[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2012053375A1 - 立方晶窒化硼素焼結体工具 - Google Patents

立方晶窒化硼素焼結体工具 Download PDF

Info

Publication number
WO2012053375A1
WO2012053375A1 PCT/JP2011/073179 JP2011073179W WO2012053375A1 WO 2012053375 A1 WO2012053375 A1 WO 2012053375A1 JP 2011073179 W JP2011073179 W JP 2011073179W WO 2012053375 A1 WO2012053375 A1 WO 2012053375A1
Authority
WO
WIPO (PCT)
Prior art keywords
boron nitride
cbn
cubic boron
component
sintered body
Prior art date
Application number
PCT/JP2011/073179
Other languages
English (en)
French (fr)
Inventor
克己 岡村
真知子 阿部
久木野 暁
Original Assignee
住友電工ハードメタル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電工ハードメタル株式会社 filed Critical 住友電工ハードメタル株式会社
Priority to CN201180006194.0A priority Critical patent/CN102712048B/zh
Priority to JP2012539672A priority patent/JP5771883B2/ja
Priority to IN5018DEN2012 priority patent/IN2012DN05018A/en
Priority to CA2786993A priority patent/CA2786993C/en
Priority to US13/521,325 priority patent/US8822361B2/en
Priority to KR1020127017914A priority patent/KR101414910B1/ko
Priority to EP11834215.3A priority patent/EP2631026B1/en
Publication of WO2012053375A1 publication Critical patent/WO2012053375A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/583Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride
    • C04B35/5831Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride based on cubic boron nitrides or Wurtzitic boron nitrides, including crystal structure transformation of powder
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/583Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62802Powder coating materials
    • C04B35/62842Metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C26/00Alloys containing diamond or cubic or wurtzitic boron nitride, fullerenes or carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/16Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on nitrides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F2005/002Tools other than cutting tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2226/00Materials of tools or workpieces not comprising a metal
    • B23B2226/12Boron nitride
    • B23B2226/125Boron nitride cubic [CBN]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3804Borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3804Borides
    • C04B2235/3813Refractory metal borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3839Refractory metal carbides
    • C04B2235/3843Titanium carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/402Aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C26/00Alloys containing diamond or cubic or wurtzitic boron nitride, fullerenes or carbon nanotubes
    • C22C2026/003Cubic boron nitrides only
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C26/00Alloys containing diamond or cubic or wurtzitic boron nitride, fullerenes or carbon nanotubes
    • C22C2026/005Alloys containing diamond or cubic or wurtzitic boron nitride, fullerenes or carbon nanotubes with additional metal compounds being borides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C26/00Alloys containing diamond or cubic or wurtzitic boron nitride, fullerenes or carbon nanotubes
    • C22C2026/006Alloys containing diamond or cubic or wurtzitic boron nitride, fullerenes or carbon nanotubes with additional metal compounds being carbides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C26/00Alloys containing diamond or cubic or wurtzitic boron nitride, fullerenes or carbon nanotubes
    • C22C2026/008Alloys containing diamond or cubic or wurtzitic boron nitride, fullerenes or carbon nanotubes with additional metal compounds other than carbides, borides or nitrides

