[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2012068927A1 - 双轴直线移动微驱动装置 - Google Patents

双轴直线移动微驱动装置 Download PDF

Info

Publication number
WO2012068927A1
WO2012068927A1 PCT/CN2011/080762 CN2011080762W WO2012068927A1 WO 2012068927 A1 WO2012068927 A1 WO 2012068927A1 CN 2011080762 W CN2011080762 W CN 2011080762W WO 2012068927 A1 WO2012068927 A1 WO 2012068927A1
Authority
WO
WIPO (PCT)
Prior art keywords
micro
motion
rail
guide rail
microactuator
Prior art date
Application number
PCT/CN2011/080762
Other languages
English (en)
French (fr)
Inventor
黄玉美
刘鸿雁
杨新刚
杨勇
Original Assignee
西安理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安理工大学 filed Critical 西安理工大学
Priority to US13/989,850 priority Critical patent/US9168623B2/en
Publication of WO2012068927A1 publication Critical patent/WO2012068927A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q5/00Driving or feeding mechanisms; Control arrangements therefor
    • B23Q5/22Feeding members carrying tools or work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q5/00Driving or feeding mechanisms; Control arrangements therefor
    • B23Q5/22Feeding members carrying tools or work
    • B23Q5/28Electric drives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q2210/00Machine tools incorporating a specific component
    • B23Q2210/002Flexures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/18Mechanical movements
    • Y10T74/18992Reciprocating to reciprocating

Definitions

  • the invention belongs to the technical field of precision numerical control machine tools, and is suitable for a precision linear feed mechanism capable of withstanding a large load and an end effector for mounting a tool or a workpiece, and particularly relates to a two-axis linear movement micro-drive device.
  • Machine tool feed system is one of the key factors affecting the performance of machine tools.
  • Drive, drive, and steering have a large impact on the performance of the feed system.
  • One of the effective ways to improve the feed precision of ultra-precision machining tools is to use a combination of macro drive and micro drive to realize the machining size and contour by macro drive, and to compensate the error of size and contour by micro drive to achieve ultra-precision machining requirements.
  • each feed axis is driven by a macro drive to drive the macro slide.
  • Feeding, micro-feeding is driven by a micro-actuator mounted on a macro-slide, such as a machine with X, Z-axis macro drive and micro-drive requirements, X-axis can be used by X-axis
  • the macro drive and the micro drive are directly connected in series.
  • the Z feed axis is realized by the Z axis macro drive and the micro drive directly in series; the other way is the macro drive and the micro drive mechanism are separated, and the micro drive mechanism can be designed as a separate component.
  • any other location such as a machine with X, Z-axis macro drive and micro-drive requirements, can be set separately using the X and Z-axis macro drives, while the X and Z-axis micro-drives are designed as separate XZ micro-drive components.
  • the object of the present invention is to provide a two-axis linear moving micro-driving device, which organically combines the micro-driving mechanisms of two moving axes to meet the needs of a large-scale, large-load precision, ultra-precision CNC machine tool.
  • the technical solution adopted by the present invention is a dual-axis linear moving micro-driving device, which comprises a Z-direction sliding seat, and a convex mounting seat A is arranged at the center of the upper surface of the Z-direction sliding seat, and the mounting seat A is fixedly mounted therein.
  • Z-direction microactuator, Z-direction micro-actuator and Z-direction micro-motion stage drive connection Z-direction micro-motion stage is fixedly connected with X-direction slide seat
  • Z-direction slide seat mounting seat A is arranged in parallel on both sides of Z To the rail strip, one Z-direction rail block is disposed correspondingly on one Z-direction rail bar on each side, and four Z-direction rail blocks are fixedly mounted on the lower surface of the X-direction slide seat; the center position of the upper surface of the X-direction slide seat is also the same
  • a mounting bracket B is provided, an X-direction microactuator is fixedly mounted on the inner side of the mounting base B, and an X-direction microactuator is coupled to the X-direction micro-motion table, and the X-direction micro-motion table is moved upwardly and XZ.
  • the platform is fixedly connected, and two X-direction rail strips are arranged on both sides of the X-direction slide upper surface mount B.
  • Each X-direction rail strip is correspondingly provided with two X-direction rail blocks, and four X-direction rail blocks are fixedly mounted.
  • the invention is further characterized in that: the X-direction micro-motion stage and the mounting seat B on the X-direction slide are connected by a plurality of sets of X-directional flexible hinges; the Z-direction micro-motion stage and the Z-direction slide seat The mounts A are connected by a plurality of sets of Z-directional flexible hinges.
  • the invention has the beneficial effects that: 1) micro-driving in two feeding directions can be realized, and the biaxial moving platform can be mounted close to the end effector of the tool or the workpiece on the machine tool, and the error conveying small feed precision is high; 2) X direction The guide rail pair and the Z-direction guide rail pair are respectively symmetrical to the micro-actuator in the up, down, left and right, and front and rear, respectively, to avoid the lateral force and moment of the actuator; 3) four X-directional flexible hinges and four Z-directional flexible hinges are compensated together XZ platform attitude error, high guiding precision.
  • the principle of the dual-axis linear motion micro-driving device of the present invention is also adapted to the independently arranged single-axis linear motion micro-driving function to adapt to the need for only micro-driving for single-axis error compensation.
  • Figure 1 is a schematic structural view of an embodiment of the apparatus of the present invention.
  • Figure 2 is a cross-sectional view taken along line C-C of Figure 1;
  • Figure 3 is a cross-sectional view taken along line B-B of Figure 1;
  • Figure 4 is a cross-sectional view taken along line D-D of Figure 1.
  • the reference coordinate system is shown in FIG. 1.
  • the structure of the device embodiment of the present invention is such that it includes a Z-direction slide 1, and a rectangular projection is installed at the center of the upper surface of the Z-direction slide 1.
  • the seat A14 has a Z-direction microactuator 13 fixedly mounted on the inner side of the mount A14, and the Z-direction microactuator 13 and the Z-direction micro-motion stage 11 are horizontally connected, and the Z-direction micro-motion stage 11 is upwardly and the X-direction slide 4
  • the Z-direction rail strip 2 is disposed in parallel on the upper surface of the Z-direction slide 1 on both sides of the mounting seat A14, and one Z-direction rail block 3 is correspondingly disposed on one Z-direction rail strip 2 on each side, as shown in FIG.
  • the four Z-direction rail blocks 3 are fixedly mounted upward on the lower surface of the X-direction slide 4; the center position of the upper surface of the X-direction slide 4 is also provided with a rectangular raised mount B15, and the inner side of the mount B15 is fixedly mounted.
  • X-direction microactuator 5 There is an X-direction microactuator 5, the X-direction microactuator 5 and the X-direction micro-motion stage 6 are horizontally connected, and the X-direction micro-motion stage 6 is fixedly connected upwards with the XZ biaxial motion platform 9 in the X-direction slide base 4
  • Two X-direction rail strips 7 are disposed on both sides of the upper surface mount B15, and each X-direction rail strip 7 is correspondingly provided with two X-direction rail blocks 8, see FIG. 2, and four X-direction rail blocks 8 upward. It is fixedly mounted on the lower surface of the XZ biaxial motion platform 9.
  • the X-direction micro-motion table 6 and the X-direction slide base 4 on the mount B15 are connected by a plurality of sets of X-direction flexible hinges 10.
  • the Z-direction micro-motion table 11 and the mounting seat A14 on the Z-direction carriage 1 are connected by a plurality of sets of Z-direction flexible hinges 12.
  • FIG. 1 is also a schematic cross-sectional view taken along line A-A of FIG. 3.
  • One end of the X-direction microactuator 5 is fixedly connected to the mounting seat B15 on the X-direction slide 4, and the other end is fixedly connected to the X-direction micro-motion stage 6, and the X-direction is in front of and behind the micro-motion stage 6 (ie, in the Z-direction, see 2) symmetrically mounted with four X-directional flexible hinges 10, the other end of the X-directional flexible hinge 10 is fixedly coupled with the mounting seat B15 on the X-direction slide 4, the upper surface of the X-direction micro-motion table 6 and the XZ biaxial motion platform 9 fixed connection, from the X to the micro-actuator 5 micro-expansion drive X to the micro-motion table 6 in the X-direction micro-motion, thereby driving the XZ bi-axis motion platform 9 in the X-direction micro-motion; two X-direction rail pair guide
  • each of the X-direction rails 7 and the X-direction rails 8 are respectively connected to form an X-direction rail pair, each rail
  • the positions of the two X-direction guide rail blocks 8 on the left and right (i.e., in the X direction) are symmetrical with respect to the connection faces of the X-direction microactuator 5 and the X-direction micro-motion stage 6.
  • one end of the Z-direction microactuator 13 is fixedly coupled to the mounting seat A14 on the Z-direction slide 1, and the other end is fixedly coupled to the Z-direction micro-motion stage 11, and the front and rear of the Z-direction micro-motion stage 11. (ie, in the Z direction, see FIG.
  • the motion platform 9 is slightly moved in the Z direction; the guide rails 2 of the two Z-direction guide rails are fixedly mounted on the Z-direction slide to the left and right (ie, in the X direction) and the upper and lower (ie, in the Y direction) symmetrically to the Z-direction microactuator 13 1 on both sides, the four guide rails 3 of the Z-direction guide rail pair are fixed symmetrically on the two sides of the X-direction slide 4 corresponding to the two Z-direction rail strips 2, and each of the Z-direction rail strips 2 and the two The Z-direction rail blocks 3 are connected to form a Z-direction rail pair, and the two rail blocks 3 on each of the Z-direction rail strips are symmetrical to the Z-direction micro-motion stage 11 and the Z-direction micro-actuator 13 in front and rear (ie, in the Z-direction) position. Connection surface.
  • the principle of the dual-axis linear moving micro-driving device of the present invention can also be adapted to the independently arranged single-axis linear moving micro-driving function.
  • the XZ dual-axis platform 9 is changed to the X-platform 9, the X-direction sliding seat 4, X
  • the X-axis linear movement micro-driving function component can be configured by the micro-actuators 5, X, the micro-motion table 6, the guide rails 7 of the X-direction guide rails, the guide rails 8 of the X-direction guide rails, and the X-platform 9.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Machine Tool Units (AREA)
  • Bearings For Parts Moving Linearly (AREA)

Description

双轴直线移动微驱动装置 技术领域
本发明属于精密数控机床技术领域,适用于能够承受大载荷、安装刀具或工件的末端执行器的精密直线进给机构,具体涉及一种双轴直线移动微驱动装置。
背景技术
随着科学技术的发展,超精密加工精度的要求已经开始进入纳米级,因此微米、亚微米、纳米级的精密和超精密数控机床成为高端数控机床的重要发展方向之一。机床进给系统是影响机床整机性能的关键因素之一。驱动、传动、导向对进给系统性能影响很大。提高超精密加工机床进给精度的有效途径之一是采用宏驱动和微驱动相结合,由宏驱动实现加工尺寸及轮廓,由微驱动进行尺寸、轮廓的误差补偿,从而达到超精密加工要求。
现有直线进给运动的宏驱动和微驱动相结合方式包括有两种,一种方式是宏驱动和微驱动直接串联的方式,即各个进给轴均由宏驱动驱动宏动滑台实现宏进给,通过安装在宏动滑台上的微致动器驱动微动滑台实现微进给,例如具有X、Z轴宏驱动和微驱动要求的机床,可以采用X进给轴由X轴的宏驱动和微驱动直接串联实现,Z进给轴由Z轴的宏驱动和微驱动直接串联实现;另一种方式是宏驱动和微驱动机构分离,微驱动机构可以设计成独立部件,可以安装在其他任何位置,例如具有X、Z轴宏驱动和微驱动要求的机床,可以采用X、Z轴的宏驱动分别设置,而将X和Z轴微驱动设计成独立的XZ微驱动部件。
技术问题
本发明的目的是提供一种双轴直线移动微驱动装置,将两个运动轴的微驱动机构有机结合为一体,满足大尺度、大载荷的精密、超精密数控机床的需要。
技术解决方案
本发明所采用的技术方案是,一种双轴直线移动微驱动装置,包括Z向滑座,在Z向滑座上表面中心位置设置有凸起的安装座A,安装座A内固定安装有Z向微致动器,Z向微致动器与Z向微动台传动连接,Z向微动台向上与X向滑座固定连接,Z向滑座的安装座A两侧平行设置有Z向导轨条,每侧的一个Z向导轨条上对应设置有两个Z向导轨块,四个Z向导轨块固定安装在X向滑座的下表面;X向滑座的上表面中心位置同样设置有凸起的安装座B,安装座B内侧面固定安装有X向微致动器,X向微致动器与X向微动台传动连接,X向微动台向上与XZ双轴运动平台固定连接,在X向滑座上表面安装座B两侧设置有两个X向导轨条,每个X向导轨条上对应设置有两个X向导轨块,四个X向导轨块固定安装在XZ双轴运动平台的下表面。
本发明的特征还在于:所述的X向微动台与X向滑座上的安装座B之间通过多组X向柔性铰连接;所述的Z向微动台与Z向滑座上的安装座A之间通过多组Z向柔性铰连接。
有益效果
本发明的有益效果是,1)能够实现两个进给方向的微驱动,其双轴运动平台可以靠近机床上安装刀具或工件的末端执行器,误差传递小进给精度高;2)X向导轨副和Z向导轨副在上下、左右、前后分别对称于其微致动器,可避免致动器承受横向力及力矩;3)四个X向柔性铰和四个Z向柔性铰共同补偿XZ平台姿态误差,导向精度高。本发明的双轴直线移动微驱动装置的原理也适应于独立设置的单轴直线移动微驱动功能部件,以适应于仅需微驱动进行单轴误差补偿的需要。
附图说明
图1是本发明装置实施例的结构示意图;
图2是图1中的C-C截面示意图;
图3是图1中的B-B截面示意图;
图4是图1中的D-D截面示意图。
图中,1.Z向滑座,2.Z向导轨条,3.Z向导轨块,4.X向滑座,5.X向微致动器,6.X向微动台,7.X向导轨条,8.X向导轨块,9.XZ双轴运动平台,10.X向柔性铰,11.Z向微动台,12.Z向柔性铰,13.Z向微致动器,14.安装座A,15.安装座B。
本发明的实施方式
下面结合附图和具体实施方式对本发明进行详细说明。
如图1和图3所示,基准坐标系见图1,本发明装置实施例的结构是,包括Z向滑座1,在Z向滑座1的上表面中心位置设置有矩形凸起的安装座A14,安装座A14内侧面固定安装有Z向微致动器13,Z向微致动器13与Z向微动台11水平传动连接,Z向微动台11向上与X向滑座4固定连接,安装座A14两侧的Z向滑座1上表面平行设置有Z向导轨条2,每侧的一个Z向导轨条2上对应地设置有两个Z向导轨块3,见图4,四个Z向导轨块3向上固定安装在X向滑座4的下表面;X向滑座4的上表面的中心位置同样设置有矩形凸起的安装座B15,安装座B15内侧面固定安装有X向微致动器5,X向微致动器5与X向微动台6水平传动连接,X向微动台6向上与XZ双轴运动平台9固定连接,在X向滑座4的上表面安装座B15的两侧设置有两个X向导轨条7,每个X向导轨条7上对应设置有两个X向导轨块8,见图2,四个X向导轨块8向上固定安装在XZ双轴运动平台9的下表面。
如图2,X向微动台6与X向滑座4上的安装座B15之间通过多组X向柔性铰10连接。如图4,Z向微动台11与Z向滑座1上的安装座A14之间通过多组Z向柔性铰12连接。
参照图1、图2,并且图1也是图3中的A-A截面示意图。X向微致动器5的一端与X向滑座4上的安装座B15固定连接,另一端与X向微动台6固定连接,X向微动台6的前后(即在Z向,见图2)对称安装有四个X向柔性铰10,X向柔性铰10的另一端与X向滑座4上的安装座B15固定连接,X向微动台6的上面与XZ双轴运动平台9固定连接,由X向微致动器5的微量伸缩驱动X向微动台6沿X向微动,从而驱动XZ双轴运动平台9沿X向微动;两个X向导轨副的导轨条7前后(即在Z向)及上下(即在Y向)对称于X向微致动器5固定安装在X向滑座4两侧,X向导轨副的四个导轨块8前后对称地固定安装在XZ双轴运动平台9两侧的与两个X向导轨条7对应的位置,每个X向导轨条7分别与X向两个导轨块8连接构成X向导轨副,每个导轨副的两个X向导轨块8左右(即在X向)的位置对称于X向微致动器5与X向微动台6的连接面。
参照图3、图4,Z向微致动器13的一端与Z向滑座1上的安装座A14固定连接,另一端与Z向微动台11固定连接,Z向微动台11的前后(即在Z向,见图4)对称安装有四个Z向柔性铰12,Z向柔性铰12的另一端与Z向滑座1上的安装座A14固定连接,Z向微动台11的上面与X向滑座4固定连接,由Z向微致动器13的微量伸缩驱动Z向微动台11沿Z向微动,从而通过X向滑座4及X向导轨副驱动XZ双轴运动平台9沿Z向微动;两个Z向导轨副的导轨条2左右(即在X向)及上下(即在Y向)对称于Z向微致动器13固定安装在Z向滑座1两侧,Z向导轨副的四个导轨块3左右对称地固定安装在X向滑座4两侧的与两个Z向导轨条2对应的位置,每个Z向导轨条2分别与两个Z向导轨块3连接构成Z向导轨副,每个Z向导轨条上的2个导轨块3前后(即在Z向)位置对称于Z向微动台11与Z向微致动器13的连接面。
本发明的双轴直线移动微驱动装置的原理也可以适应于独立设置的单轴直线移动微驱动功能部件,如将XZ双轴平台9改变为X平台9,则由X向滑座4、X向微致动器5、X向微动台6、X向导轨副的导轨条7、X向导轨副的导轨块8以及X平台9即可构成X轴直线移动微驱动功能部件。

Claims (2)

  1. 一种双轴直线移动微驱动装置,其特征在于,包括Z向滑座(1),在Z向滑座(1)的上表面中心位置设置有凸起的安装座A(14),安装座A(14)内固定安装有Z向微致动器(13),Z向微致动器(13)与Z向微动台(11)传动连接,Z向微动台(11)向上与X向滑座(4)固定连接,Z向滑座(1)的安装座A(14)的两侧平行设置有Z向导轨条(2),每侧的一个Z向导轨条(2)上对应地设置有两个Z向导轨块(3),四个Z向导轨块(3)固定安装在X向滑座(4)的下表面;X向滑座(4)的上表面的中心位置同样设置有凸起的安装座B(15),安装座B(15)内侧面固定安装有X向微致动器(5),X向微致动器(5)与X向微动台(6)传动连接,X向微动台(6)向上与XZ双轴运动平台(9)固定连接,在X向滑座(4)的上表面安装座B(15)的两侧设置有两个X向导轨条(7),每个X向导轨条(7)上对应设置有两个X向导轨块(8),四个X向导轨块(8)固定安装在XZ双轴运动平台(9)的下表面。
  2. 根据权利要求1所述的双轴直线移动微驱动装置,其特征在于,所述X向微动台(6)与X向滑座(4)上的安装座B(15)之间通过多组X向柔性铰(10)连接;所述Z向微动台(11)与Z向滑座(1)上的安装座A(14)之间通过多组Z向柔性铰(12)连接。
PCT/CN2011/080762 2010-11-25 2011-10-13 双轴直线移动微驱动装置 WO2012068927A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/989,850 US9168623B2 (en) 2010-11-25 2011-10-13 Biaxial linear-motion micro drive apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010559119.4 2010-11-25
CN2010105591194A CN102059576B (zh) 2010-11-25 2010-11-25 双轴直线移动微驱动装置

Publications (1)

Publication Number Publication Date
WO2012068927A1 true WO2012068927A1 (zh) 2012-05-31

Family

ID=43995177

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/080762 WO2012068927A1 (zh) 2010-11-25 2011-10-13 双轴直线移动微驱动装置

Country Status (3)

Country Link
US (1) US9168623B2 (zh)
CN (1) CN102059576B (zh)
WO (1) WO2012068927A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102059576B (zh) * 2010-11-25 2012-02-08 西安理工大学 双轴直线移动微驱动装置
CN102501226B (zh) * 2011-10-31 2014-02-19 西安理工大学 一种宏微驱动变形导轨精密回转装置
CN107676457B (zh) * 2017-10-30 2023-11-07 苏州迈客荣自动化技术有限公司 一种一维微动平台
CN108789010A (zh) * 2018-08-03 2018-11-13 山东隆沃机械制造有限公司 机动高效销轴焊接清理专机
TWI678253B (zh) * 2019-01-10 2019-12-01 大銀微系統股份有限公司 撓性機構

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2670902Y (zh) * 2003-12-15 2005-01-12 西安理工大学 回转运动角位移精度检测仪
US20050269915A1 (en) * 2004-06-03 2005-12-08 Industrial Technology Research Institute Long-stroke, high-resolution nanopositioning mechanism
CN101474758A (zh) * 2009-01-20 2009-07-08 西安理工大学 具有混联导轨结合部的宏微驱动精密进给系统
JP2010219390A (ja) * 2009-03-18 2010-09-30 Sumitomo Heavy Ind Ltd Xyステージ装置、半導体検査装置、及び半導体露光装置
CN102059576A (zh) * 2010-11-25 2011-05-18 西安理工大学 双轴直线移动微驱动装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19962247A1 (de) * 1999-12-22 2001-09-20 Agie Sa Bewegungsübertragungsvorrichtung
US20050274219A1 (en) * 2004-06-01 2005-12-15 Molecular Imprints, Inc. Method and system to control movement of a body for nano-scale manufacturing
KR100462388B1 (ko) * 2002-01-12 2004-12-17 한국과학기술원 Vcm을 이용한 x-y 정밀구동 스테이지 장치
US7309944B2 (en) * 2002-07-31 2007-12-18 Siemens Aktiengesellschaft Piezoactuator and method for production of the piezoactuator
JP4447949B2 (ja) * 2004-03-25 2010-04-07 キヤノン株式会社 位置決め装置の初期化方法、露光装置およびデバイス製造方法
JP2005288673A (ja) * 2004-04-06 2005-10-20 Mitsubishi Heavy Ind Ltd 微小構造体の製造装置
KR100624436B1 (ko) * 2004-10-19 2006-09-15 삼성전자주식회사 2축 액츄에이터 및 그 제조방법
CN100413202C (zh) * 2004-11-16 2008-08-20 清华大学 一种利用压电效应箝位的超磁致伸缩直线驱动器
JP4871027B2 (ja) * 2006-05-29 2012-02-08 株式会社日立ハイテクノロジーズ 試料載置用のステージ、xyステージおよび荷電粒子線装置
EP2105247B1 (en) * 2008-03-25 2017-11-29 Mycronic AB Positioning system
SG189737A1 (en) * 2008-06-25 2013-05-31 Panasonic Corp Moving structure and light scanning mirror using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2670902Y (zh) * 2003-12-15 2005-01-12 西安理工大学 回转运动角位移精度检测仪
US20050269915A1 (en) * 2004-06-03 2005-12-08 Industrial Technology Research Institute Long-stroke, high-resolution nanopositioning mechanism
CN101474758A (zh) * 2009-01-20 2009-07-08 西安理工大学 具有混联导轨结合部的宏微驱动精密进给系统
JP2010219390A (ja) * 2009-03-18 2010-09-30 Sumitomo Heavy Ind Ltd Xyステージ装置、半導体検査装置、及び半導体露光装置
CN102059576A (zh) * 2010-11-25 2011-05-18 西安理工大学 双轴直线移动微驱动装置

Also Published As

Publication number Publication date
US20140053670A1 (en) 2014-02-27
CN102059576B (zh) 2012-02-08
US9168623B2 (en) 2015-10-27
CN102059576A (zh) 2011-05-18

Similar Documents

Publication Publication Date Title
WO2012068927A1 (zh) 双轴直线移动微驱动装置
CN112108798B (zh) 汽车抓手总拼系统
CN102615514B (zh) 一种平面两自由度冗余驱动并联机构及采用该机构的机床
CN102156340B (zh) 拼接光栅的高精密位姿调整装置
CN102152133B (zh) 一种五坐标定位机构
WO2012099323A2 (ko) 고강성 복합가공기
CN108747426B (zh) 一种共定子大行程跨尺度三自由度并联运动平台
KR20130012692A (ko) 갠트리 로봇의 정밀 이송장치
CN110053026B (zh) 用于工件加工的五自由度混联机器人
CN102794664A (zh) 基于桥式柔性铰链的高频超精密加工车床刀架驱动平台
CN103753355A (zh) 一种可实现五面加工的多轴联动装置
TWI572542B (zh) Workpiece cable assembly
JP2013180296A (ja) 搬送装置及びトランスファプレス装置
CN102878394B (zh) 一种部分解耦的平面三自由度并联精密定位平台
CN204321602U (zh) 五轴联动立式车铣复合加工中心
CN206010584U (zh) 一种龙门多托盘交换系统用运输小车
CN115890626A (zh) 可实现大范围移动的五自由度空间并联机构
WO2012068721A1 (zh) 一种加工曲面上多槽的铣削调节装置
CN106736613B (zh) 一种附加冗余直线滑动的三平动龙门并联机床
CN202639966U (zh) 基于桥式柔性铰链的高频超精密加工车床刀架驱动平台
CN101970172B (zh) 机床
CN109049700B (zh) 基于4-pss/ps并联机构的3d打印系统
CN102211329A (zh) 一种五自由度空间混联操作平台
CN216328313U (zh) 一种具有变距夹爪的三轴机械手
CN205733519U (zh) 一种多车型三向柔性智能切换装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11842511

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13989850

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11842511

Country of ref document: EP

Kind code of ref document: A1