected via a bus 26. .
- the input device 21 for example, a switch, a touch panel, a mouse, a keyboard, or the like can be used.
- X-ray imaging conditions such as X-ray tube voltage and X-ray irradiation time, imaging timing, etc. Is entered.
- the monitor 24 includes a liquid crystal display or the like, and displays characters such as X-ray imaging conditions and X-ray images under the control of the control device 20.
- the imaging unit 12 includes a flat panel detector (FPD) 30 made of a semiconductor circuit, a first absorption type grating 31 and a second absorption type for detecting phase change (angle change) of X-rays by the subject H and performing phase imaging.
- the absorption type grating 32 is provided.
- the FPD 30 is arranged so that the detection surface is orthogonal to the optical axis A of the X-rays emitted from the X-ray source 11.
- the first and second absorption gratings 31 and 32 are disposed between the FPD 30 and the X-ray source 11.
- the imaging unit 12 changes the relative positional relationship of the second absorption type grating 32 with respect to the first absorption type grating 31 by translating the second absorption type grating 32 in the vertical direction (x direction).
- a scanning mechanism 33 is provided.
- the scanning mechanism 33 is configured by an actuator such as a piezoelectric element, for example.
- FIG. 3 shows a configuration of a radiation image detector included in the radiation imaging system of FIG.
- the FPD 30 as a radiological image detector includes an image receiving unit 41 in which a plurality of pixels 40 that convert X-rays into electric charges and store them in a two-dimensional array on an active matrix substrate, and an electric charge received from the image receiving unit 41.
- a scanning circuit 42 that controls the readout timing, a readout circuit 43 that reads out the charges accumulated in each pixel 40, converts the charges into image data and stores them, and performs arithmetic processing on the image data via the I / F 25 of the console 13.
- the scanning circuit 42 and each pixel 40 are connected by a scanning line 45 for each row, and the readout circuit 43 and each pixel 40 are connected by a signal line 46 for each column.
- Each pixel 40 directly converts X-rays into electric charges by a conversion layer (not shown) such as amorphous selenium, and stores the converted electric charges in a capacitor (not shown) connected to an electrode below the conversion layer. It can be configured as a direct conversion type element.
- Each pixel 40 is connected to a thin film transistor (TFT) switch (not shown), and the gate electrode of the TFT switch is connected to the scanning line 45, the source electrode is connected to the capacitor, and the drain electrode is connected to the signal line 46.
- TFT thin film transistor
- Each pixel 40 once converts X-rays into visible light by a scintillator (not shown) made of terbium activated gadolinium oxide (Gd 2 O 2 S: Tb), thallium activated cesium iodide (CsI: Tl), or the like. It is also possible to configure as an indirect conversion type X-ray detection element that converts the converted visible light into a charge by a photodiode (not shown) and accumulates it.
- the X-ray image detector is not limited to an FPD based on a TFT panel, and various X-ray image detectors based on a solid-state imaging device such as a CCD sensor or a CMOS sensor can also be used.
- the readout circuit 43 includes an integration amplifier circuit, an A / D converter, a correction circuit, and an image memory (all not shown).
- the integrating amplifier circuit integrates the charges output from each pixel 40 via the signal line 46, converts them into a voltage signal (image signal), and inputs it to the A / D converter.
- the A / D converter converts the input image signal into digital image data and inputs the digital image data to the correction circuit.
- the correction circuit performs offset correction, gain correction, and linearity correction on the image data, and stores the corrected image data in the image memory.
- correction processing by the correction circuit correction of X-ray exposure amount and exposure distribution (so-called shading) and pattern noise depending on FPD 30 control conditions (drive frequency and readout period) (for example, leak signal of TFT switch) May be included.
- 4 and 5 show an imaging unit of the radiation imaging system of FIG.
- the first absorption-type grating 31 includes a substrate 31a and a plurality of X-ray shielding portions 31b arranged on the substrate 31a.
- the second absorption type grating 32 includes a substrate 32a and a plurality of X-ray shielding portions 32b arranged on the substrate 32a.
- the substrates 31a and 32a are both made of an X-ray transparent member such as glass that transmits X-rays.
- Each of the X-ray shielding portions 31b and 32b is in one direction in a plane orthogonal to the optical axis A of the X-rays emitted from the X-ray source 11 (in the illustrated example, the y direction orthogonal to the x direction and the z direction). It is comprised by the linear member extended
- a material of each X-ray shielding part 31b, 32b a material excellent in X-ray absorption is preferable, and for example, a heavy metal such as gold or platinum is preferable.
- These X-ray shielding portions 31b and 32b can be formed by a metal plating method or a vapor deposition method.
- X-ray shielding portion 31b is in a plane perpendicular to the optical axis A of the X-ray, with grating pitch p 1 in the constant direction (x-direction) orthogonal to the one direction, arranged at predetermined intervals d 1 from each other Has been.
- X-ray shielding portion 32b in the plane orthogonal to the optical axis A of the X-ray, with grating pitch p 2 of the constant in the direction (x-direction) orthogonal to the one direction, the predetermined distance d 2 from each other It is arranged in a space.
- the first and second absorption gratings 31 and 32 do not give a phase difference to incident X-rays but give an intensity difference, they are also called amplitude gratings.
- the slit portions may not be voids, and the voids may be filled with an X-ray low-absorbing material such as a polymer or a light metal.
- the first and second absorption type gratings 31 and 32 are configured to project the X-rays that have passed through the slit portion almost geometrically regardless of the presence or absence of the Talbot interference effect. More specifically, by setting the distances d 1 and d 2 to a value sufficiently larger than the effective wavelength of X-rays emitted from the X-ray source 11, most of the irradiated X-rays are not diffracted at the slit portion.
- a self-image of the first absorption type grating 31 can be formed behind the first absorption type grating 31. For example, when tungsten is used as the target of the radiation source and the tube voltage is 50 kV, the effective wavelength of X-ray is about 0.4 mm.
- the distances d 1 and d 2 are set to about 1 to 10 ⁇ m, the radiation image formed by the radiation that has passed through the slit portion becomes such that the effect of diffraction can be ignored, and the first absorption grating 31 can be ignored.
- the self-image of the first absorption-type grating 31 is projected almost geometrically.
- the X-ray emitted from the X-ray source 11 is not a parallel beam but a cone beam having the X-ray focal point 18b as a light emission point, and therefore a projected image projected through the first absorption grating 31 (hereinafter referred to as a projection image).
- the projection image is referred to as a G1 image) and is enlarged in proportion to the distance from the X-ray focal point 18b.
- the grating pitch p 2 of the second absorption type grating 32 is determined so that the slit portion substantially coincides with the periodic pattern of the bright part of the G1 image at the position of the second absorption type grating 32.
- the grating pitch p 2 is determined so as to satisfy the relationship of the following formula (1).
- the distance L 2 from the first absorption type grating 31 to the second absorption type grating 32 is limited to the Talbot interference distance determined by the grating pitch of the first diffraction grating and the X-ray wavelength.
- the imaging unit 12 of the present X-ray imaging system 10 has a configuration in which the first absorption grating 31 projects incident X-rays without diffracting, and the G1 image of the first absorption grating 31 is the first. because at every position of the rear absorption type grating 31 similarly obtained, the distance L 2, can be set independently of the Talbot distance.
- the imaging unit 12 does not constitute a Talbot interferometer, but the Talbot interference distance Z when it is assumed that X-rays are diffracted by the first absorption type grating 31 is the first absorption type grating.
- the grating pitch p 1 of 31, the grating pitch p 2, X-ray wavelength of the second absorption-type grating 32 (effective wavelength) lambda, and using the positive integer m, is expressed by the following equation (2).
- Equation (2) is an equation representing the Talbot interference distance when the X-ray irradiated from the X-ray source 11 is a cone beam, “Timm Weitkamp, et al., Proc. Of SPIE, Vol. 6318, 2006. It can be obtained from the formula described in “Year Salary 63180S”.
- Talbot distance Z by the following equation (4) and in the case of X-rays emitted from the X-ray source 11 can be regarded as substantially parallel beams, the distance L 2, the value of the range that satisfies the following equation (5) Set to.
- the X-ray shielding portions 31b and 32b preferably completely shield (absorb) X-rays in order to generate a periodic pattern image with high contrast, but the above-described materials (gold, platinum) having excellent X-ray absorption properties Etc.), there are not a few X-rays that are transmitted without being absorbed. Therefore, in order to enhance the shielding of the X-rays, the X-ray shielding portion 31b, the respective thicknesses h 1, h 2 of 32b, it is preferable to increase the thickness much as possible. For example, when the tube voltage of the X-ray tube 18 is 50 kV, it is preferable to shield 90% or more of the irradiated X-rays. In this case, the thicknesses h 1 and h 2 are 100 ⁇ m or more in terms of gold (Au). It is preferable that
- the X-rays irradiated from the X-ray source 11 are cone beams
- the thicknesses h 1 and h 2 of the X-ray shielding portions 31b and 32b are too thick, the X-rays incident obliquely enter the slit portion.
- vignetting occurs, and the effective visual field in the direction (x direction) perpendicular to the extending direction (strand direction) of the X-ray shielding portions 31b and 32b becomes narrow. Therefore, in view of the field of view secured to define the upper limit of the thickness h 1, h 2.
- the effective visual field length V in the x direction is 10 cm.
- the thickness h 1 may be 100 ⁇ m or less and the thickness h 2 may be 120 ⁇ m or less.
- an intensity-modulated image is formed by superimposing the G1 image of the first absorption-type grating 31 and the second absorption-type grating 32 and is captured by the FPD 30. .
- the FPD 30 is a pixel on which radiation propagating off the lattice area of the first and second absorption type gratings 31 and 32 (area where the X-ray shielding portions 31b and 32b are periodically arranged) is incident. 40. That is, in the projection onto the detection surface of the FPD 30 with the X-ray focal point 18b as the viewpoint, the projections of the first and second absorption gratings 31 and 32 are substantially coincident, and the detection surface of the FPD 30 is It is larger than the projection of the second absorption type gratings 31 and 32.
- the group of pixels 40 belonging to the region 30A where the projections of the first and second absorption gratings 31 and 32 overlap is the G1 image of the first absorption grating 31 and the second absorption type.
- An image whose intensity is modulated by superimposing with the grating 32 is detected (hereinafter, pixels belonging to the region 30A are referred to as image detection pixels).
- image detection pixels pixels belonging to the region 30A are referred to as image detection pixels.
- radiation propagating out of the grating regions of the first and second absorption type gratings 31 and 32 is transmitted. Incident.
- the region 30 ⁇ / b> B is provided along one side of the detection surface of the FPD 30.
- Each of the plurality of pixels 40 belonging to the region 30B is used for detecting the dose of radiation incident thereon (hereinafter, the pixel belonging to the region 30B is referred to as a dose detection pixel).
- the pattern period p 1 ′ of the G1 image at the position of the second absorption grating 32 and the substantial grating pitch p 2 ′ (substantial pitch after production) of the second absorption grating 32 are manufacturing errors. Some differences occur due to or placement errors. Among these, the arrangement error means that the substantial pitch in the x direction changes due to the relative inclination and rotation of the first and second absorption gratings 31 and 32 and the distance between the two changes. I mean.
- the period T of the moire fringes on the detector surface is expressed by the following equation (8).
- the arrangement pitch P in the x direction of the pixels 40 needs to be at least not an integral multiple of the moire period T, and it is necessary to satisfy the following equation (9) (where n Is a positive integer).
- the arrangement pitch P of the pixels 40 of the FPD 30 is a value determined by design (generally about 100 ⁇ m) and is difficult to change, the magnitude relationship between the arrangement pitch P and the moire period T is adjusted. Adjusts the positions of the first and second absorption gratings 31 and 32 and changes the moire period T by changing at least one of the pattern period p 1 ′ and the grating pitch p 2 ′ of the G1 image. It is preferable to do.
- FIG. 6 shows a method of changing the moire cycle T.
- the moire period T can be changed by relatively rotating one of the first and second absorption gratings 31 and 32 around the optical axis A.
- a relative rotation mechanism 50 that rotates the second absorption grating 32 relative to the first absorption grating 31 relative to the optical axis A is provided.
- the substantial grating pitch in the x direction changes from “p 2 ′” ⁇ “p 2 ′ / cos ⁇ ”.
- the moire cycle T changes (FIG. 6A).
- the change of the moire period T is such that either one of the first and second absorption type gratings 31 and 32 is relatively centered about an axis perpendicular to the optical axis A and along the y direction. It can be performed by inclining.
- a relative tilt mechanism 51 that tilts the second absorption type grating 32 relative to the first absorption type grating 31 about an axis perpendicular to the optical axis A and along the y direction is provided.
- the second absorption type grating 32 is inclined by the angle ⁇ by the relative inclination mechanism 51, the substantial lattice pitch in the x direction changes from “p 2 ′” ⁇ “p 2 ′ ⁇ cos ⁇ ”.
- the moire cycle T changes (FIG. 6B).
- the moire period T can be changed by relatively moving one of the first and second absorption gratings 31 and 32 along the direction of the optical axis A.
- the second absorption type grating 32 is changed so as to change the distance L 2 between the first absorption type grating 31 and the second absorption type grating 32.
- a relative movement mechanism 52 that relatively moves along the direction of the optical axis A is provided.
- the G1 image of the first absorption type grating 31 projected onto the position of the second absorption type grating 32.
- the pattern period of “p 1 ′” ⁇ “p 1 ′ ⁇ (L 1 + L 2 + ⁇ ) / (L 1 + L 2 )” changes, and as a result, the moire period T changes (FIG. 6C).
- imaging unit 12 is not the Talbot interferometer as described above, since the distance L 2 can be freely set, moire by changing the distance L 2 as relative movement mechanism 52 A mechanism for changing the period T can be suitably employed.
- the change mechanism (relative rotation mechanism 50, relative tilt mechanism 51, and relative movement mechanism 52) of the first and second absorption gratings 31 and 32 for changing the moiré period T is constituted by an actuator such as a piezoelectric element. Is possible.
- the moire fringes detected by the FPD 30 are modulated by the subject H.
- This modulation amount is proportional to the angle of the X-ray deflected by the refraction effect by the subject H. Therefore, the phase contrast image of the subject H can be generated by analyzing the moire fringes detected by the FPD 30.
- FIG. 7 shows one X-ray refracted according to the phase shift distribution ⁇ (x) of the subject H in the x direction.
- Reference numeral 55 indicates an X-ray path that travels straight when the subject H is not present. The X-ray that travels along the path 55 passes through the first and second absorption gratings 31 and 32 and enters the FPD 30. To do.
- Reference numeral 56 indicates an X-ray path refracted and deflected by the subject H when the subject H exists. X-rays traveling along this path 56 are shielded by the second absorption type grating 32 after passing through the first absorption type grating 31.
- phase shift distribution ⁇ (x) of the subject H is expressed by the following equation (11), where n (x, z) is the refractive index distribution of the subject H, and z is the direction in which the X-ray travels.
- the G1 image projected from the first absorptive grating 31 to the position of the second absorptive grating 32 is displaced in the x direction by an amount corresponding to the refraction angle ⁇ due to refraction of X-rays at the subject H. become.
- This amount of displacement ⁇ x is approximately expressed by the following equation (12) based on the small X-ray refraction angle ⁇ .
- the refraction angle ⁇ is expressed by Expression (13) using the X-ray wavelength ⁇ and the phase shift distribution ⁇ (x) of the subject H.
- the displacement amount ⁇ x of the G1 image due to the refraction of X-rays at the subject H is related to the phase shift distribution ⁇ (x) of the subject H.
- the amount of displacement ⁇ x is expressed by the following equation with the phase shift amount ⁇ of the signal output from each pixel 40 of the FPD 30 (the phase shift amount of the signal of each pixel 40 with and without the subject H): It is related as shown in (14).
- phase shift amount ⁇ of the signal of each pixel 40 the refraction angle ⁇ is obtained from the equation (14), and the differential amount of the phase shift distribution ⁇ (x) is obtained using the equation (13).
- a phase shift distribution ⁇ (x) of the subject H that is, a phase contrast image of the subject H can be generated.
- the phase shift amount ⁇ is calculated using a fringe scanning method described below.
- the fringe scanning method imaging is performed while one of the first and second absorption type gratings 31 and 32 is translated in a stepwise manner relative to the other in the x direction (that is, the phase of both grating periods is changed). Shoot while changing).
- the second absorption grating 32 is moved by the scanning mechanism 33 described above, but the first absorption grating 31 may be moved.
- the moire fringes move, and the translation distance (the amount of movement in the x direction) is one period of the grating period of the second absorption type grating 32 (grating pitch p 2 ). (Ie, when the phase change reaches 2 ⁇ ), the moire fringes return to their original positions.
- Such a change in moire fringes is obtained by photographing the moire fringes with the FPD 30 while moving the second absorption grating 32 by an integer of the grating pitch p 2, and from each of the photographed plural fringe images, The signal is acquired and processed by the processing unit 22 to obtain the phase shift amount ⁇ of the signal of each pixel 40.
- FIG. 8 schematically shows how the second absorption grating 32 is moved by the scanning pitch (p 2 / M) obtained by dividing the grating pitch p 2 into M (an integer of 2 or more).
- the initial position of the second absorption grating 32 is the same as the dark part of the G1 image at the position of the second absorption grating 32 when the subject H is not present.
- x is a coordinate in the x direction of the pixel 40
- a 0 is the intensity of the incident X-ray
- An is a value corresponding to the contrast of the pixel value of the pixel 40 (where n is a positive value). Is an integer).
- ⁇ (x) represents the refraction angle ⁇ as a function of the coordinate x of the pixel 40.
- arg [] means the extraction of the declination, and corresponds to the phase shift amount ⁇ of the signal of each pixel 40. Therefore, the refraction angle ⁇ (x) is obtained by calculating the phase shift amount ⁇ of the signal of each pixel 40 from the M pixel values obtained in each pixel 40 based on the equation (17).
- FIG. 9 shows a signal of one pixel of the radiation image detector that changes with the fringe scanning.
- the M pixel values obtained in each pixel 40 periodically change with a period of the grating pitch p 2 with respect to the position k of the second absorption type grating 32.
- a broken line in FIG. 9 indicates a change in the pixel value when the subject H does not exist, and a solid line in FIG. 9 indicates a change in the pixel value when the subject H exists.
- the phase difference between the two waveforms corresponds to the phase shift amount ⁇ of the signal of each pixel 40.
- the phase shift distribution is obtained by integrating the refraction angle ⁇ (x) along the x-axis. ⁇ (x) is obtained.
- the y coordinate in the y direction of the pixel 40 is not taken into consideration. However, by performing the same calculation for each y coordinate, a two-dimensional phase shift distribution ⁇ (x , Y).
- FIG. 10 shows a flow of a phase contrast image generation process in the radiation imaging system of FIG.
- control device 20 sends a control signal instructing the start of X-ray irradiation to the X-ray source control unit 17.
- the X-ray control unit 17 that has received this control signal controls the high voltage generator 16 so as to start supplying power to the X-ray tube 18. Thereby, irradiation of the subject H with X-rays is started (step S1).
- An image formed by superimposing the G1 image of the first absorption type grating 31 modulated by the subject H and the second absorption type grating 32 is picked up by the group of image detection pixels 40 of the FPD 30.
- X-rays propagating off the first and second absorption gratings 31 and 32 enter the group of dose detection pixels 40 of the FPD 30, and charges corresponding to the dose of the incident X-rays are those doses. Accumulated in the detection pixel 40.
- the control device 20 measures an elapsed time T after sending a control signal instructing the X-ray source control unit 17 to start X-ray irradiation, and the elapsed time T is set to a preset irradiation time T 0 . When it reaches, a control signal for instructing to stop X-ray irradiation is sent to the X-ray source control unit 17 (step S2).
- the X-ray control unit 17 receives the control signal sent from the control device 20 and controls the high voltage generator 16 to stop the supply of power to the X-ray tube 18. Thereby, irradiation of the subject H with X-rays is stopped (step S3).
- image data is output from the FPD 30 (step S4), and the arithmetic processing unit 22 performs luminance correction described later on the image data output from the FPD 30 (step S5).
- the arithmetic processing unit 22 calculates the phase shift distribution ⁇ according to the above-described procedure using the image data acquired by M times of photographing and subjected to luminance correction, and stores this in the storage unit 23 as a phase contrast image (step S6).
- the X-ray irradiation time in each imaging is constant, but the irradiation dose varies between imaging due to the rise characteristics and fall characteristics of the X-ray tube 18. Due to the variation in irradiation dose between photographings, an overall luminance change occurs between image data. Therefore, the arithmetic processing unit 22 performs luminance correction on each image data.
- the pixel value (luminance) of each pixel in the image data corresponds to the X-ray dose incident on that pixel.
- X-rays propagating out of the grating regions of the first and second absorption gratings 31 and 32 are incident on the dose detection pixel 40, and thus the G1 image and the second absorption of the first absorption grating 31 are incident.
- Moire fringes due to superimposition with the mold grating 32 are not formed on the dose detection pixels 40. Therefore, in the dose detection pixel 40, the dose of X-rays incident within the irradiation time does not change due to the change of the overlap with the dark part of the moire fringe, and the pixel value of the dose detection pixel 40 varies between the image data. Is due to variations in irradiation dose between imaging.
- the arithmetic processing unit 22 performs luminance correction on each image data so that the pixel value of the dose detection pixel 40 in each image data is matched between the image data.
- luminance correction is performed on each image data so that the sum or average of the pixel values is matched.
- the pixel value of the dose detection pixel 40 in the image data acquired by the first imaging is used as the reference value.
- all the pixels of the image data are multiplied by the reciprocal of the ratio of the pixel value of the dose detection pixel 40 included in the image data to the reference value.
- the pixel value of the dose detection pixel 40 of each image data acquired in the second and subsequent imaging is adjusted to the reference value, and the pixel value of each pixel 40 excluding the dose detection pixel 40 is the pixel of the other pixel 40. Correction is performed while maintaining the ratio to the value. Thereby, the change of the pixel value of each pixel 40 resulting from the variation of the irradiation dose between imaging
- photography is removed or reduced.
- the X-ray irradiation time does not need to be constant because the change in the pixel value of each pixel 40 due to the variation in the irradiation dose during imaging is eliminated or reduced by this luminance correction.
- the above-described fringe scanning and phase contrast image generation processing is automatically performed after the imaging instruction is given by the operator from the input device 21, and the respective units are linked and operated based on the control of the control device 20.
- the phase contrast image of the subject H is displayed on the monitor 24.
- the X-ray propagating out of the lattice area of the first and second absorption gratings 31 and 32 is detected by the dose detection pixel 40, Moire fringes due to the superposition of the G1 image of the first absorption-type grating 31 and the second absorption-type grating 32 are not formed on the dose detection pixels, and therefore the dose can be accurately measured without being affected by the moire fringes. Can be detected. Thereby, the variation of the irradiation dose between imaging
- the accuracy of dose detection can be increased, and the accuracy of luminance correction of each image data can be increased.
- the photographing unit 12 can be downsized (thinned).
- both the first and second gratings are absorption type.
- the present invention is not limited to this.
- the present invention is also useful when the refraction angle ⁇ is calculated by performing fringe scanning on the Talbot interference image.
- the first grating is not limited to the absorption type grating but may be a phase type grating.
- the method of analyzing the moire fringes formed by superimposing the X-ray image of the first grating and the second grating is not limited to the above-described fringe scanning method. For example, “J. Opt. Soc. Am. Vol” Various methods using Moire fringes, such as a method using Fourier transform / inverse Fourier transform known as “.72, No. 1 1982 (1982) P.156”, can also be applied.
- phase shift distribution ⁇ as an image has been described as being stored or displayed as a phase contrast image.
- the phase shift distribution ⁇ integrates the differential amount of the phase shift distribution ⁇ obtained from the refraction angle ⁇ .
- the differential amounts of the refraction angle ⁇ and the phase shift distribution ⁇ are also related to the X-ray phase change by the subject. Therefore, an image having the refraction angle ⁇ as an image and an image having the differential amount of the phase shift ⁇ are also included in the phase contrast image.
- phase differential image (a differential amount of the phase shift distribution ⁇ ) may be created from an image group acquired by photographing (pre-photographing) in the absence of a subject.
- This phase differential image reflects the phase unevenness of the detection system (including phase shift due to moire, grid nonuniformity, refraction of the dose detector, etc.).
- a phase differential image is created from a group of images acquired by shooting (main shooting) in the presence of a subject, and the phase differential image obtained by pre-shooting is subtracted from this to correct phase irregularity in the measurement system.
- a phase differential image can be obtained.
- FIG. 11 shows another example of a radiation imaging system for explaining an embodiment of the present invention.
- An X-ray imaging system 70 shown in FIG. 11 is an X-ray diagnostic apparatus that images a subject H in a supine or sitting position.
- FIG. 11 captures an X-ray image (phase contrast image) of the knee of the subject H. An example is shown.
- the X-ray imaging system 70 is held by a bed 71 on which a subject or an imaging region of the subject is placed, and an X-ray source holding device 14 suspended from the ceiling vertically above the bed 71 and directed toward the subject placed on the bed 71.
- this X-ray imaging system 70 is used also when image
- the hand and arm of the subject H are placed on the bed 71.
- FIG. 12 shows another example of a radiation imaging system for explaining an embodiment of the present invention.
- the radiography system shown in FIG. 12 is a mammography apparatus that captures an X-ray image (phase contrast image) of the breast B.
- the mammography apparatus 80 is disposed at one end of an arm member 81 that is pivotally connected to a base (not shown), and disposed at the other end of the arm member 81.
- An imaging table 83 and a compression plate 84 configured to be movable in the vertical direction with respect to the imaging table 83 are provided.
- the X-ray source storage unit 82 stores the X-ray source 11, and the imaging table 83 stores the imaging unit 12.
- the X-ray source 11 and the imaging unit 12 are arranged to face each other.
- the compression plate 84 is moved by a moving mechanism (not shown), and the breast B is sandwiched between the imaging table 83 and compressed.
- the X-ray imaging described above is performed in this compressed state. Since the X-ray source 11 and the imaging unit 12 have the same configuration as that of the X-ray imaging system 10 described above, the same reference numerals as those of the X-ray imaging system 10 are given to the respective components. Since other configurations and operations are the same as those of the X-ray imaging system 10, description thereof will be omitted.
- FIG. 13 shows a modification of the radiation imaging system of FIG.
- the mammography apparatus 80 differs from the mammography apparatus 80 described above in that the first absorption type grating 31 is disposed between the X-ray source 11 and the compression plate 84.
- the first absorption type lattice 31 is accommodated in a lattice accommodation portion 85 connected to the arm member 81.
- the FPD 30, the second absorption grating 32, and the scanning mechanism 33 that constitute the imaging unit 12 together with the first absorption grating 31 are housed in the imaging table 83.
- the mammography apparatus 80A can obtain a phase contrast image of the breast B based on the principle described above.
- this mammography apparatus 80A since the X-ray whose dose is almost halved is irradiated to the breast B due to the shielding by the first absorption grating 31, the exposure amount of the breast B is set to the above-described mammography apparatus 80. It can be reduced to about half of the case. Note that the arrangement of the subject between the first absorption type grating 31 and the second absorption type grating 32 as in the mammography apparatus 80A can be applied to any of the X-ray imaging systems described above. Is possible.
- the plurality of dose detection pixels 40 have been described as being formed as one group along one side of the detection surface of the FPD 30.
- the arrangement of the dose detection pixels 40 is, for example, As shown in FIG. 14, it may be frame-shaped (FIG. 14A) or distributed in four corners (FIG. 14B). It can be set as appropriate according to the procedure.
- the dose detection pixel 40 is provided at a position that does not overlap the subject on the detection surface of the FPD 30, and detects X-rays that propagate outside the subject. X-rays incident on the dose detection pixel 40 where the subject overlaps are attenuated by the subject. Therefore, by providing the dose detection pixel 40 at a position where the subject does not overlap on the detection surface of the FPD 30, it is possible to detect the dose more accurately. The change of the pixel value of each pixel 40 resulting from it can be removed or reduced.
- a plurality of dose detection pixels 40 along two sides along the longitudinal direction of the leg on the detection surface of the FPD 30.
- FIG. 15A when photographing the hand of the subject H, a plurality of dose detection pixels 40 are formed in a substantially U shape along three sides excluding the side intersecting the arm on the detection surface of the FPD 30.
- FIG. 15B when photographing the hand of the subject H, a plurality of dose detection pixels 40 are formed in a substantially U shape along three sides excluding the side intersecting the arm on the detection surface of the FPD 30.
- a plurality of dose detection pixels 40 may be provided in a substantially U shape along three sides excluding the side along the chest wall of the subject H on the detection surface of the FPD 30.
- the pixel value of the dose detection pixel 40 where the subject overlaps is smaller than the pixel value of the dose detection pixel 40 where the subject does not overlap because the X-rays incident thereon are attenuated by the subject. Therefore, based on the pixel value of the dose detection pixel 40, it may be determined whether each dose detection pixel 40 is overlapped with the subject. For example, a predetermined threshold value is provided for the pixel value, and the pixel value of the dose detection pixel 40 is compared with the threshold value so that the dose detection pixel 40 having a pixel value less than the threshold value is determined as the dose detection pixel 40 on which the subject overlaps.
- the arithmetic processing unit 22 is configured so that the pixel value of the dose detection pixel 40 with which the subject overlaps is not used in the luminance correction described above, the irradiation dose during imaging can be more reliably as in the example shown in FIG. It is possible to remove or reduce the change in the pixel value of each pixel 40 due to the variation in the number of pixels. According to such a configuration, it is not necessary to change the setting of the arrangement of the dose detection pixels 40 according to the subject in order to avoid the overlap between the dose detection pixels 40 and the subject.
- FIG. 16 shows a configuration of an imaging unit related to an example of a radiation imaging system for explaining an embodiment of the present invention.
- the dose detection pixel 40 of the FPD 30 has been described as being incident with X-rays propagating off both the grating regions of the first and second absorption gratings 31 and 32.
- the moire fringes are not formed on the dose detection pixel 40, so that the first absorption type lattice 31 is out of the lattice region, and the second absorption type lattice 32 is formed.
- X-rays propagating through the grating region can also be configured to enter the dose detection pixel 40, and the grating region of the first absorption grating 31 can be separated from the grating region of the second absorption grating 32.
- the X-rays incident on the dose detection pixel 40 are attenuated by passing through the second absorption grating 32.
- Shooting conditions are defined. Therefore, in the case where X-rays propagating out of the lattice regions of the first and second absorption type gratings 31 and 32 are incident on the dose detection pixel 40, the pixel of the dose detection pixel 40 depends on the imaging conditions.
- the value is saturated. Therefore, X-rays attenuated by passing through one grating region of the first and second absorption gratings 31 and 32 (in this example, the grating region of the second absorption grating 32) are dose detection pixels 40. In this case, the pixel value of the dose detection pixel 40 can be prevented from being saturated. Furthermore, according to the above configuration, one of the first and second absorption type gratings 31 and 32 located in the traveling path of the X-rays incident on the dose detection pixel 40 also serves as a scattering removal grid. I can do it. Therefore, it is possible to exclude the influence of scattering caused by a subject or the like, and to perform dose detection more accurately.
- FIG. 17 shows a configuration of an imaging unit regarding a modification of the X-ray imaging system 60 described above.
- the X-ray imaging system 60A shown in FIG. 17 is configured such that X-rays propagating off both the grating regions of the first and second absorption gratings 31 and 32 are incident on the dose detection pixel 40 of the FPD 30.
- an X-ray attenuator 61 overlapping the dose detection pixel 40 is provided.
- the X-ray attenuator 61 is formed in a foil or plate shape having a uniform thickness, and the first and second absorption gratings are projected on the detection surface of the FPD 30 with the X-ray focal point 18b as a viewpoint. 31 and 32 are provided so as to cover a region 30B that is out of projection.
- a material of the X-ray attenuator 61 for example, a metal material such as gold, platinum, lead, tungsten, aluminum, copper, and iron is preferably used.
- the X-ray attenuator 61 is an X-ray absorptivity of the material used. Therefore, it is formed in an appropriate thickness.
- nonmetallic materials such as a polymer, a silicon
- the X-ray attenuator 61 configured as described above attenuates incident X-rays uniformly, and X-rays transmitted therethrough enter the dose detection pixels 40 belonging to the region 30B. Thereby, saturation of the pixel value of the dose detection pixel 40 can be prevented, and dose detection by the dose detection pixel 40 can be performed normally.
- the X-ray attenuator 61 may be configured so that X-rays that pass through one of the first and second absorption gratings 31 and 32 and propagate through the grating area are incident on the dose detection pixel 40. Good. According to this, since the X-rays are attenuated by passing through one of the first and second absorption type gratings 31 and 32, the pixel value of the dose detection pixel 40 is more reliably prevented from being saturated. Or the thickness of the X-ray attenuator 61 can be kept relatively small.
- the dose detection pixel can be obtained by transmitting the X-ray attenuator 61 or transmitting the X-ray attenuator 61 and passing through one of the first and second absorption gratings 31 and 32.
- the pixel value of 40 is saturated, if it is due to the dynamic range of the readout circuit 43 (see FIG. 3) of the FPD 30, by using an integration amplifier circuit with a smaller amplification factor in the readout circuit 43, It is possible to prevent the pixel value of the dose detection pixel 40 from being saturated.
- several types of integration amplifier circuits having different amplification factors may be provided in the readout circuit 43, and an integration amplifier circuit having an appropriate amplification factor may be selectively used according to the photographing conditions.
- the X-ray attenuator 61 is placed on the detection surface of the FPD 30.
- the X-ray attenuator 61 is preferably arranged so that the transmission surface of the transmitted X-ray is in close contact with or very close to the detection surface of the FPD 30.
- scattering occurs due to transmission through the X-ray attenuator 61, the smaller the distance between the exit surface of the X-ray attenuator 61 and the detection surface of the FPD 30, the more the X-ray dissipation can be reduced. More accurate dose detection is possible.
- the X-ray attenuator 61 When the X-ray propagating through one of the first and second absorption-type gratings 31 and 32 is incident on the dose detection pixel 40, the X-ray attenuator 61 is connected to one of the X-ray attenuators 61. You may arrange
- One of the first and second absorption-type gratings 31 and 32 positioned in the traveling path of the X-rays incident on the dose detection pixel 40 can also serve as a scatter removal grid. Is disposed upstream of one of the gratings, the influence of scattering by the X-ray attenuator 61 can be eliminated, and accurate dose detection can be performed.
- the thickness of the X-ray attenuator 61 is different in each part, and in the example shown in the figure, the thickness increases or decreases stepwise in the width direction. According to such a configuration, for example, even if the pixel value is saturated in the dose detection pixel 40 where the portion 61a having the smallest thickness overlaps in the X-ray attenuator 61, the pixel in the dose detection pixel 40 where the portions 61b and 61c having larger thickness overlap. The value is not saturated and dose detection can be performed normally. Thereby, it is possible to cope with more imaging conditions using the single X-ray attenuator 61.
- An X-ray attenuator can also be configured by arranging a plurality of attenuation materials (for example, platinum, gold, lead, silver, tungsten, molybdenum, etc.) having the same thickness but different attenuation coefficients in a direction perpendicular to the thickness direction. .
- the thickness of the X-ray attenuator can be made uniform, and the attenuation can be changed in each part.
- first and second damping materials 62 and 63 having different damping coefficients are laminated in the thickness direction, and the ratio of the thicknesses of the first and second damping materials 62 and 63 is set for each part.
- the X-ray attenuator 61 can be configured differently. Also in this case, the thickness of the X-ray attenuator can be made uniform and the attenuation can be changed in each part.
- the output of each pixel with respect to the incident dose may not be linear.
- the slope of output characteristics may differ between a high dose and a low dose.
- the configuration for preventing saturation of the pixel value of the dose detection pixel 40 described with reference to FIGS. 16 to 20 can be applied to any of the X-ray imaging systems described above.
- FIG. 21 shows an example of a radiation imaging system for explaining the embodiment of the present invention
- FIG. 22 shows a configuration of an imaging unit of the radiation imaging system of FIG.
- phase contrast image of an X-ray weakly absorbing object that has been difficult to draw
- an absorption image is referenced corresponding to the phase contrast image. What you can do will help you interpret. For example, it is effective to supplement the portion that could not be represented by the absorption image with the information of the phase contrast image by superimposing the absorption image and the phase contrast image by appropriate processing such as weighting, gradation, and frequency processing.
- An X-ray imaging system 90 shown in FIG. 21 includes a phase imaging mode in which the first and second absorption gratings 31 and 32 are arranged in the X-ray irradiation field, and a phase contrast image of the subject H is generated by the above-described fringe scanning.
- the first and second absorption type gratings 31 and 32 are retracted from the X-ray irradiation field, and a normal imaging mode for generating an image (absorption image) based on an X-ray intensity change by the subject H is provided.
- a moving mechanism 91 for retracting the first and second absorption type gratings 31 and 32 from the X-ray irradiation field is further provided.
- phase imaging mode that is, insertion of the first and second absorption gratings 31 and 32 into the X-ray irradiation field and withdrawal from the irradiation field, for example, according to an input operation on the console 13
- the control device 22 driving the moving mechanism 91.
- the moving mechanism 91 for example, a linear motion mechanism such as a ball screw or a linear motor can be used.
- the X-ray imaging system 90 is provided with an X-ray attenuator 61 for preventing saturation of the pixel value of the dose detection pixel 40 of the FPD 30 as in the X-ray imaging system 60A shown in FIG. .
- the X-ray attenuator 61 is placed on the detection surface of the FPD 30, but in the X-ray imaging system 90, the X-ray attenuator 61 is the second absorption type grating. 32 is integrated.
- the generation process of the absorption image in the normal imaging mode is different from the above-described generation process of the phase contrast image by the fringe scanning, and only needs to be performed once. For this reason, it is not necessary to measure the variation in the irradiation dose between radiographs, and the X-ray attenuator 61 is also unnecessary. Therefore, in the present X-ray imaging system 90, the X-ray attenuator 61 and the first absorption type gratings 31 and 32 are also retracted from the X-ray irradiation field. Thereby, the entire detection surface of the FPD 30 can be effectively utilized.
- a separate moving mechanism may be provided to insert and retract the X-ray attenuator 61 from the X-ray irradiation field.
- the X-ray attenuator 61 is provided in the X-ray imaging system 90. Is integrated with the second absorption type grating 32, and is moved together with the second absorption type grating 32 by the moving mechanism 91. Thereby, the configuration of the apparatus can be simplified.
- the X-ray attenuator 61 formed separately from the second absorption type grating 32 is assembled to the second absorption type grating 32, and both are integrated. It is also possible to form the attenuating body 61 in the second absorption type grating 32 so that both are integrated. Furthermore, if the same material (gold, platinum, etc.) as the X-ray shielding part 32b of the second absorption type grating 32 is used as the material of the X-ray attenuator 61, the X-ray shielding part can be obtained by metal plating or vapor deposition. It can be formed simultaneously with 32b.
- an X-ray attenuation body 61 is provided integrally with the first absorption type grating 31, and the X-ray attenuation body 61 is moved together with the first absorption type grating 31. May be.
- FIG. 23 shows another example of a radiation imaging system for explaining an embodiment of the present invention.
- the X-ray imaging system 100 is different from the X-ray imaging system 10 described above in that a multi-slit 103 is provided in the collimator unit 102 of the X-ray source 101. Since other configurations are the same as those of the X-ray imaging system 10 described above, description thereof will be omitted.
- the focal point of the X-ray focal point 18b when the distance from the X-ray source 11 to the FPD 30 is set to a distance (1 m to 2 m) set in a general hospital imaging room, the focal point of the X-ray focal point 18b.
- the blur of the G1 image due to the size (generally about 0.1 mm to 1 mm) is affected, and there is a possibility that the image quality of the phase contrast image is deteriorated. Therefore, it is conceivable to install a pinhole immediately after the X-ray focal point 18b to effectively reduce the focal spot size. However, if the aperture area of the pinhole is reduced to reduce the effective focal spot size, the X-ray focal point is reduced. Strength will fall.
- the multi-slit 103 is disposed immediately after the X-ray focal point 18b.
- the multi-slit 103 is an absorption type grating (third absorption type grating) having a configuration similar to that of the first and second absorption type gratings 31 and 32 provided in the imaging unit 12, and is in one direction (y direction).
- the extended X-ray shielding portions are periodically arranged in the same direction (x direction) as the X-ray shielding portions 31b and 32b of the first and second absorption gratings 31 and 32.
- the multi-slit 103 is intended to form a large number of small-focus light sources (dispersed light sources) arranged at a predetermined pitch in the x direction by partially shielding the radiation emitted from the X-ray focal point 18b. .
- the lattice pitch p 3 of the multi-slit 103 needs to be set so as to satisfy the following formula (18), where L 3 is the distance from the multi-slit 103 to the first absorption-type lattice 31.
- Expression (18) indicates that the projection image (G1 image) of the X-rays emitted from the small-focus light sources dispersedly formed by the multi-slit 103 by the first absorption-type grating 31 is the position of the second absorption-type grating 32. This is a geometric condition for matching (overlapping).
- the grating pitch p2 of the second absorption grating 32 is determined so as to satisfy the relationship of the following equation (19).
- the G1 images based on the plurality of small focus light sources formed by the multi slit 103 are superimposed, thereby improving the image quality of the phase contrast image without decreasing the X-ray intensity. Can be improved.
- the multi slit 103 described above can be applied to any of the X-ray imaging systems described above. When applied to the X-ray imaging system 90 described above, in normal imaging performed by retracting the first and second absorption gratings 31 and 32 from X-ray irradiation, the multi-slit 103 is also used in the X-ray irradiation field. Evacuate from.
- FIG. 24 shows another example of a radiation imaging system for explaining an embodiment of the present invention.
- an absorption image is captured separately from the phase contrast image.
- it is difficult to satisfactorily superimpose due to a shift in the imaging position between the phase contrast image capture and the absorption image capture.
- it may be a burden on the subject due to an increase in the number of imaging.
- small-angle scattered images have attracted attention in addition to phase contrast images and absorption images.
- the small-angle scattered image can express tissue properties resulting from the fine structure inside the subject tissue, and is expected as a new expression method for image diagnosis in the fields of cancer and cardiovascular diseases.
- this X-ray imaging system uses an arithmetic processing unit 190 that can generate an absorption image and a small-angle scattered image from a plurality of images acquired for a phase contrast image. Since other configurations are the same as those of the X-ray imaging system 10 described above, description thereof will be omitted.
- the absorption image generation unit 192 generates an absorption image by averaging the pixel data I k (x, y) obtained for each pixel with respect to k and calculating an average value as illustrated in FIG. To do.
- the average value may be calculated by simply averaging the pixel data I k (x, y) with respect to k. However, when M is small, the error increases, so that the pixel data I k ( After fitting x, y) with a sine wave, an average value of the fitted sine wave may be obtained.
- the generation of the absorption image is not limited to the average value, and an addition value obtained by adding the pixel data I k (x, y) with respect to k can be used as long as the amount corresponds to the average value.
- an absorption image may be created from an image group acquired by photographing (pre-photographing) in the absence of a subject.
- This absorption image reflects the transmittance unevenness of the detection system (including information such as the transmittance unevenness of the grid and the influence of the absorption of the dose detector). Therefore, a correction coefficient map for correcting the transmittance unevenness of the detection system can be created from this image.
- the small angle scattered image generation unit 193 generates a small angle scattered image by calculating and imaging the amplitude value of the pixel data I k (x, y) obtained for each pixel.
- the amplitude value may be calculated by obtaining the difference between the maximum value and the minimum value of the pixel data I k (x, y).
- M is small
- the error increases, so that the pixel data After fitting I k (x, y) with a sine wave, the amplitude value of the fitted sine wave may be obtained.
- the generation of the small-angle scattered image is not limited to the amplitude value, and a dispersion value, a standard deviation, or the like can be used as an amount corresponding to the variation centered on the average value.
- a small angle scattered image may be created from an image group obtained by photographing (pre-photographing) in the absence of a subject.
- This small-angle scattered image reflects the amplitude value unevenness of the detection system (including information such as grid pitch non-uniformity, aperture ratio non-uniformity, and non-uniformity due to relative displacement between grids). . Therefore, a correction coefficient map for correcting the amplitude irregularity of the detection system can be created from this image.
- a small-angle scatter image is created from a group of images acquired by shooting (main shooting) in the presence of a subject, and the amplitude value unevenness of the detection system is corrected by applying the above correction coefficient to each pixel.
- a small-angle scattered image can be obtained.
- an absorption image and a small angle scattered image are generated from a plurality of images acquired for the phase contrast image of the subject. There is no deviation, and it is possible to superimpose the phase contrast image with the absorption image and the small-angle scattered image, and the burden on the subject is reduced as compared with the case of separately shooting for the absorption image and the small-angle scattered image. be able to.
- the radiation used in the present invention is not limited to X-rays, and X rays such as ⁇ rays and ⁇ rays can be used. It is also possible to use radiation other than lines.
- the present specification includes a first grating and a second grating having a period that substantially matches the pattern period of the radiation image formed by the radiation that has passed through the first grating. And a radiation image detector that detects the radiation image masked by the second grating, wherein the radiation image detector has at least one grating region of the first grating and the second grating.
- a radiation image detection apparatus includes at least one dose detection pixel that is used to detect the amount of radiation that is incident on the radiation that propagates off the beam.
- the radiological image detection apparatus disclosed in the present specification further includes a radiation attenuator that overlaps each of the dose detection pixels.
- the radiation image detection apparatus disclosed in this specification is provided with a plurality of the dose detection pixels, and the radiation attenuator has different attenuation amounts in each part.
- the thickness of the radiation attenuator is different in each part.
- the radiation attenuator includes first and second radiation attenuating materials having different attenuation coefficients, and the first and second radiation attenuating materials have a thickness.
- the thickness ratios of the first and second radiation attenuating materials are different in each part of the radiation attenuating body.
- the radiation attenuator includes a plurality of radiation attenuating materials having different attenuation coefficients, and the plurality of radiation attenuating materials are arranged in a direction orthogonal to the thickness direction. Configured.
- the radiation attenuator is disposed in close contact with the detection surface of the radiological image detector.
- the radiological image detection apparatus disclosed in the present specification further includes a moving mechanism for retracting the first grating, the second grating, and the radiation attenuator from the radiation irradiation field.
- the radiation attenuator is provided integrally with the first grating or the second grating.
- the present specification discloses a radiation imaging apparatus including the above-described radiation image detection apparatus and a radiation source that emits radiation toward the first grating.
- the present specification includes the radiation image detection apparatus, a radiation source that emits radiation toward the first grating, and an arithmetic processing unit that processes image data acquired by the radiation image detector.
- a subject is disposed between the radiation source and the first grating, or between the first grating and the second grating, and the second grating is positioned with respect to the radiation image.
- a radiation imaging system that corrects brightness based on a dose detected by a dose detection pixel is disclosed.
- the present specification includes the radiation image detection apparatus, a radiation source that emits radiation toward the first grating, and an arithmetic processing unit that processes image data acquired by the radiation image detector.
- a subject is disposed between the radiation source and the first grating, or between the first grating and the second grating, and the second grating is positioned with respect to the radiation image.
- a first imaging mode in which imaging is performed a plurality of times at relative positions different from each other in phase; and the first grating, the second grating, and the radiation attenuator are retracted from a radiation irradiation field;
- There is a second imaging mode in which a subject is placed between the radiographic image detector and imaging is performed, and the arithmetic processing unit is acquired by the radiographic image detector at each imaging in the first imaging mode.
- Processed image data Radiation imaging system for brightness correction on the basis of the dose detected by said dose detection pixel are disclosed in shooting.
- the arithmetic processing unit corrects the luminance based on the dose detected by the dose detection pixel on which the radiation propagating off the subject is incident.
- the radiation imaging system disclosed in the present specification includes a plurality of the dose detection pixels, and the arithmetic processing unit is detected by a pixel whose pixel value is unsaturated among the plurality of dose detection pixels. Brightness correction based on the dose.
- the calculation processing unit is a dose detection pixel whose pixel value is closest to a pixel value of a pixel group that detects the radiation image among the plurality of dose detection pixels.
- the luminance is corrected based on the dose detected by.
- the calculation processing unit calculates a distribution of refraction angles of radiation incident on the radiation image detector from a plurality of image data whose luminance has been corrected.
- a phase contrast image is generated based on the angular distribution.
- the present invention radiation that propagates out of at least one of the first grating and the second grating is detected by the dose detection pixel, and the radiation image of the first grating is detected on the dose detection pixel.
- the moire fringes are not formed by superimposing the second grating and the second grating, so that the dose can be accurately detected by the dose detection pixels without being affected by the moire fringes.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Medical Informatics (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- General Health & Medical Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Optics & Photonics (AREA)
- High Energy & Nuclear Physics (AREA)
- Pathology (AREA)
- Heart & Thoracic Surgery (AREA)
- Radiology & Medical Imaging (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- Biophysics (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- General Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Apparatus For Radiation Diagnosis (AREA)
- Measurement Of Radiation (AREA)
- Radiography Using Non-Light Waves (AREA)
Abstract
The invention accurately detects radiation doses and generates more precise phase contrast radiographs. The X-ray imaging system (10) is provided with a first grating (31), a second grating (32) having a period that substantially coincides with the period of the radiographic pattern formed by radiation passing through the first grating, a radiographic image detector (30) that detects the radiograph masked by the second grating, and a data processing unit (22) that processes the image data acquired by the radiographic image detector. The subject is disposed between the radiation source (11) and the first grating, the radiation irradiation time is made to be constant, and imaging is performed multiple times placing the second grating at positions relative to the radiographic image such that the phases differ from each other. Brightness is corrected for the image data acquired by the radiographic image detector in each imaging on the basis of the radiation dose detected by a radiation dose-detecting pixel during said imaging.
Description
本発明は、放射線画像検出装置、並びにこの放射線画像検出装置を備える放射線撮影装置及び放射線撮影システムに関する。
The present invention relates to a radiation image detection apparatus, and a radiation imaging apparatus and a radiation imaging system including the radiation image detection apparatus.
X線は、物質を構成する元素の原子番号と、物質の密度及び厚さとに依存して減衰するといった特性を有することから、被写体の内部を透視するためのプローブとして用いられている。X線を用いた撮影は、医療診断や非破壊検査等の分野において広く普及している。
X-rays are used as a probe for seeing through the inside of a subject because they have characteristics such as attenuation depending on the atomic numbers of elements constituting the substance and the density and thickness of the substance. X-ray imaging is widely used in fields such as medical diagnosis and non-destructive inspection.
一般的なX線撮影システムでは、X線を放射するX線源とX線画像を検出するX線画像検出器との間に被写体を配置して、被写体の透過像を撮影する。この場合、X線源からX線画像検出器に向けて放射された各X線は、X線画像検出器までの経路上に存在する被写体を構成する物質の特性(原子番号、密度、厚さ)の差異に応じた量の減衰(吸収)を受けた後、X線画像検出器に入射する。この結果、被写体のX線透過像がX線画像検出器により検出され画像化される。X線画像検出器としては、X線増感紙とフイルムとの組み合わせや輝尽性蛍光体(蓄積性蛍光体)のほか、半導体回路を用いたフラットパネル検出器(FPD:Flat Panel Detector)が広く用いられている。
In a general X-ray imaging system, a subject is placed between an X-ray source that emits X-rays and an X-ray image detector that detects an X-ray image, and a transmission image of the subject is captured. In this case, each X-ray radiated from the X-ray source toward the X-ray image detector has characteristics (atomic number, density, thickness) of the substance constituting the subject existing on the path to the X-ray image detector. ), The light is incident on the X-ray image detector. As a result, an X-ray transmission image of the subject is detected and imaged by the X-ray image detector. As an X-ray image detector, there is a flat panel detector (FPD: Flat Panel Detector) using a semiconductor circuit in addition to a combination of an X-ray intensifying screen and a film, a stimulable phosphor (accumulating phosphor), and so on. Widely used.
上記のX線撮影システムでは、被写体によって異なる必要露光量に対して、X線画像検出器により得られる画像の濃度を安定させるため、あるいは必要以上に露光されることによる被写体の過度の被曝を防止するために、自動露光制御が行われている。自動露光制御では、一般に、被写体を透過したX線の線量を線量検出器で検出し、線量検出器で検出される線量が予め設定された閾値に達したところでX線の照射を停止している。また、FPDの一部の画素を用いて線量を検出し、それによって露光制御を行うものも知られている。なお、FPDの一部の画素を用いて線量を検出する場合には、画素の信号の読み出しに要する時間との関係でリアルタイムな線量検出が困難であることから、撮影に先立って行われる透視において、線量検出画素によって検出される線量が予め設定された所定値となるようにX線照射条件が調整される。そして撮影においては、透視時のX線照射条件を基に、更に透視と撮影との管電圧差などを加味して照射時間が計算され、計算された照射時間によって露光制御がなされる。
In the above X-ray imaging system, the exposure of the subject is prevented from being excessively exposed to stabilize the density of the image obtained by the X-ray image detector with respect to the required exposure amount that varies depending on the subject. Therefore, automatic exposure control is performed. In automatic exposure control, in general, the dose of X-rays transmitted through a subject is detected by a dose detector, and X-ray irradiation is stopped when the dose detected by the dose detector reaches a preset threshold value. . In addition, there is also known one that detects a dose using a part of pixels of an FPD and controls exposure by that. In addition, when detecting a dose using a part of the pixels of the FPD, since it is difficult to detect the dose in real time in relation to the time required to read out the signal of the pixel, in the fluoroscopy performed prior to imaging, The X-ray irradiation conditions are adjusted so that the dose detected by the dose detection pixels becomes a predetermined value set in advance. In imaging, the irradiation time is calculated based on the X-ray irradiation conditions at the time of fluoroscopy, further taking into account the tube voltage difference between fluoroscopy and imaging, and exposure control is performed based on the calculated irradiation time.
しかし、X線吸収能は、原子番号が小さい元素からなる物質ほど低くなり、生体軟部組織やソフトマテリアルなどでは、X線吸収能の差が小さく、従ってX線透過像としての十分な画像の濃淡(コントラスト)が得られないといった問題がある。例えば、人体の関節を構成する軟骨部とその周辺の関節液は、いずれも殆どの成分が水であり、両者のX線の吸収量の差が小さいため、画像のコントラストが得られにくい。
However, the X-ray absorptivity becomes lower as a substance composed of an element having a smaller atomic number, and the difference in the X-ray absorptivity is small in a soft tissue or soft material of a living body. Therefore, a sufficient image density as an X-ray transmission image is obtained. There is a problem that (contrast) cannot be obtained. For example, most of the components of the cartilage part constituting the joint of the human body and the joint fluid in the vicinity thereof are water, and the difference in the amount of X-ray absorption between the two is small, so that it is difficult to obtain image contrast.
このような問題を背景に、近年、被写体によるX線の強度変化に代えて、被写体によるX線の位相変化(角度変化)に基づいた画像(以下、位相コントラスト画像と称する)を得るX線位相イメージングの研究が盛んに行われている。一般に、X線が物体に入射したとき、X線の強度よりも位相のほうが高い相互作用を示すことが知られている。このため、位相差を利用したX線位相イメージングでは、X線吸収能が低い弱吸収物体であっても高コントラストの画像を得ることができる。このようなX線位相イメージングの一種として、近年、2枚の透過回折格子(位相型格子及び吸収型格子)とX線画像検出器とからなるX線タルボ干渉計を用いたX線撮影システムが考案されている(例えば、特許文献1参照)。
Against the background of such problems, in recent years, an X-ray phase for obtaining an image (hereinafter referred to as a phase contrast image) based on an X-ray phase change (angle change) by an object instead of an X-ray intensity change by an object. Imaging research is actively conducted. In general, it is known that when X-rays are incident on an object, the interaction is higher in phase than in X-ray intensity. For this reason, in the X-ray phase imaging using the phase difference, a high-contrast image can be obtained even for a weakly absorbing object having a low X-ray absorption capability. As a kind of such X-ray phase imaging, in recent years, an X-ray imaging system using an X-ray Talbot interferometer comprising two transmission diffraction gratings (phase grating and absorption grating) and an X-ray image detector has been proposed. It has been devised (for example, see Patent Document 1).
X線タルボ干渉計は、被写体の背後に第1の回折格子(位相型格子あるいは吸収型格子)を配置し、第1の回折格子の格子ピッチとX線波長で決まる特定距離(タルボ干渉距離)だけ下流に第2の回折格子(吸収型格子)を配置し、その背後にX線画像検出器を配置することにより構成される。上記タルボ干渉距離とは、第1の回折格子を通過したX線が、タルボ干渉効果によって自己像を形成する距離であり、この自己像は、X線源と第1の回折格子との間に配置された被写体とX線との相互作用(位相変化)により変調を受ける。
In the X-ray Talbot interferometer, a first diffraction grating (phase type grating or absorption type grating) is arranged behind a subject, and a specific distance (Talbot interference distance) determined by the grating pitch of the first diffraction grating and the X-ray wavelength. The second diffraction grating (absorption type grating) is disposed only downstream, and the X-ray image detector is disposed behind the second diffraction grating. The Talbot interference distance is a distance at which X-rays that have passed through the first diffraction grating form a self-image due to the Talbot interference effect, and this self-image is between the X-ray source and the first diffraction grating. It is modulated by the interaction (phase change) between the arranged subject and the X-ray.
X線タルボ干渉計では、第1の回折格子の自己像と第2の回折格子との重ね合わせにより生じるモアレ縞を検出し、被写体によるモアレ縞の変化を解析することによって被写体の位相情報を取得する。モアレ縞の解析方法としては、例えば縞走査法が知られている。この縞走査法によると、第1の回折格子に対して第2の回折格子を、第1の回折格子の面にほぼ平行で、かつ第1の回折格子の格子方向(条帯方向)にほぼ垂直な方向に、格子ピッチを等分割した走査ピッチで並進移動させながら複数回の撮影を行い、X線画像検出器で得られる各画素の画素値の変化から、被写体で屈折したX線の角度分布(位相シフトの微分像)を演算し、この角度分布に基づいて被写体の位相コントラスト画像を得ることができる。
The X-ray Talbot interferometer detects moiré fringes generated by superimposing the first image of the first diffraction grating and the second diffraction grating, and obtains subject phase information by analyzing changes in the moiré fringes caused by the subject. To do. As a method for analyzing moire fringes, for example, a fringe scanning method is known. According to this fringe scanning method, the second diffraction grating is substantially parallel to the surface of the first diffraction grating with respect to the first diffraction grating and substantially in the grating direction (strip direction) of the first diffraction grating. The angle of the X-ray refracted by the subject from the change of the pixel value of each pixel obtained by the X-ray image detector while performing a plurality of times of imaging while translating in the vertical direction at a scanning pitch obtained by equally dividing the lattice pitch. A distribution (differential image of phase shift) is calculated, and a phase contrast image of the subject can be obtained based on this angular distribution.
縞走査法によるX線位相イメージングは、上記の通り、第2の回折格子の走査に伴う各画素の画素値の変化から被写体の位相情報を検出するものであり、第2の回折格子の走査とは別の要因による各画素の画素値の変化は、被写体の位相情報の検出精度を低下させる。各画素の画素値を変化させる要因としては、例えば撮影間における照射線量のバラツキが挙げられ、よって、撮影間の照射線量を一定とするか、あるいは撮影間の照射線量のバラツキを計測しておき、被写体で屈折したX線の角度分布を演算する際に、照射線量のバラツキに起因する各画素の画素値の変化を補正する必要がある。
As described above, the X-ray phase imaging by the fringe scanning method detects the phase information of the subject from the change in the pixel value of each pixel accompanying the scanning of the second diffraction grating. A change in the pixel value of each pixel due to another factor reduces the detection accuracy of the phase information of the subject. Factors that change the pixel value of each pixel include, for example, variations in irradiation dose between photographings. Therefore, the irradiation dose between photographings is kept constant, or variations in the irradiation dose between photographings are measured in advance. When calculating the angle distribution of the X-rays refracted by the subject, it is necessary to correct the change in the pixel value of each pixel due to the variation in irradiation dose.
ここで、特許文献1に記載されたX線位相イメージング装置においては、線量検出器を用い、線量検出器で検出される線量が予め設定された閾値に達したところでX線の照射を停止させる従来の自動露光制御がなされている。特許文献1には、線量検出器の位置について特に記載されていないが、線量検出器は、一般にFPDの裏に配置される。この場合に、縞走査法によるX線位相イメージングにおいては、線量検出器は第2の回折格子の下流に位置することになり、線量検出器上にモアレ縞が形成される。このモアレ縞は第2の回折格子の走査に伴って移動し、モアレ縞の暗部が線量検出器に重なるときと暗部が重ならないときとで、線量検出器に単位時間当たりに入射するX線の線量が大きく変動する。そして、上記の自動露光制御は、線量検出器に単位時間当たりに入射するX線の線量の変動をキャンセルするように、X線の照射時間を延長あるいは短縮する。結果、撮影間の照射線量にバラツキが生じる。
Here, in the X-ray phase imaging apparatus described in Patent Document 1, a dose detector is used, and X-ray irradiation is stopped when the dose detected by the dose detector reaches a preset threshold value. Automatic exposure control is performed. Although the patent document 1 does not particularly describe the position of the dose detector, the dose detector is generally arranged behind the FPD. In this case, in the X-ray phase imaging by the fringe scanning method, the dose detector is positioned downstream of the second diffraction grating, and moire fringes are formed on the dose detector. This moire fringe moves with the scanning of the second diffraction grating, and the X-rays incident on the dose detector per unit time when the dark part of the moire fringe overlaps the dose detector and when the dark part does not overlap. Dose varies greatly. The automatic exposure control described above extends or shortens the X-ray irradiation time so as to cancel the fluctuation of the X-ray dose incident on the dose detector per unit time. As a result, there is a variation in the irradiation dose during imaging.
そこで、照射時間を一定として露光制御することが考えられるが、照射時間を一定としても、例えばX線源の立ち上がり特性や立ち下がり特性などによって、撮影間で照射線量のバラツキが生じ得る。よって、撮影間の照射線量のバラツキを計測しておく必要があるが、上述の通り、第2の回折格子の走査に伴って線量検出器とモアレ縞の暗部との重なりが変化し、それによって線量検出器に照射時間内に入射するX線の線量が変化するため、モアレ縞の下で撮影間の照射線量のバラツキを計測することは困難である。
Therefore, it is conceivable to perform exposure control with a constant irradiation time. However, even if the irradiation time is fixed, variations in irradiation dose may occur between imaging due to, for example, the rising characteristics and falling characteristics of the X-ray source. Therefore, it is necessary to measure the variation of the irradiation dose between the imagings, but as described above, the overlap between the dose detector and the dark part of the moire fringe changes as the second diffraction grating is scanned. Since the dose of X-rays incident on the dose detector within the irradiation time changes, it is difficult to measure variations in the irradiation dose between radiographs under moire fringes.
以上は、線量検出器に替えてFPDの一部の画素を用いて線量を検出する場合にも妥当する。FPDは第2の回折格子の下流に位置し、その検出面上にはモアレ縞が形成される。よって、第2の回折格子の走査に伴って線量検出器とモアレ縞の暗部との重なりが変化し、それによって線量検出器に単位時間当たりに入射するX線の線量が変化する。そのため、FPDの一部の画素を用いて線量を検出する場合にも、モアレ縞の下で撮影間の照射線量のバラツキを計測することはやはり困難である。
The above is also valid when a dose is detected by using some pixels of the FPD instead of the dose detector. The FPD is located downstream of the second diffraction grating, and moire fringes are formed on the detection surface. Therefore, as the second diffraction grating is scanned, the overlap between the dose detector and the dark portion of the moire fringe changes, and the X-ray dose incident on the dose detector per unit time changes accordingly. Therefore, even when a dose is detected using a part of the pixels of the FPD, it is still difficult to measure the variation of the irradiation dose between the images under the moire fringes.
本発明は、上述した事情に鑑みなされたものであり、線量を正確に検出して、より高精度な放射線位相コントラスト画像を生成することを目的とする。
The present invention has been made in view of the above-described circumstances, and an object thereof is to accurately detect a dose and generate a more accurate radiation phase contrast image.
(1) 第1の格子と、前記第1の格子を通過した放射線によって形成される放射線像のパターン周期に実質的に一致する周期を有する第2の格子と、前記第2の格子によってマスキングされた前記放射線像を検出する放射線画像検出器と、を備え、前記放射線画像検出器は、前記第1の格子及び前記第2の格子の少なくとも一方の格子領域を外れて伝播する放射線が入射し、そこに入射する放射線量の検出に用いられる線量検出画素を少なくとも一つ含む放射線画像検出装置。
(2) 上記(1)の放射線画像検出装置と、前記第1の格子に向けて放射線を出射する放射線源と、を備える放射線撮影装置。
(3) 上記(1)の放射線画像検出装置と、前記第1の格子に向けて放射線を出射する放射線源と、前記放射線画像検出器によって取得される画像データを処理する演算処理部と、を備え、前記放射線源と前記第1の格子との間、又は前記第1の格子と前記第2の格子との間に被写体を配置し、前記第2の格子を前記放射線像に対して互いに位相の異なる相対位置に置いて複数回の撮影を行う撮影モードがあり、前記演算処理部は、前記撮影モードにおける各撮影で前記放射線画像検出器によって取得された画像データを、その撮影において前記線量検出画素によって検出される線量に基づいて輝度補正する放射線撮影システム。 (1) masked by the first grating, the second grating having a period substantially matching the pattern period of the radiation image formed by the radiation that has passed through the first grating, and the second grating. A radiation image detector for detecting the radiation image, wherein the radiation image detector is incident with radiation propagating off at least one of the first grating region and the second grating region; A radiological image detection apparatus including at least one dose detection pixel used for detecting a radiation dose incident thereon.
(2) A radiographic apparatus comprising: the radiological image detection apparatus according to (1) above; and a radiation source that emits radiation toward the first grating.
(3) The radiation image detection device according to (1), a radiation source that emits radiation toward the first grating, and an arithmetic processing unit that processes image data acquired by the radiation image detector. An object is disposed between the radiation source and the first grating or between the first grating and the second grating, and the second grating is in phase with the radiation image. There is an imaging mode in which imaging is performed a plurality of times at different relative positions, and the arithmetic processing unit detects the dose of the image data acquired by the radiation image detector in each imaging in the imaging mode. A radiography system that corrects brightness based on the dose detected by a pixel.
(2) 上記(1)の放射線画像検出装置と、前記第1の格子に向けて放射線を出射する放射線源と、を備える放射線撮影装置。
(3) 上記(1)の放射線画像検出装置と、前記第1の格子に向けて放射線を出射する放射線源と、前記放射線画像検出器によって取得される画像データを処理する演算処理部と、を備え、前記放射線源と前記第1の格子との間、又は前記第1の格子と前記第2の格子との間に被写体を配置し、前記第2の格子を前記放射線像に対して互いに位相の異なる相対位置に置いて複数回の撮影を行う撮影モードがあり、前記演算処理部は、前記撮影モードにおける各撮影で前記放射線画像検出器によって取得された画像データを、その撮影において前記線量検出画素によって検出される線量に基づいて輝度補正する放射線撮影システム。 (1) masked by the first grating, the second grating having a period substantially matching the pattern period of the radiation image formed by the radiation that has passed through the first grating, and the second grating. A radiation image detector for detecting the radiation image, wherein the radiation image detector is incident with radiation propagating off at least one of the first grating region and the second grating region; A radiological image detection apparatus including at least one dose detection pixel used for detecting a radiation dose incident thereon.
(2) A radiographic apparatus comprising: the radiological image detection apparatus according to (1) above; and a radiation source that emits radiation toward the first grating.
(3) The radiation image detection device according to (1), a radiation source that emits radiation toward the first grating, and an arithmetic processing unit that processes image data acquired by the radiation image detector. An object is disposed between the radiation source and the first grating or between the first grating and the second grating, and the second grating is in phase with the radiation image. There is an imaging mode in which imaging is performed a plurality of times at different relative positions, and the arithmetic processing unit detects the dose of the image data acquired by the radiation image detector in each imaging in the imaging mode. A radiography system that corrects brightness based on the dose detected by a pixel.
本発明によれば、第1の格子及び第2の格子の少なくとも一方の格子領域を外れて伝播する放射線を線量検出画素で検出しており、線量検出画素上には第1の格子の放射線像と第2の格子との重ね合わせによるモアレ縞が形成されず、よって、モアレ縞の影響を受けることなく、線量検出画素によって正確に線量を検出することができる。それにより、放射線源と第1の格子との間、又は第1の格子と第2の格子との間に被写体を配置し、第2の格子を各相対位置に置いて行われる複数回の撮影で、撮影間の照射線量のバラツキを正確に計測することができる。そして、各撮影において取得された画像データを、その撮影において検出された線量に基づいて輝度補正することによって、照射線量のバラツキに起因する各画素の画素値の変化を除去あるいは低減することができる。それにより、より高精度な放射線位相コントラスト画像を生成することができる。
According to the present invention, radiation that propagates out of at least one of the first grating and the second grating is detected by the dose detection pixel, and the radiation image of the first grating is detected on the dose detection pixel. The moire fringes are not formed by superimposing the second grating and the second grating, so that the dose can be accurately detected by the dose detection pixels without being affected by the moire fringes. Thereby, a plurality of times of imaging performed by placing the subject between the radiation source and the first grating or between the first grating and the second grating and placing the second grating at each relative position. Thus, it is possible to accurately measure the variation of the irradiation dose between the photographings. Then, by correcting the brightness of the image data acquired in each shooting based on the dose detected in the shooting, the change in the pixel value of each pixel due to the variation in the irradiation dose can be removed or reduced. . Thereby, a more accurate radiation phase contrast image can be generated.
図1は、本発明の実施形態を説明するための放射線撮影システムの一例の構成を示し、図2は、図1の放射線撮影システムの制御ブロックを示す。
FIG. 1 shows a configuration of an example of a radiation imaging system for explaining an embodiment of the present invention, and FIG. 2 shows a control block of the radiation imaging system of FIG.
X線撮影システム10は、被写体(患者)Hを立位状態で撮影するX線診断装置であって、被写体HにX線を放射するX線源11と、X線源11に対向配置され、X線源11から被写体Hを透過したX線を検出して画像データを生成する撮影部(放射線画像検出装置)12と、操作者の操作に基づいてX線源11の曝射動作や撮影部12の撮影動作を制御するとともに、撮影部12により取得された画像データを演算処理して位相コントラスト画像を生成するコンソール13とに大別される。
The X-ray imaging system 10 is an X-ray diagnostic apparatus that images a subject (patient) H in a standing position, and is disposed opposite to the X-ray source 11 that emits X-rays to the subject H, and the X-ray source 11. An imaging unit (radiation image detection device) 12 that detects X-rays transmitted through the subject H from the X-ray source 11 and generates image data, and an exposure operation and an imaging unit of the X-ray source 11 based on the operation of the operator The console 13 is roughly divided into a console 13 that controls the image capturing operation 12 and calculates the image data acquired by the image capturing unit 12 to generate a phase contrast image.
X線源11は、天井から吊り下げられたX線源保持装置14により上下方向(x方向)に移動自在に保持されている。撮影部12は、床上に設置された立位スタンド15により上下方向に移動自在に保持されている。
The X-ray source 11 is held movably in the vertical direction (x direction) by an X-ray source holding device 14 suspended from the ceiling. The photographing unit 12 is held by a standing stand 15 installed on the floor so as to be movable in the vertical direction.
X線源11は、X線源制御部17の制御に基づき、高電圧発生器16から印加される高電圧に応じてX線を発生するX線管18と、X線管18から発せられたX線のうち、被写体Hの検査領域の撮影に寄与しない部分を遮蔽するように照射野を制限する可動式のコリメータ19aを備えたコリメータユニット19とから構成されている。X線管18は、陽極回転型であり、電子放出源(陰極)としてのフィラメント(図示せず)から電子線を放出して、所定の速度で回転する回転陽極18aに衝突させることによりX線を発生する。この回転陽極18aの電子線の衝突部分がX線焦点18bとなる。
Based on the control of the X-ray source control unit 17, the X-ray source 11 is emitted from the X-ray tube 18 that generates X-rays according to the high voltage applied from the high voltage generator 16, and the X-ray tube 18. The X-ray includes a collimator unit 19 including a movable collimator 19a that limits an irradiation field so as to shield a portion of the X-ray that does not contribute to imaging of the inspection area of the subject H. The X-ray tube 18 is of an anode rotating type, and emits an electron beam from a filament (not shown) as an electron emission source (cathode) and collides with a rotating anode 18a rotating at a predetermined speed, thereby causing X-rays. Is generated. The colliding portion of the rotating anode 18a with the electron beam becomes the X-ray focal point 18b.
X線源保持装置14は、天井に設置された天井レール(図示せず)により水平方向(z方向)に移動自在に構成された台車部14aと、上下方向に連結された複数の支柱部14bとからなる。台車部14aには、支柱部14bを伸縮させて、X線源11の上下方向に関する位置を変更するモータ(図示せず)が設けられている。
The X-ray source holding device 14 includes a carriage portion 14a configured to be movable in a horizontal direction (z direction) by a ceiling rail (not shown) installed on the ceiling, and a plurality of support column portions 14b connected in the vertical direction. It consists of. A motor (not shown) that changes the position of the X-ray source 11 in the vertical direction is provided on the carriage unit 14 a by expanding and contracting the column unit 14 b.
立位スタンド15は、床に設置された本体15aに、撮影部12を保持する保持部15bが上下方向に移動自在に取り付けられている。保持部15bは、上下方向に離間して配置された2つのプーリ15cの間に掛架された無端ベルト15dに接続され、プーリ15cを回転させるモータ(図示せず)により駆動される。このモータの駆動は、操作者の設定操作に基づき、後述するコンソール13の制御装置20により制御される。
The standing stand 15 includes a main body 15a installed on the floor, and a holding portion 15b that holds the photographing unit 12 is attached to be movable in the vertical direction. The holding portion 15b is connected to an endless belt 15d that is suspended between two pulleys 15c that are spaced apart in the vertical direction, and is driven by a motor (not shown) that rotates the pulley 15c. The driving of the motor is controlled by the control device 20 of the console 13 described later based on the setting operation by the operator.
また、立位スタンド15には、プーリ15c又は無端ベルト15dの移動量を計測することにより、撮影部12の上下方向に関する位置を検出するポテンショメータ等の位置センサ(図示せず)が設けられている。この位置センサの検出値は、ケーブル等によりX線源保持装置14に供給される。X線源保持装置14は、供給された検出値に基づいて支柱部14bを伸縮させ、撮影部12の上下動に追従するようにX線源11を移動させる。
Further, the standing stand 15 is provided with a position sensor (not shown) such as a potentiometer that detects the position of the photographing unit 12 in the vertical direction by measuring the movement amount of the pulley 15c or the endless belt 15d. . The detection value of this position sensor is supplied to the X-ray source holding device 14 by a cable or the like. The X-ray source holding device 14 moves the X-ray source 11 so as to follow the vertical movement of the imaging unit 12 by expanding and contracting the support column 14 b based on the supplied detection value.
コンソール13には、CPU、ROM、RAM等からなる制御装置20が設けられている。制御装置20には、操作者が撮影指示やその指示内容を入力する入力装置21と、撮影部12により取得された画像データを演算処理してX線画像を生成する演算処理部22と、X線画像を記憶する記憶部23と、X線画像等を表示するモニタ24と、X線撮影システム10の各部と接続されるインターフェース(I/F)25とがバス26を介して接続されている。
The console 13 is provided with a control device 20 comprising a CPU, ROM, RAM and the like. The control device 20 includes an input device 21 through which an operator inputs an imaging instruction and the content of the instruction, an arithmetic processing unit 22 that performs arithmetic processing on the image data acquired by the imaging unit 12 and generates an X-ray image, and X A storage unit 23 for storing line images, a monitor 24 for displaying X-ray images and the like, and an interface (I / F) 25 connected to each unit of the X-ray imaging system 10 are connected via a bus 26. .
入力装置21としては、例えば、スイッチ、タッチパネル、マウス、キーボード等を用いることが可能であり、入力装置21の操作により、X線管電圧やX線照射時間等のX線撮影条件、撮影タイミング等が入力される。モニタ24は、液晶ディスプレイ等からなり、制御装置20の制御により、X線撮影条件等の文字やX線画像を表示する。
As the input device 21, for example, a switch, a touch panel, a mouse, a keyboard, or the like can be used. By operating the input device 21, X-ray imaging conditions such as X-ray tube voltage and X-ray irradiation time, imaging timing, etc. Is entered. The monitor 24 includes a liquid crystal display or the like, and displays characters such as X-ray imaging conditions and X-ray images under the control of the control device 20.
撮影部12には、半導体回路からなるフラットパネル検出器(FPD)30、被写体HによるX線の位相変化(角度変化)を検出し位相イメージングを行うための第1の吸収型格子31及び第2の吸収型格子32が設けられている。
The imaging unit 12 includes a flat panel detector (FPD) 30 made of a semiconductor circuit, a first absorption type grating 31 and a second absorption type for detecting phase change (angle change) of X-rays by the subject H and performing phase imaging. The absorption type grating 32 is provided.
FPD30は、検出面がX線源11から照射されるX線の光軸Aに直交するように配置されている。詳しくは後述するが、第1及び第2の吸収型格子31,32は、FPD30とX線源11との間に配置されている。
The FPD 30 is arranged so that the detection surface is orthogonal to the optical axis A of the X-rays emitted from the X-ray source 11. Although described in detail later, the first and second absorption gratings 31 and 32 are disposed between the FPD 30 and the X-ray source 11.
また、撮影部12には、第2の吸収型格子32を上下方向(x方向)に並進移動させることにより、第1の吸収型格子31に対する第2の吸収型格子32の相対位置関係を変化させる走査機構33が設けられている。この走査機構33は、例えば、圧電素子等のアクチュエータにより構成される。
The imaging unit 12 changes the relative positional relationship of the second absorption type grating 32 with respect to the first absorption type grating 31 by translating the second absorption type grating 32 in the vertical direction (x direction). A scanning mechanism 33 is provided. The scanning mechanism 33 is configured by an actuator such as a piezoelectric element, for example.
図3は、図1の放射線撮影システムに含まれる放射線画像検出器の構成を示す。
FIG. 3 shows a configuration of a radiation image detector included in the radiation imaging system of FIG.
放射線画像検出器としてのFPD30は、X線を電荷に変換して蓄積する複数の画素40がアクティブマトリクス基板上にxy方向に2次元配列されてなる受像部41と、受像部41からの電荷の読み出しタイミングを制御する走査回路42と、各画素40に蓄積された電荷を読み出し、電荷を画像データに変換して記憶する読み出し回路43と、画像データをコンソール13のI/F25を介して演算処理部22に送信するデータ送信回路44とから構成されている。なお、走査回路42と各画素40とは、行毎に走査線45によって接続されており、読み出し回路43と各画素40とは、列毎に信号線46によって接続されている。
The FPD 30 as a radiological image detector includes an image receiving unit 41 in which a plurality of pixels 40 that convert X-rays into electric charges and store them in a two-dimensional array on an active matrix substrate, and an electric charge received from the image receiving unit 41. A scanning circuit 42 that controls the readout timing, a readout circuit 43 that reads out the charges accumulated in each pixel 40, converts the charges into image data and stores them, and performs arithmetic processing on the image data via the I / F 25 of the console 13. And a data transmission circuit 44 for transmission to the unit 22. The scanning circuit 42 and each pixel 40 are connected by a scanning line 45 for each row, and the readout circuit 43 and each pixel 40 are connected by a signal line 46 for each column.
各画素40は、アモルファスセレン等の変換層(図示せず)でX線を電荷に直接変換し、変換された電荷を変換層の下部の電極に接続されたキャパシタ(図示せず)に蓄積する直接変換型の素子として構成することができる。各画素40には、薄膜トランジスタ(TFT:Thin Film Transistor)スイッチ(図示せず)が接続され、TFTスイッチのゲート電極が走査線45、ソース電極がキャパシタ、ドレイン電極が信号線46に接続される。TFTスイッチが走査回路42からの駆動パルスによってON状態になると、キャパシタに蓄積された電荷が信号線46に読み出される。
Each pixel 40 directly converts X-rays into electric charges by a conversion layer (not shown) such as amorphous selenium, and stores the converted electric charges in a capacitor (not shown) connected to an electrode below the conversion layer. It can be configured as a direct conversion type element. Each pixel 40 is connected to a thin film transistor (TFT) switch (not shown), and the gate electrode of the TFT switch is connected to the scanning line 45, the source electrode is connected to the capacitor, and the drain electrode is connected to the signal line 46. When the TFT switch is turned on by the drive pulse from the scanning circuit 42, the charge accumulated in the capacitor is read out to the signal line 46.
なお、各画素40は、テルビウム賦活酸化ガドリニウム(Gd2O2S:Tb)、タリウム賦活ヨウ化セシウム(CsI:Tl)等からなるシンチレータ(図示せず)でX線を一旦可視光に変換し、変換された可視光をフォトダイオード(図示せず)で電荷に変換して蓄積する間接変換型のX線検出素子として構成することも可能である。また、X線画像検出器としては、TFTパネルをベースとしたFPDに限られず、CCDセンサやCMOSセンサ等の固体撮像素子をベースとした各種のX線画像検出器を用いることも可能である。
Each pixel 40 once converts X-rays into visible light by a scintillator (not shown) made of terbium activated gadolinium oxide (Gd 2 O 2 S: Tb), thallium activated cesium iodide (CsI: Tl), or the like. It is also possible to configure as an indirect conversion type X-ray detection element that converts the converted visible light into a charge by a photodiode (not shown) and accumulates it. The X-ray image detector is not limited to an FPD based on a TFT panel, and various X-ray image detectors based on a solid-state imaging device such as a CCD sensor or a CMOS sensor can also be used.
読み出し回路43は、積分アンプ回路、A/D変換器、補正回路、及び画像メモリ(いずれも図示せず)により構成されている。積分アンプ回路は、各画素40から信号線46を介して出力された電荷を積分して電圧信号(画像信号)に変換して、A/D変換器に入力する。A/D変換器は、入力された画像信号をデジタルの画像データに変換して補正回路に入力する。補正回路は、画像データに対して、オフセット補正、ゲイン補正、及びリニアリティ補正を行い、補正後の画像データを画像メモリに記憶させる。なお、補正回路による補正処理として、X線の露光量や露光分布(いわゆるシェーディング)の補正や、FPD30の制御条件(駆動周波数や読み出し期間)に依存するパターンノイズ(例えば、TFTスイッチのリーク信号)の補正等を含めてもよい。
The readout circuit 43 includes an integration amplifier circuit, an A / D converter, a correction circuit, and an image memory (all not shown). The integrating amplifier circuit integrates the charges output from each pixel 40 via the signal line 46, converts them into a voltage signal (image signal), and inputs it to the A / D converter. The A / D converter converts the input image signal into digital image data and inputs the digital image data to the correction circuit. The correction circuit performs offset correction, gain correction, and linearity correction on the image data, and stores the corrected image data in the image memory. As correction processing by the correction circuit, correction of X-ray exposure amount and exposure distribution (so-called shading) and pattern noise depending on FPD 30 control conditions (drive frequency and readout period) (for example, leak signal of TFT switch) May be included.
図4及び図5は、図1の放射線撮影システムの撮影部を示す。
4 and 5 show an imaging unit of the radiation imaging system of FIG.
第1の吸収型格子31は、基板31aと、この基板31aに配置された複数のX線遮蔽部31bとから構成されている。同様に、第2の吸収型格子32は、基板32aと、この基板32aに配置された複数のX線遮蔽部32bとから構成されている。基板31a,32aは、いずれもX線を透過させるガラス等のX線透過性部材により形成されている。
The first absorption-type grating 31 includes a substrate 31a and a plurality of X-ray shielding portions 31b arranged on the substrate 31a. Similarly, the second absorption type grating 32 includes a substrate 32a and a plurality of X-ray shielding portions 32b arranged on the substrate 32a. The substrates 31a and 32a are both made of an X-ray transparent member such as glass that transmits X-rays.
X線遮蔽部31b,32bは、いずれもX線源11から照射されるX線の光軸Aに直交する面内の一方向(図示の例では、x方向及びz方向に直交するy方向)に延伸した線状の部材で構成される。各X線遮蔽部31b,32bの材料としては、X線吸収性に優れるものが好ましく、例えば、金、白金等の重金属であることが好ましい。これらのX線遮蔽部31b,32bは、金属メッキ法や蒸着法によって形成することが可能である。
Each of the X-ray shielding portions 31b and 32b is in one direction in a plane orthogonal to the optical axis A of the X-rays emitted from the X-ray source 11 (in the illustrated example, the y direction orthogonal to the x direction and the z direction). It is comprised by the linear member extended | stretched. As a material of each X-ray shielding part 31b, 32b, a material excellent in X-ray absorption is preferable, and for example, a heavy metal such as gold or platinum is preferable. These X-ray shielding portions 31b and 32b can be formed by a metal plating method or a vapor deposition method.
X線遮蔽部31bは、X線の光軸Aに直交する面内において、上記一方向と直交する方向(x方向)に一定の格子ピッチp1で、互いに所定の間隔d1を空けて配列されている。同様に、X線遮蔽部32bは、X線の光軸Aに直交する面内において、上記一方向と直交する方向(x方向)に一定の格子ピッチp2で、互いに所定の間隔d2を空けて配列されている。このような第1及び第2の吸収型格子31,32は、入射X線に位相差を与えるものでなく、強度差を与えるものであるため、振幅型格子とも称される。なお、スリット部(上記間隔d1,d2の領域)は空隙でなくてもよく、例えば、高分子や軽金属などのX線低吸収材で該空隙を充填してもよい。
X-ray shielding portion 31b is in a plane perpendicular to the optical axis A of the X-ray, with grating pitch p 1 in the constant direction (x-direction) orthogonal to the one direction, arranged at predetermined intervals d 1 from each other Has been. Similarly, X-ray shielding portion 32b, in the plane orthogonal to the optical axis A of the X-ray, with grating pitch p 2 of the constant in the direction (x-direction) orthogonal to the one direction, the predetermined distance d 2 from each other It is arranged in a space. Since the first and second absorption gratings 31 and 32 do not give a phase difference to incident X-rays but give an intensity difference, they are also called amplitude gratings. Note that the slit portions (regions having the distances d 1 and d 2 ) may not be voids, and the voids may be filled with an X-ray low-absorbing material such as a polymer or a light metal.
第1及び第2の吸収型格子31,32は、タルボ干渉効果の有無に係らず、スリット部を通過したX線をほぼ幾何学的に投影するように構成されている。より詳細には、間隔d1,d2を、X線源11から照射されるX線の実効波長より十分大きな値とすることで、照射X線の大部分はスリット部での回折を受けずに、第1の吸収型格子31の後方に第1の吸収型格子31の自己像を形成するように構成することができる。例えば、放射線源のターゲットとしてタングステンを用い、管電圧を50kVとした場合には、X線の実効波長は、約0.4Åである。この場合には、間隔d1,d2を、1~10μm程度とすれば、スリット部を通過した放射線が形成する放射線像は回折の効果を無視できる程度になり、第1の吸収型格子31の後方に、第1の吸収型格子31の自己像がほぼ幾何学的に投影される。
The first and second absorption type gratings 31 and 32 are configured to project the X-rays that have passed through the slit portion almost geometrically regardless of the presence or absence of the Talbot interference effect. More specifically, by setting the distances d 1 and d 2 to a value sufficiently larger than the effective wavelength of X-rays emitted from the X-ray source 11, most of the irradiated X-rays are not diffracted at the slit portion. In addition, a self-image of the first absorption type grating 31 can be formed behind the first absorption type grating 31. For example, when tungsten is used as the target of the radiation source and the tube voltage is 50 kV, the effective wavelength of X-ray is about 0.4 mm. In this case, if the distances d 1 and d 2 are set to about 1 to 10 μm, the radiation image formed by the radiation that has passed through the slit portion becomes such that the effect of diffraction can be ignored, and the first absorption grating 31 can be ignored. The self-image of the first absorption-type grating 31 is projected almost geometrically.
X線源11から放射されるX線は、平行ビームではなく、X線焦点18bを発光点としたコーンビームであるため、第1の吸収型格子31を通過して射影される投影像(以下、この投影像をG1像と称する)は、X線焦点18bからの距離に比例して拡大される。第2の吸収型格子32の格子ピッチp2は、そのスリット部が、第2の吸収型格子32の位置におけるG1像の明部の周期パターンとほぼ一致するように決定されている。すなわち、X線焦点18bから第1の吸収型格子31までの距離をL1、第1の吸収型格子31から第2の吸収型格子32までの距離をL2とした場合に、格子ピッチp2は、次式(1)の関係を満たすように決定される。
The X-ray emitted from the X-ray source 11 is not a parallel beam but a cone beam having the X-ray focal point 18b as a light emission point, and therefore a projected image projected through the first absorption grating 31 (hereinafter referred to as a projection image). The projection image is referred to as a G1 image) and is enlarged in proportion to the distance from the X-ray focal point 18b. The grating pitch p 2 of the second absorption type grating 32 is determined so that the slit portion substantially coincides with the periodic pattern of the bright part of the G1 image at the position of the second absorption type grating 32. That is, when the distance from the X-ray focal point 18b to the first absorption grating 31 is L 1 and the distance from the first absorption grating 31 to the second absorption grating 32 is L 2 , the grating pitch p 2 is determined so as to satisfy the relationship of the following formula (1).
第1の吸収型格子31から第2の吸収型格子32までの距離L2は、タルボ干渉計では、第1の回折格子の格子ピッチとX線波長とで決まるタルボ干渉距離に制約されるが、本X線撮影システム10の撮影部12では、第1の吸収型格子31が入射X線を回折させずに投影させる構成であって、第1の吸収型格子31のG1像が、第1の吸収型格子31の後方のすべての位置で相似的に得られるため、該距離L2を、タルボ干渉距離と無関係に設定することができる。
In the Talbot interferometer, the distance L 2 from the first absorption type grating 31 to the second absorption type grating 32 is limited to the Talbot interference distance determined by the grating pitch of the first diffraction grating and the X-ray wavelength. The imaging unit 12 of the present X-ray imaging system 10 has a configuration in which the first absorption grating 31 projects incident X-rays without diffracting, and the G1 image of the first absorption grating 31 is the first. because at every position of the rear absorption type grating 31 similarly obtained, the distance L 2, can be set independently of the Talbot distance.
上記のように撮影部12は、タルボ干渉計を構成するものではないが、第1の吸収型格子31でX線を回折したと仮定した場合のタルボ干渉距離Zは、第1の吸収型格子31の格子ピッチp1、第2の吸収型格子32の格子ピッチp2、X線波長(実効波長)λ、及び正の整数mを用いて、次式(2)で表される。
As described above, the imaging unit 12 does not constitute a Talbot interferometer, but the Talbot interference distance Z when it is assumed that X-rays are diffracted by the first absorption type grating 31 is the first absorption type grating. the grating pitch p 1 of 31, the grating pitch p 2, X-ray wavelength of the second absorption-type grating 32 (effective wavelength) lambda, and using the positive integer m, is expressed by the following equation (2).
式(2)は、X線源11から照射されるX線がコーンビームである場合のタルボ干渉距離を表す式であり、「Timm Weitkamp, et al., Proc. of SPIE, Vol. 6318, 2006年 63180S項」に記載の式から求めることができる。
Equation (2) is an equation representing the Talbot interference distance when the X-ray irradiated from the X-ray source 11 is a cone beam, “Timm Weitkamp, et al., Proc. Of SPIE, Vol. 6318, 2006. It can be obtained from the formula described in “Year Salary 63180S”.
本X線撮影システム10では、上記距離L2を、m=1の場合の最小のタルボ干渉距離Zより短い値に設定することで、撮影部12の薄型化を図っている。すなわち、上記距離L2は、次式(3)を満たす範囲の値に設定される。
In the present X-ray imaging system 10, the imaging unit 12 is thinned by setting the distance L 2 to a value shorter than the minimum Talbot interference distance Z when m = 1. That is, the distance L 2 is set to a value in the range satisfying the following equation (3).
なお、X線源11から照射されるX線が実質的に平行ビームとみなせる場合のタルボ干渉距離Zは次式(4)となり、上記距離L2を、次式(5)を満たす範囲の値に設定する。
Incidentally, Talbot distance Z by the following equation (4) and in the case of X-rays emitted from the X-ray source 11 can be regarded as substantially parallel beams, the distance L 2, the value of the range that satisfies the following equation (5) Set to.
X線遮蔽部31b,32bは、コントラストの高い周期パターン像を生成するためには、X線を完全に遮蔽(吸収)することが好ましいが、上記したX線吸収性に優れる材料(金、白金等)を用いたとしても、吸収されずに透過するX線が少なからず存在する。このため、X線の遮蔽性を高めるためには、X線遮蔽部31b,32bのそれぞれの厚みh1,h2を、可能な限り厚くすることが好ましい。例えば、X線管18の管電圧が50kVの場合に、照射X線の90%以上を遮蔽することが好ましく、この場合には、厚みh1,h2は、金(Au)換算で100μm以上であることが好ましい。
The X-ray shielding portions 31b and 32b preferably completely shield (absorb) X-rays in order to generate a periodic pattern image with high contrast, but the above-described materials (gold, platinum) having excellent X-ray absorption properties Etc.), there are not a few X-rays that are transmitted without being absorbed. Therefore, in order to enhance the shielding of the X-rays, the X-ray shielding portion 31b, the respective thicknesses h 1, h 2 of 32b, it is preferable to increase the thickness much as possible. For example, when the tube voltage of the X-ray tube 18 is 50 kV, it is preferable to shield 90% or more of the irradiated X-rays. In this case, the thicknesses h 1 and h 2 are 100 μm or more in terms of gold (Au). It is preferable that
しかし、X線源11から照射されるX線がコーンビームである場合に、X線遮蔽部31b,32bの厚みh1,h2を厚くし過ぎると、斜めに入射するX線がスリット部を通過しにくくなり、いわゆるケラレが生じて、X線遮蔽部31b,32bの延伸方向(条帯方向)に直交する方向(x方向)の有効視野が狭くなるといった問題がある。このため、視野確保の観点から、厚みh1,h2の上限を規定する。FPD30の検出面におけるx方向の有効視野の長さVを確保するには、X線焦点18bからFPD30の検出面までの距離をLとすると、厚みh1,h2は、図5に示す幾何学的関係から、次式(6)及び(7)を満たすように設定する必要がある。
However, when the X-rays irradiated from the X-ray source 11 are cone beams, if the thicknesses h 1 and h 2 of the X-ray shielding portions 31b and 32b are too thick, the X-rays incident obliquely enter the slit portion. There is a problem that it becomes difficult to pass, so-called vignetting occurs, and the effective visual field in the direction (x direction) perpendicular to the extending direction (strand direction) of the X-ray shielding portions 31b and 32b becomes narrow. Therefore, in view of the field of view secured to define the upper limit of the thickness h 1, h 2. In order to secure the effective field length V in the x direction on the detection surface of the FPD 30, assuming that the distance from the X-ray focal point 18 b to the detection surface of the FPD 30 is L, the thicknesses h 1 and h 2 are shown in FIG. From the scientific relationship, it is necessary to set so as to satisfy the following expressions (6) and (7).
例えば、d1=2.5μm、d2=3.0μmであり、通常の病院での撮影を想定して、L=2mとした場合には、x方向の有効視野の長さVとして10cmの長さを確保するには、厚みh1は100μm以下、厚みh2は120μm以下とすればよい。
For example, when d 1 = 2.5 μm and d 2 = 3.0 μm, and assuming L = 2 m assuming normal hospital imaging, the effective visual field length V in the x direction is 10 cm. In order to ensure the length, the thickness h 1 may be 100 μm or less and the thickness h 2 may be 120 μm or less.
以上のように構成された撮影部12では、第1の吸収型格子31のG1像と第2の吸収型格子32との重ね合わせにより、強度変調された像が形成され、FPD30によって撮像される。
In the imaging unit 12 configured as described above, an intensity-modulated image is formed by superimposing the G1 image of the first absorption-type grating 31 and the second absorption-type grating 32 and is captured by the FPD 30. .
ここで、FPD30は、第1の及び第2の吸収型格子31,32の格子領域(X線遮蔽部31b,32bが周期的に配列されている領域)を外れて伝播する放射線が入射する画素40を有している。即ち、X線焦点18bを視点とするFPD30の検出面上への投影において、第1及び第2の吸収型格子31,32の投影は略一致しており、FPD30の検出面は、第1及び第2の吸収型格子31,32の投影より大きい。そして、FPD30の検出面において、第1及び第2の吸収型格子31,32の投影が重なる領域30Aに属する画素40の群は、第1の吸収型格子31のG1像と第2の吸収型格子32との重ね合わせにより強度変調された像を検出する(以下、領域30Aに属する画素を像検出画素という)。また、第1及び第2の吸収型格子31,32の投影から外れる領域30Bに属する画素40には、第1の及び第2の吸収型格子31,32の格子領域を外れて伝播する放射線が入射する。図示の例において、領域30Bは、FPD30の検出面の一辺に沿って設けられている。この領域30Bに属する複数の画素40の各々は、そこに入射する放射線の線量を検出するために用いられる(以下、領域30Bに属する画素を線量検出画素という)。
Here, the FPD 30 is a pixel on which radiation propagating off the lattice area of the first and second absorption type gratings 31 and 32 (area where the X-ray shielding portions 31b and 32b are periodically arranged) is incident. 40. That is, in the projection onto the detection surface of the FPD 30 with the X-ray focal point 18b as the viewpoint, the projections of the first and second absorption gratings 31 and 32 are substantially coincident, and the detection surface of the FPD 30 is It is larger than the projection of the second absorption type gratings 31 and 32. Then, on the detection surface of the FPD 30, the group of pixels 40 belonging to the region 30A where the projections of the first and second absorption gratings 31 and 32 overlap is the G1 image of the first absorption grating 31 and the second absorption type. An image whose intensity is modulated by superimposing with the grating 32 is detected (hereinafter, pixels belonging to the region 30A are referred to as image detection pixels). In addition, in the pixels 40 belonging to the region 30B outside the projection of the first and second absorption type gratings 31 and 32, radiation propagating out of the grating regions of the first and second absorption type gratings 31 and 32 is transmitted. Incident. In the illustrated example, the region 30 </ b> B is provided along one side of the detection surface of the FPD 30. Each of the plurality of pixels 40 belonging to the region 30B is used for detecting the dose of radiation incident thereon (hereinafter, the pixel belonging to the region 30B is referred to as a dose detection pixel).
第2の吸収型格子32の位置におけるG1像のパターン周期p1’と、第2の吸収型格子32の実質的な格子ピッチp2’(製造後の実質的なピッチ)とは、製造誤差や配置誤差により若干の差異が生じる。このうち、配置誤差とは、第1及び第2の吸収型格子31,32が、相対的に傾斜や回転、両者の間隔が変化することによりx方向への実質的なピッチが変化することを意味している。
The pattern period p 1 ′ of the G1 image at the position of the second absorption grating 32 and the substantial grating pitch p 2 ′ (substantial pitch after production) of the second absorption grating 32 are manufacturing errors. Some differences occur due to or placement errors. Among these, the arrangement error means that the substantial pitch in the x direction changes due to the relative inclination and rotation of the first and second absorption gratings 31 and 32 and the distance between the two changes. I mean.
G1像のパターン周期p1’と格子ピッチp2’との微小な差異により、画像コントラストはモアレ縞となる。検出器面上での、このモアレ縞の周期Tは、次式(8)で表される。
Due to the minute difference between the pattern period p 1 ′ of the G1 image and the grating pitch p 2 ′, the image contrast becomes moire fringes. The period T of the moire fringes on the detector surface is expressed by the following equation (8).
このモアレ縞をFPD30で検出するため、画素40のx方向に関する配列ピッチPは、少なくともモアレ周期Tの整数倍でないことが必要であり、次式(9)を満たす必要がある(ここで、nは正の整数である)。
In order to detect the moire fringes by the FPD 30, the arrangement pitch P in the x direction of the pixels 40 needs to be at least not an integral multiple of the moire period T, and it is necessary to satisfy the following equation (9) (where n Is a positive integer).
また、式(9)を満たす範囲において、配列ピッチPがモアレ周期Tより大きくてもモアレ縞を検出することは可能であるが、配列ピッチPはモアレ周期Tより小さいことが好ましく、次式(10)を満たすことが好ましい。これは、良質な位相コントラスト画像を得るためには、後述する位相コントラスト画像の生成過程において、モアレ縞が高いコントラストで検出されていることが好ましいためである。
In addition, it is possible to detect moire fringes even if the arrangement pitch P is larger than the moire period T within a range satisfying the expression (9), but the arrangement pitch P is preferably smaller than the moire period T. 10) is preferably satisfied. This is because, in order to obtain a high-quality phase contrast image, moire fringes are preferably detected with high contrast in the phase contrast image generation process described later.
FPD30の画素40の配列ピッチPは、設計的に定められた値(一般的に100μm程度)であり変更することが困難であるため、配列ピッチPとモアレ周期Tとの大小関係を調整するには、第1及び第2の吸収型格子31,32の位置調整を行い、G1像のパターン周期p1’と格子ピッチp2’との少なくともいずれか一方を変更することによりモアレ周期Tを変更することが好ましい。
Since the arrangement pitch P of the pixels 40 of the FPD 30 is a value determined by design (generally about 100 μm) and is difficult to change, the magnitude relationship between the arrangement pitch P and the moire period T is adjusted. Adjusts the positions of the first and second absorption gratings 31 and 32 and changes the moire period T by changing at least one of the pattern period p 1 ′ and the grating pitch p 2 ′ of the G1 image. It is preferable to do.
図6に、モアレ周期Tを変更する方法を示す。
FIG. 6 shows a method of changing the moire cycle T.
モアレ周期Tの変更は、第1及び第2の吸収型格子31,32のいずれか一方を、光軸Aを中心として相対的に回転させることにより行うことができる。例えば、第1の吸収型格子31に対して、第2の吸収型格子32を、光軸Aを中心として相対的に回転させる相対回転機構50を設ける。この相対回転機構50により、第2の吸収型格子32を角度θだけ回転させると、x方向に関する実質的な格子ピッチは、「p2’」→「p2’/cosθ」と変化し、この結果、モアレ周期Tが変化する(FIG.6A)。
The moire period T can be changed by relatively rotating one of the first and second absorption gratings 31 and 32 around the optical axis A. For example, a relative rotation mechanism 50 that rotates the second absorption grating 32 relative to the first absorption grating 31 relative to the optical axis A is provided. When the second absorption type grating 32 is rotated by the angle θ by the relative rotation mechanism 50, the substantial grating pitch in the x direction changes from “p 2 ′” → “p 2 ′ / cos θ”. As a result, the moire cycle T changes (FIG. 6A).
別の例として、モアレ周期Tの変更は、第1及び第2の吸収型格子31,32のいずれか一方を、光軸Aに直交し、かつy方向に沿う方向の軸を中心として相対的に傾斜させることにより行うことができる。例えば、第1の吸収型格子31に対して、第2の吸収型格子32を、光軸Aに直交し、かつy方向に沿う方向の軸を中心として相対的に傾斜させる相対傾斜機構51を設ける。この相対傾斜機構51により、第2の吸収型格子32を角度αだけ傾斜させると、x方向に関する実質的な格子ピッチは、「p2’」→「p2’×cosα」と変化し、この結果、モアレ周期Tが変化する(FIG.6B)。
As another example, the change of the moire period T is such that either one of the first and second absorption type gratings 31 and 32 is relatively centered about an axis perpendicular to the optical axis A and along the y direction. It can be performed by inclining. For example, a relative tilt mechanism 51 that tilts the second absorption type grating 32 relative to the first absorption type grating 31 about an axis perpendicular to the optical axis A and along the y direction is provided. Provide. When the second absorption type grating 32 is inclined by the angle α by the relative inclination mechanism 51, the substantial lattice pitch in the x direction changes from “p 2 ′” → “p 2 ′ × cos α”. As a result, the moire cycle T changes (FIG. 6B).
更に別の例として、モアレ周期Tの変更は、第1及び第2の吸収型格子31,32のいずれか一方を光軸Aの方向に沿って相対的に移動させることにより行うことができる。例えば、第1の吸収型格子31と第2の吸収型格子32との間の距離L2を変更するように、第1の吸収型格子31に対して、第2の吸収型格子32を、光軸Aの方向に沿って相対的に移動させる相対移動機構52を設ける。この相対移動機構52により、第2の吸収型格子32を光軸Aに移動量δだけ移動させると、第2の吸収型格子32の位置に投影される第1の吸収型格子31のG1像のパターン周期は、「p1’」→「p1’×(L1+L2+δ)/(L1+L2)」と変化し、この結果、モアレ周期Tが変化する(FIG.6C)。
As another example, the moire period T can be changed by relatively moving one of the first and second absorption gratings 31 and 32 along the direction of the optical axis A. For example, with respect to the first absorption type grating 31, the second absorption type grating 32 is changed so as to change the distance L 2 between the first absorption type grating 31 and the second absorption type grating 32. A relative movement mechanism 52 that relatively moves along the direction of the optical axis A is provided. When the second absorption type grating 32 is moved to the optical axis A by the movement amount δ by the relative movement mechanism 52, the G1 image of the first absorption type grating 31 projected onto the position of the second absorption type grating 32. The pattern period of “p 1 ′” → “p 1 ′ × (L 1 + L 2 + δ) / (L 1 + L 2 )” changes, and as a result, the moire period T changes (FIG. 6C).
本X線撮影システム10において、撮影部12は、上述のようにタルボ干渉計ではなく、距離L2を自由に設定することができるため、相対移動機構52のように距離L2の変更によりモアレ周期Tを変更する機構を、好適に採用することができる。モアレ周期Tを変更するための第1及び第2の吸収型格子31,32の上記変更機構(相対回転機構50、相対傾斜機構51、及び相対移動機構52)は、圧電素子等のアクチュエータにより構成することが可能である。
In the X-ray imaging system 10, imaging unit 12 is not the Talbot interferometer as described above, since the distance L 2 can be freely set, moire by changing the distance L 2 as relative movement mechanism 52 A mechanism for changing the period T can be suitably employed. The change mechanism (relative rotation mechanism 50, relative tilt mechanism 51, and relative movement mechanism 52) of the first and second absorption gratings 31 and 32 for changing the moiré period T is constituted by an actuator such as a piezoelectric element. Is possible.
X線源11と第1の吸収型格子31との間に被写体Hを配置した場合には、FPD30により検出されるモアレ縞は、被写体Hにより変調を受ける。この変調量は、被写体Hによる屈折効果によって偏向したX線の角度に比例する。したがって、FPD30で検出されたモアレ縞を解析することによって、被写体Hの位相コントラスト画像を生成することができる。
When the subject H is disposed between the X-ray source 11 and the first absorption type grating 31, the moire fringes detected by the FPD 30 are modulated by the subject H. This modulation amount is proportional to the angle of the X-ray deflected by the refraction effect by the subject H. Therefore, the phase contrast image of the subject H can be generated by analyzing the moire fringes detected by the FPD 30.
次に、モアレ縞の解析方法について説明する。
Next, a method for analyzing moire fringes will be described.
図7は、被写体Hのx方向に関する位相シフト分布Φ(x)に応じて屈折される1つのX線を示す。
FIG. 7 shows one X-ray refracted according to the phase shift distribution Φ (x) of the subject H in the x direction.
符号55は、被写体Hが存在しない場合に直進するX線の経路を示しており、この経路55を進むX線は、第1及び第2の吸収型格子31,32を通過してFPD30に入射する。符号56は、被写体Hが存在する場合に、被写体Hにより屈折されて偏向したX線の経路を示している。この経路56を進むX線は、第1の吸収型格子31を通過した後、第2の吸収型格子32より遮蔽される。
Reference numeral 55 indicates an X-ray path that travels straight when the subject H is not present. The X-ray that travels along the path 55 passes through the first and second absorption gratings 31 and 32 and enters the FPD 30. To do. Reference numeral 56 indicates an X-ray path refracted and deflected by the subject H when the subject H exists. X-rays traveling along this path 56 are shielded by the second absorption type grating 32 after passing through the first absorption type grating 31.
被写体Hの位相シフト分布Φ(x)は、被写体Hの屈折率分布をn(x,z)、zをX線の進む方向として、次式(11)で表される。
The phase shift distribution Φ (x) of the subject H is expressed by the following equation (11), where n (x, z) is the refractive index distribution of the subject H, and z is the direction in which the X-ray travels.
第1の吸収型格子31から第2の吸収型格子32の位置に投射されたG1像は、被写体HでのX線の屈折により、その屈折角φに応じた量だけx方向に変位することになる。この変位量Δxは、X線の屈折角φが微小であることに基づいて、近似的に次式(12)で表される。
The G1 image projected from the first absorptive grating 31 to the position of the second absorptive grating 32 is displaced in the x direction by an amount corresponding to the refraction angle φ due to refraction of X-rays at the subject H. become. This amount of displacement Δx is approximately expressed by the following equation (12) based on the small X-ray refraction angle φ.
ここで、屈折角φは、X線波長λと被写体Hの位相シフト分布Φ(x)を用いて、式(13)で表される。
Here, the refraction angle φ is expressed by Expression (13) using the X-ray wavelength λ and the phase shift distribution Φ (x) of the subject H.
このように、被写体HでのX線の屈折によるG1像の変位量Δxは、被写体Hの位相シフト分布Φ(x)に関連している。そして、この変位量Δxは、FPD30の各画素40から出力される信号の位相ズレ量ψ(被写体Hがある場合とない場合とでの各画素40の信号の位相のズレ量)に、次式(14)のように関連している。
Thus, the displacement amount Δx of the G1 image due to the refraction of X-rays at the subject H is related to the phase shift distribution Φ (x) of the subject H. The amount of displacement Δx is expressed by the following equation with the phase shift amount ψ of the signal output from each pixel 40 of the FPD 30 (the phase shift amount of the signal of each pixel 40 with and without the subject H): It is related as shown in (14).
したがって、各画素40の信号の位相ズレ量ψを求めることにより、式(14)から屈折角φが求まり、式(13)を用いて位相シフト分布Φ(x)の微分量が求まるから、これをxについて積分することにより、被写体Hの位相シフト分布Φ(x)、すなわち被写体Hの位相コントラスト画像を生成することができる。本X線撮影システム10では、上記位相ズレ量ψを、下記に示す縞走査法を用いて算出する。
Therefore, by obtaining the phase shift amount ψ of the signal of each pixel 40, the refraction angle φ is obtained from the equation (14), and the differential amount of the phase shift distribution Φ (x) is obtained using the equation (13). Is integrated with respect to x, a phase shift distribution Φ (x) of the subject H, that is, a phase contrast image of the subject H can be generated. In the present X-ray imaging system 10, the phase shift amount ψ is calculated using a fringe scanning method described below.
縞走査法では、第1及び第2の吸収型格子31,32の一方を他方に対して相対的にx方向にステップ的に並進移動させながら撮影を行う(すなわち、両者の格子周期の位相を変化させながら撮影を行う)。本X線撮影システム10では、上述の走査機構33により第2の吸収型格子32を移動させているが、第1の吸収型格子31を移動させてもよい。第2の吸収型格子32の移動に伴って、モアレ縞が移動し、並進距離(x方向への移動量)が、第2の吸収型格子32の格子周期の1周期(格子ピッチp2)に達すると(すなわち、位相変化が2πに達すると)、モアレ縞は元の位置に戻る。このようなモアレ縞の変化を、格子ピッチp2を整数分の1ずつ第2の吸収型格子32を移動させながら、FPD30でモアレ縞を撮影し、撮影した複数の縞画像から各画素40の信号を取得し、演算処理部22で演算処理することにより、各画素40の信号の位相ズレ量ψを得る。
In the fringe scanning method, imaging is performed while one of the first and second absorption type gratings 31 and 32 is translated in a stepwise manner relative to the other in the x direction (that is, the phase of both grating periods is changed). Shoot while changing). In the present X-ray imaging system 10, the second absorption grating 32 is moved by the scanning mechanism 33 described above, but the first absorption grating 31 may be moved. As the second absorption type grating 32 moves, the moire fringes move, and the translation distance (the amount of movement in the x direction) is one period of the grating period of the second absorption type grating 32 (grating pitch p 2 ). (Ie, when the phase change reaches 2π), the moire fringes return to their original positions. Such a change in moire fringes is obtained by photographing the moire fringes with the FPD 30 while moving the second absorption grating 32 by an integer of the grating pitch p 2, and from each of the photographed plural fringe images, The signal is acquired and processed by the processing unit 22 to obtain the phase shift amount ψ of the signal of each pixel 40.
図8は、格子ピッチp2をM(2以上の整数)個に分割した走査ピッチ(p2/M)ずつ第2の吸収型格子32を移動させる様子を模式的に示す。
FIG. 8 schematically shows how the second absorption grating 32 is moved by the scanning pitch (p 2 / M) obtained by dividing the grating pitch p 2 into M (an integer of 2 or more).
走査機構33は、k=0,1,2,・・・,M-1のM個の各走査位置に、第2の吸収型格子32を順に並進移動させる。なお、同図では、第2の吸収型格子32の初期位置を、被写体Hが存在しない場合における第2の吸収型格子32の位置でのG1像の暗部が、X線遮蔽部32bにほぼ一致する位置(k=0)としているが、この初期位置は、k=0,1,2,・・・,M-1のうちいずれの位置としてもよい。
The scanning mechanism 33 translates the second absorption type grating 32 in order to M scanning positions of k = 0, 1, 2,..., M−1. In the same figure, the initial position of the second absorption grating 32 is the same as the dark part of the G1 image at the position of the second absorption grating 32 when the subject H is not present. The initial position is k = 0, 1, 2,..., M−1.
まず、k=0の位置では、主として、被写体Hにより屈折されなかったX線が第2の吸収型格子32を通過する。次に、k=1,2,・・・と順に第2の吸収型格子32を移動させていくと、第2の吸収型格子32を通過するX線は、被写体Hにより屈折されなかったX線の成分が減少する一方で、被写体Hにより屈折されたX線の成分が増加する。特に、k=M/2では、主として、被写体Hにより屈折されたX線のみが第2の吸収型格子32を通過する。k=M/2を超えると、逆に、第2の吸収型格子32を通過するX線は、被写体Hにより屈折されたX線の成分が減少する一方で、被写体Hにより屈折されなかったX線の成分が増加する。
First, at the position of k = 0, X-rays that are not refracted by the subject H mainly pass through the second absorption type grating 32. Next, when the second absorption grating 32 is moved in order of k = 1, 2,..., The X-rays passing through the second absorption grating 32 are not refracted by the subject H. While the line component decreases, the X-ray component refracted by the subject H increases. In particular, at k = M / 2, mainly only the X-rays refracted by the subject H pass through the second absorption type grating 32. When k = M / 2 is exceeded, on the contrary, the X-ray component that is refracted by the subject H decreases in the X-rays that pass through the second absorption grating 32, while the X-ray that is not refracted by the subject H. The line component increases.
k=0,1,2,・・・,M-1の各位置で、FPD30により撮影を行うと、各画素40について、M個の画素値が得られる。以下に、このM個の画素値から各画素40の信号の位相ズレ量ψを算出する方法を説明する。第2の吸収型格子32の位置kにおける各画素40の画素値をIk(x)と標記すると、Ik(x)は、次式(15)で表される。
When photographing is performed by the FPD 30 at each position of k = 0, 1, 2,..., M−1, M pixel values are obtained for each pixel 40. Hereinafter, a method of calculating the phase shift amount ψ of the signal of each pixel 40 from the M pixel values will be described. When the pixel value of each pixel 40 at the position k of the second absorption type grating 32 is denoted as I k (x), I k (x) is expressed by the following equation (15).
ここで、xは、画素40のx方向に関する座標であり、A0は入射X線の強度であり、Anは画素40の画素値のコントラストに対応する値である(ここで、nは正の整数である)。また、φ(x)は、上記屈折角φを画素40の座標xの関数として表したものである。
Here, x is a coordinate in the x direction of the pixel 40, A 0 is the intensity of the incident X-ray, and An is a value corresponding to the contrast of the pixel value of the pixel 40 (where n is a positive value). Is an integer). Φ (x) represents the refraction angle φ as a function of the coordinate x of the pixel 40.
次いで、次式(16)の関係式を用いると、上記屈折角φ(x)は、次式(17)のように表される。
Next, using the relational expression of the following expression (16), the refraction angle φ (x) is expressed as the following expression (17).
ここで、arg[ ]は、偏角の抽出を意味しており、各画素40の信号の位相ズレ量ψに対応する。したがって、各画素40で得られたM個の画素値から、式(17)に基づいて各画素40の信号の位相ズレ量ψを算出することにより、屈折角φ(x)が求められる。
Here, arg [] means the extraction of the declination, and corresponds to the phase shift amount ψ of the signal of each pixel 40. Therefore, the refraction angle φ (x) is obtained by calculating the phase shift amount ψ of the signal of each pixel 40 from the M pixel values obtained in each pixel 40 based on the equation (17).
図9は、縞走査に伴って変化する放射線画像検出器の一つの画素の信号を示す。
FIG. 9 shows a signal of one pixel of the radiation image detector that changes with the fringe scanning.
各画素40で得られたM個の画素値は、第2の吸収型格子32の位置kに対して、格子ピッチp2の周期で周期的に変化する。図9中の破線は、被写体Hが存在しない場合の画素値の変化を示しており、図9中の実線は、被写体Hが存在する場合の画素値の変化を示している。この両者の波形の位相差が各画素40の信号の位相ズレ量ψに対応する。
The M pixel values obtained in each pixel 40 periodically change with a period of the grating pitch p 2 with respect to the position k of the second absorption type grating 32. A broken line in FIG. 9 indicates a change in the pixel value when the subject H does not exist, and a solid line in FIG. 9 indicates a change in the pixel value when the subject H exists. The phase difference between the two waveforms corresponds to the phase shift amount ψ of the signal of each pixel 40.
そして、屈折角φ(x)は、式(13)で示したように微分位相値に対応する値であるため、屈折角φ(x)をx軸に沿って積分することにより、位相シフト分布Φ(x)が得られる。なお、上記の説明では、画素40のy方向に関するy座標を考慮していないが、各y座標について同様の演算を行うことにより、x方向及びy方向における2次元的な位相シフト分布Φ(x,y)が得られる。
Since the refraction angle φ (x) is a value corresponding to the differential phase value as shown in the equation (13), the phase shift distribution is obtained by integrating the refraction angle φ (x) along the x-axis. Φ (x) is obtained. In the above description, the y coordinate in the y direction of the pixel 40 is not taken into consideration. However, by performing the same calculation for each y coordinate, a two-dimensional phase shift distribution Φ (x , Y).
図10は、図1の放射線撮影システムにおける位相コントラスト画像の生成処理のフローを示す。
FIG. 10 shows a flow of a phase contrast image generation process in the radiation imaging system of FIG.
本X線撮影システム10においては、X線の照射時間を一定として、第2の吸収型格子32をK=0,1・・・,M-1の各位置(図8参照)に置きながらM回の撮影が行われる。
In the present X-ray imaging system 10, the X-ray irradiation time is constant, and the second absorption grating 32 is placed at each position of K = 0, 1,..., M−1 (see FIG. 8). Times are taken.
各撮影において、制御装置20は、X線の照射開始を指示する制御信号をX線源制御部17に送出する。この制御信号を受信したX線制御部17は、X線管18への電力の供給を開始するように高電圧発生器16を制御する。それにより、被写体HへのX線の照射が開始される(ステップS1)。
In each imaging, the control device 20 sends a control signal instructing the start of X-ray irradiation to the X-ray source control unit 17. The X-ray control unit 17 that has received this control signal controls the high voltage generator 16 so as to start supplying power to the X-ray tube 18. Thereby, irradiation of the subject H with X-rays is started (step S1).
被写体Hにより変調を受けた第1の吸収型格子31のG1像と第2の吸収型格子32との重ね合わせによって形成された像がFPD30の像検出画素40の群によって撮像される。その際、第1及び第2の吸収型格子31,32を外れて伝播するX線が、FPD30の線量検出画素40の群に入射し、入射するX線の線量に応じた電荷がそれらの線量検出画素40に蓄積される。
An image formed by superimposing the G1 image of the first absorption type grating 31 modulated by the subject H and the second absorption type grating 32 is picked up by the group of image detection pixels 40 of the FPD 30. At that time, X-rays propagating off the first and second absorption gratings 31 and 32 enter the group of dose detection pixels 40 of the FPD 30, and charges corresponding to the dose of the incident X-rays are those doses. Accumulated in the detection pixel 40.
制御装置20は、X線源制御部17に対してX線の照射開始を指示する制御信号を送出してからの経過時間Tを計測し、経過時間Tが予め設定された照射時間T0に達したところで、X線の照射停止を指示する制御信号をX線源制御部17に送出する(ステップS2)。
The control device 20 measures an elapsed time T after sending a control signal instructing the X-ray source control unit 17 to start X-ray irradiation, and the elapsed time T is set to a preset irradiation time T 0 . When it reaches, a control signal for instructing to stop X-ray irradiation is sent to the X-ray source control unit 17 (step S2).
X線制御部17は、制御装置20から送出された上記の制御信号を受信し、X線管18への電力の供給を停止するように高電圧発生器16を制御する。それにより、被写体HへのX線の照射が停止される(ステップS3)。
The X-ray control unit 17 receives the control signal sent from the control device 20 and controls the high voltage generator 16 to stop the supply of power to the X-ray tube 18. Thereby, irradiation of the subject H with X-rays is stopped (step S3).
X線の照射が停止された後、FPD30から画像データが出力され(ステップS4)、演算処理部22は、FPD30から出力された画像データに対して、後述する輝度補正を行う(ステップS5)。
After the X-ray irradiation is stopped, image data is output from the FPD 30 (step S4), and the arithmetic processing unit 22 performs luminance correction described later on the image data output from the FPD 30 (step S5).
以上のプロセスで、第2の吸収型格子32をK=0,1・・・,M-1の各位置(図8参照)に置きながらM回の撮影が行われる。演算処理部22は、M回の撮影によって取得され、それぞれ輝度補正された画像データを用い、上述した手順に従って位相シフト分布Φを演算し、これを位相コントラスト画像として記憶部23に記憶させる(ステップS6)。
Through the above process, M times of imaging are performed while the second absorption type grating 32 is placed at each position of K = 0, 1,... The arithmetic processing unit 22 calculates the phase shift distribution Φ according to the above-described procedure using the image data acquired by M times of photographing and subjected to luminance correction, and stores this in the storage unit 23 as a phase contrast image (step S6).
次に、各画像データの輝度補正について説明する。
Next, luminance correction for each image data will be described.
上述した位相コントラスト画像の生成処理において、各撮影におけるX線の照射時間は一定とされているが、X線管18の立ち上がり特性や立ち下がり特性などの影響によって撮影間で照射線量にバラツキが生じ、撮影間の照射線量のバラツキに起因して、画像データ間で全体的な輝度変化が生じる。そこで、演算処理部22において、各画像データに対して輝度補正を行う。
In the above-described phase contrast image generation processing, the X-ray irradiation time in each imaging is constant, but the irradiation dose varies between imaging due to the rise characteristics and fall characteristics of the X-ray tube 18. Due to the variation in irradiation dose between photographings, an overall luminance change occurs between image data. Therefore, the arithmetic processing unit 22 performs luminance correction on each image data.
画像データにおける各画素の画素値(輝度)は、その画素に入射したX線の線量に対応する。線量検出画素40には、第1及び第2の吸収型格子31,32の格子領域から外れて伝播するX線が入射し、よって、第1の吸収型格子31のG1像と第2の吸収型格子32との重ね合わせによるモアレ縞が線量検出画素40上に形成されることはない。よって、線量検出画素40においては、モアレ縞の暗部との重なりの変化によって照射時間内に入射するX線の線量が変化するということはなく、画像データ間における線量検出画素40の画素値のバラツキは、撮影間における照射線量のバラツキによる。
The pixel value (luminance) of each pixel in the image data corresponds to the X-ray dose incident on that pixel. X-rays propagating out of the grating regions of the first and second absorption gratings 31 and 32 are incident on the dose detection pixel 40, and thus the G1 image and the second absorption of the first absorption grating 31 are incident. Moire fringes due to superimposition with the mold grating 32 are not formed on the dose detection pixels 40. Therefore, in the dose detection pixel 40, the dose of X-rays incident within the irradiation time does not change due to the change of the overlap with the dark part of the moire fringe, and the pixel value of the dose detection pixel 40 varies between the image data. Is due to variations in irradiation dose between imaging.
演算処理部22は、各画像データにおける線量検出画素40の画素値を画像データ間で合わせるように、各画像データに対して輝度補正を行う。なお、線量検出画素40が複数ある場合には、それらの画素値の総和あるいは平均を合わせるように、各画像データに対して輝度補正を行う。例えば、1回目の撮影で取得された画像データにおける線量検出画素40の画素値を基準値とする。そして、2回目以降の撮影で取得される各画像データにおいて、その画像データに含まれる線量検出画素40の画素値の基準値に対する比の逆数を、その画像データの全ての画素に乗算する。それにより、2回目以降の撮影で取得された各画像データの線量検出画素40の画素値は基準値に合わせられ、線量検出画素40を除く各画素40の画素値は、他の画素40の画素値との比を保って補正される。それにより、撮影間の照射線量のバラツキに起因する各画素40の画素値の変化が除去あるいは低減される。なお、この輝度補正により撮影間の照射線量のバラツキに起因する各画素40の画素値の変化が除去あるいは低減されるため、X線の照射時間は一定である必要はない。
The arithmetic processing unit 22 performs luminance correction on each image data so that the pixel value of the dose detection pixel 40 in each image data is matched between the image data. In addition, when there are a plurality of dose detection pixels 40, luminance correction is performed on each image data so that the sum or average of the pixel values is matched. For example, the pixel value of the dose detection pixel 40 in the image data acquired by the first imaging is used as the reference value. Then, in each image data acquired in the second and subsequent imaging, all the pixels of the image data are multiplied by the reciprocal of the ratio of the pixel value of the dose detection pixel 40 included in the image data to the reference value. Thereby, the pixel value of the dose detection pixel 40 of each image data acquired in the second and subsequent imaging is adjusted to the reference value, and the pixel value of each pixel 40 excluding the dose detection pixel 40 is the pixel of the other pixel 40. Correction is performed while maintaining the ratio to the value. Thereby, the change of the pixel value of each pixel 40 resulting from the variation of the irradiation dose between imaging | photography is removed or reduced. It should be noted that the X-ray irradiation time does not need to be constant because the change in the pixel value of each pixel 40 due to the variation in the irradiation dose during imaging is eliminated or reduced by this luminance correction.
上記の縞走査、及び位相コントラスト画像の生成処理は、入力装置21から操作者により撮影指示がなされた後、制御装置20の制御に基づいて各部が連係動作し、自動的に行われ、最終的に被写体Hの位相コントラスト画像がモニタ24に表示される。
The above-described fringe scanning and phase contrast image generation processing is automatically performed after the imaging instruction is given by the operator from the input device 21, and the respective units are linked and operated based on the control of the control device 20. The phase contrast image of the subject H is displayed on the monitor 24.
以上、説明したように、本X線撮影システム10によれば、第1及び第2の吸収型格子31,32の格子領域を外れて伝播するX線を線量検出画素40で検出しており、線量検出画素上には第1の吸収型格子31のG1像と第2の吸収型格子32との重ね合わせによるモアレ縞が形成されず、よって、モアレ縞の影響を受けることなく正確に線量を検出することができる。それにより、撮影間の照射線量のバラツキを正確に計測することができる。そして、各撮影において取得された画像データを、その撮影において検出された線量に基づいて輝度補正することによって、撮影間の照射線量のバラツキに起因する各画素40の画素値の変化を除去あるいは低減することができる。それにより、より高精度なX線位相コントラスト画像を生成することができる。
As described above, according to the present X-ray imaging system 10, the X-ray propagating out of the lattice area of the first and second absorption gratings 31 and 32 is detected by the dose detection pixel 40, Moire fringes due to the superposition of the G1 image of the first absorption-type grating 31 and the second absorption-type grating 32 are not formed on the dose detection pixels, and therefore the dose can be accurately measured without being affected by the moire fringes. Can be detected. Thereby, the variation of the irradiation dose between imaging | photography can be measured correctly. Then, by correcting the brightness of the image data acquired in each shooting based on the dose detected in the shooting, the change in the pixel value of each pixel 40 due to the variation in the irradiation dose between the shootings is removed or reduced. can do. Thereby, an X-ray phase contrast image with higher accuracy can be generated.
また、線量検出画素40は一つあれば足りるが、本X線撮影システム10のように、線量検出画素40を複数設け、それらの画素値の平均ないし総和を算出することが好ましい。それによれば、線量検出の精度を高め、各画像データの輝度補正の精度を高めることができる。
Although only one dose detection pixel 40 is required, it is preferable to provide a plurality of dose detection pixels 40 as in the present X-ray imaging system 10 and calculate the average or sum of the pixel values. According to this, the accuracy of dose detection can be increased, and the accuracy of luminance correction of each image data can be increased.
また、本X線撮影システム10によれば、第1の吸収型格子31で殆どのX線を回折させずに、第2の吸収型格子32にほぼ幾何学的に投影するため、照射X線には、高い空間的可干渉性は要求されず、X線源11として医療分野で用いられている一般的なX線源を用いることができる。そして、第1の吸収型格子31から第2の吸収型格子32までの距離L2を任意の値とすることができ、該距離L2を、タルボ干渉計での最小のタルボ干渉距離より小さく設定することができるため、撮影部12を小型化(薄型化)することができる。
Further, according to the present X-ray imaging system 10, since most X-rays are not diffracted by the first absorption type grating 31 and projected almost geometrically onto the second absorption type grating 32, the irradiated X-rays are obtained. Therefore, a high spatial coherence is not required, and a general X-ray source used in the medical field as the X-ray source 11 can be used. The distance L 2 from the first absorption type grating 31 to the second absorption type grating 32 can be set to an arbitrary value, and the distance L 2 is smaller than the minimum Talbot interference distance in the Talbot interferometer. Since it can be set, the photographing unit 12 can be downsized (thinned).
なお、本X線撮影システム10は、第1の格子の投影像に対して縞走査を行って屈折角φを演算するものであって、そのため、第1及び第2の格子がいずれも吸収型格子であるものとして説明したが、本発明はこれに限定されるものではない。上述のとおり、タルボ干渉像に対して縞走査を行って屈折角φを演算する場合にも、本発明は有用である。よって、第1の格子は、吸収型格子に限らず位相型格子であってもよい。また、第1の格子のX線像と第2の格子との重ね合わせによって形成されるモアレ縞の解析方法は、上述した縞走査法に限られず、例えば「J. Opt. Soc. Am. Vol.72,No.1 (1982) P.156」により知られているフーリエ変換/フーリエ逆変換を用いた方法など、モアレ縞を利用した種々の方法も適用可能である。
Note that the X-ray imaging system 10 performs a fringe scan on the projection image of the first grating to calculate the refraction angle φ. Therefore, both the first and second gratings are absorption type. Although described as being a lattice, the present invention is not limited to this. As described above, the present invention is also useful when the refraction angle φ is calculated by performing fringe scanning on the Talbot interference image. Therefore, the first grating is not limited to the absorption type grating but may be a phase type grating. Further, the method of analyzing the moire fringes formed by superimposing the X-ray image of the first grating and the second grating is not limited to the above-described fringe scanning method. For example, “J. Opt. Soc. Am. Vol” Various methods using Moire fringes, such as a method using Fourier transform / inverse Fourier transform known as “.72, No. 1 1982 (1982) P.156”, can also be applied.
また、位相シフト分布Φを画像としたものを位相コントラスト画像として記憶ないし表示するものとして説明したが、上記のとおり、位相シフト分布Φは、屈折角φより求まる位相シフト分布Φの微分量を積分したものであって、屈折角φ及び位相シフト分布Φの微分量もまた被写体によるX線の位相変化に関連している。よって、屈折角φを画像としたもの、また、位相シフトΦの微分量を画像としたものも位相コントラスト画像に含まれる。
In addition, the phase shift distribution Φ as an image has been described as being stored or displayed as a phase contrast image. As described above, the phase shift distribution Φ integrates the differential amount of the phase shift distribution Φ obtained from the refraction angle φ. Thus, the differential amounts of the refraction angle φ and the phase shift distribution Φ are also related to the X-ray phase change by the subject. Therefore, an image having the refraction angle φ as an image and an image having the differential amount of the phase shift Φ are also included in the phase contrast image.
また、被写体がない状態で撮影(プレ撮影)して取得される画像群から位相微分像(位相シフト分布Φの微分量)を作成するようにしてもよい。この位相微分像は、検出系の位相ムラを反映している(モアレによる位相ズレ、グリッドの不均一性、線量検出器の屈折等が含まれている)。そして、被写体がある状態で撮影(メイン撮影)して取得される画像群から位相微分像を作成し、これからプレ撮影で得られた位相微分像を引くことで、測定系の位相ムラを補正した位相微分像を得ることが出来る。
Further, a phase differential image (a differential amount of the phase shift distribution Φ) may be created from an image group acquired by photographing (pre-photographing) in the absence of a subject. This phase differential image reflects the phase unevenness of the detection system (including phase shift due to moire, grid nonuniformity, refraction of the dose detector, etc.). Then, a phase differential image is created from a group of images acquired by shooting (main shooting) in the presence of a subject, and the phase differential image obtained by pre-shooting is subtracted from this to correct phase irregularity in the measurement system. A phase differential image can be obtained.
図11は、本発明の実施形態を説明するための放射線撮影システムの他の例を示す。
FIG. 11 shows another example of a radiation imaging system for explaining an embodiment of the present invention.
図11に示すX線撮影システム70は、被写体Hを臥位ないし座位状態で撮影するX線診断装置であり、図11には、被写体Hの膝のX線画像(位相コントラスト画像)を撮影する例が示されている。
An X-ray imaging system 70 shown in FIG. 11 is an X-ray diagnostic apparatus that images a subject H in a supine or sitting position. FIG. 11 captures an X-ray image (phase contrast image) of the knee of the subject H. An example is shown.
X線撮影システム70は、被写体或いは被写体の撮影部位が載せられるベッド71と、ベッド71の鉛直上方において天井から吊り下げられたX線源保持装置14により保持され、ベッド71に載った被写体に向けてX線を放射するX線源11と、X線源11に対向配置され、ベッド71の天板72の下面側に取り付けられた撮影部12とを備える。X線源11及び撮影部12は、上述したX線撮影システム10のものと同様の構成であるため、各構成要素には、X線撮影システム10と同一の符号を付している。その他の構成及び作用については、X線撮影システム10と同様であるため説明は省略する。
The X-ray imaging system 70 is held by a bed 71 on which a subject or an imaging region of the subject is placed, and an X-ray source holding device 14 suspended from the ceiling vertically above the bed 71 and directed toward the subject placed on the bed 71. An X-ray source 11 that emits X-rays, and an imaging unit 12 that is disposed opposite to the X-ray source 11 and attached to the lower surface side of the top plate 72 of the bed 71. Since the X-ray source 11 and the imaging unit 12 have the same configuration as that of the X-ray imaging system 10 described above, the same reference numerals as those of the X-ray imaging system 10 are given to the respective components. Since other configurations and operations are the same as those of the X-ray imaging system 10, description thereof will be omitted.
なお、被写体Hの膝のX線画像を撮影する例を示したが、本X線撮影システム70は、例えば被写体Hの手や肘のX線画像を撮影する場合などにも用いられ、その場合には、ベッド71に被写体Hの手や腕が載せられる。
In addition, although the example which image | photographs the X-ray image of the knee of the to-be-photographed subject H was shown, this X-ray imaging system 70 is used also when image | photographing the X-ray image of the hand and elbow of the to-be-photographed subject H, for example. The hand and arm of the subject H are placed on the bed 71.
図12は、本発明の実施形態を説明するための放射線撮影システムの他の例を示す。
FIG. 12 shows another example of a radiation imaging system for explaining an embodiment of the present invention.
図12に示す放射線撮影システムは、乳房BのX線画像(位相コントラスト画像)を撮影するマンモグラフィ装置である。マンモグラフィ装置80は、基台(図示せず)に対して旋回可能に連結されたアーム部材81の一端に配設されたX線源収納部82と、アーム部材81の他端に配設された撮影台83と、撮影台83に対して上下方向に移動可能に構成された圧迫板84とを備える。
The radiography system shown in FIG. 12 is a mammography apparatus that captures an X-ray image (phase contrast image) of the breast B. The mammography apparatus 80 is disposed at one end of an arm member 81 that is pivotally connected to a base (not shown), and disposed at the other end of the arm member 81. An imaging table 83 and a compression plate 84 configured to be movable in the vertical direction with respect to the imaging table 83 are provided.
X線源収納部82にはX線源11が収納されており、撮影台83には撮影部12が収納されている。X線源11と撮影部12とは、互いに対向するように配置されている。圧迫板84は、移動機構(図示せず)により移動し、撮影台83との間で乳房Bを挟み込んで圧迫する。この圧迫状態で、上記したX線撮影が行われる。X線源11及び撮影部12は、上述したX線撮影システム10のものと同様の構成であるため、各構成要素には、X線撮影システム10と同一の符号を付している。その他の構成及び作用については、X線撮影システム10と同様であるため説明は省略する。
The X-ray source storage unit 82 stores the X-ray source 11, and the imaging table 83 stores the imaging unit 12. The X-ray source 11 and the imaging unit 12 are arranged to face each other. The compression plate 84 is moved by a moving mechanism (not shown), and the breast B is sandwiched between the imaging table 83 and compressed. The X-ray imaging described above is performed in this compressed state. Since the X-ray source 11 and the imaging unit 12 have the same configuration as that of the X-ray imaging system 10 described above, the same reference numerals as those of the X-ray imaging system 10 are given to the respective components. Since other configurations and operations are the same as those of the X-ray imaging system 10, description thereof will be omitted.
図13は、図12の放射線撮影システムの変形例を示す。
FIG. 13 shows a modification of the radiation imaging system of FIG.
図13に示すマンモグラフィ装置80Aは、第1の吸収型格子31がX線源11と圧迫板84との間に配設されている点が上述したマンモグラフィ装置80と異なる。第1の吸収型格子31は、アーム部材81に接続された格子収納部85に収納されている。第1の吸収型格子31と共に撮影部12を構成するFPD30、第2の吸収型格子32、及び走査機構33は撮影台83に収納されている。
13 differs from the mammography apparatus 80 described above in that the first absorption type grating 31 is disposed between the X-ray source 11 and the compression plate 84. The mammography apparatus 80A illustrated in FIG. The first absorption type lattice 31 is accommodated in a lattice accommodation portion 85 connected to the arm member 81. The FPD 30, the second absorption grating 32, and the scanning mechanism 33 that constitute the imaging unit 12 together with the first absorption grating 31 are housed in the imaging table 83.
このように、乳房Bが第1の吸収型格子31と第2の吸収型格子32との間に位置する場合であっても、第2の吸収型格子32の位置に形成される第1の吸収型格子31の投影像(G1像)が乳房Bにより変形する。したがって、この場合でも、乳房Bに起因して変調されたモアレ縞をFPD30により検出することができる。すなわち、本マンモグラフィ装置80Aでも上述した原理で乳房Bの位相コントラスト画像を得ることができる。
Thus, even when the breast B is located between the first absorption type grating 31 and the second absorption type grating 32, the first absorption current formed at the position of the second absorption type grating 32 is the first. The projected image (G1 image) of the absorption grating 31 is deformed by the breast B. Accordingly, even in this case, the moiré fringes modulated due to the breast B can be detected by the FPD 30. That is, the mammography apparatus 80A can obtain a phase contrast image of the breast B based on the principle described above.
そして、本マンモグラフィ装置80Aでは、第1の吸収型格子31による遮蔽により、線量がほぼ半減したX線が乳房Bに照射されることになるため、乳房Bの被曝量を、上述したマンモグラフィ装置80の場合の約半分に低減することができる。なお、本マンモグラフィ装置80Aのように、第1の吸収型格子31と第2の吸収型格子32との間に被写体を配置することは、上述したいずれのX線撮影システムにも適用することが可能である。
In this mammography apparatus 80A, since the X-ray whose dose is almost halved is irradiated to the breast B due to the shielding by the first absorption grating 31, the exposure amount of the breast B is set to the above-described mammography apparatus 80. It can be reduced to about half of the case. Note that the arrangement of the subject between the first absorption type grating 31 and the second absorption type grating 32 as in the mammography apparatus 80A can be applied to any of the X-ray imaging systems described above. Is possible.
図14及び図15は、線量検出画素40の配置の例を示す。
14 and 15 show examples of the arrangement of the dose detection pixels 40.
上述したX線撮影システムにおいて、複数の線量検出画素40は、FPD30の検出面の一辺に沿って一つの群をなして設けられているものとして説明したが、線量検出画素40の配置は、例えば、図14に示すように、枠状であってもよく(FIG.14A)、また、四隅に分散されていてもよく(FIG.14B)、撮影に支障のない限りにおいて被写体の撮影部位や撮影手技に応じて適宜設定することができる。
In the X-ray imaging system described above, the plurality of dose detection pixels 40 have been described as being formed as one group along one side of the detection surface of the FPD 30. However, the arrangement of the dose detection pixels 40 is, for example, As shown in FIG. 14, it may be frame-shaped (FIG. 14A) or distributed in four corners (FIG. 14B). It can be set as appropriate according to the procedure.
好ましくは、線量検出画素40は、FPD30の検出面において被写体と重ならない位置に設けられ、被写体を外れて伝播するX線を検出する。被写体が重なる線量検出画素40に入射するX線は被写体によって減衰される。そこで、FPD30の検出面において被写体が重ならない位置に線量検出画素40を設けることによって、より正確に線量を検出することができ、上述した輝度補正において、より確実に撮影間の照射線量のバラツキに起因する各画素40の画素値の変化を除去あるいは低減することができる。
Preferably, the dose detection pixel 40 is provided at a position that does not overlap the subject on the detection surface of the FPD 30, and detects X-rays that propagate outside the subject. X-rays incident on the dose detection pixel 40 where the subject overlaps are attenuated by the subject. Therefore, by providing the dose detection pixel 40 at a position where the subject does not overlap on the detection surface of the FPD 30, it is possible to detect the dose more accurately. The change of the pixel value of each pixel 40 resulting from it can be removed or reduced.
図15に示すように、例えば、上述したX線撮影システム70において被写体Hの膝を撮影する場合には、FPD30の検出面において脚の長手方向に沿う二辺に沿って複数の線量検出画素40を設ければよく(FIG.15A)、被写体Hの手を撮影する場合には、FPD30の検出面において腕と交差する辺を除く三辺に沿って略コ字状に複数の線量検出画素40を設ければよい(FIG.15B)。また、上述した乳房Bを撮影するマンモグラフィ装置80においては、FPD30の検出面において被写体Hの胸壁に沿う辺を除く三辺に沿って略コ字状に複数の線量検出画素40を設ければよい(FIG.15C)。
As shown in FIG. 15, for example, when imaging the knee of the subject H in the X-ray imaging system 70 described above, a plurality of dose detection pixels 40 along two sides along the longitudinal direction of the leg on the detection surface of the FPD 30. (FIG. 15A), when photographing the hand of the subject H, a plurality of dose detection pixels 40 are formed in a substantially U shape along three sides excluding the side intersecting the arm on the detection surface of the FPD 30. (FIG. 15B). Further, in the mammography apparatus 80 that captures the breast B described above, a plurality of dose detection pixels 40 may be provided in a substantially U shape along three sides excluding the side along the chest wall of the subject H on the detection surface of the FPD 30. (FIG. 15C).
また、被写体が重なる線量検出画素40の画素値は、そこに入射するX線が被写体によって減衰されることに起因して、被写体が重ならない線量検出画素40の画素値に比べて小さくなる。そこで、線量検出画素40の画素値に基づき、線量検出画素40の各々について被写体との重なりの有無を判定するようにしてもよい。例えば、画素値に対して所定の閾値を設け、線量検出画素40の画素値と閾値とを比較して閾値未満である画素値の線量検出画素40を被写体が重なる線量検出画素40と判定するように演算処理部22を構成し、上述した輝度補正において、被写体が重なる線量検出画素40の画素値を用いないようにすれば、図15に示す例と同様に、より確実に撮影間の照射線量のバラツキに起因する各画素40の画素値の変化を除去あるいは低減することができる。そして、かかる構成によれば、線量検出画素40と被写体との重なりを避けるために線量検出画素40の配置の設定を被写体に応じて変更する必要がなくなる。
Also, the pixel value of the dose detection pixel 40 where the subject overlaps is smaller than the pixel value of the dose detection pixel 40 where the subject does not overlap because the X-rays incident thereon are attenuated by the subject. Therefore, based on the pixel value of the dose detection pixel 40, it may be determined whether each dose detection pixel 40 is overlapped with the subject. For example, a predetermined threshold value is provided for the pixel value, and the pixel value of the dose detection pixel 40 is compared with the threshold value so that the dose detection pixel 40 having a pixel value less than the threshold value is determined as the dose detection pixel 40 on which the subject overlaps. If the arithmetic processing unit 22 is configured so that the pixel value of the dose detection pixel 40 with which the subject overlaps is not used in the luminance correction described above, the irradiation dose during imaging can be more reliably as in the example shown in FIG. It is possible to remove or reduce the change in the pixel value of each pixel 40 due to the variation in the number of pixels. According to such a configuration, it is not necessary to change the setting of the arrangement of the dose detection pixels 40 according to the subject in order to avoid the overlap between the dose detection pixels 40 and the subject.
図16は、本発明の実施形態を説明するための放射線撮影システムの一例に関し、その撮影部の構成を示す。
FIG. 16 shows a configuration of an imaging unit related to an example of a radiation imaging system for explaining an embodiment of the present invention.
上述したX線撮影システム10において、FPD30の線量検出画素40には、第1及び第2の吸収型格子31,32の格子領域の双方を外れて伝播するX線が入射するものとして説明したが、線量検出画素40において正確に線量検出するうえでは、線量検出画素40上にモアレ縞が形成されなければ足り、第1の吸収型格子31の格子領域を外れ、第2の吸収型格子32の格子領域を通過して伝播するX線が線量検出画素40に入射するよう構成することもでき、また第2の吸収型格子32の格子領域を外れ、第1の吸収型格子31の格子領域を通過して伝播するX線が線量検出画素40に入射するよう構成することもできる。図16に示すX線撮影システム60においては、第1の吸収型格子31の格子領域を外れ、第2の吸収型格子32の格子領域を通過して伝播するX線が線量検出画素40に入射するよう構成されている。その他の構成及び作用については、上述したX線撮影システム10と同様であるため説明は省略する。
In the X-ray imaging system 10 described above, the dose detection pixel 40 of the FPD 30 has been described as being incident with X-rays propagating off both the grating regions of the first and second absorption gratings 31 and 32. In order to accurately detect the dose in the dose detection pixel 40, it is sufficient that the moire fringes are not formed on the dose detection pixel 40, so that the first absorption type lattice 31 is out of the lattice region, and the second absorption type lattice 32 is formed. X-rays propagating through the grating region can also be configured to enter the dose detection pixel 40, and the grating region of the first absorption grating 31 can be separated from the grating region of the second absorption grating 32. It is also possible to configure so that X-rays that pass through and enter the dose detection pixel 40. In the X-ray imaging system 60 shown in FIG. 16, X-rays that are out of the lattice area of the first absorption grating 31 and propagate through the grating area of the second absorption grating 32 are incident on the dose detection pixel 40. It is configured to Since other configurations and operations are the same as those of the X-ray imaging system 10 described above, description thereof will be omitted.
以上の構成において、線量検出画素40に入射するX線は、第2の吸収型格子32を通過することによって減衰される。このことは、線量検出画素40の画素値が飽和することを防止することができ、好ましい。即ち、FPD30の像検出画素40に入射するX線は第1及び第2の吸収型格子31,32を通過することによって減衰され、像検出画素40において十分な線量が確保されることを基準に撮影条件が定められる。そのため、第1及び第2の吸収型格子31,32の格子領域の双方を外れて伝播するX線が線量検出画素40に入射するよう構成した場合に、撮影条件によっては線量検出画素40の画素値が飽和することも考えられる。そこで、第1及び第2の吸収型格子31,32の一方の格子領域(本例においては、第2の吸収型格子32の格子領域)を通過して減衰されたX線が線量検出画素40に入射するように構成すれば、線量検出画素40の画素値が飽和することを防止することができる。更に、上記の構成によれば、線量検出画素40に入射するX線の進行経路に位置する第1及び第2の吸収型格子31,32の一方の格子が、散乱除去グリッドの役割も果たすことが出来る。そのため、被写体などによる散乱の影響を除外でき、より正確に線量検出を行えるようになる。
In the above configuration, the X-rays incident on the dose detection pixel 40 are attenuated by passing through the second absorption grating 32. This is preferable because the pixel value of the dose detection pixel 40 can be prevented from being saturated. That is, the X-rays incident on the image detection pixel 40 of the FPD 30 are attenuated by passing through the first and second absorption gratings 31 and 32, and a sufficient dose is secured in the image detection pixel 40 as a reference. Shooting conditions are defined. Therefore, in the case where X-rays propagating out of the lattice regions of the first and second absorption type gratings 31 and 32 are incident on the dose detection pixel 40, the pixel of the dose detection pixel 40 depends on the imaging conditions. It is also possible that the value is saturated. Therefore, X-rays attenuated by passing through one grating region of the first and second absorption gratings 31 and 32 (in this example, the grating region of the second absorption grating 32) are dose detection pixels 40. In this case, the pixel value of the dose detection pixel 40 can be prevented from being saturated. Furthermore, according to the above configuration, one of the first and second absorption type gratings 31 and 32 located in the traveling path of the X-rays incident on the dose detection pixel 40 also serves as a scattering removal grid. I can do it. Therefore, it is possible to exclude the influence of scattering caused by a subject or the like, and to perform dose detection more accurately.
図17は、上述したX線撮影システム60の変形例に関し、その撮影部の構成を示す。
FIG. 17 shows a configuration of an imaging unit regarding a modification of the X-ray imaging system 60 described above.
図17に示すX線撮影システム60Aでは、第1及び第2の吸収型格子31,32の格子領域の双方を外れて伝播するX線がFPD30の線量検出画素40に入射するように構成されている一方で、線量検出画素40の画素値が飽和することを防止するため、線量検出画素40に重なるX線減衰体61を備えている。
The X-ray imaging system 60A shown in FIG. 17 is configured such that X-rays propagating off both the grating regions of the first and second absorption gratings 31 and 32 are incident on the dose detection pixel 40 of the FPD 30. On the other hand, in order to prevent the pixel value of the dose detection pixel 40 from being saturated, an X-ray attenuator 61 overlapping the dose detection pixel 40 is provided.
X線減衰体61は、一様な厚みの箔状ないし板状に形成されており、X線焦点18bを視点とするFPD30の検出面上への投影において、第1及び第2の吸収型格子31,32の投影から外れる領域30Bを覆って設けられている。X線減衰体61の材料としては、例えば金、白金、鉛、タングステン、アルミ、銅、鉄、等の金属材料が好適に用いられ、X線減衰体61は、用いられる材料のX線吸収能との関係で適宜な厚みに形成される。なお、上記の金属材料に比べて厚くはなるが、X線減衰体61の材料としては、ポリマー、シリコン、ガラス、等の非金属材料も用いることができる。
The X-ray attenuator 61 is formed in a foil or plate shape having a uniform thickness, and the first and second absorption gratings are projected on the detection surface of the FPD 30 with the X-ray focal point 18b as a viewpoint. 31 and 32 are provided so as to cover a region 30B that is out of projection. As a material of the X-ray attenuator 61, for example, a metal material such as gold, platinum, lead, tungsten, aluminum, copper, and iron is preferably used. The X-ray attenuator 61 is an X-ray absorptivity of the material used. Therefore, it is formed in an appropriate thickness. In addition, although it becomes thick compared with said metallic material, as a material of the X-ray attenuation body 61, nonmetallic materials, such as a polymer, a silicon | silicone, glass, can also be used.
以上のように構成されたX線減衰体61は、入射するX線を一様に減衰させ、これを透過したX線が領域30Bに属する線量検出画素40に入射する。それにより、線量検出画素40の画素値が飽和することを防止し、線量検出画素40による線量検出を正常に行うことができる。
The X-ray attenuator 61 configured as described above attenuates incident X-rays uniformly, and X-rays transmitted therethrough enter the dose detection pixels 40 belonging to the region 30B. Thereby, saturation of the pixel value of the dose detection pixel 40 can be prevented, and dose detection by the dose detection pixel 40 can be performed normally.
なお、X線減衰体61を透過すると共に、第1及び第2の吸収型格子31,32の一方の格子領域を通過して伝播するX線が線量検出画素40に入射するよう構成してもよい。それによれば、第1及び第2の吸収型格子31,32の一方の格子領域を通過することによってX線が減衰されるので、線量検出画素40の画素値が飽和することをより確実に防止することができ、あるいはX線減衰体61の厚みを比較的小さく抑えることができる。
The X-ray attenuator 61 may be configured so that X-rays that pass through one of the first and second absorption gratings 31 and 32 and propagate through the grating area are incident on the dose detection pixel 40. Good. According to this, since the X-rays are attenuated by passing through one of the first and second absorption type gratings 31 and 32, the pixel value of the dose detection pixel 40 is more reliably prevented from being saturated. Or the thickness of the X-ray attenuator 61 can be kept relatively small.
更に、X線減衰体61を透過させ、あるいはX線減衰体61を透過させると共に第1及び第2の吸収型格子31,32の一方の格子領域を通過させることによっても、なお、線量検出画素40の画素値が飽和する場合において、それがFPD30の読み出し回路43(図3参照)のダイナミックレンジの制約によるものであれば、読み出し回路43において増幅率がより小さい積分アンプ回路を用いることによって、線量検出画素40の画素値が飽和することを防止することができる。例えば、増幅率が互いに異なる数種の積分アンプ回路を読み出し回路43に設けておき、撮影条件に応じて適宜な増幅率の積分アンプ回路が選択的に使用されるように構成すればよい。
Further, the dose detection pixel can be obtained by transmitting the X-ray attenuator 61 or transmitting the X-ray attenuator 61 and passing through one of the first and second absorption gratings 31 and 32. When the pixel value of 40 is saturated, if it is due to the dynamic range of the readout circuit 43 (see FIG. 3) of the FPD 30, by using an integration amplifier circuit with a smaller amplification factor in the readout circuit 43, It is possible to prevent the pixel value of the dose detection pixel 40 from being saturated. For example, several types of integration amplifier circuits having different amplification factors may be provided in the readout circuit 43, and an integration amplifier circuit having an appropriate amplification factor may be selectively used according to the photographing conditions.
なお、本例において、X線減衰体61は、FPD30の検出面上に載置されている。このように、X線減衰体61は、透過X線の出射面がFPD30の検出面に密接するか、あるいは極近接するように配置されることが好ましい。X線減衰体61を透過することによって散乱が生じるが、X線減衰体61の出射面とFPD30の検出面との距離が小さいほどX線の散逸を低減することができ、線量検出画素40において、より正確な線量検出が可能となる。なお、線量検出画素40に第1及び第2の吸収型格子31,32の一方の格子を通過して伝播するX線が入射する構成である場合に、X線減衰体61を、その一方の格子よりも上流側(X線源11側)に配置してもよい。線量検出画素40に入射するX線の進行経路に位置する第1及び第2の吸収型格子31,32の一方の格子は、散乱除去グリッドの役割も果たすことが出来るため、X線減衰体61を、その一方の格子よりも上流側に配置することによってX線減衰体61による散乱の影響を除外することができ、正確な線量検出が可能となる。
In this example, the X-ray attenuator 61 is placed on the detection surface of the FPD 30. As described above, the X-ray attenuator 61 is preferably arranged so that the transmission surface of the transmitted X-ray is in close contact with or very close to the detection surface of the FPD 30. Although scattering occurs due to transmission through the X-ray attenuator 61, the smaller the distance between the exit surface of the X-ray attenuator 61 and the detection surface of the FPD 30, the more the X-ray dissipation can be reduced. More accurate dose detection is possible. When the X-ray propagating through one of the first and second absorption- type gratings 31 and 32 is incident on the dose detection pixel 40, the X-ray attenuator 61 is connected to one of the X-ray attenuators 61. You may arrange | position to the upstream (X-ray source 11 side) rather than a grating | lattice. One of the first and second absorption- type gratings 31 and 32 positioned in the traveling path of the X-rays incident on the dose detection pixel 40 can also serve as a scatter removal grid. Is disposed upstream of one of the gratings, the influence of scattering by the X-ray attenuator 61 can be eliminated, and accurate dose detection can be performed.
図18及び19は、図17の放射線撮影システムの変形例に関し、その撮影部の構成を示す。
18 and 19 show the configuration of the imaging unit in relation to the modification of the radiation imaging system of FIG.
図18に示す例では、X線減衰体61の厚みが各部で異なり、図示の例では、その幅方向に階段状に厚みが増減している。かかる構成によれば、例えばX線減衰体61において厚みが最小の部分61aが重なる線量検出画素40で画素値が飽和したとしても、より厚みが大きい部分61b,61cが重なる線量検出画素40では画素値が飽和せず、線量検出を正常に行うことができる。それにより、単一のX線減衰体61を用いてより多くの撮影条件に対応することが可能となる。
In the example shown in FIG. 18, the thickness of the X-ray attenuator 61 is different in each part, and in the example shown in the figure, the thickness increases or decreases stepwise in the width direction. According to such a configuration, for example, even if the pixel value is saturated in the dose detection pixel 40 where the portion 61a having the smallest thickness overlaps in the X-ray attenuator 61, the pixel in the dose detection pixel 40 where the portions 61b and 61c having larger thickness overlap. The value is not saturated and dose detection can be performed normally. Thereby, it is possible to cope with more imaging conditions using the single X-ray attenuator 61.
なお、厚みは同じで減衰係数の異なる複数の減衰材(例えば、白金、金、鉛、銀、タングステン、モリブデン、等)を厚み方向と直交する方向に並べてX線減衰体を構成することもできる。この場合、X線減衰体の厚みは均一とし、減衰量を各部で変えることができる。
An X-ray attenuator can also be configured by arranging a plurality of attenuation materials (for example, platinum, gold, lead, silver, tungsten, molybdenum, etc.) having the same thickness but different attenuation coefficients in a direction perpendicular to the thickness direction. . In this case, the thickness of the X-ray attenuator can be made uniform, and the attenuation can be changed in each part.
また、図19に示すように、減衰係数の異なる第1及び第2の減衰材62,63を厚さ方向に積層し、これら第1及び第2の減衰材62、63の厚みの比率を各部で異なるようにしてX線減衰体61を構成することもできる。この場合にも、X線減衰体の厚みは均一とし、減衰量を各部で変えることができる。
Further, as shown in FIG. 19, first and second damping materials 62 and 63 having different damping coefficients are laminated in the thickness direction, and the ratio of the thicknesses of the first and second damping materials 62 and 63 is set for each part. The X-ray attenuator 61 can be configured differently. Also in this case, the thickness of the X-ray attenuator can be made uniform and the attenuation can be changed in each part.
画像データの輝度補正においては、線量検出画素40のうち、その画素値が不飽和の線量検出画素40のみ抽出され、抽出された線量検出画素40の画素値に基づいて各画像データの輝度補正がなされる。
In the brightness correction of image data, only the dose detection pixel 40 whose pixel value is unsaturated is extracted from the dose detection pixels 40, and the brightness correction of each image data is performed based on the extracted pixel value of the dose detection pixel 40. Made.
ここで、FPDの特性によっては、入射線量に対する各画素の出力が線形でない場合がある。例えば、図20に示すように、高線量と低線量とで出力特性の傾きが異なる場合がある。そのような場合に、画素値が不飽和の線量検出画素40のうち、モアレ縞を検出する像検出画素40の平均の画素値、或いは特定の像検出画素40の画素値に最も近い画素値の線量検出画素40の画素値に基づいて各画像データの輝度補正を行うことが好ましい。
Here, depending on the characteristics of the FPD, the output of each pixel with respect to the incident dose may not be linear. For example, as shown in FIG. 20, the slope of output characteristics may differ between a high dose and a low dose. In such a case, the average pixel value of the image detection pixels 40 that detect moire fringes or the pixel value closest to the pixel value of the specific image detection pixel 40 among the dose detection pixels 40 whose pixel values are unsaturated. It is preferable to perform luminance correction of each image data based on the pixel value of the dose detection pixel 40.
以上、図16~図20を用いて説明した線量検出画素40の画素値の飽和を防止する構成は、上述した各X線撮影システムのいずれにも適用可能である。
As described above, the configuration for preventing saturation of the pixel value of the dose detection pixel 40 described with reference to FIGS. 16 to 20 can be applied to any of the X-ray imaging systems described above.
図21は、本発明の実施形態を説明するための放射線撮影システムの一例を示し、図22は、図21の放射線撮影システムの撮影部の構成を示す。
FIG. 21 shows an example of a radiation imaging system for explaining the embodiment of the present invention, and FIG. 22 shows a configuration of an imaging unit of the radiation imaging system of FIG.
上述した各X線撮影システムによれば、これまで描出が難しかったX線弱吸収物体の高コントラストな画像(位相コントラスト画像)が得られるが、更に、位相コントラスト画像と対応して吸収画像が参照できることは読影の助けになる。例えば、吸収画像と位相コントラスト画像を重み付けや階調、周波数処理などの適当な処理によって重ね合わせることにより吸収画像で表現できなかった部分を位相コントラスト画像の情報で補うことは有効である。
According to each of the X-ray imaging systems described above, a high-contrast image (phase contrast image) of an X-ray weakly absorbing object that has been difficult to draw can be obtained. In addition, an absorption image is referenced corresponding to the phase contrast image. What you can do will help you interpret. For example, it is effective to supplement the portion that could not be represented by the absorption image with the information of the phase contrast image by superimposing the absorption image and the phase contrast image by appropriate processing such as weighting, gradation, and frequency processing.
図21に示すX線撮影システム90は、第1及び第2の吸収型格子31,32をX線照射野に配置し、上述した縞走査によって被写体Hの位相コントラスト画像を生成する位相撮影モードと、第1及び第2の吸収型格子31,32をX線照射野から退避させ、被写体HによるX線の強度変化に基づいた画像(吸収画像)を生成する通常撮影モードとを有しており、第1の及び第2の吸収型格子31,32をX線照射野から退避させる移動機構91を更に備えている。位相撮影モードと通常撮影モードとの切り換え、つまりは、第1及び第2の吸収型格子31,32のX線照射野への挿入及び照射野からの退避は、例えばコンソール13における入力操作に応じて制御装置22が移動機構91を駆動することによってなされる。移動機構91としては、例えばボールネジやリニアモータなどの直動機構を用いることができる。
An X-ray imaging system 90 shown in FIG. 21 includes a phase imaging mode in which the first and second absorption gratings 31 and 32 are arranged in the X-ray irradiation field, and a phase contrast image of the subject H is generated by the above-described fringe scanning. The first and second absorption type gratings 31 and 32 are retracted from the X-ray irradiation field, and a normal imaging mode for generating an image (absorption image) based on an X-ray intensity change by the subject H is provided. Further, a moving mechanism 91 for retracting the first and second absorption type gratings 31 and 32 from the X-ray irradiation field is further provided. Switching between the phase imaging mode and the normal imaging mode, that is, insertion of the first and second absorption gratings 31 and 32 into the X-ray irradiation field and withdrawal from the irradiation field, for example, according to an input operation on the console 13 This is done by the control device 22 driving the moving mechanism 91. As the moving mechanism 91, for example, a linear motion mechanism such as a ball screw or a linear motor can be used.
また、X線撮影システム90においては、図17に示したX線撮影システム60Aと同様に、FPD30の線量検出画素40の画素値の飽和を防止するためのX線減衰体61が設けられている。なお、上述したX線撮影システム60Aにおいて、X線減衰体61はFPD30の検出面上に載置されているが、本X線撮影システム90において、X線減衰体61は第2の吸収型格子32と一体とされている。
Further, the X-ray imaging system 90 is provided with an X-ray attenuator 61 for preventing saturation of the pixel value of the dose detection pixel 40 of the FPD 30 as in the X-ray imaging system 60A shown in FIG. . In the X-ray imaging system 60A described above, the X-ray attenuator 61 is placed on the detection surface of the FPD 30, but in the X-ray imaging system 90, the X-ray attenuator 61 is the second absorption type grating. 32 is integrated.
通常撮影モードにおける吸収画像の生成処理は、上述した縞走査による位相コントラスト画像の生成処理とは異なり1回の撮影で済む。そのため、撮影間の照射線量のバラツキを測定しておく必要がなく、X線減衰体61もまた不要となる。そこで、本X線撮影システム90においては、第1及び第2の吸収型格子31,32と共にX線減衰体61もX線照射野から退避させるようにしている。それにより、FPD30の検出面の全体を有効に活用することができる。
The generation process of the absorption image in the normal imaging mode is different from the above-described generation process of the phase contrast image by the fringe scanning, and only needs to be performed once. For this reason, it is not necessary to measure the variation in the irradiation dose between radiographs, and the X-ray attenuator 61 is also unnecessary. Therefore, in the present X-ray imaging system 90, the X-ray attenuator 61 and the first absorption type gratings 31 and 32 are also retracted from the X-ray irradiation field. Thereby, the entire detection surface of the FPD 30 can be effectively utilized.
ここで、X線減衰体61のX線照射野への挿入及び照射野からの退避を行うために別途移動機構を設けてもよいが、本X線撮影システム90においては、X線減衰体61が第2の吸収型格子32と一体とされており、移動機構91によって第2の吸収型格子32と共に移動される。それにより、装置の構成を簡素化することができる。
Here, a separate moving mechanism may be provided to insert and retract the X-ray attenuator 61 from the X-ray irradiation field. However, in the X-ray imaging system 90, the X-ray attenuator 61 is provided. Is integrated with the second absorption type grating 32, and is moved together with the second absorption type grating 32 by the moving mechanism 91. Thereby, the configuration of the apparatus can be simplified.
また、本X線撮影システム90においては、第2の吸収型格子32とは別に形成されたX線減衰体61を第2の吸収型格子32に組みつけて両者を一体としているが、X線減衰体61を第2の吸収型格子32に形成して両者を一体とすることもできる。更に、X線減衰体61の材料に第2の吸収型格子32のX線遮蔽部32bと同じ材料(金、白金等)を用いるようにすれば、金属メッキ法や蒸着法によってX線遮蔽部32bと同時に形成することが可能である。なお、第2の吸収型格子32に替えて、X線減衰体61を第1の吸収型格子31と一体に設け、X線減衰体61を第1の吸収型格子31と共に移動させるように構成してもよい。
Further, in the present X-ray imaging system 90, the X-ray attenuator 61 formed separately from the second absorption type grating 32 is assembled to the second absorption type grating 32, and both are integrated. It is also possible to form the attenuating body 61 in the second absorption type grating 32 so that both are integrated. Furthermore, if the same material (gold, platinum, etc.) as the X-ray shielding part 32b of the second absorption type grating 32 is used as the material of the X-ray attenuator 61, the X-ray shielding part can be obtained by metal plating or vapor deposition. It can be formed simultaneously with 32b. Instead of the second absorption type grating 32, an X-ray attenuation body 61 is provided integrally with the first absorption type grating 31, and the X-ray attenuation body 61 is moved together with the first absorption type grating 31. May be.
図23は、本発明の実施形態を説明するための放射線撮影システムの他の例を示す。
FIG. 23 shows another example of a radiation imaging system for explaining an embodiment of the present invention.
X線撮影システム100は、X線源101のコリメータユニット102に、マルチスリット103を配設した点が、上述したX線撮影システム10と異なる。その他の構成については、上述したX線撮影システム10と同一であるので説明は省略する。
The X-ray imaging system 100 is different from the X-ray imaging system 10 described above in that a multi-slit 103 is provided in the collimator unit 102 of the X-ray source 101. Since other configurations are the same as those of the X-ray imaging system 10 described above, description thereof will be omitted.
上述したX線撮影システム10では、X線源11からFPD30までの距離を、一般的な病院の撮影室で設定されるような距離(1m~2m)とした場合に、X線焦点18bの焦点サイズ(一般的に0.1mm~1mm程度)によるG1像のボケが影響し、位相コントラスト画像の画質の低下をもたらす恐れがある。そこで、X線焦点18bの直後にピンホールを設置して実効的に焦点サイズを小さくすることが考えられるが、実効的な焦点サイズを縮小するためにピンホールの開口面積を小さくすると、X線強度が低下してしまう。本X線撮影システム100においては、この課題を解決するために、X線焦点18bの直後にマルチスリット103を配置する。
In the X-ray imaging system 10 described above, when the distance from the X-ray source 11 to the FPD 30 is set to a distance (1 m to 2 m) set in a general hospital imaging room, the focal point of the X-ray focal point 18b. The blur of the G1 image due to the size (generally about 0.1 mm to 1 mm) is affected, and there is a possibility that the image quality of the phase contrast image is deteriorated. Therefore, it is conceivable to install a pinhole immediately after the X-ray focal point 18b to effectively reduce the focal spot size. However, if the aperture area of the pinhole is reduced to reduce the effective focal spot size, the X-ray focal point is reduced. Strength will fall. In the present X-ray imaging system 100, in order to solve this problem, the multi-slit 103 is disposed immediately after the X-ray focal point 18b.
マルチスリット103は、撮影部12に設けられた第1及び第2の吸収型格子31,32と同様な構成の吸収型格子(第3の吸収型格子)であり、一方向(y方向)に延伸した複数のX線遮蔽部が、第1及び第2の吸収型格子31,32のX線遮蔽部31b,32bと同一方向(x方向)に周期的に配列されている。このマルチスリット103は、X線焦点18bから放射される放射線を部分的に遮蔽することにより、x方向に所定のピッチで配列した多数の小焦点光源(分散光源)を形成することを目的としている。
The multi-slit 103 is an absorption type grating (third absorption type grating) having a configuration similar to that of the first and second absorption type gratings 31 and 32 provided in the imaging unit 12, and is in one direction (y direction). The extended X-ray shielding portions are periodically arranged in the same direction (x direction) as the X-ray shielding portions 31b and 32b of the first and second absorption gratings 31 and 32. The multi-slit 103 is intended to form a large number of small-focus light sources (dispersed light sources) arranged at a predetermined pitch in the x direction by partially shielding the radiation emitted from the X-ray focal point 18b. .
このマルチスリット103の格子ピッチp3は、マルチスリット103から第1の吸収型格子31までの距離をL3として、次式(18)を満たすように設定する必要がある。
The lattice pitch p 3 of the multi-slit 103 needs to be set so as to satisfy the following formula (18), where L 3 is the distance from the multi-slit 103 to the first absorption-type lattice 31.
式(18)は、マルチスリット103により分散形成された各小焦点光源から射出されたX線の第1の吸収型格子31による投影像(G1像)が、第2の吸収型格子32の位置で一致する(重なり合う)ための幾何学的な条件である。
Expression (18) indicates that the projection image (G1 image) of the X-rays emitted from the small-focus light sources dispersedly formed by the multi-slit 103 by the first absorption-type grating 31 is the position of the second absorption-type grating 32. This is a geometric condition for matching (overlapping).
また、実質的にマルチスリット103の位置がX線焦点位置となるため、第2の吸収型格子32の格子ピッチp2は、次式(19)の関係を満たすように決定される。
In addition, since the position of the multi slit 103 is substantially the X-ray focal position, the grating pitch p2 of the second absorption grating 32 is determined so as to satisfy the relationship of the following equation (19).
このように、本X線撮影システム100では、マルチスリット103により形成される複数の小焦点光源に基づくG1像が重ね合わせられることにより、X線強度を低下させずに、位相コントラスト画像の画質を向上させることができる。以上説明したマルチスリット103は、上述したX線撮影システムのいずれにも適用可能である。なお、上述したX線撮影システム90に適用した場合に、第1及び第2の吸収型格子31,32をX線照射から退避させて行う通常撮影においては、マルチスリット103もまたX線照射野から退避させる。
As described above, in the present X-ray imaging system 100, the G1 images based on the plurality of small focus light sources formed by the multi slit 103 are superimposed, thereby improving the image quality of the phase contrast image without decreasing the X-ray intensity. Can be improved. The multi slit 103 described above can be applied to any of the X-ray imaging systems described above. When applied to the X-ray imaging system 90 described above, in normal imaging performed by retracting the first and second absorption gratings 31 and 32 from X-ray irradiation, the multi-slit 103 is also used in the X-ray irradiation field. Evacuate from.
図24は、本発明の実施形態を説明するための放射線撮影システムの他の例を示す。
FIG. 24 shows another example of a radiation imaging system for explaining an embodiment of the present invention.
上述したX線撮影システム90では、位相コントラスト画像とは別に吸収画像を撮影しているが、位相コントラスト画像の撮影と吸収画像の撮影の間の撮影肢位のズレによって良好な重ね合わせが困難となる場合がある。また、撮影回数が増えることにより被検者の負担となることもある。また、近年、位相コントラスト画像や吸収画像の他に、小角散乱画像が注目されている。小角散乱画像は、被検体組織内部の微細構造に起因する組織性状を表現可能であり、例えば、ガンや循環器疾患といった分野での新しい画像診断のための表現方法として期待されている。
In the X-ray imaging system 90 described above, an absorption image is captured separately from the phase contrast image. However, it is difficult to satisfactorily superimpose due to a shift in the imaging position between the phase contrast image capture and the absorption image capture. There is a case. Moreover, it may be a burden on the subject due to an increase in the number of imaging. In recent years, small-angle scattered images have attracted attention in addition to phase contrast images and absorption images. The small-angle scattered image can express tissue properties resulting from the fine structure inside the subject tissue, and is expected as a new expression method for image diagnosis in the fields of cancer and cardiovascular diseases.
そこで、本X線撮影システムは、位相コントラスト画像のために取得した複数枚の画像から、吸収画像や小角散乱画像を生成することも可能とする演算処理部190を用いる。なお、その他の構成については、上述したX線撮影システム10と同一であるので説明は省略する。演算処理部190は、位相コントラスト画像生成部191、吸収画像生成部192、小角散乱画像生成部193が構成されている。これらは、いずれもk=0,1,2,・・・,M-1のM個の各走査位置で得られる画像データに基づいて演算処理を行う。このうち、位相コントラスト画像生成部191は、上述の手順に従って位相コントラスト画像を生成する。
Therefore, this X-ray imaging system uses an arithmetic processing unit 190 that can generate an absorption image and a small-angle scattered image from a plurality of images acquired for a phase contrast image. Since other configurations are the same as those of the X-ray imaging system 10 described above, description thereof will be omitted. The arithmetic processing unit 190 includes a phase contrast image generation unit 191, an absorption image generation unit 192, and a small angle scattered image generation unit 193. These all perform arithmetic processing based on image data obtained at M scanning positions of k = 0, 1, 2,..., M−1. Among these, the phase contrast image generation unit 191 generates a phase contrast image according to the above-described procedure.
吸収画像生成部192は、画素ごとに得られる画素データIk(x,y)を、図25に示すように、kについて平均化して平均値を算出して画像化することにより吸収画像を生成する。なお、平均値の算出は、画素データIk(x,y)をkについて単純に平均化することにより行なっても良いが、Mが小さい場合には誤差が大きくなるため、画素データIk(x,y)を正弦波でフィッティングした後、フィッティングした正弦波の平均値を求めるようにしてもよい。また、吸収画像の生成には、平均値に限られず、平均値に対応する量であれば、画素データIk(x,y)をkについて加算した加算値等を用いることが可能である。
The absorption image generation unit 192 generates an absorption image by averaging the pixel data I k (x, y) obtained for each pixel with respect to k and calculating an average value as illustrated in FIG. To do. The average value may be calculated by simply averaging the pixel data I k (x, y) with respect to k. However, when M is small, the error increases, so that the pixel data I k ( After fitting x, y) with a sine wave, an average value of the fitted sine wave may be obtained. The generation of the absorption image is not limited to the average value, and an addition value obtained by adding the pixel data I k (x, y) with respect to k can be used as long as the amount corresponds to the average value.
なお、被写体がない状態で撮影(プレ撮影)して取得される画像群から、吸収像を作成するようにしてもよい。この吸収像は、検出系の透過率ムラを反映している(グリッドの透過率ムラ、線量検出器の吸収の影響等の情報が含まれている)。そこで、この画像から、検出系の透過率ムラを補正するための補正係数マップを作成することが出来る。被写体がある状態で撮影(メイン撮影)して取得される画像群から、吸収像を作成し、上述の補正係数を各画素にかけることで、検出系の透過率ムラを補正した、被写体の吸収像を得ることが出来る。
Note that an absorption image may be created from an image group acquired by photographing (pre-photographing) in the absence of a subject. This absorption image reflects the transmittance unevenness of the detection system (including information such as the transmittance unevenness of the grid and the influence of the absorption of the dose detector). Therefore, a correction coefficient map for correcting the transmittance unevenness of the detection system can be created from this image. Absorption of an object in which an absorption image is created from a group of images acquired by photographing (main shooting) in the presence of the object, and the above-described correction coefficient is applied to each pixel, thereby correcting the transmittance unevenness of the detection system. An image can be obtained.
小角散乱画像生成部193は、画素ごとに得られる画素データIk(x,y)の振幅値を算出して画像化することにより小角散乱画像を生成する。なお、振幅値の算出は、画素データIk(x,y)の最大値と最小値との差を求めることによって行なっても良いが、Mが小さい場合には誤差が大きくなるため、画素データIk(x,y)を正弦波でフィッティングした後、フィッティングした正弦波の振幅値を求めるようにしても良い。また、小角散乱画像の生成には、振幅値に限られず、平均値を中心としたばらつきに対応する量として、分散値や標準偏差等を用いることが可能である。
The small angle scattered image generation unit 193 generates a small angle scattered image by calculating and imaging the amplitude value of the pixel data I k (x, y) obtained for each pixel. The amplitude value may be calculated by obtaining the difference between the maximum value and the minimum value of the pixel data I k (x, y). However, when M is small, the error increases, so that the pixel data After fitting I k (x, y) with a sine wave, the amplitude value of the fitted sine wave may be obtained. In addition, the generation of the small-angle scattered image is not limited to the amplitude value, and a dispersion value, a standard deviation, or the like can be used as an amount corresponding to the variation centered on the average value.
なお、被写体がない状態で撮影(プレ撮影)して取得される画像群から、小角散乱画像を作成するようにしてもよい。この小角散乱画像は、検出系の振幅値ムラを反映している(グリッドのピッチ不均一性、開口率不均一性、グリッド間の相対位置ズレによる不均一性等の情報が含まれている)。そこで、この画像から、検出系の振幅値ムラを補正するための補正係数マップを作成することが出来る。被写体がある状態で撮影(メイン撮影)して取得される画像群から、小角散乱画像を作成し、上述の補正係数を各画素にかけることで、検出系の振幅値ムラを補正した、被写体の小角散乱画像を得ることが出来る。
It should be noted that a small angle scattered image may be created from an image group obtained by photographing (pre-photographing) in the absence of a subject. This small-angle scattered image reflects the amplitude value unevenness of the detection system (including information such as grid pitch non-uniformity, aperture ratio non-uniformity, and non-uniformity due to relative displacement between grids). . Therefore, a correction coefficient map for correcting the amplitude irregularity of the detection system can be created from this image. A small-angle scatter image is created from a group of images acquired by shooting (main shooting) in the presence of a subject, and the amplitude value unevenness of the detection system is corrected by applying the above correction coefficient to each pixel. A small-angle scattered image can be obtained.
本X線撮影システムによれば、被写体の位相コントラスト画像のために取得した複数枚の画像から吸収画像や小角散乱画像を生成するので、吸収画像や小角散乱画像の撮影の間の撮影肢位のズレが生じず、位相コントラスト画像と吸収画像や小角散乱画像との良好な重ね合わせが可能となるとともに、吸収画像や小角散乱画像のために別途撮影を行う場合に比べて被写体の負担を軽減することができる。
According to the present X-ray imaging system, an absorption image and a small angle scattered image are generated from a plurality of images acquired for the phase contrast image of the subject. There is no deviation, and it is possible to superimpose the phase contrast image with the absorption image and the small-angle scattered image, and the burden on the subject is reduced as compared with the case of separately shooting for the absorption image and the small-angle scattered image. be able to.
なお、上述した各X線撮影システムでは、放射線として一般的なX線を用いる場合について説明したが、本発明に用いられる放射線はX線に限られるものではなく、α線、γ線等のX線以外の放射線を用いることも可能である。
In each of the X-ray imaging systems described above, the case where general X-rays are used as radiation has been described. However, the radiation used in the present invention is not limited to X-rays, and X rays such as α rays and γ rays can be used. It is also possible to use radiation other than lines.
以上、説明したように、本明細書には、第1の格子と、前記第1の格子を通過した放射線によって形成される放射線像のパターン周期に実質的に一致する周期を有する第2の格子と、前記第2の格子によってマスキングされた前記放射線像を検出する放射線画像検出器と、を備え、前記放射線画像検出器は、前記第1の格子及び前記第2の格子の少なくとも一方の格子領域を外れて伝播する放射線が入射し、そこに入射する放射線量の検出に用いられる線量検出画素を少なくとも一つ含む放射線画像検出装置が開示されている。
As described above, the present specification includes a first grating and a second grating having a period that substantially matches the pattern period of the radiation image formed by the radiation that has passed through the first grating. And a radiation image detector that detects the radiation image masked by the second grating, wherein the radiation image detector has at least one grating region of the first grating and the second grating. A radiation image detection apparatus is disclosed that includes at least one dose detection pixel that is used to detect the amount of radiation that is incident on the radiation that propagates off the beam.
また、本明細書に開示された放射線画像検出装置は、前記各線量検出画素に重なる放射線減衰体を更に備える。
The radiological image detection apparatus disclosed in the present specification further includes a radiation attenuator that overlaps each of the dose detection pixels.
また、本明細書に開示された放射線画像検出装置は、前記線量検出画素が複数設けられており、前記放射線減衰体は、各部で減衰量が異なっている。
Also, the radiation image detection apparatus disclosed in this specification is provided with a plurality of the dose detection pixels, and the radiation attenuator has different attenuation amounts in each part.
また、本明細書に開示された放射線画像検出装置は、前記放射線減衰体の厚みが各部で異なっている。
Further, in the radiological image detection apparatus disclosed in this specification, the thickness of the radiation attenuator is different in each part.
また、本明細書に開示された放射線画像検出装置は、前記放射線減衰体が、減衰係数の異なる第1及び第2の放射線減衰材を含み、該第1及び第2の放射線減衰材が厚さ方向に積層されて構成されており、前記第1及び第2の放射線減衰材の厚みの比率が、前記放射線減衰体の各部で異なっている。
In the radiological image detection apparatus disclosed in this specification, the radiation attenuator includes first and second radiation attenuating materials having different attenuation coefficients, and the first and second radiation attenuating materials have a thickness. The thickness ratios of the first and second radiation attenuating materials are different in each part of the radiation attenuating body.
また、本明細書に開示された放射線画像検出装置は、前記放射線減衰体が、減衰係数の異なる複数の放射線減衰材を含み、該複数の放射線減衰材が厚さ方向と直交する方向に並べられて構成されている。
Further, in the radiological image detection apparatus disclosed in this specification, the radiation attenuator includes a plurality of radiation attenuating materials having different attenuation coefficients, and the plurality of radiation attenuating materials are arranged in a direction orthogonal to the thickness direction. Configured.
また、本明細書に開示された放射線画像検出装置は、前記放射線減衰体が、前記放射線画像検出器の検出面に密接して配置される。
Also, in the radiological image detection apparatus disclosed in the present specification, the radiation attenuator is disposed in close contact with the detection surface of the radiological image detector.
また、本明細書に開示された放射線画像検出装置は、前記第1の格子及び前記第2の格子並びに前記放射線減衰体を、放射線照射野から退避させる移動機構を更に備える。
The radiological image detection apparatus disclosed in the present specification further includes a moving mechanism for retracting the first grating, the second grating, and the radiation attenuator from the radiation irradiation field.
また、本明細書に開示された放射線画像検出装置は、前記放射線減衰体が、前記第1の格子又は前記第2の格子に一体に設けられている。
Also, in the radiological image detection apparatus disclosed in this specification, the radiation attenuator is provided integrally with the first grating or the second grating.
また、本明細書には、上記の放射線画像検出装置と、前記第1の格子に向けて放射線を出射する放射線源と、を備える放射線撮影装置が開示されている。
Further, the present specification discloses a radiation imaging apparatus including the above-described radiation image detection apparatus and a radiation source that emits radiation toward the first grating.
また、本明細書には、上記の放射線画像検出装置と、前記第1の格子に向けて放射線を出射する放射線源と、前記放射線画像検出器によって取得される画像データを処理する演算処理部と、を備え、前記放射線源と前記第1の格子との間、又は前記第1の格子と前記第2の格子との間に被写体を配置し、前記第2の格子を前記放射線像に対して互いに位相の異なる相対位置に置いて複数回の撮影を行う撮影モードがあり、前記演算処理部は、前記撮影モードにおける各撮影で前記放射線画像検出器によって取得された画像データを、その撮影において前記線量検出画素によって検出される線量に基づいて輝度補正する放射線撮影システムが開示されている。
Further, the present specification includes the radiation image detection apparatus, a radiation source that emits radiation toward the first grating, and an arithmetic processing unit that processes image data acquired by the radiation image detector. A subject is disposed between the radiation source and the first grating, or between the first grating and the second grating, and the second grating is positioned with respect to the radiation image. There is an imaging mode in which imaging is performed a plurality of times at relative positions different from each other in phase, and the arithmetic processing unit is configured to acquire the image data acquired by the radiation image detector in each imaging in the imaging mode in the imaging. A radiation imaging system that corrects brightness based on a dose detected by a dose detection pixel is disclosed.
また、本明細書には、上記の放射線画像検出装置と、前記第1の格子に向けて放射線を出射する放射線源と、前記放射線画像検出器によって取得される画像データを処理する演算処理部と、を備え、前記放射線源と前記第1の格子との間、又は前記第1の格子と前記第2の格子との間に被写体を配置し、前記第2の格子を前記放射線像に対して互いに位相の異なる相対位置に置いて複数回の撮影を行う第1の撮影モードと、前記第1の格子及び前記第2の格子並びに前記放射線減衰体を放射線照射野から退避させ、前記放射線源と前記放射線画像検出器との間に被写体を配置して撮影を行う第2の撮影モードと、があり、前記演算処理部は、前記第1の撮影モードにおける各撮影で前記放射線画像検出器によって取得された画像データを、その撮影において前記線量検出画素によって検出される線量に基づいて輝度補正する放射線撮影システムが開示されている。
Further, the present specification includes the radiation image detection apparatus, a radiation source that emits radiation toward the first grating, and an arithmetic processing unit that processes image data acquired by the radiation image detector. A subject is disposed between the radiation source and the first grating, or between the first grating and the second grating, and the second grating is positioned with respect to the radiation image. A first imaging mode in which imaging is performed a plurality of times at relative positions different from each other in phase; and the first grating, the second grating, and the radiation attenuator are retracted from a radiation irradiation field; There is a second imaging mode in which a subject is placed between the radiographic image detector and imaging is performed, and the arithmetic processing unit is acquired by the radiographic image detector at each imaging in the first imaging mode. Processed image data Radiation imaging system for brightness correction on the basis of the dose detected by said dose detection pixel are disclosed in shooting.
また、本明細書に開示された放射線撮影システムは、前記演算処理部が、前記被写体を外れて伝播する放射線が入射する線量検出画素によって検出される線量に基づいて輝度補正する。
Also, in the radiation imaging system disclosed in this specification, the arithmetic processing unit corrects the luminance based on the dose detected by the dose detection pixel on which the radiation propagating off the subject is incident.
また、本明細書に開示された放射線撮影システムは、前記線量検出画素が複数設けられており、前記演算処理部は、前記複数の線量検出画素のうち、画素値が不飽和の画素によって検出される線量に基づいて輝度補正する。
Further, the radiation imaging system disclosed in the present specification includes a plurality of the dose detection pixels, and the arithmetic processing unit is detected by a pixel whose pixel value is unsaturated among the plurality of dose detection pixels. Brightness correction based on the dose.
また、本明細書に開示された放射線撮影システムは、前記演算処理部が、前記複数の線量検出画素のうち、その画素値が前記放射線像を検出する画素群の画素値に最も近い線量検出画素によって検出される線量に基づいて輝度補正する。
Further, in the radiation imaging system disclosed in this specification, the calculation processing unit is a dose detection pixel whose pixel value is closest to a pixel value of a pixel group that detects the radiation image among the plurality of dose detection pixels. The luminance is corrected based on the dose detected by.
また、本明細書に開示された放射線撮影システムは、前記演算処理部が、輝度補正された複数の画像データから、前記放射線画像検出器に入射する放射線の屈折角の分布を演算し、この屈折角の分布に基づいて、位相コントラスト画像を生成する。
Further, in the radiation imaging system disclosed in the present specification, the calculation processing unit calculates a distribution of refraction angles of radiation incident on the radiation image detector from a plurality of image data whose luminance has been corrected. A phase contrast image is generated based on the angular distribution.
本発明によれば、第1の格子及び第2の格子の少なくとも一方の格子領域を外れて伝播する放射線を線量検出画素で検出しており、線量検出画素上には第1の格子の放射線像と第2の格子との重ね合わせによるモアレ縞が形成されず、よって、モアレ縞の影響を受けることなく、線量検出画素によって正確に線量を検出することができる。それにより、放射線源と第1の格子との間、又は第1の格子と第2の格子との間に被写体を配置し、第2の格子を各相対位置に置いて行われる複数回の撮影で、撮影間の照射線量のバラツキを正確に計測することができる。そして、各撮影において取得された画像データを、その撮影において検出された線量に基づいて輝度補正することによって、照射線量のバラツキに起因する各画素の画素値の変化を除去あるいは低減することができる。それにより、より高精度な放射線位相コントラスト画像を生成することができる。
According to the present invention, radiation that propagates out of at least one of the first grating and the second grating is detected by the dose detection pixel, and the radiation image of the first grating is detected on the dose detection pixel. The moire fringes are not formed by superimposing the second grating and the second grating, so that the dose can be accurately detected by the dose detection pixels without being affected by the moire fringes. Thereby, a plurality of times of imaging performed by placing the subject between the radiation source and the first grating or between the first grating and the second grating and placing the second grating at each relative position. Thus, it is possible to accurately measure the variation of the irradiation dose between the photographings. Then, by correcting the brightness of the image data acquired in each shooting based on the dose detected in the shooting, the change in the pixel value of each pixel due to the variation in the irradiation dose can be removed or reduced. . Thereby, a more accurate radiation phase contrast image can be generated.
本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
本出願は、2010年11月26日出願の日本特許出願(特願2010-264241)に基づくものであり、その内容はここに参照として取り込まれる。 Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
This application is based on a Japanese patent application filed on November 26, 2010 (Japanese Patent Application No. 2010-264241), the contents of which are incorporated herein by reference.
本出願は、2010年11月26日出願の日本特許出願(特願2010-264241)に基づくものであり、その内容はここに参照として取り込まれる。 Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
This application is based on a Japanese patent application filed on November 26, 2010 (Japanese Patent Application No. 2010-264241), the contents of which are incorporated herein by reference.
10 X線撮影システム
11 X線源
12 撮影部(放射線画像検出装置)
13 コンソール
20 制御装置
30 FPD
31 第1の吸収型格子
32 第2の吸収型格子
33 走査機構
40 画素 10X-ray imaging system 11 X-ray source 12 Imaging unit (radiation image detection apparatus)
13Console 20 Control device 30 FPD
31 First absorption type grating 32 Second absorption type grating 33Scanning mechanism 40 Pixel
11 X線源
12 撮影部(放射線画像検出装置)
13 コンソール
20 制御装置
30 FPD
31 第1の吸収型格子
32 第2の吸収型格子
33 走査機構
40 画素 10
13
31 First absorption type grating 32 Second absorption type grating 33
Claims (16)
- 第1の格子と、
前記第1の格子を通過した放射線によって形成される放射線像のパターン周期に実質的に一致する周期を有する第2の格子と、
前記第2の格子によってマスキングされた前記放射線像を検出する放射線画像検出器と、
を備え、
前記放射線画像検出器は、前記第1の格子及び前記第2の格子の少なくとも一方の格子領域を外れて伝播する放射線が入射し、そこに入射する放射線量の検出に用いられる線量検出画素を少なくとも一つ含む放射線画像検出装置。 A first lattice;
A second grating having a period that substantially matches the pattern period of the radiation image formed by the radiation that has passed through the first grating;
A radiation image detector for detecting the radiation image masked by the second grating;
With
The radiation image detector includes at least a dose detection pixel that is used to detect a radiation dose incident on the radiation that propagates out of at least one of the first grating and the second grating. Radiation image detection device including one. - 請求項1に記載の放射線画像検出装置であって、
前記各線量検出画素に重なる放射線減衰体を更に備える放射線画像検出装置。 The radiological image detection apparatus according to claim 1,
A radiation image detection apparatus further comprising a radiation attenuator that overlaps each of the dose detection pixels. - 請求項2に記載の放射線画像検出装置であって、
前記線量検出画素は、複数設けられており、
前記放射線減衰体は、各部で減衰量が異なっている放射線画像検出装置。 The radiological image detection apparatus according to claim 2,
A plurality of the dose detection pixels are provided,
The radiation attenuator is a radiological image detection apparatus in which attenuation is different in each part. - 請求項3に記載の放射線画像検出装置であって、
前記放射線減衰体は、厚みが各部で異なっている放射線画像検出装置。 The radiological image detection apparatus according to claim 3,
The radiation attenuating body is a radiation image detecting device in which the thickness is different in each part. - 請求項3に記載の放射線画像検出装置であって、
前記放射線減衰体は、減衰係数が互いに異なる第1及び第2の放射線減衰材を含み、該第1及び第2の放射線減衰材が厚さ方向に積層されて構成されており、
前記第1及び第2の放射線減衰材の厚みの比率が、前記放射線減衰体の各部で異なっている放射線画像検出装置。 The radiological image detection apparatus according to claim 3,
The radiation attenuating body includes first and second radiation attenuating materials having different attenuation coefficients, and the first and second radiation attenuating materials are laminated in the thickness direction.
The radiation image detection apparatus in which the ratio of the thickness of the first and second radiation attenuating materials is different in each part of the radiation attenuating body. - 請求項3に記載の放射線画像検出装置であって、
前記放射線減衰体は、減衰係数の異なる複数の放射線減衰材を含み、該複数の放射線減衰材が厚さ方向と直交する方向に並べられて構成されている放射線画像検出装置。 The radiological image detection apparatus according to claim 3,
The radiation attenuator includes a plurality of radiation attenuating materials having different attenuation coefficients, and the plurality of radiation attenuating materials are arranged in a direction perpendicular to the thickness direction. - 請求項2から6のいずれか一項に記載の放射線画像検出装置であって、
前記放射線減衰体は、前記放射線画像検出器の検出面に密接して配置される放射線画像検出装置。 The radiological image detection apparatus according to any one of claims 2 to 6,
The radiation image detecting device, wherein the radiation attenuator is disposed in close contact with a detection surface of the radiation image detector. - 請求項2から7のいずれか一項に記載の放射線画像検出装置であって、
前記第1の格子及び前記第2の格子並びに前記放射線減衰体を、放射線照射野から退避させる移動機構を更に備える放射線画像検出装置。 The radiological image detection apparatus according to any one of claims 2 to 7,
A radiation image detection apparatus further comprising a moving mechanism for retracting the first grating, the second grating, and the radiation attenuator from a radiation irradiation field. - 請求項8に記載の放射線画像検出装置であって、
前記放射線減衰体は、前記第1の格子又は前記第2の格子に一体に設けられている放射線画像検出装置。 The radiological image detection apparatus according to claim 8,
The radiation image detecting apparatus, wherein the radiation attenuator is provided integrally with the first grating or the second grating. - 請求項1から9のいずれか一項に記載の放射線画像検出装置と、
前記第1の格子に向けて放射線を出射する放射線源と、
を備える放射線撮影装置。 The radiological image detection apparatus according to any one of claims 1 to 9,
A radiation source that emits radiation toward the first grating;
A radiographic apparatus comprising: - 請求項1から9のいずれか一項に記載の放射線画像検出装置と、
前記第1の格子に向けて放射線を出射する放射線源と、
前記放射線画像検出器によって取得される画像データを処理する演算処理部と、
を備え、
前記放射線源と前記第1の格子との間、又は前記第1の格子と前記第2の格子との間に被写体を配置し、前記第2の格子を前記放射線像に対して互いに位相の異なる相対位置に置いて複数回の撮影を行う撮影モードがあり、
前記演算処理部は、前記撮影モードにおける各撮影で前記放射線画像検出器によって取得された画像データを、その撮影において前記線量検出画素によって検出される線量に基づいて輝度補正する放射線撮影システム。 The radiological image detection apparatus according to any one of claims 1 to 9,
A radiation source that emits radiation toward the first grating;
An arithmetic processing unit for processing image data acquired by the radiation image detector;
With
An object is disposed between the radiation source and the first grating, or between the first grating and the second grating, and the second grating is different in phase from the radiation image. There is a shooting mode that takes multiple shots at a relative position,
The radiation processing system, wherein the arithmetic processing unit corrects the brightness of image data acquired by the radiation image detector in each imaging in the imaging mode based on a dose detected by the dose detection pixel in the imaging. - 請求項8又は9に記載の放射線画像検出装置と、
前記第1の格子に向けて放射線を出射する放射線源と、
前記放射線画像検出器によって取得される画像データを処理する演算処理部と、
を備え、
前記放射線源と前記第1の格子との間、又は前記第1の格子と前記第2の格子との間に被写体を配置し、前記第2の格子を前記放射線像に対して互いに位相の異なる相対位置に置いて複数回の撮影を行う第1の撮影モードと、
前記第1の格子及び前記第2の格子並びに前記放射線減衰体を放射線照射野から退避させ、前記放射線源と前記放射線画像検出器との間に被写体を配置して撮影を行う第2の撮影モードと、
があり、
前記演算処理部は、前記第1の撮影モードにおける各撮影で前記放射線画像検出器によって取得された画像データを、その撮影において前記線量検出画素によって検出される線量に基づいて輝度補正する放射線撮影システム。 A radiological image detection apparatus according to claim 8 or 9,
A radiation source that emits radiation toward the first grating;
An arithmetic processing unit for processing image data acquired by the radiation image detector;
With
An object is disposed between the radiation source and the first grating, or between the first grating and the second grating, and the second grating is different in phase from the radiation image. A first shooting mode in which a plurality of shootings are performed at a relative position;
A second imaging mode in which the first grating, the second grating, and the radiation attenuator are retracted from a radiation field, and an object is placed between the radiation source and the radiation image detector to perform imaging. When,
There is
The arithmetic processing unit is a radiographic system that corrects the brightness of image data acquired by the radiographic image detector in each imaging in the first imaging mode based on a dose detected by the dose detection pixels in the imaging. . - 請求項11又は12に記載の放射線撮影システムであって、
前記演算処理部は、前記被写体を外れて伝播する放射線が入射する線量検出画素によって検出される線量に基づいて輝度補正する放射線撮影システム。 The radiographic system according to claim 11 or 12,
The radiation processing system in which the arithmetic processing unit performs brightness correction based on a dose detected by a dose detection pixel on which radiation propagating off the subject enters. - 請求項11から13のいずれか一項に記載の放射線撮影システムであって、
前記線量検出画素は、複数設けられており、
前記演算処理部は、前記複数の線量検出画素のうち、画素値が不飽和の画素によって検出される線量に基づいて輝度補正する放射線撮影システム。 The radiation imaging system according to any one of claims 11 to 13,
A plurality of the dose detection pixels are provided,
The said arithmetic processing part is a radiography system which carries out brightness correction | amendment based on the dose detected by the pixel whose pixel value is unsaturated among these dose detection pixels. - 請求項14に記載の放射線撮影システムであって、
前記演算処理部は、前記複数の線量検出画素のうち、その画素値が前記放射線像を検出する画素群の画素値に最も近い線量検出画素によって検出される線量に基づいて輝度補正する放射線撮影システム。 The radiation imaging system according to claim 14,
The arithmetic processing unit is a radiography system that corrects luminance based on a dose detected by a dose detection pixel whose pixel value is closest to a pixel value of a pixel group that detects the radiation image among the plurality of dose detection pixels. . - 請求項11から15のいずれか一項に記載の放射線撮影システムであって、
前記演算処理部は、輝度補正された複数の画像データから、前記放射線画像検出器に入射する放射線の屈折角の分布を演算し、この屈折角の分布に基づいて、位相コントラスト画像を生成する放射線撮影システム。 The radiation imaging system according to any one of claims 11 to 15,
The arithmetic processing unit calculates a refraction angle distribution of radiation incident on the radiation image detector from a plurality of brightness corrected image data, and generates a phase contrast image based on the refraction angle distribution. Shooting system.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010-264241 | 2010-11-26 | ||
JP2010264241A JP2014030438A (en) | 2010-11-26 | 2010-11-26 | Radiation image detection device, radiation imaging device and radiation imaging system |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012070661A1 true WO2012070661A1 (en) | 2012-05-31 |
Family
ID=46145998
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/077260 WO2012070661A1 (en) | 2010-11-26 | 2011-11-25 | Radiographic image detection apparatus, radiography apparatus, and radiography system |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2014030438A (en) |
WO (1) | WO2012070661A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108714033A (en) * | 2017-03-15 | 2018-10-30 | 株式会社岛津制作所 | Radioactive ray grating detector and X ray checking device |
EP3395253A1 (en) * | 2017-04-21 | 2018-10-31 | Shimadzu Corporation | X-ray phase imaging apparatus |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7020169B2 (en) * | 2018-02-23 | 2022-02-16 | コニカミノルタ株式会社 | X-ray system |
WO2020054151A1 (en) * | 2018-09-11 | 2020-03-19 | 株式会社島津製作所 | X-ray phase imaging device |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004290615A (en) * | 2003-03-28 | 2004-10-21 | Konica Minolta Holdings Inc | Apparatus for photographing radiation image |
WO2008102598A1 (en) * | 2007-02-21 | 2008-08-28 | Konica Minolta Medical & Graphic, Inc. | Radiographic imaging device and radiographic imaging system |
JP2009201885A (en) * | 2008-02-29 | 2009-09-10 | Ge Medical Systems Global Technology Co Llc | X-ray ct system |
-
2010
- 2010-11-26 JP JP2010264241A patent/JP2014030438A/en active Pending
-
2011
- 2011-11-25 WO PCT/JP2011/077260 patent/WO2012070661A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004290615A (en) * | 2003-03-28 | 2004-10-21 | Konica Minolta Holdings Inc | Apparatus for photographing radiation image |
WO2008102598A1 (en) * | 2007-02-21 | 2008-08-28 | Konica Minolta Medical & Graphic, Inc. | Radiographic imaging device and radiographic imaging system |
JP2009201885A (en) * | 2008-02-29 | 2009-09-10 | Ge Medical Systems Global Technology Co Llc | X-ray ct system |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108714033A (en) * | 2017-03-15 | 2018-10-30 | 株式会社岛津制作所 | Radioactive ray grating detector and X ray checking device |
EP3395253A1 (en) * | 2017-04-21 | 2018-10-31 | Shimadzu Corporation | X-ray phase imaging apparatus |
Also Published As
Publication number | Publication date |
---|---|
JP2014030438A (en) | 2014-02-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5331940B2 (en) | Radiation imaging system and radiation image generation method | |
JP5150713B2 (en) | Radiation image detection device, radiation imaging device, radiation imaging system | |
JP5343065B2 (en) | Radiography system | |
JP5238787B2 (en) | Radiography apparatus and radiation imaging system | |
JP5238786B2 (en) | Radiography apparatus and radiation imaging system | |
JP2012090945A (en) | Radiation detection device, radiographic apparatus, and radiographic system | |
JP2012090944A (en) | Radiographic system and radiographic method | |
JP5783987B2 (en) | Radiography equipment | |
JP2012115576A (en) | Radiological image detection apparatus, radiographic apparatus and radiographic system | |
JP2012200567A (en) | Radiographic system and radiographic method | |
JP2012095865A (en) | Radiographic apparatus and radiographic system | |
JP2012120653A (en) | Radiographic apparatus and radiographic system | |
JP2012115577A (en) | Radiographic system | |
WO2012057047A1 (en) | Radiation imaging system | |
WO2012169426A1 (en) | Radiography system | |
JP2011206490A (en) | Radiographic system and radiographic method | |
WO2012070661A1 (en) | Radiographic image detection apparatus, radiography apparatus, and radiography system | |
WO2012057278A1 (en) | Radiation imaging system and radiation imaging method | |
JP2012125423A (en) | Radiation image detection apparatus, radiographic imaging apparatus, and radiographic imaging system | |
WO2012169427A1 (en) | Radiography system | |
JP2012115621A (en) | Radiological image detection apparatus, radiographic apparatus and radiographic system | |
WO2012056992A1 (en) | Radiograph detection device, radiography device, radiography system | |
WO2012057046A1 (en) | Radiography device and radiography system | |
JP2011206280A (en) | Radiographic imaging method and system | |
JP2012120650A (en) | Radiographic system and method for generating radiation phase contrast image |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11843459 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11843459 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |