WO2012070461A1 - 金属チタン製造装置および金属チタンの製造方法 - Google Patents
金属チタン製造装置および金属チタンの製造方法 Download PDFInfo
- Publication number
- WO2012070461A1 WO2012070461A1 PCT/JP2011/076506 JP2011076506W WO2012070461A1 WO 2012070461 A1 WO2012070461 A1 WO 2012070461A1 JP 2011076506 W JP2011076506 W JP 2011076506W WO 2012070461 A1 WO2012070461 A1 WO 2012070461A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- titanium
- magnesium
- metal
- titanium tetrachloride
- heating
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B34/00—Obtaining refractory metals
- C22B34/10—Obtaining titanium, zirconium or hafnium
- C22B34/12—Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08
- C22B34/129—Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08 obtaining metallic titanium from titanium compounds by dissociation, e.g. thermic dissociation of titanium tetraiodide, or by electrolysis or with the use of an electric arc
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B34/00—Obtaining refractory metals
- C22B34/10—Obtaining titanium, zirconium or hafnium
- C22B34/12—Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08
- C22B34/1263—Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08 obtaining metallic titanium from titanium compounds, e.g. by reduction
- C22B34/1268—Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08 obtaining metallic titanium from titanium compounds, e.g. by reduction using alkali or alkaline-earth metals or amalgams
- C22B34/1272—Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08 obtaining metallic titanium from titanium compounds, e.g. by reduction using alkali or alkaline-earth metals or amalgams reduction of titanium halides, e.g. Kroll process
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D11/00—Arrangement of elements for electric heating in or on furnaces
- F27D11/06—Induction heating, i.e. in which the material being heated, or its container or elements embodied therein, form the secondary of a transformer
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D11/00—Arrangement of elements for electric heating in or on furnaces
- F27D11/08—Heating by electric discharge, e.g. arc discharge
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/25—Process efficiency
Definitions
- the present invention relates to a method and apparatus for producing metallic titanium. Specifically, the present invention relates to a method and apparatus for producing metallic titanium in which metallic titanium is deposited and grown from a mixed gas of titanium tetrachloride and magnesium.
- Titanium is lightweight, has high specific strength, and is excellent in corrosion resistance. It is widely used in various fields such as aircraft, medical care, and automobiles, and its usage is increasing. Titanium crust reserves are the fourth most abundant in practical metal elements after aluminum, iron and magnesium, and are abundant as resources. Although titanium resources are abundant in this way, titanium is more than an order of magnitude more expensive than steel materials, and faces the current situation of short supply.
- the current mainstream of titanium metal production is the crawl method.
- the crawl method produces titanium tetrachloride (TiCl 4 ) by adding chlorine gas and coke (C) to titanium ore (main component TiO 2 ), which is a raw material, and further produces high-purity titanium tetrachloride through distillation separation.
- TiCl 4 titanium tetrachloride
- main component TiO 2 main component TiO 2
- Titanium metal is produced by a thermal reduction reaction between purified titanium tetrachloride and magnesium (Mg).
- Mg magnesium
- molten magnesium at 800 ° C. or higher is preliminarily filled in a stainless steel reduction reaction vessel, titanium tetrachloride solution is dropped from the upper portion of the vessel, and titanium is generated by reacting with magnesium in the vessel. .
- the produced titanium sinks into the magnesium solution to form sponge-like titanium.
- magnesium chloride and residual magnesium which are by-products of the reaction, become a mixture with sponge-like titanium as a liquid phase.
- a porous sponge cake is obtained through a high-temperature vacuum separation process at 1000 ° C. or higher, and this sponge cake is cut and pulverized to produce sponge titanium.
- Patent Document 1 Japanese Patent Publication No. 33-3004
- titanium tetrachloride gas and magnesium vapor are supplied to a reaction vessel, and the reaction vessel is in a temperature range of 800 to 1100 ° C. and 10 ⁇ 4.
- a gas phase reaction is caused in a vacuum state of mmHg (1.3 ⁇ 10 ⁇ 2 Pa), and titanium is deposited on a net-like recovery material installed in the reaction vessel and recovered.
- Patent Document 2 In the method disclosed in Patent Document 2 (US Pat. No. 2,997,385), a halide vapor of a metal element and an alkali metal or alkaline earth metal vapor as a reducing agent are introduced into a reaction vessel, In this method, a metal is produced by a gas phase reaction in a vacuum range of 1200 ° C. and 0.01 to 300 mmHg (1.3 Pa to 40 kPa).
- Document 2 shows a method of generating titanium in Example II with TiCl 4 gas + Mg gas. Specifically, the reaction temperature is about 850 ° C. and the pressure is 10 to 200 microns (1.3 to 26.7 Pa). Has been applied.
- Non-Patent Document 1 (Hansen and Geldeman, JOM, 1998, No. 11, page 56) discloses a method for producing a titanium ultrafine powder through a gas phase reaction.
- titanium tetrachloride gas and magnesium gas are introduced into a reactor, reacted at a temperature of 850 ° C. or more, and titanium fine powder and by-product MgCl 2 powder as products are separated by a cyclone provided at the bottom. To do. Thereafter, vacuum distillation or filtration is applied to separate magnesium and MgCl 2 from the obtained fine titanium powder.
