[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2012063532A1 - Arrival angle calculation device - Google Patents

Arrival angle calculation device Download PDF

Info

Publication number
WO2012063532A1
WO2012063532A1 PCT/JP2011/068281 JP2011068281W WO2012063532A1 WO 2012063532 A1 WO2012063532 A1 WO 2012063532A1 JP 2011068281 W JP2011068281 W JP 2011068281W WO 2012063532 A1 WO2012063532 A1 WO 2012063532A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
output
arrival angle
calculation
component
Prior art date
Application number
PCT/JP2011/068281
Other languages
French (fr)
Japanese (ja)
Inventor
大滝 幸夫
高井 大輔
武 種村
崇 佐野
Original Assignee
アルプス電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アルプス電気株式会社 filed Critical アルプス電気株式会社
Priority to JP2012542831A priority Critical patent/JP5677452B2/en
Priority to CN201180051904.1A priority patent/CN103180751B/en
Publication of WO2012063532A1 publication Critical patent/WO2012063532A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/02Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using radio waves
    • G01S3/14Systems for determining direction or deviation from predetermined direction
    • G01S3/46Systems for determining direction or deviation from predetermined direction using antennas spaced apart and measuring phase or time difference between signals therefrom, i.e. path-difference systems
    • G01S3/48Systems for determining direction or deviation from predetermined direction using antennas spaced apart and measuring phase or time difference between signals therefrom, i.e. path-difference systems the waves arriving at the antennas being continuous or intermittent and the phase difference of signals derived therefrom being measured

Definitions

  • the present invention relates to an arrival angle calculation device that detects the phase of an incoming radio wave and uses it to calculate the radio wave arrival angle.
  • Patent Document 1 proposes an arrival direction estimation device with a reduced operation scale.
  • the arrival direction coefficient is calculated by the complex conjugate circuit and the multiplication circuit for the reception signals received by the two antennas, and the arc tangent calculation and the inverse cosine are performed in the arrival direction detection circuit. By calculating, the arrival direction of the received wave is estimated.
  • Patent Document 1 adopts a configuration in which the power of the arrival direction vector between one slot is compared with a threshold value and the arrival direction is updated when the threshold value is larger than the threshold value. It may not be possible to accurately detect waves and update the direction of arrival. For example, when the background level of the received wave is high, the power of the received wave may be greater than the threshold value regardless of the signal level of the desired wave. In such a situation, since the arrival direction is calculated and updated even in the background level, the arrival direction cannot be estimated correctly.
  • the present invention has been made in view of such a point, and an object thereof is to provide an arrival angle calculation apparatus that can suppress the influence of the background level of a received wave and can calculate the arrival angle with high accuracy.
  • An arrival angle calculation apparatus includes a plurality of antennas that receive radio waves transmitted from a certain position, a plurality of reception signal processing units provided corresponding to the antennas, and a plurality of reception signal processing units.
  • An arrival angle calculation unit that calculates an arrival angle of the radio wave by taking in a signal component that is the same information unit between the reception signal processing units from the output signal that is output, and each reception signal processing unit corresponds to the A reception unit that converts a radio wave received by an antenna into a reception signal having phase information of the radio wave and outputs the signal, a correlation processing unit that performs correlation processing on the reception signal output from the reception unit, and the correlation-processed reception signal Detected by the peak detection unit so that a signal component that is the same unit of information is extracted from the output signal of the correlation processing unit and the received signal processing unit from the output signal of the correlation processing unit.
  • a timing control unit that controls the timing of capturing the output signal output from the correlation processing unit in accordance with the peak timing, and the timing control unit includes power in a peak period in a period corresponding to the information unit. If the ratio of the power to the power in the period excluding the peak period is greater than a threshold value, the signal from the correlation processing unit is output to the arrival angle calculation unit.
  • the ratio of the power in the peak period and the power in the other periods is compared with a threshold value, and when the ratio is larger than the threshold value, the arrival angle is calculated. Even if the signal level is high, it is possible to accurately detect the peak of the desired wave and calculate the arrival angle. That is, since the arrival angle is not calculated from a portion other than the desired wave, the calculation accuracy of the arrival angle can be improved.
  • the timing control unit a period in the power of excluding the peak period in the period corresponding to the information unit to the sum .SIGMA.P 1 power peak periods in the period corresponding to the information unit
  • the ratio ⁇ P 1 / ⁇ P 2 with respect to the sum ⁇ P 2 is compared with a threshold value.
  • the signal from the correlation processing unit is sent to the arrival angle calculation unit. It may be output.
  • the arrival angle calculation unit includes a complex conjugate unit that takes a complex conjugate of a signal from a timing control unit of one received signal processing unit corresponding to one antenna, and the complex conjugate unit.
  • a complex multiplier that multiplies the output and the signal from the timing control unit of the other received signal processing unit corresponding to the other antenna, and performs an arctangent calculation using the output of the complex multiplier, and An arctangent that calculates the phase difference of the received radio wave, an averaging unit that averages the output of the arctangent, and an inverse trigonometric function calculation using the output of the averaging unit to convert to an arrival angle And an arrival angle conversion unit.
  • the arrival angle calculation unit calculates each phase difference when the calculated phase difference is distributed around + 180 ° and / or ⁇ 180 ° on the IQ plane.
  • the arrival angle may be calculated by averaging after rotating by a predetermined angle, subtracting the predetermined angle from the average value, and performing an inverse trigonometric function calculation.
  • the arrival angle calculation is performed by rotating the phase difference by a predetermined angle. The calculation accuracy does not decrease. As a result, the calculation accuracy of the arrival angle can be sufficiently increased.
  • the number of phase differences larger than + 90 ° or smaller than ⁇ 90 ° on the IQ plane is larger than the number of phase differences smaller than + 90 ° and larger than ⁇ 90 °. In this case, it may be determined that the distribution is in the vicinity of + 180 ° and / or ⁇ 180 ° on the IQ plane.
  • the predetermined angle may be any of + 90 °, ⁇ 90 °, + 180 °, or ⁇ 180 °.
  • the arrival angle calculation apparatus of the present invention when the I component of the output of the complex multiplier is negative and the absolute value of the I component of the output of the complex multiplier is sufficiently larger than the absolute value of the Q component, A phase difference corrected by performing an arctangent calculation in which the relationship between the I component and the Q component is reversed after inverting the sign of the Q component, averaging the corrected phase difference, and calculating the average value Alternatively, 90 ° may be subtracted from the above and inverse trigonometric function calculation may be performed to convert the angle of arrival. According to this configuration, when the phase difference is distributed in the phase difference region where the calculation accuracy of the arrival angle tends to decrease, the arrival angle calculation is performed by rotating the phase difference by a predetermined angle. The calculation accuracy does not decrease. As a result, the calculation accuracy of the arrival angle can be sufficiently increased.
  • a phase difference corrected by performing an arc tangent calculation in which the relationship between the I component and the Q component is exchanged after inverting the sign of the I component, averaging the corrected phase difference, and calculating the average value 90 ° may be added to perform inverse trigonometric function calculation to convert the angle to the arrival angle.
  • the arrival angle calculation is performed by rotating the phase difference by a predetermined angle. The calculation accuracy does not decrease. As a result, the calculation accuracy of the arrival angle can be sufficiently increased.
  • the arrival angle calculation apparatus of the present invention when the I component of the output of the complex multiplier is negative and the absolute value of the I component of the output of the complex multiplier is sufficiently larger than the absolute value of the Q component, Calculate the phase difference corrected by performing the arctangent calculation after inverting the sign of the I component and the sign of the Q component, averaging the corrected phase difference, and subtracting 180 ° from the average value
  • An inverse trigonometric function calculation may be performed to convert to an arrival angle.
  • the arrival angle calculation when the phase difference is distributed in the phase difference region where the calculation accuracy of the arrival angle tends to decrease, the arrival angle calculation is performed by rotating the phase difference by a predetermined angle. The calculation accuracy does not decrease. As a result, the calculation accuracy of the arrival angle can be sufficiently increased.
  • the arrival angle calculation device of the present invention the ratio between the power in the peak period and the power in the remaining period other than the peak period is obtained, and the obtained ratio is compared with the threshold value. Since the arrival angle is calculated when it is large, the peak of the desired wave can be accurately detected and the arrival angle can be calculated even when the signal level of the received wave other than the desired wave is high. That is, since the arrival angle is not calculated from a portion other than the desired wave, the calculation accuracy of the arrival angle can be improved.
  • DSSS specific structure
  • FIG. 6 is a schematic diagram showing an outline of arrival angle calculation when the phase difference is near + 180 ° or ⁇ 180 °.
  • FIG. 6 is a schematic diagram showing an outline of arrival angle calculation when the phase difference is near + 180 ° or ⁇ 180 °.
  • FIG. 10 is a flowchart for calculating an arrival angle when the phase difference is near + 180 ° or ⁇ 180 °. It is a block diagram which shows another example of an arrival angle calculation part. It is a block diagram which shows the specific structure (OFDM) of the arrival angle calculation apparatus which concerns on embodiment.
  • A It is a schematic diagram which shows the structure of the symbol in OFDM.
  • B It is a schematic diagram which shows the mode of the correlation process of an OFDM symbol sequence.
  • (A) (b) It is a figure which shows the example of the output waveform from an electric power calculation part.
  • C It is a figure which shows the example of the output waveform from an addition part.
  • D It is a figure which shows the example of the output waveform from each part of an arctangent part. It is a schematic diagram which shows the structural example of the capsule endoscope system using an arrival angle calculation apparatus.
  • FIG. 1 is a block diagram showing a configuration example of an arrival angle calculation apparatus according to an embodiment of the present invention.
  • the arrival angle calculation device 1 includes a reference signal generator 10 capable of oscillating a reference signal at a predetermined oscillation frequency, reception antennas 11a and 11b arranged at predetermined intervals, and a reception antenna 11a.
  • 11b converts the radio wave received by the reference signal output from the reference signal generator 10 into a received signal and outputs the received signal, and the angle of arrival from the received signal output from the receiver 12a, 12b.
  • an arithmetic unit 13 that performs various arithmetic processes for calculation.
  • the arrival angle calculation device 1 calculates the arrival angle based on the phase delay caused by the propagation delay of the radio wave, the radio wave having the same information is received at two points (or two or more points) separated by a predetermined interval. There is a need. For this reason, it is necessary to provide two (or more) antennas and a receiving system corresponding to the received radio wave. Note that the arrival angle calculation device 1 is not limited to a configuration including two or more reception systems as long as the same arrival radio wave (the same information unit) can be received at two or more positions separated by a predetermined interval.
  • the receiving units 12a and 12b include a low noise amplifier, a mixer, a band pass filter, and the like, and are configured to receive radio waves having a predetermined frequency.
  • the calculation unit 13 includes correlation processing units 21a and 21b that perform correlation processing of received signals, peak detection units 22a and 22b that detect peaks of the correlation processed reception signals, and peaks detected by the peak detection units 22a and 22b. And timing control units 23a and 23b that output signals from the correlation processing units 21a and 21b in accordance with the timing of the received signal, and an arrival angle calculation unit 24 that calculates an arrival angle based on the signals from the timing control units 23a and 23b, and , Including.
  • the configuration and function of the calculation unit 13 may be realized by hardware or software.
  • the correlation processing units 21a and 21b multiply the reception signals from the reception units 12a and 12b and signals having high correlation with the reception signals and output the result. Since the signals multiplied by the correlation processing units 21a and 21b have a high correlation with the received signal, the signals output from the correlation processing units 21a and 21b have a peak in the correlation section.
  • the peak detection units 22a and 22b calculate the power of the output signals from the correlation processing units 21a and 21b, and detect the power peaks of the output signals.
  • the timing control units 23 a and 23 b output the output signals from the correlation processing units 21 a and 21 b to the arrival angle calculation unit 24 in accordance with the peak timing detected by the peak detection units 22 a and 22 b. Specifically, based on the information calculated from the detected power during the peak period, it is determined whether or not to output the output signals from the correlation processing units 21a and 21b to the arrival angle calculating unit 24.
  • FIG. 2 is a block diagram showing a specific configuration example of the arrival angle calculation apparatus when direct spread spectrum (DSSS) is used as a modulation method. 2 shows only the configuration corresponding to the calculation unit 13 in FIG.
  • DSSS direct spread spectrum
  • a correlation processing unit 21a outputs a spread code generator 31 that generates a spread code, multipliers 32a and 32b that multiply a received signal and a spread code, and outputs of the multipliers 32a and 32b for one bit period. And adders 33a and 33b that are added together and output to the peak detector 22a and the timing controller 23a.
  • the peak detection unit 22a includes a power calculation unit 34a that calculates the power of the signals output from the adders 33a and 33b, and a peak power detection unit 35a that detects the power peak and outputs the detected power peak to the timing control unit 23a.
  • the timing control unit 23a includes a buffer unit 36a that controls whether the signals from the adders 33a and 33b can be output to the arrival angle calculation unit 24 based on the signal from the peak power detection unit 35a.
  • the correlation processing unit 21b includes a spread code generator 31, multipliers 32c and 32d, and adders 33c and 33d.
  • the peak detection unit 22b includes a power calculation unit 34b and a peak power detection unit 35b, and performs timing control.
  • the unit 23b includes a buffer unit 36b.
  • the arrival angle calculation unit 24 includes a complex conjugate unit 41 that takes a complex conjugate of the output of the buffer unit 36a, a complex multiplication unit 42 that multiplies the output of the complex conjugate unit 41 and the output of the buffer unit 36b, and a complex multiplication unit 42. Based on the information from the power calculation unit 44, the power calculation unit 44 that calculates the power of each chip section from the output signal of the complex multiplication unit 42 An averaging unit 45 that averages the output of the unit 43, and an arrival angle conversion unit 46 that converts the output of the averaging unit 45 into an arrival angle using the output of the averaging unit 45.
  • the spreading code generator 31 generates a spreading code for despreading a signal spread on the frequency axis by DSSS.
  • the spreading code corresponds to the spreading code used for code modulation (spreading) on the transmission side.
  • Multipliers 32a and 32b perform despreading by multiplying the received signal by the spreading code.
  • the in-phase component I1 of the received signal from the receiving unit 12a is input to the multiplier 32a.
  • the quadrature component Q1 in the received signal from the receiving unit 12a is input to the multiplier 32b.
  • the adders 33a and 33b output the outputs of the multipliers 32a and 32b for each chip interval by adding a period (bit interval) corresponding to 1 bit.
  • FIG. 3A shows an example of an output waveform from the adder 33a.
  • FIG. 3B is a partially enlarged view of the output waveform shown in FIG.
  • FIG. 3C shows an example of an output waveform from the adder 33b.
  • FIG. 3D is a
  • the output signal of the adder 33a and the output signal of the adder 33b are input to the power calculation unit 34a of the peak detection unit 22a and the buffer unit 36a of the timing control unit 23a.
  • the power calculation unit 34a calculates the power for each chip section from the output signals of the adders 33a and 33b. Specifically, the power calculation unit 34a adds the absolute value of the output signal of the adder 33a corresponding to the in-phase component and the absolute value of the output signal of the adder 33b corresponding to the quadrature component, and adds the absolute value for each chip section. It outputs to the peak power detection part 35a as electric power information.
  • the peak power detection unit 35a Upon receiving the power information for each chip section, the peak power detection unit 35a detects the power peak in the received signal and outputs it as power peak information to the buffer unit 36a of the timing control unit 23a. Note that the square value of the output signal of the adder 33a and the square value of the output signal of the adder 33b may be added and output to the peak power detection unit 35a.
  • the power peak information output from the peak detector 22a is information for determining whether or not there is a peak in the received signal.
  • the timing controller 23a In the peak power information, if R is greater than R th, the timing controller 23a (buffer section 36a) as to have a peak received signal at that timing, arrival angle a 1 bit signal Ia1 and signals Qa1 It outputs to the calculation part 24. On the other hand, when R is smaller than Rth , the timing control unit 23a (buffer unit 36a) stops the output to the arrival angle calculation unit 24, assuming that the received signal has no peak at that timing.
  • the peak detection unit 22a performs the calculation process related to the power peak information, but the calculation process related to the power peak information may be performed in the timing control unit 23a.
  • Correlation processing unit 21b (spreading code generator 31, multipliers 32c and 32d, adders 33c and 33d), peak detection unit 22b (power calculation unit 34b, peak power detection unit 35b), timing control unit 23b (buffer unit 36b)
  • correlation processing unit 21a (spreading code generator 31, multipliers 32a and 32b, adders 33a and 33b), peak detection unit 22a (power calculation unit 34a, peak power detection unit 35a), timing control
  • the operation and function of the unit 23a (buffer unit 36a) are the same.
  • the received signal input to the correlation processing unit 21b and the received signal input to the correlation processing unit 21a are slightly different in phase because the same radio wave is received at two points separated by a predetermined interval.
  • the output O a1 of the timing control unit 23 a is input to the complex conjugate unit 41 of the arrival angle calculation unit 24.
  • the complex conjugate unit 41 outputs the complex conjugate of the output O a1 of the timing control unit 23 a to the complex multiplication unit 42. That is, the complex conjugate section 41 outputs a signal Ia1 and a signal in which the sign of the signal Qa1 is inverted.
  • the output O a1 ′ of the complex conjugate unit 41 is expressed by a complex number, the following equation (3) is obtained.
  • Complex multiplier 42 the output O a1' complex conjugate unit 41, and an output O a2 of the timing controller 23b by complex multiplication, inverse tangent portion 43 signals Ib and signal Qb is multiplication result and power calculator 44.
  • the output O b of the complex multiplication unit 42, the in-phase component Ib and the quadrature component Qb of the output O b are expressed by the following equations (4) to (6).
  • the arctangent unit 43 performs an arctangent calculation using the output of the complex multiplier 42. Specifically, the arc tangent operation is performed on the value using the output signal Ib of the complex multiplier 42 as the denominator and the output signal Qb as the numerator.
  • FIG. 4A shows an example of an output waveform from the arc tangent portion 43.
  • the output O arctan of the arc tangent 43 corresponds to the phase difference ⁇ 2 ⁇ 1 and is expressed by the following equation (7).
  • the power calculation unit 44 calculates the power for each chip section from the output signal of the complex multiplication unit 42. Specifically, the power calculation unit 44 adds the absolute value of Ib and the absolute value of Qb, and outputs the sum to the averaging unit 45 as power information for each chip section. Note that the square value of Ib and the square value of Qb may be added together and output to the averaging unit 45.
  • FIG. 4B shows an example of an output waveform from the power calculation unit 44.
  • the averaging unit 45 receives the power information for each chip section, the averaging unit 45 averages the output O arctan of the arc tangent unit 43 based on the information and outputs the average to the arrival angle conversion unit 46.
  • the power calculation unit 44 and the averaging unit 45 may be omitted as appropriate.
  • the arrival angle conversion unit 46 converts the arrival angle by the inverse trigonometric function calculation using the output of the averaging unit 45 (or the output of the arctangent unit 43 when the averaging unit 45 is not provided).
  • the inverse trigonometric function calculation for example, an inverse sine calculation can be applied.
  • the value obtained by the calculation, that is, the output of the arrival angle conversion unit 46 corresponds to the arrival angle ⁇ (rad).
  • the output O arcsin of the arrival angle conversion unit 46 is expressed by the following equation (8).
  • ⁇ (m) is the wavelength of the received wave
  • d (m) is the distance between the receiving antennas.
  • the reason why the arrival angle is obtained by the above process is that a geometrical relationship as shown in FIG. 5 is established.
  • An angle formed by radio waves arriving at two receiving antennas 11a and 11b arranged at a distance d (m) apart from a predetermined direction is defined as ⁇ (rad).
  • the propagation distance of the radio wave arriving at the reception antenna 11b is longer than the propagation distance of the radio wave arriving at the reception antenna 11a by ⁇ (m), and the phase delay (phase difference ⁇ 2 ⁇ 1 (rad)) is increased.
  • Arise When the relationship between the propagation distance difference ⁇ and the phase difference ⁇ 2 ⁇ 1 generated in this model is expressed using the wavelength ⁇ (m) of the received wave, the following equation (9) is obtained. In the following formula, ⁇ ⁇ .
  • Equation (10) is established from the geometric relationship between the propagation distance difference ⁇ , the antenna interval d, and the arrival angle ⁇ in the above model.
  • the arrival angle ⁇ is expressed as the following formula (11).
  • Expression (11) corresponds to the processing in the arrival angle conversion unit 46.
  • the arrival angle is calculated by the arrival angle calculation device of the present embodiment.
  • the position detection system 101 shown in FIG. 6 includes an arrival angle calculation device 1a, another arrival angle calculation device 1b arranged at a predetermined distance D from the arrival angle calculation device 1a, and the access point 2 or the user terminal 3. Consists of including.
  • Each of the access point 2 and the user terminal 3 includes a transmission system and a reception system (not shown), and is configured to be capable of bidirectional information transmission (communication).
  • the access point 2 and the user terminal 3 are configured to be able to transmit arrival angle calculation radio waves to the arrival angle calculation device 1a and the arrival angle calculation device 1b by their transmission systems.
  • the position detection target may be either the access point 2 or the user terminal 3.
  • the arrival angle calculation device 1a receives the radio waves transmitted from the transmission antenna of the access point 2 by the reception antennas 11aa and 11ab, and calculates the arrival angle with reference to the arrival angle calculation device 1a. Further, the arrival angle calculation device 1b receives radio waves transmitted from the transmission antenna of the access point 2 by the reception antennas 11ba and 11bb, and calculates the arrival angle with reference to the arrival angle calculation device 1b. If the positional relationship between the arrival angle calculation device 1a and the arrival angle calculation device 1b is known, the position of the access point 2 can be determined from the arrival angles based on each.
  • the arrival angle calculation device 1 a and the arrival angle calculation device 1 b calculate the arrival angle of the radio wave transmitted from the user terminal 3.
  • FIG. 7 is a flowchart of arrival angle calculation in the arrival angle calculation apparatus 1 according to the present embodiment.
  • the arrival angle calculation device 1 receives the radio waves for which the arrival angle is to be calculated, the reception units 12a and 12b output reception signals to the correlation processing units 21a and 21b. Then, in step 201, the correlation processing units 21a and 21b perform correlation processing and addition processing on the received signal.
  • FIG. 8A schematically shows signals input to the peak detectors 22a and 22b.
  • the peak power P peak is the power at the peak point P in FIG.
  • ⁇ P 1 is the sum of the power in the peak period t 1
  • ⁇ P 2 is the peak period excluding the peak period t 1 is the power sum of the period t 2.
  • the peak period t 1 is a period including the base of the peak.
  • the period t 2 is expressed as tb ⁇ 2 ⁇ tc using the 1-bit period tb.
  • FIG. 10 shows an example of signals input to the peak detectors 22a and 22b when a received signal is captured using an AD converter.
  • the horizontal axis t in FIG. 10 indicates the sample number, and t takes a discrete value.
  • DSSS is used as the modulation method, for example, if the spreading code is 11 chips and the 1-bit period is 1 ⁇ s, the 1-chip period of the spreading code is 0.091 ⁇ s.
  • R is represented by the following formula (12).
  • R is larger than Rth
  • the peak detectors 22a and 22b output signals to that effect to the timing controllers 23a and 23b.
  • the timing control unit 23a receives a signal indicating that R than R th is large, and outputs the arrival angle calculating section 24 a signal required for calculating the arrival angle as the peak is present in the received signal.
  • the arrival angle calculation unit 24 calculates the arrival angle.
  • Rth is an arbitrary value. For example, a value that can determine the presence or absence of a peak by comparison with R can be set as Rth .
  • the presence or absence of the peak can be accurately determined by comparing the index (R) with respect to the detected peak and the threshold (R th ) to determine the presence or absence of the peak.
  • FIG. 8B schematically shows a signal with a high background level (solid line) and a signal with a low background level (dotted line).
  • the peak can be detected by comparing the power peak value with the power threshold value Pth .
  • the background level becomes high enough to exceed Pth
  • no peak can be detected even if the power peak value is compared with Pth .
  • the presence or absence of a peak can be accurately determined by using an index that takes the background level into account for peak detection.
  • the angle-of-arrival calculation device obtains a ratio between the power in the peak period and the power in the remaining period other than the peak period, and compares the obtained ratio with a threshold value.
  • the peak of the desired wave can be accurately detected and used for calculation of the arrival angle even when the background level of the received wave is high. That is, since the arrival angle is not calculated from signal components other than the desired wave, the calculation accuracy of the arrival angle can be improved.
  • FIG. 11 is a block diagram illustrating another aspect of the arrival angle calculation unit 24 in the arrival angle calculation apparatus 1.
  • Arrival angle calculator shown in FIG. 11. 24, a complex conjugate unit 51 which takes the complex conjugate of the output O a1 of the timing control unit 23a, and an output O a1' complex conjugate unit 51, the output O a2 of the timing controller 23b
  • the operations and functions of the complex conjugate unit 51, complex multiplication unit 52, and arc tangent unit 53 are the same as the operations and functions of the complex conjugate unit 41, complex multiplication unit 42, and arc tangent unit 43 described above.
  • phase difference correction unit 54 that corrects the calculation result based on the calculation result (phase difference) of the arctangent unit 53, an averaging unit 55 that averages the output of the phase difference correction unit 54, and a phase difference correction unit 54
  • the phase difference recorrection unit 56 that corrects the calculation result (average value) of the averaging unit 55 when the correction is performed in FIG. 5
  • the arrival angle conversion unit 57 that converts the arrival angle using the output of the phase difference recorrection unit 56. And comprising.
  • the operation and function of the arrival angle conversion unit 57 are the same as the operation and function of the arrival angle conversion unit 46 described above.
  • the phase difference correction unit 54 adds a predetermined value to the calculation result of the arc tangent unit. Processing to add an angle (phase difference) is performed. As shown in the IQ plane of FIG. 12, the arrival angle calculation unit 24 of the present embodiment projects the phase difference onto the coordinates of the phase difference range of ⁇ 180 ° to + 180 ° ( ⁇ to + ⁇ ). For this reason, for example, as shown in FIG. 13A, when the phase difference calculated by the arc tangent portion 53 does not become a value in the vicinity of + 180 ° and ⁇ 180 °, this is appropriately averaged.
  • the arrival angle can be calculated.
  • the phase difference calculated by the arc tangent unit 53 becomes a value in the vicinity of +180 and ⁇ 180
  • a slight error in the calculated phase difference has a great influence on the angle calculation.
  • two values of ⁇ 178 ° and + 178 ° are obtained as phase difference data, and one value of + 178 ° has an error of ⁇ 178 ° from the original value of ⁇ 178 ° to + 178 °.
  • these differences are actually only 4 °.
  • the average value becomes 0 °.
  • the averaged phase difference greatly deviates from the original phase difference, it is difficult to calculate an appropriate arrival angle.
  • phase difference calculated by the arc tangent unit 53 becomes a value near + 180 ° and ⁇ 180 °
  • the arrival angle calculation unit 24 shown in FIG. A correction process for adding a predetermined angle (phase difference) to the result is performed so that appropriate averaging is performed.
  • Whether the calculation result of the arc tangent unit 53 is a value near + 180 ° or ⁇ 180 ° can be determined based on a plurality of phase difference distributions obtained as the calculation result of the arc tangent unit 53. For example, when the number of phase differences larger than + 90 ° (+ ⁇ / 2) or smaller than ⁇ 90 ° ( ⁇ / 2) is larger than the number of phase differences smaller than + 90 ° and larger than ⁇ 90 °.
  • the calculation result of the arc tangent portion 53 is a value near + 180 ° and ⁇ 180 °.
  • the angle (phase difference) applied by the phase difference correction unit 54 can be set to, for example, + 90 °, but is not limited to this as long as an appropriate averaging process is possible. Preferably, any of -90 °, + 180 °, or -180 ° may be used.
  • the averaging unit 55 averages the output of the phase difference correction unit 54. Since the arrival angle calculation unit 24 of the present embodiment performs correction to add a phase difference when a phase difference that is not suitable for averaging is calculated, the averaging unit 55 can perform an appropriate averaging process.
  • the phase difference recorrection unit 56 corrects the output of the averaging unit 55 when the phase difference correction unit 54 corrects the phase difference. Specifically, correction is performed to reduce the angle (phase difference) added as a correction value in the phase difference correction unit 54.
  • FIG. 14 schematically shows the calculation of the arrival angle when the phase difference is near + 180 ° and ⁇ 180 °.
  • the phase difference correction unit 54 adds a correction value (+ 90 °) to the phase difference and rotates the coordinate axis, Convert to the coordinate axis for average value calculation.
  • the averaging unit 55 calculates an average value ( ⁇ 92 °) based on the data.
  • the phase difference recorrection unit 56 performs correction by subtracting the correction value (+ 90 °) from the output data of the phase difference correction unit 54 and outputs the corrected data (+ 178 °) to the inverse sine unit 57.
  • FIG. 15 is a processing flowchart in the arrival angle calculation unit 24.
  • the complex conjugate unit 51 of the arrival angle calculation unit 24 calculates the complex conjugate of the output O a1 of the timing control unit 23a.
  • complex multiplier 52 in step 302, multiplying the output O a1' output O a2 and complex conjugate unit 51 of the timing controller 23b.
  • the arc tangent unit 53 performs an arc tangent calculation using the output of the complex multiplier 52, and calculates a phase difference between the received signals.
  • step 304 the phase difference correction unit 54 determines whether the calculated phase difference is a value in the vicinity of + 180 ° and ⁇ 180 ° on the IQ plane. When the calculated phase difference is not a value in the vicinity of + 180 ° and ⁇ 180 °, the process proceeds to step 305, and the arrival angle calculation unit 24 calculates the arrival angle without correcting the phase difference. If the calculated phase difference is a value near + 180 ° or near ⁇ 180 °, the process proceeds to step 306. As described above, the determination is performed based on whether the number of phase differences larger than + 90 ° or smaller than ⁇ 90 ° is larger than the number of phase differences smaller than + 90 ° and larger than ⁇ 90 °. Can do.
  • step 306 the phase difference correction unit 54 performs a process of adding 90 ° to the phase difference that is the calculation result of the arctangent unit 53.
  • step 307 the averaging unit 55 averages the output of the phase difference correction unit 54.
  • step 308 the phase difference recorrection unit 56 performs a process of subtracting 90 ° from the average value that is the calculation result of the averaging unit 55.
  • step 309 the arrival angle conversion unit 57 calculates the arrival angle from the output of the phase difference recorrection unit 56.
  • the arrival angle calculation unit 24 shown in FIG. 11 calculates an appropriate average value by a series of processes of adding a predetermined phase difference and averaging and then reducing the predetermined phase difference. The calculation accuracy does not decrease. As a result, the calculation accuracy of the arrival angle can be sufficiently increased.
  • the phase difference correction unit 54 performs a process of adding a predetermined angle to the calculation result of the arctangent unit 53, but the present invention is not limited to this as long as an appropriate averaging process can be realized.
  • the arrival angle calculation unit 24 configured as shown in FIG. 16 may be used.
  • a complex multiplier 62 for performing complex multiplication.
  • the operations and functions of the complex conjugate unit 61 and the complex multiplication unit 62 are the same as the operations and functions of the complex conjugate unit 41 and the complex multiplication unit 42 described above. Further, an IQ comparison unit 63 that compares the absolute value of the in-phase component (I component) and the absolute value of the quadrature component (Q component) of the output of the complex multiplication unit 62, and the output of the complex multiplication unit 62, the IQ comparison unit is used. And an arc tangent unit 64 that performs arc tangent calculation by selecting and changing the calculation method according to the output of 63.
  • an averaging unit 65 that averages the phase difference that is the calculation result of the inverse tangent unit 64, and a phase difference reconstruction that corrects the average value that is the calculation result of the averaging unit 65 according to the calculation method of the inverse tangent unit 64.
  • the correction part 66 and the arrival angle conversion part 67 which converts into an arrival angle using the output of the phase difference re-correction part 66 are provided.
  • the operation and function of the arrival angle conversion unit 67 are the same as the operation and function of the arrival angle conversion unit 46 described above.
  • the IQ comparison unit 63 determines whether or not the in-phase component (I component) of the output of the complex multiplication unit is negative, and the absolute value of the in-phase component (I component) of the output of the complex multiplication unit 62 and a quadrature component ( The absolute value of the Q component is compared. Specifically, the IQ comparison unit 63 determines the sign of the in-phase component Ib and determines whether the absolute value
  • the in-phase component Ib becomes negative (Ib ⁇ 0), and the absolute value
  • the arc tangent unit 64 uses the output of the complex multiplication unit 62, selects an operation method according to the output of the IQ comparison unit 63, and performs an arc tangent calculation.
  • of the in-phase component is equal to or smaller than the absolute value
  • An arc tangent operation is performed on the value with the output Ib as the denominator and the output Qb as the numerator.
  • of the quadrature component is not limited to the above.
  • an arctangent operation may be performed on a value using the output Qb of the complex multiplier 62 as the denominator and ⁇ Ib obtained by inverting the sign of the output Ib as the numerator.
  • This process corresponds to a process of performing an arctangent calculation by rotating the coordinate axis by ⁇ 90 °. That is, the phase difference obtained by this processing is a value obtained by adding ⁇ 90 ° to the original phase difference (a value obtained by subtracting + 90 °).
  • the arc tangent calculation may be performed by inverting the sign of the output Ib of the complex multiplier 62 and the sign of the output Qb.
  • This process corresponds to a process of performing an arctangent calculation by rotating the coordinate axis by + 180 ° (or ⁇ 180 °).
  • the phase difference obtained by this processing is a value obtained by adding + 180 ° (or ⁇ 180 °) to the original phase difference.
  • An appropriate average value can be calculated also by such processing.
  • the averaging unit 65 averages the output of the arc tangent unit 64. Since the arrival angle calculation unit 24 of the present embodiment performs a correction that substantially adds (or reduces) a phase difference when a phase difference that is not suitable for averaging is calculated, the averaging unit 65 performs appropriate averaging. Processing is possible.
  • the phase difference re-correction unit 66 corrects the output of the averaging unit 65 when the arctangent unit 64 is performing a process of rotating the coordinate axis by + 90 °. Specifically, correction is performed to reduce + 90 °.
  • the arrival angle calculation unit 24 shown in FIG. 16 can calculate an appropriate average value in the same manner as the arrival angle calculation unit 24 shown in FIG. As a result, the calculation accuracy of the arrival angle can be sufficiently increased.
  • FIG. 17 is a block diagram showing a specific configuration example of an arrival angle calculation apparatus when orthogonal frequency division multiplexing (OFDM) is used as a modulation method. Note that FIG. 17 shows only the configuration corresponding to the calculation unit 13 in FIG.
  • OFDM orthogonal frequency division multiplexing
  • the correlation processing unit 21a includes a complex conjugate unit 71a that takes a complex conjugate of the output of the receiving unit 12a, a delay unit 72a that outputs the output of the receiving unit 12a after being delayed by a predetermined period, and a complex conjugate unit 71a.
  • a complex multiplier 73a that performs complex multiplication of the output and the output of the delay unit 72a, and adders 74a and 74b that add and output the output of the complex multiplier 73a for a GI (guard interval) period are provided.
  • the peak detector 22a includes a power calculator 75a that calculates the power of the signals output from the adders 74a and 74b, and a peak power detector 76a that detects the power peak and outputs the detected power peak to the timing controller 23a.
  • the timing control unit 23a includes a delay unit 77a that controls the output timing of the signal from the reception unit 12a to the arrival angle calculation unit 24 based on the signal from the peak power detection unit 76a.
  • the correlation processing unit 21b includes a complex conjugate unit 71b, a delay unit 72b, a complex multiplication unit 73b, and adders 74c and 74d.
  • the peak detection unit 22b includes a power calculation unit 75b and a peak power detection unit 76b.
  • the timing control unit 23b includes a delay unit 77b.
  • the arrival angle calculation unit 24 includes a complex conjugate unit 81 that takes a complex conjugate of the output of the delay unit 77a, a complex multiplication unit 82 that performs complex multiplication of the output of the complex conjugate unit 81, and the output of the delay unit 77b, and a complex multiplication unit 42.
  • a complex conjugate unit 81 that takes a complex conjugate of the output of the delay unit 77a
  • a complex multiplication unit 82 that performs complex multiplication of the output of the complex conjugate unit 81, and the output of the delay unit 77b, and a complex multiplication unit 42.
  • GI Guard interval
  • the delay units 72a and 72b delay the output of the receiving unit 12a by a predetermined period and output the auto-correlation of the OFDM symbol sequence. Specifically, the delay units 72a and 72b input to the complex multiplication unit 73a at the same timing as the end of the OFDM symbol output from the complex conjugate unit 71a and the GI (guard interval) output from the delay units 72a and 72b. As described above, the output of the receiving unit 12a is output after being delayed by a predetermined period.
  • the complex multiplier 73a performs complex multiplication on the output of the complex conjugate unit 71a and the output of the delay unit 72a.
  • the adders 74a and 74b add the outputs of the complex multiplier 73a for each chip section for the GI period and output the result.
  • FIG. 18A is a schematic diagram showing a configuration of an OFDM symbol string.
  • the OFDM symbol string is composed of an OFDM symbol that is a data part and a GI that is arranged at the head of the OFDM symbol. GI is data obtained by copying the end of the OFDM symbol, and is inserted to prevent interference between OFDM symbols.
  • FIG. 18B is a schematic diagram illustrating a state of correlation processing (autocorrelation processing) of the OFDM symbol sequence in the correlation processing unit 21a.
  • the output of the delay unit 72a is delayed by the OFDM symbol length with respect to the output of the complex conjugate unit 71a.
  • autocorrelation can be obtained by multiplying the output of the complex conjugate unit 71a and the output of the delay unit 72a.
  • the autocorrelation value shows a peak when the same data as GI appears in the output of the complex conjugate unit 71a and the output of the delay unit 72a. The head can be detected.
  • the output signals of the adders 74a and 74b are input to the power calculator 75a of the peak detector 22a.
  • the power calculator 75a calculates the power for each chip section from the output signals of the adders 74a and 74b.
  • the power calculation unit 34a adds the absolute value of the output signal corresponding to the in-phase component and the absolute value of the output signal corresponding to the quadrature component, and calculates the peak power detection unit 76a as power information for each chip section. Output to.
  • the square value of the output signal corresponding to the in-phase component and the square value of the output signal corresponding to the quadrature component may be added together and output to the peak power detection unit 76a.
  • FIG. 19A shows an example of an output waveform from the power calculator 75a.
  • FIG. 19B is a partially enlarged view of the output waveform shown in FIG.
  • the peak power detection unit 76a receives the power information for each chip section, the peak power detection unit 76a detects the power peak in the received signal and outputs the detected power peak information to the delay unit 77a of the timing control unit 23a.
  • the power peak information output from the peak detector 22a is information for determining whether or not there is a peak in the received signal.
  • the peak period is equal to the GI period.
  • One symbol period corresponds to a total period of a GI period and a data period (OFDM symbol period).
  • the timing controller 23a In the peak power information, if R is greater than R th, the timing controller 23a (delay unit 77a) as to have a peak received signal at that timing, arrival angle calculator receiving signals from the receiving unit 12a 24. On the other hand, when R is R th smaller than, the timing controller 23a (delay unit 77a), in its timing as the reception signal has no peak, and stops the output to the arrival angle calculator 24.
  • the peak detection unit 22a performs the calculation process related to the power peak information, but the calculation process related to the power peak information may be performed in the timing control unit 23a.
  • Correlation processing unit 21b includes the correlation processing unit 21a (complex conjugate unit 71a, delay unit 72a, complex multiplication unit 73a, adders 74a and 74b), peak detection unit 22a (power calculation unit 75a, peak power detection unit 76a).
  • the operation and function of the timing control unit 23a are the same.
  • the received signal input to the correlation processing unit 21b and the received signal input to the correlation processing unit 21a are slightly different in phase because the same radio wave is received at two points separated by a predetermined interval. For this reason, the signal output from the timing control unit 23b and the signal output from the timing control unit 23a are slightly different in phase.
  • the output of the timing control unit 23 a is input to the complex conjugate unit 81 of the arrival angle calculation unit 24.
  • the complex conjugate unit 81 outputs the complex conjugate of the output of the timing control unit 23 a to the complex multiplication unit 82.
  • the complex multiplier 82 complex-multiplies the output of the complex conjugate unit 81 and the output of the timing controller 23b, and outputs the calculation result to the adders 83a and 83b.
  • the adders 83a and 83b add the outputs of the complex multiplier 82 for each chip interval for the GI period and output the sum to the arctangent unit 84.
  • FIG. 19C shows an example of output waveforms from the adders 83a and 83b. In the figure, the output waveform of the adder 83a is indicated by I, and the output waveform of the adder 83b is indicated by Q.
  • the arc tangent unit 84 performs an arc tangent calculation using the outputs of the adders 83a and 83b, and calculates the phase difference of the received signal.
  • FIG. 19D shows an example of an output waveform from the arc tangent portion 84.
  • the averaging unit 85 averages the output of the arc tangent unit 84 and outputs it to the arrival angle conversion unit 86.
  • the averaging unit 85 may be omitted as appropriate.
  • the arrival angle conversion unit 86 converts the arrival angle by the inverse trigonometric function calculation using the output of the averaging unit 85 (or the output of the arctangent unit 84 when the averaging unit 85 is not provided). The value obtained by the calculation, that is, the output of the arrival angle conversion unit 86 corresponds to the arrival angle.
  • the arrival angle calculation apparatus 1 having the calculation unit 13 in FIG. 17 also obtains the ratio between the power in the peak period and the power in the remaining period other than the peak period, and calculates the ratio and the threshold value.
  • the peak of the desired wave can be accurately detected and used for the calculation of the arrival angle even when the background level of the received wave is high. That is, since the arrival angle is not calculated from signal components other than the desired wave, the calculation accuracy of the arrival angle can be improved.
  • FIG. 20 is a schematic diagram showing a capsule endoscope system in which the arrival angle calculation device 1 is applied to specify the position of the capsule endoscope.
  • the capsule endoscope system shown in FIG. 20 includes a plurality of sensor arrays 401 and a data recorder 402 that records data from the sensor arrays 401.
  • the sensor array 401 includes an antenna corresponding to the reception antenna of the arrival angle calculation device 1 and is configured to receive radio waves from the capsule endoscope swallowed by the patient.
  • the data recorder 402 specifies the position of the capsule endoscope swallowed by the patient from the phase information of the radio wave received by the sensor array 401.
  • the capsule endoscope swallowed by the patient moves by the peristaltic movement of the digestive tract.
  • the position of the capsule endoscope is monitored, and it can be confirmed whether or not the examination site has been reached.
  • the capsule endoscope captures the state of the examination site and transmits it to the data recorder 402, and the data recorder 402 records image information.
  • the camera can be turned on when the capsule endoscope reaches the examination site, and the camera capacity can be turned off when the examination site is removed, thus reducing the battery capacity. .
  • the number of sensors (antennas) can be reduced. Further, if the battery capacities are the same, a larger number of images can be transmitted as compared with the conventional capsule endoscope, and a clear image can be obtained.
  • an excellent capsule endoscope system can be constructed by applying the arrival angle calculation device 1 to the position specification of the capsule endoscope.
  • the arrival angle calculation device of the present invention the ratio between the power in the peak period and the power in the remaining period other than the peak period is obtained, and the obtained ratio is compared with the threshold value. Since the arrival angle is calculated when is greater than the threshold value, the peak of the desired wave can be accurately detected and the arrival angle can be calculated even when the signal level of the received wave other than the desired wave is high. . That is, since the arrival angle is not calculated from a portion other than the desired wave, the calculation accuracy of the arrival angle can be improved.
  • this invention is not limited to description of the said embodiment, It can change suitably in the aspect which exhibits the effect.
  • the ratio of the sum of power during the peak period and the sum of power during the period excluding the peak period is compared with the threshold value, but the level of the signal other than the desired wave is considered.
  • the present invention is not limited to this as long as the arrival angle can be calculated.
  • power at a certain timing in the peak period and power at a certain timing other than the peak period may be used as parameters.
  • the configuration shown in the attached drawings is not limited to this, and can be appropriately changed within a range in which the effect of the present invention is exhibited.
  • the arrival angle calculation apparatus of the present invention can be used for a system for identifying a target position and other various uses.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

The purpose of the present invention is to provide an arrival angle calculation device that can calculate an arrival angle to a high degree of accuracy. This arrival angle calculation device (1) comprises a plurality of antennae, a plurality of received signal processing units, and an arrival angle calculation unit. Each of the received signal processing units comprise reception units (12a, 12b), correlation processing units (21a, 21b), peak detection units (22a, 22b), and timing control units (23a, 23b). The timing control units (23a, 23b) are characterised in that when the ratio between the power of the peak period in a period corresponding to an information unit and the power of a period excluding the peak period is larger than a threshold value, signals from the correlation processing units (21a, 21b) are output to an arrival angle calculation unit (24).

Description

到来角度算出装置Arrival angle calculation device
 本発明は、到来する電波の位相を検出して電波到来角度の算出に用いる到来角度算出装置に関する。 The present invention relates to an arrival angle calculation device that detects the phase of an incoming radio wave and uses it to calculate the radio wave arrival angle.
 従来の到来方向推定装置においては、相互相関係数の算出や逆行列演算等の演算量の大きい演算が用いられており、数百シンボル分もの演算が必要であった。このため、簡便な演算で到来方向を推定できる到来方向推定装置が望まれていた。 In the conventional direction-of-arrival estimation apparatus, calculations with a large calculation amount such as calculation of cross-correlation coefficients and inverse matrix calculation are used, and calculations for several hundred symbols are required. For this reason, an arrival direction estimation device capable of estimating the arrival direction by simple calculation has been desired.
 特許文献1において、演算規模を縮小した到来方向推定装置が提案されている。特許文献1に記載の到来方向推定装置では、二つのアンテナで受信した受信信号に対して、複素共役回路と乗算回路によって到来方向の係数を算出し、到来方向検出回路において逆正接演算と逆余弦演算を行うことにより、受信波の到来方向を推定している。 Patent Document 1 proposes an arrival direction estimation device with a reduced operation scale. In the arrival direction estimation device described in Patent Document 1, the arrival direction coefficient is calculated by the complex conjugate circuit and the multiplication circuit for the reception signals received by the two antennas, and the arc tangent calculation and the inverse cosine are performed in the arrival direction detection circuit. By calculating, the arrival direction of the received wave is estimated.
特開平10-177064号公報Japanese Patent Laid-Open No. 10-177064
 しかしながら、特許文献1では、1スロット間の到来方向ベクトルのパワーとしきい値とを比較して、しきい値より大きい場合に到来方向を更新する構成を採用しているため、受信波中の希望波を正確に検出して到来方向を更新することができない可能性がある。例えば、受信波のバックグラウンドレベルが高い場合には、希望波の信号レベルに関わらず、受信波のパワーがしきい値より大きくなることがある。このような状況では、バックグラウンドレベルにおいても到来方向が算出、更新されるため、到来方向を正しく推定することができない。 However, Patent Document 1 adopts a configuration in which the power of the arrival direction vector between one slot is compared with a threshold value and the arrival direction is updated when the threshold value is larger than the threshold value. It may not be possible to accurately detect waves and update the direction of arrival. For example, when the background level of the received wave is high, the power of the received wave may be greater than the threshold value regardless of the signal level of the desired wave. In such a situation, since the arrival direction is calculated and updated even in the background level, the arrival direction cannot be estimated correctly.
 本発明はかかる点に鑑みてなされたものであり、受信波のバックグラウンドレベルの影響を抑えることができ、高い精度で到来角度を算出できる到来角度算出装置を提供することを目的とする。 The present invention has been made in view of such a point, and an object thereof is to provide an arrival angle calculation apparatus that can suppress the influence of the background level of a received wave and can calculate the arrival angle with high accuracy.
 本発明の到来角度算出装置は、ある位置から送信された電波を受信する複数のアンテナと、前記各アンテナに対応して設けられた複数の受信信号処理部と、前記複数の受信信号処理部から出力される出力信号から受信信号処理部間で同一情報単位となる信号成分を取り込んで前記電波の到来角度を算出する到来角度算出部と、を備え、前記各受信信号処理部は、対応する前記アンテナで受信した電波を当該電波の位相情報を有する受信信号に変換して出力する受信部と、前記受信部から出力された受信信号を相関処理する相関処理部と、前記相関処理された受信信号のピークを検出するピーク検出部と、前記相関処理部の出力信号から前記受信信号処理部間で同一情報単位となる信号成分が切り出されるように、前記ピーク検出部で検出されたピークのタイミングに合わせて、前記相関処理部から出力される出力信号の取り込みタイミングを制御するタイミング制御部と、を備え、前記タイミング制御部は、前記情報単位に相当する期間におけるピーク期間の電力と当該ピーク期間を除いた期間の電力との比が、しきい値より大きければ、前記相関処理部からの信号を前記到来角度算出部に出力することを特徴とする。 An arrival angle calculation apparatus according to the present invention includes a plurality of antennas that receive radio waves transmitted from a certain position, a plurality of reception signal processing units provided corresponding to the antennas, and a plurality of reception signal processing units. An arrival angle calculation unit that calculates an arrival angle of the radio wave by taking in a signal component that is the same information unit between the reception signal processing units from the output signal that is output, and each reception signal processing unit corresponds to the A reception unit that converts a radio wave received by an antenna into a reception signal having phase information of the radio wave and outputs the signal, a correlation processing unit that performs correlation processing on the reception signal output from the reception unit, and the correlation-processed reception signal Detected by the peak detection unit so that a signal component that is the same unit of information is extracted from the output signal of the correlation processing unit and the received signal processing unit from the output signal of the correlation processing unit. A timing control unit that controls the timing of capturing the output signal output from the correlation processing unit in accordance with the peak timing, and the timing control unit includes power in a peak period in a period corresponding to the information unit. If the ratio of the power to the power in the period excluding the peak period is greater than a threshold value, the signal from the correlation processing unit is output to the arrival angle calculation unit.
 この構成によれば、ピーク期間の電力とそれ以外の期間の電力の比をしきい値と比較し、比がしきい値より大きい場合に到来角度を算出するため、受信波の希望波以外の信号レベルが高い場合であっても、希望波のピークを正確に検出し、到来角度を算出することができる。つまり、希望波以外の部分から到来角度を算出することが無いため、到来角度の算出精度を高めることができる。 According to this configuration, the ratio of the power in the peak period and the power in the other periods is compared with a threshold value, and when the ratio is larger than the threshold value, the arrival angle is calculated. Even if the signal level is high, it is possible to accurately detect the peak of the desired wave and calculate the arrival angle. That is, since the arrival angle is not calculated from a portion other than the desired wave, the calculation accuracy of the arrival angle can be improved.
 本発明の到来角度算出装置において、前記タイミング制御部は、前記情報単位に相当する期間におけるピーク期間の電力の和ΣPと前記情報単位に相当する期間において前記ピーク期間を除いた期間における電力の和ΣPとの比ΣP/ΣPを、しきい値と比較し、前記比ΣP/ΣPが前記しきい値より大きい場合、前記相関処理部からの信号を前記到来角度算出部に出力しても良い。 In the arrival angle calculating apparatus of the present invention, the timing control unit, a period in the power of excluding the peak period in the period corresponding to the information unit to the sum .SIGMA.P 1 power peak periods in the period corresponding to the information unit The ratio ΣP 1 / ΣP 2 with respect to the sum ΣP 2 is compared with a threshold value. When the ratio ΣP 1 / ΣP 2 is larger than the threshold value, the signal from the correlation processing unit is sent to the arrival angle calculation unit. It may be output.
 本発明の到来角度算出装置において、前記到来角度算出部は、一方のアンテナに対応した一方の受信信号処理部のタイミング制御部からの信号の複素共役をとる複素共役部と、前記複素共役部の出力と、他方のアンテナに対応した他方の受信信号処理部のタイミング制御部からの信号とを乗算する複素乗算部と、前記複素乗算部の出力を用いて逆正接演算を行い、前記アンテナ間での前記受信電波の位相差を算出する逆正接部と、前記逆正接部の出力を平均化する平均化部と、前記平均化部の出力を用いて逆三角関数演算を行い、到来角度に変換する到来角度変換部と、を備えても良い。この構成によれば、相互相関係数の算出や逆行列演算などを用いることなく到来角度を算出できるため、到来角度算出装置の規模を小さくすることができる。 In the arrival angle calculation device according to the present invention, the arrival angle calculation unit includes a complex conjugate unit that takes a complex conjugate of a signal from a timing control unit of one received signal processing unit corresponding to one antenna, and the complex conjugate unit. A complex multiplier that multiplies the output and the signal from the timing control unit of the other received signal processing unit corresponding to the other antenna, and performs an arctangent calculation using the output of the complex multiplier, and An arctangent that calculates the phase difference of the received radio wave, an averaging unit that averages the output of the arctangent, and an inverse trigonometric function calculation using the output of the averaging unit to convert to an arrival angle And an arrival angle conversion unit. According to this configuration, since the arrival angle can be calculated without using cross-correlation coefficient calculation or inverse matrix calculation, the size of the arrival angle calculation device can be reduced.
 本発明の到来角度算出装置において、前記到来角度算出部は、前記算出された位相差が、I-Q平面上における+180°及び/又は-180°付近に分布している場合は、各位相差を所定角度回転させた上で平均化し、当該平均値から前記所定角度を減じて逆三角関数演算を行い、到来角度を算出しても良い。この構成によれば、位相差が、到来角度の算出精度が低下する傾向にある位相差領域に分布する場合に、位相差を所定角度だけ回転させて到来角度算出の演算を行うため、到来角度の算出精度が低下せずに済む。その結果、到来角度の算出精度を十分に高めることができる。 In the arrival angle calculation device of the present invention, the arrival angle calculation unit calculates each phase difference when the calculated phase difference is distributed around + 180 ° and / or −180 ° on the IQ plane. The arrival angle may be calculated by averaging after rotating by a predetermined angle, subtracting the predetermined angle from the average value, and performing an inverse trigonometric function calculation. According to this configuration, when the phase difference is distributed in the phase difference region where the calculation accuracy of the arrival angle tends to decrease, the arrival angle calculation is performed by rotating the phase difference by a predetermined angle. The calculation accuracy does not decrease. As a result, the calculation accuracy of the arrival angle can be sufficiently increased.
 本発明の到来角度算出装置において、前記I-Q平面上において、+90°より大きく、または-90°より小さい位相差の数が、+90°より小さくかつ-90°より大きい位相差の数より多い場合、前記I-Q平面上における+180°及び/又は-180°付近に分布していると判断しても良い。 In the arrival angle calculation apparatus of the present invention, the number of phase differences larger than + 90 ° or smaller than −90 ° on the IQ plane is larger than the number of phase differences smaller than + 90 ° and larger than −90 °. In this case, it may be determined that the distribution is in the vicinity of + 180 ° and / or −180 ° on the IQ plane.
 本発明の到来角度算出装置において、前記所定角度は、+90°、-90°、+180°、または-180°のいずれかの角度としても良い。 In the arrival angle calculation apparatus of the present invention, the predetermined angle may be any of + 90 °, −90 °, + 180 °, or −180 °.
 本発明の到来角度算出装置において、前記複素乗算部の出力のI成分が負であり、前記複素乗算部の出力のI成分の絶対値がQ成分の絶対値と比べて十分に大きい場合、前記Q成分の符号を反転させた上でI成分とQ成分との関係を入れ替えた逆正接演算を行うことにより補正された位相差を算出し、前記補正された位相差を平均化し、当該平均値から90°を減じて逆三角関数演算を行い、到来角度に変換しても良い。この構成によれば、位相差が、到来角度の算出精度が低下する傾向にある位相差領域に分布する場合に、位相差を所定角度だけ回転させて到来角度算出の演算を行うため、到来角度の算出精度が低下せずに済む。その結果、到来角度の算出精度を十分に高めることができる。 In the arrival angle calculation apparatus of the present invention, when the I component of the output of the complex multiplier is negative and the absolute value of the I component of the output of the complex multiplier is sufficiently larger than the absolute value of the Q component, A phase difference corrected by performing an arctangent calculation in which the relationship between the I component and the Q component is reversed after inverting the sign of the Q component, averaging the corrected phase difference, and calculating the average value Alternatively, 90 ° may be subtracted from the above and inverse trigonometric function calculation may be performed to convert the angle of arrival. According to this configuration, when the phase difference is distributed in the phase difference region where the calculation accuracy of the arrival angle tends to decrease, the arrival angle calculation is performed by rotating the phase difference by a predetermined angle. The calculation accuracy does not decrease. As a result, the calculation accuracy of the arrival angle can be sufficiently increased.
 本発明の到来角度算出装置において、前記複素乗算部の出力のI成分が負であり、前記複素乗算部の出力のI成分の絶対値がQ成分の絶対値と比べて十分に大きい場合、前記I成分の符号を反転させた上でI成分とQ成分との関係を入れ替えた逆正接演算を行うことにより補正された位相差を算出し、前記補正された位相差を平均化し、当該平均値に90°を加えて逆三角関数演算を行い、到来角度に変換しても良い。この構成によれば、位相差が、到来角度の算出精度が低下する傾向にある位相差領域に分布する場合に、位相差を所定角度だけ回転させて到来角度算出の演算を行うため、到来角度の算出精度が低下せずに済む。その結果、到来角度の算出精度を十分に高めることができる。 In the arrival angle calculation apparatus of the present invention, when the I component of the output of the complex multiplier is negative and the absolute value of the I component of the output of the complex multiplier is sufficiently larger than the absolute value of the Q component, A phase difference corrected by performing an arc tangent calculation in which the relationship between the I component and the Q component is exchanged after inverting the sign of the I component, averaging the corrected phase difference, and calculating the average value 90 ° may be added to perform inverse trigonometric function calculation to convert the angle to the arrival angle. According to this configuration, when the phase difference is distributed in the phase difference region where the calculation accuracy of the arrival angle tends to decrease, the arrival angle calculation is performed by rotating the phase difference by a predetermined angle. The calculation accuracy does not decrease. As a result, the calculation accuracy of the arrival angle can be sufficiently increased.
 本発明の到来角度算出装置において、前記複素乗算部の出力のI成分が負であり、前記複素乗算部の出力のI成分の絶対値がQ成分の絶対値と比べて十分に大きい場合、前記I成分の符号とQ成分の符号を反転させた上で逆正接演算を行うことにより補正された位相差を算出し、前記補正された位相差を平均化し、当該平均値から180°を減じて逆三角関数演算を行い、到来角度に変換しても良い。この構成によれば、位相差が、到来角度の算出精度が低下する傾向にある位相差領域に分布する場合に、位相差を所定角度だけ回転させて到来角度算出の演算を行うため、到来角度の算出精度が低下せずに済む。その結果、到来角度の算出精度を十分に高めることができる。 In the arrival angle calculation apparatus of the present invention, when the I component of the output of the complex multiplier is negative and the absolute value of the I component of the output of the complex multiplier is sufficiently larger than the absolute value of the Q component, Calculate the phase difference corrected by performing the arctangent calculation after inverting the sign of the I component and the sign of the Q component, averaging the corrected phase difference, and subtracting 180 ° from the average value An inverse trigonometric function calculation may be performed to convert to an arrival angle. According to this configuration, when the phase difference is distributed in the phase difference region where the calculation accuracy of the arrival angle tends to decrease, the arrival angle calculation is performed by rotating the phase difference by a predetermined angle. The calculation accuracy does not decrease. As a result, the calculation accuracy of the arrival angle can be sufficiently increased.
 本発明の到来角度算出装置によれば、ピーク期間の電力とピーク期間以外の残りの期間における電力との比を求めて、この求めた比としきい値とを比較し、比がしきい値より大きい場合に到来角度を算出するため、受信波の希望波以外の信号レベルが高い場合であっても、希望波のピークを正確に検出し、到来角度を算出することができる。つまり、希望波以外の部分から到来角度を算出することが無いため、到来角度の算出精度を高めることができる。 According to the arrival angle calculation device of the present invention, the ratio between the power in the peak period and the power in the remaining period other than the peak period is obtained, and the obtained ratio is compared with the threshold value. Since the arrival angle is calculated when it is large, the peak of the desired wave can be accurately detected and the arrival angle can be calculated even when the signal level of the received wave other than the desired wave is high. That is, since the arrival angle is not calculated from a portion other than the desired wave, the calculation accuracy of the arrival angle can be improved.
実施の形態に係る到来角度算出装置の構成例を示すブロック図である。It is a block diagram which shows the structural example of the arrival angle calculation apparatus which concerns on embodiment. 実施の形態に係る到来角度算出装置の具体的構成(DSSS)を示すブロック図である。It is a block diagram which shows the specific structure (DSSS) of the arrival angle calculation apparatus which concerns on embodiment. 加算器の出力波形の例を示す図である。It is a figure which shows the example of the output waveform of an adder. (a)逆正接部の出力波形の例を示す図である。(b)電力算出部の出力波形の例を示す図である。(A) It is a figure which shows the example of the output waveform of an arctangent part. (B) It is a figure which shows the example of the output waveform of an electric power calculation part. アンテナに到来する電波の幾何学的関係を示す模式図である。It is a schematic diagram which shows the geometrical relationship of the electromagnetic wave which arrives at an antenna. 到来角度算出装置を含む位置検出システムの例を示す模式図である。It is a schematic diagram which shows the example of the position detection system containing an arrival angle calculation apparatus. 到来角度算出装置での到来角度算出のフロー図である。It is a flowchart of the arrival angle calculation in an arrival angle calculation apparatus. ピーク検出部に入力される信号の模式図である。It is a schematic diagram of the signal input into a peak detection part. 変調方式としてDSSSを用いる場合にピーク検出部に入力される信号の例を示す模式図である。It is a schematic diagram which shows the example of the signal input into a peak detection part, when using DSSS as a modulation system. AD変換器を用いて受信信号を取り込んだ場合のピーク検出部に入力される信号の例を示す模式図である。It is a schematic diagram which shows the example of the signal input into the peak detection part at the time of taking in a received signal using an AD converter. 到来角度算出部の別の例を示すブロック図である。It is a block diagram which shows another example of an arrival angle calculation part. 位相差の算出範囲について示す模式図である。It is a schematic diagram shown about the calculation range of a phase difference. 算出される位相差データの例を示す模式図である。It is a schematic diagram which shows the example of the calculated phase difference data. 位相差が+180°または-180°付近となる場合の到来角度算出の概略について示す模式図である。FIG. 6 is a schematic diagram showing an outline of arrival angle calculation when the phase difference is near + 180 ° or −180 °. 位相差が+180°または-180°付近となる場合の到来角度算出のフロー図である。FIG. 10 is a flowchart for calculating an arrival angle when the phase difference is near + 180 ° or −180 °. 到来角度算出部の別の例を示すブロック図である。It is a block diagram which shows another example of an arrival angle calculation part. 実施の形態に係る到来角度算出装置の具体的構成(OFDM)を示すブロック図である。It is a block diagram which shows the specific structure (OFDM) of the arrival angle calculation apparatus which concerns on embodiment. (a)OFDMにおけるシンボルの構成を示す模式図である。(b)OFDMシンボル列の相関処理の様子を示す模式図である。(A) It is a schematic diagram which shows the structure of the symbol in OFDM. (B) It is a schematic diagram which shows the mode of the correlation process of an OFDM symbol sequence. (a)(b)電力算出部からの出力波形の例を示す図である。(c)加算部からの出力波形の例を示す図である。(d)逆正接部の各部からの出力波形の例を示す図である。(A) (b) It is a figure which shows the example of the output waveform from an electric power calculation part. (C) It is a figure which shows the example of the output waveform from an addition part. (D) It is a figure which shows the example of the output waveform from each part of an arctangent part. 到来角度算出装置を用いたカプセル内視鏡システムの構成例を示す模式図である。It is a schematic diagram which shows the structural example of the capsule endoscope system using an arrival angle calculation apparatus.
 図1は、本発明の一実施の形態に係る到来角度算出装置の構成例を示すブロック図である。本実施の形態に係る到来角度算出装置1は、所定の発振周波数で基準信号を発振可能な基準信号発生部10と、所定間隔離して配置された受信用アンテナ11a、11bと、受信用アンテナ11a、11bで受けた電波を、基準信号発生部10から出力される基準信号を用いて受信信号に変換し出力する受信部12a、12bと、受信部12a、12bから出力される受信信号から到来角度算出のための各種演算処理を行う演算部13と、を備える。なお、到来角度算出装置1は、電波の伝搬遅延に起因する位相遅れに基づいて到来角度を算出するため、同じ情報を持つ電波を所定間隔離れた二点(または二以上の点)で受信する必要がある。このため、受信電波に対応する二つ(またはそれ以上)のアンテナおよび受信系を備えていることが必要である。なお、同一の到来電波(同じ情報単位)を所定間隔離れた二以上の位置で受信できるのであれば、到来角度算出装置1は、二以上の受信系を備えている構成に限定されない。 FIG. 1 is a block diagram showing a configuration example of an arrival angle calculation apparatus according to an embodiment of the present invention. The arrival angle calculation device 1 according to the present embodiment includes a reference signal generator 10 capable of oscillating a reference signal at a predetermined oscillation frequency, reception antennas 11a and 11b arranged at predetermined intervals, and a reception antenna 11a. , 11b converts the radio wave received by the reference signal output from the reference signal generator 10 into a received signal and outputs the received signal, and the angle of arrival from the received signal output from the receiver 12a, 12b. And an arithmetic unit 13 that performs various arithmetic processes for calculation. In addition, since the arrival angle calculation device 1 calculates the arrival angle based on the phase delay caused by the propagation delay of the radio wave, the radio wave having the same information is received at two points (or two or more points) separated by a predetermined interval. There is a need. For this reason, it is necessary to provide two (or more) antennas and a receiving system corresponding to the received radio wave. Note that the arrival angle calculation device 1 is not limited to a configuration including two or more reception systems as long as the same arrival radio wave (the same information unit) can be received at two or more positions separated by a predetermined interval.
 受信部12a、12bは、ローノイズアンプ、ミキサ、バンドパスフィルタなどを含んで構成され、所定周波数の電波を受信できるように構成されている。演算部13は、受信信号の相関処理を行う相関処理部21a、21bと、相関処理された受信信号のピークを検出するピーク検出部22a、22bと、ピーク検出部22a、22bで検出されたピークのタイミングに合わせて相関処理部21a、21bからの信号を出力するタイミング制御部23a、23bと、タイミング制御部23a、23bからの信号に基づいて、到来角度の計算を行う到来角度算出部24と、を含んで構成される。なお、演算部13の構成や機能は、ハードウェアで実現しても良いし、ソフトウェアで実現しても良い。 The receiving units 12a and 12b include a low noise amplifier, a mixer, a band pass filter, and the like, and are configured to receive radio waves having a predetermined frequency. The calculation unit 13 includes correlation processing units 21a and 21b that perform correlation processing of received signals, peak detection units 22a and 22b that detect peaks of the correlation processed reception signals, and peaks detected by the peak detection units 22a and 22b. And timing control units 23a and 23b that output signals from the correlation processing units 21a and 21b in accordance with the timing of the received signal, and an arrival angle calculation unit 24 that calculates an arrival angle based on the signals from the timing control units 23a and 23b, and , Including. The configuration and function of the calculation unit 13 may be realized by hardware or software.
 相関処理部21a、21bは、受信部12a、12bからの受信信号と当該受信信号と相関の高い信号とを乗算して出力する。相関処理部21a、21bにおいて乗じられる信号は受信信号との相関が高いため、相関処理部21a、21bから出力される信号は、相関区間でピークとなる。ピーク検出部22a、22bは、相関処理部21a、21bからの出力信号の電力を算出し、出力信号の電力ピークを検出する。タイミング制御部23a、23bは、ピーク検出部22a、22bにおいて検出されたピークタイミングに合わせて、相関処理部21a、21bからの出力信号を到来角度算出部24に出力する。具体的には、検出されたピーク期間の電力から算出される情報を元に、相関処理部21a、21bからの出力信号を到来角度算出部24に出力するか否かを決定する。 The correlation processing units 21a and 21b multiply the reception signals from the reception units 12a and 12b and signals having high correlation with the reception signals and output the result. Since the signals multiplied by the correlation processing units 21a and 21b have a high correlation with the received signal, the signals output from the correlation processing units 21a and 21b have a peak in the correlation section. The peak detection units 22a and 22b calculate the power of the output signals from the correlation processing units 21a and 21b, and detect the power peaks of the output signals. The timing control units 23 a and 23 b output the output signals from the correlation processing units 21 a and 21 b to the arrival angle calculation unit 24 in accordance with the peak timing detected by the peak detection units 22 a and 22 b. Specifically, based on the information calculated from the detected power during the peak period, it is determined whether or not to output the output signals from the correlation processing units 21a and 21b to the arrival angle calculating unit 24.
 図2は、変調方式として直接スペクトラム拡散(DSSS)を用いる場合の到来角度算出装置の具体的構成例を示すブロック図である。なお、図2では、図1における演算部13に相当する構成のみを示している。 FIG. 2 is a block diagram showing a specific configuration example of the arrival angle calculation apparatus when direct spread spectrum (DSSS) is used as a modulation method. 2 shows only the configuration corresponding to the calculation unit 13 in FIG.
 図2において、相関処理部21aは、拡散コードを発生する拡散コード発生器31と、受信信号と拡散コードとを乗算する乗算器32aおよび32bと、乗算器32aおよび32bの出力を1ビット期間分だけ足し合わせてピーク検出部22aおよびタイミング制御部23aに出力する加算器33aおよび33bとを備える。ピーク検出部22aは、加算器33aおよび33bから出力された信号の電力を算出する電力算出部34aと、その電力ピークを検出してタイミング制御部23aに出力するピーク電力検出部35aとを備える。タイミング制御部23aは、ピーク電力検出部35aからの信号を元に加算器33aおよび33bからの信号の到来角度算出部24への出力可否を制御するバッファ部36aを備える。同様に、相関処理部21bは、拡散コード発生器31、乗算器32cおよび32d、加算器33cおよび33dを備え、ピーク検出部22bは、電力算出部34b、ピーク電力検出部35bを備え、タイミング制御部23bはバッファ部36bを備える。到来角度算出部24は、バッファ部36aの出力の複素共役をとる複素共役部41と、複素共役部41の出力とバッファ部36bの出力とを複素乗算する複素乗算部42と、複素乗算部42の出力を用いて逆正接演算を行う逆正接部43と、複素乗算部42の出力信号からチップ区間ごとの電力を算出する電力算出部44と、電力算出部44からの情報に基づいて逆正接部43の出力を平均化する平均化部45と、平均化部45の出力を用いて到来角度に変換する到来角度変換部46とを備える。 In FIG. 2, a correlation processing unit 21a outputs a spread code generator 31 that generates a spread code, multipliers 32a and 32b that multiply a received signal and a spread code, and outputs of the multipliers 32a and 32b for one bit period. And adders 33a and 33b that are added together and output to the peak detector 22a and the timing controller 23a. The peak detection unit 22a includes a power calculation unit 34a that calculates the power of the signals output from the adders 33a and 33b, and a peak power detection unit 35a that detects the power peak and outputs the detected power peak to the timing control unit 23a. The timing control unit 23a includes a buffer unit 36a that controls whether the signals from the adders 33a and 33b can be output to the arrival angle calculation unit 24 based on the signal from the peak power detection unit 35a. Similarly, the correlation processing unit 21b includes a spread code generator 31, multipliers 32c and 32d, and adders 33c and 33d. The peak detection unit 22b includes a power calculation unit 34b and a peak power detection unit 35b, and performs timing control. The unit 23b includes a buffer unit 36b. The arrival angle calculation unit 24 includes a complex conjugate unit 41 that takes a complex conjugate of the output of the buffer unit 36a, a complex multiplication unit 42 that multiplies the output of the complex conjugate unit 41 and the output of the buffer unit 36b, and a complex multiplication unit 42. Based on the information from the power calculation unit 44, the power calculation unit 44 that calculates the power of each chip section from the output signal of the complex multiplication unit 42 An averaging unit 45 that averages the output of the unit 43, and an arrival angle conversion unit 46 that converts the output of the averaging unit 45 into an arrival angle using the output of the averaging unit 45.
 拡散コード発生器31は、DSSSによって周波数軸上に拡散された信号を逆拡散するための拡散コードを発生する。当該拡散コードは、送信側でコード変調(拡散)の際に使用された拡散コードに対応するものである。乗算器32aおよび32bは、受信信号に上記拡散コードを乗じて逆拡散を行う。乗算器32aには、受信部12aからの受信信号のうちの同相成分I1が入力される。また、乗算器32bには、受信部12aからの受信信号のうちの直交成分Q1が入力される。加算器33aおよび33bは、乗算器32aおよび32bのチップ区間ごとの出力を1ビットに相当する期間(ビット区間)足し合わせて出力する。図3(a)に加算器33aからの出力波形の例を示す。図3(b)は、図3(a)に示す出力波形の部分拡大図である。また、図3(c)に加算器33bからの出力波形の例を示す。図3(d)は、図3(c)に示す出力波形の部分拡大図である。 The spreading code generator 31 generates a spreading code for despreading a signal spread on the frequency axis by DSSS. The spreading code corresponds to the spreading code used for code modulation (spreading) on the transmission side. Multipliers 32a and 32b perform despreading by multiplying the received signal by the spreading code. The in-phase component I1 of the received signal from the receiving unit 12a is input to the multiplier 32a. Further, the quadrature component Q1 in the received signal from the receiving unit 12a is input to the multiplier 32b. The adders 33a and 33b output the outputs of the multipliers 32a and 32b for each chip interval by adding a period (bit interval) corresponding to 1 bit. FIG. 3A shows an example of an output waveform from the adder 33a. FIG. 3B is a partially enlarged view of the output waveform shown in FIG. FIG. 3C shows an example of an output waveform from the adder 33b. FIG. 3D is a partially enlarged view of the output waveform shown in FIG.
 加算器33aの出力信号および加算器33bの出力信号は、ピーク検出部22aの電力算出部34a、およびタイミング制御部23aのバッファ部36aに入力される。電力算出部34aは、加算器33aおよび33bの出力信号からチップ区間ごとの電力を算出する。具体的には、電力算出部34aは、同相成分に相当する加算器33aの出力信号の絶対値と、直交成分に相当する加算器33bの出力信号の絶対値とを足し合わせ、チップ区間ごとの電力情報としてピーク電力検出部35aに出力する。ピーク電力検出部35aは、チップ区間ごとの電力情報を受け取ると、受信信号中の電力ピークを検出し、電力ピーク情報としてタイミング制御部23aのバッファ部36aに出力する。なお、加算器33aの出力信号の2乗値と、加算器33bの出力信号の2乗値とを足し合わせてピーク電力検出部35aに出力しても良い。 The output signal of the adder 33a and the output signal of the adder 33b are input to the power calculation unit 34a of the peak detection unit 22a and the buffer unit 36a of the timing control unit 23a. The power calculation unit 34a calculates the power for each chip section from the output signals of the adders 33a and 33b. Specifically, the power calculation unit 34a adds the absolute value of the output signal of the adder 33a corresponding to the in-phase component and the absolute value of the output signal of the adder 33b corresponding to the quadrature component, and adds the absolute value for each chip section. It outputs to the peak power detection part 35a as electric power information. Upon receiving the power information for each chip section, the peak power detection unit 35a detects the power peak in the received signal and outputs it as power peak information to the buffer unit 36a of the timing control unit 23a. Note that the square value of the output signal of the adder 33a and the square value of the output signal of the adder 33b may be added and output to the peak power detection unit 35a.
 ピーク検出部22a(ピーク電力検出部35a)から出力される電力ピーク情報は、受信信号のピークの有無を判定する情報である。具体的には、電力ピーク情報は、受信信号のピーク点付近の期間(ピーク期間)における電力の和ΣPと、DSSSでの情報単位となる1ビット期間からピーク期間を除いた期間における電力の和ΣPとの比R(=ΣP/ΣP)がしきい値Rthより大きいか否かを示す情報である。電力ピーク情報において、RがRthより大きい場合には、タイミング制御部23a(バッファ部36a)は、そのタイミングで受信信号がピークを有するものとして、1ビット分の信号Ia1および信号Qa1を到来角度算出部24に出力する。一方で、RがRthより小さい場合には、タイミング制御部23a(バッファ部36a)は、そのタイミングでは受信信号がピークを有しないものとして、到来角度算出部24への出力を停止する。なお、ここでは、ピーク検出部22aが電力ピーク情報に関する演算処理を行っているが、電力ピーク情報に関する演算処理はタイミング制御部23aにおいて行っても良い。 The power peak information output from the peak detector 22a (peak power detector 35a) is information for determining whether or not there is a peak in the received signal. Specifically, the power peak information includes the sum of power ΣP 1 in a period near the peak point of the received signal (peak period) and the power in a period excluding the peak period from a 1-bit period that is an information unit in DSSS. This is information indicating whether the ratio R (= ΣP 1 / ΣP 2 ) with the sum ΣP 2 is greater than the threshold value R th . In the peak power information, if R is greater than R th, the timing controller 23a (buffer section 36a) as to have a peak received signal at that timing, arrival angle a 1 bit signal Ia1 and signals Qa1 It outputs to the calculation part 24. On the other hand, when R is smaller than Rth , the timing control unit 23a (buffer unit 36a) stops the output to the arrival angle calculation unit 24, assuming that the received signal has no peak at that timing. Here, the peak detection unit 22a performs the calculation process related to the power peak information, but the calculation process related to the power peak information may be performed in the timing control unit 23a.
 相関処理部21b(拡散コード発生器31、乗算器32cおよび32d、加算器33cおよび33d)、ピーク検出部22b(電力算出部34b、ピーク電力検出部35b)、タイミング制御部23b(バッファ部36b)の動作や機能は、上記相関処理部21a(拡散コード発生器31、乗算器32aおよび32b、加算器33aおよび33b)、ピーク検出部22a(電力算出部34a、ピーク電力検出部35a)、タイミング制御部23a(バッファ部36a)の動作や機能と同様である。ただし、相関処理部21bに入力される受信信号と、相関処理部21aに入力される受信信号とは、同一電波を所定間隔離れた二点で受信しているため位相が僅かに異なっている。このため、タイミング制御部23bから出力される信号と、タイミング制御部23aから出力される信号とでは、位相が僅かに相違する。タイミング制御部23aの出力Oa1、およびタイミング制御部23bの出力Oa2を、同相成分に相当する信号を実部、直交成分に相当する信号を虚部として複素数で表現すると、下記式(1)、(2)のようになる。なお、φおよびφは、各信号の位相を表す。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
Correlation processing unit 21b (spreading code generator 31, multipliers 32c and 32d, adders 33c and 33d), peak detection unit 22b (power calculation unit 34b, peak power detection unit 35b), timing control unit 23b (buffer unit 36b) The operations and functions are as follows: correlation processing unit 21a (spreading code generator 31, multipliers 32a and 32b, adders 33a and 33b), peak detection unit 22a (power calculation unit 34a, peak power detection unit 35a), timing control The operation and function of the unit 23a (buffer unit 36a) are the same. However, the received signal input to the correlation processing unit 21b and the received signal input to the correlation processing unit 21a are slightly different in phase because the same radio wave is received at two points separated by a predetermined interval. For this reason, the signal output from the timing control unit 23b and the signal output from the timing control unit 23a are slightly different in phase. Output O a1 of the timing controller 23a, and the output O a2 of the timing controller 23b, the real part of the signal corresponding to the phase component, when a signal corresponding to the quadrature component expressed by a complex number as an imaginary part, the following formula (1) (2) Φ 1 and φ 2 represent the phase of each signal.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
 タイミング制御部23aの出力Oa1は、到来角度算出部24の複素共役部41に入力される。複素共役部41は、タイミング制御部23aの出力Oa1の複素共役を複素乗算部42に出力する。つまり、複素共役部41からは、信号Ia1と、信号Qa1の符号が反転した信号が出力される。複素共役部41の出力Oa1´を複素数で表現すると、下記式(3)のようになる。
Figure JPOXMLDOC01-appb-M000003
The output O a1 of the timing control unit 23 a is input to the complex conjugate unit 41 of the arrival angle calculation unit 24. The complex conjugate unit 41 outputs the complex conjugate of the output O a1 of the timing control unit 23 a to the complex multiplication unit 42. That is, the complex conjugate section 41 outputs a signal Ia1 and a signal in which the sign of the signal Qa1 is inverted. When the output O a1 ′ of the complex conjugate unit 41 is expressed by a complex number, the following equation (3) is obtained.
Figure JPOXMLDOC01-appb-M000003
 複素乗算部42は、複素共役部41の出力Oa1´と、タイミング制御部23bの出力Oa2とを複素乗算して、乗算結果である信号Ibおよび信号Qbを逆正接部43および電力算出部44に出力する。複素乗算部42の出力O、出力Oの同相成分Ibおよび直交成分Qbは下記式(4)~(6)のように表される。
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
Complex multiplier 42, the output O a1' complex conjugate unit 41, and an output O a2 of the timing controller 23b by complex multiplication, inverse tangent portion 43 signals Ib and signal Qb is multiplication result and power calculator 44. The output O b of the complex multiplication unit 42, the in-phase component Ib and the quadrature component Qb of the output O b are expressed by the following equations (4) to (6).
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
 逆正接部43は、複素乗算部42の出力を用いて逆正接演算を行う。具体的には、複素乗算部42の出力信号Ibを分母とし、出力信号Qbを分子とした値の逆正接演算を行う。図4(a)に逆正接部43からの出力波形の例を示す。逆正接部43の出力Oarctanは位相差φ-φに相当し、下記式(7)で表される。
Figure JPOXMLDOC01-appb-M000007
The arctangent unit 43 performs an arctangent calculation using the output of the complex multiplier 42. Specifically, the arc tangent operation is performed on the value using the output signal Ib of the complex multiplier 42 as the denominator and the output signal Qb as the numerator. FIG. 4A shows an example of an output waveform from the arc tangent portion 43. The output O arctan of the arc tangent 43 corresponds to the phase difference φ 2 −φ 1 and is expressed by the following equation (7).
Figure JPOXMLDOC01-appb-M000007
 電力算出部44は、複素乗算部42の出力信号からチップ区間ごとの電力を算出する。具体的には、電力算出部44は、Ibの絶対値とQbの絶対値とを足し合わせ、チップ区間ごとの電力情報として平均化部45に出力する。なお、Ibの2乗値と、Qbの2乗値とを足し合わせて平均化部45に出力しても良い。図4(b)に電力算出部44からの出力波形の例を示す。平均化部45は、チップ区間ごとの電力情報を受け取ると、その情報に基づいて逆正接部43の出力Oarctanを平均化して到来角度変換部46に出力する。なお、電力算出部44および平均化部45は、適宜省略して良い。 The power calculation unit 44 calculates the power for each chip section from the output signal of the complex multiplication unit 42. Specifically, the power calculation unit 44 adds the absolute value of Ib and the absolute value of Qb, and outputs the sum to the averaging unit 45 as power information for each chip section. Note that the square value of Ib and the square value of Qb may be added together and output to the averaging unit 45. FIG. 4B shows an example of an output waveform from the power calculation unit 44. When the averaging unit 45 receives the power information for each chip section, the averaging unit 45 averages the output O arctan of the arc tangent unit 43 based on the information and outputs the average to the arrival angle conversion unit 46. The power calculation unit 44 and the averaging unit 45 may be omitted as appropriate.
 到来角度変換部46は、平均化部45の出力(平均化部45を有しない場合は逆正接部43の出力)を用いて逆三角関数演算により到来角度に変換する。逆三角関数演算としては、例えば、逆正弦演算を適用することができる。当該演算によって求められる値、すなわち、到来角度変換部46の出力が、到来角度θ(rad)に相当する。到来角度変換部46の出力Oarcsinは下記式(8)で表される。なお、下記式において、λ(m)は受信波の波長であり、d(m)は受信用アンテナ間の距離である。
Figure JPOXMLDOC01-appb-M000008
The arrival angle conversion unit 46 converts the arrival angle by the inverse trigonometric function calculation using the output of the averaging unit 45 (or the output of the arctangent unit 43 when the averaging unit 45 is not provided). As the inverse trigonometric function calculation, for example, an inverse sine calculation can be applied. The value obtained by the calculation, that is, the output of the arrival angle conversion unit 46 corresponds to the arrival angle θ (rad). The output O arcsin of the arrival angle conversion unit 46 is expressed by the following equation (8). In the following equation, λ (m) is the wavelength of the received wave, and d (m) is the distance between the receiving antennas.
Figure JPOXMLDOC01-appb-M000008
 上記処理により到来角度が得られるのは、図5に示すような幾何学的な関係が成立するためである。所定の方向を基準として間隔d(m)離して配置された二つの受信用アンテナ11a、11bに到来する電波のなす角度をθ(rad)とする。受信用アンテナ11bに到来する電波の伝搬距離は、受信用アンテナ11aに到来する電波の伝搬距離と比べてΔ(m)だけ長くなり、位相遅延(位相差φ-φ(rad))が生じる。このモデルにおいて生じる伝搬距離の差分Δと位相差φ-φとの関係を受信波の波長λ(m)を用いて表すと、下記式(9)のようになる。なお、下記式において、Δ<λである。
Figure JPOXMLDOC01-appb-M000009
The reason why the arrival angle is obtained by the above process is that a geometrical relationship as shown in FIG. 5 is established. An angle formed by radio waves arriving at two receiving antennas 11a and 11b arranged at a distance d (m) apart from a predetermined direction is defined as θ (rad). The propagation distance of the radio wave arriving at the reception antenna 11b is longer than the propagation distance of the radio wave arriving at the reception antenna 11a by Δ (m), and the phase delay (phase difference φ 2 −φ 1 (rad)) is increased. Arise. When the relationship between the propagation distance difference Δ and the phase difference φ 2 −φ 1 generated in this model is expressed using the wavelength λ (m) of the received wave, the following equation (9) is obtained. In the following formula, Δ <λ.
Figure JPOXMLDOC01-appb-M000009
 また、上記モデルにおける伝搬距離の差分Δ、アンテナ間隔d、到来角度θの幾何学的な関係から、下記式(10)が成り立つ。
Figure JPOXMLDOC01-appb-M000010
Further, the following equation (10) is established from the geometric relationship between the propagation distance difference Δ, the antenna interval d, and the arrival angle θ in the above model.
Figure JPOXMLDOC01-appb-M000010
 つまり、到来角度θは下記式(11)のように表されることになる。なお、式(11)は、到来角度変換部46における処理に相当する。このように、本実施の形態の到来角度算出装置によって到来角度が算出されることが分かる。
Figure JPOXMLDOC01-appb-M000011
That is, the arrival angle θ is expressed as the following formula (11). Expression (11) corresponds to the processing in the arrival angle conversion unit 46. Thus, it can be seen that the arrival angle is calculated by the arrival angle calculation device of the present embodiment.
Figure JPOXMLDOC01-appb-M000011
 次に、到来角度算出装置を用いた位置検出システムの例について説明する。図6に示される位置検出システム101は、到来角度算出装置1aと、到来角度算出装置1aと所定距離D離して配置される他の到来角度算出装置1bと、アクセスポイント2又はユーザ端末3とを含んで構成される。アクセスポイント2およびユーザ端末3は、それぞれ送信系および受信系を備え(図示せず)、双方向の情報伝送(通信)が可能に構成されている。また、アクセスポイント2およびユーザ端末3は、それぞれが備える送信系によって、到来角度算出装置1aおよび到来角度算出装置1bに到来角度算出用の電波を送信できるように構成されている。位置検出の対象は、アクセスポイント2又はユーザ端末3のいずれでも良い。 Next, an example of a position detection system using the arrival angle calculation device will be described. The position detection system 101 shown in FIG. 6 includes an arrival angle calculation device 1a, another arrival angle calculation device 1b arranged at a predetermined distance D from the arrival angle calculation device 1a, and the access point 2 or the user terminal 3. Consists of including. Each of the access point 2 and the user terminal 3 includes a transmission system and a reception system (not shown), and is configured to be capable of bidirectional information transmission (communication). In addition, the access point 2 and the user terminal 3 are configured to be able to transmit arrival angle calculation radio waves to the arrival angle calculation device 1a and the arrival angle calculation device 1b by their transmission systems. The position detection target may be either the access point 2 or the user terminal 3.
 到来角度算出装置1aは、アクセスポイント2の送信用アンテナから送信された電波を受信用アンテナ11aaおよび11abで受信して、到来角度算出装置1aを基準とする到来角度を算出する。また、到来角度算出装置1bは、アクセスポイント2の送信用アンテナから送信された電波を受信用アンテナ11baおよび11bbで受信して、到来角度算出装置1bを基準とする到来角度を算出する。到来角度算出装置1aと到来角度算出装置1bの位置関係が既知であれば、それぞれを基準とする到来角度からアクセスポイント2の位置を決定することができる。 The arrival angle calculation device 1a receives the radio waves transmitted from the transmission antenna of the access point 2 by the reception antennas 11aa and 11ab, and calculates the arrival angle with reference to the arrival angle calculation device 1a. Further, the arrival angle calculation device 1b receives radio waves transmitted from the transmission antenna of the access point 2 by the reception antennas 11ba and 11bb, and calculates the arrival angle with reference to the arrival angle calculation device 1b. If the positional relationship between the arrival angle calculation device 1a and the arrival angle calculation device 1b is known, the position of the access point 2 can be determined from the arrival angles based on each.
 また、ユーザ端末3の位置検出の場合は、到来角度算出装置1aおよび到来角度算出装置1bは、ユーザ端末3から送信される電波の到来角度を算出する。 In the case of detecting the position of the user terminal 3, the arrival angle calculation device 1 a and the arrival angle calculation device 1 b calculate the arrival angle of the radio wave transmitted from the user terminal 3.
 図7は本実施の形態に係る到来角度算出装置1における到来角度算出のフロー図である。到来角度算出装置1が到来角度算出対象の電波を受信すると、受信部12a、12bは相関処理部21a、21bに受信信号を出力する。そして、相関処理部21a、21bは、ステップ201において受信信号の相関処理および加算処理を行う。 FIG. 7 is a flowchart of arrival angle calculation in the arrival angle calculation apparatus 1 according to the present embodiment. When the arrival angle calculation device 1 receives the radio waves for which the arrival angle is to be calculated, the reception units 12a and 12b output reception signals to the correlation processing units 21a and 21b. Then, in step 201, the correlation processing units 21a and 21b perform correlation processing and addition processing on the received signal.
 その後、ピーク検出部22a、22bは、ステップ202において相関処理部21a、21bの出力信号から電力のピーク値Ppeakを検出する。そして、ピーク点付近の期間(ピーク期間)における電力の和ΣPと、1ビット期間(情報単位の期間)からピーク期間を除いた期間における電力の和ΣPとを算出し、これらの比R(=ΣP/ΣP)を算出する。図8(a)には、ピーク検出部22a、22bに入力される信号を模式的に示す。ピーク電力Ppeakは、図8(a)におけるピーク点Pにおける電力であり、ΣPは、ピーク期間tにおける電力の和であり、ΣPは、1ビット期間からピーク期間tを除いた期間tにおける電力の和である。ここで、ピーク期間tは、ピークの裾野を含む期間である。例えば、図9に示すように、変調方式としてDSSSを用いる場合には拡散コードの周期tcの2倍の裾野が形成される。このため、当該2・tcの期間をピーク期間tとすることができる。なお、図9において、期間tは1ビット期間tbを用いてtb-2・tcと表される。 Thereafter, in step 202, the peak detectors 22a and 22b detect the power peak value P peak from the output signals of the correlation processors 21a and 21b. Then, the power sum ΣP 1 in the period near the peak point (peak period) and the power sum ΣP 2 in the period excluding the peak period from the 1-bit period (information unit period) are calculated, and the ratio R (= ΣP 1 / ΣP 2 ) is calculated. FIG. 8A schematically shows signals input to the peak detectors 22a and 22b. The peak power P peak is the power at the peak point P in FIG. 8A, ΣP 1 is the sum of the power in the peak period t 1 , and ΣP 2 is the peak period excluding the peak period t 1 is the power sum of the period t 2. Here, the peak period t 1 is a period including the base of the peak. For example, as shown in FIG. 9, when DSSS is used as a modulation method, a base that is twice the period tc of the spreading code is formed. Therefore, the period of 2 · tc can be set to the peak period t 1 . In FIG. 9, the period t 2 is expressed as tb−2 · tc using the 1-bit period tb.
 図10に、AD変換器を用いて受信信号を取り込んだ場合のピーク検出部22a、22bに入力される信号の例を示す。図10の横軸tはサンプル番号を示しており、tは離散的な値をとる。変調方式としてDSSSを用いる場合、例えば拡散コードが11チップであり、1ビット期間が1μsであれば、拡散コードの1チップ期間は0.091μsである。AD変換は、1チップ期間の4倍のオーバーサンプリングであるとすれば、裾野は1チップ分広がり、ips=ip-3、ipe=ip+3となる。この場合、Rは下記式(12)のように表される。
Figure JPOXMLDOC01-appb-M000012
FIG. 10 shows an example of signals input to the peak detectors 22a and 22b when a received signal is captured using an AD converter. The horizontal axis t in FIG. 10 indicates the sample number, and t takes a discrete value. When DSSS is used as the modulation method, for example, if the spreading code is 11 chips and the 1-bit period is 1 μs, the 1-chip period of the spreading code is 0.091 μs. If AD conversion is oversampling four times as long as one chip period, the base spreads by one chip, and ips = ip−3 and ipe = ip + 3. In this case, R is represented by the following formula (12).
Figure JPOXMLDOC01-appb-M000012
 ステップ203において、ピーク検出部22a、22bは、算出された比R(=ΣP/ΣP)と所定のしきい値Rthとを比較する。RthよりRが大きい場合、ピーク検出部22a、22bは、その旨の信号をタイミング制御部23a、23bに出力する。タイミング制御部23aは、RthよりRが大きい旨の信号を受けると、受信信号にピークが存在するものとして到来角度の計算に必要な信号を到来角度算出部24に出力する。そして、ステップ204において、到来角度算出部24は到来角度を算出する。一方、RがRth以下の場合、ピーク検出部22a、22bは、その旨の信号をタイミング制御部23a、23bに出力し、タイミング制御部23aは、受信信号にピークが存在しないものとして到来角度算出部24への出力を停止する。そして、到来角度算出装置1は、ステップ201からのフローを再度実行する。Rthは任意の値である。例えば、Rとの比較でピークの有無を判定できる程度の値をRthとして設定することができる。 In step 203, the peak detectors 22a and 22b compare the calculated ratio R (= ΣP 1 / ΣP 2 ) with a predetermined threshold value R th . When R is larger than Rth , the peak detectors 22a and 22b output signals to that effect to the timing controllers 23a and 23b. The timing control unit 23a receives a signal indicating that R than R th is large, and outputs the arrival angle calculating section 24 a signal required for calculating the arrival angle as the peak is present in the received signal. In step 204, the arrival angle calculation unit 24 calculates the arrival angle. On the other hand, when R is equal to or less than Rth , the peak detection units 22a and 22b output signals to that effect to the timing control units 23a and 23b, and the timing control unit 23a assumes that there is no peak in the received signal. The output to the calculation unit 24 is stopped. Then, the arrival angle calculation device 1 executes the flow from step 201 again. Rth is an arbitrary value. For example, a value that can determine the presence or absence of a peak by comparison with R can be set as Rth .
 このように、検出されたピークに関する指標(R)としきい値(Rth)とを比較してピークの有無を判定することにより、ピークの有無を正確に判定することが可能である。 As described above, the presence or absence of the peak can be accurately determined by comparing the index (R) with respect to the detected peak and the threshold (R th ) to determine the presence or absence of the peak.
 ここで、単純に、パワー(電力)とパワーのしきい値とを比較してピークの有無を判定する方法について考察する。図8(b)に、バックグラウンドレベルが高い信号(実線)と、バックグラウンドレベルが低い信号(点線)を模式的に示す。図8(b)に点線で示すようにバックグラウンドレベルが低い場合、パワーのピーク値とパワーのしきい値Pthとを比較することでピークを検出することができる。しかしながら、図8(b)に実線で示すようにバックグラウンドレベルがPthを超える程度に高くなると、パワーのピーク値とPthとを比較してもピークを検出することができない。パワーのピーク値とパワーのしきい値との単純な比較では、バックグラウンドレベルを考慮できないためである。そこで、本実施の形態において示すように、ピークの検出にバックグラウンドレベルを考慮した指標を用いることで、ピークの有無を正確に判定することができる。 Here, a method of simply determining the presence or absence of a peak by comparing power (power) and a power threshold value will be considered. FIG. 8B schematically shows a signal with a high background level (solid line) and a signal with a low background level (dotted line). When the background level is low as indicated by a dotted line in FIG. 8B, the peak can be detected by comparing the power peak value with the power threshold value Pth . However, as shown by the solid line in FIG. 8B, when the background level becomes high enough to exceed Pth , no peak can be detected even if the power peak value is compared with Pth . This is because the background level cannot be considered in a simple comparison between the power peak value and the power threshold value. Therefore, as shown in this embodiment, the presence or absence of a peak can be accurately determined by using an index that takes the background level into account for peak detection.
 以上に示すように、本実施の形態に係る到来角度算出装置は、ピーク期間の電力とピーク期間以外の残りの期間における電力との比を求めて、この求めた比としきい値とを比較してピークの有無を判定することにより、受信波のバックグラウンドレベルが高い場合であっても希望波のピークを正確に検出して到来角度の計算に用いることができる。つまり、希望波以外の信号成分から到来角度を算出することが無いため、到来角度の算出精度を高めることができる。 As described above, the angle-of-arrival calculation device according to the present embodiment obtains a ratio between the power in the peak period and the power in the remaining period other than the peak period, and compares the obtained ratio with a threshold value. By determining whether or not there is a peak, the peak of the desired wave can be accurately detected and used for calculation of the arrival angle even when the background level of the received wave is high. That is, since the arrival angle is not calculated from signal components other than the desired wave, the calculation accuracy of the arrival angle can be improved.
 図11は、到来角度算出装置1における到来角度算出部24の別の一態様を説明するブロック図である。図11に示される到来角度算出部24は、タイミング制御部23aの出力Oa1の複素共役をとる複素共役部51と、複素共役部51の出力Oa1´と、タイミング制御部23bの出力Oa2を複素乗算する複素乗算部52と、複素乗算部52の出力を用いて逆正接演算を行う逆正接部53とを備える。複素共役部51、複素乗算部52、逆正接部53の動作や機能は、上述の複素共役部41、複素乗算部42、逆正接部43の動作や機能と同様である。また、逆正接部53の演算結果(位相差)を元に演算結果を補正する位相差補正部54と、位相差補正部54の出力を平均化する平均化部55と、位相差補正部54において補正を行った場合に平均化部55の演算結果(平均値)を補正する位相差再補正部56と、位相差再補正部56の出力を用いて到来角度に変換する到来角度変換部57と、を備える。到来角度変換部57の動作や機能は、上述の到来角度変換部46の動作や機能と同様である。 FIG. 11 is a block diagram illustrating another aspect of the arrival angle calculation unit 24 in the arrival angle calculation apparatus 1. Arrival angle calculator shown in FIG. 11. 24, a complex conjugate unit 51 which takes the complex conjugate of the output O a1 of the timing control unit 23a, and an output O a1' complex conjugate unit 51, the output O a2 of the timing controller 23b A complex multiplication unit 52 that performs complex multiplication, and an arctangent unit 53 that performs an arctangent calculation using the output of the complex multiplication unit 52. The operations and functions of the complex conjugate unit 51, complex multiplication unit 52, and arc tangent unit 53 are the same as the operations and functions of the complex conjugate unit 41, complex multiplication unit 42, and arc tangent unit 43 described above. Further, a phase difference correction unit 54 that corrects the calculation result based on the calculation result (phase difference) of the arctangent unit 53, an averaging unit 55 that averages the output of the phase difference correction unit 54, and a phase difference correction unit 54 The phase difference recorrection unit 56 that corrects the calculation result (average value) of the averaging unit 55 when the correction is performed in FIG. 5 and the arrival angle conversion unit 57 that converts the arrival angle using the output of the phase difference recorrection unit 56. And comprising. The operation and function of the arrival angle conversion unit 57 are the same as the operation and function of the arrival angle conversion unit 46 described above.
 位相差補正部54は、逆正接部53の演算結果である位相差が、+180°(+π)付近や-180°(-π)付近の値になる場合、逆正接部の演算結果に所定の角度(位相差)を加える処理を行う。図12のI-Q平面に示すように、本実施の形態の到来角度算出部24は、位相差を-180°~+180°(-π~+π)の位相差範囲の座標上に投影する。このため、例えば、図13(a)に示されるように、逆正接部53によって算出される位相差が+180°および-180°近傍の値にならない場合には、これを平均化することで適切に到来角度を算出することができる。しかし、図13(b)に示されるように、逆正接部53によって算出される位相差が+180および-180近傍の値になる場合、算出される位相差の僅かな誤差が角度算出に大きな影響を与えることになる。ここで、位相差データとして、-178°および+178°の二つの値が得られ、一方の値である+178°は本来の値である-178°から-4°の誤差が生じて+178°になっていると想定する。これらの差は、実際には僅かに4°である。しかし、平均化処理において、-178°と+178°として平均化すると、平均値は0°となる。実際には約180°の位相差が存在するにもかかわらず、平均化処理によって0°として扱われてしまうのである。このように、平均化された位相差が本来の位相差から大幅にずれてしまうと、適切な到来角度算出は困難になる。 When the phase difference that is the calculation result of the arc tangent unit 53 becomes a value near + 180 ° (+ π) or near −180 ° (−π), the phase difference correction unit 54 adds a predetermined value to the calculation result of the arc tangent unit. Processing to add an angle (phase difference) is performed. As shown in the IQ plane of FIG. 12, the arrival angle calculation unit 24 of the present embodiment projects the phase difference onto the coordinates of the phase difference range of −180 ° to + 180 ° (−π to + π). For this reason, for example, as shown in FIG. 13A, when the phase difference calculated by the arc tangent portion 53 does not become a value in the vicinity of + 180 ° and −180 °, this is appropriately averaged. The arrival angle can be calculated. However, as shown in FIG. 13B, when the phase difference calculated by the arc tangent unit 53 becomes a value in the vicinity of +180 and −180, a slight error in the calculated phase difference has a great influence on the angle calculation. Will give. Here, two values of −178 ° and + 178 ° are obtained as phase difference data, and one value of + 178 ° has an error of −178 ° from the original value of −178 ° to + 178 °. Assuming that These differences are actually only 4 °. However, when averaging is performed as −178 ° and + 178 ° in the averaging process, the average value becomes 0 °. In reality, although there is a phase difference of about 180 °, it is treated as 0 ° by the averaging process. As described above, when the averaged phase difference greatly deviates from the original phase difference, it is difficult to calculate an appropriate arrival angle.
 そこで、図11に示される到来角度算出部24は、逆正接部53によって算出される位相差が+180°および-180°付近の値になる場合、位相差補正部54が逆正接部53の演算結果に所定の角度(位相差)を加える補正処理を行って、適切な平均化が行われるようにするのである。逆正接部53の演算結果が+180°または-180°近傍の値であるか否かは、逆正接部53の演算結果として得られる複数の位相差の分布を元に判定することができる。例えば、+90°(+π/2)より大きく、または-90°(-π/2)より小さい位相差の数が、+90°より小さくかつ-90°より大きくなる位相差の数より多い場合には、逆正接部53の演算結果が+180°および-180°付近の値であると判定できる。位相差補正部54が加える角度(位相差)は、例えば+90°とすることができるが、適切な平均化処理が可能な角度であればこれに限られない。好適には、-90°、+180°または-180°のいずれかでも良い。 Therefore, when the phase difference calculated by the arc tangent unit 53 becomes a value near + 180 ° and −180 °, the arrival angle calculation unit 24 shown in FIG. A correction process for adding a predetermined angle (phase difference) to the result is performed so that appropriate averaging is performed. Whether the calculation result of the arc tangent unit 53 is a value near + 180 ° or −180 ° can be determined based on a plurality of phase difference distributions obtained as the calculation result of the arc tangent unit 53. For example, when the number of phase differences larger than + 90 ° (+ π / 2) or smaller than −90 ° (−π / 2) is larger than the number of phase differences smaller than + 90 ° and larger than −90 °. It can be determined that the calculation result of the arc tangent portion 53 is a value near + 180 ° and −180 °. The angle (phase difference) applied by the phase difference correction unit 54 can be set to, for example, + 90 °, but is not limited to this as long as an appropriate averaging process is possible. Preferably, any of -90 °, + 180 °, or -180 ° may be used.
 平均化部55は、位相差補正部54の出力を平均化する。本実施の形態の到来角度算出部24は、平均化に適さない位相差が算出される場合に位相差を加える補正を行うため、平均化部55において適切な平均化処理が可能である。位相差再補正部56は、位相差補正部54において位相差の補正を行っている場合に平均化部55の出力を補正する。具体的には、位相差補正部54において補正値として加えた角度(位相差)を減ずる補正を行う。 The averaging unit 55 averages the output of the phase difference correction unit 54. Since the arrival angle calculation unit 24 of the present embodiment performs correction to add a phase difference when a phase difference that is not suitable for averaging is calculated, the averaging unit 55 can perform an appropriate averaging process. The phase difference recorrection unit 56 corrects the output of the averaging unit 55 when the phase difference correction unit 54 corrects the phase difference. Specifically, correction is performed to reduce the angle (phase difference) added as a correction value in the phase difference correction unit 54.
 図14に、位相差が+180°および-180°付近となる場合の到来角度算出の概略を模式的に示す。逆正接部53によって算出された位相差が、I-Q平面において+180°および-180°付近の場合、位相差補正部54は位相差に補正値(+90°)を加えて座標軸を回転させ、平均値算出用の座標軸に変換する。平均化部55は、当該データを元に平均値(-92°)を算出する。位相差再補正部56は、位相差補正部54の出力データから補正値(+90°)を減ずる補正を行い、逆正弦部57に補正されたデータ(+178°)を出力する。 FIG. 14 schematically shows the calculation of the arrival angle when the phase difference is near + 180 ° and −180 °. When the phase difference calculated by the arc tangent unit 53 is near + 180 ° and −180 ° on the IQ plane, the phase difference correction unit 54 adds a correction value (+ 90 °) to the phase difference and rotates the coordinate axis, Convert to the coordinate axis for average value calculation. The averaging unit 55 calculates an average value (−92 °) based on the data. The phase difference recorrection unit 56 performs correction by subtracting the correction value (+ 90 °) from the output data of the phase difference correction unit 54 and outputs the corrected data (+ 178 °) to the inverse sine unit 57.
 図15は上記到来角度算出部24における処理フロー図である。到来角度算出部24の複素共役部51は、ステップ301において、タイミング制御部23aの出力Oa1の複素共役を算出する。また、複素乗算部52は、ステップ302において、タイミング制御部23bの出力Oa2と複素共役部51の出力Oa1´とを乗算する。そして、逆正接部53は、ステップ303において、複素乗算部52の出力を用いて逆正接演算を行い、受信信号間の位相差を算出する。 FIG. 15 is a processing flowchart in the arrival angle calculation unit 24. In step 301, the complex conjugate unit 51 of the arrival angle calculation unit 24 calculates the complex conjugate of the output O a1 of the timing control unit 23a. Also, complex multiplier 52, in step 302, multiplying the output O a1' output O a2 and complex conjugate unit 51 of the timing controller 23b. In step 303, the arc tangent unit 53 performs an arc tangent calculation using the output of the complex multiplier 52, and calculates a phase difference between the received signals.
 ステップ304において、位相差補正部54は、算出された位相差がI-Q平面において+180°および-180°近傍の値であるかを判定する。算出された位相差が+180°および-180°近傍の値でない場合はステップ305に進み、到来角度算出部24は位相差を補正することなく到来角度を算出する。算出された位相差が+180°近傍、または-180°近傍の値の場合はステップ306に進む。当該判定は、上述のように、+90°より大きく、または-90°より小さい位相差の数が、+90°より小さくかつ-90°より大きくなる位相差の数より多いかどうかを基準として行うことができる。 In step 304, the phase difference correction unit 54 determines whether the calculated phase difference is a value in the vicinity of + 180 ° and −180 ° on the IQ plane. When the calculated phase difference is not a value in the vicinity of + 180 ° and −180 °, the process proceeds to step 305, and the arrival angle calculation unit 24 calculates the arrival angle without correcting the phase difference. If the calculated phase difference is a value near + 180 ° or near −180 °, the process proceeds to step 306. As described above, the determination is performed based on whether the number of phase differences larger than + 90 ° or smaller than −90 ° is larger than the number of phase differences smaller than + 90 ° and larger than −90 °. Can do.
 ステップ306において、位相差補正部54は、逆正接部53の演算結果である位相差に90°を加える処理を行う。ステップ307において、平均化部55は、位相差補正部54の出力を平均化する。そして、ステップ308において、位相差再補正部56は、平均化部55の演算結果である平均値から90°を減ずる処理を行う。その後、ステップ309において、到来角度変換部57は、位相差再補正部56の出力から到来角度を算出する。このように、図11に示される到来角度算出部24では、所定の位相差を加えて平均化した後に所定の位相差を減ずるという一連の処理によって適切な平均値が算出されるため、到来角度の算出精度が低下せずに済む。その結果、到来角度の算出精度を十分に高めることができる。 In step 306, the phase difference correction unit 54 performs a process of adding 90 ° to the phase difference that is the calculation result of the arctangent unit 53. In step 307, the averaging unit 55 averages the output of the phase difference correction unit 54. In step 308, the phase difference recorrection unit 56 performs a process of subtracting 90 ° from the average value that is the calculation result of the averaging unit 55. Thereafter, in step 309, the arrival angle conversion unit 57 calculates the arrival angle from the output of the phase difference recorrection unit 56. In this way, the arrival angle calculation unit 24 shown in FIG. 11 calculates an appropriate average value by a series of processes of adding a predetermined phase difference and averaging and then reducing the predetermined phase difference. The calculation accuracy does not decrease. As a result, the calculation accuracy of the arrival angle can be sufficiently increased.
 なお、ここでは、位相差補正部54が、逆正接部53の演算結果に所定の角度を加える処理を行っているが、適切な平均化処理が実現できるのであればこれに限られない。例えば、図16に示すような構成の到来角度算出部24を用いることもできる。図16に示す到来角度算出部24は、タイミング制御部23aの出力Oa1の複素共役をとる複素共役部61と、複素共役部61の出力Oa1´と、タイミング制御部23bの出力Oa2を複素乗算する複素乗算部62とを備える。複素共役部61、複素乗算部62の動作や機能は、上述の複素共役部41、複素乗算部42の動作や機能と同様である。また、複素乗算部62の出力の同相成分(I成分)の絶対値と直交成分(Q成分)の絶対値とを比較するIQ比較部63と、複素乗算部62の出力を用い、IQ比較部63の出力に応じて演算方法を選択、変更して逆正接演算を行う逆正接部64とを備える。また、逆正接部64の演算結果である位相差を平均化する平均化部65と、逆正接部64の演算方法に応じて平均化部65の演算結果である平均値を補正する位相差再補正部66と、位相差再補正部66の出力を用いて到来角度に変換する到来角度変換部67と、を備える。到来角度変換部67の動作や機能は、上述の到来角度変換部46の動作や機能と同様である。 Here, the phase difference correction unit 54 performs a process of adding a predetermined angle to the calculation result of the arctangent unit 53, but the present invention is not limited to this as long as an appropriate averaging process can be realized. For example, the arrival angle calculation unit 24 configured as shown in FIG. 16 may be used. Arrival angle calculator 24 shown in FIG. 16, a complex conjugate unit 61 which takes the complex conjugate of the output O a1 of the timing control unit 23a, and an output O a1' complex conjugate unit 61, an output O a2 of the timing controller 23b A complex multiplier 62 for performing complex multiplication. The operations and functions of the complex conjugate unit 61 and the complex multiplication unit 62 are the same as the operations and functions of the complex conjugate unit 41 and the complex multiplication unit 42 described above. Further, an IQ comparison unit 63 that compares the absolute value of the in-phase component (I component) and the absolute value of the quadrature component (Q component) of the output of the complex multiplication unit 62, and the output of the complex multiplication unit 62, the IQ comparison unit is used. And an arc tangent unit 64 that performs arc tangent calculation by selecting and changing the calculation method according to the output of 63. Also, an averaging unit 65 that averages the phase difference that is the calculation result of the inverse tangent unit 64, and a phase difference reconstruction that corrects the average value that is the calculation result of the averaging unit 65 according to the calculation method of the inverse tangent unit 64. The correction part 66 and the arrival angle conversion part 67 which converts into an arrival angle using the output of the phase difference re-correction part 66 are provided. The operation and function of the arrival angle conversion unit 67 are the same as the operation and function of the arrival angle conversion unit 46 described above.
 IQ比較部63は、複素乗算部の出力の同相成分(I成分)が負であるか否かを判定すると共に、複素乗算部62の出力の同相成分(I成分)の絶対値と直交成分(Q成分)の絶対値とを比較する。具体的には、IQ比較部63は、同相成分Ibの符号を判定すると共に、同相成分の絶対値|Ib|が直交成分の絶対値|Qb|より十分に大きいか否か(直交成分の絶対値|Qb|が同相成分の絶対値|Ib|より十分に小さいか否か)を判定する。受信信号の位相差がI-Q平面において+180°および-180°近傍の値をとる場合には、同相成分Ibが負になり(Ib<0)、同相成分の絶対値|Ib|が直交成分の絶対値|Qb|より十分に大きくなる。このため、同相成分Ibの符号を判定し、同相成分の絶対値|Ib|が直交成分の絶対値|Qb|より十分に大きいか否かを判定することにより、位相差が+180°および-180°近傍の値をとるか否かを判定することができる。 The IQ comparison unit 63 determines whether or not the in-phase component (I component) of the output of the complex multiplication unit is negative, and the absolute value of the in-phase component (I component) of the output of the complex multiplication unit 62 and a quadrature component ( The absolute value of the Q component is compared. Specifically, the IQ comparison unit 63 determines the sign of the in-phase component Ib and determines whether the absolute value | Ib | of the in-phase component is sufficiently larger than the absolute value | Qb | Whether the value | Qb | is sufficiently smaller than the absolute value | Ib | of the in-phase component) is determined. When the phase difference of the received signal takes values in the vicinity of + 180 ° and −180 ° on the IQ plane, the in-phase component Ib becomes negative (Ib <0), and the absolute value | Ib | Is sufficiently larger than the absolute value of | Qb |. Therefore, by determining the sign of the in-phase component Ib and determining whether the absolute value | Ib | of the in-phase component is sufficiently larger than the absolute value | Qb | of the quadrature component, the phase difference is + 180 ° and −180 °. It can be determined whether or not a value in the vicinity is taken.
 逆正接部64は、複素乗算部62の出力を用い、IQ比較部63の出力に応じて演算方法を選択して逆正接演算を行う。同相成分が正である場合や、同相成分が負であり、かつ同相成分の絶対値|Ib|が直交成分の絶対値|Qb|と同程度であるか、または小さい場合、複素乗算部62の出力Ibを分母とし、出力Qbを分子とした値の逆正接演算を行う。同相成分が負であり、かつ同相成分の絶対値|Ib|が直交成分の絶対値|Qb|より十分に大きい場合、例えば、複素乗算部62の出力Qbの符号を反転させた-Qbを分母とし、出力Ibを分子とした値の逆正接演算を行う。なお、同相成分の絶対値|Ib|が直交成分の絶対値|Qb|より十分に大きい場合の上記処理は、座標軸を+90°回転させて逆正接演算を行う処理に相当する。つまり、当該処理によって得られる位相差は、元来の位相差に+90°が加えられた値である。 The arc tangent unit 64 uses the output of the complex multiplication unit 62, selects an operation method according to the output of the IQ comparison unit 63, and performs an arc tangent calculation. When the in-phase component is positive, or when the in-phase component is negative and the absolute value | Ib | of the in-phase component is equal to or smaller than the absolute value | Qb | of the quadrature component, An arc tangent operation is performed on the value with the output Ib as the denominator and the output Qb as the numerator. When the in-phase component is negative and the absolute value | Ib | of the in-phase component is sufficiently larger than the absolute value | Qb | of the quadrature component, for example, −Qb obtained by inverting the sign of the output Qb of the complex multiplier 62 is used as the denominator. The arc tangent of the value with the output Ib as the numerator is performed. Note that the above processing when the absolute value | Ib | of the in-phase component is sufficiently larger than the absolute value | Qb | of the quadrature component corresponds to processing for performing an arctangent calculation by rotating the coordinate axis by + 90 °. That is, the phase difference obtained by this processing is a value obtained by adding + 90 ° to the original phase difference.
 なお、同相成分の絶対値|Ib|が直交成分の絶対値|Qb|より十分に大きい場合の処理は、上述のものに限られない。例えば、複素乗算部62の出力Qbを分母とし、出力Ibの符号を反転させた-Ibを分子とした値の逆正接演算を行っても良い。当該処理は、座標軸を-90°回転させて逆正接演算を行う処理に相当する。つまり、当該処理によって得られる位相差は、元来の位相差に-90°が加えられた値(+90°が減じられた値)である。また、例えば、複素乗算部62の出力Ibの符号と、出力Qbの符号とを反転させて逆正接演算を行っても良い。当該処理は、座標軸を+180°(または-180°)回転させて逆正接演算を行う処理に相当する。つまり、当該処理によって得られる位相差は、元来の位相差に+180°(または-180°)が加えられた値である。このような処理によっても、適切な平均値を算出することができる。 Note that the processing when the absolute value | Ib | of the in-phase component is sufficiently larger than the absolute value | Qb | of the quadrature component is not limited to the above. For example, an arctangent operation may be performed on a value using the output Qb of the complex multiplier 62 as the denominator and −Ib obtained by inverting the sign of the output Ib as the numerator. This process corresponds to a process of performing an arctangent calculation by rotating the coordinate axis by −90 °. That is, the phase difference obtained by this processing is a value obtained by adding −90 ° to the original phase difference (a value obtained by subtracting + 90 °). Further, for example, the arc tangent calculation may be performed by inverting the sign of the output Ib of the complex multiplier 62 and the sign of the output Qb. This process corresponds to a process of performing an arctangent calculation by rotating the coordinate axis by + 180 ° (or −180 °). In other words, the phase difference obtained by this processing is a value obtained by adding + 180 ° (or −180 °) to the original phase difference. An appropriate average value can be calculated also by such processing.
 平均化部65は、逆正接部64の出力を平均化する。本実施の形態の到来角度算出部24は、平均化に適さない位相差が算出される場合に実質的に位相差を加える(または減ずる)補正を行うため、平均化部65において適切な平均化処理が可能である。位相差再補正部66は、逆正接部64が座標軸を+90°回転させる処理を行っている場合に平均化部65の出力を補正する。具体的には、+90°を減ずる補正を行う。なお、逆正接部64が座標軸を-90°回転させる処理を行っている場合には、-90°を減ずる補正(つまり、+90°を加える補正)を行う。同様に、逆正接部64が座標軸を+180°(または-180°)回転させる処理を行っている場合には、+180°(または-180°)を減ずる補正を行う。 The averaging unit 65 averages the output of the arc tangent unit 64. Since the arrival angle calculation unit 24 of the present embodiment performs a correction that substantially adds (or reduces) a phase difference when a phase difference that is not suitable for averaging is calculated, the averaging unit 65 performs appropriate averaging. Processing is possible. The phase difference re-correction unit 66 corrects the output of the averaging unit 65 when the arctangent unit 64 is performing a process of rotating the coordinate axis by + 90 °. Specifically, correction is performed to reduce + 90 °. When the arc tangent unit 64 performs a process of rotating the coordinate axis by −90 °, correction for reducing −90 ° (ie, correction for adding + 90 °) is performed. Similarly, when the arc tangent unit 64 performs a process of rotating the coordinate axis by + 180 ° (or −180 °), correction is performed to reduce + 180 ° (or −180 °).
 このように、図16に示す到来角度算出部24も、図11に示される到来角度算出部24と同様に適切な平均値を算出できるため、到来角度の算出精度が低下せずに済む。その結果、到来角度の算出精度を十分に高めることができる。 Thus, the arrival angle calculation unit 24 shown in FIG. 16 can calculate an appropriate average value in the same manner as the arrival angle calculation unit 24 shown in FIG. As a result, the calculation accuracy of the arrival angle can be sufficiently increased.
 図17は、変調方式として直交周波数分割多重(OFDM)を用いる場合の到来角度算出装置の具体的構成例を示すブロック図である。なお、図17では、図1における演算部13に相当する構成のみを示している。 FIG. 17 is a block diagram showing a specific configuration example of an arrival angle calculation apparatus when orthogonal frequency division multiplexing (OFDM) is used as a modulation method. Note that FIG. 17 shows only the configuration corresponding to the calculation unit 13 in FIG.
 図17において、相関処理部21aは、受信部12aの出力の複素共役をとる複素共役部71aと、受信部12aの出力を所定期間だけ遅延させて出力する遅延部72aと、複素共役部71aの出力と遅延部72aの出力とを複素乗算する複素乗算部73aと、複素乗算部73aの出力をGI(ガードインターバル)期間だけ足し合わせて出力する加算器74a、74bとを備える。ピーク検出部22aは、加算器74a、74bから出力された信号の電力を算出する電力算出部75aと、その電力ピークを検出してタイミング制御部23aに出力するピーク電力検出部76aとを備える。タイミング制御部23aは、ピーク電力検出部76aからの信号を元に受信部12aからの信号の到来角度算出部24への出力タイミングを制御する遅延部77aを備える。同様に、相関処理部21bは、複素共役部71b、遅延部72b、複素乗算部73b、加算器74c、74dを備え、ピーク検出部22bは、電力算出部75b、ピーク電力検出部76bを備え、タイミング制御部23bは遅延部77bを備える。到来角度算出部24は、遅延部77aの出力の複素共役をとる複素共役部81と、複素共役部81の出力と、遅延部77bの出力を複素乗算する複素乗算部82と、複素乗算部42の出力をGI(ガードインターバル)期間だけ足し合わせて出力する加算部83a、83bと、加算部83a、83bの出力を用いて逆正接演算を行う逆正接部84と、逆正接部84の出力を平均化する平均化部85と、平均化部85の出力を用いて到来角度に変換する到来角度変換部86とを備える。 In FIG. 17, the correlation processing unit 21a includes a complex conjugate unit 71a that takes a complex conjugate of the output of the receiving unit 12a, a delay unit 72a that outputs the output of the receiving unit 12a after being delayed by a predetermined period, and a complex conjugate unit 71a. A complex multiplier 73a that performs complex multiplication of the output and the output of the delay unit 72a, and adders 74a and 74b that add and output the output of the complex multiplier 73a for a GI (guard interval) period are provided. The peak detector 22a includes a power calculator 75a that calculates the power of the signals output from the adders 74a and 74b, and a peak power detector 76a that detects the power peak and outputs the detected power peak to the timing controller 23a. The timing control unit 23a includes a delay unit 77a that controls the output timing of the signal from the reception unit 12a to the arrival angle calculation unit 24 based on the signal from the peak power detection unit 76a. Similarly, the correlation processing unit 21b includes a complex conjugate unit 71b, a delay unit 72b, a complex multiplication unit 73b, and adders 74c and 74d. The peak detection unit 22b includes a power calculation unit 75b and a peak power detection unit 76b. The timing control unit 23b includes a delay unit 77b. The arrival angle calculation unit 24 includes a complex conjugate unit 81 that takes a complex conjugate of the output of the delay unit 77a, a complex multiplication unit 82 that performs complex multiplication of the output of the complex conjugate unit 81, and the output of the delay unit 77b, and a complex multiplication unit 42. Are added for the GI (guard interval) period, and are output by the addition units 83a and 83b, the inverse tangent unit 84 that performs an inverse tangent calculation using the outputs of the addition units 83a and 83b, and the output of the inverse tangent unit 84. An averaging unit 85 for averaging, and an arrival angle conversion unit 86 for converting into an arrival angle using the output of the averaging unit 85 are provided.
 遅延部72a、72bは、OFDMシンボル列の自己相関をとるため、受信部12aの出力を所定期間だけ遅延させて出力する。具体的には、遅延部72a、72bは、複素共役部71aが出力するOFDMシンボルの末部と、遅延部72a、72bが出力するGI(ガードインターバル)とが同じタイミングで複素乗算部73aに入力されるように、受信部12aの出力を所定期間だけ遅延させて出力する。複素乗算部73aは、複素共役部71aの出力と遅延部72aの出力とを複素乗算する。加算器74aおよび74bは、複素乗算部73aのチップ区間ごとの出力をGI期間だけ足し合わせて出力する。 The delay units 72a and 72b delay the output of the receiving unit 12a by a predetermined period and output the auto-correlation of the OFDM symbol sequence. Specifically, the delay units 72a and 72b input to the complex multiplication unit 73a at the same timing as the end of the OFDM symbol output from the complex conjugate unit 71a and the GI (guard interval) output from the delay units 72a and 72b. As described above, the output of the receiving unit 12a is output after being delayed by a predetermined period. The complex multiplier 73a performs complex multiplication on the output of the complex conjugate unit 71a and the output of the delay unit 72a. The adders 74a and 74b add the outputs of the complex multiplier 73a for each chip section for the GI period and output the result.
 図18(a)は、OFDMシンボル列の構成を示す模式図である。図18(a)に示すように、OFDMシンボル列は、データ部であるOFDMシンボルと、OFDMシンボルの先頭に配置されるGIとによって構成される。GIはOFDMシンボル末部をコピーしたデータであり、OFDMシンボル間の干渉を防ぐために挿入される。図18(b)は、相関処理部21aにおけるOFDMシンボル列の相関処理(自己相関処理)の様子を示す模式図である。図18(a)に示すように、遅延部72aの出力は、複素共役部71aの出力に対してOFDMシンボル長だけ遅れている。このため、複素乗算部73aにおいて、複素共役部71aの出力と遅延部72aの出力とを乗算することで自己相関をとることができる。自己相関値(GI相関値)は、複素共役部71aの出力と遅延部72aの出力にGIと同じデータが現れたときにピークを示すため、これを用いることで、データ部であるOFDMシンボルの先頭を検出することができる。 FIG. 18A is a schematic diagram showing a configuration of an OFDM symbol string. As shown in FIG. 18A, the OFDM symbol string is composed of an OFDM symbol that is a data part and a GI that is arranged at the head of the OFDM symbol. GI is data obtained by copying the end of the OFDM symbol, and is inserted to prevent interference between OFDM symbols. FIG. 18B is a schematic diagram illustrating a state of correlation processing (autocorrelation processing) of the OFDM symbol sequence in the correlation processing unit 21a. As shown in FIG. 18A, the output of the delay unit 72a is delayed by the OFDM symbol length with respect to the output of the complex conjugate unit 71a. For this reason, in the complex multiplier 73a, autocorrelation can be obtained by multiplying the output of the complex conjugate unit 71a and the output of the delay unit 72a. The autocorrelation value (GI correlation value) shows a peak when the same data as GI appears in the output of the complex conjugate unit 71a and the output of the delay unit 72a. The head can be detected.
 加算器74aおよび74bの出力信号は、ピーク検出部22aの電力算出部75aに入力される。電力算出部75aは、加算器74aおよび74bの出力信号からチップ区間ごとの電力を算出する。具体的には、電力算出部34aは、同相成分に相当する出力信号の絶対値と、直交成分に相当する出力信号の絶対値とを足し合わせ、チップ区間ごとの電力情報としてピーク電力検出部76aに出力する。なお、同相成分に相当する出力信号の2乗値と、直交成分に相当する出力信号の2乗値とを足し合わせてピーク電力検出部76aに出力しても良い。図19(a)に電力算出部75aからの出力波形の例を示す。図19(b)は、図19(a)に示す出力波形の部分拡大図である。ピーク電力検出部76aは、チップ区間ごとの電力情報を受け取ると、受信信号中の電力ピークを検出し、電力ピーク情報としてタイミング制御部23aの遅延部77aに出力する。 The output signals of the adders 74a and 74b are input to the power calculator 75a of the peak detector 22a. The power calculator 75a calculates the power for each chip section from the output signals of the adders 74a and 74b. Specifically, the power calculation unit 34a adds the absolute value of the output signal corresponding to the in-phase component and the absolute value of the output signal corresponding to the quadrature component, and calculates the peak power detection unit 76a as power information for each chip section. Output to. Note that the square value of the output signal corresponding to the in-phase component and the square value of the output signal corresponding to the quadrature component may be added together and output to the peak power detection unit 76a. FIG. 19A shows an example of an output waveform from the power calculator 75a. FIG. 19B is a partially enlarged view of the output waveform shown in FIG. When the peak power detection unit 76a receives the power information for each chip section, the peak power detection unit 76a detects the power peak in the received signal and outputs the detected power peak information to the delay unit 77a of the timing control unit 23a.
 ピーク検出部22a(ピーク電力検出部35a)から出力される電力ピーク情報は、受信信号のピークの有無を判定する情報である。具体的には、電力ピーク情報は、受信信号のピーク点付近の期間(ピーク期間)における電力の和ΣPと、OFDMでの情報単位となる1シンボル期間からピーク期間を除いた期間における電力の和ΣPとの比R(=ΣP/ΣP)がしきい値Rthより大きいか否かを示す情報である。変調方式としてOFDMを用いる場合、ピーク期間はGI期間に等しくなる。また、1シンボル期間とは、GI期間とデータ期間(OFDMシンボル期間)とを合計した期間に相当する。電力ピーク情報において、RがRthより大きい場合には、タイミング制御部23a(遅延部77a)は、そのタイミングで受信信号がピークを有するものとして、受信部12aからの受信信号を到来角度算出部24に出力する。一方で、RがRthより小さい場合には、タイミング制御部23a(遅延部77a)は、そのタイミングでは受信信号がピークを有しないものとして、到来角度算出部24への出力を停止する。なお、ここでは、ピーク検出部22aが電力ピーク情報に関する演算処理を行っているが、電力ピーク情報に関する演算処理はタイミング制御部23aにおいて行っても良い。 The power peak information output from the peak detector 22a (peak power detector 35a) is information for determining whether or not there is a peak in the received signal. Specifically, the power peak information includes power sum ΣP 1 in a period near the peak point of the received signal (peak period) and power in a period obtained by excluding the peak period from one symbol period that is an information unit in OFDM. This is information indicating whether the ratio R (= ΣP 1 / ΣP 2 ) with the sum ΣP 2 is greater than the threshold value R th . When OFDM is used as the modulation method, the peak period is equal to the GI period. One symbol period corresponds to a total period of a GI period and a data period (OFDM symbol period). In the peak power information, if R is greater than R th, the timing controller 23a (delay unit 77a) as to have a peak received signal at that timing, arrival angle calculator receiving signals from the receiving unit 12a 24. On the other hand, when R is R th smaller than, the timing controller 23a (delay unit 77a), in its timing as the reception signal has no peak, and stops the output to the arrival angle calculator 24. Here, the peak detection unit 22a performs the calculation process related to the power peak information, but the calculation process related to the power peak information may be performed in the timing control unit 23a.
 相関処理部21b(複素共役部71b、遅延部72b、複素乗算部73b、加算器74c、74d)、ピーク検出部22b(電力算出部75b、ピーク電力検出部76b)、タイミング制御部23b(遅延部77b)の動作や機能は、相関処理部21a(複素共役部71a、遅延部72a、複素乗算部73a、加算器74a、74b)、ピーク検出部22a(電力算出部75a、ピーク電力検出部76a)、タイミング制御部23a(遅延部77a)の動作や機能と同様である。ただし、相関処理部21bに入力される受信信号と、相関処理部21aに入力される受信信号とは、同一電波を所定間隔離れた二点で受信しているため位相が僅かに異なっている。このため、タイミング制御部23bから出力される信号と、タイミング制御部23aから出力される信号とでは、位相が僅かに相違する。 Correlation processing unit 21b (complex conjugate unit 71b, delay unit 72b, complex multiplication unit 73b, adders 74c, 74d), peak detection unit 22b (power calculation unit 75b, peak power detection unit 76b), timing control unit 23b (delay unit) 77b) includes the correlation processing unit 21a (complex conjugate unit 71a, delay unit 72a, complex multiplication unit 73a, adders 74a and 74b), peak detection unit 22a (power calculation unit 75a, peak power detection unit 76a). The operation and function of the timing control unit 23a (delay unit 77a) are the same. However, the received signal input to the correlation processing unit 21b and the received signal input to the correlation processing unit 21a are slightly different in phase because the same radio wave is received at two points separated by a predetermined interval. For this reason, the signal output from the timing control unit 23b and the signal output from the timing control unit 23a are slightly different in phase.
 タイミング制御部23aの出力は、到来角度算出部24の複素共役部81に入力される。複素共役部81は、タイミング制御部23aの出力の複素共役を複素乗算部82に出力する。複素乗算部82は、複素共役部81の出力と、タイミング制御部23bの出力とを複素乗算して、演算結果を加算部83aおよび83bに出力する。加算部83aおよび83bは、複素乗算部82のチップ区間ごとの出力をGI期間だけ足し合わせて逆正接部84に出力する。図19(c)に加算部83aおよび83bからの出力波形の例を示す。図中で、加算部83aの出力波形はIで示しており、加算部83bの出力波形はQで示している。 The output of the timing control unit 23 a is input to the complex conjugate unit 81 of the arrival angle calculation unit 24. The complex conjugate unit 81 outputs the complex conjugate of the output of the timing control unit 23 a to the complex multiplication unit 82. The complex multiplier 82 complex-multiplies the output of the complex conjugate unit 81 and the output of the timing controller 23b, and outputs the calculation result to the adders 83a and 83b. The adders 83a and 83b add the outputs of the complex multiplier 82 for each chip interval for the GI period and output the sum to the arctangent unit 84. FIG. 19C shows an example of output waveforms from the adders 83a and 83b. In the figure, the output waveform of the adder 83a is indicated by I, and the output waveform of the adder 83b is indicated by Q.
 逆正接部84は、加算部83aおよび83bの出力を用いて逆正接演算を行い、受信信号の位相差を算出する。図19(d)に逆正接部84からの出力波形の例を示す。平均化部85は、逆正接部84の出力を平均化して到来角度変換部86に出力する。なお、平均化部85は、適宜省略して良い。到来角度変換部86は、平均化部85の出力(平均化部85を有しない場合は逆正接部84の出力)を用いて逆三角関数演算により到来角度に変換する。当該演算によって求められる値、すなわち、到来角度変換部86の出力が、到来角度に相当する。 The arc tangent unit 84 performs an arc tangent calculation using the outputs of the adders 83a and 83b, and calculates the phase difference of the received signal. FIG. 19D shows an example of an output waveform from the arc tangent portion 84. The averaging unit 85 averages the output of the arc tangent unit 84 and outputs it to the arrival angle conversion unit 86. The averaging unit 85 may be omitted as appropriate. The arrival angle conversion unit 86 converts the arrival angle by the inverse trigonometric function calculation using the output of the averaging unit 85 (or the output of the arctangent unit 84 when the averaging unit 85 is not provided). The value obtained by the calculation, that is, the output of the arrival angle conversion unit 86 corresponds to the arrival angle.
 このように、図17の演算部13を有する到来角度算出装置1においても、ピーク期間の電力とピーク期間以外の残りの期間における電力との比を求めて、この求めた比としきい値とを比較してピークの有無を判定することにより、受信波のバックグラウンドレベルが高い場合であっても希望波のピークを正確に検出して、到来角度の計算に用いることができる。つまり、希望波以外の信号成分から到来角度を算出することが無いため、到来角度の算出精度を高めることができる。 As described above, the arrival angle calculation apparatus 1 having the calculation unit 13 in FIG. 17 also obtains the ratio between the power in the peak period and the power in the remaining period other than the peak period, and calculates the ratio and the threshold value. By comparing the presence or absence of a peak by comparison, the peak of the desired wave can be accurately detected and used for the calculation of the arrival angle even when the background level of the received wave is high. That is, since the arrival angle is not calculated from signal components other than the desired wave, the calculation accuracy of the arrival angle can be improved.
 図20は、到来角度算出装置1をカプセル内視鏡の位置特定に応用したカプセル内視鏡システムについて示す模式図である。図20に示すカプセル内視鏡システムは、複数のセンサアレイ401と、センサアレイ401からのデータを記録するデータレコーダー402とを備える。センサアレイ401は、到来角度算出装置1の受信用アンテナに相当するアンテナを備えており、患者が飲み込んだカプセル内視鏡からの電波を受信できるように構成されている。データレコーダー402は、センサアレイ401において受信した電波の持つ位相情報から、患者が飲み込んだカプセル内視鏡の位置を特定する。 FIG. 20 is a schematic diagram showing a capsule endoscope system in which the arrival angle calculation device 1 is applied to specify the position of the capsule endoscope. The capsule endoscope system shown in FIG. 20 includes a plurality of sensor arrays 401 and a data recorder 402 that records data from the sensor arrays 401. The sensor array 401 includes an antenna corresponding to the reception antenna of the arrival angle calculation device 1 and is configured to receive radio waves from the capsule endoscope swallowed by the patient. The data recorder 402 specifies the position of the capsule endoscope swallowed by the patient from the phase information of the radio wave received by the sensor array 401.
 患者が飲み込んだカプセル内視鏡は、消化管の蠕動運動によって移動する。カプセル内視鏡の位置はモニタされており、診察部位に到達したか否かを確認することができる。カプセル内視鏡が診察部位に到達すると、カプセル内視鏡は診察部位の様子を撮影してデータレコーダー402に送信し、データレコーダー402は画像情報を記録する。このように、カプセル内視鏡の位置をモニタすることで、診察部位を見逃すことなく撮影することができる。また、カプセル内視鏡が診察部位に到達したタイミングでカメラ等の電源を入れ、診察部位をはずれた場合にはカメラ等の電源を切る事が可能になるため、電池容量を小さくする事ができる。また、センサ(アンテナ)の数を削減する事が可能となる。また、電池容量が同じであれば、従来型のカプセル内視鏡と比較して多数の画像を送信でき、鮮明な画像を得ることができる。 ¡The capsule endoscope swallowed by the patient moves by the peristaltic movement of the digestive tract. The position of the capsule endoscope is monitored, and it can be confirmed whether or not the examination site has been reached. When the capsule endoscope reaches the examination site, the capsule endoscope captures the state of the examination site and transmits it to the data recorder 402, and the data recorder 402 records image information. Thus, by monitoring the position of the capsule endoscope, it is possible to take an image without missing the examination site. In addition, the camera can be turned on when the capsule endoscope reaches the examination site, and the camera capacity can be turned off when the examination site is removed, thus reducing the battery capacity. . In addition, the number of sensors (antennas) can be reduced. Further, if the battery capacities are the same, a larger number of images can be transmitted as compared with the conventional capsule endoscope, and a clear image can be obtained.
 このように、到来角度算出装置1をカプセル内視鏡の位置特定に応用することで、優れたカプセル内視鏡システムを構築することができる。 Thus, an excellent capsule endoscope system can be constructed by applying the arrival angle calculation device 1 to the position specification of the capsule endoscope.
 以上のように、本発明の到来角度算出装置によれば、ピーク期間の電力とピーク期間以外の残りの期間における電力との比を求めて、この求めた比としきい値とを比較し、比がしきい値より大きい場合に到来角度を算出するため、受信波の希望波以外の信号レベルが高い場合であっても、希望波のピークを正確に検出し、到来角度を算出することができる。つまり、希望波以外の部分から到来角度を算出することが無いため、到来角度の算出精度を高めることができる。 As described above, according to the arrival angle calculation device of the present invention, the ratio between the power in the peak period and the power in the remaining period other than the peak period is obtained, and the obtained ratio is compared with the threshold value. Since the arrival angle is calculated when is greater than the threshold value, the peak of the desired wave can be accurately detected and the arrival angle can be calculated even when the signal level of the received wave other than the desired wave is high. . That is, since the arrival angle is not calculated from a portion other than the desired wave, the calculation accuracy of the arrival angle can be improved.
 なお、本発明は上記実施の形態の記載に限定されず、その効果を発揮する態様で適宜変更することができる。例えば、上記実施の形態において、ピーク期間の電力の和と、ピーク期間を除いた期間の電力の和との比をしきい値と比較しているが、希望波以外の信号のレベルを考慮した到来角度算出が可能であればこれに限られない。例えば、ピーク期間のあるタイミングにおける電力と、ピーク期間を除いた期間のあるタイミングにおける電力とをパラメータとして用いても良い。 In addition, this invention is not limited to description of the said embodiment, It can change suitably in the aspect which exhibits the effect. For example, in the above embodiment, the ratio of the sum of power during the peak period and the sum of power during the period excluding the peak period is compared with the threshold value, but the level of the signal other than the desired wave is considered. The present invention is not limited to this as long as the arrival angle can be calculated. For example, power at a certain timing in the peak period and power at a certain timing other than the peak period may be used as parameters.
 また、上記実施の形態において、添付図面に示されている構成などは、これに限定されず、本発明の効果を発揮する範囲内で適宜変更することが可能である。 Further, in the above embodiment, the configuration shown in the attached drawings is not limited to this, and can be appropriately changed within a range in which the effect of the present invention is exhibited.
 本発明の到来角度算出装置は、対象の位置を特定するシステム、その他の各種用途に用いることができる。 The arrival angle calculation apparatus of the present invention can be used for a system for identifying a target position and other various uses.
 本出願は、2010年11月12日出願の特願2010-254011に基づく。この内容は、全てここに含めておく。 This application is based on Japanese Patent Application No. 2010-254011 filed on Nov. 12, 2010. All this content is included here.

Claims (9)

  1.  ある位置から送信された電波を受信する複数のアンテナと、前記各アンテナに対応して設けられた複数の受信信号処理部と、前記複数の受信信号処理部から出力される出力信号から受信信号処理部間で同一情報単位となる信号成分を取り込んで前記電波の到来角度を算出する到来角度算出部と、を備え、
     前記各受信信号処理部は、対応する前記アンテナで受信した電波を当該電波の位相情報を有する受信信号に変換して出力する受信部と、前記受信部から出力された受信信号を相関処理する相関処理部と、前記相関処理された受信信号のピークを検出するピーク検出部と、前記相関処理部の出力信号から前記受信信号処理部間で同一情報単位となる信号成分が切り出されるように、前記ピーク検出部で検出されたピークのタイミングに合わせて、前記相関処理部から出力される出力信号の取り込みタイミングを制御するタイミング制御部と、を備え、
     前記タイミング制御部は、前記情報単位に相当する期間におけるピーク期間の電力と当該ピーク期間を除いた期間の電力との比が、しきい値より大きければ、前記相関処理部からの信号を前記到来角度算出部に出力することを特徴とする到来角度算出装置。
    A plurality of antennas for receiving radio waves transmitted from a certain position, a plurality of reception signal processing units provided corresponding to the respective antennas, and reception signal processing from output signals output from the plurality of reception signal processing units An angle-of-arrival calculation unit that takes in a signal component that is the same information unit between the units and calculates the angle of arrival of the radio wave,
    Each reception signal processing unit performs correlation processing on a reception unit that converts a radio wave received by the corresponding antenna into a reception signal having phase information of the radio wave, and a reception signal output from the reception unit. A processing unit, a peak detection unit that detects a peak of the correlation-processed reception signal, and a signal component that is the same information unit between the reception signal processing units from the output signal of the correlation processing unit, In accordance with the timing of the peak detected by the peak detection unit, a timing control unit that controls the capture timing of the output signal output from the correlation processing unit, and
    The timing control unit receives the signal from the correlation processing unit if the ratio between the power in the peak period in the period corresponding to the information unit and the power in the period excluding the peak period is greater than a threshold value. An angle-of-arrival calculation apparatus that outputs to an angle calculation unit.
  2.  前記タイミング制御部は、前記情報単位に相当する期間におけるピーク期間の電力の和ΣPと前記情報単位に相当する期間において前記ピーク期間を除いた期間における電力の和ΣPとの比ΣP/ΣPを、しきい値と比較し、前記比ΣP/ΣPが前記しきい値より大きい場合、前記相関処理部からの信号を前記到来角度算出部に出力することを特徴とする請求項1に記載の到来角度算出装置。 The timing control unit compares a ratio ΣP 1 / of the sum ΣP 1 of power in a peak period in a period corresponding to the information unit and the sum ΣP 2 of power in a period excluding the peak period in a period corresponding to the information unit. The ΣP 2 is compared with a threshold value, and when the ratio ΣP 1 / ΣP 2 is larger than the threshold value, a signal from the correlation processing unit is output to the arrival angle calculation unit. The arrival angle calculation device according to 1.
  3.  前記到来角度算出部は、
     一方のアンテナに対応した一方の受信信号処理部のタイミング制御部からの信号の複素共役をとる複素共役部と、
     前記複素共役部の出力と、他方のアンテナに対応した他方の受信信号処理部のタイミング制御部からの信号とを乗算する複素乗算部と、
     前記複素乗算部の出力を用いて逆正接演算を行い、前記アンテナ間での前記受信電波の位相差を算出する逆正接部と、
     前記逆正接部の出力を平均化する平均化部と、
     前記平均化部の出力を用いて逆三角関数演算を行い、到来角度に変換する到来角度変換部と、を備えることを特徴とする請求項1または請求項2に記載の到来角度算出装置。
    The arrival angle calculation unit
    A complex conjugate unit that takes a complex conjugate of the signal from the timing control unit of one received signal processing unit corresponding to one antenna;
    A complex multiplier that multiplies the output of the complex conjugate unit by the signal from the timing control unit of the other received signal processing unit corresponding to the other antenna;
    An arc tangent is calculated using the output of the complex multiplier, and an arc tangent for calculating a phase difference of the received radio wave between the antennas;
    An averaging unit that averages the output of the arctangent,
    The arrival angle calculation device according to claim 1, further comprising: an arrival angle conversion unit that performs an inverse trigonometric function operation using an output of the averaging unit and converts the result into an arrival angle.
  4.  前記到来角度算出部は、前記算出された位相差が、I-Q平面上における+180°及び/又は-180°付近に分布している場合は、各位相差を所定角度回転させた上で平均化し、当該平均値から前記所定角度を減じて逆三角関数演算を行い、到来角度に変換することを特徴とする請求項3に記載の到来角度算出装置。 When the calculated phase difference is distributed in the vicinity of + 180 ° and / or −180 ° on the IQ plane, the arrival angle calculation unit averages each phase difference after rotating it by a predetermined angle. The arrival angle calculation device according to claim 3, wherein the predetermined angle is subtracted from the average value to perform an inverse trigonometric function calculation to convert the average angle into an arrival angle.
  5.  前記I-Q平面上において、+90°より大きく、または-90°より小さい位相差の数が、+90°より小さくかつ-90°より大きい位相差の数より多い場合、前記I-Q平面上における+180°及び/又は-180°付近に分布していると判断することを特徴とする請求項4に記載の到来角度算出装置。 On the IQ plane, when the number of phase differences larger than + 90 ° or smaller than −90 ° is larger than the number of phase differences smaller than + 90 ° and larger than −90 °, The arrival angle calculation device according to claim 4, wherein the arrival angle calculation device determines that the distribution is in the vicinity of + 180 ° and / or -180 °.
  6.  前記所定角度は、+90°、-90°、+180°、または-180°のいずれかの角度であることを特徴とする請求項4または請求項5に記載の到来角度算出装置。 6. The arrival angle calculation apparatus according to claim 4, wherein the predetermined angle is any one of + 90 °, −90 °, + 180 °, and −180 °.
  7.  前記複素乗算部の出力のI成分が負であり、前記複素乗算部の出力のI成分の絶対値がQ成分の絶対値と比べて十分に大きい場合、前記Q成分の符号を反転させた上でI成分とQ成分との関係を入れ替えた逆正接演算を行うことにより補正された位相差を算出し、前記補正された位相差を平均化し、当該平均値から90°を減じて逆三角関数演算を行い、到来角度に変換することを特徴とする請求項3に記載の到来角度算出装置。 When the I component of the output of the complex multiplier is negative and the absolute value of the I component of the output of the complex multiplier is sufficiently larger than the absolute value of the Q component, the sign of the Q component is inverted. The corrected phase difference is calculated by performing an arctangent calculation in which the relationship between the I component and the Q component is exchanged, and the corrected phase difference is averaged, and 90 ° is subtracted from the average value to obtain an inverse trigonometric function. 4. The arrival angle calculation apparatus according to claim 3, wherein the calculation is performed to convert the arrival angle into an arrival angle.
  8.  前記複素乗算部の出力のI成分が負であり、前記複素乗算部の出力のI成分の絶対値がQ成分の絶対値と比べて十分に大きい場合、前記I成分の符号を反転させた上でI成分とQ成分との関係を入れ替えた逆正接演算を行うことにより補正された位相差を算出し、前記補正された位相差を平均化し、当該平均値に90°を加えて逆三角関数演算を行い、到来角度に変換することを特徴とする請求項3に記載の到来角度算出装置。 When the I component of the output of the complex multiplier is negative and the absolute value of the I component of the output of the complex multiplier is sufficiently larger than the absolute value of the Q component, the sign of the I component is inverted. The corrected phase difference is calculated by performing an arc tangent calculation in which the relationship between the I component and the Q component is exchanged, and the corrected phase difference is averaged, and 90 ° is added to the average value to obtain an inverse trigonometric function. 4. The arrival angle calculation apparatus according to claim 3, wherein the calculation is performed to convert the arrival angle into an arrival angle.
  9.  前記複素乗算部の出力のI成分が負であり、前記複素乗算部の出力のI成分の絶対値がQ成分の絶対値と比べて十分に大きい場合、前記I成分の符号とQ成分の符号を反転させた上で逆正接演算を行うことにより補正された位相差を算出し、前記補正された位相差を平均化し、当該平均値から180°を減じて逆三角関数演算を行い、到来角度に変換することを特徴とする請求項3に記載の到来角度算出装置。 When the I component of the output of the complex multiplier is negative and the absolute value of the I component of the output of the complex multiplier is sufficiently larger than the absolute value of the Q component, the sign of the I component and the sign of the Q component The phase difference corrected by calculating the arc tangent after inverting is calculated, the corrected phase difference is averaged, 180 ° is subtracted from the average value, and the inverse trigonometric function is calculated. The angle-of-arrival calculation device according to claim 3, wherein
PCT/JP2011/068281 2010-11-12 2011-08-10 Arrival angle calculation device WO2012063532A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012542831A JP5677452B2 (en) 2010-11-12 2011-08-10 Arrival angle calculation device
CN201180051904.1A CN103180751B (en) 2010-11-12 2011-08-10 Angle of arrival calculation device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010254011 2010-11-12
JP2010-254011 2010-11-12

Publications (1)

Publication Number Publication Date
WO2012063532A1 true WO2012063532A1 (en) 2012-05-18

Family

ID=46050690

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/068281 WO2012063532A1 (en) 2010-11-12 2011-08-10 Arrival angle calculation device

Country Status (3)

Country Link
JP (1) JP5677452B2 (en)
CN (1) CN103180751B (en)
WO (1) WO2012063532A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2895222A4 (en) * 2012-09-12 2016-04-20 Silverbow Dev Llc Nasal interface apparatus and systems for use with a respiratory assist device
US9706514B2 (en) 2014-12-02 2017-07-11 Cisco Technology, Inc. Wideband angle-of-arrival location determination using bandwidth partitioning
WO2018121773A1 (en) * 2016-12-30 2018-07-05 Huawei Technologies Co., Ltd. System and method for fast system acquisition and channel estimation
US10330770B2 (en) 2017-11-09 2019-06-25 Cisco Technology, Inc. Channel estimation in OFDMA for switched antenna array based angle-of-arrival location
JP2020034276A (en) * 2018-08-27 2020-03-05 沖電気工業株式会社 Arrival direction estimation device
EP3745155A1 (en) * 2019-05-29 2020-12-02 Assa Abloy AB Determining a position of a mobile key device based on phase difference of samples
US11904096B2 (en) 2012-09-12 2024-02-20 Inogen, Inc. Nasal interface apparatus and systems for use with a respiratory assist device

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10539645B2 (en) * 2016-01-22 2020-01-21 GM Global Technology Operations LLC Angle of arrival estimation
JP7114315B2 (en) * 2018-04-19 2022-08-08 日本電産サンキョー株式会社 encoder
US11095017B2 (en) 2018-07-13 2021-08-17 Apple Inc. Electronic device having angle of arrival detection capabilities
CN111148020B (en) * 2019-12-30 2022-08-12 上海美迪索科电子科技有限公司 Positioning system, method, device and computer readable storage medium
CN112468962B (en) * 2020-11-27 2023-06-06 Oppo广东移动通信有限公司 Angle measuring method, terminal and computer storage medium
CN114487993B (en) * 2022-04-18 2022-08-02 湖南艾科诺维科技有限公司 Direction finding method and system for uniform circular array correlation interferometer

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6266180A (en) * 1985-09-19 1987-03-25 Nec Corp Radar response correlating circuit
JPH07159521A (en) * 1993-12-10 1995-06-23 Nec Eng Ltd Sonar image display processing device
JP2000214248A (en) * 1999-01-28 2000-08-04 Nec Corp Target detection device and method therefor
JP2000266831A (en) * 1999-03-18 2000-09-29 Yrp Mobile Telecommunications Key Tech Res Lab Co Ltd Method and apparatus for measurement of transmitted waves
JP2001196835A (en) * 2000-01-17 2001-07-19 Matsushita Electric Ind Co Ltd Incoming direction estimating method and radio receiver
JP2009014688A (en) * 2007-07-09 2009-01-22 Nippon Telegr & Teleph Corp <Ntt> Radio wave arrival direction estimating device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5406286A (en) * 1992-11-17 1995-04-11 Honeywell Inc. Real time passive threat positioning system
US6108555A (en) * 1996-05-17 2000-08-22 Ksi, Inc. Enchanced time difference localization system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6266180A (en) * 1985-09-19 1987-03-25 Nec Corp Radar response correlating circuit
JPH07159521A (en) * 1993-12-10 1995-06-23 Nec Eng Ltd Sonar image display processing device
JP2000214248A (en) * 1999-01-28 2000-08-04 Nec Corp Target detection device and method therefor
JP2000266831A (en) * 1999-03-18 2000-09-29 Yrp Mobile Telecommunications Key Tech Res Lab Co Ltd Method and apparatus for measurement of transmitted waves
JP2001196835A (en) * 2000-01-17 2001-07-19 Matsushita Electric Ind Co Ltd Incoming direction estimating method and radio receiver
JP2009014688A (en) * 2007-07-09 2009-01-22 Nippon Telegr & Teleph Corp <Ntt> Radio wave arrival direction estimating device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2895222A4 (en) * 2012-09-12 2016-04-20 Silverbow Dev Llc Nasal interface apparatus and systems for use with a respiratory assist device
US11904096B2 (en) 2012-09-12 2024-02-20 Inogen, Inc. Nasal interface apparatus and systems for use with a respiratory assist device
US11376387B2 (en) 2012-09-12 2022-07-05 Inogen, Inc. Nasal interface apparatus and systems for use with a respiratory assist device
US9706514B2 (en) 2014-12-02 2017-07-11 Cisco Technology, Inc. Wideband angle-of-arrival location determination using bandwidth partitioning
WO2018121773A1 (en) * 2016-12-30 2018-07-05 Huawei Technologies Co., Ltd. System and method for fast system acquisition and channel estimation
US10509093B2 (en) 2016-12-30 2019-12-17 Futurewei Technologies, Inc. System and method for fast system acquisition and channel estimation
US10677885B2 (en) 2017-11-09 2020-06-09 Cisco Technology, Inc. Channel estimation in OFDMA for switched antenna array based angle-of-arrival location
US10330770B2 (en) 2017-11-09 2019-06-25 Cisco Technology, Inc. Channel estimation in OFDMA for switched antenna array based angle-of-arrival location
JP7070243B2 (en) 2018-08-27 2022-05-18 沖電気工業株式会社 Arrival direction estimation device
JP2020034276A (en) * 2018-08-27 2020-03-05 沖電気工業株式会社 Arrival direction estimation device
EP3745155A1 (en) * 2019-05-29 2020-12-02 Assa Abloy AB Determining a position of a mobile key device based on phase difference of samples
WO2020239768A1 (en) * 2019-05-29 2020-12-03 Assa Abloy Ab Determining a position of a mobile key device based on phase difference of samples
US11815612B2 (en) 2019-05-29 2023-11-14 Assa Abloy Ab Determining a position of a mobile key device based on phase difference of samples

Also Published As

Publication number Publication date
JPWO2012063532A1 (en) 2014-05-12
CN103180751B (en) 2015-01-21
JP5677452B2 (en) 2015-02-25
CN103180751A (en) 2013-06-26

Similar Documents

Publication Publication Date Title
JP5677452B2 (en) Arrival angle calculation device
JP5860068B2 (en) Multipath detection method and arrival angle calculation apparatus
US11662422B2 (en) Position determining system determining doppler-induced code phase deviation
WO2012046419A1 (en) Radar device
US20220104019A1 (en) Secure Channel Estimation Architecture
WO2014160052A1 (en) System and method for determining an angle of arrival in a wireless network
JP5729846B2 (en) Multipath detection method, multipath detection apparatus, and arrival angle calculation apparatus
JP4486950B2 (en) OQPSK demodulator timing estimator
JP5185233B2 (en) Wireless communication device
TW200941980A (en) Method and apparatus for processing communication signal
US20220377690A1 (en) Radio receiver synchronization
Liu et al. PAMT: Phase-based acoustic motion tracking in multipath fading environments
US20110032974A1 (en) Carrier frequency synchronization detection circuit and correlation calculator
US20130259167A1 (en) Method and apparatus for detecting envelope using difference between sampling signals
JP2005331466A5 (en)
KR20170128899A (en) Apparatus And Method for Calculating Receiving Time Of Wireless Communication Signal
KR20160009993A (en) Wi-Fi based method for providing position tracking and gesture recognition, and computer-readable recording medium for the same
JP3747405B2 (en) Antenna verification method and antenna verification processing apparatus
KR100764356B1 (en) A timing estimator in a oqpsk demodulator
JP2009250704A (en) Receiver for distance measurement device and distance measurement device
JP6090036B2 (en) Spread spectrum receiver
US8559483B1 (en) Signal quality monitor
TWI418160B (en) Method and circuit for calculating signal correlation
KR100665259B1 (en) A method for estimating synchronization of symbol in a oqpsk demodulator
WO2023170754A1 (en) Receiver device, communication system, control circuit, storage medium, and communication method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11839854

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012542831

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11839854

Country of ref document: EP

Kind code of ref document: A1