WO2012056730A1 - 分析装置 - Google Patents
分析装置 Download PDFInfo
- Publication number
- WO2012056730A1 WO2012056730A1 PCT/JP2011/006104 JP2011006104W WO2012056730A1 WO 2012056730 A1 WO2012056730 A1 WO 2012056730A1 JP 2011006104 W JP2011006104 W JP 2011006104W WO 2012056730 A1 WO2012056730 A1 WO 2012056730A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- laser
- substance
- marker
- point
- unit
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N1/00—Sampling; Preparing specimens for investigation
- G01N1/02—Devices for withdrawing samples
- G01N1/22—Devices for withdrawing samples in the gaseous state
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J49/00—Particle spectrometers or separator tubes
- H01J49/02—Details
- H01J49/04—Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B10/00—Other methods or instruments for diagnosis, e.g. instruments for taking a cell sample, for biopsy, for vaccination diagnosis; Sex determination; Ovulation-period determination; Throat striking implements
- A61B10/0045—Devices for taking samples of body liquids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B10/00—Other methods or instruments for diagnosis, e.g. instruments for taking a cell sample, for biopsy, for vaccination diagnosis; Sex determination; Ovulation-period determination; Throat striking implements
- A61B10/02—Instruments for taking cell samples or for biopsy
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/48—Other medical applications
- A61B5/4869—Determining body composition
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B10/00—Other methods or instruments for diagnosis, e.g. instruments for taking a cell sample, for biopsy, for vaccination diagnosis; Sex determination; Ovulation-period determination; Throat striking implements
- A61B10/0045—Devices for taking samples of body liquids
- A61B10/0051—Devices for taking samples of body liquids for taking saliva or sputum samples
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B10/00—Other methods or instruments for diagnosis, e.g. instruments for taking a cell sample, for biopsy, for vaccination diagnosis; Sex determination; Ovulation-period determination; Throat striking implements
- A61B10/0045—Devices for taking samples of body liquids
- A61B10/0064—Devices for taking samples of body liquids for taking sweat or sebum samples
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N1/00—Sampling; Preparing specimens for investigation
- G01N1/02—Devices for withdrawing samples
- G01N2001/028—Sampling from a surface, swabbing, vaporising
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/62—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode
- G01N27/622—Ion mobility spectrometry
- G01N27/624—Differential mobility spectrometry [DMS]; Field asymmetric-waveform ion mobility spectrometry [FAIMS]
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2800/00—Detection or diagnosis of diseases
- G01N2800/20—Dermatological disorders
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/483—Physical analysis of biological material
- G01N33/497—Physical analysis of biological material of gaseous biological material, e.g. breath
Definitions
- the present invention relates to an apparatus for detecting a chemical substance.
- FIMS field asymmetric ion mobility spectrometer
- One of the aspects of the present invention is a sample including an irradiation unit that irradiates a laser at a first point, a convergence unit that focuses an object to be analyzed at the first point, and a material that is irradiated with a laser at the first point.
- an analysis device having a unit for analyzing gas with an ion mobility sensor.
- This analyzer can destroy an analysis object by laser irradiation. Therefore, even an individual that is too large to be detected or analyzed by an ion mobility sensor such as a microorganism can be decomposed and analyzed by laser irradiation into molecules that can be detected by the ion mobility sensor.
- the convergence unit may include a unit that captures the analysis target object in a liquid carrier substance and a discharge unit that discharges the carrier substance including the analysis target object to the first point.
- the timing of discharging the carrier substance and the timing of laser irradiation can be matched, and the destruction efficiency of the analysis target by laser irradiation can be improved.
- the discharge unit may include an ink jet head that discharges a carrier material containing the analysis target.
- the carrier material includes a marker source material that releases a chemical substance for the marker by laser irradiation. It can be determined that the chemical substance detected together with the marker chemical substance by the ion mobility sensor is a chemical substance derived from the analyte.
- the marker source substance includes a marker chemical substance and a nanocapsule that encloses the marker chemical substance and that releases the marker chemical substance by laser irradiation.
- Nanocapsules that respond to the energy level of laser irradiation can be prepared, and it is easy to determine whether or not laser irradiation is performed and the derivative of the analyte formed in conjunction therewith.
- Another aspect of the present invention is an analytical method having the following steps. Converging the analyte to the first point where the laser is irradiated. -Analyze the sample gas containing the material irradiated by the laser at the first point with an ion mobility sensor.
- One of the different aspects of the present invention is an analysis method having the following steps. • Capturing the analyte in a liquid carrier material. -Discharge the carrier material containing the analyte to the first point and irradiate the laser.
- the carrier material includes a marker source material that releases a marker chemical by laser irradiation.
- ⁇ Determine that the chemical substance detected together with the marker chemical substance by the ion mobility sensor is derived from the analyte.
- FIGS. 2A and 2B are examples of output of the analyzer, in which FIG. 2A shows an example in which a sample containing virus A is analyzed, and FIG. 2B shows an example in which a sample containing virus B is analyzed.
- the block diagram which shows schematic structure of a different analyzer. The figure which shows a mode that a laser is irradiated to the discharged droplet.
- FIG. 5A shows an example of the output of the analyzer
- FIG. 5A shows a background
- FIG. 5B shows an example in which a marker substance is detected
- FIG. 5C shows an example in which a derivative substance is detected together with the marker substance.
- FIG. 1 shows an example of an analyzer.
- the analyzer 10 includes a sampling unit (sampling tube) 11 that collects indoor air (sample gas) 21 and a cone-shaped guide that guides the sample gas 21 so as to converge to a first point TP irradiated with a laser.
- a vane (convergence unit) 12, a laser gun (irradiation unit) 33 that irradiates the first point TP with the laser beam 31, and a laser driving device 35 that drives the laser gun 33 and outputs the laser beam 31 are included.
- the analysis apparatus 10 further includes a supply path 13 that supplies the sample gas 21 after laser irradiation to the ion mobility sensor 18 through the microfilter 14 and the ionization unit 16, and an exhaust pump 19 that sucks the sample gas 21.
- An ion mobility sensor (ion mobility spectrometer, ion mobility spectrometer) 18 outputs a chemical substance (molecule) ionized by the ionization unit 16 as a spectrum (ion current, ion intensity) based on the difference in mobility.
- the analyzer 10 includes an ion mobility sensor 18 called an asymmetric field ion mobility spectrometer (FAIMS, Field Asymmetric waveform Ion Mobility Spectrometry) or a differential electric mobility spectrometer (DMS, Differential Ion Mobility Spectrometry). I have.
- FIMS Field Asymmetric waveform Ion Mobility Spectrometry
- DMS differential electric mobility spectrometer
- This type of spectrometer (sensor, hereinafter FAIMS) 18 forms an asymmetric electric field that changes from a high voltage to a low voltage in the electric field channel 18a, and inputs an ionized molecular flow into the asymmetric electric field. Then, the ion current passing through the non-target electric field is measured by the electrode 18b.
- Examples of the compact FAIMS on the market include microDMx manufactured by SIONEX and FAIMS devices manufactured by OWLSTONE.
- An example of the ionization unit 16 is an indirect ionization unit using a nickel isotope (Ni63).
- An ionization unit using corona discharge may be used, or a direct ionization unit using UV may be used.
- the analysis device 10 further includes a control device, typically a personal computer (PC) 40. Control of the analyzer 10 and analysis of data obtained by the FAIMS sensor 18 are performed by the PC 40.
- the PC 40 includes general hardware resources constituting the computer, such as a CPU 41, a memory 42, a storage 43 such as a hard disk, and a bus 44 for connecting them. Further, the PC 40 includes an analysis unit 45 that controls the analysis apparatus 10 and analyzes data.
- the analysis unit 45 may be provided as a semiconductor device such as ASIC or LSI, or may be provided as a program (program product) executed by the CPU 41.
- the analysis unit 45 includes a controller 46 that controls the laser driving device 35, the FAIMS sensor 16, and the like, and an analyzer 47 that analyzes data of the FAIMS sensor 18.
- the analysis unit 45 may include a function of acquiring environmental conditions such as temperature, humidity, and atmospheric pressure of the FAIMS sensor 18 via an appropriate sensor and correcting data obtained from the FAIMS sensor 18.
- the sample gas 21 flowing through the sampling tube 11 is concentrated (converged) in a limited place (area) by the guide vane 12, and the converged point TP is irradiated with laser. Therefore, viruses and / or bacteria contained in the sample gas 21, and cells such as cells and other proteins contained in the sample gas 21 can be destroyed (decomposed) by the laser 31.
- the laser gun 33 only needs to be able to selectively cut a part having a low specific binding strength such as a cell or a protein, and an appropriate energy such as an ultraviolet laser or an X-ray laser is given to the sample gas 21 by the laser. If it is.
- the destroyed material is ionized by the ionization unit 16 through the microfilter 14 together with the sample gas 21 and detected by the FAIMS sensor 18.
- FIG. 2 shows some examples of spectra obtained by the FAIMS sensor 18.
- 2A is a spectrum obtained when the sample gas 21 containing virus A is irradiated with the laser 31
- FIG. 2B is a diagram when the sample gas 21 containing virus B is irradiated with the laser 31.
- FIG. It is the spectrum obtained. The spectrum is shown by the ion current (ion intensity) Ic when the compensation voltage Vc of the FAIMS sensor 18 is changed.
- Viruses, bacteria, macromolecular proteins, etc. are difficult to ionize sufficiently with respect to mass (molecular weight) and are not easily detected by the FAIMS sensor 18. However, by irradiating them with a laser, they can be decomposed into objects having molecular weights that can be ionized, and these can be detected by the FAIMS sensor 18.
- the analyzer 47 of the analysis unit 75 analyzes the data obtained from the FAIMS sensor 18, compares the chemical substances registered in the virus library stored in the storage 43 or the like, and compares the chemical substances derived from the virus decomposition ( Search or estimate the virus before it is destroyed based on the derivative).
- Microorganisms such as viruses and bacteria, and polymers such as proteins (hereinafter referred to as microorganisms) have a certain molecular structure and DNA structure. Therefore, when destroyed by laser irradiation under a certain condition, a microorganism or the like breaks a weakly chemically bonded portion, and a very characteristic chemical substance (derived substance) is generated. Therefore, the spectrum obtained by analyzing the sample gas 21 in which the microorganisms or the like are destroyed by the FAIMS sensor 18 is often unique, and the microorganism can be estimated by verifying the chemical substance included in the spectrum.
- the analyzer 50 includes a sampling unit 51 that sucks the primary sample gas 21 from the room and the like, and a convergence unit that converges the analysis target contained in the primary sample gas 21, that is, a microorganism or the like, to the first point TP irradiated with the laser. 52.
- the sampling unit 51 includes a suction nozzle 51a and a sampling pump 51b.
- the converging unit 52 passes the primary sample gas 21 collected by the sampling pump 51b through the carrier material 29 in a liquid state and captures the microorganisms 22 contained in the primary sample gas 21 by the carrier material 29, and the microorganisms etc.
- a discharge unit 54 that discharges the carrier material 29 including the liquid to the first point TP, and a pump 59 that conveys the carrier material 29 to the discharge unit 54.
- the carrier material 29 in the liquid state is typically water, and the trapping unit 53 causes the primary sample gas 21 to be bubbled in the water so that the microorganisms 22 and the like 22 contained in the primary sample gas 21 are put into the water 21.
- the capture unit 53 includes a container 53b that mixes the microorganisms 22 and the water 29, and a line 53a that supplies the water 29 to the container 53b. Although a certain amount of time may be generated by supplying water 29 from the supply line 53a to the extent that the inside of the container 53b is periodically replaced while securing a certain amount of residence time in the container 53b, The state of the microorganisms 22 can be reflected in the water 29 as the carrier substance in a state close to real time.
- the carrier material 29 further includes a marker source material 60.
- the marker source material 60 includes a chemical substance for a marker and a nanocapsule enclosing it.
- the nanocapsule is heated by laser irradiation, dissolves when the temperature reaches a predetermined temperature, and releases the encapsulated chemical substance for the marker.
- the nanocapsule is desirably about the same size as the microorganism 22 to be analyzed, for example, a microcapsule having a diameter of 0.1 to several ⁇ m, preferably about 1 to 1000 nm, more preferably 1 to 100 nm. , Sub-microcapsules or smaller capsules, and there are several methods for their production.
- representative examples of using the interfacial polymerization method include polyurethane capsules using polyvalent isocyanate and melamine-formaldehyde resin capsules.
- a capsule made of polyurethane both the polyisocyanate and the polyhydroxy compound are dissolved in the oil phase at the same time, and this is emulsified and dispersed in an aqueous protective colloid solution.
- a water-soluble melamine-formaldehyde prepolymer is used for capsules made of melamine-formaldehyde resin.
- aqueous solution When this prepolymer aqueous solution is added to an O / W emulsion obtained by emulsifying and dispersing an oil in which a dye precursor is dissolved in a protective colloid aqueous solution and heated and stirred in a weakly acidic region (pH 3 to 6), a polymer is formed at the O / W interface. Nanocapsules are obtained by deposition.
- the protective colloid include those having a function as an acid catalyst for promoting the polycondensation reaction of melamine-formaldehyde resin (for example, styrene sulfonic acid polymer, styrene / maleic anhydride copolymer, ethylene / maleic anhydride copolymer). Polymer, gum arabic, polyacrylic acid, etc.) can be used.
- the marker substance can be included in the nanocapsule and is preferably vaporized when the nanocapsule is dissolved. Further, it is desirable that the marker substance has a peak that does not overlap when a derivative substance obtained by decomposing the microorganism 22 or the like with a laser is measured by the FAIMS sensor 18.
- An example of the marker substance is a highly volatile hydrocarbon compound or aromatic compound.
- the ejection device 54 includes an inkjet head 55 that ejects the carrier material (water) 29 including the marker source material 60 and the microorganisms 22 toward the first point TP, and a head driving device 56 that drives the inkjet head 55. .
- the analysis apparatus 50 further includes a sealed chamber 57 including a first point TP where the inkjet head 55 ejects a droplet, and a laser gun (laser) that irradiates the laser 31 toward the first point TP in the chamber 57. Irradiation unit) 33.
- the laser gun 33 is controlled to irradiate the laser 31 in synchronization with the inkjet head 55 by the head driving device 56.
- the analyzer 50 further includes a pump (fan, blower) 58a for supplying the carrier gas 24 to the chamber 57, and a microfilter 58b for filtering the carrier gas 24 supplied to the chamber 57.
- a pump fan, blower
- a microfilter 58b for filtering the carrier gas 24 supplied to the chamber 57.
- the droplet 29 a of the carrier material 29 including the microorganisms 22 and the marker source material 60 is evaporated and destroyed by the irradiation of the laser 31.
- the carrier gas (secondary sample gas) 25 containing the destroyed substance is ionized by the ionization unit 16 through the microfilter 14 and analyzed by the FAIMS sensor 18 in the same manner as the analyzer described above.
- FIG. 4 schematically shows a state in which the droplet 31 a of the carrier material 29 is irradiated by the laser 31 inside the chamber 57.
- the laser 31 is irradiated from the laser gun 33 so as to strike the droplet 29a at the first point TP in synchronization with the ejection timing.
- the carrier material 29 constituting the droplet 29a in picoliter or femtoliter units evaporates, and the laser is applied to the marker source material 60 contained in the droplet 29a and the microorganism 22 or the like. 31 hits and dissolves or decomposes them.
- the nanocapsule 61 of the marker source material 60 is made of a material that is rapidly dissolved or destroyed by the energy of the irradiated laser 31. Therefore, when the laser 31 hits, the nanocapsule 61 is dissolved, and the marker substance 62 contained in the nanocapsule 61 is released. At the same time, the microorganisms 22 are also destroyed or decomposed by the laser 31 to form a chemical substance (derived substance) 26 derived from the microorganisms 22. These are discharged from the chamber 57 together with the carrier gas (typically air) 24 as the secondary sample gas 25.
- the carrier gas typically air
- the laser gun 33 may irradiate the laser in picosecond or femtosecond units. By irradiating the femtosecond pulse laser, the molecules can be destroyed and scattered more accurately so that the derived substance is generated without evaporating or sublimating the microorganism 22 or the like.
- an auxiliary agent that absorbs the laser beam in the carrier material 29 and evaporates, for example, a metal powder, and microorganisms 22 are evaporated by the laser beam. You may suppress doing.
- FIG. 5 shows some examples of the output (spectrum) of the FAIMS sensor 18 obtained in the analysis unit 45 of the PC 40.
- the spectrum of FIG. 5A is an example of the background, and a peak (RIP) P1 indicating moisture in the air can be seen.
- the spectrum of FIG. 5B is an example of the secondary sample gas 25 obtained when the carrier material droplet 29a is irradiated with the laser 31.
- a peak P2 appears as a result of the laser 31 being irradiated to the marker source material 60 contained in the droplet 29a and the marker material 62 being released.
- the spectrum of FIG. 5C is another example of the secondary sample gas 25 obtained when the carrier 31 is irradiated with the laser 31 on the droplet 29a.
- the analysis unit 45 shown in FIG. 3 determines that the chemical substance peaks P3 and P4 detected together with the marker chemical substance peak P2 by the FAIMS sensor 18 are derived from the analysis target microorganisms 22 and the like. Functions (functional units) 48 to be performed. Therefore, when the analyzer 47 of the analysis unit 45 determines that the function to be determined is a peak of a chemical substance formed from the microorganism 22 or the like, the analyzer 47 estimates the chemical substance based on the peaks P3 and P4, and those chemical substances It is presumed that the micro-organisms etc. 22 containing were contained in the primary sample gas 21.
- the analyzer 47 uses a chemical substance library stored in the storage 43 or another database or library accessible via a computer network such as the Internet, and various fitting methods, a simulated annealing method, a mean field annealing method, A chemical substance is analyzed by using a method such as a genetic algorithm or a neural network, and a microorganism 22 or the like 22 from which the chemical substance is derived is estimated.
- symbol is attached
- FIG. 6 is a flowchart showing an outline of processing for analyzing the sample gas in the analyzer 50.
- the primary sample gas 21 including the microorganism 22 or the like that is the analysis target is collected and captured by the carrier unit (water) 29 in the liquid state by the capturing unit 53.
- the discharge unit 54 including the inkjet head 55 discharges the carrier substance including the microorganisms 22 toward the first point TP, and in step 83, the laser gun 33 is synchronized with the timing.
- the laser 31 is irradiated toward the first point TP.
- step 84 the secondary sample gas 25 containing the substance irradiated with the laser is analyzed by the FAIMS sensor 18. If the marker substance 62 is detected in step 85, the determination function 48 determines that the peaks P3 and P4 of the chemical substance detected together with the marker chemical substance 62 are chemical substances derived from the microorganism 22 or the like. At 86, the analyzer 47 estimates the microorganisms 22 contained in the primary sample gas 21 from the chemical substance. Then, the PC 40 outputs the microorganisms 22 estimated in step 87 using the display function of the PC 40, or outputs them to an external machine or the like via a computer network such as the Internet.
- a computer network such as the Internet.
- produces odors is not carrier water 29 itself. It may be.
- the carrier substance 29 may be converted into a marker substance by evaporating by laser irradiation. The sampling of the sample gas containing microorganisms or the like does not have to be in real time, and may be sampled at a place away from the analyzer in time or space using an appropriate sampler.
- the application target of the FAIMS sensor has been often avoided as a measurement target because it is difficult to identify microorganisms and the like. According to the present invention, it is immeasurable that food contamination, nosocomial infection and prevention of nosocomial contamination, and identification of viruses and bacteria in other medical fields can be performed in real time or in close time.
- the presence of microorganisms or the like can be detected in real time or in an extremely short time near it by using an ion mobility sensor such as a FAIMS sensor, and the type of microorganisms can be estimated. Furthermore, this analyzer can be easily detected by an ion mobility sensor by destroying (decomposing) macromolecules such as proteins in addition to viruses and bacteria contained in the sample gas. Accordingly, a plurality of viruses, bacteria, proteins, and the like can be characterized based on information obtained from an ion mobility sensor such as ion mobility, as with other chemical substances. In addition, by constructing a database including characterized information, it is possible to estimate a plurality of viruses, bacteria, proteins, etc. by software and specify them.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- General Health & Medical Sciences (AREA)
- Pathology (AREA)
- Public Health (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Veterinary Medicine (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Hematology (AREA)
- Analytical Chemistry (AREA)
- Immunology (AREA)
- Biochemistry (AREA)
- General Physics & Mathematics (AREA)
- Biophysics (AREA)
- Urology & Nephrology (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Medicinal Chemistry (AREA)
- Food Science & Technology (AREA)
- Pulmonology (AREA)
- Electrochemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Biotechnology (AREA)
- Cell Biology (AREA)
- Microbiology (AREA)
- Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
- Sampling And Sample Adjustment (AREA)
- Investigating Or Analysing Biological Materials (AREA)
Abstract
Description
・レーザーが照射される第1のポイントに分析対象物を収束させること。
・第1のポイントにおいてレーザー照射された物質を含むサンプルガスをイオン移動度センサーにより分析すること。
・分析対象物を液状態のキャリア物質に捕捉させること。
・分析対象物を含むキャリア物質を第1のポイントに吐出し、レーザーを照射すること。キャリア物質は、レーザー照射によりマーカー用の化学物質を放出するマーカー源物質を含む。
・第1のポイントにおいてレーザー照射された物質を含むサンプルガスをイオン移動度センサーにより分析すること。
・イオン移動度センサーによりマーカー用の化学物質とともに検出された化学物質を分析対象物から派生した化学物質であると判断すること。
Claims (7)
- 第1のポイントにレーザーを照射する照射ユニットと、
前記第1のポイントに分析対象物を収束させる収束ユニットと、
前記第1のポイントにおいてレーザー照射された物質を含むサンプルガスをイオン移動度センサーにより分析するユニットとを有する分析装置。 - 請求項1において、前記収束ユニットは、前記分析対象物を液状態のキャリア物質に捕捉させるユニットと、
前記分析対象物を含むキャリア物質を前記第1のポイントに吐出する吐出ユニットとを含む、分析装置。 - 請求項2において、前記キャリア物質は、レーザー照射によりマーカー用の化学物質を放出するマーカー源物質を含む、分析装置。
- 請求項3において、前記マーカー源物質は、前記マーカー用の化学物質と、
前記マーカー用の化学物質を内包するナノカプセルであって、レーザー照射により前記マーカー用の化学物質を放出するナノカプセルとを含む、分析装置。 - 請求項2ないし4のいずれかにおいて、前記吐出ユニットは、前記分析対象物を含むキャリア物質を吐出するインクジェットヘッドを含む、分析装置。
- レーザーが照射される第1のポイントに分析対象物を収束させることと、
前記第1のポイントにおいてレーザー照射された物質を含むサンプルガスをイオン移動度センサーにより分析することとを有する分析方法。 - 分析対象物を液状態のキャリア物質に捕捉させることと、
前記分析対象物を含む前記キャリア物質を第1のポイントに吐出し、レーザーを照射することとを有し、前記キャリア物質は、レーザー照射によりマーカー用の化学物質を放出するマーカー源物質を含み、さらに、
前記第1のポイントにおいてレーザー照射された物質を含むサンプルガスをイオン移動度センサーにより分析することと、
前記イオン移動度センサーにより前記マーカー用の化学物質とともに検出された化学物質を前記分析対象物から派生した化学物質であると判断することとを有する分析方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011800629003A CN103299184A (zh) | 2010-10-29 | 2011-10-31 | 分析装置 |
US13/881,915 US9536720B2 (en) | 2010-10-29 | 2011-10-31 | Analyzing apparatus |
EP11835874.6A EP2634570A4 (en) | 2010-10-29 | 2011-10-31 | ANALYSIS DEVICE |
SG2013032735A SG190048A1 (en) | 2010-10-29 | 2011-10-31 | Analysis apparatus |
JP2012540700A JP5836967B2 (ja) | 2010-10-29 | 2011-10-31 | 分析装置 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010243961 | 2010-10-29 | ||
JP2010-243961 | 2010-10-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012056730A1 true WO2012056730A1 (ja) | 2012-05-03 |
Family
ID=45993473
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/006104 WO2012056730A1 (ja) | 2010-10-29 | 2011-10-31 | 分析装置 |
PCT/JP2011/006100 WO2012056729A1 (ja) | 2010-10-29 | 2011-10-31 | サンプリング装置 |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/006100 WO2012056729A1 (ja) | 2010-10-29 | 2011-10-31 | サンプリング装置 |
Country Status (7)
Country | Link |
---|---|
US (2) | US9536720B2 (ja) |
EP (2) | EP2634570A4 (ja) |
JP (3) | JP5894078B2 (ja) |
KR (1) | KR20130100057A (ja) |
CN (2) | CN103052872B (ja) |
SG (2) | SG186201A1 (ja) |
WO (2) | WO2012056730A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014171378A1 (ja) * | 2013-04-19 | 2014-10-23 | 株式会社島津製作所 | 質量分析装置 |
WO2018012220A1 (ja) * | 2016-07-12 | 2018-01-18 | 国立研究開発法人産業技術総合研究所 | 質量分析方法 |
Families Citing this family (46)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9500572B2 (en) | 2009-04-30 | 2016-11-22 | Purdue Research Foundation | Sample dispenser including an internal standard and methods of use thereof |
US8704167B2 (en) * | 2009-04-30 | 2014-04-22 | Purdue Research Foundation | Mass spectrometry analysis of microorganisms in samples |
CN105606691B (zh) | 2009-04-30 | 2018-12-28 | 普度研究基金会 | 分析样品中的蛋白质或肽的方法 |
US9157921B2 (en) | 2011-05-18 | 2015-10-13 | Purdue Research Foundation | Method for diagnosing abnormality in tissue samples by combination of mass spectral and optical imaging |
US9546979B2 (en) | 2011-05-18 | 2017-01-17 | Purdue Research Foundation | Analyzing a metabolite level in a tissue sample using DESI |
WO2012167126A1 (en) | 2011-06-03 | 2012-12-06 | Purdue Research Foundation | Ion generation using modified wetted porous materials |
US9269557B2 (en) * | 2012-09-07 | 2016-02-23 | Canon Kabushiki Kaisha | Ionization device, mass spectrometer including the ionization device, and image generation system including the ionization device |
CN104956462B (zh) | 2013-01-31 | 2017-10-10 | 普度研究基金会 | 用于分析所提取样本的系统和方法 |
WO2014120552A1 (en) | 2013-01-31 | 2014-08-07 | Purdue Research Foundation | Methods of analyzing crude oil |
JP2014232051A (ja) * | 2013-05-29 | 2014-12-11 | 株式会社Nttドコモ | 皮膚ガス測定装置および皮膚ガス測定方法 |
EP4099363A1 (en) | 2013-06-25 | 2022-12-07 | Purdue Research Foundation | Mass spectrometry analysis of microorganisms in samples |
JP6227934B2 (ja) * | 2013-08-23 | 2017-11-08 | 株式会社Nttドコモ | ガスの測定装置及びガスの測定方法 |
US10160946B2 (en) | 2013-09-13 | 2018-12-25 | University Of Florida Research Foundation, Inc. | Pluripotent tissue harvester and methods of manufacture thereof |
JP6183897B2 (ja) * | 2013-10-25 | 2017-08-23 | 株式会社Nttドコモ | パターンの製造方法 |
DE102013222123A1 (de) * | 2013-10-30 | 2015-04-30 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Mobile Überwachungsvorrichtung |
US9057699B2 (en) * | 2013-11-21 | 2015-06-16 | Hamilton Sundstrand Corporation | High temperature differential ion mobility spectroscopy |
US11175268B2 (en) | 2014-06-09 | 2021-11-16 | Biometry Inc. | Mini point of care gas chromatographic test strip and method to measure analytes |
US11435340B2 (en) | 2014-06-09 | 2022-09-06 | Biometry Inc. | Low cost test strip and method to measure analyte |
US10388505B2 (en) | 2014-06-11 | 2019-08-20 | Micromass Uk Limited | Monitoring ion mobility spectrometry environment for improved collision cross section accuracy and precision |
GB201410369D0 (en) * | 2014-06-11 | 2014-07-23 | Micromass Ltd | Monitoring IMS environment for improved CCS accuracy and precision |
CN105628779A (zh) * | 2014-10-28 | 2016-06-01 | 中国科学院大连化学物理研究所 | 一种血液中丙泊酚的在线监测仪及其应用 |
US9786478B2 (en) | 2014-12-05 | 2017-10-10 | Purdue Research Foundation | Zero voltage mass spectrometry probes and systems |
US10856790B2 (en) * | 2015-01-09 | 2020-12-08 | Exhalix Llc | Transdermal sampling strip and method for analyzing transdermally emitted gases |
CN107960130A (zh) | 2015-02-06 | 2018-04-24 | 普度研究基金会 | 探针、系统、盒及其使用方法 |
TW201702592A (zh) * | 2015-04-15 | 2017-01-16 | Shiseido Co Ltd | 分析方法 |
CN105193388A (zh) * | 2015-09-03 | 2015-12-30 | 付锐 | 皮肤病多点采样检测装置 |
JP6551840B2 (ja) * | 2015-09-24 | 2019-07-31 | 株式会社ベネフィット−イオン | 消臭製品の製造方法 |
KR102009938B1 (ko) * | 2016-03-18 | 2019-08-12 | 주식회사 엘지화학 | 가스 검출 소자 및 이를 이용하는 가스 센서 |
US11255840B2 (en) | 2016-07-19 | 2022-02-22 | Biometry Inc. | Methods of and systems for measuring analytes using batch calibratable test strips |
CN107024530B (zh) * | 2016-11-25 | 2018-06-05 | 北京毅新博创生物科技有限公司 | 通过内部标准物质谱检测微生物的方法及其产品 |
EP3700408A1 (en) | 2017-10-25 | 2020-09-02 | Skindicator AB | A device and a method for detection of changes in tissue |
ES2722802B2 (es) * | 2018-02-14 | 2019-12-18 | Fund De Neurociencias | Dispositivo para la eliminacion selectiva de moleculas de tejidos o fluidos |
AU2019299907A1 (en) * | 2018-07-09 | 2021-01-07 | Fresenius Vial Sas | System and method for identifying and/or measuring a substance concentration in the exhaled breath of a patient |
US11874270B1 (en) | 2018-07-31 | 2024-01-16 | Inspectir Systems, Llc | Techniques for rapid detection and quantitation of volatile organic compounds (VOCs) using breath samples |
US11841372B1 (en) | 2018-07-31 | 2023-12-12 | Inspectir Systems, Llc | Techniques for rapid detection and quantitation of volatile organic compounds (VOCs) using breath samples |
US11841359B1 (en) | 2018-07-31 | 2023-12-12 | Inspectir Systems, Llc | Techniques for portable rapid detection and quantitation of volatile organic compounds (VOCS) using breath samples |
US11662340B1 (en) | 2018-07-31 | 2023-05-30 | InspectIR Systems, Inc. | Techniques for rapid detection and quantitation of volatile organic compounds (VOCS) using breath samples |
US11721533B1 (en) * | 2018-07-31 | 2023-08-08 | Inspectir Systems, Llc | Techniques for rapid detection and quantitation of volatile organic compounds (VOCS) using breath samples |
US11879890B1 (en) | 2018-07-31 | 2024-01-23 | Inspectir Systems, Llc | Techniques for rapid detection and quantitation of volatile organic compounds (VOCS) using breath samples |
JP6721893B2 (ja) * | 2019-01-08 | 2020-07-15 | 株式会社ベネフィット−イオン | 特定のユーザの体臭成分を分析する方法 |
KR102187439B1 (ko) * | 2019-01-30 | 2020-12-07 | 주식회사 라파스 | 마이크로니들 패취를 이용한 최소 침습적 피부 생체 검사 방법 |
US20220412937A1 (en) * | 2019-11-27 | 2022-12-29 | Symrise Ag | Device and Method for the Analytical and Sensory Determination of the Release of an Active Substance from a Release System |
CN111388018B (zh) * | 2020-03-20 | 2023-09-19 | 威图姆卡医疗中心 | 采集下呼吸道样本的方法及其装置、空气消毒方法及其装置 |
US11914131B1 (en) * | 2020-08-16 | 2024-02-27 | Gregory Dimitrenko | Optical testing system for detecting infectious disease, testing device, specimen collector and related methods |
CN112426180A (zh) * | 2020-12-13 | 2021-03-02 | 陈希格 | 一种皮肤科用的微型取样设备 |
KR102573065B1 (ko) * | 2021-08-20 | 2023-08-30 | 서울여자대학교 산학협력단 | 체취 흡착 장치 및 방법 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005083784A (ja) * | 2003-09-05 | 2005-03-31 | Shimadzu Corp | レーザー脱離イオン化質量分析法 |
WO2005111594A1 (ja) * | 2004-05-18 | 2005-11-24 | Yamanashi Tlo Co., Ltd. | 生体高分子の非共有結合等を選択的に切断して分析する方法および装置 |
WO2006013396A2 (en) | 2004-08-02 | 2006-02-09 | Owlstone Ltd | Ion mobility spectrometer |
JP2007513340A (ja) * | 2003-11-25 | 2007-05-24 | サイオネックス コーポレイション | サンプルの分析を改善するための分散特性、サンプル解離及び/又は圧力制御を用いた移動度ベースの装置及び方法 |
JP2007279016A (ja) * | 2006-03-16 | 2007-10-25 | Jfe Steel Kk | 物質の励起および/またはイオン化方法、ならびにそれを用いた分析方法および分析装置 |
JP2008547031A (ja) * | 2005-06-30 | 2008-12-25 | バイオクラテス ライフ サイエンシズ アクチェンゲゼルシャフト | 代謝産物特性の定量分析のための装置 |
Family Cites Families (38)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4909256A (en) * | 1985-02-11 | 1990-03-20 | The United States Of America, As Represented By The Secretary Of The Army | Transdermal vapor collection method and apparatus |
US4957108A (en) * | 1988-09-08 | 1990-09-18 | Sudor Partners | Method and apparatus for determination of chemical species in body fluid |
JPH0593422U (ja) * | 1992-05-26 | 1993-12-21 | 孝昭 藤岡 | 採尿器付きおむつ |
US5605798A (en) * | 1993-01-07 | 1997-02-25 | Sequenom, Inc. | DNA diagnostic based on mass spectrometry |
JPH0847484A (ja) * | 1994-08-08 | 1996-02-20 | Agency Of Ind Science & Technol | 発汗状態を模擬した温湿度の測定方法 |
JP3409096B2 (ja) * | 1994-11-28 | 2003-05-19 | 良介 村山 | 炭酸ガス測定用包装材 |
JPH11506624A (ja) * | 1995-06-07 | 1999-06-15 | スダー パートナーズ | 別個の吸収性材料を欠く皮膚用パッチ |
US5726068A (en) * | 1996-01-24 | 1998-03-10 | The United States Of America As Represented By The Secretary Of The Army | Diffusive sampler system for determining chemical vapor levels |
JP2000508780A (ja) * | 1996-12-20 | 2000-07-11 | フイルメニツヒ ソシエテ アノニム | 揮発性生成物の試料採取のための装置 |
DE19914037A1 (de) * | 1999-03-27 | 2000-09-28 | Hartmann Paul Ag | Hygieneartikel zum einmaligen Gebrauch |
MXPA01010946A (es) * | 1999-04-26 | 2002-05-06 | Procter & Gamble | Dispositivo de diagnostico multiple para la salud de una mujer. |
US7129482B2 (en) * | 1999-07-21 | 2006-10-31 | Sionex Corporation | Explosives detection using differential ion mobility spectrometry |
JP2001078966A (ja) * | 1999-09-17 | 2001-03-27 | Daikin Ind Ltd | 発汗検出装置 |
SG99872A1 (en) * | 1999-10-26 | 2003-11-27 | Mitsubishi Heavy Ind Ltd | Method and apparatus for laser analysis of dioxins |
AUPQ886100A0 (en) * | 2000-07-19 | 2000-08-10 | Biotron Limited | Diagnostic test |
JP2003090812A (ja) * | 2001-09-20 | 2003-03-28 | Figaro Eng Inc | おなら検出方法とその装置 |
US7020508B2 (en) * | 2002-08-22 | 2006-03-28 | Bodymedia, Inc. | Apparatus for detecting human physiological and contextual information |
US7170052B2 (en) * | 2003-12-31 | 2007-01-30 | Ionwerks, Inc. | MALDI-IM-ortho-TOF mass spectrometry with simultaneous positive and negative mode detection |
JP2005233618A (ja) * | 2004-02-17 | 2005-09-02 | Ti Kenkyusho:Kk | 皮膚から放出されるスーパーオキサイドの測定方法およびこの測定方法にて用いるスーパーオキサイドの捕捉具 |
US7498570B2 (en) * | 2004-08-02 | 2009-03-03 | Owistone Ltd. | Ion mobility spectrometer |
DE102004039570B4 (de) * | 2004-08-14 | 2007-03-01 | Lts Lohmann Therapie-Systeme Ag | Überwachungssystem zum Sammeln und zur transdermalen Weiterdiffusion von Umweltkontaminantien enthaltender Luft und Verfahren hierzu |
US7388195B2 (en) * | 2004-09-30 | 2008-06-17 | Charles Stark Draper Laboratory, Inc. | Apparatus and systems for processing samples for analysis via ion mobility spectrometry |
JP2006138731A (ja) * | 2004-11-12 | 2006-06-01 | Hitachi Ltd | 特定物質のインライン化検知装置及びその方法 |
US7838307B2 (en) * | 2004-12-08 | 2010-11-23 | Lyotropic Therapeutics, Inc. | Compositions for binding to assay substrata and methods of using |
JP4654045B2 (ja) * | 2005-02-01 | 2011-03-16 | 学校法人東海大学 | 皮膚ガス捕集装置 |
JP4777690B2 (ja) * | 2005-06-02 | 2011-09-21 | 富士ケミカル株式会社 | エアフィルタ |
WO2006137205A1 (ja) | 2005-06-22 | 2006-12-28 | Tokyo Institute Of Technology | 液体導入プラズマシステム |
JP2007155385A (ja) * | 2005-12-01 | 2007-06-21 | Pico Device:Kk | 表面放出ガスサンプリング装置 |
JP2008157895A (ja) | 2006-12-26 | 2008-07-10 | Horiba Ltd | 試料導入装置 |
US8043272B2 (en) * | 2007-04-30 | 2011-10-25 | Kimberly-Clark Worldwide, Inc. | Collection and testing of infant urine using an absorbent article |
CN102318035B (zh) * | 2007-07-30 | 2015-03-11 | 粒子监测系统有限公司 | 使用离子迁移光谱仪检测分析物 |
EP2194871B1 (en) * | 2007-09-05 | 2016-08-17 | Sensible Medical Innovations Ltd. | Method and system for monitoring thoracic tissue fluid |
GB0809488D0 (en) * | 2008-05-23 | 2008-07-02 | Electrophoretics Ltd | Mass spectrometric analysis |
EP2157599A1 (en) * | 2008-08-21 | 2010-02-24 | Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO | Method and apparatus for identification of biological material |
JP2010107414A (ja) * | 2008-10-31 | 2010-05-13 | Sonac Kk | 経皮ガスの採取方法、採取装置および測定方法 |
JP2010148692A (ja) * | 2008-12-25 | 2010-07-08 | National Cardiovascular Center | 表面ガス検知法および検知装置 |
JP5665305B2 (ja) * | 2008-12-25 | 2015-02-04 | キヤノン株式会社 | 分析装置 |
US20100288917A1 (en) * | 2009-05-13 | 2010-11-18 | Agilent Technologies, Inc. | System and method for analyzing contents of sample based on quality of mass spectra |
-
2011
- 2011-10-31 SG SG2012089660A patent/SG186201A1/en unknown
- 2011-10-31 JP JP2012540699A patent/JP5894078B2/ja not_active Expired - Fee Related
- 2011-10-31 EP EP11835874.6A patent/EP2634570A4/en not_active Withdrawn
- 2011-10-31 CN CN201180027241.XA patent/CN103052872B/zh not_active Expired - Fee Related
- 2011-10-31 WO PCT/JP2011/006104 patent/WO2012056730A1/ja active Application Filing
- 2011-10-31 US US13/881,915 patent/US9536720B2/en not_active Expired - Fee Related
- 2011-10-31 KR KR1020127030468A patent/KR20130100057A/ko not_active Application Discontinuation
- 2011-10-31 JP JP2012540700A patent/JP5836967B2/ja not_active Expired - Fee Related
- 2011-10-31 EP EP11835873.8A patent/EP2634556B1/en not_active Not-in-force
- 2011-10-31 CN CN2011800629003A patent/CN103299184A/zh active Pending
- 2011-10-31 SG SG2013032735A patent/SG190048A1/en unknown
- 2011-10-31 US US13/702,097 patent/US8941059B2/en not_active Expired - Fee Related
- 2011-10-31 WO PCT/JP2011/006100 patent/WO2012056729A1/ja active Application Filing
-
2016
- 2016-02-25 JP JP2016034114A patent/JP6258377B2/ja not_active Expired - Fee Related
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005083784A (ja) * | 2003-09-05 | 2005-03-31 | Shimadzu Corp | レーザー脱離イオン化質量分析法 |
JP2007513340A (ja) * | 2003-11-25 | 2007-05-24 | サイオネックス コーポレイション | サンプルの分析を改善するための分散特性、サンプル解離及び/又は圧力制御を用いた移動度ベースの装置及び方法 |
WO2005111594A1 (ja) * | 2004-05-18 | 2005-11-24 | Yamanashi Tlo Co., Ltd. | 生体高分子の非共有結合等を選択的に切断して分析する方法および装置 |
WO2006013396A2 (en) | 2004-08-02 | 2006-02-09 | Owlstone Ltd | Ion mobility spectrometer |
JP2008508693A (ja) | 2004-08-02 | 2008-03-21 | オウルストーン リミテッド | イオン移動度分光計 |
JP2008547031A (ja) * | 2005-06-30 | 2008-12-25 | バイオクラテス ライフ サイエンシズ アクチェンゲゼルシャフト | 代謝産物特性の定量分析のための装置 |
JP2007279016A (ja) * | 2006-03-16 | 2007-10-25 | Jfe Steel Kk | 物質の励起および/またはイオン化方法、ならびにそれを用いた分析方法および分析装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2634570A4 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014171378A1 (ja) * | 2013-04-19 | 2014-10-23 | 株式会社島津製作所 | 質量分析装置 |
CN105122422A (zh) * | 2013-04-19 | 2015-12-02 | 株式会社岛津制作所 | 质谱分析装置 |
JP6004093B2 (ja) * | 2013-04-19 | 2016-10-05 | 株式会社島津製作所 | 質量分析装置 |
US9721778B2 (en) | 2013-04-19 | 2017-08-01 | Shimadzu Corporation | Mass spectrometer |
WO2018012220A1 (ja) * | 2016-07-12 | 2018-01-18 | 国立研究開発法人産業技術総合研究所 | 質量分析方法 |
JPWO2018012220A1 (ja) * | 2016-07-12 | 2019-02-14 | 国立研究開発法人産業技術総合研究所 | 質量分析方法 |
Also Published As
Publication number | Publication date |
---|---|
EP2634556B1 (en) | 2018-03-14 |
JP5836967B2 (ja) | 2015-12-24 |
SG190048A1 (en) | 2013-06-28 |
EP2634556A4 (en) | 2016-12-21 |
US20130299694A1 (en) | 2013-11-14 |
CN103052872A (zh) | 2013-04-17 |
JPWO2012056729A1 (ja) | 2014-03-20 |
EP2634570A1 (en) | 2013-09-04 |
CN103299184A (zh) | 2013-09-11 |
US9536720B2 (en) | 2017-01-03 |
JP6258377B2 (ja) | 2018-01-10 |
WO2012056729A1 (ja) | 2012-05-03 |
SG186201A1 (en) | 2013-01-30 |
JPWO2012056730A1 (ja) | 2014-03-20 |
EP2634556A1 (en) | 2013-09-04 |
US20130211211A1 (en) | 2013-08-15 |
KR20130100057A (ko) | 2013-09-09 |
JP5894078B2 (ja) | 2016-03-23 |
JP2016136152A (ja) | 2016-07-28 |
EP2634570A4 (en) | 2016-12-21 |
US8941059B2 (en) | 2015-01-27 |
CN103052872B (zh) | 2015-05-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5836967B2 (ja) | 分析装置 | |
JP5144496B2 (ja) | 検出装置、検出方法及びイオン移動度スペクトロメータ装置 | |
KR101260566B1 (ko) | 사중극 또는 비행시간형 질량 분석기를 이용한 화학적 이온화 반응 또는 양자 전이 반응 질량 분석법 | |
US20240282567A1 (en) | Methods and systems for detecting aerosol particles without using complex organic maldi matrices | |
US8334505B2 (en) | Chemical ionization reaction or proton transfer reaction mass spectrometry | |
US7701576B2 (en) | Method for sorting and analyzing particles in an aerosol with redundant particle analysis | |
US7968842B2 (en) | Apparatus and systems for processing samples for analysis via ion mobility spectrometry | |
JP5764433B2 (ja) | 質量分析装置及び質量分析方法 | |
WO2012029303A1 (ja) | イオン移動度センサーに供給するサンプルを調製する装置 | |
US20080290289A1 (en) | Mass spectroscopic reaction-monitoring method | |
JP2015504160A (ja) | 衝突イオン発生器および分離器 | |
JP2006507509A (ja) | 質量分析法のイオン化効率の増大方法 | |
US20050133710A1 (en) | Method and apparatus for ion mobility spectrometry | |
EP1963835A1 (en) | Method and apparatus for ion mobility based sample analysis | |
JP2008147165A (ja) | レーザー脱離装置、マススペクトロメーター組立及び環境液体マススペクトロメトリー法 | |
US7671330B2 (en) | High resolution mass spectrometry method and system for analysis of whole proteins and other large molecules | |
CN110770567B (zh) | 用于分析生物样本的方法和装置 | |
US8222595B2 (en) | Spectrometer apparatus | |
CN107331597B (zh) | 基质辅助激光解析电离飞行时间质谱仪的离子推斥方法 | |
WO2007129495A1 (ja) | 液滴イオン化法、質量分析法及びそれらの装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11835874 Country of ref document: EP Kind code of ref document: A1 |
|
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
ENP | Entry into the national phase |
Ref document number: 2012540700 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011835874 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13881915 Country of ref document: US |