Definitions

  • the present invention relates to a cubic boron nitride sintered body tool, and more particularly, to a cubic boron nitride sintered body tool having excellent heat resistance and fracture resistance.
  • the cBN sintered body used for a cubic boron nitride (hereinafter also referred to as “cBN”) sintered tool has a chemical stability, a low affinity with iron, and a high hardness as compared with a conventional carbide tool. Therefore, it is evaluated as a material that can achieve a long life with high efficiency.
  • cBN sintered body tool When such a cBN sintered body tool is applied to a cutting tool, there are merits such as excellent flexibility greatly surpassing that of a grinding tool and a small environmental load. For this reason, the cBN sintered body tool has replaced the conventional tool in the processing of iron-based difficult-to-work materials.
  • the cBN sintered body is roughly classified into two types of compositions: a high cBN content sintered body and a low cBN content sintered body.
  • the content of cBN particles is high, the cBN particles are directly bonded to each other, and the remainder is bonded with a binder mainly composed of Co or Al.
  • the latter has a low content of cBN particles, so that the contact rate between the cBN particles is small, and bonded through a ceramic having low affinity with iron, such as Ti nitride (TiN) or carbide (TiC). It is a thing.
  • Such two types of cBN sintered bodies have different cutting work materials to be applied due to the difference in the cBN content.
  • the suitable work material of each cBN sintered compact is demonstrated.
  • a sintered body having a low cBN content in the processing of hardened steel. That is, since the low cBN content sintered body has a large amount of binders made of TiN or TiC ceramics having low affinity with iron at high temperatures, it exhibits excellent wear resistance especially at high temperatures. The tool life of 10 to several tens of times can be achieved. Low cBN content sintered bodies having such properties have pioneered the cutting market for hardened steel.
  • Patent Document 1 discloses a composition of a cBN sintered body that can cut ductile cast iron with a long life. That is, in Patent Document 1, any of Hf, TiHf, IVa group element, Va group element, and VIa group element (except Ti) in the periodic table is used as a main component constituting the binder phase of the cBN sintered body. By using this carbonitride, the long life of the cBN sintered body is achieved. However, the cBN sintered body of Patent Document 1 is also required to have further improved wear resistance in order to satisfy the recent required performance for higher speed and longer life.
  • Patent Document 2 JP 2008-222485 (Patent Document 2) and International Publication No. 2007/057995 (Patent Document 3), a coated composite sintered body obtained by applying a ceramic coating to a high cBN content sintered body is disclosed. It is disclosed. However, in any of the coated composite sintered bodies, the wear resistance of the cBN sintered body as a base material is not sufficient, and further improvement of the wear resistance is desired.
  • JP-A-2000-044347 Patent Document 4
  • JP-A-2000-04350 Patent Document 5
  • cBN particles are covered with a metal nitride layer such as TiN, AlN, etc.
  • the cBN sintered body obtained by sintering the material which comprises is disclosed.
  • the present invention has been made in view of the current situation as described above.
  • the object of the present invention is to make cubic crystals of cubic boron nitride sintered body highly compatible with both heat resistance and fracture resistance, thereby achieving cubic crystals. This is to extend the life of the boron nitride sintered body tool.
  • cBN sintered bodies for processing ductile cast iron have a cBN content of about a little over half, and the remainder contains Ti carbide and carbonitride, and Al compound as main components. It was composed of a binder phase. Such a binder phase contained a trace amount of TiB 2 and AlB 2 produced in the process of sintering the cBN sintered body.
  • the cubic boron nitride sintered body tool of the present invention has a cubic boron nitride sintered body containing cubic boron nitride particles and a binder phase at least at the cutting edge, and has a cubic boron nitride sintered body.
  • the binder phase includes a first component and a second component.
  • the first component is TiC
  • the second component is either one or both of TiB 2 and AlB 2
  • the X-ray diffraction intensity of the (200) plane of the first component is I 1
  • I 2 is the maximum among the X-ray diffraction intensities of all components excluding cubic boron nitride particles in the cubic boron nitride sintered body, And 0.01 ⁇ I 2 / I 1 ⁇ 0.1.
  • At least a part of the second component is present in contact with the surface of the cubic boron nitride particles, the occupation ratio of the second component in the surface of the cubic boron nitride particles is 20 to 70%, and the binder phase Preferably contains 1 to 10% by volume of the second component.
  • the cubic boron nitride sintered body tool of the present invention has the above-described configuration, so that both the heat resistance and fracture resistance of the cubic boron nitride sintered body are highly compatible, and the cubic boron nitride sintered body has Long tool life can be achieved.
  • the cBN sintered body tool of the present invention has a cBN sintered body containing cBN particles and a binder phase at least at the cutting edge. That is, the cBN sintered body tool may be constituted only by the cBN sintered body, or the cBN sintered body is bonded to the blade edge of a base material such as cemented carbide or cermet by using a bonding material.
  • a body tool may be configured.
  • the surface of the cBN sintered body tool may be covered with a hard ceramic coating layer. As the hard ceramic coating layer, a conventionally known composition can be used.
  • the “blade edge” means a portion in contact with the work material.
  • the cBN sintered body tool of the present invention can achieve both high heat resistance and fracture resistance by using a cBN sintered body to be described later. Also in the cutting of (graphite cast iron), for example, cutting can be performed by high-speed cutting of 400 m / min or more, and longer life can be realized.
  • the cBN sintered body tool of the present invention When used for cutting, it can be used extremely effectively for turning and milling.
  • the cBN sintered body of the present invention contains cBN particles and a binder phase, and is characterized by containing 40 to 70% by volume of cBN particles.
  • the balance between the strength and the heat resistance of the cBN sintered body becomes excellent, and both heat resistance and fracture resistance can be made highly compatible. If the cBN particles are less than 40% by volume, the strength of the ductile cast iron that is difficult to cut is insufficient and the fracture resistance is reduced.
  • the cBN sintered body may further contain other components in addition to the cBN particles and the binder phase.
  • the cBN particles contained in the cBN sintered body of the present invention preferably have a small average particle diameter, and preferably have an average particle diameter of 6 ⁇ m or less, from the viewpoint of increasing material strength. Further, from the viewpoint of not impairing the toughness of the cBN sintered body, the average particle diameter of the cBN particles is preferably 0.1 ⁇ m or more. From the viewpoint of such a balance between material strength and toughness, the average particle size of the cBN particles is more preferably 1 ⁇ m or more and 4 ⁇ m or less. Moreover, although it is preferable to use what cBN particle
  • the binder phase has an action of binding the cBN particles, and includes a first component and a second component.
  • the first component is TiC
  • the second component is one or both of TiB 2 and AlB 2 .
  • I 1 is cubic boron nitride sintered.
  • the X-ray diffraction intensity is more preferably 0.02 ⁇ I 2 / I 1 ⁇ 0.05.
  • I 2 / I 1 is less than 0.01, the bonding strength between the cBN particles cannot be increased, and the fracture resistance decreases.
  • I 2 / I 1 exceeds 0.1, the content of TiC having excellent wear resistance is relatively decreased, and the contents of TiB 2 and AlB 2 having poor wear resistance are increased.
  • the wear resistance of the sintered body is greatly reduced.
  • TiB 2 and AlB 2 constituting the second component have extremely close peak wavelengths in X-ray diffraction. For this reason, it is difficult to specify whether the X-ray diffraction intensity I 2 of the (101) plane of the second component is derived from TiB 2 or AlB 2. There is no problem.
  • the binder phase preferably contains 1 to 10% by volume of the second component made of a metal boride.
  • the second component By including the second component at such a volume ratio, it is possible to increase the bonding strength of the cBN particles and improve the wear resistance of the cBN sintered body. More preferably, the second component contains 3 to 7% by volume. When the second component is less than 1% by volume, the bonding of cBN particles may not be sufficient, and the strength decreases. On the other hand, when it exceeds 10 volume%, abrasion resistance falls.
  • the second component has an advantage of increasing the bonding force between the cBN particles and the binder phase.
  • the second component is contained in a large amount in the binder phase, there is a disadvantage that the wear resistance is lowered. Therefore, it is preferable that the second component is locally contained at a high concentration only around the cBN particles. Thereby, the bonding strength of the cBN particles can be increased, and the strength of the cBN sintered body can be increased.
  • the surface of the cBN particles is previously coated with a metal layer constituting the second component (hereinafter referred to as “metal layer”) and bonded thereto. It is preferable to mix and sinter with the raw material powder which comprises a phase.
  • metal layer a metal layer constituting the second component
  • the composition of the metal layer covering the cBN particles it is preferable to use one or both of Ti and Al, and more preferably TiAl. Further, the metal layer is preferably coated with 1 to 40% by mass, more preferably 5 to 20% by mass with respect to the mass ratio of the cBN particles.
  • the occupation ratio of the second component on the surface of the cBN particles is preferably 20 to 70%, more preferably 40 to 60%.
  • the “occupancy ratio” is for quantitatively evaluating that the second component is locally included around the cBN particles, and is calculated as follows.
  • one or more observation images of 10000 times when a cut surface when the cBN sintered body of the present invention is cut by any one of the cross sections are observed with an SEM are prepared.
  • any 20 particles having a particle diameter of 1 ⁇ m or more are selected, and the sum of the outer circumferences is calculated.
  • the sum of the lengths of the portions where each of the 20 cBN particles is in contact with the second component is calculated.
  • grains is made into the occupation rate of the 2nd component which occupies the surface of cBN particle
  • the bonding strength of the cBN particles decreases, which is not preferable, and when it exceeds 70%, the content other than the second component is relatively decreased, so that the heat resistance is decreased.
  • heat generated during the cutting process increases, the cBN particles easily react, and wear progresses easily.
  • the binder phase may consist of only the first component and the second component, or may further contain other components in addition to the first component and the second component.
  • Other components include conventionally known components, for example, one or more elements selected from the group consisting of group IVa elements, group Va elements, group VIa elements, and Al in the periodic table, nitrogen, carbon, And a compound with one or more elements selected from the group consisting of boron (excluding TIC, TiB 2 , and AlB 2 ), or a compound composed of one or more of mutual solid solutions of the compounds can be used. .
  • the cBN sintered body used in the present invention is produced as follows. First, it is preferable to coat the surface of the cBN particles with a metal layer made of one or both of Ti and Al. Such a metal layer is formed by RF sputtering PVD, for example.
  • the cBN sintered body is produced by introducing the cBN particles coated with the metal layer and the raw material powder constituting the binder phase into an ultrahigh pressure apparatus and then sintering the mixed powder with ultrahigh pressure. Before cBN particles are sintered in this way, the surface is covered with a metal layer, so that the second component (TiB 2 or AlB 2 ) is locally arranged around the cBN particles after sintering. Thus, the binding force between the cBN particles and the binder phase can be increased.
  • the surface of the cBN particles was covered with a metal nitride layer, which was then mixed with the raw material powder of the binder phase for sintering.
  • the conventional technology for coating cBN particles with a metal nitride layer may seem to be a technical idea in common with the technology for coating cBN particles of the present invention with a metal layer, but diffusion of boron contained in the cBN particles.
  • the metal nitride layer and the metal layer exhibit completely opposite properties. That is, the present invention covers the surface of the cBN particles with a metal layer in order to promote the diffusion of boron constituting the cBN particles into the binder phase (particularly, the second component).
  • the coating with a metal nitride layer as in the prior art covers the boron to prevent boron from diffusing from the cBN particles. For this reason, the configuration of the present invention (that is, coating with a metal layer) cannot be easily derived from the prior art.
  • the pressure during the ultra-high pressure sintering is preferably 5.5 GPa or more and 7 GPa or less. Further, the temperature during the ultra-high pressure sintering is preferably 1200 ° C. or higher and 1500 ° C. or lower, and the time required for the ultra-high pressure sintering is preferably 5 minutes or longer and 30 minutes or shorter. Note that the volume ratio of the cBN particles after the ultra-high pressure sintering is a value that is reduced by about 2 to 3% by mass as compared with the volume ratio of the cBN particles when the raw material powder is mixed.
  • a cBN sintered body tool was produced as follows. First, a metal layer made of TiAl was coated on the surface of cBN particles having an average particle diameter of 3 ⁇ m using an RF sputtering PVD apparatus. The sputtering conditions were as follows: the power of 2 kW / h and argon gas flowed at 14.0 ccm and the chamber rotation speed at 18 Hz for 8 and a half hours, resulting in a mass ratio of cBN particles to the surface of 15 masses. % Coating.
  • the outermost surface of the metal layer was covered with a protective layer made of a very thin TiAlN.
  • a covering condition of the protective layer a film was formed for 30 minutes with the same electric power and the number of rotations of the chamber as described above while flowing argon gas of 14.0 ccm and nitrogen gas of 7.0 ccm.
  • the compound was obtained by heat treatment for 30 minutes.
  • This compound was uniformly pulverized by a ball mill pulverization method using a cemented carbide ball media having a diameter of 6 mm to obtain a raw material powder constituting a binder phase.
  • the cBN particles coated with the metal layer and the raw material powder constituting the binder phase are blended so that the composition shown in “cBN content” in Table 1 is used, and a boron nitride ball media having a diameter of 3 mm is used. And uniformly mixed by a ball mill mixing method. Then, these mixed powders are laminated on a cemented carbide support plate, filled into Mo capsules, and then sintered at a pressure of 5.5 GPa and a temperature of 1400 ° C. for 30 minutes using an ultra-high pressure device. A sintered body was obtained.
  • Examples 2 to 7, Comparative Examples 1 to 4 For the cBN sintered body tool of Example 1, except that the cBN content, the coating amount of the metal layer, and the composition and mass ratio of the raw material powder constituting the binder phase were changed as shown in Table 1, The cBN sintered body tools of Examples 2 to 7 and Comparative Examples 1 to 4 were produced in the same manner as in Example 1. In particular, with respect to the coating amount of the metal phase, the mass ratio was adjusted so as to be a value shown in “I 2 / I 1 ” in Table 1 described later.
  • Example 2 the volume ratio of the cBN particles contained in the cBN sintered body is set to 60% by volume, the coating amount of the metal layer covering the surface of the cBN particles is set to 10% by mass, and the remaining binder phase is formed. It shows that the raw material powder to be made was 97 mass% TiC and 3 mass% Al.
  • the cBN sintered body tool of Comparative Example 3 was the same as that of Example 2 except that cBN particles not coated with a metal layer were used for the cBN sintered body tool of Example 2. Was made.
  • the cBN particles coated with the metal layer, the uncoated cBN particles, and the raw material powder constituting the binder phase in a mass ratio so as to have the composition shown in “cBN content” in Table 1 are 12 : 50:38 and mixed uniformly by a ball mill mixing method using a boron nitride ball media having a diameter of 3 mm. Then, these mixed powders are laminated on a cemented carbide support plate, filled into Mo capsules, and then sintered at a pressure of 5.5 GPa and a temperature of 1400 ° C. for 30 minutes using an ultra-high pressure device. A sintered body was obtained.
  • Example 9 to 12 Similar to Example 8 except that the cBN sintered body tool of Example 8 was different in the mixing ratio of cBN particles coated with a metal layer and uncoated cBN particles as shown in Table 2.
  • the cBN sintered body tools of Examples 9 to 12 were produced by the method described above. By changing the mixing ratio of the cBN particles as described above, as shown in “Second component content” and “Occupancy” in Table 3 to be described later, the second component of the cBN sintered bodies of Examples 9 to 12 was changed. Volume ratio and occupancy were adjusted.
  • the cBN sintered body tool of each example produced in this way has a cubic boron nitride sintered body containing cubic boron nitride particles and a binder phase at least at the cutting edge, and has cubic boron nitride.
  • the sintered body includes 40 to 70 volume% of cubic boron nitride particles
  • the binder phase includes a first component and a second component
  • the first component is TiC
  • the second component is TiB 2 and a one or both of AlB 2
  • I 1 is the maximum among the X-ray diffraction intensities of all components excluding cubic boron nitride particles in the cubic boron nitride sintered body, and satisfies 0.01 ⁇ I 2 / I 1 ⁇ 0.1.
  • CBN content The “cBN content” in Tables 1 and 3 indicates the volume ratio of cBN particles contained in the cBN sintered body, and was calculated as follows. First, the cBN sintered bodies produced in each Example and each Comparative Example were mirror-polished, and a cBN sintered body structure of an arbitrary region was photographed with a scanning electron image at 5000 times with an electron microscope. Gray and white areas were observed. By observing the observed image with attached EDX (energy dispersive X-ray analysis), it was estimated that the black region was cBN particles, and the gray region and the white region were bonded phases.
  • EDX energy dispersive X-ray analysis
  • the 5000 times photograph taken above is subjected to binarization processing using image processing software, and the total area of the region (black region) occupied by the cBN particles of the photograph is calculated.
  • the percentage of the ratio of the black region in the cBN sintered body is shown in Tables 1 and 3 as the volume% of cBN particles.
  • “Occupancy ratio” in Table 3 indicates the ratio of the second component occupying the surface of the cubic boron nitride particles. Using an observation image of 10,000 times taken by the same method as described above, Calculated. First, 20 cBN particles having a particle diameter of 1 ⁇ m or more were selected, and the sum of the outer circumferences was calculated. Next, the total sum of the lengths of the portions in contact with the second component in the outer periphery of the cBN particles was calculated. Then, the occupation ratio (%) of the second component occupying the surface of the cBN particles was calculated by dividing the sum of the lengths of the portions in contact with the second component by the sum of the outer circumferences of the cBN particles. The results are shown in Table 3.
  • the cBN sintered body having a high volume ratio of cBN particles has 10 or more cBN particles observed in one observation image, and the cBN sintered body has a low volume ratio of cBN particles.
  • the occupancy rate was uniformly calculated for 20 cBN particles having a particle diameter of 1 ⁇ m or more. A plurality of observation images were prepared so that they could be used.
  • a base material made of cemented carbide a cemented carbide alloy (equivalent to K10) having a shape of ISO CNMA120408 is prepared, and the cubic boron nitride sintered bodies (shape: apex angle of each example and comparative examples) are prepared on the cutting edge.
  • Comparative Example 2 The reason why the cBN sintered body of Comparative Example 1 was damaged due to defects was considered to be that the content of cBN particles was 10% by volume, which was significantly lower than the lower limit (30% by volume) defined by the present invention. . In Comparative Example 2, the reason why the tool life was short is considered to be that the content of cBN particles was 85% by volume exceeding the upper limit (70% by volume) defined by the present invention.
  • Comparative Example 3 the reason for the damage due to the defect is considered to be that the diffraction peak ratio I 2 / I 1 of the X-ray diffraction intensity was 0 below the lower limit (0.01) defined by the present invention. .
  • Comparative Example 4 the reason for the short tool life was that the diffraction peak ratio I 2 / I 1 of the X-ray diffraction intensity was 0.42 exceeding the upper limit (0.1) defined by the present invention. It is thought to be due to.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Ceramic Products (AREA)

Abstract

 立方晶窒化硼素焼結体の耐熱性と耐欠損性とを高度に両立させることにより、立方晶窒化硼素焼結体工具の長寿命化を図る。本発明の立方晶窒化硼素焼結体工具は、立方晶窒化硼素粒子と結合相とを含む立方晶窒化硼素焼結体を少なくとも刃先に有するものであって、立方晶窒化硼素焼結体は、立方晶窒化硼素粒子を40~70体積%含み、該結合相は、第1成分と第2成分とを含み、第1成分は、TiCであり、第2成分は、TiB2およびAlB2のいずれか一方または両方であり、第1成分の(200)面のX線回折強度をI1、第2成分の(101)面のX線回折強度をI2とする場合、I1は、立方晶窒化硼素焼結体において立方晶窒化硼素粒子を除く全成分のX線回折強度中最大であり、かつ0.01≦I2/I1≦0.1を満たすことを特徴とする。

Description

立方晶窒化硼素焼結体工具
 本発明は、立方晶窒化硼素焼結体工具に関し、特に耐熱性および耐欠損性が高度に優れる立方晶窒化硼素焼結体工具に関する。
 立方晶窒化硼素(以下「cBN」とも記す)焼結体工具に用いられるcBN焼結体は、従来の超硬工具に比して、化学的安定性、鉄との低親和性、および高硬度に優れるため、高能率で長寿命を達成できる材料と評価されている。このようなcBN焼結体工具を切削工具に適用した場合には、研削工具を大きく凌ぐ優れたフレキシビリティーを有し、かつ環境への負荷が小さい点等のメリットがある。このため、cBN焼結体工具は、鉄系難加工性材料の加工において従来工具を置換してきた。
 cBN焼結体は、高cBN含有率焼結体と低cBN含有率焼結体の2種の組成に大別される。前者は、cBN粒子の含有率が高く、cBN粒子同士が直接結合し、残部がCoやAlを主成分とする結合材で結合されたものである。後者は、cBN粒子の含有率が低いため、cBN粒子同士の接触率が少なく、Tiの窒化物(TiN)や炭化物(TiC)のような、鉄との親和性が低いセラミックスを介して結合されたものである。このような2種のcBN焼結体は、cBNの含有率の相違により、適用すべき切削加工の被削材が異なっている。以下、各cBN焼結体の好適な被削材を説明する。
 硬質粒子との擦れによって生じる機械的な摩耗や損傷が支配的な鉄系焼結部品の切削加工や、高速断続切削時の熱衝撃による損傷が支配的なねずみ鋳鉄の切削加工は、切り屑が分断されやすいため、切り屑によるせん断熱が発生しにくい。このような材料の切削加工においては、前者の高cBN含有率焼結体によって切削加工することが好適である。すなわち、ねずみ鋳鉄等の切削加工において、高cBN含有率焼結体は、cBNの優れた機械特性(高硬度、高強度、高靭性)と高熱伝導率とが功を奏し、抜群の安定性と長寿命とを達成する。
 その一方で、焼入鋼などの加工に高cBN含有率焼結体を適用すると、硬度が高く、かつ切り屑が連続するため、せん断熱が発生する。これにより高cBN含有率焼結体の刃先が高温に曝され、cBNと鉄との反応により摩耗の発達が速く、十分な工具寿命が得られない。
 したがって、焼入鋼の加工においては、低cBN含有率焼結体を用いることが好適である。すなわち、低cBN含有率焼結体は、高温下での鉄との親和性の低いTiNやTiCセラミックスからなる結合材を多量に有するため、特に高温時に優れた耐摩耗性を発揮し、従来工具に対し10倍~数十倍の工具寿命を達成することができる。このような性質を有する低cBN含有率焼結体は、焼入鋼の切削市場を開拓してきた。
 ところで、近年、自動車産業においては、自動車の高性能化と軽量化の両立を狙い、一部の自動車メーカでは、薄肉の高強度鋳鉄材料を使用するケースが増えている。すなわちたとえば、シリンダブロックが片状黒鉛鋳鉄製からバーミキュラー鋳鉄製へ変更になったり、自動車の一部品であるディファレンシャルケースの材料がFCD450からFCD700へ変更になったりしている。ちなみに、FCDの末尾の3桁の数値は引っ張り強度を示し、数値が大きくなるほど高強度になることを意味する。このような材料の代替に伴い、高強度鋳鉄材料を高能率および高精度に加工できる工具の登場が待ち望まれている。
 従来の超硬工具やセラミックス工具を用いて、ダクタイル鋳鉄のような強度の高い材料を加工しても、200m/min以上の速度での加工は困難であった。また、従来のcBN焼結体工具を用いても、切削速度はせいぜい300~400m/minに留まり、工具寿命も満足できるレベルではなかった。
 たとえば、特開平08-120391号公報(特許文献1)は、ダクタイル鋳鉄を長寿命に切削できるcBN焼結体の組成を開示している。すなわち、特許文献1においては、cBN焼結体の結合相を構成する主成分に、Hf、TiHf、周期律表のIVa族元素、Va族元素、およびVIa族元素(Tiを除く)のいずれかの炭窒化物を用いることにより、cBN焼結体の長寿命化を達成している。しかしながら、特許文献1のcBN焼結体も、最近の高速化および長寿命化の要求性能を満たすために、耐摩耗性のさらなる向上が求められている。
 また、特開2008-222485号公報(特許文献2)および国際公開第2007/057995明細書(特許文献3)においては、高cBN含有率焼結体にセラミックスコーティングを施した被覆複合焼結体が開示されている。しかしながら、いずれの被覆複合焼結体も母材であるcBN焼結体の耐摩耗性が十分ではなく、さらなる耐摩耗性の向上が望まれている。
 また、特開2000-044347号公報(特許文献4)および特開2000-044350号公報(特許文献5)においては、TiN、AlN等の金属窒化物層によってcBN粒子を被覆し、これと結合相を構成する材料とを焼結することにより得られるcBN焼結体を開示している。
特開平08-120391号公報 特開2008-222485号公報 国際公開第2007/057995明細書 特開2000-044347号公報 特開2000-044350号公報
 しかしながら、上記の特許文献4および5に開示されるように、cBN焼結体の表面を金属窒化物層で被覆すると、cBN粒子同士の結合力が十分でないことに起因して、欠損が生じやすいという問題があった。本発明は、上記のような現状に鑑みなされたものであって、その目的とするところは、立方晶窒化硼素焼結体の耐熱性と耐欠損性とを高度に両立させることにより、立方晶窒化硼素焼結体工具の長寿命化を図ることである。
 従来用いられているダクタイル鋳鉄加工用のcBN焼結体は、上述したように、cBNの含有率が半分強程度で、残りはTiの炭化物および炭窒化物と、Al化合物とを主成分として含む結合相で構成されるものであった。かかる結合相は、cBN焼結体を焼結する過程で生成されるTiB2やAlB2を微量に含有するものであった。
 本発明者らは、結合相を構成する成分の組成比率を変更し、摩耗速度と材料強度との相関を調査した結果、TiB2やAlB2等の硼化物の含有量が多いほど、材料強度を高められる傾向にあるが、その反面摩耗速度も速まる傾向にあることを突き止めた。さらに、TiCとTiB2またはAlB2とのX線回折の強度ピーク比を変化させたときの材料強度および摩耗速度の変化を調べたところ、材料強度と摩擦速度とは単純なトレードオフの関係にあるわけではなく、材料強度と耐摩耗性とが両立する状態が存在することを見い出した。本発明は、このような知見に基づき、さらに鋭意検討を重ねることにより完成されたものである。
 すなわち、本発明の立方晶窒化硼素焼結体工具は、立方晶窒化硼素粒子と結合相とを含む立方晶窒化硼素焼結体を少なくとも刃先に有するものであって、立方晶窒化硼素焼結体は、立方晶窒化硼素粒子を40~70体積%(40体積%以上70体積%以下、以下、特に断らない限り、同様の表記において同意)含み、該結合相は、第1成分と第2成分とを含み、第1成分は、TiCであり、第2成分は、TiB2およびAlB2のいずれか一方または両方であり、第1成分の(200)面のX線回折強度をI1、第2成分の(101)面のX線回折強度をI2とする場合、I1は、立方晶窒化硼素焼結体において立方晶窒化硼素粒子を除く全成分のX線回折強度中最大であり、かつ0.01≦I2/I1≦0.1を満たすことを特徴とする。
 第2成分の少なくとも一部は、立方晶窒化硼素粒子の表面と接触するように存在し、立方晶窒化硼素粒子の表面に占める第2成分の占有率は、20~70%であり、結合相は、第2成分を1~10体積%含むことが好ましい。
 本発明の立方晶窒化硼素焼結体工具は、上記の構成を有することにより、立方晶窒化硼素焼結体の耐熱性と耐欠損性とを高度に両立し、もって立方晶窒化硼素焼結体工具の長寿命化を達成することができる。
 以下、本発明の立方晶窒化硼素焼結体工具の各構成についてさらに説明する。
 <立方晶窒化硼素焼結体工具>
 本発明のcBN焼結体工具は、cBN粒子と結合相とを含むcBN焼結体を少なくとも刃先に有するものである。すなわち、cBN焼結体のみによってcBN焼結体工具が構成されていてもよいし、超硬合金やサーメット等の基材の刃先に接合材を用いてcBN焼結体を接合してcBN焼結体工具が構成されていてもよい。また、cBN焼結体工具の表面を硬質セラミックス被覆層で覆っていてもよい。かかる硬質セラミックス被覆層は、従来公知の組成のものを用いることができる。なお、本発明において、「刃先」とは、被削材と接触する部分を意味する。
 本発明のcBN焼結体工具は、後述するcBN焼結体を用いることにより、耐熱性および耐欠損性を高度に両立させることができるため、ダクタイル鋳鉄(球状黒鉛鋳鉄)、バーミキュラー鋳鉄(芋虫状黒鉛鋳鉄)の切削加工においても、たとえば400m/min以上の高速切削で切削加工でき、しかも長寿命化を実現することができる。
 本発明のcBN焼結体工具を切削加工の用途に用いる場合、旋削加工用やフライス加工用等として極めて有用に用いることができる。
 <立方晶窒化硼素焼結体>
 本発明のcBN焼結体は、cBN粒子と結合相とを含むものであって、cBN粒子を40~70体積%含むことを特徴とする。かかる体積比率でcBN粒子を含むことにより、cBN焼結体の強度と耐熱性とのバランスが優れたものとなり、耐熱性と耐欠損性とを高度に両立させることができる。cBN粒子が40体積%未満であると、難削なダクタイル鋳鉄の切削加工において、強度が足りず、耐欠損性が低下する。一方、70体積%を超えると、相対的に結合相の含有量が低下するため、耐熱性が低下し、切削加工の際に生じる熱によってcBNが反応し、摩耗が進行しやすくなる。かかるcBN粒子の体積比率は、50体積%以上65体積%以下であることがより好ましい。なお、本発明において、cBN焼結体は、cBN粒子と結合相との他に、さらに他の成分を含んでいてもよい。
 <立方晶窒化硼素粒子>
 本発明のcBN焼結体に含まれるcBN粒子は、材料強度を高めるという観点から、その平均粒子径は小さいことが好ましく、6μm以下の平均粒子径であることが好ましい。また、cBN焼結体の靭性を損なわないようにするという観点から、cBN粒子の平均粒子径は、0.1μm以上であることが好ましい。このような材料強度および靭性のバランスの観点からは、cBN粒子の平均粒子径が1μm以上4μm以下であることがより好ましい。また、cBN粒子は、その表面を金属層で被覆されたものを用いることが好ましいが、この理由や金属層に関しては後述する。
 <結合相>
 本発明において、結合相は、cBN粒子を結合する作用を示すものであって、第1成分と第2成分とを含むことを特徴とするものである。ここで、第1成分は、TiCであり、第2成分は、TiB2およびAlB2のいずれか一方もしくは両方である。
 そして、上記の第1成分の(200)面のX線回折強度をI1、第2成分の(101)面のX線回折強度をI2とすると、I1は、立方晶窒化硼素焼結体において立方晶窒化硼素粒子を除く全成分のX線回折強度中最大であり、かつ0.01≦I2/I1≦0.1を満たすことを特徴とする。このような特定のX線回折強度比で、第1成分と第2成分とを含有することにより、第1成分と第2成分との組成のバランスが良好なものとなり、耐熱性と耐欠損性とを大幅に向上させることができる。上記のX線回折強度は、0.02≦I2/I1≦0.05であることがより好ましい。I2/I1が0.01未満であると、cBN粒子同士の結合力を高めることができず、耐欠損性が低下する。一方、I2/I1が0.1を超えると、耐摩耗性に優れるTiCの含有量が相対的に低下するとともに、耐摩耗性に劣るTiB2およびAlB2の含有量が増加し、cBN焼結体の耐摩耗性が大幅に低下する。ちなみに、第2成分を構成するTiB2とAlB2とは、そのX線回折におけるピーク波長が極めて近似している。このため、第2成分の(101)面のX線回折強度I2は、TiB2に由来するものか、AlB2に由来するものかを特定しにくいが、いずれに由来するものであっても差し支えない。
 本発明において、結合相は、金属硼化物からなる第2成分を1~10体積%含むことが好ましい。このような体積比率で第2成分を含むことにより、cBN粒子の結合力を高めるとともに、cBN焼結体の耐摩耗性を向上させることができる。このような第2成分は、3~7体積%含むことがより好ましい。第2成分が1体積%未満であると、cBN粒子の結合が十分でない場合があり、強度が低下する。一方、10体積%を超えると、耐摩耗性が低下する。
 本発明において、第2成分は、cBN粒子と結合相との結合力を高めるというメリットがあるが、その反面、結合相中に多量に含むと、耐摩耗性が低下するというデメリットがある。したがって、cBN粒子の周辺のみに第2成分が局所的に高濃度に含まれることが好ましい。これによりcBN粒子の結合力を高めることができ、cBN焼結体の強度を高めることができる。cBN粒子の周囲に第2成分を局所的に配置するためには、cBN粒子の表面を予め第2成分を構成する金属の層(以下、「金属層」と記す)で被覆し、これと結合相を構成する原料粉末と混合して焼結することが好ましい。
 ここで、cBN粒子を被覆する金属層の組成としては、TiまたはAlのいずれか一方もしくは両方からなるものを用いることが好ましく、より好ましくはTiAlである。また、金属層は、cBN粒子の質量比に対し、1~40質量%で被覆されていることが好ましく、より好ましくは5~20質量%である。
 本発明において、cBN粒子の表面に占める第2成分の占有率が20~70%であることが好ましく、より好ましくは40~60%である。かかる占有率を満たすことにより、cBN焼結体の耐摩耗性および耐欠損性をさらに向上させることができる。ここで、「占有率」は、cBN粒子の周囲に局所的に第2成分が含まれることを定量的に評価するためのものであり、以下のようにして算出する。
 まず、本発明のcBN焼結体をいずれか1の断面で切断したときの切断面をSEMで観察したときの10000倍の観察画像を1以上準備する。それらの観察画像に現われるcBN粒子のうちの粒子径が1μm以上の任意の20個を選定し、その外周の総和を算出する。次に、該20個のcBN粒子のそれぞれが第2成分と接触している部分の長さの総和を算出する。そして、第2成分と接触している部分の長さの総和を、cBN粒子の外周の総和で除した値の百分率をcBN粒子の表面に占める第2成分の占有率とする。
 上記占有率が20%未満であると、cBN粒子の結合力が低下するため好ましくなく、70%を超えると、相対的に第2成分以外の含有量が低下するため、耐熱性が低下する。これにより切削加工の際に生じる熱が増加し、cBN粒子が反応しやすくなり、摩耗が進行しやすくなる。
 また、結合相は、第1成分および第2成分のみからなるものであってもよいし、第1成分および第2成分以外に、さらに他の成分を含んでいてもよい。他の成分としては、従来公知の成分が含まれ、たとえば周期律表のIVa族元素、Va族元素、VIa族元素、およびAlからなる群より選択される一種以上の元素と、窒素、炭素、および硼素からなる群より選ばれる一種以上の元素との化合物(ただし、TIC、TiB2、およびAlB2を除く)、または該化合物の相互固溶体のうちの1種以上からなるものを用いることができる。
 <cBN焼結体の製造方法>
 本発明に用いられるcBN焼結体は、以下のようにして作製する。まず、cBN粒子の表面に、TiまたはAlのいずれか一方もしくは両方からなる金属層を被覆することが好ましい。このような金属層は、たとえばRFスパッタリングPVDによって成膜される。かかる金属層で被覆したcBN粒子と、結合相を構成する原料粉末とを超高圧装置に導入した上で、これらの混合粉末を超高圧焼結することにより、cBN焼結体を作製する。このようにcBN粒子を焼結させる前に、その表面を金属層で被覆することにより、焼結後にcBN粒子の周囲に、第2成分(TiB2またはAlB2)が局所的に配置されることになり、もってcBN粒子と結合相との結合力を高めることができる。
 従来は、cBN粒子の表面を金属窒化物層で覆った上で、これを結合相の原料粉末と混合し焼結を行なっていた。一見すると、従来のcBN粒子を金属窒化物層で被覆する技術は、本発明のcBN粒子を金属層で被覆する技術と共通する技術思想に見えるかもしれないが、cBN粒子に含まれる硼素の拡散性の観点からは、金属窒化物層と金属層とは全く逆の性質を示すものである。すなわち、本発明は、cBN粒子を構成する硼素が結合相中(特に、第2成分を構成するよう)に拡散することを促進すべく、cBN粒子の表面を金属層で覆うものであるが、従来技術のような金属窒化物層による被覆は、cBN粒子から硼素が拡散するのを阻害するために覆うものである。このため、従来技術から、この発明の構成(すなわち、金属層で被覆すること)を容易に導き出すことはできない。
 上記の超高圧焼結時の圧力は、5.5GPa以上7GPa以下であることが好ましい。また、超高圧焼結時の温度は、1200℃以上1500℃以下であることが好ましく、超高圧焼結の処理に要する時間は5分以上30分以下であることが好ましい。なお、超高圧焼結後のcBN粒子の体積比は、原料粉末混合時のcBN粒子の体積比に比して、2~3質量%程度低下した値となる。
 以下、実施例を挙げて本発明をより詳細に説明するが、本発明はこれらに限定されるものではない。
 <実施例1>
 以下のようにして、cBN焼結体工具を作製した。まず、平均粒子径3μmのcBN粒子の表面に、RFスパッタリングPVD装置を用いて、TiAlからなる金属層を被覆した。上記のスパッタリングの条件は、2kW/hの電力で、アルゴンガスを14.0ccmで流しながら、チャンバの回転数を18Hzとして、8時間半行なうことにより、cBN粒子の表面に対する質量比が、15質量%となるように被覆した。
 そして、その金属層の最表面に、極薄膜のTiAlNからなる保護層を被覆した。かかる保護層の被覆条件は、14.0ccmのアルゴンガスと、7.0ccmの窒素ガスとを流しながら、上記の金属層の成膜と同一の電力およびチャンバの回転数で30分間成膜した。
 次に、平均粒子径1μmのTiC粉末と平均粒子径4μmのAl粉末とを粉砕して、これらを質量比で、TiC:Al=95:5となるように混合し、真空中で1200℃、30分間熱処理して化合物を得た。この化合物を直径6mmの超硬合金製ボールメディアを用いてボールミル粉砕法により均一に粉砕し、結合相を構成する原料粉末を得た。
 次に、表1の「cBN含有率」に示す組成となるように、金属層で被覆したcBN粒子と、結合相を構成する原料粉末とを配合し、直径3mmの窒化硼素製ボールメディアを用いてボールミル混合法により均一に混合した。そして、これらの混合粉末を超硬合金製支持板に積層して、Mo製カプセルに充填後、超高圧装置を用いて、圧力5.5GPa、温度1400℃で30分間焼結することにより、cBN焼結体を得た。
 <実施例2~7、比較例1~4>
 実施例1のcBN焼結体工具に対し、cBN含有率、金属層の被覆量、および結合相を構成する原料粉末の組成および質量比を表1のように変えたことが異なる他は、実施例1と同様の方法により実施例2~7、比較例1~4のcBN焼結体工具を作製した。特に、金属相の被覆量においては、後述する表1の「I2/I1」に示す値となるように、その質量比を調整した。たとえば、実施例2においては、cBN焼結体に含まれるcBN粒子の体積比率を60体積%とし、cBN粒子の表面を被覆する金属層の被覆量を10質量%とし、残部の結合相を構成する原料粉末を97質量%のTiCと3質量%のAlとにしたことを示す。なお、実施例2のcBN焼結体工具に対し、金属層を被覆していないcBN粒子を用いたことを除いては、実施例2と同一の方法によって、比較例3のcBN焼結体工具を作製した。
 <実施例8>
 以下のようにして、cBN焼結体工具を作製した。まず、平均粒子径2μmのcBN粒子に対し、RFスパッタリングPVD装置を用いて、15質量%のTiAlからなる金属層を被覆した。次に、平均粒子径1.5μmのTiC粉末と平均粒子径3μmのAl粉末とを質量比で、TiC:Al=95:5となるように混合し、真空中で1200℃、30分間熱処理して化合物を得た。この化合物を直径6mmの超硬合金製ボールメディアを用いてボールミル粉砕法により均一に粉砕し、結合相を構成する原料粉末を得た。
 次に、表1の「cBN含有率」に示す組成となるように、金属層で被覆したcBN粒子と、被覆していないcBN粒子と、結合相を構成する原料粉末とを質量比で、12:50:38となるように配合し、直径3mmの窒化硼素製ボールメディアを用いてボールミル混合法により均一に混合した。そして、これらの混合粉末を超硬合金製支持板に積層して、Mo製カプセルに充填後、超高圧装置を用いて、圧力5.5GPa、温度1400℃で30分間焼結することにより、cBN焼結体を得た。
 <実施例9~12>
 実施例8のcBN焼結体工具に対し、金属層で被覆したcBN粒子と、被覆していないcBN粒子との混合比を表2のように変えたことが異なる他は、実施例8と同様の方法により実施例9~12のcBN焼結体工具を作製した。このようにcBN粒子の混合比を変えることにより、後述の表3の「第2成分含有率」および「占有率」に示すように、実施例9~12のcBN焼結体の第2成分の体積比および占有率が調整された。
 このようにして作製された各実施例のcBN焼結体工具は、立方晶窒化硼素粒子と結合相とを含む立方晶窒化硼素焼結体を少なくとも刃先に有するものであって、立方晶窒化硼素焼結体は、立方晶窒化硼素粒子を40~70体積%含み、該結合相は、第1成分と第2成分とを含み、第1成分は、TiCであり、第2成分は、TiB2およびAlB2のいずれか一方または両方であり、第1成分の(200)面のX線回折強度をI1、第2成分の(101)面のX線回折強度をI2とする場合、I1は、立方晶窒化硼素焼結体において立方晶窒化硼素粒子を除く全成分のX線回折強度中最大であり、かつ0.01≦I2/I1≦0.1を満たすものである。
 <比較例5>
 市販されているcBN焼結体(製品名:BX930(株式会社タンガロイ製))を用いた。
 <比較例6>
 市販されているcBN焼結体(製品名:MB710(三菱マテリアル株式会社製))を用いた。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 <cBN焼結体の評価>
 各実施例および各比較例のcBN焼結体に対し、「X線回折強度の比I2/I1」、「cBN含有率」、「占有率」、および「cBN焼結体を構成する化合物」を以下のようにして算出した。
 (X線回折強度の比I2/I1
 各実施例および各比較例のcBN焼結体に対し、X線回折装置(製品名:SmartLab-2D-PILATUS(株式会社リガク製))を用いて、X線回折測定を行なうことにより、第1成分の(200)面のX線回折強度I1、および第2成分の(101)面のX線回折強度I2を測定した。そして、これらの比I2/I1を表1および表3の「I2/I1」の欄に示した。
 (cBN含有率)
 表1および表3の「cBN含有率」は、cBN焼結体に含まれるcBN粒子の体積比を示すものであり、以下のようにして算出した。まず、各実施例および各比較例で作製されたcBN焼結体を鏡面研磨し、任意の領域のcBN焼結体組織を電子顕微鏡にて5000倍で反射電子像を撮影したところ、黒色領域と灰色領域と白色領域が観察された。その観察画像を付属のEDX(エネルギー分散型X線分析)で観察することにより、黒色領域はcBN粒子、灰色領域と白色領域は結合相であることを推定した。
 次に、上記で撮影された5000倍の写真に対し画像処理ソフトを用いて2値化処理を施し、同写真のcBN粒子が占める領域(黒色領域)の合計面積を算出し、その写真中のcBN焼結体に占める黒色領域の割合の百分率を、cBN粒子の体積%として表1および表3に記載した。
 (占有率)
 表3の「占有率」は、立方晶窒化硼素粒子の表面に占める第2成分の割合を示すものであり、上記と同様の方法で撮影した10000倍の観察画像を用いて、以下のように算出した。まず、1μm以上の粒子径のcBN粒子を20個選定し、その外周の総和を算出した。次に、cBN粒子の外周のうち、第2成分と接触している部分の長さの総和を算出した。そして、第2成分と接触している部分の長さの総和を、cBN粒子の外周の総和で除することにより、cBN粒子の表面に占める第2成分の占有率(%)を算出した。この結果を表3に示す。
 ちなみに、上記の10000倍の観察画像において、cBN粒子の体積比が高いcBN焼結体は、1枚の観察画像で10個以上のcBN粒子が観察され、cBN粒子の体積比が低いcBN焼結体は、1枚の観察画像から5個以下のcBN粒子が観察されたが、いずれの実施例および比較例においても一律に20個の1μm以上の粒子径のcBN粒子を対象に占有率を算出できるように、複数枚の観察画像を準備した。
 (cBN焼結体を構成する化合物)
 各実施例および各比較例のcBN焼結体を構成する化合物は、cBN焼結体を鏡面研磨した面の任意の領域を電子顕微鏡にて50000倍で写真撮影し、付属のEDXにより、各種元素の重なり状態とX線回折測定の化合物同定結果に基づいて推定した。このようにして測定したEDXの組成分析の結果を表1および表3の「cBN焼結体を構成する化合物」の欄に示した。
 <切削試験>
 超硬合金製の基材として、形状がISO CNMA120408である超硬合金(K10相当)を準備し、その刃先に各実施例および各比較例の立方晶窒化硼素焼結体(形状:頂角が80°でありそれを挟む両辺が各2.5mmの二等辺三角形を底面とする厚みが2mmの三角柱状のもの)を、Ti-Zr-Cuからなるロウ材を用いることにより接合した。
 実施例1~7および比較例1~4においては、下記の切削試験1の条件で損傷幅が0.2mmを超えるまで切削加工を行なった。また、実施例8~12および比較例5、6においては、下記の切削試験2の条件で損傷幅が0.2mmを超えるまで切削加工を行なった。そして、切削試験1および2のいずれにおいても、損傷幅が0.2mmを超えた時点を工具寿命とし、それまでの切削距離(km)を表1および表3の「工具寿命」の欄に示した。なお、損傷幅とは、摩耗幅または欠損幅を意味し、その長さが長いものほど、工具寿命が長いことを示している。また、工具寿命に至ったときの損傷形態(「摩耗」または「欠損」のいずれか)を表1および表3の「損傷形態」の欄に示した。
 (切削試験1)
被削材 :FCD450(硬度:160HB、外周部にV溝が付いた丸棒の外形切削)
切削条件:切削速度  Vc=400m/min.
     送り量   f=0.2mm/rev.
     切り込み量 ap=0.2mm
     湿式切削
 (切削試験2)
被削材 :FCD700(硬度:260HB、外周部にV溝が付いた丸棒の外形切削)
切削条件:切削速度  Vc=400m/min.
     送り量   f=0.2mm/rev.
     切り込み量 ap=0.2mm
     湿式切削
 表1および表3の「工具寿命」の結果から明らかなように、実施例1~12の本発明に係る立方晶窒化硼素焼結体工具は、比較例1~6の立方晶窒化硼素焼結体工具に比し、工具寿命を長寿命化したものであることが明らかである。
 実施例1~12において、工具寿命が向上した理由は、主として第1成分の(200)面のX線回折強度I1、および第2成分の(101)面のX線回折強度I2との比I2/I1が0.01以上0.1以下であったことにより、耐熱性および耐欠損性を高度に両立したことによるものと考えられる。
 比較例1のcBN焼結体が欠損によって損傷した理由は、cBN粒子の含有率が本発明の規定する下限値(30体積%)を大幅に下回る10体積%であったことによるものと考えられる。比較例2において、工具寿命が短かった理由は、cBN粒子の含有率が本発明の規定する上限値(70体積%)を上回る85体積%であったことによるものと考えられる。
 比較例3において、欠損によって損傷した理由は、X線回折強度の回折ピーク比I2/I1が本発明の規定する下限値(0.01)を下回る0であったことによるものと考えられる。また、比較例4において、工具寿命が短かった理由は、X線回折強度の回折ピーク比I2/I1が本発明の規定する上限値(0.1)を上回る0.42であったことによるものと考えられる。
 以上のように本発明の実施の形態および実施例について説明を行なったが、上述の実施の形態および実施例の構成を適宜組み合わせることも当初から予定している。
 今回開示された実施の形態および実施例は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。

Claims (2)

  1.  立方晶窒化硼素粒子と結合相とを含む立方晶窒化硼素焼結体を少なくとも刃先に有する立方晶窒化硼素焼結体工具であって、
     前記立方晶窒化硼素焼結体は、前記立方晶窒化硼素粒子を40~70体積%含み、
     前記結合相は、第1成分と第2成分とを含み、
     前記第1成分は、TiCであり、
     前記第2成分は、TiB2およびAlB2のいずれか一方または両方であり、
     前記第1成分の(200)面のX線回折強度をI1、前記第2成分の(101)面のX線回折強度をI2とする場合、前記I1は、前記立方晶窒化硼素焼結体において前記立方晶窒化硼素粒子を除く全成分のX線回折強度中最大であり、かつ0.01≦I2/I1≦0.1を満たす、立方晶窒化硼素焼結体工具。
  2.  前記第2成分の少なくとも一部は、前記立方晶窒化硼素粒子の表面と接触するように存在し、
     前記立方晶窒化硼素粒子の表面に占める前記第2成分の占有率は、20~70%であり、
     前記結合相は、前記第2成分を1~10体積%含む、請求項1記載の立方晶窒化硼素焼結体工具。
PCT/JP2011/073179 2010-10-19 2011-10-07 立方晶窒化硼素焼結体工具 WO2012053375A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN201180006194.0A CN102712048B (zh) 2010-10-19 2011-10-07 立方氮化硼烧结体工具
JP2012539672A JP5771883B2 (ja) 2010-10-19 2011-10-07 立方晶窒化硼素焼結体工具
IN5018DEN2012 IN2012DN05018A (ja) 2010-10-19 2011-10-07
CA2786993A CA2786993C (en) 2010-10-19 2011-10-07 Cubic boron nitride sintered body tool
US13/521,325 US8822361B2 (en) 2010-10-19 2011-10-07 Cubic boron nitride sintered body tool
KR1020127017914A KR101414910B1 (ko) 2010-10-19 2011-10-07 입방정 질화붕소 소결체 공구
EP11834215.3A EP2631026B1 (en) 2010-10-19 2011-10-07 Tool comprising sintered cubic boron nitride

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-234589 2010-10-19
JP2010234589 2010-10-19

Publications (1)

Publication Number Publication Date
WO2012053375A1 true WO2012053375A1 (ja) 2012-04-26

Family

ID=45975092

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/073179 WO2012053375A1 (ja) 2010-10-19 2011-10-07 立方晶窒化硼素焼結体工具

Country Status (8)

Country Link
US (1) US8822361B2 (ja)
EP (1) EP2631026B1 (ja)
JP (1) JP5771883B2 (ja)
KR (1) KR101414910B1 (ja)
CN (1) CN102712048B (ja)
CA (1) CA2786993C (ja)
IN (1) IN2012DN05018A (ja)
WO (1) WO2012053375A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014084268A (ja) * 2012-10-26 2014-05-12 Sumitomo Electric Hardmetal Corp 立方晶窒化ホウ素焼結体およびその製造方法
JP2015044259A (ja) * 2013-08-27 2015-03-12 三菱マテリアル株式会社 耐欠損性にすぐれた立方晶窒化硼素焼結体切削工具
KR20180114329A (ko) 2017-04-10 2018-10-18 박순옥 입방정계 질화붕소(cBN) 박막의 합성 방법
JP2019156692A (ja) * 2018-03-15 2019-09-19 株式会社タンガロイ 立方晶窒化硼素焼結体、及び、立方晶窒化硼素焼結体を有する工具
WO2021131051A1 (ja) 2019-12-27 2021-07-01 住友電工ハードメタル株式会社 立方晶窒化硼素焼結体及びその製造方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103551576A (zh) * 2013-10-31 2014-02-05 吴海勇 一种立方氮化硼节块工具的制备方法
JP6634647B2 (ja) * 2014-11-27 2020-01-22 三菱マテリアル株式会社 耐チッピング性、耐摩耗性にすぐれた表面被覆切削工具
CN104962769A (zh) * 2015-06-23 2015-10-07 中南钻石有限公司 一种使用纳米金属助剂制成的cbn多晶烧结体及其制备方法
KR102573968B1 (ko) * 2016-01-29 2023-09-05 일진다이아몬드(주) 절삭공구용 복합 소결체 및 이를 이용한 절삭공구
GB201609672D0 (en) 2016-06-02 2016-07-20 Element Six Uk Ltd Sintered polycrystalline cubic boron nitride material
US11208358B2 (en) * 2018-09-19 2021-12-28 Sumitomo Electric Industries, Ltd. Cubic boron nitride sintered body and cutting tool including the same
PL3907206T3 (pl) * 2020-03-24 2023-08-28 Resonac Corporation Spiekany korpus z sześciennego azotku boru, sposób jego wytwarzania oraz narzędzie

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0782031A (ja) * 1993-06-28 1995-03-28 Toshiba Tungaloy Co Ltd 立方晶窒化ホウ素含有焼結体およびその製造方法
JPH08120391A (ja) 1994-10-14 1996-05-14 Sumitomo Electric Ind Ltd 高硬度工具用焼結体
JP2000044350A (ja) 1998-07-22 2000-02-15 Sumitomo Electric Ind Ltd cBN焼結体
JP2000044347A (ja) 1998-07-22 2000-02-15 Sumitomo Electric Ind Ltd cBN焼結体
WO2007057995A1 (ja) 2005-11-18 2007-05-24 Sumitomo Electric Hardmetal Corp. 高品位表面性状加工用cBN焼結体及びcBN焼結体切削工具およびこれを用いた切削加工方法
JP2007144615A (ja) * 2005-10-28 2007-06-14 Sandvik Intellectual Property Ab 切り欠け及び切刃破断に優れた耐性を有する立方晶窒化物切削工具インサート
JP2008528413A (ja) * 2004-10-29 2008-07-31 エレメント シックス (プロダクション)(プロプライエタリィ) リミテッド 立方晶系窒化硼素成形体
JP2008222485A (ja) 2007-03-12 2008-09-25 Sumitomo Electric Hardmetal Corp 被覆複合焼結体、切削工具および切削方法
JP2008272929A (ja) * 2007-04-27 2008-11-13 Sandvik Intellectual Property Ab 切削工具インサート

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4186022A (en) * 1977-06-08 1980-01-29 Vsesojuzny Nauchno-Issledovatelsky Institut Abrazivov I Shlifovania Superhard composite material
JPS60145351A (ja) * 1984-01-06 1985-07-31 Mitsubishi Metal Corp 切削工具用立方晶窒化硼素基超高圧焼結材料
JP3035797B2 (ja) * 1991-07-04 2000-04-24 三菱マテリアル株式会社 高強度を有する立方晶窒化ほう素基超高圧焼結材料製切削チップ
JP3297535B2 (ja) * 1994-07-25 2002-07-02 京セラ株式会社 立方晶窒化硼素質焼結体
JPH10226575A (ja) * 1997-02-14 1998-08-25 Nof Corp 切削工具用高圧相窒化硼素焼結体
US7932199B2 (en) * 2004-02-20 2011-04-26 Diamond Innovations, Inc. Sintered compact

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0782031A (ja) * 1993-06-28 1995-03-28 Toshiba Tungaloy Co Ltd 立方晶窒化ホウ素含有焼結体およびその製造方法
JPH08120391A (ja) 1994-10-14 1996-05-14 Sumitomo Electric Ind Ltd 高硬度工具用焼結体
JP2000044350A (ja) 1998-07-22 2000-02-15 Sumitomo Electric Ind Ltd cBN焼結体
JP2000044347A (ja) 1998-07-22 2000-02-15 Sumitomo Electric Ind Ltd cBN焼結体
JP2008528413A (ja) * 2004-10-29 2008-07-31 エレメント シックス (プロダクション)(プロプライエタリィ) リミテッド 立方晶系窒化硼素成形体
JP2007144615A (ja) * 2005-10-28 2007-06-14 Sandvik Intellectual Property Ab 切り欠け及び切刃破断に優れた耐性を有する立方晶窒化物切削工具インサート
WO2007057995A1 (ja) 2005-11-18 2007-05-24 Sumitomo Electric Hardmetal Corp. 高品位表面性状加工用cBN焼結体及びcBN焼結体切削工具およびこれを用いた切削加工方法
JP2008222485A (ja) 2007-03-12 2008-09-25 Sumitomo Electric Hardmetal Corp 被覆複合焼結体、切削工具および切削方法
JP2008272929A (ja) * 2007-04-27 2008-11-13 Sandvik Intellectual Property Ab 切削工具インサート

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2631026A4

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014084268A (ja) * 2012-10-26 2014-05-12 Sumitomo Electric Hardmetal Corp 立方晶窒化ホウ素焼結体およびその製造方法
EP2913317A4 (en) * 2012-10-26 2016-07-06 Sumitomo Elec Hardmetal Corp CUBIC BORON NITRIDE SINTERED BODY AND PROCESS FOR PRODUCING THE SAME
US9487449B2 (en) 2012-10-26 2016-11-08 Sumitomo Electric Hardmetal Corp. Cubic boron nitride sintered body and method for manufacturing the same
JP2015044259A (ja) * 2013-08-27 2015-03-12 三菱マテリアル株式会社 耐欠損性にすぐれた立方晶窒化硼素焼結体切削工具
KR20180114329A (ko) 2017-04-10 2018-10-18 박순옥 입방정계 질화붕소(cBN) 박막의 합성 방법
JP2019156692A (ja) * 2018-03-15 2019-09-19 株式会社タンガロイ 立方晶窒化硼素焼結体、及び、立方晶窒化硼素焼結体を有する工具
JP7047503B2 (ja) 2018-03-15 2022-04-05 株式会社タンガロイ 立方晶窒化硼素焼結体、及び、立方晶窒化硼素焼結体を有する工具
WO2021131051A1 (ja) 2019-12-27 2021-07-01 住友電工ハードメタル株式会社 立方晶窒化硼素焼結体及びその製造方法
US11434550B2 (en) 2019-12-27 2022-09-06 Sumitomo Electric Hardmetal Corp. Cubic boron nitride sintered material and method for manufacturing the same

Also Published As

Publication number Publication date
JPWO2012053375A1 (ja) 2014-02-24
KR101414910B1 (ko) 2014-07-04
IN2012DN05018A (ja) 2015-10-02
CN102712048B (zh) 2014-06-25
EP2631026B1 (en) 2017-05-03
CA2786993C (en) 2014-10-21
US8822361B2 (en) 2014-09-02
JP5771883B2 (ja) 2015-09-02
EP2631026A1 (en) 2013-08-28
US20120302425A1 (en) 2012-11-29
CA2786993A1 (en) 2012-04-26
CN102712048A (zh) 2012-10-03
KR20120104311A (ko) 2012-09-20
EP2631026A4 (en) 2014-03-26

Similar Documents

Publication Publication Date Title
JP5771883B2 (ja) 立方晶窒化硼素焼結体工具
JP5664795B2 (ja) 立方晶窒化硼素焼結体
JP6082650B2 (ja) 立方晶窒化硼素焼結体および被覆立方晶窒化硼素焼結体
JP5732663B2 (ja) 立方晶窒化硼素焼結体工具
EP2420483B1 (en) Cubic boron nitride sintered compact and coated cubic boron nitride sintered compact
WO2011129422A1 (ja) 被覆cBN焼結体
JP6032375B2 (ja) 立方晶窒化硼素焼結体および被覆立方晶窒化硼素焼結体
WO2012105710A1 (ja) cBN焼結体工具および被覆cBN焼結体工具
JP6032409B2 (ja) 立方晶窒化ほう素基超高圧焼結体を工具基体とする切削工具、表面被覆切削工具
KR20160148630A (ko) 입방정 질화붕소 소결체 및 절삭 공구
JP2017014084A (ja) 立方晶窒化硼素焼結体、立方晶窒化硼素焼結体の製造方法、工具、および切削工具
JP4065666B2 (ja) 高耐クレータ性高強度焼結体
EP3109219B1 (en) Use of sintered body and cutting tool
EP3109220B1 (en) Use of sintered body and cutting tool
KR20060105012A (ko) 입방정계 질화붕소 소결체 및 이의 제조방법
JP4560604B2 (ja) 立方晶窒化硼素基焼結材及びその製造方法
WO2016084738A1 (ja) cBN焼結体および切削工具
JP2004026555A (ja) 立方晶窒化ホウ素含有焼結体およびその製造方法
JP5804448B2 (ja) 立方晶窒化ほう素基超高圧焼結体およびこれを工具基体とする切削工具、表面被覆切削工具
KR20200045462A (ko) 복합 소결체
CN112055757B (zh) 复合烧结体
JP7336062B2 (ja) 立方晶窒化硼素焼結体及び被覆立方晶窒化硼素焼結体
JP5092237B2 (ja) cBN基超高圧焼結体およびその製造方法
JP2024033530A (ja) 立方晶窒化硼素焼結体
CN115716752A (zh) 立方氮化硼烧结体和涂覆立方氮化硼烧结体

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180006194.0

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 5018/DELNP/2012

Country of ref document: IN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11834215

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012539672

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20127017914

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13521325

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2786993

Country of ref document: CA

REEP Request for entry into the european phase

Ref document number: 2011834215

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011834215

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE