[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2012057021A1 - 撮像光学系及び撮像装置 - Google Patents

撮像光学系及び撮像装置 Download PDF

Info

Publication number
WO2012057021A1
WO2012057021A1 PCT/JP2011/074292 JP2011074292W WO2012057021A1 WO 2012057021 A1 WO2012057021 A1 WO 2012057021A1 JP 2011074292 W JP2011074292 W JP 2011074292W WO 2012057021 A1 WO2012057021 A1 WO 2012057021A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical system
lens
lens group
height
imaging optical
Prior art date
Application number
PCT/JP2011/074292
Other languages
English (en)
French (fr)
Inventor
宮野 俊
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2012540821A priority Critical patent/JP5690354B2/ja
Publication of WO2012057021A1 publication Critical patent/WO2012057021A1/ja
Priority to US13/868,568 priority patent/US9395515B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/34Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having four components only
    • G02B9/58Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having four components only arranged - + + -
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00064Constructional details of the endoscope body
    • A61B1/00071Insertion part of the endoscope body
    • A61B1/0008Insertion part of the endoscope body characterised by distal tip features
    • A61B1/00096Optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/04Reversed telephoto objectives
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/06Panoramic objectives; So-called "sky lenses" including panoramic objectives having reflecting surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/2407Optical details
    • G02B23/2423Optical details of the distal end
    • G02B23/243Objectives for endoscopes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/2476Non-optical details, e.g. housings, mountings, supports
    • G02B23/2484Arrangements in relation to a camera or imaging device
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B37/00Panoramic or wide-screen photography; Photographing extended surfaces, e.g. for surveying; Photographing internal surfaces, e.g. of pipe
    • G03B37/005Photographing internal surfaces, e.g. of pipe

Definitions

  • the present invention relates to a wide-angle imaging optical system that is used together with a solid-state imaging device. More specifically, the imaging optical system has a smaller outer diameter and a shorter overall length compared to the maximum image height, and the imaging optical system is an image sensor. It is related with the imaging device used with it.
  • Various imaging devices using a CCD type or CMOS type image sensor are known. Wide-angle imaging optical systems are often used for imaging devices for monitoring or observation purposes.
  • downsizing is also an indispensable condition for an imaging device incorporated in a portable terminal such as a mobile phone or an imaging device incorporated in the distal end portion of an endoscope.
  • a nasal type is put into practical use in addition to an oral type in order to reduce the burden on the patient at the time of insertion.
  • the outer diameter of the tip insertion part is about 9 mm even in the oral type, and the size of the nasal type is less than 6 mm. Accordingly, the downsizing of the imaging device built in the tip is indispensable. It has become.
  • a cylindrical rigid portion having a length of about 20 to 30 mm is generally provided at the distal end portion of the endoscope.
  • a bendable bending portion is provided on the rear end side of the distal end rigid portion, and the direction of the distal end rigid portion can be changed by operating the angle knob.
  • An imaging device including the above-described image sensor and imaging optical system is incorporated in the distal rigid portion, and an image of the observation site is captured through an objective window provided in the distal rigid portion.
  • the end of the light guide fiber, air / water supply tube, forceps tube, etc. is further connected to the distal rigid part, and illumination is given to the observation site through the corresponding openings, and the objective window is washed with water.
  • the affected area can be treated and a sample can be collected with an appropriate treatment tool.
  • an imaging optical system for an endoscope known from Patent Document 1 is designed on the assumption that imaging is performed by an image sensor. This imaging optical system allows the principal ray to enter obliquely at the periphery of the imaging surface, suppresses the thickness of the imaging optical system itself to 3.5 to 4.7 mm, and from the forefront of the imaging optical system. While the total length to the image plane is suppressed to 4.2 to 5.5 mm, the angle of view (2 ⁇ ) is widened to approximately 100 ° to 118 °.
  • the outer diameter of the imaging optical system is determined according to the outer diameter of the lens closest to the object or the lens closest to the image plane. Therefore, in order to reduce the diameter of the imaging optical system, the outer diameter of these lenses must be reduced. It is necessary to suppress.
  • an imaging device in a very small space such as the tip of an endoscope, use an image sensor that is as large as possible, and use the same size as the effective screen size of the image sensor in the imaging optical system. An image having an image size is used. In order to improve the image quality while maintaining a small diameter, it is advantageous to increase the outer diameter of the imaging optical system within a range not exceeding the image size.
  • the imaging optical system known from Patent Document 1 has a large outer diameter with respect to the maximum image height corresponding to the image size, and the lens thickness of the entire optical system (length in the optical axis direction of the lens portion). Therefore, it is not suitable for a modern endoscope requiring a reduction in diameter and shortening. Such a situation is not limited to an endoscope, but is common to an imaging apparatus incorporated in a thin portable information terminal (PDA: Personal Digital Assistant) represented by a mobile phone.
  • PDA Personal Digital Assistant
  • the present invention has been made in consideration of the above background, and its purpose is to keep the length from the foreground to the imaging surface short with respect to the required image size, and the outer diameter also depends on the image size. It is another object of the present invention to provide an imaging optical system that falls within an appropriate range, and to provide an imaging apparatus that combines this imaging optical system with an image sensor.
  • the imaging optical system of the present invention includes a negative first lens group, a positive second lens group, a positive third lens group, and a negative fourth lens group in order from the object side.
  • the maximum image height is IH
  • the sum of the lens thickness and the back focus length of the entire optical system is the total length of the optical system TL
  • the incident height of the principal ray with respect to the maximum image height IH on the most object side surface is hF
  • hR is the exit height on the most image side surface. 2.00 ⁇ TL / IH ⁇ 3.00 (1) 0.37 ⁇ hF / IH ⁇ 0.5 (2) 0.37 ⁇ hR / IH ⁇ 0.5 (3)
  • the total length of the optical system from the forefront surface on the object side to the imaging surface is shortened, and the height of the chief ray incident on the first lens group on the most object side and the It is advantageous in that the height of chief rays emitted from the four lens units is within an appropriate range with respect to the maximum image height, and the same height is used to suppress the outer diameter of the imaging optical system and to correct chromatic aberration well. become.
  • a diaphragm is provided between the second lens group and the third lens group, and that the diaphragm is configured to have a concavo-convex / convex symmetrical shape.
  • the optical system of the present invention is also effective for the optical system of the present invention to satisfy the following formula (4) or (5) when the focal length of the first lens group is f1 and the total lens thickness is sum. 3.5 ⁇
  • the first lens group is a single lens with a concave surface facing the image side
  • the fourth lens group is a single lens with a concave surface facing the object side
  • at least one of the second lens group and the third lens group is Constructing a cemented lens in which one positive lens and one negative lens are bonded together is preferable as a specific embodiment because chromatic aberration can be favorably corrected while suppressing other aberrations.
  • the photoelectric conversion efficiency is not significantly reduced even when the incident angle of the principal ray on the incident surface exceeds 30 °, as in the case of the back-illuminated CMOS sensor or the organic CMOS sensor.
  • the present invention can be effectively applied as an imaging device combined with an image sensor, and is particularly effective for an imaging device incorporated in the distal end portion of an endoscope that images the inside of a body cavity.
  • the imaging optical system of the present invention is capable of capturing a clear image in which both the outer diameter and the total length of the optical system are kept small, and various aberrations including chromatic aberration are well corrected, even if the angle of view exceeds 100 °. Therefore, it can be effectively used for an imaging device built in a distal end portion of an endoscope or a portable information terminal device.
  • FIG. 6 is an aberration diagram of Example 3. It is a lens block diagram which shows Example 4 of this invention optical system.
  • FIG. 6 is an aberration diagram of Example 4.
  • It is a lens block diagram which shows Example 5 of this invention optical system.
  • FIG. 6 is an aberration diagram of Example 5.
  • It is a lens block diagram which shows Example 6 of this invention optical system.
  • FIG. 6 is an aberration diagram of Example 6.
  • It is a lens block diagram which shows Example 7 of the optical system of this invention.
  • FIG. 10 is an aberration diagram of Example 7. It is a lens block diagram which shows Example 8 of the optical system of this invention.
  • FIG. 10 is an aberration diagram of Example 8. It is a lens block diagram which shows Example 9 of this invention optical system.
  • FIG. 10 is an aberration diagram of Example 9. It is a lens block diagram which shows Example 10 of this invention optical system.
  • FIG. 10 is an aberration diagram of Example 10.
  • FIG. 6 is a lens configuration diagram showing Comparative Example 1.
  • FIG. 6 is an aberration diagram of Comparative Example 1.
  • FIG. 1 showing a schematic cross section of the distal end rigid portion of the endoscope
  • a hole penetrating in the axial direction is formed in a required portion of the cylindrical distal end rigid portion 2 made of a metal such as stainless steel.
  • the tip of the imaging device 3, the light guide 4 and the tip of the forceps pipe 5 are fixed.
  • a cap 6 is fixed so as to cover the distal end surface of the distal end rigid portion 2, and an opening communicating with the hole of the distal end rigid portion 2 is provided in the cap 6.
  • the opening 7 serves as a photographing window that exposes the front surface of the imaging device 3, and similarly, the opening that exposes the front surface of the light guide 4 serves as an illumination window.
  • a nozzle 8 is incorporated in an opening in front of the water supply pipe so that cleaning water can be sprayed on the front surface of the imaging device 3 for cleaning.
  • a node ring structure portion 10 is connected to the rear end side of the distal end rigid portion 2 via a connection ring 9. Although detailed illustration is omitted, the operation force from the hand operation portion of the endoscope is transmitted to the connecting ring 9 through the wire, and the node ring structure portion 10 bends according to the operation direction as is well known, and the distal end rigidity The direction of the part 2 can be freely changed.
  • the surfaces of the distal end rigid portion 2, the connecting ring 9, and the node ring structure portion 10 are covered with a flexible waterproof cover 11.
  • the imaging device 3 is composed of a metal barrel body 12, and an imaging optical system 15 and an image sensor 16 incorporated therein.
  • the lens barrel body 12 is fixed so as to seal a hole formed in the distal end hard portion 2.
  • a signal line drawn from the coaxial cable 17 is connected to the connection terminal group exposed on the back surface of the lens barrel body 12, and each transmits a drive signal for driving the image sensor 16, an imaging signal obtained from the image sensor 16, and the like. Used for.
  • the imaging device 3 is configured in a direct view type in which the incident surface of the image sensor 16 is perpendicular to the optical axis 15a of the imaging optical system 15. Light rays emitted from the final surface of the imaging optical system 15 are incident at various angles with respect to the imaging surface (which coincides with the incident surface of the image sensor 16). When compared with the principal ray, the incident angle of the principal ray incident on the peripheral portion of the imaging surface is larger than the incident angle of the principal ray incident on the central portion of the imaging surface. Note that these circumstances are completely the same in a so-called side-view type imaging apparatus in which a light beam emitted from the final surface of the imaging optical system 15 is bent by a prism and then incident on the image sensor 16.
  • a CCD type or a CMOS type can be used as the image sensor 16, but a CMOS type is often used in terms of power consumption and manufacturing cost.
  • CMOS image sensor (hereinafter referred to as an organic CMOS sensor) that performs photoelectric conversion with an organic photoelectric conversion film is used as the image sensor 16.
  • This organic CMOS sensor is known, for example, from “FUJIFILM“ RESERCH ”&“ DEVELOPMENT ”” (No. 55-2010) and has the schematic structure shown in FIG. 2A.
  • FIG. 2B shows a schematic structure of a back-illuminated (back-illuminated) CMOS image sensor
  • FIG. 2C shows a schematic structure of a front-illuminated CMOS image sensor.
  • common components are denoted by the same reference numerals.
  • the micro color filter layer 18 is formed by arranging a blue (B light) transmission filter, a green (G light) transmission filter, and a red (R light) transmission filter in a predetermined pattern such as a Bayer arrangement. It corresponds to a pixel for pixels.
  • the organic CMOS sensor has a structure in which a wiring layer 20 is provided above a semiconductor substrate 19 provided with a readout circuit (not shown), and a pixel electrode 21, an organic photoelectric conversion film 22, and a transparent counter electrode 23 are provided thereon.
  • the wiring layer 20 includes a circuit network such as a switching circuit or an amplifier circuit for reading an imaging signal obtained in pixel units via the pixel electrode 24. These circuits are electrically connected by a connecting portion 25 provided in the wiring layer 20.
  • a transparent protective layer 26 is formed above the counter electrode 23, and the above-described micro color filter layer 18 is laminated thereon.
  • a photoelectric conversion unit 28 made of a silicon photodiode is provided for each pixel in a semiconductor substrate 19, and a passivation film 29 and a micro color filter layer 18 are stacked thereon.
  • the micro lens array 30 is overlaid so as to cover the micro color filter layer 18 with the micro lens in units of pixels.
  • the wiring layer 20 including a switching circuit that reads out an image pickup signal in units of pixels is provided below the photoelectric conversion unit 28 (on the side opposite to the light incident surface).
  • a photoelectric conversion unit 28 made of a silicon photodiode is provided in a semiconductor substrate 19.
  • a wiring layer 20, a passivation insulating film 29, and a micro color filter layer 18 are provided on the photoelectric conversion unit 28, and a micro lens array 30 is overlaid so as to cover the micro color filter layer 18 with individual micro lenses in units of pixels. ing.
  • the upper surface of the organic photoelectric conversion film 22 or the photoelectric conversion unit 28 serving as a light receiving surface for photoelectric conversion is above the wiring layer 20. Is located. For this reason, the light receiving surface is provided close to the outermost surface that becomes the light incident surface, whereas in the surface irradiation type CMOS image sensor shown in FIG. 2C, the upper surface of the photoelectric conversion unit 28 that becomes the light receiving surface is the wiring layer 20. Located below.
  • the thickness of the organic photoelectric conversion film functioning as a photoelectric conversion unit is 0.5 ⁇ m, whereas in the backside irradiation type CMOS image sensor and the front side irradiation type CMOS image sensor, the photoelectric conversion unit made of a silicon photodiode.
  • the thickness in the depth direction is about 5 ⁇ m.
  • the organic CMOS sensor and the back-illuminated CMOS image sensor have less loss of incident light flux and the sensitivity is improved as compared with the front-illuminated CMOS image sensor. . Further, since it is possible to avoid the incident light from being kicked by the wiring layer 20 before reaching the light receiving surface, it is possible to suppress the sensitivity deterioration when the light beam is incident at an angle. Further, if the thickness T in the depth direction of the organic photoelectric conversion film 22 or the photoelectric conversion unit 28 having a photoelectric conversion action is reduced, the incident light transmitted vertically through the micro color filter layer 18 is transmitted obliquely. Incident light can also be prevented from leaking to the photoelectric conversion unit 28 of the adjacent pixel, and the occurrence of color mixing can be improved.
  • the microlens array 30 in order to prevent color mixing, the microlens array 30 must be used so that light incident obliquely enters the microcolor filter layer 18 as vertically as possible. Absent.
  • the organic CMOS sensor of FIG. 2A since the upper surface of the organic photoelectric conversion film 22 serving as a light receiving surface for photoelectric conversion is close to the micro color filter layer 18, color mixing occurs even if the micro lens array 30 is omitted. Hateful.
  • FIG. 3 shows the state in terms of relative sensitivity, and an incident angle of 0 ° of light corresponds to normal incidence.
  • the sensitivity characteristic indicated by reference numeral M3 in FIG. 3 is that of a conventional surface irradiation type CMOS image sensor.
  • the sensitivity characteristic indicated by the symbol M2 is that of the back-illuminated CMOS image sensor.
  • the sensitivity characteristic indicated by the symbol M2 is that of the back-illuminated CMOS image sensor.
  • the incident angle of the light beam is about ⁇ 20 °
  • the sensitivity is lower than that of the normal incidence, but the sensitivity of about 50% is secured, and the sensitivity is about 25% even at ⁇ 30 °, which is more than the surface incident type CMOS image sensor. Is also excellent.
  • the organic CMOS sensor has a sensitivity characteristic indicated by reference numeral M1, exhibits a high sensitivity characteristic up to a level almost equal to the cosine curve M0 that is a theoretical limit, and practically exhibits a sufficient sensitivity even in the vicinity of ⁇ 45 °. I understand that. This is because the organic photoelectric conversion film is close to the light incident surface and has a small thickness as described above.
  • the sensitivity characteristics of the organic CMOS sensor are much better than the backside illuminated CMOS image sensor, and overwhelmingly superior to the frontside illuminated CMOS image sensor.
  • the organic CMOS sensor is the most excellent as the sensitivity characteristic, practically, it is sufficient that the relative sensitivity with respect to the light beam having an incident angle of ⁇ 30 ° exceeds 20% with respect to the normal incidence. Therefore, it is also possible to use a backside illumination type CMOS image sensor as the image sensor 16 of the imaging device 3 of the present invention.
  • a backside illumination type CMOS image sensor By using these image sensors, restrictions on the maximum incident angle of the chief ray on the imaging surface are eased, so that the imaging optical system 15 can be easily designed. This is advantageous in reducing the diameter and length of the optical system within a range suitable for the image size and maintaining high imaging performance by suppressing various aberrations.
  • an infrared cut filter in the optical system.
  • An infrared cut filter using a general multilayer film has a spectral transmission characteristic in which the half value of the transmittance with respect to the normal incident light is set to about 650 nm, for example, as indicated by a symbol T0 in FIG.
  • the wavelength shift occurs with respect to obliquely incident light, and the transmission characteristics change to T1 at 20 ° incidence, T2 at 30 ° incidence, and T3 at 40 ° incidence.
  • the organic CMOS image sensor can remarkably reduce the sensitivity characteristic in the infrared region as shown by the broken line in FIG. 4, and can be used without necessarily incorporating the infrared cut filter into the optical system. It is. If an infrared cut filter is not used, the problem of color shading associated with the difference in the incident angle of light rays on the imaging plane can be solved, and the manufacturing cost can be reduced. It is optimal to use a CMOS sensor.
  • the imaging optical system 15 is incorporated in the lens barrel body 12 together with the image sensor 16 and is fixed by being fitted into a hole provided in the distal end rigid portion 2.
  • the image sensor 16 is incorporated in the lens barrel body 12 so that the light incident surface thereof coincides with the imaging surface of the imaging optical system 15, and images a subject image formed by the imaging optical system 15. Note that the maximum image height (distance from the optical axis 15a) of the subject image effectively imaged by the imaging optical system 15 is 1.5 mm.
  • the outer diameter of the imaging optical system 15 incorporated in the barrel main body 12 is stored at least within the outer contour of the image sensor 16 so that the distal end rigid portion 2 can be gathered in a compact manner.
  • the lens configuration is devised so that the overall lens thickness or the distance from the forefront surface of the imaging optical system 15 to the imaging surface is short and the quality of the image is not impaired.
  • it is basically preferable to dispose a negative first lens group, a positive second lens group, a positive third lens group, and a negative fourth lens group in order from the object side. It is.
  • the maximum image height on the imaging surface is IH, the total length of the optical system, which is the sum of the lens thickness of the entire optical system and the back focus length from the final surface to the imaging surface, TL, and the principal ray with respect to the maximum image height IH.
  • the incident height from the optical axis 15a on the most object side surface is hF
  • the exit height on the most image side surface is hR
  • the entire optical system is satisfied by satisfying the following equations (1) to (3): We are trying to make it more compact. 2.00 ⁇ TL / IH ⁇ 3.00 (1) 0.37 ⁇ hF / IH ⁇ 0.5 (2) 0.37 ⁇ hR / IH ⁇ 0.5 (3)
  • the above equation (1) represents an appropriate range of the total length TL from the entrance surface of the foremost lens to the imaging surface.
  • the above equation (2) indicates an appropriate range of the height from the optical axis 15a when the principal ray directed to the position where the maximum image height is formed on the imaging plane is incident on the first lens
  • the above equation (3) is FIG. 4 shows an appropriate range of the height from the optical axis 15a when the principal ray heading to the position where the maximum image height is obtained on the imaging plane is emitted from the last lens.
  • These ranges are normalized by the maximum image height on the imaging plane, and the total length of the imaging optical system when the maximum image height is 1 mm and the principal ray toward the maximum image height position when imaging with the maximum image height of 1 mm is obtained. It represents a range of appropriate values for the height of incidence and the height of emission to the imaging optical system.
  • the upper limit of the above expression (1) If the upper limit of the above expression (1) is exceeded, the total length of the optical system becomes inadequate, and if it falls below the lower limit, it becomes difficult to correct various aberrations.
  • the above expressions (2) and (3) correspond to factors that regulate the outer diameters of the first lens group and the fourth lens group. If these upper limits are exceeded, the outer diameter becomes too large for the maximum image height, which is disadvantageous for compactness. If the lower limit is not reached, the outer diameter becomes too small, and the surface accuracy of the optical surface is required to be strict. The manufacturing cost of each lens tends to be high.
  • a stop is provided between the second lens group and the third lens group of the image pickup optical system 3 to facilitate correction of chromatic aberration by symmetric power distribution around the stop, and the focal length of the first lens group.
  • each of specific examples 1 to 10 of the imaging optical system 3 will be described with reference to optical system data, lens configuration diagrams, and aberration diagrams.
  • G1, G2, G3, and G4 are assigned to the first lens group, the second lens group, the stop, the third lens group, and the fourth lens group, which are arranged in order from the object side.
  • the aperture is indicated by S and the image plane is indicated by IP.
  • the power distribution from the first lens group is concave, convex, convex, concave, and the diaphragm S has a symmetrical shape provided between the second lens group and the third lens group.
  • the cemented single lens is denoted by G2a, G2b, or G3a, G3b.
  • the first lens group G1 and the fourth lens group G4 are configured by single lenses, at least one of them may be configured by a cemented lens.
  • the optical system data indicates the radius of curvature r and the surface interval d in mm units for each surface number assigned in order from the object side, and numerical values other than the angle of view (°) and exit angle (°) are also indicated in mm units.
  • symbols F, d, and C in the spherical aberration diagram indicate the aberration characteristics with respect to the wavelength light of the F line (486.1 nm), d line (587.6 nm), and C line (656.3 nm), respectively.
  • Symbols s and t in the astigmatism diagram indicate sagittal and tangential aberration characteristics, respectively.
  • the back length BL represents the distance from the last lens surface to the imaging plane when the object distance is infinity.
  • an optical system for an endoscope is usually used with a short object distance.
  • the actual image plane is shifted backward by moving the image sensor backward.
  • the system is used in a state in which the back length is longer than in the case where the object distance is infinite. The shorter the object distance, the greater the amount of shift to the rear of the image plane, but the approximate value is the square of the focal length divided by the object distance.
  • the aberration diagrams of the respective examples show the object distance of 10 mm.
  • a front surface incident height hF representing the height from the optical axis of the incident position on the incident surface of the first lens group of the principal ray incident on the maximum image height position of the optical system, the total length TL of the optical system, and a fourth lens
  • the final surface exit height hR representing the height from the optical axis of the exit position on the exit surface of the group, the absolute value
  • values normalized by the maximum image height IH are also shown, and these are indicated by “*” such as “* TL”.
  • Table 1 shows the optical system data having the lens configuration shown in FIG.
  • the frontmost incident height [hF], final surface outgoing height [hR], and maximum image height IH listed in Table 1 represent the height from the optical axis 15a, as illustrated in FIG.
  • the optical system of Example 1 includes a cemented lens of a positive lens G2a and a negative lens G2b and a cemented lens of a positive lens G3a and a negative lens G3b in order from the object side to the second lens group G2 and the third lens group G3, respectively.
  • Is used, and the overall structure is 6 groups of 4 groups.
  • the maximum image height IH of 1.500 mm the total length TL from the forefront surface of the first lens group G1 to the imaging plane IP is 3.351 mm, the lens thickness sum is 2.850 mm, and the foremost incident height hF is 0.598 mm. Since the final surface exit height hR is 0.635 mm, it is sufficient that the calculated outer diameter of the first lens group G1 and the fourth lens group G4 for determining the outer diameter of the imaging optical system 15 is 1.5 mm. .
  • the outer diameter of the imaging optical system 15 is sufficiently smaller than the screen size of the image sensor 16 of about 3 ⁇ 3 mm, so that it can be incorporated into the lens barrel body 12, and the second lens group G2, the third lens group.
  • the imaging apparatus 3 can be suitably used.
  • Example 2 The optical system data is as shown in Table 2 below, and the aberration characteristics are as shown in FIG.
  • a cemented lens of a positive lens G3a and a negative lens G3b is used for the third lens group G3, and the overall configuration is five elements in four groups.
  • the total length TL of the optical system is 3.316 mm
  • the lens thickness sum is 2.85 mm
  • the foremost entrance height hF is 0.665 mm
  • the final exit height hR is 0.669 mm. Therefore, the wide-angle imaging optical system suitable for the observation optical system of the endoscope can be obtained because the overall length and the outer diameter are within the appropriate ranges as in the first embodiment.
  • Example 3 The optical system data is as shown in Table 3 below, and the aberration characteristics are as shown in FIG.
  • a cemented lens of a positive lens G3a and a negative lens G3b is used for the third lens group G3 in the same manner as in the second embodiment, and has a configuration of 5 elements in 4 groups as a whole.
  • the total optical system length TL is 3.74 mm
  • the lens thickness sum is 2.86 mm
  • the foremost incident height hF is 0.597 mm
  • the final exit height hR is 0.553 mm. Therefore, the wide-angle imaging optical system suitable for the observation optical system of the endoscope can be obtained because the overall length and the outer diameter are within the appropriate ranges as in the previous embodiments.
  • Example 4 The optical system data is as shown in Table 4 and the aberration characteristics are as shown in FIG.
  • This optical system uses a cemented lens of a negative lens G2a and a positive lens G2b for the second lens group G2, and uses a cemented lens of a positive lens G3a and a positive lens G3b for the third lens group G3 as a whole.
  • the group consists of 6 sheets.
  • the total length TL of the optical system is 3.788 mm
  • the lens thickness sum is 2.87 mm
  • the foremost incident height hF is 0.569 mm
  • the final exit height hR is 0.561 mm. Therefore, the wide-angle imaging optical system suitable for the observation optical system of the endoscope can be obtained because the overall length and the outer diameter are within the appropriate ranges as in the previous embodiments.
  • Example 5 The optical system data is as shown in Table 5 below and the aberration characteristics are as shown in FIG.
  • a cemented lens of a positive lens G2a and a negative lens G2b is used for the second lens group G2, and a cemented lens of a positive lens G3a and a negative lens G3b is also used for the third lens group G3.
  • the group consists of 6 sheets.
  • the total optical system length TL is 3.638 mm
  • the lens thickness sum is 2.978 mm
  • the foremost incident height hF is 0.680 mm
  • the final surface exit height hR is 0.687 mm. Therefore, the wide-angle imaging optical system suitable for the observation optical system of the endoscope can be obtained because the overall length and the outer diameter are within the appropriate ranges as in the previous embodiments.
  • a second lens group G2 uses a cemented lens of a negative lens G2a and a positive lens G2b
  • a third lens group G3 uses a cemented lens of a positive lens G3a and a negative lens G3b. It has 6 sheets.
  • the maximum image height IH of 1.5 mm the total length TL of the optical system is 3.903 mm
  • the lens thickness sum is 3.00 mm
  • the foremost entrance height hF is 0.628 mm
  • the final exit height hR is 0.623 mm. Therefore, the wide-angle imaging optical system suitable for the observation optical system of the endoscope can be obtained because the overall length and the outer diameter are within the appropriate ranges as in the previous embodiments.
  • a cemented lens of a positive lens G3a and a negative lens G3b is used for the third lens group G3, and the overall configuration is five elements in four groups.
  • the maximum image height IH of 1.5 mm the total length TL of the optical system is 3.564 mm, the lens thickness sum is 2.83 mm, the foremost incident height hF is 0.581 mm, and the final exit height hR is 0.663 mm. Therefore, the wide-angle imaging optical system suitable for the observation optical system of the endoscope can be obtained because the overall length and the outer diameter are within the appropriate ranges as in the previous embodiments.
  • Example 8 The optical system data is as shown in the following Table 8 and the aberration characteristics are as shown in FIG.
  • a cemented lens of a positive lens G3a and a negative lens G3b is used for the third lens group G3, and the overall configuration is five elements in four groups.
  • the total length TL of the optical system is 3.831 mm
  • the lens thickness sum is 2.969 mm
  • the foremost incident height hF is 0.624 mm
  • the final exit height hR is 0.659 mm. Therefore, the wide-angle imaging optical system suitable for the observation optical system of the endoscope can be obtained because the overall length and the outer diameter are within the appropriate ranges as in the previous embodiments.
  • Example 9 The optical system data is as shown in the following Table 9 and various aberration characteristics are as shown in FIG.
  • a cemented lens of a positive lens G2a and a negative lens G2b is used for the second lens group G2, and a cemented lens of a positive lens G3a and a negative lens G3b is also used for the third lens group G3.
  • the group consists of 6 sheets.
  • the maximum image height IH of 1.50 mm the total length TL of the optical system is 4.10 mm, the lens thickness sum is 3.00 mm, the foremost entrance height hF is 0.622 mm, and the final exit height hR is 0.580 mm. Therefore, the wide-angle imaging optical system suitable for the observation optical system of the endoscope can be obtained because the overall length and the outer diameter are within the appropriate ranges as in the previous embodiments.
  • Example 10 The optical system data is as shown in Table 10 below, and various aberration characteristics are as shown in FIG.
  • a cemented lens of a positive lens G2a and a negative lens G2b is used for the second lens group G2, and a cemented lens of a positive lens G3a and a negative lens G3b is also used for the third lens group G3.
  • the group consists of 6 sheets.
  • the maximum image height IH of 1.50 mm the total length TL of the optical system is 4.045 mm, the lens thickness sum is 3.00 mm, the foremost entrance height hF is 0.646 mm, and the final exit height hR is 0.652 mm. Therefore, the wide-angle imaging optical system suitable for the observation optical system of the endoscope can be obtained because the overall length and the outer diameter are within the appropriate ranges as in the previous embodiments.
  • FIG. 25 shows Comparative Example 1, which is the optical system of Example 1 described in Japanese Patent Publication No. 6-48327 cited as the prior art document.
  • the first lens group G1, the second lens group G2, the third lens group G3, and the fourth lens group G4 arranged in order from the object side. Is a four-group configuration having uneven power distribution, and is common in that a diaphragm S is provided between the second lens group G2 and the third lens group G3.
  • the aberration characteristics of the imaging optical system of Comparative Example 1 are as shown in FIG.
  • the optical system data listed as Comparative Examples 2 to 7 are those of the imaging optical system described as Examples 2 to 7 in the above publication.
  • the maximum image height IH is not constant in the range of 1.004 to 1.2102, but the maximum image height IH is lower than the maximum image height 1.500 of each embodiment of the present invention.
  • the values of the total length TL, the lens thickness sum, the foremost incident height hF, and the final surface hR of the optical system are all larger than those of the embodiments of the present invention. Therefore, it can be seen that these imaging optical systems have a long overall length TL and a lens thickness sum with respect to the image size, and have a considerably large outer diameter, which is insufficient in terms of downsizing.
  • the characteristics of the imaging optical system of the present invention are also manifested in a large exit angle 2 ⁇ .
  • the exit angle 2 ⁇ listed in the optical data of each table is symmetrical with respect to the optical axis 15 in a pair of principal rays that are emitted symmetrically with respect to the optical axis 15a from the image side surface of the fourth lens group G4.
  • Becomes the maximum incident angle of the chief ray incident on the image sensor 16.
  • the photoelectric conversion efficiency of the image sensor 16 decreases as the incident angle of the chief ray incident on the image sensor 16 increases.
  • an organic CMOS sensor for the image sensor 16
  • the incident of the chief ray The restriction on corners is greatly relaxed. Therefore, as seen in each embodiment of the present invention, it is possible to put it to practical use even if the maximum incident angle ⁇ of the principal ray incident on the maximum image height position is expanded to a range of 35 ° to 47.75 °.
  • a back-illuminated CMOS sensor can be used instead of the organic CMOS sensor if the maximum incident angle ⁇ of the chief ray to the image sensor 16 is kept small.
  • the maximum incident angle ⁇ of the chief ray is kept as small as 23 ° to 30 °, which is a limitation in designing the imaging optical system.
  • the present invention has been described according to Examples 1 to 10 using only spherical surfaces for each surface.
  • the imaging optical system of the present invention can also be configured by using aspheric surfaces on one surface or a plurality of surfaces.
  • the imaging optical system built into the distal rigid part of the endoscope not only mobile information terminals such as mobile phones, but also stationary surveillance cameras and in-vehicle devices that require a smaller size than the image size
  • the imaging optical system of the present invention can be equally applied to a camera.
  • the present invention can also be implemented as an imaging apparatus in which an imaging optical system having the above features is integrated with various image sensors.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Astronomy & Astrophysics (AREA)
  • Engineering & Computer Science (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Radiology & Medical Imaging (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Multimedia (AREA)
  • Biophysics (AREA)
  • Lenses (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)
  • Endoscopes (AREA)

Abstract

 物体側から凹凸凸凹のパワー配分を有し、イメージサイズに対して相対的にコンパクト化された撮像光学系を提供する。 物体側から順に、負の単レンズからなる第1レンズ群(G1)、正の単レンズ(G2a)と負の単レンズ(G2b)とを接合した第2レンズ群(G2)、絞り(S)、正の単レンズ(G3a)と負の単レンズ(G3b)とを接合した第3レンズ群(G3)、負の単レンズからなる第4レンズ群(G4)により撮像光学系を構成する。結像面(IP)における最大像高をIH、結像面(IP)における最大像高位置に向かう主光線が第1レンズ群(G1)に入射するときの入射高さをhF、同主光線が第4レンズ群(G4)から出射するときの出射高さをhRとしたとき、0.37<hF/IH<0.5、0.37<hR/IH<0.5が満たされる。 

Description

撮像光学系及び撮像装置
 本発明は、固体撮像素子とともに用いられる広角系の撮像光学系に関し、詳しくは、最大像高に比べて外径を小さくし、かつ全長も短くした撮像光学系、さらにこの撮像光学系をイメージセンサとともに用いた撮像装置に関するものである。
 CCD型あるいはCMOS型のイメージセンサを用いた各種の撮像装置が知られている。監視あるいは観察用途の撮像装置には、広角系の撮像光学系が多く利用される。また、携帯電話機などの携帯端末に内蔵される撮像装置や、内視鏡の先端部に組み込まれる撮像装置にはコンパクト化も必須の条件となる。例えば内視鏡では、挿入時における患者への負担を軽減するために、経口タイプのほかに経鼻タイプも実用化されている。そして、経口タイプのものでも先端挿入部の外径が9mm前後、経鼻タイプのものでは6mm未満まで細系化が進められ、これに伴って先端部に内蔵される撮像装置の小型化も不可欠になっている。
 内視鏡の先端部には一般に長さが20~30mm程度の円筒状の硬性部が設けられている。この先端硬性部の後端側に屈曲自在な湾曲部が設けられ、アングルノブを操作して先端硬性部の向きを変えることができる。この先端硬性部の内部に前述のイメージセンサと撮像光学系からなる撮像装置が組み込まれ、先端硬性部に設けられた対物窓を通して観察部位の画像が撮像される。先端硬性部には、さらにライトガイドファイバ、送気・送水チューブ、また鉗子チューブなどの各々の端部が連結され、それぞれ対応して設けられた開口を通して観察部位に照明を与え、対物窓の水洗や乾燥を行い、また適切な処置具により患部の治療やサンプル採取を行うことができるようになっている。
 先端硬性部が長くなると、挿入時における患者への負担が増すだけでなく、狭い体腔内では可撓管部の屈曲操作に制約が加わる。このため、先端硬性部は細径化だけでなく短くすることも重要で、その内部の主要構成要素である撮像装置をできるだけ細く、かつ軸方向長さも短くする必要がある。例えば特許文献1で知られる内視鏡用の撮像光学系は、イメージセンサで撮像を行うことを前提に設計されている。この撮像光学系は、結像面の周辺部で主光線が斜めに入射することを許容し、撮像光学系自体の厚みを3.5~4.7mmに抑え、また撮像光学系の最前面から結像面までの全長を4.2~5.5mmに抑えながらも、画角(2ω)が略100°~118°の広角化が図られている。
特公平6-48327号公報
 広角系の撮像光学系では絞りの前後で光線が広がるため、撮像光学系中の物体に最も近い入射面と、像面に最も近い出射面で光線が光軸から大きく離れる。したがって、撮像光学系の外径は物体に最も近いレンズ、または像面に最も近いレンズの外径に応じて決まるから、撮像光学系の細径化のためにはこれらのレンズの外径を小さく抑えることが必要になる。また、内視鏡先端部のように非常に限られた小さなスペースに撮像装置を組み込む場合には、できるだけサイズの大きいイメージセンサを利用し、撮像光学系にはイメージセンサの有効画面サイズと同等のイメージサイズをもつものが用いられる。そして、細径化を保ちつつ画像品質を高めるには、撮像光学系の外径もイメージサイズを越えない範囲で大きくすることが有利である。
 以上の観点からは、特許文献1で知られる撮像光学系は、イメージサイズに相当する最大像高に対して外径が大きく、また光学系全体のレンズ厚(レンズ部分の光軸方向長さ)も大きいので細径化及び短縮化を要する最近の内視鏡には適していない。こうした事情は内視鏡に限らず、携帯電話機に代表される薄型の携帯情報端末(PDA:Personal Digital Assistants)等に組み込まれる撮像装置にも共通する。
 本発明は上記背景を考慮してなされたもので、その目的は、必要とされるイメージサイズに対して最前面から結像面までの長さを短く抑え、かつ外径についてもイメージサイズに対して適切な範囲に収めた撮像光学系を提供し、またこの撮像光学系をイメージセンサと組み合わせた撮像装置を提供することにある。
 本発明の撮像光学系は、物体側から順に、負の第1レンズ群、正の第2レンズ群、正の第3レンズ群、負の第4レンズ群から構成される。そして、最大像高をIH、光学系全系のレンズ厚みとバックフォーカス長との和を光学系全長TL、前記最大像高IHに対する主光線の、最も物体側の面における入射高さをhF、最も像側の面における出射高さをhRとしたとき、以下の(1)~(3)式を満たすことが特徴である。
   2.00 < TL/IH < 3.00  ・・・(1)
   0.37 < hF/IH < 0.5   ・・・(2)
   0.37 < hR/IH < 0.5   ・・・(3)
 上記(1)~(3)式により、物体側の最前面から結像面までの光学系全長を短くし、最も物体側の第1レンズ群に入射する主光線の高さと最も像側の第4レンズ群から出射する主光線の高さとを最大像高に対して適切な範囲に収め、かつ同等の高さにそろえて撮像光学系の外径を抑え、色収差を良好に補正する上で有利になる。また、前記第2レンズ群と第3レンズ群との間に絞りを設け、絞りを挟んで凹凸・凸凹の対称形に構成するのが好ましい。さらに、第1レンズ群の焦点距離をf1、全体のレンズ厚みをsumとしたとき、以下の(4)式あるいは(5)式を満たす構成にすることも本発明光学系には有効である。
   3.5 < |f1/IH| < 4.5  ・・・(4)
   1.8 < sum/IH < 2.1   ・・・(5)
 また、第1レンズ群を像側に凹面を向けた単レンズ、第4レンズ群を物体側に凹面を向けた単レンズとし、第2レンズ群と第3レンズ群との少なくとも一方については、一枚の正レンズと1枚の負レンズとを貼り合わせた接合レンズで構成することが、他の収差を抑えながら色収差を良好に補正することができ、具体的な実施形態として望ましい。さらに本発明は、上述の撮像光学系を裏面照射型CMOSセンサあるいは有機CMOSセンサのように、入射面への主光線の入射角が30°を越えても光電変換効率が大きく低下することのないイメージセンサと組み合わせた撮像装置として効果的に適用することができ、特に体腔内を撮像する内視鏡の先端部に組み込まれる撮像装置に有効である。
 本発明の撮像光学系は、画角が100°を越える広角系であっても外径及び光学系の全長が共に小さく抑えられ、また色収差を含む諸収差が良好に補正され鮮明な画像の撮影が可能となるから、内視鏡の先端部や携帯型の情報端末機器に内蔵される撮像装置に効果的に用いることができる。
本発明の撮像装置が組み込まれた内視鏡先端部の要部断面図である。 有機CMOSイメージセンサの概略断面図である。 裏面照射型CMOSイメージセンサの概略断面図である。 表面照射型CMOSイメージセンサの内部構造を示す概念図である。 イメージセンサの光電変換効率を示す特性図である。 赤外カットフィルタの分光透過特性を示すグラフである。 本発明光学系の実施例1を示すレンズ構成図である。 実施例1の収差図である。 本発明光学系の実施例2を示すレンズ構成図である。 実施例2の収差図である。 本発明光学系の実施例3を示すレンズ構成図である。 実施例3の収差図である。 本発明光学系の実施例4を示すレンズ構成図である。 実施例4の収差図である。 本発明光学系の実施例5を示すレンズ構成図である。 実施例5の収差図である。 本発明光学系の実施例6を示すレンズ構成図である。 実施例6の収差図である。 本発明光学系の実施例7を示すレンズ構成図である。 実施例7の収差図である。 本発明光学系の実施例8を示すレンズ構成図である。 実施例8の収差図である。 本発明光学系の実施例9を示すレンズ構成図である。 実施例9の収差図である。 本発明光学系の実施例10を示すレンズ構成図である。 実施例10の収差図である。 比較例1を示すレンズ構成図である。 比較例1の収差図である。
 内視鏡の先端硬性部の概略断面を示す図1において、ステンレスなどの金属でつくられた円柱状の先端硬性部2の所要部には軸方向に貫通する穴が形成され、それぞれの穴には撮像装置3、ライトガイド4の先端、鉗子パイプ5の先端が固定されている。先端硬性部2の先端面を覆うようにキャップ6が固定され、キャップ6には先端硬性部2の穴に連通する開口が設けられている。開口7は撮像装置3の前面を露呈させる撮影窓となり、同様にライトガイド4の前面を露呈させる開口は照明窓となっている。また、送水パイプの前方にある開口にはノズル8が組み込まれ、撮像装置3の前面に洗浄水を吹きつけて洗浄することができるようにしている。
 先端硬性部2の後端側には接続リング9を介して節輪構造部10が連結されている。詳細な図示は省略したが、内視鏡の手元操作部からの操作力がワイヤを通じて連結リング9まで伝達され、周知のようにその操作方向に応じて節輪構造部10が屈曲し、先端硬性部2の向きを自在に変えることができるようにしている。先端硬性部2,連結リング9、節輪構造部10の表面は柔軟な防水性の被覆カバー11で覆われている。
 撮像装置3は、金属製の鏡筒本体12と、その内部に組み込まれた撮像光学系15とイメージセンサ16とから構成されている。鏡筒本体12は先端硬性部2に形成された穴を密封するように固定されている。鏡筒本体12の背面に露呈した接続端子群には同軸ケーブル17から引き出された信号線が接続され、それぞれイメージセンサ16を駆動するための駆動信号やイメージセンサ16から得られる撮像信号などの伝送に用いられる。
 撮像装置3は、撮像光学系15の光軸15aに対してイメージセンサ16の入射面が垂直となった直視型で構成されている。撮像光学系15の最終面から出射する光線は、結像面(イメージセンサ16の入射面と一致する)に対して様々な角度で入射する。主光線で比較すれば、結像面の中央部に入射する主光線の入射角よりも結像面の周辺部に入射する主光線の入射角が大きくなる。なお、撮像光学系15の最終面から出射した光線をプリズムで屈曲させた後にイメージセンサ16に入射させる、いわゆる側視型の撮像装置でもこれらの事情は全く共通する。イメージセンサ16にはCCD型またはCMOS型のものを用いることができるが、消費電力や製造コストなどの点でCMOS型のものが多く用いられている。
 本実施形態では、イメージセンサ16として有機光電変換膜で光電変換を行うCMOSイメージセンサ(以下、有機CMOSセンサという)が用いられている。この有機CMOSセンサは、例えば「FUJIFILM RESERCH & DEVELOPMENT 」(No.55-2010)などで知られ、図2Aに示す概略構造をもつ。比較のために、図2Bに裏面照射型(背面照射型)CMOSイメージセンサの概略構造を、図2Cに表面照射型のCMOSイメージセンサの概略構造を示す。これらの図では共通する構成部分には同符号が付されている。
 マイクロカラーフィルタ層18は、青色(B光)透過フィルタと緑色(G光)透過フィルタと赤色(R光)透過フィルタとをベイヤー配列などの所定パターンで配列したもので、図中のPが一画素分のピクセルに相当する。有機CMOSセンサは読み出し回路(図示省略)が設けられた半導体基板19の上方に配線層20を設け、その上方に画素電極21、有機光電変換膜22、透明な対向電極23を有する構造である。配線層20は、画素電極24を介して画素単位に得られる撮像信号を読み出すためのスイッチング回路や増幅回路などの回路網を含む。これらの回路は配線層20中に設けられた接続部25によって電気的に接続される。対向電極23の上方には透明な保護層26が形成され、その上に前述したマイクロカラーフィルタ層18が積層されている。
 図2Bの裏面照射型CMOSイメージセンサでは、半導体基板19中にシリコンフォトダイオードからなる光電変換部28が画素ごとに設けられ、その上方にパッシベーション膜29、マイクロカラーフィルタ層18を積層した構造となっている。さらに、マイクロカラーフィルタ層18を画素単位でマイクロレンズで覆うように、マイクロレンズアレイ30が重ねられる。撮像信号を画素単位で読み出すスイッチング回路等を含む配線層20は、光電変換部28の下方(光の入射面とは反対側)に設けられている。
 図2Cに示す表面照射型CMOSイメージセンサでは、半導体基板19中にシリコンフォトダイオードからなる光電変換部28が設けられる。光電変換部28の上に配線層20、パッシベーション絶縁膜29、マイクロカラーフィルタ層18が設けられ、マイクロカラーフィルタ層18を画素単位で個々のマイクロレンズで覆うように、マイクロレンズアレイ30が重ねられている。
 図2A及び図2Bから分るように、有機CMOSセンサと裏面照射型CMOSイメージセンサでは、光電変換のための受光面となる有機光電変換膜22あるいは光電変換部28の上面が配線層20の上方に位置している。このため、光の入射面となる最表面に接近して受光面が設けられるのに対し、図2Cに示す表面照射型CMOSイメージセンサでは受光面となる光電変換部28の上面が配線層20の下方に位置する。また、有機CMOSセンサでは光電変換部として機能する有機光電変換膜の厚みが0.5μmであるのに対し、裏面照射型CMOSイメージセンサおよび表面照射型CMOSイメージセンサではシリコンフォトダイオードからなる光電変換部の深さ方向の厚みが5μm程度である。
 光電変換部の受光面を配線層20の上方に位置させることにより、表面照射型CMOSイメージセンサと比較して、有機CMOSセンサ及び裏面照射型CMOSイメージセンサは入射光束の損失が少なく感度が向上する。また、入射光が受光面に達する前に配線層20で蹴られるのを避けることができるため、光線が角度をもって入射した場合の感度劣化を抑えることができる。さらに、光電変換作用をもつ有機光電変換膜22あるいは光電変換部28の深さ方向の厚みTが薄くなれば、マイクロカラーフィルタ層18を垂直に透過してきた入射光はもとより、斜めに透過してきた入射光も隣接する画素の光電変換部28への漏光を抑えることができるようになり、混色の発生を改善することが可能となる。
 一方、図2Bに示す裏面照射型CMOSセンサでは、混色の発生を防ぐために、斜めに入射してきた光がマイクロカラーフィルタ層18にできるだけ垂直に入射するようにマイクロレンズアレイ30を利用せざるを得ない。これに対し、図2Aの有機CMOSセンサでは光電変換の受光面となる有機光電変換膜22の上面がマイクロカラーフィルタ層18に近接していることからマイクロレンズアレイ30を省略しても混色が生じにくい。
 また、図2B,図2Cに示す裏面照射型あるいは表面照射型CMOSイメージセンサでは、適切なマイクロレンズアレイ30を用いた場合でもマイクロカラーフィルタ層18の法線に対して30°以上の角度で入射してきた光線は、該当画素の光電変換部28に入射する割合が激減する。図3はその様子を相対感度で表したもので、光線の入射角0°が垂直入射に相当する。図3に符号M3で示す感度特性が従来の表面照射型CMOSイメージセンサのもので、光線の入射角が±20°程度になると垂直入射と比較して35%程度にまで低下し、±30°がほぼ限界となっている。
 符号M2で示す感度特性が裏面照射型CMOSイメージセンサのものである。光線の入射角が±20°程度になると垂直入射と比較して感度は低下するものの、50%程度の感度は確保され、±30°でも25%程度の感度があり表面入射型CMOSイメージセンサよりも優れている。さらに、有機CMOSセンサは符号M1で示す感度特性を有し、理論限界となるコサインカーブM0とほぼ同等のレベルまで高い感度特性を示し、実用的には±45°近辺でも十分な感度を示していることが分かる。これは、上述の如く有機光電変換膜が光の入射面に接近し、かつ、その厚みが薄いという特長に依るものである。
 上述のように、有機CMOSセンサの感度特性は裏面照射型CMOSイメージセンサよりも格段に優れており、かつ表面照射型CMOSイメージセンサに対しては圧倒的に優れている。感度特性としては有機CMOSセンサが最も優れてはいるが、実用的には入射角±30°の光線に対する相対的な感度が、垂直入射に対して20%を上回る感度特性があればよい。したがって、本発明の撮像装置3のイメージセンサ16として裏面照射型CMOSイメージセンサを用いることも可能である。これらのイメージセンサを用いることにより、結像面への主光線の最大入射角に対する制約が緩和されることになるため撮像光学系15の設計がしやすくなる。そして、イメージサイズに適した範囲内での光学系の細径化及び全長の短縮化、諸収差を抑えて高い結像性能を保つ上で有利となる。
 また、従来型のCMOSイメージセンサは赤外領域にも感度を有するため、赤外カットフィルタを光学系内に組み込むのが一般となっている。一般的な多層膜を用いた赤外カットフィルタは、例えば図4に符号T0で示すように、垂直入射光に対する透過率の半値が650nm程度に設定された分光透過特性をもつ。ところが、斜め入射光に対しては波長シフトを生じ、20°入射ではT1、30°入射ではT2、40°入射ではT3と透過特性が変化する。したがって、入射角が小さい画面中央部分と入射角が大きくなる画面周辺部とで色味が変わる色シェーディングの問題が生じる。この色シェーディングの観点からも、従来型のCMOSイメージセンサでは結像面の周辺部に入射する主光線の入射角の最大値を25°~30°に抑えておく必要があった。
 この点、有機CMOSイメージセンサは、赤外領域での感度特性を図4に破線で示すように著しく低下させることが可能であり、必ずしも赤外カットフィルタを光学系中に組み込まなくても使用可能である。赤外カットフィルタを用いなければ結像面への光線の入射角の相違に伴う色シェーディングの問題も解消され、製造コストも抑えることができるようになり、撮像装置3のイメージセンサ16には有機CMOSセンサを用いるのが最適である。
 撮像光学系15は鏡筒本体12にイメージセンサ16とともに組み込まれ、先端硬性部2に設けられている穴に嵌め込んで固定される。イメージセンサ16は、その光入射面が撮像光学系15の結像面と一致するように鏡筒本体12に組み込まれており、撮像光学系15によって結像される被写体像を撮像する。なお、撮像光学系15によって有効に結像される被写体像の最大像高(光軸15aからの距離)は1.5mmとなっている。
 先端硬性部2をコンパクトにまとめることができるように、鏡筒本体12に組み込まれる撮像光学系15の外径は少なくともイメージセンサ16の外形輪郭内に収められる。また、全体的なレンズ厚みあるいは撮像光学系15の最前面から結像面までの距離も短く、しかも画像の品質も損なわれることがないようにレンズ構成が工夫されている。このようなレンズ構成としては、基本的には物体側から順に、負の第1レンズ群、正の第2レンズ群、正の第3レンズ群、負の第4レンズ群を配置するのが好適である。
 そして、結像面における最大像高をIH、光学系全系のレンズ厚みと最終面から結像面までのバックフォーカス長との和である光学系全長をTL、最大像高IHに対する主光線の、最も物体側の面における光軸15aからの入射高さをhF、最も像側の面における出射高さをhRとしたとき、次の(1)~(3)式を満たすことによって光学系全体のコンパクト化を図っている。
  2.00 < TL/IH < 3.00       ・・・(1)
  0.37 < hF/IH < 0.5        ・・・(2)
  0.37 < hR/IH < 0.5        ・・・(3)
 上記(1)式は、最前面のレンズの入射面から結像面までの全長TLの適切な範囲を示す。上記(2)式は、結像面における最大像高となる位置に向かう主光線が最初のレンズに入射するときの光軸15aからの高さの適切な範囲を示し、上記(3)式は、結像面における最大像高となる位置に向かう主光線が最後のレンズから出射するときの光軸15aからの高さの適切な範囲を示す。これらの範囲は結像面における最大像高で規格化され、最大像高1mmの場合における撮像光学系全長と、最大像高1mmの結像が得られるときの最大像高位置に向かう主光線の撮像光学系への入射高さ及び出射高さの適切な値の範囲を表す。
 上記(1)式の上限を越えると光学系全長のコンパトクト化が不十分となり、下限を下回ると各種収差の補正が難しくなる。上記(2)、(3)式は、第1レンズ群、第4レンズ群の外径を規制するファクタに相当する。これらの上限を越えると最大像高に対して外径が大きくなり過ぎてコンパクト化に不利であり、下限を下回る場合には外径が小さくなり過ぎて光学面の面精度に厳しさが要求され、各レンズの製造コストが高くなりやすい。
 さらに、上記撮像光学系3の第2レンズ群と第3レンズ群との間に絞りを設け、絞りを中心にパワー配分を対称にして色収差の補正を容易にし、また第1レンズ群の焦点距離をf1としたとき、
  3.5 < |f1/IH| < 4.5・・・(4)
を満たすようにすることも有効である。上記(4)式の上限を越えると第1レンズ群の負のパワーが弱過ぎて広角化を図る場合には小型化が難しくなり、逆に下限を下回ると負のパワーが強過ぎて収差補正、特に像面倒れの補正が困難になる。
 また、第1レンズ群の物体側の面から第4レンズ群の像側の面までのレンズ厚みをsumとしたとき、
  1.8 < sum/IH < 2.1 ・・・(5)
を満たすことも効果的である。上記(5)式の上限を越えるとレンズ厚みが大きくなり過ぎて光学系全長を十分に短くすることができず、逆に下限を越えると非点収差の補正が難しくなる。さらに、色収差の補正を含め、各種の収差補正を考慮すれば、絞りを挟んで設けられている正パワーの第2レンズ群あるいは第3レンズ群の少なくとも一方は、正レンズと負レンズとを貼り合わせた接合レンズで構成することが望ましい。
 以下、撮像光学系3の具体的な実施例1~10のそれぞれについて、光学系データ、レンズ構成図、収差図を参照しながら説明する。レンズ構成を示す各図面においては、物体側から順に配列された第1レンズ群、第2レンズ群、絞り、第3レンズ群、第4レンズ群にそれぞれG1,G2,G3,G4の符号を付し、絞りは符号Sで、結像面は符号IPで示している。各実施例とも、第1群レンズからのパワー配分が凹、凸、凸、凹であり、絞りSが第2レンズ群と第3レンズ群との間に設けられた対称形となっている。また、第2レンズ群または第3レンズ群が接合レンズで構成された実施例については、接合された単レンズの個々にはG2a,G2b、またはG3a,G3bの符号を付した。なお、第1レンズ群G1及び第4レンズ群G4は単レンズで構成しているが、その少なくとも一方を接合レンズで構成してもよい。
 光学系データは、物体側から順に付した面番号ごとに曲率半径r,面間隔dをmm単位で示し、また画角(°)及び出射角(°)以外の数値も同様にmm単位で示されている。収差図にあっては、球面収差図の符号F,d,CはそれぞれF線(486.1nm)、d線(587.6nm)、C線(656.3nm)の波長光に対する収差特性を示し、非点収差図の符号s,tは、それぞれサジタル,タンジェンシャルの収差特性を示す。なお、バック長BLは、物体距離が無限遠のときのレンズ最終面から結像面までの距離を表す。
 また、一般の光学系と比較して内視鏡用の光学系は物体距離を短い状態にして用いるのが通常である。内視鏡の観察に適した所定の物体距離に光学系の最適ピント位置を合わせるために、イメージセンサを後方に移動して実際の結像面は後方にずらされ、したがって内視鏡用の光学系はバック長を物体距離無限遠の場合よりも長くした状態で用いられる。物体距離が短くなるほど結像面の後方へのずらし量は大きくなるが、そのおよその値は焦点距離の二乗を物体距離で割ったものとなる。各実施例の収差図は、物体距離10mmのものを示している。
 光学系の全長TL、結像面の最大像高位置に入射する主光線の、第1レンズ群の入射面における入射位置の光軸からの高さを表す最前面入射高hFと、第4レンズ群の出射面における出射位置の光軸からの高さを表す最終面出射高hR、第1レンズ群の焦点距離f1の絶対値|f1|、さらに第1レンズ群の最前面から第4レンズ群の最終面までのレンズ厚sumについてはそれぞれ最大像高IHで規格化した値も示しており、これらについては「*TL」のように「*」を付して示した。
[実施例1]
 図5に示すレンズ構成をもち、光学系データは表1のとおりである。表1に挙げた最前面入射高[hF]、最終面出射高[hR]及び最大像高IHは、図5に例示のようにそれぞれ光軸15aからの高さを表している。
Figure JPOXMLDOC01-appb-T000001
 この実施例1の光学系は、第2レンズ群G2と第3レンズ群G3に、それぞれ物体側から順に正レンズG2aと負レンズG2bとの接合レンズ、正レンズG3aと負レンズG3bとの接合レンズが用いられ、全体として4群6枚構成となっている。最大像高IHの1.500mmに対し、第1レンズ群G1の最前面から結像面IPまでの全長TLが3.351mm、レンズ厚sumが2.850mm、最前面入射高hFが0.598mm、最終面出射高hRが0.635mmであるから、撮像光学系15の外径を決める第1レンズ群G1、第4レンズ群G4の計算上の外径は1.5mmもあれば十分である。
 したがって、3×3mm程度のイメージセンサ16の画面サイズに比して撮像光学系15の外径は十分に小さくなり、鏡筒本体12への組み込み適性や、第2レンズ群G2,第3レンズ群G3を含めた各レンズ群の製造適性などから有効径の外側にコバ部分を設けて実際の外径が大きくなることを考慮しても、内視鏡の先端硬性部2に組み込まれる広角系の撮像装置3に好適に用いることができる。
 全長TL、最前面入射高hF、最終面出射高hR、レンズ厚sumの値をそれぞれ最大像高IHで規格化した「*TL」、「*hF」、「*hR」、「*sum」の各値は、前掲した(1)式、(2)式、(3)式、(5)式の条件を満たす。また、第1レンズ群G1の焦点距離f1を最大像高IHで規格化した「*|f1|」の値も式(4)の範囲内であるから、137°の画角2ωを確保しながらも、図6に示すように諸収差が良好に補正された撮像光学系が得られる。そして、内視鏡だけでなく広画角が要求される各種撮像装置の光学系に広く用いることができる。
[実施例2]
 図7に示す4群5枚のレンズ構成を有し、その光学系データは次の表2に、収差特性は図8に示すとおりである。
Figure JPOXMLDOC01-appb-T000002
 この光学系は、第3レンズ群G3に正レンズG3aと負レンズG3bとの接合レンズが用いられ、全体として4群5枚構成となっている。最大像高IHの1.5mmに対し、光学系全長TLが3.316mm、レンズ厚sumが2.85mm、最前面入射高hFが0.665mm、最終面出射高hRが0.669mmである。よって、先の実施例1と同様に全長及び外径が適切な範囲に収まり、内視鏡の観察光学系に適した広角系の撮像光学系を得ることができる。全長TL、最前面入射高hF、最終面出射高hR、レンズ厚sumの値をそれぞれ最大像高IHで規格化した「*TL」、「*hF」、「*hR」、「*|f1|」、「*sum」の各値もそれぞれ前掲した(1)~(5)式の条件を満たし、イメージサイズに対して十分に小型化された撮像光学系が得られ、諸収差も良好に補正することができる。
[実施例3]
 図9に示す4群5枚のレンズ構成をもち、その光学系データは次の表3に、収差特性は図10に示すとおりである。
Figure JPOXMLDOC01-appb-T000003
 この光学系は、先の実施例2と同様に第3レンズ群G3に正レンズG3aと負レンズG3bとの接合レンズが用いられ、全体として4群5枚構成となっている。最大像高IHの1.5mmに対し、光学系全長TLが3.74mm、レンズ厚sumが2.86mm、最前面入射高hFが0.597mm、最終面出射高hRが0.553mmである。よって、これまでの実施例と同様に全長及び外径が適切な範囲に収まり、内視鏡の観察光学系に適した広角系の撮像光学系を得ることができる。全長TL、最前面入射高hF、最終面出射高hR、レンズ厚sumの値をそれぞれ最大像高IHで規格化した「*TL」、「*hF」、「*hR」、「*|f1|」、「*sum」の各値もそれぞれ前掲した(1)~(5)式の条件を満たし、イメージサイズに対して十分に小型化された撮像光学系が得られ、諸収差も良好に補正することができる。
[実施例4]
 図11に示す4群6枚のレンズ構成をもち、その光学系データは表4に、収差特性は図12に示すとおりである。
Figure JPOXMLDOC01-appb-T000004
 この光学系は、第2レンズ群G2に負レンズG2aと正レンズG2bとの接合レンズを用い、また第3レンズ群G3には正レンズG3aと正レンズG3bとの接合レンズを用いた全体として4群6枚構成である。最大像高IHの1.5mmに対し、光学系全長TLが3.788mm、レンズ厚sumが2.87mm、最前面入射高hFが0.569mm、最終面出射高hRが0.561mmである。よって、これまでの実施例と同様に全長及び外径が適切な範囲に収まり、内視鏡の観察光学系に適した広角系の撮像光学系を得ることができる。全長TL、最前面入射高hF、最終面出射高hR、レンズ厚sumの値をそれぞれ最大像高IHで規格化した「*TL」、「*hF」、「*hR」、「*|f1|」、「*sum」の各値もそれぞれ前掲した(1)~(5)式の条件を満たし、イメージサイズに対して十分に小型化された撮像光学系が得られ、諸収差も良好に補正することができる。
[実施例5]
 図13に示す4群5枚のレンズ構成で、光学系データは次の表5に、収差特性は図14に示すとおりである。
Figure JPOXMLDOC01-appb-T000005
 この光学系は、第2レンズ群G2に正レンズG2aと負レンズG2bとの接合レンズが用いられ、また第3レンズ群G3にも正レンズG3aと負レンズG3bとの接合レンズが用いられた4群6枚構成である。最大像高IHの1.5mmに対し、光学系全長TLが3.638mm、レンズ厚sumが2.978mm、最前面入射高hFが0.680mm、最終面出射高hRが0.687mmである。よって、これまでの実施例と同様に全長及び外径が適切な範囲に収まり、内視鏡の観察光学系に適した広角系の撮像光学系を得ることができる。全長TL、最前面入射高hF、最終面出射高hR、レンズ厚sumの値をそれぞれ最大像高IHで規格化した「*TL」、「*hF」、「*hR」、「*|f1|」、「*sum」の各値もそれぞれ前掲した(1)~(5)式の条件を満たし、イメージサイズに対して十分に小型化された撮像光学系が得られ、諸収差も良好に補正することができる。
[実施例6]
 図15に示す4群6枚のレンズ構成で、その光学系データは次の表6に、また収差特性は図16に示すとおりである。
Figure JPOXMLDOC01-appb-T000006
 この光学系は、第2レンズ群G2に負レンズG2aと正レンズG2bとの接合レンズが用いられ、また第3レンズ群G3に正レンズG3aと負レンズG3bとの接合レンズが用いられた4群6枚構成である。最大像高IHの1.5mmに対し、光学系全長TLが3.903mm、レンズ厚sumが3.00mm、最前面入射高hFが0.628mm、最終面出射高hRが0.623mmである。よって、これまでの実施例と同様に全長及び外径が適切な範囲に収まり、内視鏡の観察光学系に適した広角系の撮像光学系を得ることができる。全長TL、最前面入射高hF、最終面出射高hR、レンズ厚sumの値をそれぞれ最大像高IHで規格化した「*TL」、「*hF」、「*hR」、「*|f1|」、「*sum」の各値もそれぞれ前掲した(1)~(5)式の条件を満たし、イメージサイズに対して十分に小型化された撮像光学系が得られ、諸収差も良好に補正することができる。
[実施例7]
 図17に示す4群5枚のレンズ構成で、光学系データは次の表7に、また収差特性は図18に示すとおりである。
Figure JPOXMLDOC01-appb-T000007
 この光学系は、第3レンズ群G3に正レンズG3aと負レンズG3bとの接合レンズが用いられ、全体として4群5枚構成となっている。最大像高IHの1.5mmに対し、光学系全長TLが3.564mm、レンズ厚sumが2.83mm、最前面入射高hFが0.581mm、最終面出射高hRが0.663mmである。よって、これまでの実施例と同様に全長及び外径が適切な範囲に収まり、内視鏡の観察光学系に適した広角系の撮像光学系を得ることができる。全長TL、最前面入射高hF、最終面出射高hR、レンズ厚sumの値をそれぞれ最大像高IHで規格化した「*TL」、「*hF」、「*hR」、「*|f1|」、「*sum」の各値もそれぞれ前掲した(1)~(5)式の条件を満たし、イメージサイズに対して十分に小型化された撮像光学系が得られ、諸収差も良好に補正することができる。
[実施例8]
 図19に示す4群5枚のレンズ構成をもち、その光学系データは次の表8に、収差特性は図20に示すとおりである。
Figure JPOXMLDOC01-appb-T000008
 この光学系は、第3レンズ群G3に正レンズG3aと負レンズG3bとの接合レンズが用いられ、全体として4群5枚構成となっている。最大像高IHの1.5mmに対し、光学系全長TLが3.831mm、レンズ厚sumが2.969mm、最前面入射高hFが0.624mm、最終面出射高hRが0.659mmである。よって、これまでの実施例と同様に全長及び外径が適切な範囲に収まり、内視鏡の観察光学系に適した広角系の撮像光学系を得ることができる。全長TL、最前面入射高hF、最終面出射高hR、レンズ厚sumの値をそれぞれ最大像高IHで規格化した「*TL」、「*hF」、「*hR」、「*|f1|」、「*sum」の各値もそれぞれ前掲した(1)~(5)式の条件を満たし、イメージサイズに対して十分に小型化された撮像光学系が得られ、諸収差も良好に補正することができる。
[実施例9]
 図21に示す4群6枚のレンズ構成をもち、その光学系データは次の表9に、各種の収差特性は図22に示すとおりである。
Figure JPOXMLDOC01-appb-T000009
 この光学系は、第2レンズ群G2に正レンズG2aと負レンズG2bとの接合レンズが用いられ、また第3レンズ群G3にも正レンズG3aと負レンズG3bとの接合レンズが用いられた4群6枚構成である。最大像高IHの1.50mmに対し、光学系全長TLが4.10mm、レンズ厚sumが3.00mm、最前面入射高hFが0.622mm、最終面出射高hRが0.580mmである。よって、これまでの実施例と同様に全長及び外径が適切な範囲に収まり、内視鏡の観察光学系に適した広角系の撮像光学系を得ることができる。全長TL、最前面入射高hF、最終面出射高hR、レンズ厚sumの値をそれぞれ最大像高IHで規格化した「*TL」、「*hF」、「*hR」、「*|f1|」、「*sum」の各値もそれぞれ前掲した(1)~(5)式の条件を満たし、イメージサイズに対して十分に小型化された撮像光学系が得られ、諸収差も良好に補正することができる。
[実施例10]
 図23に示す4群6枚のレンズ構成をもち、その光学系データは次の表10に、また各種の収差特性は図24に示すとおりである。
Figure JPOXMLDOC01-appb-T000010
 この光学系は、第2レンズ群G2に正レンズG2aと負レンズG2bとの接合レンズが用いられ、また第3レンズ群G3にも正レンズG3aと負レンズG3bとの接合レンズが用いられた4群6枚構成である。最大像高IHの1.50mmに対し、光学系全長TLが4.045mm、レンズ厚sumが3.00mm、最前面入射高hFが0.646mm、最終面出射高hRが0.652mmである。よって、これまでの実施例と同様に全長及び外径が適切な範囲に収まり、内視鏡の観察光学系に適した広角系の撮像光学系を得ることができる。全長TL、最前面入射高hF、最終面出射高hR、レンズ厚sumの値をそれぞれ最大像高IHで規格化した「*TL」、「*hF」、「*hR」、「*|f1|」、「*sum」の各値もそれぞれ前掲した(1)~(5)式の条件を満たし、イメージサイズに対して十分に小型化された撮像光学系が得られ、諸収差も良好に補正することができる。
 なお、図25は比較例1を示すもので、これは先行技術文献として挙げた特公平6-48327号公報に記載された実施例1の光学系である。この比較例1は、上述してきた本発明の実施例1~10と同様、物体側から順に配列された第1レンズ群G1、第2レンズ群G2、第3レンズ群G3、第4レンズ群G4が凹凸凸凹のパワー配分をもつ4群構成である点、第2レンズ群G2と第3レンズ群G3との間に絞りSが設けられている点で共通する。また、この比較例1の撮像光学系の収差特性は図26のとおりである。
 図25に示す比較例1の主要な光学系データを次の表11に示す。同表中、比較例2~7として挙げた光学系データは、上記公報に実施例2~7として記載された撮像光学系のものである。
Figure JPOXMLDOC01-appb-T000011
 表11から分かるとおり、最大像高IHが1.004~1.2102の範囲で一定していないが、最大像高IHが本発明各実施例の最大像高1.500に比して低いのに対し、光学系の全長TL、レンズ厚sum、最前面入射高hF、最終面hRの値がいずれも本発明各実施例のものよりも大きい。したがってこれらの撮像光学系は、イメージサイズに対し、全長TL、レンズ厚sumがともに長く、外径もかなり大きくなっており、コンパクト化の点では不十分であることが分かる。
 さらに、上記表11には各光学データを最大像高IHで規格化した値を[  ]中に示している。比較例1~7の規格化されたこれらの値をみると「*TL」の値は3.526~4.782の範囲で(1)式を満たしておらず、結像面サイズに対して光学系全長の短縮化が不十分であることが分かる。また、「*hF」の値はいずれも0.85以上であり、(2)式を満たしていない。「*hR」の値は最小のものが0.558であり、(3)式の条件は満たされないものの、その上限をわずかに越えただけで第4レンズ群G4の外径については小さくすることができる。しかし、この場合の「*hF」の値が0.878であるから、第1レンズ群G1についてはその外径を十分に小さくすることができず、撮像光学系全体の細径化を図ることはできない。同様に「*sum」の値も3.29を越える大きな値で(5)式は満たされておらず、レンズ厚みの薄型化が不十分である。
 さらに、本発明の撮像光学系の特徴は出射角2δが大きいことにも現れている。各表の光学データ中に挙げた出射角2δは、第4レンズ群G4の像側の面から光軸15aに関して対称に出射する一対の主光線、特に、結像面IPにおいて光軸15に関して対称に位置する最大像高位置のそれぞれに向かって出射する一対の主光線の相互がなす角度を意味している。したがって、一の最大像高位置に向かう主光線が光軸15aとの間になす角度、すなわち結像面IP上の最大像高位置に入射する主光線の入射角はδとなり、この入射角δがイメージセンサ16に入射する主光線の最大入射角となる。
 先に述べたとおり、イメージセンサ16に入射する主光線の入射角が大きくなるとイメージセンサ16の光電変換効率は低下してくるが、有機CMOSセンサをイメージセンサ16に用いることによって、主光線の入射角に対する制約が大幅に緩和される。したがって本発明の各実施例にみられるように、最大像高位置に入射する主光線の最大入射角δを35°~47.75°の範囲まで広げても実用化することが可能となる。もちろん、イメージセンサ16への主光線の最大入射角δを小さめに抑えておけば、有機CMOSセンサに代えて裏面照射型CMOSセンサを用いることもできる。この点、比較例1~7の大半は主光線の最大入射角δが23°~30°と小さく抑えられ、撮像光学系を設計する上での制約となっている。
 以上、各面に球面のみを用いた実施例1~10にしたがって本発明について説明してきたが、本発明の撮像光学系は一面あるいは複数の面に非球面を用いて構成することも可能である。また、内視鏡の先端硬性部に内蔵される撮像光学系だけでなく、携帯電話機などの携帯情報端末はもとより、イメージサイズに比して小型化が要求される定置式の監視カメラや車載用カメラにも本発明の撮像光学系は等しく適用することができる。さらに、本発明は上記特徴を備えた撮像光学系を各種のイメージセンサと一体化した撮像装置として実施することも可能である。
  2 先端硬性部
  15 撮像光学系
  16 イメージセンサ
  
  

Claims (7)

  1.  物体側から順に、負の第1レンズ群、正の第2レンズ群、正の第3レンズ群、負の第4レンズ群からなる撮像光学系において、
     最大像高をIH、光学系全系のレンズ厚みとバックフォーカス長との和を光学系全長TL、前記最大像高IHに対する主光線の、最も物体側の面における入射高さをhF、最も像側の面における出射高さをhRとしたとき、以下の(1)~(3)式を満たすことを特徴とする撮像光学系。
       2.00 < TL/IH < 3.00  ・・・(1)
       0.37 < hF/IH < 0.5   ・・・(2)
       0.37 < hR/IH < 0.5   ・・・(3)
  2.  請求の範囲第1項記載の撮像光学系において、
     前記第2レンズ群と第3レンズ群との間に絞りが設けられた撮像光学系。
  3.  請求の範囲第2項記載の撮像光学系において、
     前記第1レンズ群の焦点距離をf1としたとき、以下の(4)式を満たす撮像光学系。
       3.5 < |f1/IH| < 4.5  ・・・(4)
  4.  請求の範囲第3項記載の撮像光学系において、
     前記レンズ厚みをsumとしたとき、以下の(5)式を満たす撮像光学系。
       1.8 < sum/IH < 2.1   ・・・(5)
  5.  請求の範囲第2項~第4項のいずれか記載の撮像光学系において、
     前記第1レンズ群が像側に凹面を向けた単レンズ、前記第4レンズ群が物体側に凹面を向けた単レンズであり、前記第2レンズ群または第3レンズ群の少なくともいずれかが1枚の正レンズと1枚の負レンズとを貼り合わせた接合レンズである撮像光学系。
  6.  請求の範囲第1項~第5項のいずれか記載の撮像光学系と、この撮像光学系の結像面に配置されたイメージセンサとを備え、
     前記イメージセンサが裏面照射型CMOSセンサまたは有機CMOSセンサであることを特徴とする撮像装置。
  7.  請求の範囲第6項記載の撮像装置において、
     体腔内を撮像する内視鏡の先端部に組み込まれた撮像装置。
PCT/JP2011/074292 2010-10-25 2011-10-21 撮像光学系及び撮像装置 WO2012057021A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012540821A JP5690354B2 (ja) 2010-10-25 2011-10-21 撮像光学系及び撮像装置
US13/868,568 US9395515B2 (en) 2010-10-25 2013-04-23 Imaging optical system and imaging device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-238619 2010-10-25
JP2010238619 2010-10-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/868,568 Continuation US9395515B2 (en) 2010-10-25 2013-04-23 Imaging optical system and imaging device

Publications (1)

Publication Number Publication Date
WO2012057021A1 true WO2012057021A1 (ja) 2012-05-03

Family

ID=45993731

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/074292 WO2012057021A1 (ja) 2010-10-25 2011-10-21 撮像光学系及び撮像装置

Country Status (3)

Country Link
US (1) US9395515B2 (ja)
JP (1) JP5690354B2 (ja)
WO (1) WO2012057021A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103969819A (zh) * 2013-01-25 2014-08-06 北京威斯顿亚太光电仪器有限公司 消杂光硬管内窥镜光学系统
JP2016185342A (ja) * 2016-06-09 2016-10-27 ソニー株式会社 内視鏡及び内視鏡装置
US10228535B2 (en) 2015-11-27 2019-03-12 Largan Precision Co., Ltd. Photographing optical lens assembly, image capturing unit and electronic device
US10241301B2 (en) 2016-07-05 2019-03-26 Largan Precision Co., Ltd. Optical imaging lens assembly, image capturing apparatus and electronic device

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9456735B2 (en) * 2012-09-27 2016-10-04 Shahinian Karnig Hrayr Multi-angle rear-viewing endoscope and method of operation thereof
JP2014149481A (ja) * 2013-02-04 2014-08-21 Fujifilm Corp 内視鏡用対物レンズおよび内視鏡
EP3277684B1 (en) * 2015-03-31 2020-07-22 Sony Corporation Specific n and p active materials for organic photoelectric conversion layers in organic photodiodes
GB201701012D0 (en) 2017-01-20 2017-03-08 Ev Offshore Ltd Downhole inspection assembly camera viewport
DE102017214178B3 (de) * 2017-08-15 2018-11-08 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. System mit einem Laparoskop und einer elektronischen Auswerteeinheit
KR102071922B1 (ko) 2018-01-23 2020-01-31 삼성전기주식회사 촬상 광학계
US10561303B2 (en) * 2018-01-24 2020-02-18 Canon U.S.A., Inc. Optical probes with correction components for astigmatism correction
US10816789B2 (en) 2018-01-24 2020-10-27 Canon U.S.A., Inc. Optical probes that include optical-correction components for astigmatism correction
US10606064B2 (en) 2018-01-24 2020-03-31 Canon U.S.A., Inc. Optical probes with astigmatism correction
US10806329B2 (en) 2018-01-24 2020-10-20 Canon U.S.A., Inc. Optical probes with optical-correction components

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04335609A (ja) * 1991-05-13 1992-11-24 Nikon Corp 小型広角レンズ
JPH08313803A (ja) * 1995-05-19 1996-11-29 Olympus Optical Co Ltd 広角レンズ
JP2008116877A (ja) * 2006-11-08 2008-05-22 Fujinon Corp 内視鏡用対物レンズ
JP2009047947A (ja) * 2007-08-21 2009-03-05 Fujinon Corp 撮像レンズおよび撮像装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51120723A (en) * 1975-04-15 1976-10-22 Olympus Optical Co Ltd Objective lens for deplicating
JPH0648327B2 (ja) 1984-07-28 1994-06-22 オリンパス光学工業株式会社 内視鏡対物レンズ
US5781350A (en) * 1994-01-27 1998-07-14 Asahi Kogaku Kogyo Kabushiki Kaisha Objective lens for endoscope
US5805359A (en) 1995-05-19 1998-09-08 Olympus Optical Co., Ltd. Wide-angle lens system
JP2005352060A (ja) * 2004-06-09 2005-12-22 Fujinon Corp 小型の大口径広角レンズおよびこれを備えたカメラ
US8274593B2 (en) * 2011-01-08 2012-09-25 Largan Precision Co., Ltd. Optical lens system
TWI428626B (zh) * 2011-01-28 2014-03-01 Largan Precision Co Ltd 透鏡系統
TWI416196B (zh) * 2011-04-15 2013-11-21 Largan Precision Co Ltd 影像擷取鏡頭

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04335609A (ja) * 1991-05-13 1992-11-24 Nikon Corp 小型広角レンズ
JPH08313803A (ja) * 1995-05-19 1996-11-29 Olympus Optical Co Ltd 広角レンズ
JP2008116877A (ja) * 2006-11-08 2008-05-22 Fujinon Corp 内視鏡用対物レンズ
JP2009047947A (ja) * 2007-08-21 2009-03-05 Fujinon Corp 撮像レンズおよび撮像装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103969819A (zh) * 2013-01-25 2014-08-06 北京威斯顿亚太光电仪器有限公司 消杂光硬管内窥镜光学系统
US10228535B2 (en) 2015-11-27 2019-03-12 Largan Precision Co., Ltd. Photographing optical lens assembly, image capturing unit and electronic device
JP2016185342A (ja) * 2016-06-09 2016-10-27 ソニー株式会社 内視鏡及び内視鏡装置
US10241301B2 (en) 2016-07-05 2019-03-26 Largan Precision Co., Ltd. Optical imaging lens assembly, image capturing apparatus and electronic device
US11782238B2 (en) 2016-07-05 2023-10-10 Largan Precision Co., Ltd. Optical imaging lens assembly, image capturing apparatus and electronic device
US12050366B2 (en) 2016-07-05 2024-07-30 Largan Precision Co., Ltd. Optical imaging lens assembly, image capturing apparatus and electronic device

Also Published As

Publication number Publication date
JP5690354B2 (ja) 2015-03-25
US9395515B2 (en) 2016-07-19
JPWO2012057021A1 (ja) 2014-05-12
US20130235176A1 (en) 2013-09-12

Similar Documents

Publication Publication Date Title
JP5690354B2 (ja) 撮像光学系及び撮像装置
JP6501810B2 (ja) 撮像レンズ
KR101612444B1 (ko) 접사 렌즈계 및 이를 구비한 촬상 장치
JP4453276B2 (ja) 撮像レンズ,撮像ユニット及びこれを備える携帯端末
WO2004038478A1 (ja) 撮像レンズ
US20040196575A1 (en) Image-formation optical system, and imaging system
KR20040038692A (ko) 촬상 렌즈, 촬상 유닛 및 휴대 단말
JP2012058407A (ja) 撮像装置及び携帯情報端末
JP2008040033A (ja) 広角レンズ
US20030117723A1 (en) Photographic lens
JP2004170460A (ja) 撮像光学系、並びにそれを用いたディジタルスチルカメラ、ビデオカメラ及びモバイル機器
JP4981466B2 (ja) 光学系及びそれを有する撮像装置
CN107430260B (zh) 斜视物镜光学系统和具备该斜视物镜光学系统的斜视用内窥镜
CN109073864B (zh) 内窥镜对物光学系统
JP5339190B2 (ja) 結像レンズ、カメラおよび携帯情報端末装置
JP2010217506A (ja) 撮像光学系、カメラ装置および携帯情報端末装置
JP2001108895A (ja) バックフォーカスの長い望遠レンズ及びそれを用いた撮像装置
JP2005024581A (ja) 結像光学系及びそれを用いた撮像装置
KR100627051B1 (ko) 렌즈 시스템 및 이를 구비한 휴대용 모바일 기기
JP2010217505A (ja) 撮像光学系、カメラ装置および携帯情報端末装置
JP4824981B2 (ja) 結像光学系及びそれを備えた交換レンズ装置
KR20110094979A (ko) 렌즈광학계
US7230775B2 (en) Electronic imaging system
JP2005004027A (ja) 結像光学系及びそれを用いた撮像装置
JP2000019391A (ja) 撮影レンズ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11836155

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2012540821

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11836155

Country of ref document: EP

Kind code of ref document: A1