[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2012053240A1 - 無線通信システム、低電力基地局及び通信制御方法 - Google Patents

無線通信システム、低電力基地局及び通信制御方法 Download PDF

Info

Publication number
WO2012053240A1
WO2012053240A1 PCT/JP2011/059021 JP2011059021W WO2012053240A1 WO 2012053240 A1 WO2012053240 A1 WO 2012053240A1 JP 2011059021 W JP2011059021 W JP 2011059021W WO 2012053240 A1 WO2012053240 A1 WO 2012053240A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
power base
control unit
penb
pico
Prior art date
Application number
PCT/JP2011/059021
Other languages
English (en)
French (fr)
Inventor
敦久 稲越
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Publication of WO2012053240A1 publication Critical patent/WO2012053240A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/243TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account interferences
    • H04W52/244Interferences in heterogeneous networks, e.g. among macro and femto or pico cells or other sector / system interference [OSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • H04W84/045Public Land Mobile systems, e.g. cellular systems using private Base Stations, e.g. femto Base Stations, home Node B
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices

Definitions

  • the present invention relates to a radio communication system including a high power base station and a low power base station having a transmission output smaller than that of the high power base station, the low power base station in the radio communication system, and the low power base.
  • the present invention relates to a communication control method in a station.
  • LTE As a next-generation wireless communication system that realizes high-speed and large-capacity communication, there is LTE standardized by 3GPP, which is a standardization organization for wireless communication systems.
  • the technical specification of LTE is determined as 3GPP Release ⁇ 8.
  • LTE Advanced which is an advanced LTE, is being studied.
  • a low power base is a small base station that has a small transmission output and forms a cell (small cell) that is a communication area with a radius of about [m] to about a dozen [m].
  • Standardization is in progress for detailed functions and requirements of stations (PeNB).
  • the low-power base station has a larger transmission output than the low-power base station, and distributes the traffic of the high-power base station (MeNB) that forms a cell (large cell) that is a communication area with a radius of about several hundred meters. Installed as a purpose.
  • Such a configuration of the wireless communication system is referred to as a heterogeneous network.
  • an object of the present invention is to provide a radio communication system, a low power base station, and a communication control method that effectively distribute traffic in a heterogeneous network.
  • a feature of the present invention is a wireless communication system (wireless communication system 1) configured by a high power base station (MeNB 100) and a low power base station (PeNB 300) having a transmission output smaller than that of the high power base station.
  • the low-power base station controls a bias value that is a value that is used to extend the cell range of the low-power base station and that is a value that is used in the process of determining the connection destination of the wireless terminal (UE 400).
  • a control unit (control unit 320) that controls the bias value based on information from the high power base station, and the information from the high power base station
  • the gist of the present invention is information on the number of wireless terminals connected to.
  • the low power base station appropriately distributes traffic by controlling the bias value, and performs wireless communication between the high power base station and the wireless terminals under the high power base station.
  • the applied interference can be appropriately reduced.
  • a feature of the present invention is a low-power base station having a transmission power smaller than that of a high-power base station, a value used for extending the cell range of the low-power base station, and a connection destination of a wireless terminal
  • a control unit that controls a bias value that is a value used in the determining process and transmission power of the low-power base station, the control unit based on information from the high-power base station
  • the transmission power is controlled, and the information from the high power base station is information on the number of wireless terminals connected to the high power base station.
  • a feature of the present invention is that when the control unit recognizes that the number of wireless terminals connected to the high power base station has increased, the increase in the bias value and the transmission power of the low power base station The main point is to reduce the
  • a feature of the present invention is that when the control unit recognizes that the number of wireless terminals connected to the high power base station has decreased, the bias value decreases and the transmission power of the low power base station increases.
  • the main point is to increase.
  • a feature of the present invention is that the control unit obtains information on the number of wireless terminals connected to the low power base station, and based on the information on the number of wireless terminals connected to the low power base station.
  • the gist is to control the bias value and the transmission power of the low power base station.
  • a feature of the present invention is that when the control unit recognizes that the number of wireless terminals connected to the low power base station has increased, the bias value decreases and the transmission power of the low power base station The main point is to increase.
  • a feature of the present invention is that, when the control unit recognizes that the number of wireless terminals connected to the low power base station has decreased, the increase of the bias value and the transmission power of the low power base station The main point is to reduce the
  • a feature of the present invention is a communication control method in a low power base station having a transmission output smaller than that of a high power base station, which is a value used for extending a cell range of the low power base station, and a radio terminal Including a step of controlling a bias value, which is a value used in a process of determining a connection destination of the low-power base station, and a transmission power of the low-power base station.
  • a bias value which is a value used in a process of determining a connection destination of the low-power base station, and a transmission power of the low-power base station.
  • traffic can be effectively distributed in a heterogeneous network.
  • 1 is an overall schematic configuration diagram of a wireless communication system according to an embodiment of the present invention. It is a block diagram which shows the structure of the low electric power base station which concerns on embodiment of this invention. It is a flowchart which shows the 1st operation
  • FIG. 1 is an overall schematic configuration diagram of a radio communication system 1 according to an embodiment of the present invention.
  • the wireless communication system 1 has, for example, a configuration based on LTE Release 9 which is a 3.9th generation (3.9G) mobile phone system and LTE-Advanced which is positioned as a 4th generation (4G) mobile phone system.
  • LTE Release 9 which is a 3.9th generation (3.9G) mobile phone system
  • LTE-Advanced which is positioned as a 4th generation (4G) mobile phone system.
  • a radio communication system 1 includes a high power base station (high output power base station, high output base station) (for example, a macro cell base station) that forms a large cell (eg, macro cell) MC1 that is a coverage area. : MeNB) 100 and a low power base station (low output power base station, small output base station) having a transmission output (transmission power) smaller than that of the MeNB 100 and forming a small cell (eg, pico cell) PC2 that is a coverage area (E.g., picocell base station: PeNB) 300.
  • the radius of the large cell MC1 is, for example, about several hundreds [m]
  • the radius of the small cell PC2 is, for example, about several [m] to several tens [m].
  • the radio terminal (UE) 200 exists in an area within the large cell MC1 and not within the small cell PC2.
  • MeNB100 and UE200 can perform radio
  • a radio terminal (UE) 400 exists in the small cell PC2.
  • PeNB300 and UE400 can perform radio
  • UE 200 is referred to as macro UE 200
  • UE 400 is referred to as pico UE 400 from the viewpoint of improving frequency utilization efficiency.
  • the same frequency band is shared by the communication between the MeNB 100 and the macro UE 200 and the communication between the PeNB 300 and the pico UE 400.
  • the MeNB 100 is installed at a location based on a station placement design that considers inter-cell interference.
  • PeNB300 is installed in arbitrary places.
  • the PeNB 300 is installed in the large cell MC1 for the purpose of distributing traffic of the MeNB 100 and the like.
  • the wireless communication system 1 has a heterogeneous network configuration.
  • MeNB100 and PeNB300 can mutually communicate via the X2 interface 500 which is a logical communication path set to the backhaul.
  • the frequency band of the downlink (link from the MeNB 100 to the macro UE 200, hereinafter referred to as “macro downlink”) used for the radio communication.
  • the downlink used for the radio communication (the link from the PeNB 300 to the pico UE 400, hereinafter referred to as “pico downlink”).
  • the macro UE 200 that is performing radio communication with the MeNB 100 receives interference due to a radio signal transmitted from the PeNB 300 to the pico UE 400 using the pico downlink.
  • the frequency band of the uplink used for the radio communication (link directed from the macro UE 200 to the MeNB 100, hereinafter referred to as “macro uplink”)
  • the uplink used for the radio communication (the link from the pico UE 400 to the PeNB 300, hereinafter referred to as “pico uplink”).
  • the MeNB 100 that is performing radio communication with the macro UE 200 receives interference due to a radio signal transmitted from the pico UE 400 to the PeNB 300 using the pico uplink.
  • the PeNB 300 reduces the interference received by the MeNB 100 and the macro UE 200, in other words, the interference received by the radio communication between the PeNB 300 and the pico UE 400 by the radio communication between the MeNB 100 and the macro UE 200. Further, the PeNB 300 increases the bias value in CRE (Cell Range Range Expansion), thereby connecting more UEs and distributing traffic, specifically, preventing the UEs connected to the MeNB 100 from becoming excessive. Plan.
  • the bias value is a value used for extending the cell range (communication possible range) of PeNB 300, and is a value used in a process of determining a UE connection destination.
  • CRE refers to the PeNB 300 when the UE determines the connection destination to one of the MeNB 100 and the PeNB 300 based on the received power of the signal from the MeNB 100 and the received power of the signal from the PeNB 300 in celery selection.
  • the CRE is measurement that is information including information indicating the received power of the signal from the PeNB 300 and information indicating the received power of the signal from the MeNB 100 in a state where the UE is connected to the PeNB 300 in the handover.
  • the cell range of the PeNB 300 is expanded by adding a bias value to the value of the received power from the PeNB 300, This means that the possibility that the UE will continue to be connected to the PeNB 300 is increased.
  • FIG. 2 is a block diagram showing the configuration of PeNB 300.
  • the PeNB 300 includes an antenna unit 301, a wireless communication unit 310, a control unit 320, a storage unit 330, and an I / F unit 340.
  • the radio communication unit 310 is configured using, for example, a radio frequency (RF) circuit, a baseband (BB) circuit, and the like, and transmits and receives radio signals to and from the pico UE 400 via the antenna unit 301.
  • the wireless communication unit 310 performs encoding and modulation of the transmission signal and demodulation and decoding of the reception signal.
  • the radio communication unit 310 receives a radio signal from the MeNB 100 when the MeNB 100 and the macro UE 200 are connected to perform radio communication using the macro downlink.
  • the control unit 320 is configured using, for example, a CPU (Central Processing Unit), a DSP (Digital Signal Processor), and the like, and controls various functions provided in the PeNB 300.
  • a CPU Central Processing Unit
  • DSP Digital Signal Processor
  • the storage unit 330 is configured using, for example, a memory, and stores various types of information used for controlling the PeNB 300 and the like.
  • the I / F unit 340 performs communication with the outside via a wired communication network (not shown).
  • the I / F unit 340 is connected to the X2 interface 500.
  • the control unit 320 includes an information acquisition unit 321, a CRE bias control unit 322, and a pico transmission power control unit 323.
  • MeNB100 measures the throughput (communication speed) in the radio
  • the PeNB (other PeNB) other than the PeNB 300 that exists in the large cell MC1 periodically measures the throughput in radio communication between the other PeNB and the UE.
  • the other PeNB calculates the average value of the throughput measured within a predetermined period.
  • the other PeNB transmits information on the average value of the throughput to the PeNB 300 via the X2 interface 500.
  • the MeNB 100 and other PeNBs may transmit the average throughput information to the PeNB 300 via the X2 interface 500 in a predetermined cycle (for example, 20 ms cycle).
  • a predetermined cycle for example, 20 ms cycle
  • the information acquisition unit 321 transmits a message requesting information on the average value of the throughput from the I / F unit 340 to the MeNB 100 and other PeNBs via the X2 interface 500
  • the MeNB 100 and other PeNBs may be transmitted to the PeNB 300 via the X2 interface 500 in response to a message requesting the throughput average value information.
  • the information acquisition unit 321 in the control unit 320 of the PeNB 300 receives the average throughput information from the MeNB 100 and the average throughput information from other PeNBs from the I / F unit 340.
  • the information acquisition unit 321 multiplies the average value of the throughput from the MeNB 100 by a time corresponding to a predetermined period.
  • the information acquisition unit 321 multiplies an average value of throughput from other PeNBs by a time corresponding to a predetermined period.
  • the information acquisition unit 321 adds each multiplication value.
  • the added value is a traffic amount within a predetermined period corresponding to the large cell MC1.
  • the amount of traffic within a predetermined period corresponding to the large cell MC1 means that the UE within the large cell MC1 other than the UE 400 connected to the PeNB 300 and the wireless communication between the MeNB 100 and another PeNB within the predetermined period. Means traffic volume.
