[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2012070170A1 - Power supply control system and method of controlling power supply - Google Patents

Power supply control system and method of controlling power supply Download PDF

Info

Publication number
WO2012070170A1
WO2012070170A1 PCT/JP2011/003738 JP2011003738W WO2012070170A1 WO 2012070170 A1 WO2012070170 A1 WO 2012070170A1 JP 2011003738 W JP2011003738 W JP 2011003738W WO 2012070170 A1 WO2012070170 A1 WO 2012070170A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
functional circuit
circuit block
test
control unit
Prior art date
Application number
PCT/JP2011/003738
Other languages
French (fr)
Japanese (ja)
Inventor
貴夫 吉田
大佐 細井
章浩 加藤
達也 小八木
岩崎 俊文
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2012070170A1 publication Critical patent/WO2012070170A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/28Supervision thereof, e.g. detecting power-supply failure by out of limits supervision
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/30Means for acting in the event of power-supply failure or interruption, e.g. power-supply fluctuations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/22Detection or location of defective computer hardware by testing during standby operation or during idle time, e.g. start-up testing
    • G06F11/24Marginal checking or other specified testing methods not covered by G06F11/26, e.g. race tests

Definitions

  • the present invention relates to a power supply control system and a power supply control method for individually controlling power supply voltages supplied to a plurality of functional circuit blocks constituting a semiconductor device.
  • the mobile electronic device has various function modules and interfaces according to program control by the CPU and its application.
  • the core device is provided as a system LSI in which various functions are mounted on a one-chip LSI in order to achieve further miniaturization and lower power consumption.
  • a system LSI is equipped with a CPU, a bus, various functional modules, and a memory, and executes various application processes such as communication and photographing.
  • system LSIs have been operated with a high-speed clock as the amount of processing increases, such as high-speed communication processing and image processing with a large number of pixels.
  • power consumption increases. Since mobile electronic devices are generally driven by a battery, an increase in power consumption causes battery consumption. As a result, frequent charging and battery replacement are necessary, which is inconvenient for the user.
  • the amount of leakage current during standby in the standby state affects the length of usage time. For this reason, recently, it has been realized that the leakage current is reduced by turning off the power of a circuit not in use or lowering the voltage.
  • power consumption can be reduced by classifying the circuits to be used and the circuits not to be used according to the state, dividing each power domain and controlling the power supply. Yes.
  • the signal propagating across the power domain becomes unstable because the driving power of the circuit is different between the signal output side and the signal reception side.
  • Patent Document 1 As a technique for solving this problem, for example, one described in Patent Document 1 is known.
  • a storage circuit and a delay circuit are provided in two power supply blocks, and signals are transmitted and received between the storage circuits.
  • signals are transmitted / received via the respective delay circuits, if a state in which malfunction may occur due to instantaneous power supply noise, voltage drop, etc. occurs, the delay amount of the delay circuit is more than normal. Also grows. As a result, it is possible to detect the occurrence of a state in which a toggle state of signals transmitted and received between the storage circuits is broken and a malfunction may occur.
  • error detection determination is performed regardless of application execution, error detection determination is also performed for functional circuit blocks that do not necessarily operate. As described above, if wasteful error detection or wasteful recovery operation is performed, power consumption increases accordingly.
  • error detection is performed by the dedicated circuit without using data or control signals that are actually used, so if an error occurs in the dedicated circuit even if the actual path is normal, there is a concern about power consumption and performance degradation.
  • An object of the present invention is to provide a power supply control system and a power supply control method capable of individually controlling power supply voltages supplied to a plurality of functional circuit blocks while suppressing the circuit scale of a semiconductor device including the plurality of functional circuit blocks. Is to provide.
  • the present invention is a power supply control system for individually controlling a power supply voltage from a power supply unit supplied to a plurality of functional circuit blocks constituting a semiconductor device, in a first power supply region to which a first power supply is supplied.
  • a first functional circuit block that operates; a second functional circuit block that operates in a second power supply region to which a second power supply is supplied; and the first functional circuit block and the second functional circuit block.
  • a bus that is connected and transmits data in a third power supply region to which a third power supply is supplied, and operates in the third power supply region, and operates through the bus during an operation period of the first functional circuit block.
  • a test control unit that transmits test data to the second functional circuit block and confirms an operating state of the second functional circuit block based on a value obtained by transmitting the test data. To provide a beam.
  • the test control unit includes a detection unit that detects an idle state of the second functional circuit block, and the second functional circuit block that is supplied to the second functional circuit block in which the idle state is detected.
  • a step-down instruction unit that instructs the power source unit to step down the voltage of the power source.
  • the test control unit transmits the test data to the second functional circuit block after the voltage of the second power supply is stepped down in accordance with an instruction from the step-down instruction unit.
  • an abnormality detection unit that compares an expected value with a value obtained by transmitting the test data, and detects an abnormality caused by reducing the voltage of the second power supply based on the comparison result.
  • the test control unit includes a boost instruction unit that instructs the power supply unit to boost the voltage of the second power source.
  • the test control unit After the voltage of the second power source is boosted in accordance with an instruction from the instruction unit, the transmission unit transmits the test data again, and confirms that the abnormality is not detected by the abnormality detection unit.
  • the test control unit includes a storage unit that stores a voltage of the second power supply that is stepped down according to an instruction from the step-down instruction unit, and the step-up instruction unit includes the storage unit The power supply unit is instructed to boost the voltage of the second power supply to a voltage higher than the voltage stored in the memory.
  • the test control unit includes a selection unit that selects a data path that returns via the bus and the delay circuit in the second power supply region, and the data path that is selected by the selection unit.
  • a receiver for transmitting the test data and receiving the test data returning from the second power supply region; comparing the test data received by the receiver with the test data transmitted by the test controller to determine a delay situation;
  • a determination unit for determining, and confirming an operation state of the second functional circuit block based on the delay state.
  • a part of the second functional circuit block is used as the delay circuit.
  • the present invention provides a first functional circuit block that operates in a first power supply region to which a first power is supplied, and a second functional circuit block that operates in a second power supply region to which a second power is supplied.
  • a bus connected to the first functional circuit block and the second functional circuit block for transmitting data in a third power supply region to which a third power supply is supplied, and operating in the third power supply region A power control method for individually controlling power supply voltages supplied to a plurality of functional circuit blocks constituting a semiconductor device having the test control unit, wherein the test control unit includes the first functional circuit block.
  • a power supply control method comprising the steps of check of the operation of the click, the.
  • the power supply control system and the power supply control method according to the present invention it is possible to individually control the power supply voltages supplied to the plurality of functional circuit blocks while suppressing the circuit scale of the semiconductor device.
  • FIG. 1 is a block diagram showing the configuration of a power supply control system for a system LSI in a first embodiment Flowchart showing the power control operation of the test control unit 103 of the constant power ON domain 114 A flowchart showing the operation of the power control unit 104 of the constant power ON domain 114 The block diagram which shows the structure of the test control part periphery in the power supply control system of the system LSI of 2nd Embodiment Flow chart showing power control operation of test control unit 203 The block diagram which shows the structure of the test control part periphery in the case of testing the several functional circuit block connected to the bus
  • a power supply control system and a power supply control method according to an embodiment of the present invention will be described with reference to the drawings.
  • the power supply control system of the embodiment described below is applied to a power supply control system of a system LSI.
  • FIG. 1 is a block diagram showing a configuration of a power supply control system for a system LSI in the first embodiment.
  • the power supply control system shown in FIG. 1 is a low power consumption system including a system LSI 100 and a power supply IC 105.
  • the system LSI 100 has a plurality of power domains that can be supplied with different power.
  • the plurality of power supply domains include a constant power ON domain 114, a power supply domain A110, a power supply domain B111, a power supply domain C112, and a power supply domain D113. Note that power is always supplied from the power supply IC 105 to the constant power ON domain 114.
  • the constant power ON domain 114 includes a general-purpose address / data bus 101 for transmitting data between functional circuit blocks described later, a power control unit 104, a test control unit 103, and a bus arbitration unit 102.
  • the CPU 106 is provided in the power domain A110.
  • a functional circuit block B107 is provided in the power domain B111.
  • a functional circuit block C108 is provided in the power domain C112, a functional circuit block C108 is provided.
  • a functional circuit block D109 is provided in the power domain D113.
  • the power supply control unit 104 of the always-on power supply domain 114 functions as a power supply unit that can individually control the power supply of each power supply domain.
  • the power supply control unit 104 controls the power supply IC 105 to increase or decrease the power supply voltage of each power supply domain 110 to 113 via the power supply line 116.
  • the test control unit 103 of the constant power ON domain 114 is a control circuit mainly composed of a processor (CPU) that executes a program to be described later, and has a memory 103a therein.
  • the test control unit 103 receives from the bus arbitration unit 102 an idle monitor signal 117 for notifying which functional circuit block is accessed and which functional circuit block is idle, the CPU 106 or each functional circuit block 107. 109 idle states are detected.
  • the test control unit 103 instructs the power supply control unit 104 to perform voltage change control via the address / data bus 101.
  • the test control unit 103 stores, in the built-in memory 103a, information indicating the power supply voltage of the power supply domain subjected to voltage change control.
  • the test control unit 103 exchanges data with the CPU 106 of the power domain A 110 via the address / data bus 101, and transmits / receives test patterns to / from the functional circuit blocks 107 to 109. Check the operating status of the block.
  • FIG. 2 is a flowchart showing the power control operation of the test control unit 103 in the always power ON domain 114. This operation is repeated every predetermined period.
  • FIG. 3 is a flowchart showing the operation of the power control unit 104 of the constant power ON domain 114.
  • the CPU 106 is accessing the functional circuit block C108 via the address / data bus 101 and the functional circuit block D109 is not accessing anywhere.
  • the test control unit 103 determines the state of the CPU 106 or each of the functional circuit blocks 107 to 109 based on the idle monitor signal 117, and determines whether or not an idle functional circuit block has been detected (step S1). When the functional circuit block in the idle state is not detected, the test control unit 103 ends this operation. In this example, during the operation period of the functional circuit block C108, it is detected that the functional circuit block D109 is in an idle state.
  • the test control unit 103 uses the power supply control unit via the address / data bus 101 to lower the power supply voltage of the power domain D113 to which the functional circuit block D109 belongs.
  • a voltage step-down instruction for power supply domain D113 is issued to 104 (step S2).
  • the test control unit 103 sends a test status signal 118 to the bus arbitration unit 102 so that normal access to the functional circuit block D109 does not occur.
  • the bus arbitration unit 102 that has received the test status signal 118 does not generate a normal access to the functional circuit block D109.
  • the memory 103a in the test control unit 103 stores information indicating the power supply voltage indicated by the voltage step-down instruction.
  • the power supply control unit 104 determines whether or not a voltage step-down instruction for the power supply domain D113 has been received from the test control unit 103 (step S11). When receiving the voltage step-down instruction, the power supply control unit 104 sends a control signal 115 to the power supply IC 105 to lower the power supply voltage of the power supply domain D113 to which the idle functional circuit block D109 belongs (step S12). On the other hand, when the voltage step-down instruction has not been received, the operation proceeds to step S13 described later.
  • the test control unit 103 transmits a test pattern to the functional circuit block D109 via the address / data bus 101, and compares the result with an expected value (step S3).
  • the test pattern may be an arbitrary pattern as long as it is a pattern for operating the functional circuit block D109.
  • the test pattern may be as simple as accessing a specific register that does not cause a problem even if the value is changed.
  • test control unit 103 writes an arbitrary value to an appropriate register of the functional circuit block D109 and issues a pattern for reading the value from this register.
  • the test control unit 103 determines whether or not the value read by this pattern is equal to the expected value.
  • the test control unit 103 determines whether an abnormality such as a delay error due to a voltage difference has occurred based on the comparison result in step S3 (step S4). If no abnormality has occurred, the test control unit 103 ends this operation without performing anything on the power domain D113. On the other hand, if an abnormality has occurred, the test control unit 103 issues a voltage boost instruction for the power supply domain D113 to the power supply control unit 104 in order to return the functional circuit block D109 to a normal state (step S5).
  • the memory 103a in the test control unit 103 stores information indicating the power supply voltage indicated by the voltage boost instruction.
  • the voltage boost instruction is issued so as to output a voltage higher than the voltage stored in the memory 103a so far.
  • the power supply control unit 104 determines whether or not a voltage boost instruction for the power supply domain D113 is received from the test control unit 103 after reducing the voltage of the power supply domain D113 in step S12 (step S13). If the voltage boost instruction has not been received, the power supply control unit 104 ends this operation and does nothing until the next instruction is received from the test control unit 103. On the other hand, when receiving a voltage boost instruction, the power supply control unit 104 controls the power supply IC 105 to increase the power supply voltage of the power supply domain D113 (step S14). Thereafter, the power supply control unit 104 does nothing until the next instruction is received from the test control unit 103.
  • the test control unit 103 After completion of the power supply voltage boosting of the power domain D113, the test control unit 103 transmits a test pattern to the functional circuit block D109 via the address / data bus 101, and compares the result with an expected value, similarly to the time of the voltage step-down (step). S6). The test control unit 103 determines whether an abnormality such as a delay error due to a voltage difference has occurred based on the comparison result in step S6 (step S7). If no abnormality has occurred, the test control unit 103 ends this operation without performing anything on the power domain D113.
  • an abnormality such as a delay error due to a voltage difference
  • step S5 the process returns to step S5, and the test control unit 103 issues a voltage boost instruction for the power supply domain D113 to the power supply control unit 104 in order to return the functional circuit block D109 to a normal state.
  • the voltage boost instruction described above is performed step by step.
  • the system The power supply voltage for reducing the power consumption of the system LSI 100 can be controlled without increasing the circuit scale of the LSI. Further, it is possible to determine the occurrence of an abnormality such as a delay error due to a voltage difference without providing a test circuit for each power domain and without always operating the test circuit. Therefore, an increase in circuit scale can be suppressed and power consumption can be reduced. Furthermore, since the operation of each functional circuit block is not stopped during the test, it is possible to determine the state of the CPU 106 and each functional circuit block while preventing the system from slowing down.
  • the power control unit 104 is configured by a hardware circuit because it simply steps down or boosts the voltage of each power domain.
  • the power control unit 104 controls each power source IC 105 by software.
  • the domain voltage may be stepped down or boosted.
  • a plurality of power supply voltages may be provided, and step-down or step-up of the power supply voltage may be controlled stepwise, or an arbitrary step control may be performed by arbitrarily determining an upper limit value or a lower limit value of the power supply voltage.
  • FIG. 4 is a block diagram showing a configuration around the test control unit in the power supply control system of the system LSI of the second embodiment.
  • the system LSI 200 has a plurality of power domains that can be supplied with different power.
  • FIG. 4 shows a constant power ON domain 201, a power domain X 202, and a power IC 215 that constitute the power control system of the system LSI of the second embodiment.
  • the constant power ON domain 201 is a power domain on the side where the operation check is performed.
  • the constant power ON domain 201 is provided with a bus arbiter 204, a test control unit 203, a power control unit 205, and a normal / test selector 210A. In FIG. 4, the bus is omitted.
  • the power domain X202 is a power domain on the test target side.
  • the power domain X202 is provided with a functional circuit block X206, a delay circuit 213, and a normal / test selector 210B, which are processing blocks for realizing hardware functions.
  • the test control unit 203 of the constant power ON domain 201 includes a pattern generation circuit 207, a delay circuit 208, and a comparison circuit 209.
  • the test control unit 203 performs an operation test using a signal between the bus arbiter 204 in the always-on power supply domain 201 and the functional circuit block X206 in the power supply domain X202.
  • the power control unit 205 of the constant power ON domain 201 controls the power IC 215 to increase or decrease the power voltage of the power domain X202.
  • test control unit 203 When the test control unit 203 receives from the bus arbiter 204 the idle monitor signal 211 notifying that the functional circuit block X206 is in the idle state, the test control unit 203 controls the transition to the test mode, and the test control signal 212 performs normal / test
  • the selectors 210A and 210B are switched.
  • the pattern generation circuit 207 of the test control unit 203 After switching to the test mode, the pattern generation circuit 207 of the test control unit 203 generates a test pattern that generates a fixed-length random pattern and sends the test pattern to the normal / test selector 210A.
  • the test pattern is input to the functional circuit block X206 and the delay circuit 213 of the power domain X202.
  • the test pattern to which a certain amount of delay is added by the delay circuit 213 is looped back by being returned to the test control unit 203 of the power ON domain 201 through the normal / test selector 210B, and the comparison circuit of the test control unit 203 209 is input.
  • test pattern transmitted from the test control unit 203 of the always-on power supply domain 201 returns to the test control unit 203 via the delay circuit 213 of the power supply domain X202.
  • a data path is formed (selected).
  • the test control unit 203 uses the pattern generation circuit 207 to generate a reference pattern for comparison.
  • the reference pattern generated by the pattern generation circuit 207 is input to the delay circuit 208 of the test control unit 203.
  • the delay circuit 208 has the same circuit configuration as the delay circuit 213. Therefore, the reference pattern is a signal with a delay added in the same power domain.
  • the test pattern to which the delay is added by the delay circuit 213 of the power domain X202 and the reference pattern to which the delay is added by the delay circuit 208 of the constant power ON domain 201 are respectively input to the comparison circuit 209.
  • the comparison circuit 209 compares the timing of these signal changes to determine the delay situation.
  • the start time and end time for performing this comparison are determined from the time and pattern length at which the pattern is generated by the pattern generation circuit 207 and the delay value added by the delay circuit 208.
  • the comparison circuit 209 when there is a difference in signal change timing, the comparison circuit 209 sets a flag.
  • the flag is set in the comparison circuit 209, an unexpected delay factor exists between the always-on power supply domain 201 and the power supply domain X202.
  • the power supply control unit 205 controls the power supply IC 215 to boost the power supply domain X202.
  • the flag is not set in the comparison circuit 209, communication is always performed between the power supply ON domain 201 and the power supply domain X202 without any problem. Therefore, the power supply control unit 205 does nothing for the power supply domain X202. .
  • FIG. 5 is a flowchart showing the power control operation of the test control unit 203. This operation is repeatedly performed by the test control unit 203 every predetermined period.
  • the test control unit 203 determines whether or not the idle signal 211 has been received from the bus arbiter 204 (step S21). When the idle signal has not been received, the test control unit 203 ends this operation. On the other hand, when the idle signal is received, the test control unit 203 instructs the power supply control unit 205 to step down the voltage of the power supply domain corresponding to the idle signal, for example, the power supply domain X202 (step S22).
  • the test control unit 203 switches the normal / test selectors 210A and 210B for testing (step S23).
  • the pattern generation circuit 207 of the test control unit 203 generates a test pattern and sends it to the normal / test selector 210A (step S24).
  • the pattern generation circuit 207 generates a reference pattern and sends it to the delay circuit 208 (step S25).
  • the test pattern and the reference pattern are generated and transmitted separately, when these patterns are the same pattern, one pattern may be generated and transmitted simultaneously.
  • the comparison circuit 209 of the test control unit 203 compares signal change timings in the test pattern and the reference pattern (step S26).
  • the test control unit 203 determines whether or not there is an unexpected delay between the power supply domains from the timing of signal change in the test pattern and the reference pattern (step S27). If there is an unexpected delay, the test control unit 203 instructs the power supply control unit 205 to step up the voltage of the power supply domain X202 (step S28), and returns to step S24. On the other hand, when there is no unexpected delay, the test control unit 203 ends this operation.
  • FIG. 6 is a block diagram showing a configuration around the test control unit when testing a plurality of functional circuit blocks connected to the bus 230 in order.
  • the test control unit 203 receives the idle signal 211 from the bus arbiter 204, and sequentially tests a plurality of power supply domains connected to the bus 230.
  • FIG. 6 shows the case where the functional circuit block X206 and the functional circuit block Y226 provided in the power domain X202 and the power domain Y222 are connected to the bus 230, respectively, but 3 provided in each of three or more power domains. The same applies when two or more functional circuit blocks are connected to the bus 230.
  • the test of each functional circuit block is the same as the operation described above. In this case, priorities may be assigned to the power domains in advance, and tests may be executed in descending order.
  • a test circuit is not provided for each power supply domain, and further, a delay error due to a potential difference or the like is not caused without always operating the test circuit. The occurrence can be determined. Therefore, an increase in circuit scale can be suppressed and power consumption can be reduced. Furthermore, since the operation of each functional circuit block is not stopped during the test, the state of each functional circuit block can be determined while preventing the system from being slowed down.
  • the present invention is not limited to the configuration of the above-described embodiment, and any configuration can be used as long as the functions shown in the claims or the functions of the configuration of the present embodiment can be achieved. Is also applicable.
  • the delay circuit 213 is provided separately from the functional circuit block X206, but a part of the functional circuit block X206 may be used as a delay circuit. Thereby, an increase in circuit scale in the system LSI can be further suppressed.
  • the power supply control system according to the present invention is useful as a power supply control system that individually controls the power supplied to a plurality of functional circuit blocks constituting the semiconductor device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Quality & Reliability (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Power Sources (AREA)
  • Microcomputers (AREA)

Abstract

A test control unit (103), after detecting an idle state for a functional circuit block D (109) , issues a voltage step-down command to a power supply control unit (104) via an address/data bus (101). After the voltage step-down of a power supply domain D (113) is complete, the test control unit (103) transmits a test pattern to the functional circuit block D (109) via the address/data bus (101), and compares the result of the test to an anticipated value. If on the basis of the comparison result it is determined that a fault such as a delay error and so forth due to a voltage difference has occurred, in order to return the functional circuit block D (109) to a normal state, the test control unit (103) issues a voltage step-up command for the power supply domain D (113) to the power supply control unit (104). Accordingly, it is possible, while minimizing the circuit size of a semiconductor device provided with a plurality of functional circuit blocks, to individually control the power supply voltage supplied to the plurality of functional circuit blocks.

Description

電源制御システム及び電源制御方法Power supply control system and power supply control method
 本発明は、半導体装置を構成する複数の機能回路ブロックに供給される電源電圧を個別に制御する電源制御システム及び電源制御方法に関する。 The present invention relates to a power supply control system and a power supply control method for individually controlling power supply voltages supplied to a plurality of functional circuit blocks constituting a semiconductor device.
 近年、携帯電話やスマートフォン等のモバイル電子機器が広く一般に普及するにつれて、モバイル電子機器の機能に対する小型化及び高性能化が図られている。モバイル電子機器は、CPUによるプログラム制御とその用途に応じた各種機能モジュール及びインタフェースを有する。その中核を担うデバイスは、さらなる小型化及び低消費電力化を実現するために、各種機能をワンチップのLSIに搭載したシステムLSIとして提供される。 In recent years, as mobile electronic devices such as mobile phones and smartphones have become widespread, miniaturization and high performance of functions of mobile electronic devices have been attempted. The mobile electronic device has various function modules and interfaces according to program control by the CPU and its application. The core device is provided as a system LSI in which various functions are mounted on a one-chip LSI in order to achieve further miniaturization and lower power consumption.
 一般に、システムLSIは、CPU、バス、各種機能モジュール及びメモリを搭載し、通信や撮影等の各種アプリケーション処理を実行する。近年は、高速通信処理や画素数の多い画像処理等といった処理量の増加に伴い、システムLSIは高速クロックで動作されている。しかし、システムLSIが高速クロックで動作されると、消費電力が増大する。モバイル電子機器は一般に電池で駆動されるため、消費電力の増大は電池の消耗を招く。その結果、頻繁な充電や電池交換が必要となり、ユーザに不便をもたらす。 Generally, a system LSI is equipped with a CPU, a bus, various functional modules, and a memory, and executes various application processes such as communication and photographing. In recent years, system LSIs have been operated with a high-speed clock as the amount of processing increases, such as high-speed communication processing and image processing with a large number of pixels. However, when the system LSI is operated with a high-speed clock, power consumption increases. Since mobile electronic devices are generally driven by a battery, an increase in power consumption causes battery consumption. As a result, frequent charging and battery replacement are necessary, which is inconvenient for the user.
 システムLSIの消費電力の増大を抑制するために、近年、さまざまな技術が提案されている。その一例として、動作状態を管理することで無駄なクロックの供給を停止して動作を抑制するクロックゲーティング技術がある。しかし、近年の半導体プロセスの微細化により、動作電流に対する待機時のリーク電流の比率が上昇している。このため、たとえクロックの供給を停止しても、リーク電流を削減することができない。 In recent years, various technologies have been proposed in order to suppress an increase in power consumption of the system LSI. As an example, there is a clock gating technique that suppresses the operation by stopping the supply of useless clocks by managing the operation state. However, with the recent miniaturization of semiconductor processes, the ratio of standby leakage current to operating current is increasing. For this reason, even if the clock supply is stopped, the leakage current cannot be reduced.
 モバイル電子機器においては、待受け状態における待機時のリーク電流の大きさが、その使用時間の長さを左右する。このため、最近では、使用しない回路の電源を落としたり、電圧を下げたりすることによって、リーク電流を削減することが実現されている。また、システムLSIにおいては、その状態に応じて、使用する回路と使用しない回路を分類してそれぞれの電源ドメインを分割し、電源供給を制御することによって、消費電力を低減することが実現されている。しかし、電源ドメインをまたいで伝播する信号については、信号の出し側と受け側で回路の駆動電源が異なるため、信号が不安定になる。 In mobile electronic devices, the amount of leakage current during standby in the standby state affects the length of usage time. For this reason, recently, it has been realized that the leakage current is reduced by turning off the power of a circuit not in use or lowering the voltage. In the system LSI, power consumption can be reduced by classifying the circuits to be used and the circuits not to be used according to the state, dividing each power domain and controlling the power supply. Yes. However, the signal propagating across the power domain becomes unstable because the driving power of the circuit is different between the signal output side and the signal reception side.
 この問題を解決するための技術として、例えば特許文献1に記載されたものが知られている。特許文献1に記載された技術では、2つの電源ブロックにそれぞれ記憶回路と遅延回路を設け、それぞれの記憶回路間で信号が送受信される。このとき、それぞれの遅延回路を介して信号が送受信されるため、瞬間的な電源ノイズや電圧低下等により誤動作が生じ得る状態が発生すると、遅延回路の遅延量が正常に動作しているときよりも大きくなる。その結果、記憶回路間で送受信される信号のトグル状態がくずれ、誤動作が生じ得る状態の発生を検出することができる。 As a technique for solving this problem, for example, one described in Patent Document 1 is known. In the technique described in Patent Document 1, a storage circuit and a delay circuit are provided in two power supply blocks, and signals are transmitted and received between the storage circuits. At this time, since signals are transmitted / received via the respective delay circuits, if a state in which malfunction may occur due to instantaneous power supply noise, voltage drop, etc. occurs, the delay amount of the delay circuit is more than normal. Also grows. As a result, it is possible to detect the occurrence of a state in which a toggle state of signals transmitted and received between the storage circuits is broken and a malfunction may occur.
日本国特開2008-311767号公報Japanese Unexamined Patent Publication No. 2008-31767
 上記説明した特許文献1の技術では、異なる電源ドメインに配置される各機能回路ブロック間の入出力信号に基づき、誤動作が生じ得る状態を判定し、エラー検出を行う。当該機能を実現するためには、2つの電源ドメイン間毎に記憶回路及び遅延回路を設ける必要がある。このため、複数の電源ドメインと電源ドメイン間通信を行う機能回路ブロックには、複数の記憶回路及び遅延回路を挿入する必要がある。したがって、複数の電源ドメインと電源ドメイン間通信を行う機能ブロックを含むシステムLSIの回路規模は大きくなる。 In the technique of Patent Document 1 described above, a state in which a malfunction may occur is determined based on input / output signals between functional circuit blocks arranged in different power supply domains, and error detection is performed. In order to realize this function, it is necessary to provide a memory circuit and a delay circuit for every two power supply domains. For this reason, it is necessary to insert a plurality of memory circuits and delay circuits into a functional circuit block that performs communication between a plurality of power domains and power domains. Therefore, the circuit scale of the system LSI including the functional blocks that perform communication between the power domains and the power domains increases.
 また、アプリケーションの実行に関係なくエラー検出判定を行うため、本来動作しなくてもよい機能回路ブロックに対してもエラー検出判定を行ってしまう。このように、無駄なエラー検出や無駄なリカバリ動作を行うと、その分電力消費が増加してしまう。 In addition, since error detection determination is performed regardless of application execution, error detection determination is also performed for functional circuit blocks that do not necessarily operate. As described above, if wasteful error detection or wasteful recovery operation is performed, power consumption increases accordingly.
 さらに、実際に使用するデータや制御信号を用いずに専用回路でエラー検出を行うため、実際に使用するパスは正常であっても専用回路にエラーが発生すると、電力消費や性能劣化が懸念される。 In addition, error detection is performed by the dedicated circuit without using data or control signals that are actually used, so if an error occurs in the dedicated circuit even if the actual path is normal, there is a concern about power consumption and performance degradation. The
 本発明の目的は、複数の機能回路ブロックを備えた半導体装置の回路規模を抑制しつつ、複数の機能回路ブロックに供給される電源電圧を個別に制御が可能な電源制御システム及び電源制御方法を提供することである。 An object of the present invention is to provide a power supply control system and a power supply control method capable of individually controlling power supply voltages supplied to a plurality of functional circuit blocks while suppressing the circuit scale of a semiconductor device including the plurality of functional circuit blocks. Is to provide.
 本発明は、半導体装置を構成する複数の機能回路ブロックに供給される電源部からの電源電圧を個別に制御する電源制御システムであって、第1の電源が供給される第1の電源領域で動作する第1の機能回路ブロックと、第2の電源が供給される第2の電源領域で動作する第2の機能回路ブロックと、前記第1の機能回路ブロック及び前記第2の機能回路ブロックに接続され、第3の電源が供給される第3の電源領域でデータを伝送するバスと、前記第3の電源領域で動作し、前記第1の機能回路ブロックの動作期間中、前記バスを介してテストデータを前記第2の機能回路ブロックに送信し、前記テストデータの送信により得られる値に基づいて前記第2の機能回路ブロックの動作状態を確認するテスト制御部と、を有する電源制御システムを提供する。 The present invention is a power supply control system for individually controlling a power supply voltage from a power supply unit supplied to a plurality of functional circuit blocks constituting a semiconductor device, in a first power supply region to which a first power supply is supplied. A first functional circuit block that operates; a second functional circuit block that operates in a second power supply region to which a second power supply is supplied; and the first functional circuit block and the second functional circuit block. A bus that is connected and transmits data in a third power supply region to which a third power supply is supplied, and operates in the third power supply region, and operates through the bus during an operation period of the first functional circuit block. A test control unit that transmits test data to the second functional circuit block and confirms an operating state of the second functional circuit block based on a value obtained by transmitting the test data. To provide a beam.
 上記電源制御システムでは、前記テスト制御部は、前記第2の機能回路ブロックのアイドル状態を検出する検出部と、アイドル状態が検出された前記第2の機能回路ブロックに供給される前記第2の電源の電圧を降圧するよう前記電源部に指示する降圧指示部と、を有する。 In the power supply control system, the test control unit includes a detection unit that detects an idle state of the second functional circuit block, and the second functional circuit block that is supplied to the second functional circuit block in which the idle state is detected. A step-down instruction unit that instructs the power source unit to step down the voltage of the power source.
 上記電源制御システムでは、前記テスト制御部は、前記降圧指示部からの指示に応じて前記第2の電源の電圧が降圧された後、前記第2の機能回路ブロックに前記テストデータを送信する送信部と、前記テストデータの送信により得られる値と期待値とを比較し、この比較結果に基づいて前記第2の電源の電圧が降圧したことによる異常を検出する異常検出部と、を有する。 In the power supply control system, the test control unit transmits the test data to the second functional circuit block after the voltage of the second power supply is stepped down in accordance with an instruction from the step-down instruction unit. And an abnormality detection unit that compares an expected value with a value obtained by transmitting the test data, and detects an abnormality caused by reducing the voltage of the second power supply based on the comparison result.
 上記電源制御システムでは、前記テスト制御部は、前記第2の電源の電圧を昇圧するよう前記電源部に指示する昇圧指示部を有し、前記異常検出部が前記異常を検出した場合、前記昇圧指示部からの指示に応じて前記第2の電源の電圧が昇圧された後、前記送信部が前記テストデータを再度送信し、前記異常検出部によって前記異常が検出されなくなることを確認する。 In the power supply control system, the test control unit includes a boost instruction unit that instructs the power supply unit to boost the voltage of the second power source. When the abnormality detection unit detects the abnormality, the test control unit After the voltage of the second power source is boosted in accordance with an instruction from the instruction unit, the transmission unit transmits the test data again, and confirms that the abnormality is not detected by the abnormality detection unit.
 上記電源制御システムは、前記テスト制御部は、前記降圧指示部からの指示に応じて降圧される前記第2の電源の電圧を記憶する記憶部を有し、前記昇圧指示部は、前記記憶部が記憶する電圧よりも高い電圧に前記第2の電源の電圧を昇圧するよう前記電源部に指示する。 In the power supply control system, the test control unit includes a storage unit that stores a voltage of the second power supply that is stepped down according to an instruction from the step-down instruction unit, and the step-up instruction unit includes the storage unit The power supply unit is instructed to boost the voltage of the second power supply to a voltage higher than the voltage stored in the memory.
 上記電源制御システムでは、前記テスト制御部は、前記バスを介し、前記第2の電源領域内の遅延回路を経由して戻るデータパスを選択する選択部と、前記選択部によって選択されたデータパスに前記テストデータを送信し、前記第2の電源領域から戻るテストデータを受信する受信部と、前記受信部が受信したテストデータと前記テスト制御部が送信したテストデータを比較して遅延状況を判別する判別部と、を有し、前記遅延状況に基づいて、前記第2の機能回路ブロックの動作状態を確認する。 In the power supply control system, the test control unit includes a selection unit that selects a data path that returns via the bus and the delay circuit in the second power supply region, and the data path that is selected by the selection unit. A receiver for transmitting the test data and receiving the test data returning from the second power supply region; comparing the test data received by the receiver with the test data transmitted by the test controller to determine a delay situation; A determination unit for determining, and confirming an operation state of the second functional circuit block based on the delay state.
 上記電源制御システムでは、前記遅延回路として前記第2の機能回路ブロックの一部の回路を用いる。 In the power supply control system, a part of the second functional circuit block is used as the delay circuit.
 本発明は、第1の電源が供給される第1の電源領域で動作する第1の機能回路ブロックと、第2の電源が供給される第2の電源領域で動作する第2の機能回路ブロックと、前記第1の機能回路ブロック及び前記第2の機能回路ブロックに接続され、第3の電源が供給される第3の電源領域でデータを伝送するバスと、前記第3の電源領域で動作するテスト制御部と、を有する半導体装置を構成する複数の機能回路ブロックに供給される電源電圧を個別に制御する電源制御方法であって、前記テスト制御部が、前記第1の機能回路ブロックの動作期間中、前記バスを介してテストデータを前記第2の機能回路ブロックに送信するステップと、前記テスト制御部が、前記テストデータの送信により得られる値に基づいて前記第2の機能回路ブロックの動作状態を確認するステップと、を有する電源制御方法を提供する。 The present invention provides a first functional circuit block that operates in a first power supply region to which a first power is supplied, and a second functional circuit block that operates in a second power supply region to which a second power is supplied. A bus connected to the first functional circuit block and the second functional circuit block for transmitting data in a third power supply region to which a third power supply is supplied, and operating in the third power supply region A power control method for individually controlling power supply voltages supplied to a plurality of functional circuit blocks constituting a semiconductor device having the test control unit, wherein the test control unit includes the first functional circuit block. A step of transmitting test data to the second functional circuit block via the bus during an operation period, and the test control unit based on a value obtained by transmitting the test data. To provide a power supply control method comprising the steps of check of the operation of the click, the.
 本発明に係る電源制御システム及び電源制御方法によれば、半導体装置の回路規模を抑制しつつ、複数の機能回路ブロックに供給される電源電圧を個別に制御できる。 According to the power supply control system and the power supply control method according to the present invention, it is possible to individually control the power supply voltages supplied to the plurality of functional circuit blocks while suppressing the circuit scale of the semiconductor device.
第1の実施形態におけるシステムLSIの電源制御システムの構成を示すブロック図1 is a block diagram showing the configuration of a power supply control system for a system LSI in a first embodiment 常時電源ONドメイン114のテスト制御部103の電源制御動作を示すフローチャートFlowchart showing the power control operation of the test control unit 103 of the constant power ON domain 114 常時電源ONドメイン114の電源制御部104の動作を示すフローチャートA flowchart showing the operation of the power control unit 104 of the constant power ON domain 114 第2の実施形態のシステムLSIの電源制御システムにおけるテスト制御部周辺の構成を示すブロック図The block diagram which shows the structure of the test control part periphery in the power supply control system of the system LSI of 2nd Embodiment テスト制御部203の電源制御動作を示すフローチャートFlow chart showing power control operation of test control unit 203 バス230に接続された複数の機能回路ブロックを順番にテストする場合のテスト制御部周辺の構成を示すブロック図The block diagram which shows the structure of the test control part periphery in the case of testing the several functional circuit block connected to the bus | bath 230 in order.
 以下、本発明の実施形態について、図面を参照して説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 本発明の実施の形態における電源制御システム及び電源制御方法について、図面を参照しながら説明する。以下説明する実施形態の電源制御システムは、システムLSIの電源制御システムに適用される。 A power supply control system and a power supply control method according to an embodiment of the present invention will be described with reference to the drawings. The power supply control system of the embodiment described below is applied to a power supply control system of a system LSI.
(第1の実施形態)
 図1は、第1の実施形態におけるシステムLSIの電源制御システムの構成を示すブロック図である。図1に示す電源制御システムは、システムLSI100及び電源IC105から構成される低消費電力システムである。
(First embodiment)
FIG. 1 is a block diagram showing a configuration of a power supply control system for a system LSI in the first embodiment. The power supply control system shown in FIG. 1 is a low power consumption system including a system LSI 100 and a power supply IC 105.
 システムLSI100は、それぞれ異なる電源供給が可能である複数の電源ドメインを有する。図1に示すように、複数の電源ドメインには、常時電源ONドメイン114、電源ドメインA110、電源ドメインB111、電源ドメインC112及び電源ドメインD113が含まれる。なお、常時電源ONドメイン114には、電源IC105から常に電源が供給される。 The system LSI 100 has a plurality of power domains that can be supplied with different power. As shown in FIG. 1, the plurality of power supply domains include a constant power ON domain 114, a power supply domain A110, a power supply domain B111, a power supply domain C112, and a power supply domain D113. Note that power is always supplied from the power supply IC 105 to the constant power ON domain 114.
 常時電源ONドメイン114には、後述する各機能回路ブロック間のデータを伝送する汎用的なアドレス/データバス101、電源制御部104、テスト制御部103及びバス調停部102が含まれる。電源ドメインA110には、CPU106が設けられている。電源ドメインB111には、機能回路ブロックB107が設けられている。電源ドメインC112には、機能回路ブロックC108が設けられている。電源ドメインD113には、機能回路ブロックD109が設けられている。 The constant power ON domain 114 includes a general-purpose address / data bus 101 for transmitting data between functional circuit blocks described later, a power control unit 104, a test control unit 103, and a bus arbitration unit 102. The CPU 106 is provided in the power domain A110. In the power domain B111, a functional circuit block B107 is provided. In the power domain C112, a functional circuit block C108 is provided. In the power domain D113, a functional circuit block D109 is provided.
 常時電源ONドメイン114の電源制御部104は、各電源ドメインの電源を個別に制御可能な電源部として機能する。電源制御部104は、テスト制御部103から各電源ドメインの電圧変更指示を受けると、電源IC105を制御し、電源ライン116を介して各電源ドメイン110~113の電源電圧の昇圧又は降圧を行う。 The power supply control unit 104 of the always-on power supply domain 114 functions as a power supply unit that can individually control the power supply of each power supply domain. When receiving a voltage change instruction for each power supply domain from the test control unit 103, the power supply control unit 104 controls the power supply IC 105 to increase or decrease the power supply voltage of each power supply domain 110 to 113 via the power supply line 116.
 常時電源ONドメイン114のテスト制御部103は、後述するプログラムを実行するプロセッサ(CPU)を主体に構成される制御回路であり、内部にメモリ103aを有する。テスト制御部103は、バス調停部102から、どの機能回路ブロックにアクセスが発生し、どの機能回路ブロックがアイドルであるかを通知するアイドルモニタ信号117を受けると、CPU106又は各機能回路ブロック107~109のアイドル状態を検出する。また、テスト制御部103は、アドレス/データバス101を介して電源制御部104に対し、電圧変更制御を行うよう指示する。このとき、テスト制御部103は、電圧変更制御される電源ドメインの電源電圧を示す情報を、内蔵のメモリ103aに格納する。さらに、テスト制御部103は、アドレス/データバス101を介して、電源ドメインA110のCPU106とデータのやり取りを行うと共に、各機能回路ブロック107~109との間でテストパターンを送受信し、各機能回路ブロックの動作状態を確認する。 The test control unit 103 of the constant power ON domain 114 is a control circuit mainly composed of a processor (CPU) that executes a program to be described later, and has a memory 103a therein. When the test control unit 103 receives from the bus arbitration unit 102 an idle monitor signal 117 for notifying which functional circuit block is accessed and which functional circuit block is idle, the CPU 106 or each functional circuit block 107. 109 idle states are detected. The test control unit 103 instructs the power supply control unit 104 to perform voltage change control via the address / data bus 101. At this time, the test control unit 103 stores, in the built-in memory 103a, information indicating the power supply voltage of the power supply domain subjected to voltage change control. Further, the test control unit 103 exchanges data with the CPU 106 of the power domain A 110 via the address / data bus 101, and transmits / receives test patterns to / from the functional circuit blocks 107 to 109. Check the operating status of the block.
 システムLSI100の電源制御システムの動作について説明する。図2は、常時電源ONドメイン114のテスト制御部103の電源制御動作を示すフローチャートである。この動作は所定期間毎に繰り返し行われる。図3は、常時電源ONドメイン114の電源制御部104の動作を示すフローチャートである。以下、一例として、CPU106がアドレス/データバス101を介して機能回路ブロックC108へアクセス中であり、かつ、その間、機能回路ブロックD109がどこにもアクセスしていない場合を想定して説明する。 The operation of the power supply control system of the system LSI 100 will be described. FIG. 2 is a flowchart showing the power control operation of the test control unit 103 in the always power ON domain 114. This operation is repeated every predetermined period. FIG. 3 is a flowchart showing the operation of the power control unit 104 of the constant power ON domain 114. Hereinafter, as an example, a description will be given assuming that the CPU 106 is accessing the functional circuit block C108 via the address / data bus 101 and the functional circuit block D109 is not accessing anywhere.
 まず、テスト制御部103は、アイドルモニタ信号117に基づいてCPU106又は各機能回路ブロック107~109の状態を判別し、アイドル状態の機能回路ブロックが検出したか否かを判別する(ステップS1)。アイドル状態の機能回路ブロックが検出されなかった場合、テスト制御部103は本動作を終了する。本例では、機能回路ブロックC108の動作期間中、機能回路ブロックD109がアイドル状態であることが検出される。 First, the test control unit 103 determines the state of the CPU 106 or each of the functional circuit blocks 107 to 109 based on the idle monitor signal 117, and determines whether or not an idle functional circuit block has been detected (step S1). When the functional circuit block in the idle state is not detected, the test control unit 103 ends this operation. In this example, during the operation period of the functional circuit block C108, it is detected that the functional circuit block D109 is in an idle state.
 機能回路ブロックD109がアイドル状態であることが検出された後、テスト制御部103は、機能回路ブロックD109が属する電源ドメインD113の電源電圧を下げるために、アドレス/データバス101を介して電源制御部104に電源ドメインD113の電圧降圧指示を出す(ステップS2)。このとき、テスト制御部103は、機能回路ブロックD109に対する通常のアクセスが発生しないように、テストステータス信号118をバス調停部102に送る。テストステータス信号118を受け取ったバス調停部102は、機能回路ブロックD109に対する通常のアクセスを発生させない。また、前述したように、テスト制御部103内のメモリ103aには、電圧降圧指示によって示される電源電圧を示す情報が格納される。 After detecting that the functional circuit block D109 is in the idle state, the test control unit 103 uses the power supply control unit via the address / data bus 101 to lower the power supply voltage of the power domain D113 to which the functional circuit block D109 belongs. A voltage step-down instruction for power supply domain D113 is issued to 104 (step S2). At this time, the test control unit 103 sends a test status signal 118 to the bus arbitration unit 102 so that normal access to the functional circuit block D109 does not occur. The bus arbitration unit 102 that has received the test status signal 118 does not generate a normal access to the functional circuit block D109. Further, as described above, the memory 103a in the test control unit 103 stores information indicating the power supply voltage indicated by the voltage step-down instruction.
 電源制御部104は、テスト制御部103から電源ドメインD113の電圧降圧指示を受けたか否かを判別する(ステップS11)。電圧降圧指示を受けた場合、電源制御部104は、制御信号115を電源IC105に送り、アイドル状態の機能回路ブロックD109が属する電源ドメインD113の電源電圧を下げる(ステップS12)。一方、電圧降圧指示を受けていない場合、後述するステップS13の動作に移行する。 The power supply control unit 104 determines whether or not a voltage step-down instruction for the power supply domain D113 has been received from the test control unit 103 (step S11). When receiving the voltage step-down instruction, the power supply control unit 104 sends a control signal 115 to the power supply IC 105 to lower the power supply voltage of the power supply domain D113 to which the idle functional circuit block D109 belongs (step S12). On the other hand, when the voltage step-down instruction has not been received, the operation proceeds to step S13 described later.
 電源ドメインD113の電源電圧降圧完了後、テスト制御部103は、アドレス/データバス101を介して機能回路ブロックD109にテストパターンを送信し、その結果を期待値と比較する(ステップS3)。テストパターンは、機能回路ブロックD109を動作させるパターンであれば任意のパターンで良い。例えば、テストパターンは、値を変更しても問題が生じない特定レジスタへのアクセス等といった簡単なもので良い。 After the power supply voltage step-down of the power domain D113 is completed, the test control unit 103 transmits a test pattern to the functional circuit block D109 via the address / data bus 101, and compares the result with an expected value (step S3). The test pattern may be an arbitrary pattern as long as it is a pattern for operating the functional circuit block D109. For example, the test pattern may be as simple as accessing a specific register that does not cause a problem even if the value is changed.
 具体的に、テスト制御部103は、機能回路ブロックD109の適当なレジスタに任意の値を書き込み、このレジスタから値を読み出すパターンを発行する。テスト制御部103は、このパターンによって読み出された値が期待値と等しいか否かを判別する。 Specifically, the test control unit 103 writes an arbitrary value to an appropriate register of the functional circuit block D109 and issues a pattern for reading the value from this register. The test control unit 103 determines whether or not the value read by this pattern is equal to the expected value.
 テスト制御部103は、ステップS3での比較結果に基づいて、電圧差による遅延エラー等の異常が発生したか否かを判別する(ステップS4)。異常が発生していない場合、テスト制御部103は、電源ドメインD113に対して何も行わずに本動作を終える。一方、異常が発生している場合、テスト制御部103は、機能回路ブロックD109を正常な状態に戻すために、電源制御部104に電源ドメインD113の電圧昇圧指示を出す(ステップS5)。テスト制御部103内のメモリ103aには、この電圧昇圧指示によって示される電源電圧を示す情報が格納される。電圧昇圧指示は、それまでメモリ103aに記憶された電圧より高い電圧を出力するように行われる。 The test control unit 103 determines whether an abnormality such as a delay error due to a voltage difference has occurred based on the comparison result in step S3 (step S4). If no abnormality has occurred, the test control unit 103 ends this operation without performing anything on the power domain D113. On the other hand, if an abnormality has occurred, the test control unit 103 issues a voltage boost instruction for the power supply domain D113 to the power supply control unit 104 in order to return the functional circuit block D109 to a normal state (step S5). The memory 103a in the test control unit 103 stores information indicating the power supply voltage indicated by the voltage boost instruction. The voltage boost instruction is issued so as to output a voltage higher than the voltage stored in the memory 103a so far.
 電源制御部104は、ステップS12で電源ドメインD113の電圧を下げた後、テスト制御部103から電源ドメインD113の電圧昇圧指示を受けたか否かを判別する(ステップS13)。電圧昇圧指示を受けていない場合、電源制御部104は、本動作を終了し、テスト制御部103から次の指示があるまで何も行わない。一方、電圧昇圧指示を受けた場合、電源制御部104は、電源IC105を制御して電源ドメインD113の電源電圧を上げる(ステップS14)。この後、電源制御部104は、テスト制御部103から次の指示があるまで何も行わない。 The power supply control unit 104 determines whether or not a voltage boost instruction for the power supply domain D113 is received from the test control unit 103 after reducing the voltage of the power supply domain D113 in step S12 (step S13). If the voltage boost instruction has not been received, the power supply control unit 104 ends this operation and does nothing until the next instruction is received from the test control unit 103. On the other hand, when receiving a voltage boost instruction, the power supply control unit 104 controls the power supply IC 105 to increase the power supply voltage of the power supply domain D113 (step S14). Thereafter, the power supply control unit 104 does nothing until the next instruction is received from the test control unit 103.
 電源ドメインD113の電源電圧昇圧完了後、テスト制御部103は、降圧時と同様、アドレス/データバス101を介して機能回路ブロックD109にテストパターンを送信し、その結果を期待値と比較する(ステップS6)。テスト制御部103は、ステップS6での比較結果に基づいて、電圧差による遅延エラー等の異常が発生したか否かを判別する(ステップS7)。異常が発生していない場合、テスト制御部103は、電源ドメインD113に対して何も行わずに本動作を終える。一方、異常が発生している場合はステップS5に戻り、テスト制御部103は、機能回路ブロックD109を正常な状態に戻すために、電源制御部104に電源ドメインD113の電圧昇圧指示を再度出す。上記説明した電圧昇圧指示は段階的に行われる。 After completion of the power supply voltage boosting of the power domain D113, the test control unit 103 transmits a test pattern to the functional circuit block D109 via the address / data bus 101, and compares the result with an expected value, similarly to the time of the voltage step-down (step). S6). The test control unit 103 determines whether an abnormality such as a delay error due to a voltage difference has occurred based on the comparison result in step S6 (step S7). If no abnormality has occurred, the test control unit 103 ends this operation without performing anything on the power domain D113. On the other hand, if an abnormality has occurred, the process returns to step S5, and the test control unit 103 issues a voltage boost instruction for the power supply domain D113 to the power supply control unit 104 in order to return the functional circuit block D109 to a normal state. The voltage boost instruction described above is performed step by step.
 以上説明したように、第1の実施形態のシステムLSI100の電源制御システムによれば、汎用的なアドレス/データバス101を利用してCPU106及び機能回路ブロック107~109の状態を判別するため、システムLSIの回路規模を大きくすることなく、システムLSI100の消費電力を低減するための電源電圧の制御が可能である。また、電源ドメイン間毎にテスト回路を設けずに、さらに、テスト回路を常時動作させることなく、電圧差による遅延エラー等の異常の発生を判別可能である。したがって、回路規模の増加が抑えられ、かつ、消費電力を低減できる。さらに、各機能回路ブロックの動作をテスト時に停止させないため、システムの低速化を防いだ上でCPU106及び各機能回路ブロックの状態を判別することができる。 As described above, according to the power supply control system of the system LSI 100 of the first embodiment, since the general-purpose address / data bus 101 is used to determine the states of the CPU 106 and the functional circuit blocks 107 to 109, the system The power supply voltage for reducing the power consumption of the system LSI 100 can be controlled without increasing the circuit scale of the LSI. Further, it is possible to determine the occurrence of an abnormality such as a delay error due to a voltage difference without providing a test circuit for each power domain and without always operating the test circuit. Therefore, an increase in circuit scale can be suppressed and power consumption can be reduced. Furthermore, since the operation of each functional circuit block is not stopped during the test, it is possible to determine the state of the CPU 106 and each functional circuit block while preventing the system from slowing down.
 また、通常のアプリケーションの実行中に、バックグラウンドで動作していない機能回路ブロックのデータ通信確認を行い、電源ドメインの電源電圧制御を行うため、実動作への影響を与えずに低消費電力化が図られる。さらに、システムLSI内部で、他のソフトウェアを介在させることなく低消費電力化が行われるため、電力制御が複雑ではない。 In addition, during normal application execution, data communication is confirmed for functional circuit blocks that are not operating in the background, and the power supply voltage of the power domain is controlled, reducing power consumption without affecting actual operation. Is planned. Further, since power consumption is reduced without interposing other software inside the system LSI, power control is not complicated.
 なお、本実施形態では、電源制御部104は、単に、各電源ドメインの電圧の降圧又は昇圧を行うだけであるため、ハードウェア回路で構成されるが、ソフトウェアにより電源IC105を制御して各電源ドメインの電圧の降圧又は昇圧を行っても良い。さらに、電源電圧を複数段設けて、電源電圧の降圧又は昇圧を段階的に制御したり、電源電圧の上限値や下限値を任意に決定して任意の段階制御を行っても良い。 In the present embodiment, the power control unit 104 is configured by a hardware circuit because it simply steps down or boosts the voltage of each power domain. However, the power control unit 104 controls each power source IC 105 by software. The domain voltage may be stepped down or boosted. Furthermore, a plurality of power supply voltages may be provided, and step-down or step-up of the power supply voltage may be controlled stepwise, or an arbitrary step control may be performed by arbitrarily determining an upper limit value or a lower limit value of the power supply voltage.
(第2の実施形態)
 図4は、第2の実施形態のシステムLSIの電源制御システムにおけるテスト制御部周辺の構成を示すブロック図である。システムLSI200は、それぞれ異なる電源供給が可能な複数の電源ドメインを有する。図4には、第2の実施形態のシステムLSIの電源制御システムを構成する常時電源ONドメイン201、電源ドメインX202及び電源IC215が示される。
(Second Embodiment)
FIG. 4 is a block diagram showing a configuration around the test control unit in the power supply control system of the system LSI of the second embodiment. The system LSI 200 has a plurality of power domains that can be supplied with different power. FIG. 4 shows a constant power ON domain 201, a power domain X 202, and a power IC 215 that constitute the power control system of the system LSI of the second embodiment.
 常時電源ONドメイン201は、動作確認を実施する側の電源ドメインである。常時電源ONドメイン201には、バスアービタ204、テスト制御部203、電源制御部205及びノーマル/テストセレクタ210Aが設けられている。なお、図4ではバスが省略されている。 The constant power ON domain 201 is a power domain on the side where the operation check is performed. The constant power ON domain 201 is provided with a bus arbiter 204, a test control unit 203, a power control unit 205, and a normal / test selector 210A. In FIG. 4, the bus is omitted.
 電源ドメインX202は、テスト対象となる側の電源ドメインである。電源ドメインX202には、ハードウェア機能を実現する処理ブロックである機能回路ブロックX206、遅延回路213及びノーマル/テストセレクタ210Bが設けられている。 The power domain X202 is a power domain on the test target side. The power domain X202 is provided with a functional circuit block X206, a delay circuit 213, and a normal / test selector 210B, which are processing blocks for realizing hardware functions.
 常時電源ONドメイン201のテスト制御部203は、パターン発生回路207、遅延回路208及び比較回路209を有する。テスト制御部203は、常時電源ONドメイン201のバスアービタ204と電源ドメインX202の機能回路ブロックX206の間の信号を用いて動作テストを行う。また、常時電源ONドメイン201の電源制御部205は、電源IC215を制御し、電源ドメインX202の電源電圧の昇圧又は降圧を行う。 The test control unit 203 of the constant power ON domain 201 includes a pattern generation circuit 207, a delay circuit 208, and a comparison circuit 209. The test control unit 203 performs an operation test using a signal between the bus arbiter 204 in the always-on power supply domain 201 and the functional circuit block X206 in the power supply domain X202. In addition, the power control unit 205 of the constant power ON domain 201 controls the power IC 215 to increase or decrease the power voltage of the power domain X202.
 また、テスト制御部203は、バスアービタ204から、機能回路ブロックX206がアイドル状態であることを通知するアイドルモニタ信号211を受信すると、テストモードへの移行を制御し、テスト制御信号212によりノーマル/テストセレクタ210A,210Bを切り替える。 When the test control unit 203 receives from the bus arbiter 204 the idle monitor signal 211 notifying that the functional circuit block X206 is in the idle state, the test control unit 203 controls the transition to the test mode, and the test control signal 212 performs normal / test The selectors 210A and 210B are switched.
 テストモードへの切り替え後、テスト制御部203のパターン発生回路207は、固定長のランダムパターンを発生するテストパターンを生成し、当該テストパターンをノーマル/テストセレクタ210Aに送る。このとき、ノーマル/テストセレクタ210Aが切り替えられたことにより、当該テストパターンは電源ドメインX202の機能回路ブロックX206及び遅延回路213に入力される。遅延回路213で一定量の遅延が付加されたテストパターンは、ノーマル/テストセレクタ210Bを通って常時電源ONドメイン201のテスト制御部203に戻されることによりループバックされ、テスト制御部203の比較回路209に入力される。 After switching to the test mode, the pattern generation circuit 207 of the test control unit 203 generates a test pattern that generates a fixed-length random pattern and sends the test pattern to the normal / test selector 210A. At this time, when the normal / test selector 210A is switched, the test pattern is input to the functional circuit block X206 and the delay circuit 213 of the power domain X202. The test pattern to which a certain amount of delay is added by the delay circuit 213 is looped back by being returned to the test control unit 203 of the power ON domain 201 through the normal / test selector 210B, and the comparison circuit of the test control unit 203 209 is input.
 このように、ノーマル/テストセレクタ210A,210Bを切り替えることで、常時電源ONドメイン201のテスト制御部203から送信されるテストパターンが電源ドメインX202の遅延回路213を経由してテスト制御部203に戻るデータパスが形成(選択)される。 In this way, by switching between the normal / test selectors 210A and 210B, the test pattern transmitted from the test control unit 203 of the always-on power supply domain 201 returns to the test control unit 203 via the delay circuit 213 of the power supply domain X202. A data path is formed (selected).
 また同様に、テスト制御部203は、パターン発生回路207により比較用のリファレンスパターンを生成する。パターン発生回路207で生成されたリファレンスパターンは、テスト制御部203の遅延回路208に入力される。ここで、遅延回路208は、遅延回路213と同一の回路構成を有する。したがって、リファレンスパターンは、同一の電源ドメイン内で遅延が付加された信号となる。 Similarly, the test control unit 203 uses the pattern generation circuit 207 to generate a reference pattern for comparison. The reference pattern generated by the pattern generation circuit 207 is input to the delay circuit 208 of the test control unit 203. Here, the delay circuit 208 has the same circuit configuration as the delay circuit 213. Therefore, the reference pattern is a signal with a delay added in the same power domain.
 電源ドメインX202の遅延回路213で遅延が付加されたテストパターン及び常時電源ONドメイン201の遅延回路208で遅延が付加されたリファレンスパターンは、それぞれ比較回路209に入力される。比較回路209は、これらの信号変化のタイミングを比較して遅延状況を判別する。ここで、この比較を行う開始時間及び終了時間は、パターン発生回路207でパターンを生成した時刻及びパターン長、さらに遅延回路208で付加された遅延値から決定される。 The test pattern to which the delay is added by the delay circuit 213 of the power domain X202 and the reference pattern to which the delay is added by the delay circuit 208 of the constant power ON domain 201 are respectively input to the comparison circuit 209. The comparison circuit 209 compares the timing of these signal changes to determine the delay situation. Here, the start time and end time for performing this comparison are determined from the time and pattern length at which the pattern is generated by the pattern generation circuit 207 and the delay value added by the delay circuit 208.
 比較回路209において、信号変化のタイミングに差分がある場合、比較回路209はフラグを立てる。比較回路209でフラグが立てられた場合、常時電源ONドメイン201と電源ドメインX202の間に想定外の遅延要因が存在することになる。このとき、電源制御部205は、電源IC215を制御し、電源ドメインX202の昇圧を行う。逆に、比較回路209でフラグが立たなかった場合、常時電源ONドメイン201と電源ドメインX202の間では通信が問題なく行われるため、電源制御部205は、電源ドメインX202に対して何も行わない。 In the comparison circuit 209, when there is a difference in signal change timing, the comparison circuit 209 sets a flag. When the flag is set in the comparison circuit 209, an unexpected delay factor exists between the always-on power supply domain 201 and the power supply domain X202. At this time, the power supply control unit 205 controls the power supply IC 215 to boost the power supply domain X202. On the other hand, when the flag is not set in the comparison circuit 209, communication is always performed between the power supply ON domain 201 and the power supply domain X202 without any problem. Therefore, the power supply control unit 205 does nothing for the power supply domain X202. .
 図5は、テスト制御部203の電源制御動作を示すフローチャートである。この動作は、テスト制御部203によって所定期間毎に繰り返し行われる。テスト制御部203は、バスアービタ204からアイドル信号211を受信したか否かを判別する(ステップS21)。アイドル信号を受信していない場合、テスト制御部203は、本動作を終了する。一方、アイドル信号を受信した場合、テスト制御部203は、電源制御部205に対し、このアイドル信号に該当する電源ドメイン、例えば電源ドメインX202の電圧を降圧するよう指示する(ステップS22)。 FIG. 5 is a flowchart showing the power control operation of the test control unit 203. This operation is repeatedly performed by the test control unit 203 every predetermined period. The test control unit 203 determines whether or not the idle signal 211 has been received from the bus arbiter 204 (step S21). When the idle signal has not been received, the test control unit 203 ends this operation. On the other hand, when the idle signal is received, the test control unit 203 instructs the power supply control unit 205 to step down the voltage of the power supply domain corresponding to the idle signal, for example, the power supply domain X202 (step S22).
 テスト制御部203は、ノーマル/テストセレクタ210A,210Bをテスト用に切り替える(ステップS23)。次に、テスト制御部203のパターン発生回路207は、テストパターンを生成してノーマル/テストセレクタ210Aに送る(ステップS24)。また、パターン発生回路207は、リファレンスパターンを生成して遅延回路208に送る(ステップS25)。なお、テストパターン及びリファレンスパターンを別々に生成して送っているが、これらのパターンが同じパターンである場合、1つを生成して同時に送信しても良い。テスト制御部203の比較回路209は、テストパターン及びリファレンスパターンにおける信号変化のタイミングを比較する(ステップS26)。 The test control unit 203 switches the normal / test selectors 210A and 210B for testing (step S23). Next, the pattern generation circuit 207 of the test control unit 203 generates a test pattern and sends it to the normal / test selector 210A (step S24). The pattern generation circuit 207 generates a reference pattern and sends it to the delay circuit 208 (step S25). In addition, although the test pattern and the reference pattern are generated and transmitted separately, when these patterns are the same pattern, one pattern may be generated and transmitted simultaneously. The comparison circuit 209 of the test control unit 203 compares signal change timings in the test pattern and the reference pattern (step S26).
 テスト制御部203は、テストパターン及びリファレンスパターンにおける信号変化のタイミングから、電源ドメイン間で想定外の遅延があったか否かを判別する(ステップS27)。想定外の遅延があった場合、テスト制御部203は、電源制御部205に対し、電源ドメインX202の電圧を昇圧するように指示し(ステップS28)、ステップS24に戻る。一方、想定外の遅延がなかった場合、テスト制御部203は本動作を終了する。 The test control unit 203 determines whether or not there is an unexpected delay between the power supply domains from the timing of signal change in the test pattern and the reference pattern (step S27). If there is an unexpected delay, the test control unit 203 instructs the power supply control unit 205 to step up the voltage of the power supply domain X202 (step S28), and returns to step S24. On the other hand, when there is no unexpected delay, the test control unit 203 ends this operation.
 なお、上記動作は、バスに接続される機能回路ブロックの全てに適用可能である。図6は、バス230に接続された複数の機能回路ブロックを順番にテストする場合のテスト制御部周辺の構成を示すブロック図である。テスト制御部203は、バスアービタ204からのアイドル信号211を受け取ることで、バス230に接続された複数の電源ドメインを順次テストする。図6では、電源ドメインX202及び電源ドメインY222にそれぞれ設けられた機能回路ブロックX206及び機能回路ブロックY226がバス230に接続される場合を示したが、3つ以上の電源ドメインにそれぞれ設けられた3つ以上の機能回路ブロックがバス230に接続される場合も同様である。各機能回路ブロックのテストは、前述した動作と同じである。なお、この場合、予め各電源ドメインに優先順位をつけ、順位の高い順にテストを実行するようにしても良い。 The above operation is applicable to all functional circuit blocks connected to the bus. FIG. 6 is a block diagram showing a configuration around the test control unit when testing a plurality of functional circuit blocks connected to the bus 230 in order. The test control unit 203 receives the idle signal 211 from the bus arbiter 204, and sequentially tests a plurality of power supply domains connected to the bus 230. FIG. 6 shows the case where the functional circuit block X206 and the functional circuit block Y226 provided in the power domain X202 and the power domain Y222 are connected to the bus 230, respectively, but 3 provided in each of three or more power domains. The same applies when two or more functional circuit blocks are connected to the bus 230. The test of each functional circuit block is the same as the operation described above. In this case, priorities may be assigned to the power domains in advance, and tests may be executed in descending order.
 以上説明したように、第2の実施形態の電源制御システムによれば、電源ドメイン間毎にテスト回路を設けずに、さらに、テスト回路を常時動作させることなく、電位差による遅延エラー等の以上の発生を判別可能である。したがって、回路規模の増加が抑えられ、かつ消費電力を低減できる。さらに、各機能回路ブロックの動作をテスト時に停止させないため、システムの低速化を防いだ上で各機能回路ブロックの状態を判別することができる。 As described above, according to the power supply control system of the second embodiment, a test circuit is not provided for each power supply domain, and further, a delay error due to a potential difference or the like is not caused without always operating the test circuit. The occurrence can be determined. Therefore, an increase in circuit scale can be suppressed and power consumption can be reduced. Furthermore, since the operation of each functional circuit block is not stopped during the test, the state of each functional circuit block can be determined while preventing the system from being slowed down.
 なお、本発明は、上記実施形態の構成に限られるものではなく、特許請求の範囲で示した機能、又は本実施形態の構成が持つ機能が達成できる構成であればどのようなものであっても適用可能である。例えば、上記実施形態では、遅延回路213は、機能回路ブロックX206とは別に設けられていたが、機能回路ブロックX206の一部を遅延回路として用いても良い。これにより、システムLSIにおける回路規模の増大を一層抑えることができる。 The present invention is not limited to the configuration of the above-described embodiment, and any configuration can be used as long as the functions shown in the claims or the functions of the configuration of the present embodiment can be achieved. Is also applicable. For example, in the above embodiment, the delay circuit 213 is provided separately from the functional circuit block X206, but a part of the functional circuit block X206 may be used as a delay circuit. Thereby, an increase in circuit scale in the system LSI can be further suppressed.
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。 Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
 本出願は、2010年11月26日出願の日本特許出願(特願2010-263316)に基づくものであり、その内容はここに参照として取り込まれる。 This application is based on a Japanese patent application filed on November 26, 2010 (Japanese Patent Application No. 2010-263316), the contents of which are incorporated herein by reference.
 本発明に係る電源制御システムは、半導体装置を構成する複数の機能回路ブロックに供給される電源を個別に制御する電源制御システム等として有用である。 The power supply control system according to the present invention is useful as a power supply control system that individually controls the power supplied to a plurality of functional circuit blocks constituting the semiconductor device.
100 システムLSI
102 バス調停部
103 テスト制御部
104 電源制御部
105 電源IC
106 CPU
107 機能回路ブロックB
108 機能回路ブロックC
109 機能回路ブロックD
110 電源ドメインA
111 電源ドメインB
112 電源ドメインC
113 電源ドメインD
114 常時電源ONドメイン
115 制御信号
116 電源ライン
117 アイドルモニタ信号
118 テストステータス信号
200 システムLSI
201 常時電源ONドメイン
202 電源ドメインX
203 テスト制御部
204 バスアービタ
205 電源制御部
206 機能回路ブロックX
207 パターン発生回路
208 遅延回路
209 比較回路
210A、210B ノーマル/テストセレクタ
211 アイドルモニタ信号
212 テスト制御信号
213 遅延回路
215 電源IC
222 電源ドメインY
226 機能回路ブロックY
230 バス
100 system LSI
102 Bus Arbitration Unit 103 Test Control Unit 104 Power Supply Control Unit 105 Power Supply IC
106 CPU
107 Functional circuit block B
108 Functional circuit block C
109 Functional circuit block D
110 Power Domain A
111 Power Domain B
112 Power Domain C
113 Power domain D
114 Constant power ON domain 115 Control signal 116 Power line 117 Idle monitor signal 118 Test status signal 200 System LSI
201 Always-on power domain 202 Power domain X
203 Test Control Unit 204 Bus Arbiter 205 Power Supply Control Unit 206 Functional Circuit Block X
207 Pattern generation circuit 208 Delay circuit 209 Comparison circuit 210A, 210B Normal / test selector 211 Idle monitor signal 212 Test control signal 213 Delay circuit 215 Power supply IC
222 Power domain Y
226 Functional circuit block Y
230 Bus

Claims (8)

  1.  半導体装置を構成する複数の機能回路ブロックに供給される電源部からの電源電圧を個別に制御する電源制御システムであって、
     第1の電源が供給される第1の電源領域で動作する第1の機能回路ブロックと、
     第2の電源が供給される第2の電源領域で動作する第2の機能回路ブロックと、
     前記第1の機能回路ブロック及び前記第2の機能回路ブロックに接続され、第3の電源が供給される第3の電源領域でデータを伝送するバスと、
     前記第3の電源領域で動作し、前記第1の機能回路ブロックの動作期間中、前記バスを介してテストデータを前記第2の機能回路ブロックに送信し、前記テストデータの送信により得られる値に基づいて前記第2の機能回路ブロックの動作状態を確認するテスト制御部と、
    を有する電源制御システム。
    A power supply control system for individually controlling a power supply voltage from a power supply unit supplied to a plurality of functional circuit blocks constituting a semiconductor device,
    A first functional circuit block operating in a first power supply region to which a first power supply is supplied;
    A second functional circuit block that operates in a second power supply region to which a second power supply is supplied;
    A bus connected to the first functional circuit block and the second functional circuit block and transmitting data in a third power supply region to which a third power supply is supplied;
    A value obtained by transmitting test data to the second functional circuit block via the bus during the operation period of the first functional circuit block, operating in the third power supply region. A test control unit for confirming an operating state of the second functional circuit block based on
    Having a power control system.
  2.  請求項1に記載の電源制御システムであって、
     前記テスト制御部は、
     前記第2の機能回路ブロックのアイドル状態を検出する検出部と、
     アイドル状態が検出された前記第2の機能回路ブロックに供給される前記第2の電源の電圧を降圧するよう前記電源部に指示する降圧指示部と、
    を有する電源制御システム。
    The power supply control system according to claim 1,
    The test control unit
    A detector for detecting an idle state of the second functional circuit block;
    A step-down instruction unit that instructs the power source unit to step down the voltage of the second power source supplied to the second functional circuit block in which an idle state is detected;
    Having a power control system.
  3.  請求項2に記載の電源制御システムであって、
     前記テスト制御部は、
     前記降圧指示部からの指示に応じて前記第2の電源の電圧が降圧された後、前記第2の機能回路ブロックに前記テストデータを送信する送信部と、
     前記テストデータの送信により得られる値と期待値を比較し、この比較結果に基づいて前記第2の電源の電圧が降圧したことによる異常を検出する異常検出部と、
    を有する電源制御システム。
    The power supply control system according to claim 2,
    The test control unit
    A transmitter that transmits the test data to the second functional circuit block after the voltage of the second power source has been stepped down in accordance with an instruction from the step-down instruction unit;
    An abnormality detection unit that compares an expected value with a value obtained by transmitting the test data, and detects an abnormality due to a voltage drop of the second power source based on the comparison result;
    Having a power control system.
  4.  請求項3に記載の電源制御システムであって、
     前記テスト制御部は、
     前記第2の電源の電圧を昇圧するよう前記電源部に指示する昇圧指示部を有し、
     前記異常検出部が前記異常を検出した場合、前記昇圧指示部からの指示に応じて前記第2の電源の電圧が昇圧された後、前記送信部が前記テストデータを再度送信し、前記異常検出部によって前記異常が検出されなくなることを確認する電源制御システム。
    The power supply control system according to claim 3,
    The test control unit
    A boosting instruction unit that instructs the power supply unit to boost the voltage of the second power supply;
    When the abnormality detection unit detects the abnormality, the transmitter unit transmits the test data again after the voltage of the second power source is boosted in accordance with an instruction from the boost instruction unit, and the abnormality detection A power supply control system for confirming that the abnormality is not detected by the unit.
  5.  請求項4に記載の電源制御システムであって、
     前記テスト制御部は、
     前記降圧指示部からの指示に応じて降圧される前記第2の電源の電圧を記憶する記憶部を有し、
     前記昇圧指示部は、
     前記記憶部が記憶する電圧よりも高い電圧に前記第2の電源の電圧を昇圧するよう前記電源部に指示する電源制御システム。
    The power supply control system according to claim 4,
    The test control unit
    A storage unit that stores the voltage of the second power source that is stepped down in accordance with an instruction from the step-down instruction unit;
    The boosting instruction unit includes:
    A power supply control system that instructs the power supply unit to step up the voltage of the second power supply to a voltage higher than the voltage stored in the storage unit.
  6.  請求項1に記載の電源制御システムであって、
     前記テスト制御部は、
     前記バスを介し、前記第2の電源領域内の遅延回路を経由して戻るデータパスを選択する選択部と、
     前記選択部によって選択されたデータパスに前記テストデータを送信し、前記第2の電源領域から戻るテストデータを受信する受信部と、
     前記受信部が受信したテストデータと前記テスト制御部が送信したテストデータを比較して遅延状況を判別する判別部と、を有し、
     前記遅延状況に基づいて、前記第2の機能回路ブロックの動作状態を確認する電源制御システム。
    The power supply control system according to claim 1,
    The test control unit
    A selection unit for selecting a data path that returns via the bus and via a delay circuit in the second power supply region;
    A receiver that transmits the test data to the data path selected by the selector and receives the test data returned from the second power supply region;
    A determination unit that compares the test data received by the reception unit and the test data transmitted by the test control unit to determine a delay state;
    A power supply control system for confirming an operation state of the second functional circuit block based on the delay state.
  7.  請求項6に記載の電源制御システムであって、
     前記遅延回路として前記第2の機能回路ブロックの一部の回路を用いる電源制御システム。
    The power supply control system according to claim 6,
    A power supply control system using a part of the circuit of the second functional circuit block as the delay circuit.
  8.  第1の電源が供給される第1の電源領域で動作する第1の機能回路ブロックと、第2の電源が供給される第2の電源領域で動作する第2の機能回路ブロックと、前記第1の機能回路ブロック及び前記第2の機能回路ブロックに接続され、第3の電源が供給される第3の電源領域でデータを伝送するバスと、前記第3の電源領域で動作するテスト制御部と、を有する半導体装置を構成する複数の機能回路ブロックに供給される電源電圧を個別に制御する電源制御方法であって、
     前記テスト制御部が、前記第1の機能回路ブロックの動作期間中、前記バスを介してテストデータを前記第2の機能回路ブロックに送信するステップと、
     前記テスト制御部が、前記テストデータの送信により得られる値に基づいて前記第2の機能回路ブロックの動作状態を確認するステップと、
    を有する電源制御方法。
    A first functional circuit block operating in a first power supply region supplied with a first power supply; a second functional circuit block operating in a second power supply region supplied with a second power supply; A bus connected to one functional circuit block and the second functional circuit block and transmitting data in a third power supply region to which a third power supply is supplied; and a test control unit operating in the third power supply region A power supply control method for individually controlling power supply voltages supplied to a plurality of functional circuit blocks constituting a semiconductor device having:
    The test control unit transmitting test data to the second functional circuit block via the bus during an operation period of the first functional circuit block;
    The test control unit confirming an operating state of the second functional circuit block based on a value obtained by transmitting the test data;
    A power supply control method.
PCT/JP2011/003738 2010-11-26 2011-06-29 Power supply control system and method of controlling power supply WO2012070170A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010263316A JP2012113593A (en) 2010-11-26 2010-11-26 Power supply control system and power supply control method
JP2010-263316 2010-11-26

Publications (1)

Publication Number Publication Date
WO2012070170A1 true WO2012070170A1 (en) 2012-05-31

Family

ID=46145544

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/003738 WO2012070170A1 (en) 2010-11-26 2011-06-29 Power supply control system and method of controlling power supply

Country Status (2)

Country Link
JP (1) JP2012113593A (en)
WO (1) WO2012070170A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5691943B2 (en) * 2011-08-31 2015-04-01 日本電気株式会社 Memory voltage controller
KR20150019457A (en) 2013-08-14 2015-02-25 삼성전자주식회사 System on chip, method thereof, and system having the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006004338A (en) * 2004-06-21 2006-01-05 Fujitsu Ltd Semiconductor integrated circuit
JP2009134577A (en) * 2007-11-30 2009-06-18 Fujitsu Microelectronics Ltd Power source control device and system lsi having power source control device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006004338A (en) * 2004-06-21 2006-01-05 Fujitsu Ltd Semiconductor integrated circuit
JP2009134577A (en) * 2007-11-30 2009-06-18 Fujitsu Microelectronics Ltd Power source control device and system lsi having power source control device

Also Published As

Publication number Publication date
JP2012113593A (en) 2012-06-14

Similar Documents

Publication Publication Date Title
US10585448B2 (en) Low power autonomous peripheral management
CN1742458B (en) Method and apparatus for controlling a data processing system during debug
US7228446B2 (en) Method and apparatus for on-demand power management
US7337335B2 (en) Method and apparatus for on-demand power management
US9141421B2 (en) Reducing power grid noise in a processor while minimizing performance loss
TWI606459B (en) Memory apparatus and energy-saving controlling method thereof
JP2008059054A (en) Processor system
US20080258794A1 (en) Glitch-free clock switching circuit
WO2011154776A1 (en) Information processing device and method
US9360921B2 (en) Semiconductor integrated circuit, information processing apparatus, and control method
US20110082958A1 (en) Micro Controller Unit (MCU) Capable of Increasing Data Retention Time and Method of Driving the MCU
WO2012070170A1 (en) Power supply control system and method of controlling power supply
US20080086666A1 (en) Analyzer
US7398409B2 (en) Semiconductor integrated circuit and its power-saving control method and program
JP5408844B2 (en) Bus system
US9367080B2 (en) Apparatus, system, and method for providing clock signal on demand
US8675444B2 (en) Synchronized command throttling for multi-channel duty-cycle based memory power management
JP2010055265A (en) System lsi, control method of system lsi, program, and storage medium
CN114706449A (en) Frequency control method, circuit and chip based on self-adaptive clock
US20160085292A1 (en) Electronic device
JP2018195243A (en) Semiconductor device and semiconductor device control method
US8677164B2 (en) Microcomputer and control method thereof
JP2012088906A (en) Electronic device and control method for the same
US7847610B2 (en) Semiconductor device, information processing apparatus and power supply voltage variation suppressing method
CN101727360A (en) Hardware self-resetting method, device and mobile multimedia processor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11842927

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11842927

Country of ref document: EP

Kind code of ref document: A1