- Patent Document 1 can recover a small amount of titanium, but in order to maintain the reaction vessel at a vacuum of 10 ⁇ 4 mmHg, it is necessary to limit the supply rate of the reactants. There is. There is a possibility that the processing capacity can be increased by increasing the size of the vacuum exhaust pump and increasing the exhaust capacity, but industrial large-scale processing is difficult.
- Powder produced by the non-patent document 1 methods are fineness of submicron, can not achieve an efficient separation of magnesium and MgCl 2, many impurities mixed amount. Therefore, another separation means such as vacuum distillation is necessary.
- the prior art document proposed for solving the problem of the crawl method is a method for producing titanium through a gas phase reaction between titanium tetrachloride gas and magnesium gas.
- each method has a problem that it is difficult to process in large quantities because basically it is necessary to separate a by-product MgCl 2 or unreacted magnesium by applying a high-level vacuum state. .
- the present inventors supplied titanium tetrachloride and magnesium in the RF thermal plasma flame, and titanium tetrachloride and magnesium were evaporated in the RF thermal plasma flame, and titanium tetrachloride was reduced by magnesium to be reduced.
- a method and apparatus for depositing metallic titanium has been proposed (Japanese Patent Laid-Open No. 2009-242946). In this method, it is necessary to mix uniformly in order to increase the efficiency of the reaction between titanium tetrachloride gas and magnesium gas.
- An object of the present invention is to provide a method and an apparatus for producing titanium metal that can produce titanium metal more efficiently by promoting uniform mixing of titanium tetrachloride gas and magnesium gas using titanium tetrachloride and magnesium as starting materials. That is.
- the metal titanium manufacturing apparatus has the following members.
- A The 1st flow path which supplies the gaseous 1st material from the 1st heating part which heats the 1st material selected from magnesium and titanium tetrachloride, and makes it gaseous.
- B a second heating section that heats a second material selected from magnesium and titanium tetrachloride to form a gas at 1600 ° C. or higher, and a second flow path that supplies the gaseous second material from the second heating section .
- C A venturi portion having an inlet channel, an outlet channel, and a throat portion having a small cross-sectional area between the inlet channel and the outlet channel.
- the second flow path is connected to the inlet flow path, the first flow path merges with the throat, and the magnesium and titanium tetrachloride flowing through the first flow path and the second flow path merge at the throat, Gaseous magnesium and titanium tetrachloride merged in the outlet channel are mixed.
- the temperature of the throat and the outlet channel is controlled to 1600 ° C. or higher.
- D A titanium metal precipitation portion communicating with the outlet channel.
- the titanium metal precipitation part has a deposition base in the temperature range of 715 to 1500 ° C.
- E A mixed gas discharge part communicating with the titanium metal precipitation part.
- the first material is magnesium
- the second material is titanium tetrachloride
- the second heating unit includes a plasma torch and a titanium tetrachloride supply unit, and is supplied from the titanium tetrachloride supply unit. Titanium chloride is injected into a plasma flame generated by a plasma torch and heated to 1600 ° C. or higher.
- the first material is titanium tetrachloride and the second material is magnesium
- the second heating unit includes a plasma torch and a magnesium supply unit, and the magnesium supplied from the magnesium supply unit is generated by the plasma torch. It is injected into the plasma flame and heated to 1600 ° C. or higher.
- the plasma torch may be of any plasma generation mechanism, but can be DC plasma, for example.
- plasma titanium tetrachloride (or magnesium) can be instantaneously heated to a gaseous state having a temperature of 1600 ° C. or higher. It is also possible to control the temperature of the mixed gas by controlling the power of the plasma so that the plasma flame can reach the venturi. Mixing of titanium tetrachloride and magnesium in thermal plasma is suitable for reduction reactions and precipitation.
- the absolute pressure of the metal titanium precipitation part is preferably 50 kPa to 500 kPa.
- At least one of the first flow path, the second flow path, the venturi section, and the metal titanium precipitation section has a graphite wall. More preferably, part or all of the graphite wall can be heated by induction heating.
- the deposition base material is in a temperature range of 900 to 1400 ° C.
- the deposition base material is preferably made of titanium or a titanium alloy. Since titanium and the crystal structure are the same or close to each other, not only titanium metal is efficiently precipitated, but in some cases, the deposited metal titanium can be used as titanium.
- the manufacturing method of the metal titanium which concerns on this invention includes the following processes.
- B A step of heating a second material selected from magnesium and titanium tetrachloride to a gaseous state of 1600 ° C. or higher.
- C flowing the second material into the inlet channel of the venturi section having the inlet channel, the outlet channel, and the throat portion having a small cross-sectional area between the inlet channel and the outlet channel; Supplying the throat to the throat and controlling the temperature of the throat and the outlet channel to 1600 ° C. or higher.
- step (D) A step of introducing gaseous magnesium and gaseous titanium tetrachloride merged in step (c) into the metal titanium deposition space.
- the metal titanium deposition space includes a deposition base material in a temperature range of 715 to 1500 ° C.
- step (F) A step of depositing and growing titanium metal on the deposition base material.
- step (G) A step of discharging the mixed gas after the step (f).
- the first material is magnesium and the second material is titanium tetrachloride.
- titanium tetrachloride is heated to a gaseous state of 1600 ° C. or higher by plasma heating.
- the first material can be titanium tetrachloride and the second material can be magnesium.
- titanium can be directly manufactured by a gas phase reaction, and high-purity titanium is efficiently and highly produced. It becomes possible to manufacture with the property. Further, since titanium is deposited on the deposition base material, it is not necessary to separate magnesium chloride and residual magnesium, which are by-products of the reaction, in separate steps.
- the venturi structure is advantageous for uniform mixing of titanium tetrachloride and magnesium because there is no fluid dead zone, and more efficient mixing is performed to supply one gas from the throat of the venturi structure. .
- the present invention discloses a new apparatus and method for producing metallic titanium.
- FIG. 1 is a schematic side sectional view showing an example of the titanium metal production apparatus of the present invention.
- this apparatus heats and evaporates solid magnesium, and heats and evaporates a magnesium heating part 1 having a mechanism for making it gaseous, a first flow path 5 for supplying gaseous magnesium communicating with the heating part, titanium tetrachloride Titanium tetrachloride heating section 20 to be heated to a gas at a temperature of 1600 ° C. or higher, second flow path 24 for supplying gaseous titanium tetrachloride, venturi section 30 connected to the second flow path, and venturi section
- the metal titanium precipitation part 9 communicates with the metal 30 and the mixed gas exhaust part 16 communicates with the metal titanium precipitation part.
- the venturi portion 30 has a shape in which the central portion of the tube is narrowed, the portion having the smallest cross-sectional area is the throat portion 34, the upstream side (the side connected to the second flow passage 24) is the inlet flow passage 32, the downstream portion The side (side connected to the precipitation portion 9) is referred to as an outlet channel 36.
- the first flow path 5 communicates with the throat part 34 of the venturi part 30.
- the heating unit 1 is composed of a crucible 2 for inserting magnesium and a heat source for evaporating the magnesium.
- FIG. 1 shows a configuration in which a heater 3 is provided around at least a part of the side wall of the crucible 2, and the heater heats the temperature in the crucible to a temperature at which magnesium can evaporate. Evaporate.
- the evaporation heat source it is possible to heat the graphite wall of the crucible by induction heating using a heater having a coil provided outside the crucible. Induction heating has good heating efficiency. And since magnesium and a heat source do not contact, there exists an advantage that magnesium contamination can be prevented and magnesium can be evaporated.
- Another example of the evaporation heat source is a mechanism having a DC plasma torch as an evaporation heat source as a mechanism for evaporating magnesium.
- a first flow path 5 for supplying gaseous magnesium to the throat part 34 of the venturi part is connected to the magnesium heating part 1.
- the heater 6 can be provided around at least a part of the side wall of the first flow path 5, and the heater heats the temperature in the flow path to a temperature at which magnesium can be evaporated. It is possible to suppress deposition in the flow path.
- the titanium manufacturing apparatus is provided with a plasma torch 22 in the titanium tetrachloride heating unit 20 in order to heat titanium tetrachloride into a gaseous state of 1600 ° C. or higher.
- the second channel 24 connects the titanium tetrachloride heating unit 20 and the inlet channel 32 of the venturi unit.
- the titanium tetrachloride heating unit 20 includes a plasma torch 22 and a titanium tetrachloride supply unit 26 that supplies, for example, liquid titanium tetrachloride toward a plasma flame generated by the plasma torch.
- the plasma torch 22 is preferably installed facing the venturi section, and a carrier gas heated by a part of the plasma flame or the plasma flame flows into the venturi section 30, and the temperature of the mixed gas of titanium tetrachloride and magnesium is changed to the venturi section.
- the 30 outlet channels 36 can also be maintained at a temperature of 1600 ° C. or higher.
- the plasma carrier gas is not limited as long as it is an inert gas. For example, argon can be used.
- a heater can be provided around the second flow path 24 for supplying gaseous titanium tetrachloride and at least a part of the side wall of the venturi portion 30, and the heater allows the second flow path to be provided.
- the inside of the venturi unit 30 can be heated to a predetermined temperature.
- graphite can be used.
- the heating can also be performed by inductively heating the second flow path 24 and the graphite wall of the venturi portion 30.
- An important feature of the present invention is the use of a Venturi tube structure for mixing gaseous magnesium and gaseous titanium tetrachloride.
- the Venturi tube has a constricted shape at the center of the tube, i.e., the cross-sectional area of the center of the tube is reduced, which decreases smoothly and gently in FIG.
- a portion having a small cross-sectional area is referred to as a throat portion, and in FIG. 1, a minimum portion of the cross-sectional area is referred to as a throat portion.
- 1 has a venturi tube structure, and the upstream side of the throat 34, that is, the side communicating with the titanium tetrachloride heating unit 20 is connected to the inlet channel 32 and the downstream side of the throat.
- a path 36 is provided.
- a first flow path 5 extending from the magnesium heating part is communicated with the throat part.
- the fluid flowing through the venturi tube is throttled at the throat and the flow velocity is increased.
- the pressure decreases as the flow velocity of the fluid flowing through the venturi tube increases. Therefore, the gas flowing in from the first flow path 5 that joins the throat 34 is drawn by the pressure difference. Therefore, mixing of the titanium tetrachloride gas and the magnesium gas is easily performed, and the formation of a uniform mixed gas is promoted.
- a uniform mixed gas of titanium tetrachloride and magnesium can be formed.
- the gas merged at the venturi throat 34 passes through the venturi outlet channel 36, that is, the region where the cross-sectional area of the venturi gradually increases and the subsequent region (mixing portion) up to the metal titanium precipitation portion 9.
- a homogeneous reaction can be continuously realized by mixing gaseous titanium tetrachloride and gaseous magnesium to form a mixed gas.
- the temperature needs to be maintained at 1600 ° C. or higher. Since the driving force for the reaction between titanium tetrachloride and magnesium decreases as the temperature rises, the reaction between titanium tetrachloride and magnesium can be substantially suppressed at 1600 ° C. or higher.
- the reaction needs to be suppressed in this region because the reaction is performed in the precipitation portion 9 provided downstream as shown below.
- the plasma flame is directed to the venturi section, heat from the plasma flame directly flows into the throat section 34 and the outlet flow path 36. This can be done by adjusting the heating.
- a heating element 11 can be provided around the tube.
- the heating member is preferably provided with graphite and heated by induction overheating, but any heating member such as a heating wire can be used.
- the mixed gas is introduced into the metal titanium deposition space 9 without being reacted.
- An orifice 38 may be provided in the passage entering the metal titanium deposition space 9. The mixed gas can flow through the orifice 38 to the metal titanium deposition space 9, and the orifice 38 can be set to direct the flow of the mixed gas toward the deposition substrate 13.
- a deposition base material 13 is disposed in the metal titanium deposition space 9, and at least a part of the deposition base material 13 is controlled to a temperature range of 715 to 1500 ° C. As the temperature of the mixed gas decreases, the driving force for the titanium production reaction increases. The surface of the deposition base material 13 installed in the metal titanium deposition space 9 promotes the heterogeneous nucleation of titanium and promotes the production and deposition of titanium. In addition, by providing the heater 12 around at least a part of the side wall of the precipitation portion 9, the inside of the metal titanium precipitation portion is heated to a predetermined temperature, and the precipitation base material 13 disposed therein is controlled to the above temperature range. To do.
- the inner wall of the titanium metal precipitation part 9 with the material which has corrosion resistance to a chloride vapor
- temperature control can be performed by induction heating using a heater having a coil outside the side wall of the titanium metal deposition portion.
- the metal titanium precipitation space 9 preferably has an absolute pressure of 50 kPa to 500 kPa.
- the reason why the absolute pressure is set to 50 kPa to 500 kPa is that, as the upper limit, the lower the pressure in the metal titanium precipitation space 9, the more advantageous for evaporative separation of magnesium and MgCl 2 . Even when the reaction is not uniform, evaporation can be promoted by vacuum and reduced pressure, and by-products and intermediate compounds can be separated by evaporation.
- the processing capacity of a unit reactor volume increases in proportion to the increase in a container pressure.
- the processing speed also increases by an order of magnitude.
- the processing speed can be remarkably increased by applying such a pressure that cannot be considered in the prior art.
- titanium can be recovered even if it is less than 50 kPa, but at the same time as the pressure decreases, the production rate decreases and the possibility of air leakage into the apparatus increases. Since titanium is a metal having a high reaction activity with oxygen and nitrogen, it is also necessary to protect the production process from air. The higher the degree of vacuum, the higher the cost for countermeasures against vacuum leakage on the process and on the apparatus.
- the absolute pressure is more preferably in the range of 90 kPa to 200 kPa.
- the temperature range in which titanium can be deposited as particles on the surface of the deposition substrate 13 is 715 to 1500 ° C.
- the reaction driving force increases, but the evaporation effect of magnesium and MgCl 2 decreases.
- the temperature rises it is advantageous for evaporating MgCl 2 or the like, but the reaction driving force is reduced.
- the temperature exceeds 1500 ° C. the reduction reaction of titanium hardly proceeds, and when the temperature is lower than 715 ° C., uniform nucleation of the reaction gas is performed, and it is difficult to deposit on the surface of the deposition substrate. Therefore, it is effective that at least a part of the deposition base material has a temperature range of 715 to 1500 ° C.
- reaction products such as MgCl 2 may be mixed at a lower temperature
- 900 ° C. to 1400 ° C. is preferable and 900 ° C. to 1300 ° C. is preferable in order to achieve industrial production stability.
- 900 to 1200 ° C. are preferred in this order.
- the surface of the deposition substrate provides a place for heterogeneous nucleation of the titanium produced by the reaction and promotes precipitation. It is desirable that the deposition base material has a shape that allows the mixed gas to escape and evenly pass through and contact the deposition base material. Therefore, it is desirable that the deposition base material has a large surface area while forming a space where the mixed gas sufficiently flows. In order to ensure the specific surface area of the deposition substrate, a porous structure is preferred. Moreover, it is preferable that the deposition base material has a shape extending in the flowing direction of the mixed gas and forms a flow path for the mixed gas.
- the precipitated titanium is to be continuously collected, a mechanism for scraping off the deposition base material in accordance with the deposition growth of metallic titanium can be provided.
- the amount of precipitation at the tip of the deposition base material is particularly large, and by scraping it off, the titanium deposited on the tip surface is continuously maintained. Can grow into.
- a separate scraper function for scraping the titanium deposited on the surface of the deposition base material is added, or a plurality of deposition base materials are arranged, and the deposited portions are slid relative to each other to precipitate titanium. You may make it scrape off.
- the base material for precipitation can also be cooled in order to remove reaction heat and control the temperature of the reaction region.
- the material for the deposition base 13 is not particularly limited. For example, ceramics or metal may be used. Since the deposition base material is controlled in a temperature range of 715 to 1500 ° C., it is desirable to use a high melting point metal which does not melt and change in this temperature range. For efficient precipitation, it is preferable that the crystal structure is close to that of titanium, and pure titanium or a titanium alloy is particularly preferable. In particular, pure titanium is desirable as the deposition base material in order to maintain the purity of the recovered titanium and prevent impurities from being mixed.
- the precipitation base material 13 shown in FIG. 2 is formed by slitting from the left and right sides of a metal plate and twisting in a spiral shape with the center portion as the center.
- the deposition base material 13 has a large surface area as well as a space in which the mixed gas sufficiently flows.
- FIG. 3 is a schematic diagram showing the structure of the scraper.
- the deposition base 13 is a roll-shaped one having irregularities with different diameters in the direction perpendicular to the rotation axis, and the central axis is rotated by a motor, and a plurality of disc-shaped metal plates are connected by the same central axis. What was formed is mentioned.
- a scraper 14 is installed under the roll-shaped deposition base material 13 so as to scrape off the titanium metal deposited on the surface of the deposition base material.
- the titanium scraped off can be continuously recovered by recovering it with a recovery device (not shown) connected to the lower part of the metal titanium deposit.
- the deposition substrate is not limited to the above, and any material can be used.
- a mixed gas of gaseous magnesium other than titanium and gaseous titanium tetrachloride that precipitates and grows in the titanium metal precipitation portion is discharged from the discharge portion 16 connected to the precipitation portion, and the by-product magnesium chloride is removed by a filter or the like. To be recovered.
- Metal titanium was manufactured using the metal titanium manufacturing apparatus of FIG.
- the magnesium heating unit 1 solid magnesium was inserted into the crucible 2. And this was induction-heated to the temperature which can evaporate magnesium with the heater 3, and gaseous magnesium was obtained.
- the titanium tetrachloride heating unit 20 liquid titanium tetrachloride was supplied from the supply unit 26 toward the plasma flame generated from the plasma torch 22. And titanium tetrachloride was made into a gaseous state by plasma heating. This gaseous titanium tetrachloride was extremely hot, exceeding 1600 ° C.
- the gaseous titanium tetrachloride was flowed to the inlet channel 32 of the venturi section 30 through the second channel 24 together with the argon carrier gas.
- the gaseous magnesium was supplied to the throat part 34 of the venturi part 30 through the first flow path 5 induction-heated by the heater 6.
- the above-described gaseous titanium tetrachloride and magnesium were merged at the throat portion 34 and mixed at the outlet channel 36.
- the temperature of the throat portion 34 and the outlet channel 36 was controlled between about 1700 to 1750 ° C. throughout the operation.
- the mixed gas was introduced into the metal titanium precipitation portion 9 which was provided with the orifice 38 and was heated by induction by the heater 11 and was also heated by induction by the heater 12.
- the precipitation base material 13 having a spiral shape as shown in FIG.
- the deposition base material 13 is made of titanium, and the temperature may reach about 1250 ° C. in the initial stage of the operation, but is generally kept between 1050 and 1200 ° C.
- the pressure of the metal titanium precipitation part 9 was measurable in the vicinity of the discharge part 16 of the mixed gas connected back, and the absolute pressure was 105 kPa.
- the state of the recovered material obtained from the surface of the deposition base material 13 obtained by the above operation is shown in a scanning electron micrograph ( ⁇ 300) of FIG. This recovered material is deposited on the substrate 13 and shows a state of growth. As a result of analysis, it was confirmed that the recovered material was titanium metal.
- titanium is suitable as a melting raw material or a powder metallurgy raw material. It can be used in applications where the manufacture of molten materials for electronic materials, aircraft parts, and power / chemical plants is essential.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Geology (AREA)
- General Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Power Engineering (AREA)
- Manufacture And Refinement Of Metals (AREA)
- Furnace Charging Or Discharging (AREA)
Abstract
Description
クロール法は実用レベルのチタン素材を製造できるが、熱還元反応と真空分離は別工程で行なわれるために製造に長時間を要する。また、製造はバッチ式であるため、製造能率が低い。クロール法のこれらの課題を克服するために、様々な技術が提案されている。
この方法では、四塩化チタンガスとマグネシウムガスとの反応の効率を上げるためには均一に混合させる必要がある。
本発明の目的は、四塩化チタンおよびマグネシウムを出発原料として、四塩化チタンガスとマグネシウムガスとの均一混合を促進させて、金属チタンをより効率よく製造できる金属チタンの製造方法および装置を提供することである。
(a)マグネシウムおよび四塩化チタンから選択される第1材料を加熱して気体状とする第1加熱部および第1加熱部から気体状の第1材料を供給する第1流路。
(b)マグネシウムおよび四塩化チタンから選択される第2材料を加熱して1600℃以上の気体状とする第2加熱部および第2加熱部から気体状の第2材料を供給する第2流路。
(c)入口流路、出口流路、および入口流路と出口流路との間で断面積が小さくなっているのど部を有するベンチュリ部。第2流路が入口流路に連結され、第1流路がのど部に合流し、それによりのど部で第1流路および第2流路を流れるマグネシウムと四塩化チタンとが合流して、出口流路で合流した気体状のマグネシウムと四塩化チタンとが混合されるようになっている。のど部および出口流路の温度は、1600℃以上に制御される。
(d)出口流路に連通する金属チタン析出部。金属チタン析出部は、715~1500℃の温度範囲にある析出用基材を有する。
(e)前記金属チタン析出部に連通する混合ガスの排出部。
(a)マグネシウムおよび四塩化チタンから選択される第1材料を加熱して気体状とする工程。
(b)マグネシウムおよび四塩化チタンから選択される第2材料を加熱して1600℃以上の気体状とする工程。
(c)入口流路、出口流路、および入口流路と出口流路との間で断面積が小さくなっているのど部を有するベンチュリ部の入口流路に第2材料を流し、第1材料をのど部に供給し、のど部および出口流路の温度を1600℃以上に制御する工程。
(d)工程(c)で合流させた気体状のマグネシウムと気体状の四塩化チタンとを金属チタン析出空間に導入する工程。ここで、金属チタン析出空間は715~1500℃の温度範囲にある析出用基材を備える。
(f)析出用基材上に金属チタンを析出成長させる工程。
(g)工程(f)を経た前記混合ガスを排出する工程。
ベンチュリ構造は、流体のデッドゾーンがないために、四塩化チタンとマグネシウムの均一混合に有利であるうえ、ベンチュリ構造ののど部から一方のガスを供給するために、さらに一層効率よく混合が行われる。
なお、析出部9の側壁の少なくとも一部の周りに加熱ヒータ12を設けることで、金属チタン析出部内を所定温度まで加熱し、内部に配置された析出用基材13を上記の温度域に制御する。また、金属チタン析出部9の内壁は、塩化物蒸気への耐食性を有する材料により設けることが望ましく、材料の一例として黒鉛があげられる。他の例としては、金属チタン析出部の側壁の外側にコイルを有するヒータを使って誘導加熱して温度制御を行うこともできる。
なお、50kPa未満でも原理的にはチタンを回収できるが、圧力低下に伴って製造速度が低くなると同時に、装置内への空気漏れの可能性が大きくなる。チタンは酸素、窒素との反応活性が高い金属であるから、製造プロセスを空気から保護することも必要である。真空度が高いほど、プロセス上および装置上の真空漏れ対策のコストが高くなる。50kPa以上では空気漏れという課題は工業製造レベルで容易に解決でき、実用上好ましい範囲となる。
他方、圧力の上昇に伴って、単位反応器容積の処理能力が上昇するが、MgCl2の蒸発効果が低下する。そのため、圧力が大きくなると高純度のチタンの製造が困難になる。そこで、工業設備では高圧対応には製造コストが上昇することも含めて、500kPa以下が有効である。
処理能力、分離効率、工業設備の経済合理性を考慮すると、絶対圧90kPa~200kPaの範囲がより好ましい。
なお、析出用基材の表面上に析出させたチタンを掻き落とすスクレーパ機能を別途付加したり、析出用基材を複数配置して、析出部分を相互に摺動運動させることで、析出したチタンを掻き落とすようにしてもよい。あるいは析出用基材に振動を加えることにより、析出基材表面に形成したチタン粒子を連続的に回収することも可能である。
また、反応熱を奪い、反応領域の温度を制御する目的で、析出用基材を冷却することもできる。
特に、回収されるチタンの純度を維持し、不純物の混入を防止するため、析出用基材は純チタンが望ましい。
2 坩堝
3 加熱ヒータ
5 第1流路
6 加熱ヒータ
9 金属チタン析出部
11、12 加熱ヒータ
13 析出用基材
14 スクレーパ
16 排出部
20 四塩化チタン加熱部
22 プラズマトーチ
24 第2流路
26 四塩化チタン供給部
30 ベンチュリ部
32 入口流路
34 のど部
36 出口流路
38 オリフィス
Claims (10)
- 金属チタン製造装置において、該装置が、
(a)マグネシウムおよび四塩化チタンから選択される第1材料を加熱して気体状とする第1加熱部および該第1加熱部から気体状の第1材料を供給する第1流路と、
(b)マグネシウムおよび四塩化チタンから選択される第2材料を加熱して1600℃以上の気体状とする第2加熱部および該第2加熱部から気体状の第2材料を供給する第2流路と、
(c)入口流路、出口流路、および前記入口流路と前記出口流路との間で断面積が小さくなっているのど部を有するベンチュリ部であって、前記第2流路が前記入口流路に連結され、前記第1流路が前記のど部に合流し、それにより前記のど部で前記第1流路および前記第2流路を流れるマグネシウムと四塩化チタンとが合流して、前記出口流路で前記合流した気体状のマグネシウムと四塩化チタンとが混合されるようになっており、前記のど部および前記出口流路の温度が1600℃以上に制御された、ベンチュリ部と、
(d)前記出口流路に連通する金属チタン析出部であって、715~1500℃の温度範囲にある析出用基材を有する、金属チタン析出部と、
(e)前記金属チタン析出部に連通する混合ガスの排出部と
を含むことを特徴とする金属チタン製造装置。 - 前記第1材料がマグネシウムであり、前記第2材料が四塩化チタンであり、前記第2加熱部は、プラズマトーチおよび四塩化チタン供給部を備え、前記四塩化チタン供給部から供給された四塩化チタンが、前記プラズマトーチにより生成されたプラズマフレームに注入されて、1600℃以上に加熱されるようになっていることを特徴とする請求項1に記載の金属チタン製造装置。
- 前記第1材料が四塩化チタンであり、前記第2材料がマグネシウムであり、前記第2加熱部は、プラズマトーチおよびマグネシウム供給部を備え、前記マグネシウム供給部から供給されたマグネシウムが、プラズマトーチにより生成されたプラズマフレームに注入されて、1600℃以上に加熱されるようになっていることを特徴とする請求項1に記載の金属チタン製造装置。
- 前記金属チタン析出部の絶対圧が50kPa~500kPaである請求項1から請求項3までのいずれか1項に記載の金属チタン製造装置。
- 前記第1流路、前記第2流路、前記ベンチュリ部、および前記金属チタン析出部のうちの少なくとも1つが黒鉛壁を有することを特徴とする請求項1から請求項4までのいずれか1項に記載の金属チタン製造装置。
- 誘導加熱によって前記黒鉛壁の一部または全てを加熱できるようになっていることを特徴とする請求項5に記載の金属チタン製造装置。
- 前記析出用基材が900~1400℃の温度範囲にあることを特徴とする請求項1から請求項6までのいずれか1項に記載の金属チタン製造装置。
- 前記析出用基材がチタンまたはチタン合金でできていることを特徴とする請求項1から請求項7までのいずれか1項に記載の金属チタン製造装置。
- 金属チタンの製造方法において、該方法が、
(a)マグネシウムおよび四塩化チタンから選択される第1材料を加熱して気体状とする工程と、
(b)マグネシウムおよび四塩化チタンから選択される第2材料を加熱して1600℃以上の気体状とする工程と、
(c)入口流路、出口流路、および前記入口流路と前記出口流路との間で断面積が小さくなっているのど部を有するベンチュリ部の前記入口流路に前記第2材料を流し、前記第1材料を前記のど部に供給し、前記のど部および前記出口流路の温度を1600℃以上に制御する工程と、
(d)前記工程(c)で合流させた気体状のマグネシウムと気体状の四塩化チタンとの混合気体を金属チタン析出空間に導入する工程であって、前記金属チタン析出空間は715~1500℃の温度範囲にある析出用基材を備える、導入工程と、
(f)前記析出用基材上に金属チタンを析出成長させる工程と、
(g)前記工程(f)を経た前記混合ガスを排出する工程と
を含むことを特徴とする金属チタンの製造方法。 - 前記第1材料がマグネシウムであり、前記第2材料が四塩化チタンであり、(b)工程は、四塩化チタンをプラズマ加熱によって1600℃以上の気体状とすることを特徴とする請求項9に記載の金属チタンの製造方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201180056148.1A CN103221558B (zh) | 2010-11-22 | 2011-11-17 | 金属钛制造装置和金属钛的制造方法 |
JP2012545705A JPWO2012070461A1 (ja) | 2010-11-22 | 2011-11-17 | 金属チタン製造装置および金属チタンの製造方法 |
US13/988,580 US9163299B2 (en) | 2010-11-22 | 2011-11-17 | Device for producing titanium metal, and method for producing titanium metal |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010-260108 | 2010-11-22 | ||
JP2010260108 | 2010-11-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012070461A1 true WO2012070461A1 (ja) | 2012-05-31 |
Family
ID=46145805
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/076506 WO2012070461A1 (ja) | 2010-11-22 | 2011-11-17 | 金属チタン製造装置および金属チタンの製造方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US9163299B2 (ja) |
JP (1) | JPWO2012070461A1 (ja) |
CN (1) | CN103221558B (ja) |
WO (1) | WO2012070461A1 (ja) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5571537B2 (ja) * | 2010-11-22 | 2014-08-13 | 日立金属株式会社 | 金属チタン製造装置および金属チタンの製造方法 |
EP3325196B1 (en) | 2015-07-17 | 2020-09-02 | AP&C Advanced Powders&Coatings Inc. | Plasma atomization metal powder manufacturing processes and systems therefore |
CN105018730B (zh) * | 2015-07-28 | 2017-03-08 | 山西大学 | 电磁感应内热式金属镁真空还原炉 |
US11235385B2 (en) | 2016-04-11 | 2022-02-01 | Ap&C Advanced Powders & Coating Inc. | Reactive metal powders in-flight heat treatment processes |
CN114307897B (zh) * | 2021-12-17 | 2024-02-20 | 瑞彩科技股份有限公司 | 一种易于调节温度的四氯化钛加工用除杂装置 |
CN114178544B (zh) * | 2021-12-31 | 2024-10-25 | 交通运输部天津水运工程科学研究所 | 一种金属钛生产设备及金属钛生产方法 |
CN115786737B (zh) * | 2023-01-18 | 2023-04-25 | 海朴精密材料(苏州)有限责任公司 | 一种利用化学气相输运沉积制备高纯低氧钛的方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010137688A1 (ja) * | 2009-05-29 | 2010-12-02 | 日立金属株式会社 | 金属チタンの製造方法 |
WO2011125402A1 (ja) * | 2010-04-07 | 2011-10-13 | 日立金属株式会社 | 金属チタン製造装置および金属チタンの製造方法 |
JP2011231402A (ja) * | 2010-04-07 | 2011-11-17 | Hitachi Metals Ltd | チタンの製造方法及び製造装置 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2997385A (en) | 1958-10-29 | 1961-08-22 | Du Pont | Method of producing refractory metal |
US3615202A (en) * | 1969-11-28 | 1971-10-26 | David R Stern | Process for the manufacture of titanium dioxide |
US7914600B2 (en) * | 2007-01-22 | 2011-03-29 | Materials & Electrochemical Research Corp. | Continuous production of titanium by the metallothermic reduction of TiCl4 |
US8092570B2 (en) * | 2008-03-31 | 2012-01-10 | Hitachi Metals, Ltd. | Method for producing titanium metal |
-
2011
- 2011-11-17 WO PCT/JP2011/076506 patent/WO2012070461A1/ja active Application Filing
- 2011-11-17 US US13/988,580 patent/US9163299B2/en not_active Expired - Fee Related
- 2011-11-17 CN CN201180056148.1A patent/CN103221558B/zh not_active Expired - Fee Related
- 2011-11-17 JP JP2012545705A patent/JPWO2012070461A1/ja active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010137688A1 (ja) * | 2009-05-29 | 2010-12-02 | 日立金属株式会社 | 金属チタンの製造方法 |
WO2011125402A1 (ja) * | 2010-04-07 | 2011-10-13 | 日立金属株式会社 | 金属チタン製造装置および金属チタンの製造方法 |
JP2011231402A (ja) * | 2010-04-07 | 2011-11-17 | Hitachi Metals Ltd | チタンの製造方法及び製造装置 |
Also Published As
Publication number | Publication date |
---|---|
US20130255445A1 (en) | 2013-10-03 |
JPWO2012070461A1 (ja) | 2014-05-19 |
CN103221558B (zh) | 2014-08-20 |
US9163299B2 (en) | 2015-10-20 |
CN103221558A (zh) | 2013-07-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5425196B2 (ja) | 金属チタンの製造方法 | |
WO2012070461A1 (ja) | 金属チタン製造装置および金属チタンの製造方法 | |
JP5571537B2 (ja) | 金属チタン製造装置および金属チタンの製造方法 | |
JP5427452B2 (ja) | 金属チタンの製造方法 | |
EP2411138B1 (en) | Plasma reactor for the synthesis of nanopowders and materials processing | |
CA2581806C (en) | Plasma synthesis of nanopowders | |
JP5698221B2 (ja) | 金属チタン製造装置および金属チタンの製造方法 | |
JP4692324B2 (ja) | 高純度多結晶シリコンの製造装置 | |
KR101525860B1 (ko) | 고순도 실리콘 미세분말의 제조 장치 | |
JP5475708B2 (ja) | チタンの製造方法及び製造装置 | |
JP2003002628A (ja) | シリコン製造装置および製造方法 | |
US10196273B2 (en) | Device for manufacturing polysilicon using horizontal reactor and method for manufacturing same | |
JP4805155B2 (ja) | シリコン製造装置 | |
WO2011071032A1 (ja) | 多結晶シリコンの製造方法及び多結晶シリコン製造用の反応炉 | |
TWI482736B (zh) | Manufacture of high purity silicon micropowder | |
JP2020019672A (ja) | シリコン微粒子製造装置 | |
JPH0497998A (ja) | 窒化アルミニウムウィスカーの製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11843642 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2012545705 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13988580 Country of ref document: US |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11843642 Country of ref document: EP Kind code of ref document: A1 |