  • the information acquisition unit 321 calculates the traffic amount within a predetermined period corresponding to the large cell MC1, the information acquisition unit 321 stores the traffic amount within the predetermined period corresponding to the large cell MC1 in the storage unit 330.
  • the MeNB 100 transmits information on the number of UEs (macro UEs) 200 (macro UEs) connected to the MeNB 100 to the PeNB 300 via the X2 interface 500.
  • the information on the number of macro UEs is the information on the number of macro UEs themselves, the ratio of the number of UEs currently connected to the MeNB 100 to the maximum number of UEs that can be connected to the MeNB 100 (number of allowed connections) (the macro connection UE ratio).
  • MeNB100 may transmit the information regarding the number of macro UEs at that time to PeNB300 via X2 interface 500 with a predetermined cycle (for example, 20ms cycle). Further, when the information acquisition unit 321 transmits a message requesting information on the number of macro UEs from the I / F unit 340 to the MeNB 100 via the X2 interface 500, the MeNB 100 requests information on the number of macro UEs. In response to the message to be transmitted, information regarding the number of macro UEs may be transmitted to the PeNB 300 via the X2 interface 500.
  • a predetermined cycle for example, 20ms cycle
  • the information acquisition unit 321 in the control unit 320 of the PeNB 300 receives information on the number of macro UEs from the MeNB 100 from the I / F unit 340. Each time the information acquisition unit 321 receives information on the number of macro UEs, the information acquisition unit 321 stores information on the number of macro UEs in the storage unit 330.
  • the information acquisition unit 321 acquires information related to the number of UEs connected to the PeNB 300 (number of pico UEs).
  • the information on the number of pico UEs is information on the number of pico UEs themselves, a ratio of the number of pico UEs currently connected to the PeNB 300 to the maximum number of UEs to which the PeNB 300 can be connected (connection allowable number) (pico connected UEs). Ratio).
  • connection allowable number a ratio of the number of pico UEs currently connected to the PeNB 300 to the maximum number of UEs to which the PeNB 300 can be connected (connection allowable number) (pico connected UEs). Ratio).
  • the information acquisition unit 321 stores information on the number of pico UEs in the storage unit 330.
  • the CRE bias control unit 322 controls the bias value in the CRE. Furthermore, the CRE bias control unit 322 transmits a message including the controlled bias value via the wireless communication unit 310 and the antenna unit 301 in celery selection.
  • the UE When the UE receives a message including a bias value, the UE adds the bias value to the value of received power of a signal (for example, a reference signal) from the PeNB 300.
  • the UE compares the value of the received power of the signal from the MeNB 100 with the value obtained by adding the bias value to the received power value of the signal from the PeNB 300 (for example, a reference signal). Further, when the received power value of the signal from the MeNB 100 is larger, the UE selects a cell corresponding to the MeNB 100, and the value obtained by adding the bias value to the received power value of the signal from the PeNB 300 is larger. In the case, a cell corresponding to PeNB 300 is selected. When the UE performs such processing, the larger the bias value, the greater the possibility that the UE selects a cell corresponding to the PeNB 300.
  • control unit 320 adds the controlled bias value to the received power value corresponding to the information indicating the received power of the signal from the PeNB 300 included in the measurement report. Further, the control unit 320 compares the value obtained by the addition with the value of the received power corresponding to the information indicating the received power of the signal from the MeNB 100 included in the measurement report, and corresponds to the larger value.
  • MeNB100 or PeNB300 is determined as a connection destination of UE.
  • the pico transmission power control unit 323 controls the transmission power of the PeNB 300.
  • the CRE bias control unit 322 sets the bias value to 0 in the initial state. Moreover, the pico transmission power control part 323 sets the transmission power of PeNB300 to the minimum value in an initial state.
  • the CRE bias control unit 322 increases the bias value.
  • the coverage area PC2 of the PeNB 300 expands.
  • the connection destination of some UEs connected to the MeNB 100 is switched to the PeNB 300. For this reason, the traffic corresponding to the large cell MC1 is distributed.
  • the CRE bias control unit 322 determines whether or not the number of macro UEs or the macro connection UE ratio that is information on the number of macro UEs has decreased. Specifically, the CRE bias control unit 322 reads the latest macro UE number or macro connection UE ratio information and the previous macro UE number or macro connection UE ratio information from the storage unit 330. Further, the CRE bias controller 322 increases the number of macro UEs or the ratio of macro connected UEs when the latest number of macro UEs or the ratio of macro connected UEs is larger than the number of previous macro UEs or the ratio of macro connected UEs. Judge. On the other hand, the CRE bias control unit 322 determines that the number of macro UEs has decreased when the latest number of macro UEs or macro connection UE ratio is smaller than the previous number of macro UEs or macro connection UE ratio.
  • the bias value increases, the possibility that the UE will connect to the PeNB 300 increases, and the number of macro UEs or the macro connected UE ratio decreases.
  • the UE is located remotely from the PeNB 300, even if the bias value increases, the UE may not connect to the PeNB 300, and the number of macro UEs or the macro connected UE ratio may not decrease.
  • the CRE bias control unit 322 When the number of macro UEs or the macro connection UE ratio decreases as a result of increasing the bias value, the CRE bias control unit 322 further increases the bias value. Thereby, the coverage area PC2 of the PeNB 300 is further expanded, and traffic is distributed. Even when the bias value is increased, the CRE bias control unit 322 continues to increase the bias value until the number of macro UEs or the macro connected UE ratio does not decrease.
  • the pico transmission power control unit 323 performs control to increase the transmission power of the PeNB 300. Further, the CRE bias control unit 322 decreases the bias value.
  • An increase in the transmission power of the PeNB 300 prompts an increase in the coverage area PC2 of the PeNB 300, and a decrease in the bias value prompts a decrease in the coverage area PC2 of the PeNB 300. Therefore, by increasing the transmission power of the PeNB 300 and decreasing the bias value at the same time, it is possible to reduce the variation in the coverage area PC2 of the PeNB 300.
  • the CRE bias control unit 322 Decrease the value.
  • the CRE bias control unit 322 determines whether the number of macro UEs or the macro connected UE ratio has increased. When the bias value decreases, the UE is less likely to connect to the PeNB 300, and the number of macro UEs or the macro connection UE ratio increases. However, when the UE is located remotely from the MeNB 100, even if the bias value decreases, the UE may not connect to the MeNB 100, and the number of macro UEs or the macro connected UE ratio may not increase.
  • the CRE bias control unit 322 further decreases the bias value.
  • the CRE bias control unit 322 increases the bias value. Thereby, the coverage area PC2 of PeNB300 expands and traffic distribution is achieved.
  • the pico transmission power control unit 323 performs control to decrease the transmission power of the PeNB 300. Further, the CRE bias controller 322 increases the bias value.
  • the decrease in the transmission power of the PeNB 300 promotes the reduction of the coverage area PC2 of the PeNB 300, and the increase of the bias value promotes the expansion of the coverage area PC2 of the PeNB 300. Therefore, by reducing the transmission power of the PeNB 300 and increasing the bias value at the same time, it is possible to reduce fluctuations in the coverage area PC2 of the PeNB 300 that can distribute traffic.
  • the CRE bias control unit 322 sets the bias value to 0 in the initial state. Also, the pico transmission power control unit 323 sets the pico transmission power value to the minimum value in the initial state.
  • the CRE bias control unit 322 increases the bias value. By increasing the bias value, the coverage area PC2 of the PeNB 300 is expanded and traffic is distributed.
  • the CRE bias control unit 322 determines whether the number of pico UEs or the pico connected UE ratio, which is information on the number of pico UEs, has increased. Specifically, the CRE bias control unit 322 reads the latest pico UE number or pico connection UE ratio information and the previous pico UE number or pico connection UE ratio information from the storage unit 330. Further, the CRE bias controller 322 increases the number of pico UEs or the pico connection UE ratio when the latest number of pico UEs or the pico connection UE ratio is larger than the previous number of pico UEs or the pico connection UE ratio. Judge.
  • the CRE bias control unit 322 reduces the number of pico UEs or pico connection UE ratios.
  • the UE when the bias value increases, the UE is more likely to connect to the PeNB 300, and the number of pico UEs or the pico connected UE ratio increases. However, when the UE is remotely located from the PeNB 300, even if the bias value increases, the UE does not connect to the PeNB 300, and the number of pico UEs or the pico connected UE ratio may not increase.
  • the CRE bias control unit 322 further increases the bias value. Thereby, the coverage area PC2 of the PeNB 300 is further expanded, and traffic is distributed.
  • the pico transmission power control unit 323 performs control to increase the transmission power of the PeNB 300. Further, the CRE bias control unit 322 decreases the bias value. By increasing the transmission power of the PeNB 300 and decreasing the bias value at the same time, the variation of the coverage area PC2 of the PeNB 300 can be reduced.
  • the CRE bias control unit 322 Decrease the value.
  • the CRE bias control unit 322 determines whether or not the number of pico UEs or the pico connection UE ratio has decreased.
  • the bias value decreases, the UE is less likely to connect to the PeNB 300, and the number of pico UEs or the pico connection UE ratio decreases.
  • the UE is located remotely from the MeNB 100, even if the bias value decreases, the UE does not connect to the MeNB 100, and the number of pico UEs or the pico connected UE ratio may not decrease.
  • the CRE bias control unit 322 further decreases the bias value.
  • the CRE bias control unit 322 increases the bias value. Thereby, the coverage area PC2 of PeNB300 expands and traffic distribution is achieved.
  • the pico transmission power control unit 323 performs control to decrease the transmission power of the PeNB 300. Further, the CRE bias controller 322 increases the bias value. By reducing the transmission power of the PeNB 300 and increasing the bias value at the same time, it is possible to reduce the variation in the coverage area PC2 of the PeNB 300 in which traffic can be distributed.
  • the pico transmission power control unit 323 determines whether the number of macro UEs or the macro connection UE ratio that is information on the number of macro UEs has increased. Specifically, the pico transmission power control unit 323 reads the latest macro UE number or macro connection UE ratio information and the previous macro UE number or macro connection UE ratio information from the storage unit 330. Further, the pico transmission power control unit 323 increases the number of macro UEs or the ratio of macro connected UEs when the latest number of macro UEs or the ratio of macro connected UEs is larger than the previous number of macro UEs or the ratio of macro connected UEs.
  • the pico transmission power control unit 323 reduces the number of macro UEs or the ratio of macro connected UEs when the latest number of macro UEs or the ratio of macro connected UEs is less than the number of macro UEs or macro connected UEs one before.
  • the pico transmission power control unit 323 determines whether or not the traffic amount corresponding to the large cell MC1 has decreased. Specifically, the pico transmission power control unit 323 reads the traffic amount information corresponding to the latest large cell MC1 and the traffic amount information corresponding to the previous large cell MC1 from the storage unit 330. Further, the pico transmission power control unit 323 increases the traffic volume corresponding to the large cell MC1 when the traffic volume corresponding to the latest large cell MC1 is larger than the traffic volume corresponding to the previous large cell MC1. Judge that On the other hand, the pico transmission power control unit 323 reduces the traffic volume corresponding to the large cell MC1 when the traffic volume corresponding to the latest large cell MC1 is smaller than the traffic volume corresponding to the previous large cell MC1. Judge that
  • control unit 320 When the number of macro UEs or the macro connection UE ratio is increased and the traffic volume corresponding to the large cell MC1 is increasing, the control unit 320 performs the following low power base station control 1 processing.
  • the pico transmission power control unit 323 determines whether or not the transmission power of the PeNB 300 is the minimum value.
  • the CRE bias control unit 322 increases the bias value.
  • the coverage area PC2 of the PeNB 300 expands.
  • the connection destination of some UEs connected to the MeNB 100 is switched to the PeNB 300. For this reason, the traffic corresponding to the large cell MC1 is distributed.
  • the pico transmission power control unit 323 performs control to reduce the transmission power of the PeNB 300. Further, the CRE bias controller 322 increases the bias value. By reducing the transmission power of the PeNB 300, it is possible to prevent interference from occurring in wireless communication between the MeNB 100 and the UE 200. Further, the coverage area PC2 of the PeNB 300 is expanded due to the increase of the bias value, and the connection destination of some UEs connected to the MeNB 100 is switched to the PeNB 300. For this reason, the traffic corresponding to the large cell MC1 is distributed.
  • control unit 320 When the number of macro UEs or the macro connection UE ratio increases and the traffic volume corresponding to the large cell MC1 does not increase, the control unit 320 performs the following low power base station control 2 processing.
  • the pico transmission power control unit 323 determines whether or not the transmission power of the PeNB 300 is the maximum value.
  • the CRE bias control unit 322 increases the bias value.
  • the coverage area PC2 of the PeNB 300 expands.
  • the connection destination of some UEs connected to the MeNB 100 is switched to the PeNB 300. For this reason, the traffic corresponding to the large cell MC1 is distributed.
  • the pico transmission power control unit 323 performs control to increase the transmission power of the PeNB 300. Further, the CRE bias controller 322 increases the bias value.
  • the coverage area PC2 of the PeNB 300 expands due to an increase in the transmission power of the PeNB 300 and an increase in the bias value, and the connection destination of some UEs connected to the MeNB 100 is switched to the PeNB 300. For this reason, the traffic corresponding to the large cell MC1 is distributed.
  • control unit 320 When the number of macro UEs or the ratio of macro connected UEs has not increased and the traffic volume corresponding to the large cell MC1 has increased, the control unit 320 performs the following low power base station control 3 processing: Do.
  • the pico transmission power control unit 323 determines whether or not the transmission power of the PeNB 300 is the minimum value. When the transmission power of the PeNB 300 is the minimum value, the CRE bias control unit 322 decreases the bias value.
  • the pico transmission power control unit 323 performs control to reduce the transmission power of the PeNB 300. Further, the CRE bias control unit 322 maintains the bias value. By reducing the transmission power of the PeNB 300, it is possible to prevent interference from occurring in wireless communication between the MeNB 100 and the UE 200.
  • control unit 320 When the number of macro UEs or the ratio of macro connected UEs does not increase and the traffic volume corresponding to the large cell MC1 does not increase, the control unit 320 performs the following low power base station control 4 processing: Do.
  • the pico transmission power control unit 323 determines whether or not the transmission power of the PeNB 300 is the maximum value. When the transmission power of the PeNB 300 is the minimum value, the CRE bias control unit 322 decreases the bias value.
  • the pico transmission power control unit 323 performs control to increase the transmission power of the PeNB 300. Further, the CRE bias control unit 322 maintains the bias value. As the transmission power of the PeNB 300 increases, the coverage area PC2 of the PeNB 300 expands, and the connection destination of some UEs connected to the MeNB 100 is switched to the PeNB 300. For this reason, the traffic corresponding to the large cell MC1 is distributed.
  • FIG. 3 is a flowchart showing a first operation of PeNB 300 according to the embodiment of the present invention.
  • the operation shown in FIG. 3 corresponds to the first process described above.
  • information on the number of macro UEs is assumed to be the number of macro UEs.
  • step S101 the control unit 320 sets the bias value to 0 and sets the transmission power (pico transmission power) of the PeNB 300 to the minimum value.
  • step S102 the control unit 320 increases the bias value.
  • step S103 the control unit 320 determines whether or not the number of macro UEs has decreased. When the number of macro UEs decreases, the operation after the increase of the bias value in step S102 is repeated.
  • step S104 the control unit 320 determines whether or not the pico transmission power is the maximum value.
  • step S105 the control unit 320 increases the pico transmission power.
  • step S106 the control unit 320 decreases the bias value. Thereafter, the operation after the increase of the bias value in step S102 is repeated.
  • step S104 When it is determined in step S104 that the pico transmission power is not the maximum value, the control unit 320 decreases the bias value in step S107.
  • step S108 the control unit 320 determines whether or not the number of macro UEs has increased. If the number of macro UEs has not increased, the operation after the decrease of the bias value in step S107 is repeated.
  • step S109 the control unit 320 increases the bias value. Further, in step S110, control unit 320 determines whether or not the pico transmission power is the minimum value. When the pico transmission power is the minimum value, the operation after the increase of the bias value in step S102 is repeated.
  • the control unit 320 decreases the pico transmission power in step S111. Further, in step S112, the control unit 320 increases the bias value. Thereafter, the operation after the decrease of the bias value in step S107 is repeated.
  • FIG. 4 is a flowchart showing a second operation of PeNB 300 according to the embodiment of the present invention.
  • the operation shown in FIG. 4 corresponds to the second process described above.
  • information on the number of pico UEs is assumed to be the number of pico UEs.
  • step S201 the control unit 320 sets the bias value to 0 and sets the transmission power (pico transmission power) of the PeNB 300 to the minimum value.
  • step S202 the control unit 320 increases the bias value.
  • step S203 the control unit 320 determines whether or not the number of pico UEs has increased. When the number of pico UEs increases, the operation after the increase of the bias value in step S102 is repeated.
  • step S204 the control unit 320 determines whether or not the pico transmission power is the maximum value. If the pico transmission power is not the maximum value, in step S205, the control unit 320 increases the pico transmission power. Further, in step S206, the control unit 320 decreases the bias value. Thereafter, the operation after the increase of the bias value in step S202 is repeated.
  • control unit 320 decreases the bias value in step S207.
  • control unit 320 determines whether or not the number of pico UEs has decreased. If the number of pico UEs has not decreased, the operation after the decrease of the bias value in step S207 is repeated.
  • step S209 the control unit 320 increases the bias value. Further, in step S210, control unit 320 determines whether or not the pico transmission power is the minimum value. When the pico transmission power is the minimum value, the operation after the increase of the bias value in step S202 is repeated.
  • step S211 the control unit 320 decreases the pico transmission power. Further, in step S212, the control unit 320 increases the bias value. Thereafter, the operation after the decrease of the bias value in step S207 is repeated.
  • FIG. 5 is a flowchart showing a second operation of PeNB 300 according to the embodiment of the present invention.
  • the operation shown in FIG. 5 corresponds to the third process described above.
  • information on the number of macro UEs is assumed to be the number of macro UEs.
  • step S301 the control unit 320 determines whether or not the number of macro UEs has increased. When it is determined in step S302 that the number of macro UEs has increased, in step S302, the control unit 320 determines whether or not the traffic amount corresponding to the large cell MC1 has increased. If it is determined in step S302 that the amount of traffic corresponding to the large cell MC1 has increased, the control unit 320 performs low power base station control 1 processing in step S303. After the process of the low power base station control 1, the operations after step S301 are repeated.
  • FIG. 6 is a flowchart showing the operation of the low power base station control 1.
  • the control unit 320 determines whether or not the pico transmission power is the minimum value. When the pico transmission power is the minimum value, in step S402, the control unit 320 increases the bias value. On the other hand, when the pico transmission power is not the minimum value, in step S403, the control unit 320 performs control to reduce the pico transmission power. In step S404, the control unit 320 increases the bias value.
  • step S302 If it is determined in step S302 that the traffic volume corresponding to the large cell MC1 has not increased, the control unit 320 performs low power base station control 2 processing in step S304. After the process of the low power base station control 2, the operations after step S301 are repeated.
  • FIG. 7 is a flowchart showing the operation of the low power base station control 2.
  • control unit 320 determines whether or not the pico transmission power is the maximum value. When the pico transmission power is the maximum value, in step S502, the control unit 320 increases the bias value. On the other hand, when the pico transmission power is not the maximum value, in step S503, the control unit 320 performs control to increase the pico transmission power. In step S504, the control unit 320 increases the bias value.
  • step S305 the control unit 320 determines whether or not the traffic amount corresponding to the large cell MC1 has increased.
  • the control unit 320 performs the low power base station control 3 process in step S306. After the process of the low power base station control 3, the operations after step S301 are repeated.
  • FIG. 8 is a flowchart showing the operation of the low power base station control 3.
  • control unit 320 determines whether or not the pico transmission power is a minimum value. When the pico transmission power is the minimum value, in step S602, the control unit 320 decreases the bias value. On the other hand, when the pico transmission power is not the minimum value, in step S603, the control unit 320 performs control to reduce the pico transmission power. In step S604, the control unit 320 maintains the bias value.
  • step S305 when it is determined in step S302 that the traffic volume corresponding to the large cell MC1 has not increased, the control unit 320 performs the low power base station control 4 process in step S307. After the process of the low power base station control 1, the operations after step S301 are repeated. After the process of the low power base station control 4, the operations after step S301 are repeated.
  • FIG. 9 is a flowchart showing the operation of the low power base station control 4.
  • control unit 320 determines whether or not the pico transmission power is the maximum value. When the pico transmission power is the maximum value, in step S702, the control unit 320 decreases the bias value. On the other hand, when the pico transmission power is not the maximum value, in step S703, the control unit 320 performs control to increase the pico transmission power. In step S704, the control unit 320 maintains the bias value.
  • FIG. 10 is a flowchart showing a third operation of the PeNB 300 according to the embodiment of the present invention.
  • the operation shown in FIG. 10 corresponds to the third process described above.
  • information on the number of macro UEs is assumed to be the number of macro UEs.
  • step S801 the control unit 320 determines whether the traffic volume corresponding to the large cell MC1 has increased. When it is determined in step S801 that the traffic volume corresponding to the large cell MC1 has increased, in step S802, the control unit 320 determines whether or not the number of macro UEs has increased. If it is determined in step S802 that the number of macro UEs has increased, in step S803, the control unit 320 performs low power base station control 1 processing. The specific operation of the low power base station control 1 is shown in FIG. Therefore, the description is omitted.
  • step S804 When it is determined in step S802 that the number of macro UEs has not increased, in step S804, the control unit 320 performs the low power base station control 2 process.
  • the specific operation of the low power base station control 2 is as shown in FIG. Therefore, the description is omitted.
  • step S805 When it is determined in step S801 that the traffic volume corresponding to the large cell MC1 has not increased, in step S805, the control unit 320 determines whether or not the number of macro UEs has increased. When it is determined in step S805 that the number of macro UEs has increased, in step S806, the control unit 320 performs low power base station control 3 processing.
  • the specific operation of the low power base station control 3 is as shown in FIG. Therefore, the description is omitted.
  • step S805 When it is determined in step S805 that the number of macro UEs has not increased, the control unit 320 performs low power base station control 4 in step S807.
  • the specific operation of the low power base station control 4 is shown in FIG. Therefore, the description is omitted.
  • the PeNB 300 controls the bias value based on the increase or decrease in the number of macro UEs or the macro connection UE ratio. Specifically, the PeNB 300 increases the bias value when the number of macro UEs or the macro connection UE ratio increases, and maintains or decreases the bias value when the number of macro UEs or the macro connection UE ratio decreases. Let The number of macro UEs or the macro connected UE ratio is an index indicating the degree of traffic distribution. The PeNB 300 appropriately distributes traffic to the MeNB 100 and the PeNB 300 by controlling the bias value according to the increase / decrease of the number of macro UEs or the macro connection UE ratio. Moreover, since the transmission power of PeNB300 is maintained, the interference given to the radio
  • PeNB300 performs transmission power control based on increase / decrease of the traffic volume corresponding to large cell MC1 with control of the bias value based on the number of macro UEs or a macro connection UE ratio. Specifically, PeNB300 reduces transmission power, when the traffic amount corresponding to large cell MC1 increases. When the traffic volume corresponding to the large cell MC1 is increasing, the number of radio communications that may cause interference due to radio communication between the PeNB 300 and the UE 400 among radio communications between the MeNB 100 and the UE 200 increases. Can be considered. For this reason, it can prevent that interference arises in the radio
  • PeNB300 increases transmission power, when the traffic amount corresponding to large cell MC1 reduces.
  • the transmission power of the PeNB 300 increases, there is a high possibility that interference occurs in radio communication between the MeNB 100 and the UE 200.
  • the traffic volume corresponding to the large cell MC1 is decreasing, even if the transmission power of the PeNB 300 is increased, it can be considered that the number of radio communications that may cause interference is decreasing. For this reason, PeNB300 increases transmission power. Thereby, traffic is appropriately distributed to MeNB100 and PeNB300.
  • the PeNB 300 controls the bias value and the transmission power of the PeNB 300 in accordance with the increase or decrease in the number of macro UEs or the macro connection UE ratio, or the number of pico UEs or the pico connection UE ratio.
  • the PeNB 300 may control the bias value and the transmission power in order to distribute traffic when the number of macro UEs 200 is equal to or greater than a predetermined value.
  • the ratio of the number of macro UEs 200 to the value obtained by adding the number of macro UEs 200 and the number of pico UEs 400 (the number of all UEs) is equal to or greater than a predetermined value
  • PeNB 300 Alternatively, the transmission power of PeNB 300 may be controlled.
  • the wireless communication system 1 is configured based on LTE Release 9 or LTE-Advanced, but may be configured based on other communication standards.
  • the wireless communication system As described above, according to the wireless communication system, the low power base station, and the communication control method according to the present invention, traffic can be effectively distributed in the heterogeneous network, so that wireless communication such as mobile communication is possible. Useful in.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

PeNB300は、マクロUE数に関する情報であるマクロUE数又はマクロ接続UE比率や、ピコUE数に関する情報であるピコUE数又はピコ接続UE比率を取得する。更に、PeNB300は、取得したマクロUE数又はマクロ接続UE比率や、ピコUE数又はピコ接続UE比率の増減に応じて、バイアス値を制御する。

Description

無線通信システム、低電力基地局及び通信制御方法
 本発明は、高電力基地局と、当該高電力基地局よりも送信出力が小さい低電力基地局とにより構成される無線通信システム、当該無線通信システムにおける低電力基地局、及び、当該低電力基地局における通信制御方法に関する。
 高速及び大容量の通信を実現する次世代無線通信システムとして、無線通信システムの標準化団体である3GPPで標準化されているLTEがある。LTEは3GPP Release 8として技術仕様が定まり、現在は、LTEを高度化したLTE Advancedの検討が行われている。
 また、3GPPでは、送信出力が小さく、半径数[m]から十数[m]程度の通信エリアであるセル(小セル)を形成し、室内に設置可能な小型の基地局である低電力基地局(PeNB)の詳細機能・要件について標準化が進められている。低電力基地局は、当該低電力基地局よりも送信出力が大きく、半径数百m程度の通信エリアであるセル(大セル)を形成する高電力基地局(MeNB)のトラフィックを分散させることを目的として設置される。このような無線通信システムの構成は、ヘテロジーニアス・ネットワークと称される。
 3GPPでは、ヘテロジーニアス・ネットワークにおいて、高電力基地局あるいは低電力基地局にトラフィックが集中しないようにするための技術が検討されている。1つの基地局へトラフィックが集中すると、セル全体の下りリンクのスループットが劣化してしまい、結果として通信品質が悪化してしまうからである。
 そこで、本発明は、ヘテロジーニアス・ネットワークにおいて、効果的にトラフィックを分散させる無線通信システム、低電力基地局及び通信制御方法を提供することを目的とする。
 上述した課題を解決するために、本発明は以下のような特徴を有している。本発明の特徴は、高電力基地局(MeNB100)と、前記高電力基地局よりも送信出力が小さい低電力基地局(PeNB300)とにより構成される無線通信システム(無線通信システム1)であって、前記低電力基地局は、当該低電力基地局のセルレンジを拡張するために用いられる値であり、且つ、無線端末(UE400)の接続先を決める処理で使用される値であるバイアス値を制御する制御部(制御部320)を備え、前記制御部は、前記高電力基地局からの情報に基づいて、前記バイアス値を制御し、前記高電力基地局からの情報は、当該高電力基地局に接続された無線端末の数に関する情報であることを要旨とする。
 このような無線通信システムでは、低電力基地局は、バイアス値を制御することによりトラフィックを適切に分散し、高電力基地局と当該高電力基地局の配下の無線端末との間の無線通信に与える干渉を適切に低減できる。
 本発明の特徴は、高電力基地局よりも送信電力が小さい低電力基地局であって、前記低電力基地局のセルレンジを拡張するために用いられる値であり、且つ、無線端末の接続先を決める処理で使用される値であるバイアス値と、前記低電力基地局の送信電力とを制御する制御部を備え、前記制御部は、前記高電力基地局からの情報に基づいて、前記バイアス値及び前記送信電力を制御し、前記高電力基地局からの情報は、当該高電力基地局に接続された無線端末の数に関する情報であることを要旨とする。
 本発明の特徴は、前記制御部は、前記高電力基地局に接続されている無線端末の数が増加したことを認識した場合に、前記バイアス値の増加と、前記低電力基地局の送信電力の減少とを行うことを要旨とする。
 本発明の特徴は、前記制御部は、前記高電力基地局に接続されている無線端末の数が減少したことを認識した場合に、前記バイアス値の減少と、前記低電力基地局の送信電力の増加とを行うことを要旨とする。
 本発明の特徴は、前記制御部は、前記低電力基地局に接続されている無線端末の数に関する情報を取得し、前記低電力基地局に接続されている無線端末の数に関する情報に基づいて、前記バイアス値と、前記低電力基地局の送信電力とを制御することを要旨とする。
 本発明の特徴は、前記制御部は、前記低電力基地局に接続されている無線端末の数が増加したことを認識した場合に、前記バイアス値の減少と、前記低電力基地局の送信電力の増加とを行うことを要旨とする。
 本発明の特徴は、前記制御部は、前記低電力基地局に接続されている無線端末の数が減少したことを認識した場合に、前記バイアス値の増加と、前記低電力基地局の送信電力の減少とを行うことを要旨とする。
 本発明の特徴は、高電力基地局よりも送信出力が小さい低電力基地局における通信制御方法であって、前記低電力基地局のセルレンジを拡張するために用いられる値であり、且つ、無線端末の接続先を決める処理で使用される値であるバイアス値と、前記低電力基地局の送信電力とを制御するステップを含み、前記制御するステップでは、前記高電力基地局からの情報に基づいて、前記バイアス値及び前記送信電力を制御し、前記高電力基地局からの情報は、当該高電力基地局に接続された無線端末の数に関する情報であることを要旨とする。
 本発明の特徴によれば、ヘテロジーニアス・ネットワークにおいて、効果的にトラフィックを分散できる。
本発明の実施形態に係る無線通信システムの全体概略構成図である。 本発明の実施形態に係る低電力基地局の構成を示すブロック図である。 本発明の実施形態に係る低電力基地局の第1の動作を示すフローチャートである。 本発明の実施形態に係る低電力基地局の第2の動作を示すフローチャートである。 本発明の実施形態に係る低電力基地局の第3の動作を示すフローチャートである。 本発明の実施形態に係る低電力基地局制御1の動作を示すフローチャートである。 本発明の実施形態に係る低電力基地局制御2の動作を示すフローチャートである。 本発明の実施形態に係る低電力基地局制御3の動作を示すフローチャートである。 本発明の実施形態に係る低電力基地局制御4の動作を示すフローチャートである。 本発明の実施形態に係る低電力基地局の第4の動作を示すフローチャートである。
 次に、図面を参照して、本発明の実施形態を説明する。具体的には、(1)無線通信システムの構成、(2)低電力基地局の動作、(3)作用・効果、(4)その他の実施形態について説明する。以下の実施形態における図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。
 (1)無線通信システムの構成
 (1.1)無線通信システムの全体概略構成
 図1は、本発明の実施形態に係る無線通信システム1の全体概略構成図である。無線通信システム1は、例えば、第3.9世代(3.9G)携帯電話システムであるLTE Release9 や、第4世代(4G)携帯電話システムとして位置づけられているLTE-Advancedに基づく構成を有する。
 図1に示すように、無線通信システム1は、カバレッジエリアである大セル(例えば、マクロセル)MC1を形成する高電力基地局(高出力電力基地局、大出力基地局)(例えば、マクロセル基地局:MeNB)100と、当該MeNB100よりも送信出力(送信電力)が小さく、カバレッジエリアである小セル(例えば、ピコセル)PC2を形成する低電力基地局(低出力電力基地局、小出力基地局)(例えば、ピコセル基地局:PeNB)300とを有する。大セルMC1の半径は、例えば数百[m]程度であり、小セルPC2の半径は、例えば数[m]から十数[m]程度である。
 MeNB100の配下、換言すれば、大セルMC1内であって、小セルPC2内でない領域には、無線端末(UE)200が存在している。MeNB100とUE200とは、無線通信を行うことができる。また。PeNB300の配下、換言すれば、小セルPC2内には、無線端末(UE)400が存在している。PeNB300とUE400とは、無線通信を行うことができる。以下、UE200をマクロUE200と称し、周波数利用効率を向上させる観点から、UE400をピコUE400と称する。MeNB100とマクロUE200との通信と、PeNB300とピコUE400との通信とでは、同一の周波数帯が共用される。
 MeNB100は、通信事業者がセル間干渉を考慮した置局設計に基づく場所に設置される。一方、PeNB300は、任意の場所に設置される。PeNB300は、MeNB100のトラフィックを分散させること等を目的として、大セルMC1内に設置されている。MeNB100とPeNB300とにより、無線通信システム1は、ヘテロジーニアス・ネットワークの構成となっている。MeNB100とPeNB300とは、バックホールに設定された論理的な通信路であるX2インタフェース500を介して相互に通信可能である。
 MeNB100とマクロUE200とが接続して無線通信を行っている場合における、当該無線通信に用いられる下りリンク(MeNB100からマクロUE200に向かうリンクであり、以下、「マクロ下りリンク」と称する)の周波数帯域と、PeNB300とピコUE400とが接続して無線通信を行っている場合における、当該無線通信に用いられる下りリンク(PeNB300からピコUE400に向かうリンクであり、以下、「ピコ下りリンク」と称する)の周波数帯域とが重複する場合、PeNB300からピコUE400へピコ下りリンクを用いて送信される無線信号によって、MeNB100と無線通信を行っているマクロUE200は干渉を受けることになる。
 MeNB100とマクロUE200とが接続して無線通信を行っている場合における、当該無線通信に用いられる上りリンク(マクロUE200からMeNB100に向かうリンクであり、以下、「マクロ上りリンク」と称する)の周波数帯域と、PeNB300とピコUE400とが接続して無線通信を行っている場合における、当該無線通信に用いられる上りリンク(ピコUE400からPeNB300に向かうリンクであり、以下、「ピコ上りリンク」と称する)の周波数帯域とが重複する場合、ピコUE400からPeNB300へピコ上りリンクを用いて送信される無線信号によって、マクロUE200と無線通信を行っているMeNB100は干渉を受けることになる。
 本実施形態では、PeNB300は、MeNB100及びマクロUE200が受ける干渉、換言すれば、MeNB100とマクロUE200との間の無線通信が、PeNB300とピコUE400との間の無線通信によって受ける干渉を低減させる。また、PeNB300は、CRE(Cell Range Expantion)におけるバイアス値を増加させることにより、より多くのUEを接続してトラフィックの分散、具体的には、MeNB100に接続されるUEが過大になることの防止を図る。ここで、バイアス値は、PeNB300のセルレンジ(通信可能範囲)を拡張するために用いられる値であり、且つ、UEの接続先を決める処理で使用される値である。また、CREとは、セルリセレクションにおいて、UEが、MeNB100からの信号の受信電力と、PeNB300からの信号の受信電力とに基づいて、接続先をMeNB100とPeNB300の何れかに決定する際に、PeNB300からの信号の受信電力にバイアス値を加えることで、PeNB300のセルレンジが拡張されて、UEがPeNB300に接続する可能性を高くすることを意味する。また、CREとは、ハンドオーバにおいて、UEが、PeNB300に接続された状態において、PeNB300からの信号の受信電力を示す情報と、MeNB100からの信号の受信電力を示す情報とを含んだ情報であるmeasurement reportをPeNB300に通知した場合に、PeNB300が、measurement reportに基づいてUEの接続先を決定する際に、PeNB300からの受信電力の値にバイアス値を加えることで、PeNB300のセルレンジが拡張されて、UEがPeNB300に引き続き接続される可能性を高くすることを意味する。
 (1.2)低電力基地局の構成
 図2は、PeNB300の構成を示すブロック図である。図2に示すように、PeNB300は、アンテナ部301、無線通信部310、制御部320、記憶部330及びI/F部340を有する。
 無線通信部310は、例えば無線周波数(RF)回路やベースバンド(BB)回路等を用いて構成され、アンテナ部301を介して、ピコUE400との間で、無線信号の送信及び受信を行う。また、無線通信部310は、送信信号の符号化及び変調と、受信信号の復調及び復号とを行う。
 また、無線通信部310は、MeNB100とマクロUE200とが接続して、マクロ下りリンクを用いた無線通信を行っている場合に、MeNB100からの無線信号を受信する。
 制御部320は、例えばCPU(Central Processing Unit)、DSP(Digital Signal Processor)等を用いて構成され、PeNB300が具備する各種の機能を制御する。
 記憶部330は、例えばメモリを用いて構成され、PeNB300の制御等に用いられる各種の情報を記憶する。I/F部340は、図示しない有線通信ネットワークを介して、外部との通信を行う。I/F部340は、X2インタフェース500に接続される。
 制御部320は、情報取得部321、CREバイアス制御部322、ピコ送信電力制御部323を含む。
 MeNB100は、当該MeNB100とUE200との間の無線通信におけるスループット(通信速度)を周期的に測定する。MeNB100は、所定期間内に測定したスループットの平均値を算出する。MeNB100は、スループットの平均値の情報を、X2インタフェース500を介してPeNB300へ送信する。
 大セルMC1内に存在し、PeNB300以外のPeNB(他のPeNB)は、当該他のPeNBとUEとの間の無線通信におけるスループットを周期的に測定する。他のPeNBは、所定期間内に測定したスループットの平均値を算出する。他のPeNBは、スループットの平均値の情報を、X2インタフェース500を介してPeNB300へ送信する。
 MeNB100及び他のPeNBは、所定の周期(例えば20ms周期)で、スループットの平均値の情報を、X2インタフェース500を介してPeNB300へ送信してもよい。また、情報取得部321が、スループットの平均値の情報を要求するメッセージを、I/F部340からX2インタフェース500を介して、MeNB100及び他のPeNBへ送信した場合に、MeNB100及び他のPeNBは、当該スループットの平均値の情報を要求するメッセージに応じて、スループットの平均値の情報を、X2インタフェース500を介してPeNB300へ送信してもよい。
 PeNB300の制御部320内の情報取得部321は、MeNB100からのスループットの平均値の情報と、他のPeNBからのスループットの平均値の情報とを、I/F部340から受信する。情報取得部321は、MeNB100からのスループットの平均値に所定期間に対応する時間を乗算する。情報取得部321は、他のPeNBからのスループットの平均値に所定期間に対応する時間を乗算する。情報取得部321は、各乗算値を加算する。加算値は、大セルMC1に対応する所定期間内のトラフィック量である。大セルMC1に対応する所定期間内のトラフィック量とは、大セルMC1内のUEのうち、PeNB300に接続しているUE400以外のUEと、MeNB100及び他のPeNBとの無線通信における所定期間内のトラフィック量を意味する。情報取得部321は、大セルMC1に対応する所定期間内のトラフィック量を算出する毎に、当該大セルMC1に対応する所定期間内のトラフィック量を記憶部330に記憶させる。
 また、MeNB100は、当該MeNB100に接続しているUE(マクロUE)200の数(マクロUE数)に関する情報を、X2インタフェース500を介してPeNB300へ送信する。ここで、マクロUE数に関する情報は、マクロUE数そのものの情報、MeNB100が接続可能な最大のUE数(接続許容数)に対する、現在MeNB100が接続しているUEの数の比率(マクロ接続UE比率)である。
 MeNB100は、所定の周期(例えば20ms周期)で、その時点のマクロUE数に関する情報を、X2インタフェース500を介してPeNB300へ送信してもよい。また、情報取得部321が、マクロUE数に関する情報を要求するメッセージを、I/F部340からX2インタフェース500を介して、MeNB100へ送信した場合に、MeNB100は、当該マクロUE数に関する情報を要求するメッセージに応じて、マクロUE数に関する情報を、X2インタフェース500を介してPeNB300へ送信してもよい。
 PeNB300の制御部320内の情報取得部321は、MeNB100からのマクロUE数に関する情報を、I/F部340から受信する。情報取得部321は、マクロUE数に関する情報を受信する毎に、当該マクロUE数に関する情報を記憶部330に記憶させる。
 また、情報取得部321は、PeNB300に接続しているUEの数(ピコUE数)に関する情報を取得する。ここで、ピコUE数に関する情報は、ピコUE数そのものの情報、PeNB300が接続可能な最大のUE数(接続許容数)に対する、現在PeNB300が接続しているピコUEの数の比率(ピコ接続UE比率)である。情報取得部321は、ピコUE数に関する情報を取得する毎に、当該ピコUE数の情報を記憶部330に記憶させる。
 CREバイアス制御部322は、CREにおけるバイアス値を制御する。更に、CREバイアス制御部322は、セルリセレクションにおいては、制御したバイアス値を含んだメッセージを、無線通信部310及びアンテナ部301を介して送信する。
 UEは、バイアス値を含んだメッセージを受信した場合、当該バイアス値を、PeNB300からの信号(例えば、リファレンス信号)の受信電力の値に加算する。UEは、MeNB100からの信号の受信電力の値と、PeNB300からの信号(例えば、リファレンス信号)の受信電力値にバイアス値を加算した値とを比較する。更に、UEは、MeNB100からの信号の受信電力の値の方が大きい場合には、MeNB100に対応したセルを選択し、PeNB300からの信号の受信電力値にバイアス値を加算した値の方が大きい場合には、PeNB300に対応したセルを選択する。UEが、このような処理を行うことにより、バイアス値が大きいほど、UEはPeNB300に対応するセルを選択する可能性が大きくなる。
 また、ハンドオーバにおいては、制御部320は、measurement reportに含まれる、PeNB300からの信号の受信電力を示す情報に対応する受信電力の値に、制御したバイアス値を加算する。更に、制御部320は、加算により得られた値と、measurement reportに含まれる、MeNB100からの信号の受信電力を示す情報に対応する受信電力の値とを比較し、大きい方の値に対応するMeNB100又はPeNB300を、UEの接続先に決定する。
 ピコ送信電力制御部323は、PeNB300の送信電力を制御する。
 以下、バイアス値の制御及びPeNB300の送信電力の制御の具体的な処理(第1の処理乃至第3の処理)を説明する。
 (第1の処理)
 CREバイアス制御部322は、初期状態において、バイアス値を0に設定する。また、ピコ送信電力制御部323は、初期状態において、PeNB300の送信電力を最小値に設定する。
 その後、CREバイアス制御部322は、バイアス値を増加させる。バイアス値が増加することにより、PeNB300のカバレッジエリアPC2は拡大する。PeNB300のカバレッジエリアPC2が拡大することにより、MeNB100に接続していた一部のUEは、接続先がPeNB300に切り替わる。このため、大セルMC1に対応するトラフィックの分散が図られる。
 次に、CREバイアス制御部322は、マクロUE数に関する情報であるマクロUE数又はマクロ接続UE比率が減少したか否かを判定する。具体的には、CREバイアス制御部322は、記憶部330から最新のマクロUE数又はマクロ接続UE比率の情報と、1つ前のマクロUE数又はマクロ接続UE比率の情報とを読み出す。更に、CREバイアス制御部322は、最新のマクロUE数又はマクロ接続UE比率が1つ前のマクロUE数又はマクロ接続UE比率よりも多い場合には、マクロUE数又はマクロ接続UE比率が増加したと判断する。一方、CREバイアス制御部322は、最新のマクロUE数又はマクロ接続UE比率が1つ前のマクロUE数又はマクロ接続UE比率よりも少ない場合には、マクロUE数が減少したと判断する。
 一般に、バイアス値が増加した場合、UEはPeNB300へ接続する可能性が大きくなり、マクロUE数又はマクロ接続UE比率は減少する。但し、UEがPeNB300から遠隔に位置する場合には、バイアス値が増加しても、UEはPeNB300へ接続せず、マクロUE数又はマクロ接続UE比率が減少しないことがある。
 バイアス値を増加した結果、マクロUE数又はマクロ接続UE比率が減少した場合には、CREバイアス制御部322は、バイアス値を更に増加させる。これにより、PeNB300のカバレッジエリアPC2は更に拡大し、トラフィックの分散が図られる。CREバイアス制御部322は、バイアス値を増加しても、マクロUE数又はマクロ接続UE比率が減少しなくなるまで、バイアス値の増加を継続する。
 一方、バイアス値が増加したにもかかわらず、マクロUE数又はマクロ接続UE比率していない場合には、バイアス値の増加では、トラフィックの分散が見込めないことを意味する。この場合、PeNB300の送信電力が最大値でない場合には、ピコ送信電力制御部323は、PeNB300の送信電力を増加させる制御を行う。更に、CREバイアス制御部322は、バイアス値を減少させる。PeNB300の送信電力の増加は、PeNB300のカバレッジエリアPC2の拡大を促し、バイアス値の減少は、PeNB300のカバレッジエリアPC2の縮小を促す。従って、PeNB300の送信電力の増加と、バイアス値の減少とが同時に行われることにより、PeNB300のカバレッジエリアPC2の変動を小さくすることができる。
 また、バイアス値が増加したにもかかわらず、マクロUE数又はマクロ接続UE比率が減少しておらず、且つ、PeNB300の送信電力が最大値である場合には、CREバイアス制御部322は、バイアス値を減少させる。
 その後、CREバイアス制御部322は、マクロUE数又はマクロ接続UE比率が増加したか否かを判定する。バイアス値が減少した場合、UEはPeNB300へ接続する可能性が低くなり、マクロUE数又はマクロ接続UE比率は増加する。但し、UEがMeNB100から遠隔に位置する場合には、バイアス値が減少しても、UEはMeNB100へ接続せず、マクロUE数又はマクロ接続UE比率が増加しないことがある。
 バイアス値が減少しても、マクロUE数又はマクロ接続UE比率が増加しない場合には、バイアス値の減少の度合が少ないとみなされる。この場合、CREバイアス制御部322は、更にバイアス値を減少させる。
 一方、バイアス値が減少した結果、マクロUE数又はマクロ接続UE比率が増加した場合には、バイアス値が増加すれば、マクロUE数又はマクロ接続UE比率が減少することが推測される。この場合、CREバイアス制御部322は、バイアス値を増加させる。これにより、PeNB300のカバレッジエリアPC2は拡大し、トラフィックの分散が図られる。
 その後、PeNB300の送信電力が最小値でない場合には、ピコ送信電力制御部323は、PeNB300の送信電力を減少させる制御を行う。更に、CREバイアス制御部322は、バイアス値を増加させる。PeNB300の送信電力の減少は、PeNB300のカバレッジエリアPC2の縮小を促し、バイアス値の増加は、PeNB300のカバレッジエリアPC2の拡大を促す。従って、PeNB300の送信電力の減少と、バイアス値の増加とが同時に行われることにより、トラフィックの分散が可能となっているPeNB300のカバレッジエリアPC2の変動を小さくすることができる。
 (第2の処理)
 CREバイアス制御部322は、初期状態において、バイアス値を0に設定する。また、ピコ送信電力制御部323は、初期状態において、ピコ送信電力値を最小値に設定する。
 その後、CREバイアス制御部322は、バイアス値を増加させる。バイアス値が増加することにより、PeNB300のカバレッジエリアPC2は拡大し、トラフィックの分散が図られる。
 次に、CREバイアス制御部322は、ピコUE数に関する情報であるピコUE数又はピコ接続UE比率が増加したか否かを判定する。具体的には、CREバイアス制御部322は、記憶部330から最新のピコUE数又はピコ接続UE比率の情報と、1つ前のピコUE数又はピコ接続UE比率の情報とを読み出す。更に、CREバイアス制御部322は、最新のピコUE数又はピコ接続UE比率が1つ前のピコUE数又はピコ接続UE比率よりも多い場合には、ピコUE数又はピコ接続UE比率が増加したと判断する。一方、CREバイアス制御部322は、最新のピコUE数又はピコ接続UE比率が1つ前のピコUE数又はピコ接続UE比率よりも少ない場合には、ピコUE数又はピコ接続UE比率が減少したと判断する。
 一般に、バイアス値が増加した場合、UEはPeNB300へ接続する可能性が大きくなり、ピコUE数又はピコ接続UE比率は増加する。但し、UEがPeNB300から遠隔に位置する場合には、バイアス値が増加しても、UEはPeNB300へ接続せず、ピコUE数又はピコ接続UE比率が増加しないことがある。
 バイアス値を増加した結果、ピコUE数又はピコ接続UE比率が増加した場合には、CREバイアス制御部322は、バイアス値を更に増加させる。これにより、PeNB300のカバレッジエリアPC2は更に拡大し、トラフィックの分散が図られる。
 一方、バイアス値が増加したにもかかわらず、ピコUE数又はピコ接続UE比率が増加していない場合には、バイアス値の増加では、トラフィックの分散が見込めないことを意味する。この場合、PeNB300の送信電力が最大値でない場合には、ピコ送信電力制御部323は、PeNB300の送信電力を増加させる制御を行う。更に、CREバイアス制御部322は、バイアス値を減少させる。PeNB300の送信電力の増加と、バイアス値の減少とが同時に行われることにより、PeNB300のカバレッジエリアPC2の変動を小さくすることができる。
 また、バイアス値が増加したにもかかわらず、ピコUE数又はピコ接続UE比率が増加しておらず、且つ、PeNB300の送信電力が最大値である場合には、CREバイアス制御部322は、バイアス値を減少させる。
 その後、CREバイアス制御部322は、ピコUE数又はピコ接続UE比率が減少したか否かを判定する。バイアス値が減少した場合、UEはPeNB300へ接続する可能性が低くなり、ピコUE数又はピコ接続UE比率は減少する。但し、UEがMeNB100から遠隔に位置する場合には、バイアス値が減少しても、UEはMeNB100へ接続せず、ピコUE数又はピコ接続UE比率が減少しないことがある。
 バイアス値が減少しても、ピコUE数又はピコ接続UE比率が増加しない場合には、CREバイアス制御部322は、更にバイアス値を減少させる。
 一方、バイアス値が減少した結果、ピコUE数又はピコ接続UE比率が減少した場合には、バイアス値が増加すれば、ピコUE数又はピコ接続UE比率が増加することが推測される。この場合、CREバイアス制御部322は、バイアス値を増加させる。これにより、PeNB300のカバレッジエリアPC2は拡大し、トラフィックの分散が図られる。
 その後、PeNB300の送信電力が最小値でない場合には、ピコ送信電力制御部323は、PeNB300の送信電力を減少させる制御を行う。更に、CREバイアス制御部322は、バイアス値を増加させる。PeNB300の送信電力の減少と、バイアス値の増加とが同時に行われることにより、トラフィックの分散が可能となっているPeNB300のカバレッジエリアPC2の変動を小さくすることができる。
 (第3の処理)
 ピコ送信電力制御部323は、マクロUE数に関する情報であるマクロUE数又はマクロ接続UE比率が増加したか否かを判定する。具体的には、ピコ送信電力制御部323は、記憶部330から最新のマクロUE数又はマクロ接続UE比率の情報と、1つ前のマクロUE数又はマクロ接続UE比率の情報とを読み出す。更に、ピコ送信電力制御部323は、最新のマクロUE数又はマクロ接続UE比率が1つ前のマクロUE数又はマクロ接続UE比率よりも多い場合には、マクロUE数又はマクロ接続UE比率が増加したと判断する。一方、ピコ送信電力制御部323は、最新のマクロUE数又はマクロ接続UE比率が1つ前のマクロUE数又はマクロ接続UE比率よりも少ない場合には、マクロUE数又はマクロ接続UE比率が減少したと判断する。
 また、ピコ送信電力制御部323は、大セルMC1に対応するトラフィック量が減少したか否かを判定する。具体的には、ピコ送信電力制御部323は、記憶部330から最新の大セルMC1に対応するトラフィック量の情報と、1つ前の大セルMC1に対応するトラフィック量の情報とを読み出す。更に、ピコ送信電力制御部323は、最新の大セルMC1に対応するトラフィック量が1つ前の大セルMC1に対応するトラフィック量よりも多い場合には、大セルMC1に対応するトラフィック量が増加したと判断する。一方、ピコ送信電力制御部323は、最新の大セルMC1に対応するトラフィック量が1つ前の大セルMC1に対応するトラフィック量よりも少ない場合には、大セルMC1に対応するトラフィック量が減少したと判断する。
 マクロUE数又はマクロ接続UE比率が増加し、且つ、大セルMC1に対応するトラフィック量が増加している場合には、制御部320は、以下の低電力基地局制御1の処理を行う。
 低電力基地局制御1の処理において、ピコ送信電力制御部323は、PeNB300の送信電力が最小値であるか否かを判定する。PeNB300の送信電力が最小値である場合、CREバイアス制御部322は、バイアス値を増加させる。バイアス値が増加することにより、PeNB300のカバレッジエリアPC2は拡大する。PeNB300のカバレッジエリアPC2が拡大することにより、MeNB100に接続していた一部のUEは、接続先がPeNB300に切り替わる。このため、大セルMC1に対応するトラフィックの分散が図られる。
 一方、PeNB300の送信電力が最小値でない場合、ピコ送信電力制御部323は、PeNB300の送信電力を減少させる制御を行う。更に、CREバイアス制御部322は、バイアス値を増加させる。PeNB300の送信電力の減少により、MeNB100と、UE200との間の無線通信に干渉が生じることを防止できる。また、バイアス値の増加により、PeNB300のカバレッジエリアPC2が拡大し、MeNB100に接続していた一部のUEは、接続先がPeNB300に切り替わる。このため、大セルMC1に対応するトラフィックの分散が図られる。
 マクロUE数又はマクロ接続UE比率が増加し、且つ、大セルMC1に対応するトラフィック量が増加していない場合には、制御部320は、以下の低電力基地局制御2の処理を行う。
 低電力基地局制御2の処理において、ピコ送信電力制御部323は、PeNB300の送信電力が最大値であるか否かを判定する。PeNB300の送信電力が最大値である場合、CREバイアス制御部322は、バイアス値を増加させる。バイアス値が増加することにより、PeNB300のカバレッジエリアPC2は拡大する。PeNB300のカバレッジエリアPC2が拡大することにより、MeNB100に接続していた一部のUEは、接続先がPeNB300に切り替わる。このため、大セルMC1に対応するトラフィックの分散が図られる。
 一方、PeNB300の送信電力が最大値でない場合、ピコ送信電力制御部323は、PeNB300の送信電力を増加させる制御を行う。更に、CREバイアス制御部322は、バイアス値を増加させる。PeNB300の送信電力の増加と、バイアス値の増加とにより、PeNB300のカバレッジエリアPC2が拡大し、MeNB100に接続していた一部のUEは、接続先がPeNB300に切り替わる。このため、大セルMC1に対応するトラフィックの分散が図られる。
 マクロUE数又はマクロ接続UE比率が増加しておらず、且つ、大セルMC1に対応するトラフィック量が増加している場合には、制御部320は、以下の低電力基地局制御3の処理を行う。
 低電力基地局制御3の処理において、ピコ送信電力制御部323は、PeNB300の送信電力が最小値であるか否かを判定する。PeNB300の送信電力が最小値である場合、CREバイアス制御部322は、バイアス値を減少させる。
 一方、PeNB300の送信電力が最小値でない場合、ピコ送信電力制御部323は、PeNB300の送信電力を減少させる制御を行う。更に、CREバイアス制御部322は、バイアス値を維持する。PeNB300の送信電力の減少により、MeNB100と、UE200との間の無線通信に干渉が生じることを防止できる。
 マクロUE数又はマクロ接続UE比率が増加しておらず、且つ、大セルMC1に対応するトラフィック量が増加していない場合には、制御部320は、以下の低電力基地局制御4の処理を行う。
 低電力基地局制御4の処理において、ピコ送信電力制御部323は、PeNB300の送信電力が最大値であるか否かを判定する。PeNB300の送信電力が最小値である場合、CREバイアス制御部322は、バイアス値を減少させる。
 一方、PeNB300の送信電力が最大値でない場合、ピコ送信電力制御部323は、PeNB300の送信電力を増加させる制御を行う。更に、CREバイアス制御部322は、バイアス値を維持する。PeNB300の送信電力の増加により、PeNB300のカバレッジエリアPC2が拡大し、MeNB100に接続していた一部のUEは、接続先がPeNB300に切り替わる。このため、大セルMC1に対応するトラフィックの分散が図られる。
 (2)低電力基地局の動作
 次に、PeNB300の動作について説明する。図3は、本発明の実施形態に係るPeNB300の第1の動作を示すフローチャートである。図3に示す動作は、上述した第1の処理に対応する。なお、以下においては、マクロUE数に関する情報は、マクロUE数であるものとする。
 ステップS101において、制御部320は、バイアス値を0に設定するとともに、PeNB300の送信電力(ピコ送信電力)を最小値に設定する。
 ステップS102において、制御部320は、バイアス値を増加させる。ステップS103において、制御部320は、マクロUE数が減少したか否かを判定する。マクロUE数が減少した場合には、ステップS102におけるバイアス値の増加以降の動作が繰り返される。
 一方、マクロUE数が減少していない場合には、ステップS104において、制御部320は、ピコ送信電力が最大値であるか否かを判定する。ピコ送信電力が最大値でない場合、ステップS105において、制御部320は、ピコ送信電力を増加させる。更に、ステップS106において、制御部320は、バイアス値を減少させる。その後は、ステップS102におけるバイアス値の増加以降の動作が繰り返される。
 ステップS104において、ピコ送信電力が最大値でないと判定された場合、ステップS107において、制御部320は、バイアス値を減少させる。ステップS108において、制御部320は、マクロUE数が増加したか否かを判定する。マクロUE数が増加していない場合には、ステップS107におけるバイアス値の減少以降の動作が繰り返される。
 一方、マクロUE数が増加した場合には、ステップS109において、制御部320は、バイアス値を増加させる。更に、ステップS110において、制御部320は、ピコ送信電力が最小値であるか否かを判定する。ピコ送信電力が最小値である場合には、ステップS102におけるバイアス値の増加以降の動作が繰り返される。
 また、ピコ送信電力が最小値でない場合には、ステップS111において、制御部320は、ピコ送信電力を減少させる。更に、ステップS112において、制御部320は、バイアス値を増加させる。その後は、ステップS107におけるバイアス値の減少以降の動作が繰り返される。
 図4は、本発明の実施形態に係るPeNB300の第2の動作を示すフローチャートである。図4に示す動作は、上述した第2の処理に対応する。なお、以下においては、ピコUE数に関する情報は、ピコUE数であるものとする。
 ステップS201において、制御部320は、バイアス値を0に設定するとともに、PeNB300の送信電力(ピコ送信電力)を最小値に設定する。
 ステップS202において、制御部320は、バイアス値を増加させる。ステップS203において、制御部320は、ピコUE数が増加したか否かを判定する。ピコUE数が増加した場合には、ステップS102におけるバイアス値の増加以降の動作が繰り返される。
 一方、ピコUE数が増加していない場合には、ステップS204において、制御部320は、ピコ送信電力が最大値であるか否かを判定する。ピコ送信電力が最大値でない場合、ステップS205において、制御部320は、ピコ送信電力を増加させる。更に、ステップS206において、制御部320は、バイアス値を減少させる。その後は、ステップS202におけるバイアス値の増加以降の動作が繰り返される。
 ステップS204において、ピコ送信電力が最大値でないと判定された場合、ステップS207において、制御部320は、バイアス値を減少させる。ステップS208において、制御部320は、ピコUE数が減少したか否かを判定する。ピコUE数が減少していない場合には、ステップS207におけるバイアス値の減少以降の動作が繰り返される。
 一方、ピコUE数が減少した場合には、ステップS209において、制御部320は、バイアス値を増加させる。更に、ステップS210において、制御部320は、ピコ送信電力が最小値であるか否かを判定する。ピコ送信電力が最小値である場合には、ステップS202におけるバイアス値の増加以降の動作が繰り返される。
 また、ピコ送信電力が最小値でない場合には、ステップS211において、制御部320は、ピコ送信電力を減少させる。更に、ステップS212において、制御部320は、バイアス値を増加させる。その後は、ステップS207におけるバイアス値の減少以降の動作が繰り返される。
 図5は、本発明の実施形態に係るPeNB300の第2の動作を示すフローチャートである。図5に示す動作は、上述した第3の処理に対応する。なお、以下においては、マクロUE数に関する情報は、マクロUE数であるものとする。
 ステップS301において、制御部320は、マクロUE数が増加したか否かを判定する。ステップS302において、マクロUE数が増加したと判定された場合、ステップS302において、制御部320は、大セルMC1に対応するトラフィック量が増加したか否かを判定する。ステップS302において、大セルMC1に対応するトラフィック量が増加したと判定された場合、ステップS303において、制御部320は、低電力基地局制御1の処理を行う。低電力基地局制御1の処理の後は、ステップS301以降の動作が繰り返される。
 図6は、低電力基地局制御1の動作を示すフローチャートである。ステップS401において、制御部320は、ピコ送信電力が最小値であるか否かを判定する。ピコ送信電力が最小値である場合、ステップS402において、制御部320は、バイアス値を増加させる。一方、ピコ送信電力が最小値でない場合、ステップS403において、制御部320は、ピコ送信電力を減少させる制御を行う。ステップS404において、制御部320は、バイアス値を増加させる。
 再び、図5に戻って説明する。ステップS302において、大セルMC1に対応するトラフィック量が増加していないと判定された場合、ステップS304において、制御部320は、低電力基地局制御2の処理を行う。低電力基地局制御2の処理の後は、ステップS301以降の動作が繰り返される。
 図7は、低電力基地局制御2の動作を示すフローチャートである。ステップS501において、制御部320は、ピコ送信電力が最大値であるか否かを判定する。ピコ送信電力が最大値である場合、ステップS502において、制御部320は、バイアス値を増加させる。一方、ピコ送信電力が最大値でない場合、ステップS503において、制御部320は、ピコ送信電力を増加させる制御を行う。ステップS504において、制御部320は、バイアス値を増加させる。
 再び、図5に戻って説明する。ステップS301においてマクロUE数が増加していないと判定された場合、ステップS305において、制御部320は、大セルMC1に対応するトラフィック量が増加したか否かを判定する。ステップS305において、大セルMC1に対応するトラフィック量が増加したと判定された場合、ステップS306において、制御部320は、低電力基地局制御3の処理を行う。低電力基地局制御3の処理の後は、ステップS301以降の動作が繰り返される。
 図8は、低電力基地局制御3の動作を示すフローチャートである。ステップS601において、制御部320は、ピコ送信電力が最小値であるか否かを判定する。ピコ送信電力が最小値である場合、ステップS602において、制御部320は、バイアス値を減少させる。一方、ピコ送信電力が最小値でない場合、ステップS603において、制御部320は、ピコ送信電力を減少させる制御を行う。ステップS604において、制御部320は、バイアス値を維持する。
 再び、図5に戻って説明する。ステップS305において、ステップS302において、大セルMC1に対応するトラフィック量が増加していないと判定された場合、ステップS307において、制御部320は、低電力基地局制御4の処理を行う。低電力基地局制御1の処理の後は、ステップS301以降の動作が繰り返される。低電力基地局制御4の処理の後は、ステップS301以降の動作が繰り返される。
 図9は、低電力基地局制御4の動作を示すフローチャートである。ステップS701において、制御部320は、ピコ送信電力が最大値であるか否かを判定する。ピコ送信電力が最大値である場合、ステップS702において、制御部320は、バイアス値を減少させる。一方、ピコ送信電力が最大値でない場合、ステップS703において、制御部320は、ピコ送信電力を増加させる制御を行う。ステップS704において、制御部320は、バイアス値を維持する。
 図10は、本発明の実施形態に係るPeNB300の第3の動作を示すフローチャートである。図10に示す動作は、上述した第3の処理に対応する。なお、以下においては、マクロUE数に関する情報は、マクロUE数であるものとする。
 ステップS801において、制御部320は、大セルMC1に対応するトラフィック量が増加したか否かを判定する。ステップS801において、大セルMC1に対応するトラフィック量が増加したと判定された場合、ステップS802において、制御部320は、マクロUE数が増加したか否かを判定する。ステップS802において、マクロUE数が増加したと判定された場合、ステップS803において、制御部320は、低電力基地局制御1の処理を行う。低電力基地局制御1の具体的な動作は、図6に示すものである。従って、説明は省略する。
 ステップS802において、マクロUE数が増加していないと判定された場合、ステップS804において、制御部320は、低電力基地局制御2の処理を行う。低電力基地局制御2の具体的な動作は、図7に示すものである。従って、説明は省略する。
 ステップS801において、大セルMC1に対応するトラフィック量が増加していないと判定された場合、ステップS805において、制御部320は、マクロUE数が増加したか否かを判定する。ステップS805において、マクロUE数が増加したと判定された場合、ステップS806において、制御部320は、低電力基地局制御3の処理を行う。低電力基地局制御3の具体的な動作は、図8に示すものである。従って、説明は省略する。
 ステップS805において、マクロUE数が増加していないと判定された場合、ステップS807において、制御部320は、低電力基地局制御4の処理を行う。低電力基地局制御4の具体的な動作は、図9に示すものである。従って、説明は省略する。
 (3)作用・効果
 本実施形態における無線通信システム1において、PeNB300は、マクロUE数又は又はマクロ接続UE比率の増減に基づくバイアス値の制御を行う。具体的には、PeNB300は、マクロUE数又はマクロ接続UE比率が増加した場合には、バイアス値を増加させ、マクロUE数又はマクロ接続UE比率が減少した場合には、バイアス値を維持又は減少させる。マクロUE数又はマクロ接続UE比率は、トラフィックの分散の度合を示す指標となる。PeNB300が、マクロUE数又はマクロ接続UE比率の増減に応じて、バイアス値を制御することにより、トラフィックがMeNB100とPeNB300とに適切に分散される。また、PeNB300の送信電力は維持されるため、MeNB100と当該MeNB100の配下のマクロUE200との間の無線通信に与える干渉が増加することはない。
 また、PeNB300は、マクロUE数又はマクロ接続UE比率に基づくバイアス値の制御とともに、大セルMC1に対応するトラフィック量の増減に基づく送信電力の制御を行う。具体的には、PeNB300は、大セルMC1に対応するトラフィック量が増加した場合には、送信電力を減少させる。大セルMC1に対応するトラフィック量が増加している場合には、MeNB100とUE200との間の無線通信のうち、PeNB300とUE400との無線通信によって干渉が生じる可能性のある無線通信数は増加していると見なし得る。このため、PeNB300の送信電力が減少することにより、MeNB100とUE200との間の無線通信に干渉が生じることを防止できる。
 また、PeNB300は、大セルMC1に対応するトラフィック量が減少した場合には、送信電力を増加させる。PeNB300の送信電力が増加すると、MeNB100とUE200との間の無線通信に干渉が生じる可能性が高くなる。しかし、大セルMC1に対応するトラフィック量が減少している場合には、PeNB300の送信電力が増加しても、干渉が生じる可能性のある無線通信数は減少していると見なし得る。このため、PeNB300は送信電力を増加させる。これにより、トラフィックがMeNB100とPeNB300とに適切に分散される。
 (4)その他の実施形態
 上記のように、本発明は実施形態によって記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施形態、実施例及び運用技術が明らかとなる。
 上述した実施形態では、PeNB300は、マクロUE数又はマクロ接続UE比率や、ピコUE数又はピコ接続UE比率の増減に応じて、バイアス値やPeNB300の送信電力を制御した。しかし、PeNB300は、マクロUE200の数が所定値以上となった場合に、トラフィック分散を図るべく、バイアス値や送信電力を制御してもよい。また、PeNB300は、マクロUE200の数とピコUE400の数とを加算した値(全てのUE数)に対するマクロUE200の数の比率が所定値以上である場合に、トラフィックの分散を図るべく、バイアス値やPeNB300の送信電力を制御してもよい。
 また、上述した実施形態では、無線通信システム1は、LTE Release 9やLTE-Advancedに基づく構成であったが、他の通信規格に基づく構成であってもよい。
 このように本発明は、ここでは記載していない様々な実施形態等を包含するということを理解すべきである。したがって、本発明はこの開示から妥当な特許請求の範囲の発明特定事項によってのみ限定されるものである。
 なお、日本国特許出願第2010-233805号(2010年10月18日出願)の全内容が、参照により、本願明細書に組み込まれている。
 以上のように、本発明に係る無線通信システム、低電力基地局及び通信制御方法によれば、ヘテロジーニアス・ネットワークにおいて、効果的にトラフィックを分散させることができるため、移動体通信などの無線通信において有用である。

Claims (11)

  1.  高電力基地局と、前記高電力基地局よりも送信出力が小さい低電力基地局とにより構成される無線通信システムであって、
     前記低電力基地局は、前記低電力基地局のセルレンジを拡張するために用いられる値であり、且つ、無線端末の接続先を決める処理で使用される値であるバイアス値を制御する制御部を備え、
     前記制御部は、
     前記高電力基地局からの情報に基づいて、前記バイアス値を制御し、
     前記高電力基地局からの情報は、前記高電力基地局に接続された無線端末の数に関する情報である無線通信システム。
  2.  高電力基地局よりも送信電力が小さい低電力基地局であって、
     前記低電力基地局のセルレンジを拡張するために用いられる値であり、且つ、無線端末の接続先を決める処理で使用される値であるバイアス値を制御する制御部を備え、
     前記制御部は、
     前記高電力基地局からの情報に基づいて、前記バイアス値を制御し、
     前記高電力基地局からの情報は、前記高電力基地局に接続された無線端末の数に関する情報である低電力基地局。
  3.  前記制御部は、前記高電力基地局に接続されている無線端末の数が増加したことを認識した場合に、前記バイアス値を増加させる請求項2に記載の低電力基地局。
  4.  前記制御部は、前記高電力基地局に接続されている無線端末の数が減少したことを認識した場合に、前記バイアス値を維持又は減少させる請求項2に記載の低電力基地局。
  5.  前記制御部は、前記低電力基地局に接続されている無線端末の数に関する情報を取得し、前記低電力基地局に接続されている無線端末の数に関する情報に基づいて、前記バイアス値を制御する請求項2に記載の低電力基地局。
  6.  前記制御部は、前記低電力基地局に接続されている無線端末の数が増加したことを認識した場合に、前記バイアス値を維持又は減少させる請求項5に記載の低電力基地局。
  7.  前記制御部は、前記低電力基地局に接続されている無線端末の数が減少したことを認識した場合に、前記バイアス値を増加させる請求項2に記載の低電力基地局。
  8.  前記制御部は、前記高電力基地局からの情報に基づいて、前記低電力基地局の送信電力を制御し、
     前記高電力基地局からの情報は、前記高電力基地局によって形成されるセルに対応する通信量に関する情報である請求項2に記載の低電力基地局。
  9.  前記制御部は、前記高電力基地局によって形成されるセルに対応する通信量が増加した場合に、前記低電力基地局の送信電力を低下させる請求項2に記載の低電力基地局。
  10.  前記制御部は、前記高電力基地局によって形成されるセルに対応する通信量が減少した場合に、前記低電力基地局の送信電力を増加させる請求項2に記載の低電力基地局。
  11.  高電力基地局よりも送信出力が小さい低電力基地局における通信制御方法であって、
     前記低電力基地局のセルレンジを拡張するために用いられる値であり、且つ、無線端末の接続先を決める処理で使用される値であるバイアス値を制御するステップを含み、
     前記制御するステップでは、
     前記高電力基地局からの情報に基づいて、前記バイアス値を制御し、
     前記高電力基地局からの情報は、前記高電力基地局に接続された無線端末の数に関する情報である通信制御方法。
PCT/JP2011/059021 2010-10-18 2011-04-11 無線通信システム、低電力基地局及び通信制御方法 WO2012053240A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010233805 2010-10-18
JP2010-233805 2010-10-18

Publications (1)

Publication Number Publication Date
WO2012053240A1 true WO2012053240A1 (ja) 2012-04-26

Family

ID=45974967

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/059021 WO2012053240A1 (ja) 2010-10-18 2011-04-11 無線通信システム、低電力基地局及び通信制御方法

Country Status (1)

Country Link
WO (1) WO2012053240A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2665315A1 (en) * 2012-05-18 2013-11-20 BlackBerry Limited Method and system for connection establishment bias for wireless networks
JP2014033249A (ja) * 2012-08-01 2014-02-20 Ntt Docomo Inc 無線通信システムおよび上りリンクリソース割り当て方法
WO2014083664A1 (ja) * 2012-11-29 2014-06-05 株式会社日立製作所 無線通信システム、基地局、及びセル選択制御方法
JP2015516126A (ja) * 2012-05-11 2015-06-04 華為技術有限公司Huawei Technologies Co.,Ltd. セル範囲拡大バイアスを構成するための方法、デバイス、およびシステム
CN108632903A (zh) * 2017-03-20 2018-10-09 中国移动通信集团浙江有限公司 无线网络负载均衡方法和装置
US10681566B2 (en) 2014-09-08 2020-06-09 Nokia Solutions And Networks Oy Scoring method and system for robust verification of configuration actions
WO2020184674A1 (ja) * 2019-03-12 2020-09-17 パナソニックIpマネジメント株式会社 位置推定システム、位置推定装置、および位置推定方法
JP2020148536A (ja) * 2019-03-12 2020-09-17 パナソニックIpマネジメント株式会社 位置推定装置および位置推定システム
JP2020161882A (ja) * 2019-03-25 2020-10-01 パナソニックIpマネジメント株式会社 位置推定システム、位置推定装置、および位置推定方法
JP2020165900A (ja) * 2019-03-29 2020-10-08 パナソニックIpマネジメント株式会社 位置推定装置、位置推定システム、および位置推定方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000261844A (ja) * 1999-03-09 2000-09-22 Nec Corp トラヒック量対応型動的置局変更システム及びその方法
JP2005223447A (ja) * 2004-02-03 2005-08-18 Sony Ericsson Mobilecommunications Japan Inc 無線通信方法、無線通信システム及び無線通信端末
JP2010130222A (ja) * 2008-11-26 2010-06-10 Kyocera Corp 送信出力制御装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000261844A (ja) * 1999-03-09 2000-09-22 Nec Corp トラヒック量対応型動的置局変更システム及びその方法
JP2005223447A (ja) * 2004-02-03 2005-08-18 Sony Ericsson Mobilecommunications Japan Inc 無線通信方法、無線通信システム及び無線通信端末
JP2010130222A (ja) * 2008-11-26 2010-06-10 Kyocera Corp 送信出力制御装置

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015516126A (ja) * 2012-05-11 2015-06-04 華為技術有限公司Huawei Technologies Co.,Ltd. セル範囲拡大バイアスを構成するための方法、デバイス、およびシステム
US9681392B2 (en) 2012-05-11 2017-06-13 Huawei Technologies Co., Ltd. Method, device, and system for configuring cell range expansion bias
EP2665315A1 (en) * 2012-05-18 2013-11-20 BlackBerry Limited Method and system for connection establishment bias for wireless networks
CN103428891A (zh) * 2012-05-18 2013-12-04 捷讯研究有限公司 用于针对无线网络的连接建立偏置的方法和系统
US8934456B2 (en) 2012-05-18 2015-01-13 Blackberry Limited Method and system for connection establishment bias for wireless networks
JP2014033249A (ja) * 2012-08-01 2014-02-20 Ntt Docomo Inc 無線通信システムおよび上りリンクリソース割り当て方法
WO2014083664A1 (ja) * 2012-11-29 2014-06-05 株式会社日立製作所 無線通信システム、基地局、及びセル選択制御方法
US10681566B2 (en) 2014-09-08 2020-06-09 Nokia Solutions And Networks Oy Scoring method and system for robust verification of configuration actions
CN108632903A (zh) * 2017-03-20 2018-10-09 中国移动通信集团浙江有限公司 无线网络负载均衡方法和装置
WO2020184674A1 (ja) * 2019-03-12 2020-09-17 パナソニックIpマネジメント株式会社 位置推定システム、位置推定装置、および位置推定方法
JP2020148536A (ja) * 2019-03-12 2020-09-17 パナソニックIpマネジメント株式会社 位置推定装置および位置推定システム
JP7253703B2 (ja) 2019-03-12 2023-04-07 パナソニックIpマネジメント株式会社 位置推定装置および位置推定システム
JP2020161882A (ja) * 2019-03-25 2020-10-01 パナソニックIpマネジメント株式会社 位置推定システム、位置推定装置、および位置推定方法
JP7142275B2 (ja) 2019-03-25 2022-09-27 パナソニックIpマネジメント株式会社 位置推定システム、位置推定装置、および位置推定方法
JP2020165900A (ja) * 2019-03-29 2020-10-08 パナソニックIpマネジメント株式会社 位置推定装置、位置推定システム、および位置推定方法
JP7266240B2 (ja) 2019-03-29 2023-04-28 パナソニックIpマネジメント株式会社 位置推定装置、位置推定システム、および位置推定方法

Similar Documents

Publication Publication Date Title
WO2012053240A1 (ja) 無線通信システム、低電力基地局及び通信制御方法
JP5647453B2 (ja) 無線通信システム、無線中継局、無線端末、及び通信制御方法
JP5584312B2 (ja) 移動通信システム、基地局、及び通信方法
US9357398B2 (en) Radio base station, radio communication system, and control method
US8880109B2 (en) Radio communication system, high-power base station, low-power base station, and communication control method
WO2011149081A1 (ja) 無線通信システム、無線基地局、及び通信制御方法
US11304080B2 (en) Methods, base station, mobile node and relay node
CN109479245A (zh) 功率控制方法、装置、终端及网络设备
JP5776791B2 (ja) 無線基地局、無線通信システム、送信電力制御方法及び無線端末
US20130072259A1 (en) Radio base station, radio communication system, and control method
JP5592702B2 (ja) 無線通信システム、無線基地局、及び通信制御方法
US10743230B2 (en) Node reselection determined by the network on received UE beacon signaling
WO2017039505A1 (en) Mobility procedures between beams from different radio network nodes
WO2011099623A1 (ja) 低電力基地局及び通信制御方法
JP2011250216A (ja) 無線通信システム、無線基地局、及び通信制御方法
JP5410941B2 (ja) 無線通信システム、基地局及び通信制御方法
JP5259833B2 (ja) 無線基地局及び通信制御方法
CN102986272A (zh) 无线电通信系统,无线电基站,无线电终端以及通信控制方法
KR20120081207A (ko) 무선 통신 시스템, 고전력 기지국, 저전력 기지국, 무선 단말 및 무선 통신 방법
WO2012137928A1 (ja) 無線通信システム、低電力基地局及び通信制御方法
KR20180092340A (ko) 소형셀 운용 방법 및 장치
JP6244868B2 (ja) 基地局
CN116074919A (zh) 一种中继通信方法、通信装置、芯片及其模组设备
JP2011101178A (ja) 無線基地局及び通信制御方法
JP2014236437A (ja) 通信装置及び通信制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11834085

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11834085

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP