WO2012067160A1 - 成形性に優れた高強度鋼板、温間加工方法、および温間加工された自動車部品 - Google Patents
成形性に優れた高強度鋼板、温間加工方法、および温間加工された自動車部品 Download PDFInfo
- Publication number
- WO2012067160A1 WO2012067160A1 PCT/JP2011/076442 JP2011076442W WO2012067160A1 WO 2012067160 A1 WO2012067160 A1 WO 2012067160A1 JP 2011076442 W JP2011076442 W JP 2011076442W WO 2012067160 A1 WO2012067160 A1 WO 2012067160A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- less
- steel sheet
- martensite
- warm
- strength steel
- Prior art date
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 77
- 239000010959 steel Substances 0.000 title claims abstract description 77
- 238000000034 method Methods 0.000 title claims description 17
- 229910000734 martensite Inorganic materials 0.000 claims abstract description 47
- 229910001566 austenite Inorganic materials 0.000 claims abstract description 28
- 229910000859 α-Fe Inorganic materials 0.000 claims abstract description 22
- 239000000203 mixture Substances 0.000 claims abstract description 15
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 12
- 229910001568 polygonal ferrite Inorganic materials 0.000 claims abstract description 12
- 230000000717 retained effect Effects 0.000 claims abstract description 10
- 239000012535 impurity Substances 0.000 claims abstract description 6
- 229910052742 iron Inorganic materials 0.000 claims abstract description 6
- 238000012545 processing Methods 0.000 claims description 15
- 239000004615 ingredient Substances 0.000 claims description 5
- 239000000126 substance Substances 0.000 claims description 4
- 230000008520 organization Effects 0.000 claims description 2
- 229910052799 carbon Inorganic materials 0.000 abstract description 8
- 229910052757 nitrogen Inorganic materials 0.000 abstract 1
- 229910052698 phosphorus Inorganic materials 0.000 abstract 1
- 230000000694 effects Effects 0.000 description 18
- 238000010438 heat treatment Methods 0.000 description 10
- 102100032274 E3 ubiquitin-protein ligase TRAIP Human genes 0.000 description 9
- 101000798079 Homo sapiens E3 ubiquitin-protein ligase TRAIP Proteins 0.000 description 9
- 101001017828 Homo sapiens Leucine-rich repeat flightless-interacting protein 1 Proteins 0.000 description 9
- 238000004519 manufacturing process Methods 0.000 description 9
- 230000035882 stress Effects 0.000 description 9
- 230000009466 transformation Effects 0.000 description 9
- 238000001816 cooling Methods 0.000 description 8
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 7
- 238000005097 cold rolling Methods 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 229910052761 rare earth metal Inorganic materials 0.000 description 7
- 230000009471 action Effects 0.000 description 6
- 238000009826 distribution Methods 0.000 description 6
- 238000005279 austempering Methods 0.000 description 5
- 229910001563 bainite Inorganic materials 0.000 description 5
- 239000011159 matrix material Substances 0.000 description 5
- 229910001335 Galvanized steel Inorganic materials 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 239000008397 galvanized steel Substances 0.000 description 4
- 230000001965 increasing effect Effects 0.000 description 4
- 238000004781 supercooling Methods 0.000 description 4
- 229910000794 TRIP steel Inorganic materials 0.000 description 3
- 238000001887 electron backscatter diffraction Methods 0.000 description 3
- 238000005098 hot rolling Methods 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 238000003754 machining Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 229920006395 saturated elastomer Polymers 0.000 description 3
- 238000002791 soaking Methods 0.000 description 3
- 238000005728 strengthening Methods 0.000 description 3
- 238000009864 tensile test Methods 0.000 description 3
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 238000005275 alloying Methods 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000010960 cold rolled steel Substances 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 150000001247 metal acetylides Chemical class 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000003672 processing method Methods 0.000 description 2
- 230000001737 promoting effect Effects 0.000 description 2
- 238000010791 quenching Methods 0.000 description 2
- 230000000171 quenching effect Effects 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- 238000005482 strain hardening Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000010792 warming Methods 0.000 description 2
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 229910052747 lanthanoid Inorganic materials 0.000 description 1
- 150000002602 lanthanoids Chemical class 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000029052 metamorphosis Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 229910001562 pearlite Inorganic materials 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 229910052706 scandium Inorganic materials 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/38—Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D22/00—Shaping without cutting, by stamping, spinning, or deep-drawing
- B21D22/20—Deep-drawing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D31/00—Other methods for working sheet metal, metal tubes, metal profiles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/01—Layered products comprising a layer of metal all layers being exclusively metallic
- B32B15/013—Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/18—Hardening; Quenching with or without subsequent tempering
- C21D1/19—Hardening; Quenching with or without subsequent tempering by interrupted quenching
- C21D1/20—Isothermal quenching, e.g. bainitic hardening
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0236—Cold rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/04—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
- C21D8/0421—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
- C21D8/0426—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
- C21D9/48—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals deep-drawing sheets
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/08—Ferrous alloys, e.g. steel alloys containing nickel
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/12—Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/14—Ferrous alloys, e.g. steel alloys containing titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/16—Ferrous alloys, e.g. steel alloys containing copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/58—Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/002—Bainite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/008—Martensite
Definitions
- the present invention relates to a high-strength steel sheet excellent in formability, a warm working method using the same, and a warm-worked automobile part.
- the high-strength steel sheet of the present invention includes a cold-rolled steel sheet, a hot-dip galvanized steel sheet, and an alloyed hot-dip galvanized steel sheet.
- Thin steel plates used for automobile framework parts are required to have high strength in order to achieve collision safety and improved fuel efficiency. Therefore, it is required to ensure press formability while increasing the strength of the steel plate to 980 MPa class or higher. It is known that in a high-strength steel sheet of 980 MPa class or higher, it is effective to use steel utilizing the TRIP effect to achieve both high strength and formability (for example, see Patent Document 1).
- Patent Document 1 discloses a high-strength steel sheet containing bainite or bainitic ferrite as a main phase and containing retained austenite ( ⁇ R ) in an area ratio of 3% or more.
- this high-strength steel sheet has a tensile strength at room temperature of 980 MPa or more and does not reach an elongation of 20%, and further improvement in mechanical properties (hereinafter also simply referred to as “characteristics”) is required.
- the present invention has been made by paying attention to the above circumstances, and its purpose is to secure a strength of 980 MPa or higher and a high-strength steel sheet having superior ductility (press workability) and warm working using the same. It is an object of the present invention to provide a method and an automotive part warm worked by the method.
- the invention described in claim 1 % By mass (hereinafter the same for chemical components) C: 0.05 to 0.3% Si: 1 to 3%, Mn: 0.5 to 3%, P: 0.1% or less (including 0%), S: 0.01% or less (including 0%), Al: 0.001 to 0.1%, N: 0.002 to 0.03% And the balance has a component composition consisting of iron and impurities,
- the area ratio for all tissues hereinafter the same for tissues
- Polygonal ferrite 40% or less (including 0%) Having an organization including
- the residual austenite has a C concentration (C ⁇ R ) of 0.5 to 1.2% by mass, This retained austenite is a high-strength steel sheet with excellent formability, characterized by the presence of 0.3% or more of martensite.
- the invention described in claim 2 Ingredient composition further Cr: 0.01 to 3% Mo: 0.01 to 1%, Cu: 0.01-2%, Ni: 0.01-2%,
- the invention according to claim 3 Ingredient composition further Ca: 0.0005 to 0.01%, Mg: 0.0005 to 0.01%,
- the invention according to claim 4 A high-strength steel sheet warm working method characterized in that the high-strength steel sheet according to any one of claims 1 to 3 is processed within 3600 seconds after being heated to 200 to 400 ° C.
- the invention described in claim 5 The automobile part processed by the method according to claim 4, wherein a region where the true strain applied during processing is 0.05 or more and a region where it is less than 0.05 are mixed, and the region where the true strain is maximum
- the difference in yield stress between the first part and the smallest part is 200 MPa or less.
- bainitic ferrite 50 to 90%
- retained austenite 3% or more
- martensite + the above retained austenite 10 to 50%
- polygonal ferrite 40% or less
- the residual austenite has a C concentration (C ⁇ R ) of 0.5 to 1.2% by mass, and the residual austenite is surrounded by martensite.
- the steel sheet of the present invention is based on the structure of TRIP steel as in the above-described prior art, and particularly contains a predetermined amount of martensite and a carbon concentration of 0.5 to 1.2% by mass.
- gamma R contains an area ratio of 3% or more, further, among the above gamma R, the point in which those surrounded by martensite is present at an area ratio of 0.3% or more, the prior art and differences is doing.
- “Bainitic ferrite” in the present invention has a substructure having a lath-like structure with a high dislocation density in the bainite structure and is free of carbides in the structure. It is clearly different, and is also different from the polygonal ferrite structure having a substructure with little or no dislocation density, or a quasi-polygonal ferrite structure having a substructure such as fine subgrains (Japan Iron and Steel Institute Fundamental Study Group) (See the publication “Steel Bainite Photobook-1”).
- bainitic ferrite having a uniform and fine structure, high ductility, high dislocation density and high strength as the parent phase.
- the amount of the bainitic ferrite structure needs to be 50 to 90% (preferably 60 to 90%, more preferably 70 to 90%) in terms of the area ratio with respect to the entire structure. is there. This is because the effect of the bainitic ferrite structure is effectively exhibited.
- the amount of the bainitic ferrite structure has, gamma are those defined by the balance of the R, so that can exhibit the desired properties, it is recommended to properly control.
- ⁇ contains 3% or more of retained austenite ( ⁇ R ) in area ratio with respect to the entire structure> ⁇ R is useful for improving the total elongation, and in order to effectively exhibit such an effect, the area ratio is 3% or more (preferably 5% or more, more preferably 10% or more) with respect to the entire structure. It is necessary to exist. However, if it is present in a large amount, the stretch flangeability deteriorates, so it is preferably 20% or less.
- Polygonal ferrite 40% or less (including 0%)> Polygonal ferrite is a soft phase and is effective in enhancing ductility, so it may be introduced in an area ratio of 40% or less that can guarantee strength. Preferably it is 30% or less.
- C ⁇ R ⁇ C concentration of residual austenite ( ⁇ R ) (C ⁇ R ): 0.5 to 1.2% by mass>
- C ⁇ R is, ⁇ R at the time of processing is an indicator that affects the stability of the transformation to martensite.
- C gamma R is too low, gamma for R is unstable, after stressing, since the deformation-induced martensitic transformation occurs prior to plastic deformation, not bulging property can be obtained.
- C gamma R is too high, gamma R becomes too stable, since the addition of machining work-induced martensitic transformation does not occur, not too bulging property can be obtained.
- C gamma R is required to be 0.5 to 1.2 mass%. Preferably, it is 0.6 to 1.1% by mass.
- ⁇ Residual austenite ( ⁇ R ) surrounded by martensite is 0.3% or more in area ratio with respect to the entire structure> Part of gamma R by covering martensite rigid, the remainder of the gamma R was expressed relatively early TRIP effect of deformation, the gamma R is deformed initially surrounded by martensite to the gamma R The concentration of strain is prevented, and the TRIP effect due to the processing-induced martensitic transformation is expressed in the later stage of deformation.
- ⁇ R having an appropriate stability can be present in a wide temperature range. The temperature range where elongation can be obtained is expanded.
- the tissue only may consist (martensite, bainitic ferrite, polygonal ferrite, gamma mixed structure of R), but does not impair the effects of the present invention, other heterologous You may have bainite as a structure
- tissue Although this structure can inevitably remain in the manufacturing process of the steel sheet of the present invention, the smaller the number, the better. It is recommended to control the area ratio to 5% or less, more preferably 3% or less with respect to the entire structure. Is done.
- each phase area ratio, gamma C concentration of R (C gamma R), and each method for measuring the area ratio of gamma R surrounded by martensite [Each phase area ratio, gamma C concentration of R (C gamma R), and each method for measuring the area ratio of gamma R surrounded by martensite]
- each phase area ratio, C concentration of ⁇ R (C ⁇ R) and will be described the method for measuring the area ratio of gamma R surrounded by martensite.
- the area ratio of the microstructure in the steel sheet is measured by repeller corrosion of the steel sheet, and by observing with a light microscope (magnification 1000 times), for example, the white area is defined as “martensite + retained austenite ( ⁇ R )”. did.
- gamma C concentration area ratio and gamma R of the R was measured by X-ray diffraction method from the chemical polishing (ISIJ Int.Vol.33 (1933), No. 7, p. 776). Further, the area ratio of polygonal ferrite was determined by corroding a steel plate with nital, and by observing with an optical microscope (magnification 400 times) a massive white region having an equivalent circle diameter of 5 ⁇ m or more was identified as polygonal ferrite.
- Area ratio of gamma R surrounded by martensite was determined as follows. First, SEM is combined with TSL's OIM (Orientation Imaging Microscope (registered trademark)) analysis system, EBSD (Electron Back Scatter Diffraction Pattern) measurement is performed at a pitch of 0.2 ⁇ m, FCC phase and BCC phase, and For the BCC phase, adjacent crystal grains and grain boundaries having an orientation difference of 15 ° or more are mapped. In this mapping, identifying the mapped region as FCC phase is defined as gamma R.
- OIM Orientation Imaging Microscope (registered trademark) analysis system
- EBSD Electro Back Scatter Diffraction Pattern
- a region where the area of the grain boundary having an orientation difference of 15 ° or more in the BCC phase is 5 measurement points or less and a region that could not be analyzed as the FCC phase or the BCC phase are defined as martensite and identified.
- the ⁇ R completely surrounded by the martensite thus identified was identified and defined as ⁇ R surrounded by the martensite, and the area ratio was determined.
- Component composition of the steel sheet of the present invention C: 0.05 to 0.3% C is an essential element for obtaining a desired main structure (bainitic ferrite + martensite + ⁇ R ) while ensuring high strength. It is necessary to add 05% or more (preferably 0.10% or more, more preferably 0.15% or more). However, if it exceeds 0.3%, it is not suitable for welding.
- Si 1 to 3%
- Si is, gamma R is as effective element for suppressing the generating is decomposed and carbide.
- Si is useful as a solid solution strengthening element.
- Si 1% or more Preferably it is 1.1% or more, More preferably, it is 1.2% or more.
- Si is added in excess of 3%, the formation of bainitic ferrite + martensite structure is hindered, the hot deformation resistance is increased, and the welds are easily embrittled. Since the surface property of the material is also adversely affected, the upper limit is made 3%.
- it is 2.5% or less, More preferably, it is 2% or less.
- Mn 0.5 to 3%
- Mn also exerts an effect of promoting transformation and promoting the formation of bainitic ferrite + martensite structure. Further stabilizes the gamma, an element necessary for obtaining a desired gamma R.
- it is necessary to add 0.5% or more.
- it is 0.7% or more, More preferably, it is 1% or more.
- adverse effects such as slab cracking are observed.
- it is 2.5% or less, More preferably, it is 2% or less.
- P 0.1% or less (including 0%) P is inevitably present as an impurity element, a good element be added to ensure the desired gamma R. However, when it exceeds 0.1%, secondary workability deteriorates. More preferably, it is 0.03% or less.
- S 0.01% or less (including 0%) S is also an element unavoidably present as an impurity element, forms sulfide inclusions such as MnS, and becomes a starting point of cracking and deteriorates workability. Therefore, it is 0.01% or less. More preferably, it is 0.005% or less.
- Al 0.001 to 0.1% Al, together with added as a deoxidizing agent, the Si coupled with, gamma R is as effective element for suppressing the generating is decomposed carbides. In order to exhibit such an action effectively, it is necessary to add 0.001% or more of Al. However, even if added excessively, the effect is saturated and is economically wasteful, so the upper limit is made 0.1%.
- N 0.002 to 0.03%
- N is an unavoidable element, but forms a precipitate when combined with carbonitride-forming elements such as Al and Nb, and contributes to strength improvement and microstructure refinement.
- austenite grain coarsening the N content is too low, as a result, the aspect ratio for gamma R which elongated lath structure becomes mainly increases.
- the N content is too high, casting becomes difficult with low carbon steel such as the material of the present invention, and therefore the production itself cannot be performed.
- the steel of the present invention basically contains the above components, and the balance is substantially iron and unavoidable impurities, but the following allowable components can be added as long as the effects of the present invention are not impaired. .
- Cr 0.01 to 3% Mo: 0.01 to 1%, Cu: 0.01-2%, Ni: 0.01-2%, B: 1 or more kinds of 0.00001 to 0.01%
- Cr 0.01% or more (more preferably 0.05% or more)
- Mo 0.01% or more (more preferably 0.02% or more)
- Cu 0.01% or more
- Ni 0.01% or more
- B 0.00001% or more (more preferably 0.0002%) It is recommended to add each of the above.
- Cr is added in an amount of 3%
- Mo is added in an amount of 1%
- Cu and Ni are added in an amount of more than 2%
- B is added in an amount exceeding 0.01%
- the above effect is saturated, which is economically wasteful.
- Cr is 2.0% or less
- Mo is 0.8% or less
- Cu is 1.0% or less
- Ni is 1.0% or less
- B is 0.0030% or less.
- Ca 0.0005 to 0.01%
- Mg 0.0005 to 0.01%
- REM One or more of 0.0001 to 0.01%
- These elements are effective elements for controlling the form of sulfide in steel and improving workability.
- examples of the REM (rare earth element) used in the present invention include Sc, Y, and lanthanoid.
- Ca and Mg are each added to 0.0005% or more (more preferably 0.001% or more), and REM is added to 0.0001% or more (more preferably 0.0002% or more). It is recommended to do.
- Ca and Mg are 0.003% or less
- REM is 0.006% or less.
- the steel sheet of the present invention is excellent in elongation and deep drawability even at room temperature, and may be cold-worked when forming into a part, but after heating to an appropriate temperature between 200-400 ° C It is particularly recommended to work within 3600 seconds (more preferably within 1200 seconds).
- the automobile parts processed by the warm processing method are excellent in elongation and deep drawability, and in particular, the true strain applied during the warm processing is 0.05 or more and less than 0.05.
- a region in which the difference in yield stress between the region having the maximum true strain and the region having the minimum true strain is 200 MPa or less is recommended.
- steel sheet containing gamma R is typically a low yield ratio and a high rate of work hardening in a low strain region. Therefore, in the region where the applied strain amount is small, the strength after applying the strain, in particular, the strain amount dependency of the yield stress becomes very large.
- the amount of strain applied varies depending on the part, and there is a region where strain is hardly applied partially. For this reason, a large strength difference may occur between a region where machining is performed and a region where machining is not performed in the component, and a strength distribution may be formed in the component.
- deformation and buckling occur due to the yielding of the low-strength region, so that the part having the lowest strength is rate-determined.
- gamma caused by yield stress lower steel containing R when introducing the gamma R, martensite is formed at the same time, is considered to introduce mobile dislocations in the matrix phase surrounding during metamorphosis. Therefore, if this dislocation movement is prevented even in a region where the amount of processing is small, the yield stress can be improved and the component strength can be increased.
- it is effective to heat the material to eliminate the movable dislocations or to stop it by strain aging such as solute carbon, which can increase the yield stress.
- gamma press molding is heated to a proper temperature between the steel sheet including the R 200 ⁇ 400 °C (warm working), the higher yield strength at small portion of strain, the intensity distribution in the part is reduced As a result, the component strength can be improved.
- a part having a difference in yield stress between the part having the maximum true strain and the part having the minimum true strain of 200 MPa or less is more suitable as an automobile part because the strength distribution in the part is small and the part strength is high.
- the present invention steel sheet, the steel satisfying the above ingredient composition, hot rolling and then after cold rolling, although manufactured by a heat treatment, in order to surround a part of the gamma R in martensite The manufacturing conditions may be set based on the following concept.
- the hot rolling finish temperature (rolling end temperature, FDT) is set to 900-1000 ° C, and the coiling temperature is set to 600-700 ° C, which is higher than before, thereby making the structure of hot rolled material coarser than before. by previously, the tissue becomes coarse, which is formed by the subsequent heat treatment process, also increases the size of resulting in gamma R.
- Heat treatment conditions Regarding heat treatment conditions, soaking in austenitic ( ⁇ + ⁇ ) two-phase region or ⁇ single-phase region, soaking at a predetermined cooling rate and supercooling, followed by a predetermined time at the supercooling temperature A desired tissue can be obtained by holding and austempering. It should be noted that plating or further alloying treatment may be performed without significantly degrading the desired structure and within the range not impairing the action of the present invention.
- the following heat treatment conditions are recommended. That is, in order to austenize the cold-rolled material after the cold rolling, it is (Ac ++ Ac3) or higher (preferably 0.5Ac1 + 0.5Ac3 or higher) at 950 ° C., which is a ( ⁇ + ⁇ ) two-phase region or a ⁇ single-phase region. After holding for 1800 seconds or less (preferably 900 seconds or less) in the temperature range below (preferably 930 ° C or less), 7 ° C / second or more (preferably 10 ° C / second or more, more preferably 15 ° C / second or more) In particular, at an average cooling rate of 20 ° C./second or more), it is rapidly cooled to a temperature range of 350 to 500 ° C.
- the temperature is kept at a supercooling temperature for 10 to 100 seconds (preferably 20 to 60 seconds) for austempering, and then cooled to room temperature.
- tissue of this invention can be obtained also on the following heat processing conditions. That is, in order to austenize the cold-rolled material after the cold rolling, it is (Ac ++ Ac3) or higher (preferably 0.5Ac1 + 0.5Ac3 or higher) at 950 ° C., which is a ( ⁇ + ⁇ ) two-phase region or a ⁇ single-phase region.
- Example 1 [Examination of composition and production conditions affecting mechanical properties of high-strength steel sheet]
- the influence of the mechanical properties of the high-strength steel sheet when the component composition and manufacturing conditions were changed was investigated.
- the slab After vacuum-melting the test steel consisting of each component composition shown in Table 1 to form a slab with a plate thickness of 30 mm, the slab was hot-rolled under each production condition shown in Table 2 and cold-rolled. Heat treatment was applied. Specifically, the slab is heated to 1200 ° C., hot-rolled to a sheet thickness tmm at a rolling finish temperature (FDT) T1 ° C., then placed in a holding furnace at a coiling temperature T2 ° C., and air-cooled. Simulated board winding.
- FDT rolling finish temperature
- this cold-rolled material is heated at 10 ° C./second to a soaking temperature T3 ° C., held at that temperature for 90 seconds, then cooled at a cooling rate R4 ° C./second, and held at a subcooling temperature T5 ° C. for t5 seconds. Then, it was air-cooled, or held at a subcooling temperature T5 ° C. for t5 seconds, and further held at a holding temperature T6 ° C. for t6 seconds, and then air-cooled.
- each phase area ratio, C concentration of ⁇ R (C ⁇ R), and, in martensite the area ratio of the enclosed gamma R was measured.
- the area ratio of gamma R surrounded by martensite was measured using those incorporating the OIM analysis system TSL manufactured in SEM made JEOL (model number JSM-5410).
- TS tensile strength
- EL total elongation
- TS and EL were measured using a JIS No. 5 test piece by a tensile test.
- the strain rate in the tensile test was 1 mm / second.
- Steel No. 1 to 3, 9 to 18, and 26 to 33 are all steels satisfying the range of the composition of the present invention, and are manufactured under the recommended manufacturing conditions.
- the present invention satisfies the requirements of the structure regulation of the present invention. It was a steel plate, and both the room temperature characteristics and the warm characteristics met the judgment criteria, and a high-strength steel sheet excellent in formability was obtained.
- Steel No. Nos. 4 to 8 and 19 to 25 are comparative steel plates that do not satisfy at least one of the component composition and the structure requirements defined in the present invention, and the room temperature characteristics and the warm characteristics do not satisfy the judgment criteria.
- FIG. 1 shows the results of EBSD measurement.
- the portion indicated by a gray or black small hexagon is ⁇ R
- the portion indicated by a white small hexagon is martensite
- the portion indicated by a white wide area is a matrix bay.
- Nitic ferrite is connected to each other, basically being in contact with the bainitic ferrite of the matrix.
- ⁇ R is finely divided and is often embedded (enclosed) in a fine martensite phase.
- Example 2 [Examination of appropriate temperature range for warm working]
- Example 3 [Examination of appropriate temperature range for warm working]
- Example 3 [Examination of the effect of processing temperature on strength variations in parts] Furthermore, in order to investigate the influence of the processing temperature on the variation in strength due to the strain distribution in the part obtained by processing the steel sheet of the present invention, 27, at each of room temperature and 300 ° C., with no processing giving true strain at all (true strain 0%), or after applying processing to give 5% true strain, again at room temperature A tensile test was performed to measure the yield stress (YS). The results are shown in Table 6.
- the parts obtained by warm working the steel sheet of the present invention have less variation in yield stress due to differences in the amount of work in the parts than parts obtained by cold working, It was confirmed that the component strength was improved.
- the present invention can be applied to cold-rolled steel sheets, hot-dip galvanized steel sheets, and alloyed hot-dip galvanized steel sheets, has high strength and excellent workability, and is suitable for, for example, automobile frame parts.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Abstract
Description
質量%で(以下、化学成分について同じ。)、
C :0.05~0.3%、
Si:1~3%、
Mn:0.5~3%、
P :0.1%以下(0%を含む)、
S :0.01%以下(0%を含む)、
Al:0.001~0.1%、
N :0.002~0.03%
を含み、残部が鉄および不純物からなる成分組成を有し、
全組織に対する面積率で(以下、組織について同じ。)、
ベイニティック・フェライト:50~90%、
残留オーステナイト:3%以上、
マルテンサイト+上記残留オーステナイト:10~50%、
ポリゴナル・フェライト:40%以下(0%を含む)
を含む組織を有し、
上記残留オーステナイトは、そのC濃度(CγR)が0.5~1.2質量%であり、
この残留オーステナイトのうち、マルテンサイトに囲まれたものが0.3%以上存在することを特徴とする成形性に優れた高強度鋼板である。
成分組成が、さらに、
Cr:0.01~3%
Mo:0.01~1%、
Cu:0.01~2%、
Ni:0.01~2%、
B :0.00001~0.01%の1種または2種以上
を含むものである請求項1に記載の成形性に優れた高強度鋼板である。
成分組成が、さらに、
Ca :0.0005~0.01%、
Mg :0.0005~0.01%、
REM:0.0001~0.01%の1種または2種以上
を含むものである請求項1または2に記載の成形性に優れた高強度鋼板である。
請求項1~3のいずれか1項に記載の高強度鋼板を、200~400℃に加熱後、3600秒以内に加工することを特徴とする高強度鋼板の温間加工方法である。
請求項4に記載の方法で加工された自動車部品であって、加工時に加えられた真ひずみが0.05以上の領域と0.05未満の領域とが混在し、上記真ひずみが最大の部位と最小の部位との間での降伏応力の差異が200MPa以下であることを特徴とする自動車部品である。
上述したとおり、本発明鋼板は、上記従来技術と同じくTRIP鋼の組織をベースとするものであるが、特に、マルテンサイトを所定量含有するとともに、炭素濃度0.5~1.2質量%のγRを面積率で3%以上含有し、さらに、上記γRのうち、マルテンサイトに囲まれているものが面積率で0.3%以上存在するものである点で、上記従来技術と相違している。
本発明における「ベイニティック・フェライト」とは、ベイナイト組織が転位密度の高いラス状組織を持った下部組織を有しており、組織内に炭化物を有していない点で、ベイナイト組織とは明らかに異なり、また、転位密度がないかあるいは極めて少ない下部組織を有するポリゴナル・フェライト組織、あるいは細かいサブグレイン等の下部組織を持った準ポリゴナル・フェライト組織とも異なっている(日本鉄鋼協会 基礎研究会 発行「鋼のベイナイト写真集-1」参照)。
γRは全伸びの向上に有用であり、このような作用を有効に発揮させるためには、全組織に対して面積率で3%以上(好ましくは5%以上、より好ましくは10%以上)存在することが必要である。ただし、多量に存在すると伸びフランジ性が劣化するので、20%以下とするのが好ましい。
強度確保のため、組織中にマルテンサイトを一部導入するが、マルテンサイトの量が多くなりすぎると成形性が確保できなくなるので、全組織に対してマルテンサイト+γRの合計面積率で10%以上(好ましくは12%以上、より好ましくは16%以上)50%以下に制限した。
ポリゴナル・フェライトは軟質相であり、延性を高めるのには有効であるため、強度が保証できる面積率40%以下の範囲で導入してもよい。好ましくは30%以下である。
CγRは、加工時にγRがマルテンサイトに変態する安定度に影響する指標である。CγRが低すぎると、γRが不安定なため、応力付与後、塑性変形する前に加工誘起マルテンサイト変態が起るため、張り出し成形性が得られなくなる。一方、CγRが高すぎると、γRが安定になりすぎて、加工を加えても加工誘起マルテンサイト変態が起らないため、やはり張り出し成形性が得られなくなる。十分な張り出し成形性を得るためには、CγRは0.5~1.2質量%とする必要がある。好ましくは0.6~1.1質量%である。
一部のγRを硬質のマルテンサイトで覆うことで、残りのγRは変形の比較的初期にTRIP効果を発現させ、マルテンサイトで囲まれたγRは変形初期には当該γRへのひずみの集中を防止し、変形後期に加工誘起マルテンサイト変態によるTRIP効果を発現させるようにする。このようにすることで、冷間成形では広いひずみ範囲でTRIP効果が発現するので高い伸びが得られ、温間成形では広い温度範囲で適正な安定度のγRを存在させることができるので高い伸びが得られる温度範囲が広がる。
ここで、各相の面積率、γRのC濃度(CγR)、および、マルテンサイトに囲まれたγRの面積率の各測定方法について説明する。
C:0.05~0.3%
Cは、高強度を確保しつつ、所望の主要組織(ベイニティック・フェライト+マルテンサイト+γR)を得るために必須の元素であり、このような作用を有効に発揮させるためには0.05%以上(好ましくは0.10%以上、より好ましくは0.15%以上)添加する必要がある。ただし、0.3%超では溶接に適さない。
Siは、γRが分解して炭化物が生成するのを有効に抑制する元素である。特にSiは、固溶強化元素としても有用である。このような作用を有効に発揮させるためには、Siを1%以上添加する必要がある。好ましくは1.1%以上、より好ましくは1.2%以上である。ただし、Siを3%を超えて添加すると、ベイニティック・フェライト+マルテンサイト組織の生成が阻害される他、熱間変形抵抗が高くなって溶接部の脆化を起こしやすくなり、さらには鋼板の表面性状にも悪影響を及ぼすので、その上限を3%とする。好ましくは2.5%以下、より好ましくは2%以下である。
Mnは、固溶強化元素として有効に作用する他、変態を促進してベイニティック・フェライト+マルテンサイト組織の生成を促進する作用も発揮する。さらにはγを安定化し、所望のγRを得るために必要な元素である。このような作用を有効に発揮させるためには、0.5%以上添加することが必要である。好ましくは0.7%以上、より好ましくは1%以上である。ただし、3%を超えて添加すると、鋳片割れが生じる等の悪影響が見られる。好ましくは2.5%以下、より好ましくは2%以下である。
Pは不純物元素として不可避的に存在するが、所望のγRを確保するために添加してもよい元素である。ただし、0.1%を超えて添加すると二次加工性が劣化する。より好ましくは0.03%以下である。
Sも不純物元素として不可避的に存在し、MnS等の硫化物系介在物を形成し、割れの起点となって加工性を劣化させる元素である。そのため0.01%以下とする。より好ましくは0.005%以下である。
Alは、脱酸剤として添加されるとともに、上記Siと相俟って、γRが分解して炭化物が生成するのを有効に抑制する元素である。このような作用を有効に発揮させるためには、Alを0.001%以上添加する必要がある。ただし、過剰に添加しても効果が飽和し経済的に無駄であるので、その上限を0.1%とする。
Nは、不可避的に存在する元素であるが、AlやNbなどの炭窒化物形成元素と結びつくことで析出物を形成し、強度向上や組織の微細化に寄与する。N含有量が少なすぎるとオーステナイト粒が粗大化し、その結果、伸長したラス状組織が主体になるためγRのアスペクト比が大きくなる。一方、N含有量が多すぎると、本発明の材料のような低炭素鋼では鋳造が困難になるため、製造自体ができなくなる。
Mo:0.01~1%、
Cu:0.01~2%、
Ni:0.01~2%、
B :0.00001~0.01%の1種または2種以上
これらの元素は、鋼の強化元素として有用であるとともに、γRの安定化や所定量の確保に有効な元素である。このような作用を有効に発揮させるためには、Cr:0.01%以上(より好ましくは0.05%以上)、Mo:0.01%以上(より好ましくは0.02%以上)、Cu:0.01%以上(より好ましくは0.1%以上)、Ni:0.01%以上(より好ましくは0.1%以上)、B:0.00001%以上(より好ましくは0.0002%以上)を、それぞれ添加することが推奨される。ただし、Crは3%、Moは1%、CuおよびNiはそれぞれ2%、Bは0.01%を超えて添加しても上記効果が飽和してしまい、経済的に無駄である。より好ましくはCr:2.0%以下、Mo:0.8%以下、Cu:1.0%以下、Ni:1.0%以下、B:0.0030%以下である。
Mg :0.0005~0.01%、
REM:0.0001~0.01%の1種または2種以上
これらの元素は、鋼中硫化物の形態を制御し、加工性向上に有効な元素である。ここで、本発明に用いられるREM(希土類元素)としては、Sc、Y、ランタノイド等が挙げられる。上記作用を有効に発揮させるためには、CaおよびMgはそれぞれ0.0005%以上(より好ましくは0.001%以上)、REMは0.0001%以上(より好ましくは0.0002%以上)添加することが推奨される。ただし、CaおよびMgはそれぞれ0.01%、REMは0.01%を超えて添加しても上記効果が飽和してしまい、経済的に無駄である。より好ましくはCaおよびMgは0.003%以下、REMは0.006%以下である。
上記本発明鋼板は、常温下にても伸びおよび深絞り性に優れているので、部品への成形に当たり冷間加工してもよいが、200~400℃の間の適正な温度に加熱した後、3600秒以内(より好ましくは1200秒以内)に加工するのが特に推奨される。
上記温間加工方法で加工された自動車部品は、伸びおよび深絞り性に優れるものであるが、特に、上記温間加工時に加えられた真ひずみが0.05以上の領域と0.05未満の領域とが混在し、上記真ひずみが最大の部位と最小の部位との間での降伏応力の差異が200MPa以下であるものが推奨される。
本発明鋼板は、上記成分組成を満足する鋼材を、熱間圧延し、ついで冷間圧延した後、熱処理を行って製造するが、γRの一部をマルテンサイトで囲むようにするためには、以下の考え方で製造条件を設定すればよい。すなわち、オーステンパ中のベイナイト変態を適切な段階に制御して未変態オーステナイトへの炭素濃化を適正なレベルに制御し、かつ、未変態オーステナイトのサイズを粗大にしておくことで、オーステンパ後の冷却中に未変態オーステナイトの一部分がマルテンサイト変態し、そのマルテンサイト中に未変態オーステナイトが残留するといったメカニズムにより、オーステンパ終了後の冷却中に、マルテンサイトがγRを囲むような形で形成される。この際にオーステナイト中の炭素含有量が少なすぎると冷却中にマルテンサイト変態する割合が多くなりγR量が確保できない。一方、炭素含有量が多すぎると未変態オーステナイトの大半がγRとして残存するようになるため、マルテンサイトに囲まれるγR量が少なくなる。そして、γRのサイズを大きくするためには、初期組織を粗大にしておく必要がある。
そのため、熱間圧延の仕上げ温度(圧延終了温度、FDT)を900~1000℃、巻取り温度を600~700℃と従来より高めの温度とすることで、熱延材の組織を従来より粗大にしておくことにより、その後の熱処理プロセスで形成される組織が粗大になり、結果的にγRのサイズも大きくなる。
また、冷間圧延の際の冷延率を10~30%(より好ましくは10~20%)と小さくすることで、その後の焼鈍工程での加熱時における再結晶組織を粗くし、さらに冷却時における逆変態組織が粗くなるようにする。
熱処理条件については、オーステナイト化するため(γ+α)2相域またはγ単相域のいずれかの温度域で均熱し、所定の冷却速度で急冷して過冷した後、その過冷温度で所定時間保持してオーステンパ処理することで所望の組織を得ることができる。なお、所望の組織を著しく分解させることなく、本発明の作用を損なわない範囲で、めっき、さらには合金化処理してもよい。
〔高強度鋼板の機械的特性に及ぼす成分組成および製造条件の検討〕
本実施例では、成分組成および製造条件を変化させた場合における高強度鋼板の機械的特性の影響について調査した。表1に示す各成分組成からなる供試鋼を真空溶製し、板厚30mmのスラブとした後、当該スラブを表2に示す各製造条件にて熱間圧延し、冷間圧延した後、熱処理を施した。具体的には、上記スラブを1200℃に加熱し、圧延終了温度(FDT)T1℃で板厚tmmに熱間圧延した後、巻取り温度T2℃で保持炉に入れ、空冷することで熱延板の巻取りを模擬した。その後、冷延率r%で冷間圧延して板厚1.2mmの冷延板とした。そして、この冷延材を、10℃/秒で均熱温度T3℃まで加熱し、その温度で90秒保持した後、冷却速度R4℃/秒で冷却し、過冷温度T5℃でt5秒保持した後、空冷するか、もしくは、過冷温度T5℃でt5秒保持した後、さらに保持温度T6℃でt6秒保持したのち、空冷した。
〔温間加工の適正温度範囲の検討〕
つぎに、本発明鋼板を温間加工する場合の適正温度範囲を調査するため、鋼No.27を用いて、150~450℃の間で加熱温度を順次変更して温間特性を測定した。その結果を表5に示す。なお、同表における温度300℃の結果は、上記表4の鋼No.27の温間特性を再掲したものである。
〔部品内の強度ばらつきに対する加工温度の影響の検討〕
さらに、本発明鋼板を加工して得られた部品内のひずみ分布による強度のばらつきに対する加工温度の影響を調査するために、鋼No.27を用いて、室温および300℃のそれぞれで、真ひずみを全く付与しない無加工のまま(真ひずみ0%)で、または、真ひずみを5%付与する加工を施した後に、再度、室温で引っ張り試験を行って降伏応力(YS)を測定した。その結果を表6に示す。
本出願は、2010年11月18日出願の日本特許出願(特願2010-258152)、2011年8月22日出願の日本特許出願(特願2011-180617)に基づくものであり、その内容はここに参照として取り込まれる。
Claims (5)
- 質量%で(以下、化学成分について同じ。)、
C :0.05~0.3%、
Si:1~3%、
Mn:0.5~3%、
P :0.1%以下(0%を含む)、
S :0.01%以下(0%を含む)、
Al:0.001~0.1%、
N :0.002~0.03%
を含み、残部が鉄および不純物からなる成分組成を有し、
全組織に対する面積率で(以下、組織について同じ。)、
ベイニティック・フェライト:50~90%、
残留オーステナイト:3%以上、
マルテンサイト+上記残留オーステナイト:10~50%、
ポリゴナル・フェライト:40%以下(0%を含む)
を含む組織を有し、
上記残留オーステナイトは、そのC濃度(CγR)が0.5~1.2質量%であり、
この残留オーステナイトのうち、マルテンサイトに囲まれたものが0.3%以上存在することを特徴とする成形性に優れた高強度鋼板。 - 成分組成が、さらに、
Cr:0.01~3%
Mo:0.01~1%、
Cu:0.01~2%、
Ni:0.01~2%、
B :0.00001~0.01%の1種または2種以上
を含むものである請求項1に記載の成形性に優れた高強度鋼板。 - 成分組成が、さらに、
Ca :0.0005~0.01%、
Mg :0.0005~0.01%、
REM:0.0001~0.01%の1種または2種以上
を含むものである請求項1または2に記載の成形性に優れた高強度鋼板。 - 請求項1~3のいずれか1項に記載の高強度鋼板を、200~400℃に加熱後、3600秒以内に加工することを特徴とする高強度鋼板の温間加工方法。
- 請求項4に記載の方法で加工された自動車部品であって、加工時に加えられた真ひずみが0.05以上の領域と0.05未満の領域とが混在し、上記真ひずみが最大の部位と最小の部位との間での降伏応力の差異が200MPa以下であることを特徴とする自動車部品。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP11840864.0A EP2641990B1 (en) | 2010-11-18 | 2011-11-16 | Highly formable high-strength steel sheet, warm working method, and warm-worked automotive part |
CN201180055275.XA CN103210109B (zh) | 2010-11-18 | 2011-11-16 | 成形性优异的高强度钢板、温加工方法和经温加工的汽车零件 |
KR1020137012648A KR101532491B1 (ko) | 2010-11-18 | 2011-11-16 | 성형성이 우수한 고강도 강판, 온간 가공 방법 및 온간 가공된 자동차 부품 |
US13/988,210 US20130259734A1 (en) | 2010-11-18 | 2011-11-16 | Highly formable high-strength steel sheet, warm working method, and warm-worked automobile part |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010-258152 | 2010-11-18 | ||
JP2010258152 | 2010-11-18 | ||
JP2011180617A JP5662903B2 (ja) | 2010-11-18 | 2011-08-22 | 成形性に優れた高強度鋼板、温間加工方法、および温間加工された自動車部品 |
JP2011-180617 | 2011-08-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012067160A1 true WO2012067160A1 (ja) | 2012-05-24 |
Family
ID=46084083
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/076442 WO2012067160A1 (ja) | 2010-11-18 | 2011-11-16 | 成形性に優れた高強度鋼板、温間加工方法、および温間加工された自動車部品 |
Country Status (6)
Country | Link |
---|---|
US (1) | US20130259734A1 (ja) |
EP (1) | EP2641990B1 (ja) |
JP (1) | JP5662903B2 (ja) |
KR (1) | KR101532491B1 (ja) |
CN (1) | CN103210109B (ja) |
WO (1) | WO2012067160A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013171884A1 (ja) * | 2012-05-17 | 2013-11-21 | 新日鐵住金株式会社 | 金属材料の塑性加工方法及び塑性加工装置 |
EP2821517A4 (en) * | 2012-02-29 | 2015-11-04 | Kobe Steel Ltd | HIGH STRENGTH STEEL SHEET HAVING EXCELLENT HOT FORMING CAPABILITY AND METHOD OF MANUFACTURING THE SAME |
JP7311068B1 (ja) * | 2022-01-28 | 2023-07-19 | Jfeスチール株式会社 | 亜鉛めっき鋼板および部材、ならびに、それらの製造方法 |
WO2023145146A1 (ja) * | 2022-01-28 | 2023-08-03 | Jfeスチール株式会社 | 亜鉛めっき鋼板および部材、ならびに、それらの製造方法 |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013005714A1 (ja) * | 2011-07-06 | 2013-01-10 | 新日鐵住金株式会社 | 冷延鋼板の製造方法 |
EP2735620B1 (en) | 2011-07-21 | 2016-05-25 | Kabushiki Kaisha Kobe Seiko Sho | Method for producing hot-pressed steel member |
JP5636347B2 (ja) | 2011-08-17 | 2014-12-03 | 株式会社神戸製鋼所 | 室温および温間での成形性に優れた高強度鋼板およびその温間成形方法 |
JP5860354B2 (ja) | 2012-07-12 | 2016-02-16 | 株式会社神戸製鋼所 | 降伏強度と成形性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法 |
JP6348435B2 (ja) * | 2015-02-27 | 2018-06-27 | 株式会社神戸製鋼所 | 高強度高延性鋼板 |
EP3346019B1 (en) * | 2015-09-04 | 2019-12-25 | JFE Steel Corporation | High strength thin steel sheet and method for manufacturing same |
US11492687B2 (en) * | 2018-03-30 | 2022-11-08 | Nippon Steel Corporation | Steel sheet |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003019319A (ja) | 2001-07-09 | 2003-01-21 | Samii Kk | パチンコ遊技機の遊技盤固定保持装置 |
JP2004190050A (ja) | 2002-12-06 | 2004-07-08 | Kobe Steel Ltd | 温間加工による伸び及び伸びフランジ性に優れた高強度鋼板、温間加工方法、及び温間加工された高強度部材または高強度部品 |
JP2010065272A (ja) * | 2008-09-10 | 2010-03-25 | Jfe Steel Corp | 高強度鋼板およびその製造方法 |
JP2010116593A (ja) * | 2008-11-12 | 2010-05-27 | Kobe Steel Ltd | 高強度合金化溶融亜鉛めっき鋼板の製造方法および高強度合金化溶融亜鉛めっき鋼板 |
JP2010258152A (ja) | 2009-04-23 | 2010-11-11 | Elpida Memory Inc | スタンダードセルおよび半導体装置 |
JP2011180617A (ja) | 2011-06-09 | 2011-09-15 | Hoya Corp | 光学装置 |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60181230A (ja) * | 1984-02-29 | 1985-09-14 | Nippon Steel Corp | 加工性に優れた高張力熱延鋼板の製造方法 |
FR2649415B1 (fr) | 1989-07-07 | 1991-10-31 | Gautier Jacques | Procede de fabrication de pieces a hautes caracteristiques mecaniques a partir d'acier non traite |
EP1493832B1 (en) * | 2000-02-23 | 2006-11-22 | JFE Steel Corporation | High tensile strength hot-rolled steel sheet having superior strain aging hardenability and method for producing the same |
JP4051999B2 (ja) * | 2001-06-19 | 2008-02-27 | Jfeスチール株式会社 | 形状凍結性と成形後の耐久疲労特性に優れた高張力熱延鋼板およびその製造方法 |
EP1553202A1 (en) * | 2004-01-09 | 2005-07-13 | Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) | Ultra-high strength steel sheet having excellent hydrogen embrittlement resistance, and method for manufacturing the same |
EP1676932B1 (en) * | 2004-12-28 | 2015-10-21 | Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) | High strength thin steel sheet having high hydrogen embrittlement resisting property |
JP4088316B2 (ja) * | 2006-03-24 | 2008-05-21 | 株式会社神戸製鋼所 | 複合成形性に優れた高強度熱延鋼板 |
CN100510143C (zh) * | 2006-05-29 | 2009-07-08 | 株式会社神户制钢所 | 延伸凸缘性优异的高强度钢板 |
JP5030200B2 (ja) * | 2006-06-05 | 2012-09-19 | 株式会社神戸製鋼所 | 伸び、伸びフランジ性および溶接性に優れた高強度鋼板 |
JP4732962B2 (ja) | 2006-06-09 | 2011-07-27 | 株式会社神戸製鋼所 | 合金化溶融亜鉛めっき鋼板の強度−延性バランスのバラツキ改善方法 |
JP5040197B2 (ja) * | 2006-07-10 | 2012-10-03 | Jfeスチール株式会社 | 加工性に優れ、かつ熱処理後の強度靭性に優れた熱延薄鋼板およびその製造方法 |
CA2701903C (en) | 2007-10-10 | 2017-02-28 | Nucor Corporation | Complex metallographic structured steel and method of manufacturing same |
JP5365112B2 (ja) * | 2008-09-10 | 2013-12-11 | Jfeスチール株式会社 | 高強度鋼板およびその製造方法 |
JP5418047B2 (ja) * | 2008-09-10 | 2014-02-19 | Jfeスチール株式会社 | 高強度鋼板およびその製造方法 |
JP5636347B2 (ja) | 2011-08-17 | 2014-12-03 | 株式会社神戸製鋼所 | 室温および温間での成形性に優れた高強度鋼板およびその温間成形方法 |
-
2011
- 2011-08-22 JP JP2011180617A patent/JP5662903B2/ja active Active
- 2011-11-16 KR KR1020137012648A patent/KR101532491B1/ko active IP Right Grant
- 2011-11-16 US US13/988,210 patent/US20130259734A1/en not_active Abandoned
- 2011-11-16 EP EP11840864.0A patent/EP2641990B1/en not_active Revoked
- 2011-11-16 CN CN201180055275.XA patent/CN103210109B/zh active Active
- 2011-11-16 WO PCT/JP2011/076442 patent/WO2012067160A1/ja active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003019319A (ja) | 2001-07-09 | 2003-01-21 | Samii Kk | パチンコ遊技機の遊技盤固定保持装置 |
JP2004190050A (ja) | 2002-12-06 | 2004-07-08 | Kobe Steel Ltd | 温間加工による伸び及び伸びフランジ性に優れた高強度鋼板、温間加工方法、及び温間加工された高強度部材または高強度部品 |
JP2010065272A (ja) * | 2008-09-10 | 2010-03-25 | Jfe Steel Corp | 高強度鋼板およびその製造方法 |
JP2010116593A (ja) * | 2008-11-12 | 2010-05-27 | Kobe Steel Ltd | 高強度合金化溶融亜鉛めっき鋼板の製造方法および高強度合金化溶融亜鉛めっき鋼板 |
JP2010258152A (ja) | 2009-04-23 | 2010-11-11 | Elpida Memory Inc | スタンダードセルおよび半導体装置 |
JP2011180617A (ja) | 2011-06-09 | 2011-09-15 | Hoya Corp | 光学装置 |
Non-Patent Citations (4)
Title |
---|
"Atlas for Bainitic Microstructures", vol. 1, THE IRON AND STEEL INSTITUTE OF JAPAN |
ISIJ INT., vol. 33, no. 7, 1933, pages 776 |
K SUGIMOTO; SM SONG; J. SAKAGUCHI; A. NAGASAKA; T. KASHIMA: "Warm Formability of Ultra High-strength Low Alloy TRIP-aided Sheet Steels With Bainitic Ferrite Matrix", TETSU TO HAGANE-JOURNAL OF THE IRON AND STEEL INSTITUTE OF JAPAN, vol. 91, no. 2, 2005, pages 34 - 40 |
See also references of EP2641990A4 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2821517A4 (en) * | 2012-02-29 | 2015-11-04 | Kobe Steel Ltd | HIGH STRENGTH STEEL SHEET HAVING EXCELLENT HOT FORMING CAPABILITY AND METHOD OF MANUFACTURING THE SAME |
WO2013171884A1 (ja) * | 2012-05-17 | 2013-11-21 | 新日鐵住金株式会社 | 金属材料の塑性加工方法及び塑性加工装置 |
US10010917B2 (en) | 2012-05-17 | 2018-07-03 | Nippon Steel & Sumitomo Metal Corporation | Plastic working method of metals and plastic working apparatus |
JP7311068B1 (ja) * | 2022-01-28 | 2023-07-19 | Jfeスチール株式会社 | 亜鉛めっき鋼板および部材、ならびに、それらの製造方法 |
WO2023145146A1 (ja) * | 2022-01-28 | 2023-08-03 | Jfeスチール株式会社 | 亜鉛めっき鋼板および部材、ならびに、それらの製造方法 |
Also Published As
Publication number | Publication date |
---|---|
US20130259734A1 (en) | 2013-10-03 |
EP2641990B1 (en) | 2019-03-20 |
JP2012122130A (ja) | 2012-06-28 |
EP2641990A1 (en) | 2013-09-25 |
KR101532491B1 (ko) | 2015-06-29 |
JP5662903B2 (ja) | 2015-02-04 |
CN103210109A (zh) | 2013-07-17 |
KR20130101546A (ko) | 2013-09-13 |
CN103210109B (zh) | 2016-07-06 |
EP2641990A4 (en) | 2016-07-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5667472B2 (ja) | 室温および温間での深絞り性に優れた高強度鋼板およびその温間加工方法 | |
JP5860308B2 (ja) | 温間成形性に優れた高強度鋼板およびその製造方法 | |
JP5662902B2 (ja) | 成形性に優れた高強度鋼板、温間加工方法、および温間加工された自動車部品 | |
JP5662903B2 (ja) | 成形性に優れた高強度鋼板、温間加工方法、および温間加工された自動車部品 | |
JP5667471B2 (ja) | 温間での深絞り性に優れた高強度鋼板およびその温間加工方法 | |
JP5824283B2 (ja) | 室温および温間での成形性に優れた高強度鋼板 | |
JP5487984B2 (ja) | 曲げ性に優れた高強度冷延鋼板およびその製造方法 | |
KR101626233B1 (ko) | 고항복비 고강도 냉연 강판과 그 제조 방법 | |
JP2013227603A (ja) | 伸びと穴拡げ性と低温靭性に優れた高強度熱延鋼板及びその製造方法 | |
JP5636347B2 (ja) | 室温および温間での成形性に優れた高強度鋼板およびその温間成形方法 | |
JP2012240095A (ja) | 高強度鋼板の温間成形方法 | |
JP2012153957A (ja) | 延性に優れる高強度冷延鋼板およびその製造方法 | |
JP5333021B2 (ja) | 延性、溶接性及び表面性状に優れた高強度鋼板及びその製造方法 | |
JP2011080106A (ja) | 伸びと伸びフランジ性のバランスに優れた高強度冷延鋼板 | |
JP2009174019A (ja) | 焼き付け硬化特性と常温遅時効性に優れた低降伏比型高強度冷延鋼板とその製造方法 | |
JP6473022B2 (ja) | 成形性に優れた高強度鋼板 | |
JP6472692B2 (ja) | 成形性に優れた高強度鋼板 | |
JP6434348B2 (ja) | 加工性に優れた高強度鋼板 | |
WO2015194572A1 (ja) | 衝突特性に優れる超高強度鋼板 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11840864 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20137012648 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011840864 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13988210 Country of ref document: US |