[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2012050102A1 - Polymeric compound, organic semiconductor material, and organic transistor - Google Patents

Polymeric compound, organic semiconductor material, and organic transistor Download PDF

Info

Publication number
WO2012050102A1
WO2012050102A1 PCT/JP2011/073372 JP2011073372W WO2012050102A1 WO 2012050102 A1 WO2012050102 A1 WO 2012050102A1 JP 2011073372 W JP2011073372 W JP 2011073372W WO 2012050102 A1 WO2012050102 A1 WO 2012050102A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
structural unit
polymer compound
formula
unit represented
Prior art date
Application number
PCT/JP2011/073372
Other languages
French (fr)
Japanese (ja)
Inventor
宏樹 寺井
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Publication of WO2012050102A1 publication Critical patent/WO2012050102A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/126Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/151Copolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/145Side-chains containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3223Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more sulfur atoms as the only heteroatom, e.g. thiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/324Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
    • C08G2261/3246Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing nitrogen and sulfur as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/41Organometallic coupling reactions
    • C08G2261/411Suzuki reactions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/92TFT applications
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/464Lateral top-gate IGFETs comprising only a single gate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/466Lateral bottom-gate IGFETs comprising only a single gate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/481Insulated gate field-effect transistors [IGFETs] characterised by the gate conductors
    • H10K10/482Insulated gate field-effect transistors [IGFETs] characterised by the gate conductors the IGFET comprising multiple separately-addressable gate electrodes

Definitions

  • the present invention relates to a polymer compound useful as an organic semiconductor material and an organic transistor using the same.
  • organic transistors using organic semiconductor materials are expected to be lighter, have lower manufacturing costs and can be manufactured at lower temperatures than conventional transistors using inorganic semiconductor materials, they are actively researched and developed. Has been done.
  • the field effect mobility which is one of the performances of organic transistors, greatly depends on the carrier mobility of the organic semiconductor material contained in the active layer. Therefore, it is considered to use various organic semiconductor materials for the active layer of the organic transistor. ing.
  • Non-Patent Document 1 an organic transistor is manufactured using the following polymer compound as an organic semiconductor material, and transistor characteristics are measured.
  • an organic transistor using the polymer compound as an organic semiconductor material has a field effect mobility of about 1.0 ⁇ 10 ⁇ 3 cm 2 / Vs, and the field effect mobility is not necessarily high enough. is there.
  • the present invention solves the above-mentioned conventional problems, and the object of the present invention is to provide a polymer compound that increases the field effect mobility of an organic transistor when used in an active layer (organic semiconductor layer) of the organic transistor. Is to provide.
  • the present invention has the formula
  • R 1 represents an alkyl group, an aryl group, or a heteroaryl group.
  • R 2 represents a hydrogen atom, an alkyl group, an alkoxy group, an alkylthio group, an aryl group or a heteroaryl group.
  • Z 1 represents —CR 5 ⁇ CR 6 —, —S—, —O—, —Se— or —NR 7 —.
  • R 3 , R 4 , R 5 and R 6 each independently represent a hydrogen atom, an alkyl group, an aryl group, a heteroaryl group, a halogen atom, a cyano group or a nitro group.
  • R 7 represents a hydrogen atom, an alkyl group, an aryl group or a heteroaryl group.
  • the polymer compound containing the structural unit represented by these is provided.
  • the polymer compound has the formula
  • R 1 and R 2 represent the same meaning as described above.
  • a represents an integer of 1 to 4.
  • b represents an integer of 0 to 4.
  • c represents an integer of 1 to 4.
  • a plurality of R 1 may be the same or different.
  • a plurality of R 2 may be the same or different.
  • It has the structural unit represented by these.
  • the present invention also provides an organic semiconductor material containing the polymer compound.
  • the “organic semiconductor material” means a material containing an organic compound exhibiting semiconductor behavior.
  • the present invention also provides an organic semiconductor element having an organic layer containing the organic semiconductor material.
  • the “organic semiconductor element” means a semiconductor element having an organic layer containing an organic semiconductor material.
  • the present invention also provides an organic transistor having a source electrode, a drain electrode, a gate electrode, and an active layer, wherein the active layer includes the organic semiconductor material.
  • the present invention is extremely useful.
  • the “structural unit” means a unit structure present in one or more polymer compounds.
  • the “structural unit” is preferably contained in the polymer compound as a “repeating unit” (that is, a unit structure present in two or more in the polymer compound).
  • the polymer compound of the present invention includes a structural unit represented by the formula (1) (hereinafter sometimes referred to as “first structural unit”).
  • the first structural unit may be contained alone or in combination of two or more in the polymer compound.
  • R 1 represents an alkyl group, an aryl group, or a heteroaryl group.
  • R 2 represents a hydrogen atom, an alkyl group, an alkoxy group, an alkylthio group, an aryl group or a heteroaryl group.
  • the alkyl group may be linear or branched, and may be a cycloalkyl group.
  • the alkyl group usually has 1 to 60 carbon atoms, preferably 1 to 20 carbon atoms.
  • a linear alkyl group and a branched alkyl group are preferable, and a linear alkyl group is more preferable.
  • alkyl group examples include a straight chain alkyl group such as a methyl group, an ethyl group, an n-propyl group, an n-butyl group, an n-hexyl group, an n-octyl group, an n-dodecyl group, and an n-octadecyl group, Examples thereof include branched alkyl groups such as isopropyl group, isobutyl group, sec-butyl group, tert-butyl group, 2-ethylhexyl group and 3,7-dimethyloctyl group, and cycloalkyl groups such as cyclopentyl group and cyclohexyl group.
  • the alkyl group may have a substituent, and examples of the substituent that the alkyl group may have include an alkoxy group, an aryl group, and a halogen atom.
  • substituents that the alkyl group may have include an alkoxy group, an aryl group, and a halogen atom.
  • Specific examples of the alkyl group having a substituent include a methoxyethyl group, a benzyl group, a trifluoromethyl group, and a perfluorohexyl group.
  • the alkoxy group may have a substituent, and the number of carbon atoms of the alkoxy group excluding the substituent is usually 1-20.
  • the alkoxy group may be linear or branched, and may be a cycloalkoxy group.
  • alkoxy group examples include n-butyloxy group, n-hexyloxy group, 2-ethylhexyloxy group, 3,7-dimethyloctyloxy group, n-dodecyloxy group and the like.
  • alkoxy groups linear alkyloxy groups such as n-butyloxy group, n-hexyloxy group, n-dodecyloxy group and the like are preferable.
  • the alkylthio group may have a substituent, and the alkylthio group excluding the substituent usually has 1 to 20 carbon atoms.
  • the alkylthio group may be linear or branched, and may be a cycloalkylthio group.
  • alkylthio group examples include n-butylthio group, n-hexylthio group, 2-ethylhexylthio group, 3,7-dimethyloctylthio group, n-dodecylthio group and the like.
  • alkylthio groups linear alkylthio groups such as n-butylthio group, n-hexylthio group, and n-dodecylthio group are preferable.
  • An aryl group is an atomic group obtained by removing one hydrogen atom directly bonded to an aromatic ring from an aromatic hydrocarbon compound, a group having a benzene ring, a group having a condensed ring, an independent aromatic ring or two condensed rings. These include groups directly attached.
  • the aryl group usually has 6 to 60 carbon atoms, preferably 6 to 20 carbon atoms.
  • Aryl groups include phenyl, 1-naphthyl, 2-naphthyl, 1-anthracenyl, 2-anthracenyl, 9-anthracenyl, 1-pyrenyl, 2-pyrenyl, 4-pyrenyl, 2- Examples include a fluorenyl group, a 3-fluorenyl group, a 4-fluorenyl group, and a 4-phenylphenyl group.
  • the aryl group may have a substituent.
  • substituents that the aryl group may have include an alkyl group, an alkoxy group, an alkylthio group, a heteroaryl group, and a halogen atom.
  • aryl group having a substituent include a 4-hexylphenyl group, a 3,5-dimethoxyphenyl group, and a pentafluorophenyl group.
  • the substituent is preferably an alkyl group.
  • a heteroaryl group is an atomic group obtained by removing one hydrogen atom directly bonded to an aromatic ring from a heterocyclic compound having aromaticity, a group having a condensed ring, an independent heteroaromatic ring or a condensed ring 2 Includes groups in which more than one are directly bonded.
  • the heteroaryl group usually has 2 to 60 carbon atoms, and preferably 3 to 20 carbon atoms.
  • Heteroaryl groups include 2-furyl group, 3-furyl group, 2-thienyl group, 3-thienyl group, 2-pyrrolyl group, 3-pyrrolyl group, 2-oxazolyl group, 2-thiazolyl group, 2-imidazolyl group 2-pyridyl group, 3-pyridyl group, 4-pyridyl group, 2-benzofuryl group, 2-benzothienyl group, 2-thienothienyl group and the like.
  • the heteroaryl group may have a substituent.
  • substituents that the heteroaryl group may have include an alkyl group, an alkoxy group, an alkylthio group, an aryl group, and a halogen atom.
  • heteroaryl group having a substituent include a 5-octyl-2-thienyl group and a 5-phenyl-2-furyl group.
  • the substituent is preferably an alkyl group.
  • halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • R 1 is preferably an alkyl group from the viewpoint of improving the solubility of the polymer compound and facilitating device fabrication.
  • R 2 is preferably a hydrogen atom, an alkyl group or an alkylthio group from the viewpoint of facilitating the device preparation by improving the synthesis of the compound containing the first structural unit and the solubility of the polymer compound, An alkyl group is more preferable, and a hydrogen atom is more preferable.
  • Examples of the first structural unit include a structural unit represented by the formula (1-001) to a structural unit represented by the formula (1-010). Among these, from the viewpoint of ease of synthesis, a structural unit represented by the formula (1-001) is preferable.
  • R represents a hydrogen atom, an alkyl group, an alkoxy group, an alkylthio group, an aryl group or a heteroaryl group
  • R a represents an alkyl group, an aryl group or Represents a heteroaryl group.
  • a plurality of R may be the same or different.
  • a plurality of R a may be the same or different.
  • the polymer compound may include a structural unit represented by the formula (3) including the first structural unit or a structural unit represented by the formula (4). preferable.
  • a represents an integer of 1 to 4. From the viewpoint of ease of synthesis, 1 or 2 is preferable.
  • b represents an integer of 0 to 4. From the viewpoint of ease of synthesis, 0 to 2 is preferable.
  • c represents an integer of 1 to 4. From the viewpoint of ease of synthesis, 1 or 2 is preferable.
  • a and c are preferably the same.
  • Examples of the structural unit represented by the formula (3) include a structural unit represented by the formula (3-001) to a structural unit represented by the formula (3-014). Among these, a structural unit represented by the formula (3-001) to a structural unit represented by the formula (3-005) are preferable.
  • R represents a hydrogen atom, an alkyl group, an alkoxy group, an alkylthio group, an aryl group or a heteroaryl group
  • R a represents an alkyl group, an aryl group or Represents a heteroaryl group.
  • a plurality of R may be the same or different.
  • a plurality of R a may be the same or different.
  • Examples of the structural unit represented by the formula (4) include a structural unit represented by the formula (4-001) to a structural unit represented by the formula (4-014). Among these, a structural unit represented by formula (4-001) to a structural unit represented by formula (4-005) are preferable.
  • R represents a hydrogen atom, an alkyl group, an alkoxy group, an alkylthio group, an aryl group or a heteroaryl group
  • R a represents an alkyl group, an aryl group or Represents a heteroaryl group.
  • a plurality of R may be the same or different.
  • a plurality of R a may be the same or different.
  • the structural unit represented by the formula (3) is preferable to the structural unit represented by the formula (4).
  • the polymer compound of the present invention includes a structural unit represented by the formula (2-1) or a structural unit represented by the formula (2-2) (hereinafter referred to as a structural unit or a formula represented by the formula (2-1)).
  • (2-2) may be referred to as “second structural unit”).
  • the second structural unit may be contained alone or in combination of two or more in the polymer compound.
  • Z 1 represents —CR 5 ⁇ CR 6 —, —S—, —O—, —Se— or —NR 7 —.
  • R 3 , R 4 , R 5 and R 6 each independently represent a hydrogen atom, an alkyl group, an aryl group, a heteroaryl group, a halogen atom, a cyano group or a nitro group.
  • R 7 represents a hydrogen atom, an alkyl group, an aryl group or a heteroaryl group.
  • alkyl groups, aryl groups, and heteroaryl groups represented by R 3 , R 4 , R 5, and R 6 include the alkyl groups, aryl groups, and heteroaryl groups represented by R 1 described above. Definitions and examples are the same. Examples of the halogen atom represented by R 3 , R 4 , R 5 and R 6 include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
  • alkyl group, aryl group and heteroaryl group represented by R 7 are the same as the definitions and specific examples of the alkyl group, aryl group and heteroaryl group represented by R 1 described above.
  • the polymer compound of the present invention preferably contains a structural unit represented by the formula (2-1).
  • Z 1 is preferably —S— from the viewpoint of increasing the carrier mobility of the polymer compound of the present invention.
  • Examples of the second structural unit include a structural unit represented by the formula (2-001) to a structural unit represented by the formula (2-006).
  • R a represents an alkyl group, an aryl group or a heteroaryl group
  • R b represents a hydrogen atom, an alkyl group, an alkoxy group, an alkylthio group or an aryl group. Represents a heteroaryl group or a halogen atom.
  • a plurality of R a may be the same or different.
  • a plurality of R b may be the same or different.
  • the second structural unit is a structure that relatively accepts electrons compared to the first structural unit. Therefore, in the polymer having the second structural unit in the polymer compound, the second structural unit is polarized relatively negatively, and the first structural unit is polarized relatively positively. As a result, it is presumed that an electrostatic attractive force is generated between the polymer compounds, and intermolecular carrier movement is promoted.
  • the polymer compound of the present invention includes a first structural unit, a second structural unit, a structural unit represented by the formula (3), and a structural unit other than the structural unit represented by the formula (4) (hereinafter referred to as “other structures”). May be referred to as “unit”.).
  • Other structural units may be contained alone or in combination of two or more in the polymer compound.
  • Examples of the other structural unit include a divalent aromatic group, a group represented by the formula —CR c ⁇ CR c —, and a group represented by the formula —C ⁇ C—.
  • a divalent aromatic group is an atomic group obtained by removing two hydrogen atoms from an aromatic ring, and a group having a benzene ring, a group having a condensed ring, an independent aromatic ring or two or more condensed rings are directly bonded. Contains groups.
  • Divalent aromatic groups include phenylene group, naphthalenediyl group, anthracenediyl group, phenanthenediyl group, tetracenediyl group, pyrenediyl group, pentacenediyl group, perylenediyl group, fluorenediyl group, oxadiazolediyl group, thiadiazole Diyl group, oxazole diyl group, thiazole diyl group, thiophene diyl group, bithiophene diyl group, terthiophene diyl group, quaterthiophene diyl group, pyrrole diyl group, frangyl group, selenophene diyl group, pyridine diyl group, pyrazine diyl group, Pyrimidinediyl group, triazinediyl group, benzothiophenediyl group, benzopyrrolediyl group, benzofuranyl group, quinolinedi
  • R c CR c - in the group represented by, R c each independently represents a hydrogen atom, an alkyl group, an aryl group, a heteroaryl group or a cyano group.
  • R c each independently represents a hydrogen atom, an alkyl group, an aryl group, a heteroaryl group or a cyano group.
  • the definitions and specific examples of the alkyl group, aryl group and heteroaryl group represented by R c are the same as the definitions and specific examples of the alkyl group, aryl group and heteroaryl group represented by R 1 described above.
  • the other structural unit is preferably a divalent aromatic group, and may have a phenylenediyl group which may have a substituent, or a substituent.
  • the benzodithiophenediyl group which may be present is more preferable, and the group represented by the following formula (A-001) to the group represented by the formula (A-005) is particularly preferable.
  • R b represents a hydrogen atom, an alkyl group, an alkoxy group, an alkylthio group, an aryl group, a heteroaryl group, or a halogen atom.
  • a plurality of R b may be the same or different.
  • R d represents a hydrogen atom, an alkyl group, an aryl group or a heteroaryl group.
  • a plurality of R d may be the same or different.
  • alkyl group, aryl group and heteroaryl group represented by R d are the same as the definitions and specific examples of the alkyl group, aryl group and heteroaryl group represented by R 1 described above.
  • the polymer compound of the present invention is preferably a conjugated polymer compound.
  • the “conjugated polymer compound” means a polymer compound in which all monomers constituting the polymer compound are conjugated with a part or the whole of the structure. .
  • the polymer compound of the present invention When the polymer compound of the present invention is composed of the first structural unit, the second structural unit, and another structural unit, from the viewpoint of increasing the carrier mobility of the polymer compound, the polymer compound has a total of structural units.
  • the total of the first structural unit and the second structural unit is preferably 50 mol% or more, and more preferably 70 mol% or more.
  • the polymer compound of the present invention comprises at least one structural unit selected from the group consisting of a structural unit represented by formula (3) and a structural unit represented by formula (4), a second structural unit, and other structural units.
  • the structural unit represented by the formula (3) and the formula (4) are represented with respect to the total of the structural units of the polymer compound.
  • the total of the structural unit and the second structural unit is preferably 50 mol% or more, and more preferably 70 mol% or more.
  • the polymer compound of the present invention includes a first structural unit, a structural unit represented by the formula (3), a structural unit represented by the formula (4), a second structural unit, and other structural units. Examples thereof include compounds P01 to P12. The total of each structural unit is 100 mol%.
  • the molecular chain terminal is preferably a stable group such as an aryl group or a heteroaryl group.
  • the polymer compound of the present invention may be any type of copolymer, such as a block copolymer, a random copolymer, an alternating copolymer, or a graft copolymer.
  • the structural unit represented by formula (3) or the structural unit represented by formula (4), and the structural unit or formula represented by formula (2-1) is an alternating copolymer with the structural unit represented by (2-2), and the structural unit represented by the formula (3) and the structural unit represented by the formula (2-1) or the formula (2-1) It is more preferable that the copolymer be an alternating copolymer with the structural unit represented by 2-2).
  • the number average molecular weight (Mn) in terms of polystyrene measured by gel permeation chromatography (hereinafter referred to as “GPC”) of the polymer compound of the present invention is usually 1 ⁇ 10 3 to 1 ⁇ 10 8 .
  • the number average molecular weight is preferably 2 ⁇ 10 3 or more.
  • the number average molecular weight is preferably 1 ⁇ 10 6 or less from the viewpoint of enhancing the solubility in a solvent and facilitating the production of a thin film.
  • the production method of the polymer compound of the present invention is not particularly limited, and examples thereof include a method using a reductive coupling reaction using a Ni catalyst, a method using a Stille coupling reaction, and a method using a Suzuki coupling reaction. . From the viewpoint of easy synthesis of the compound and the ability to obtain an alternating copolymer compound, a method using a Stille coupling reaction and a Suzuki coupling reaction is preferred.
  • the polymer compound of the present invention includes, for example, a monomer that is a raw material for a structural unit including a first structural unit, a monomer that is a raw material for a second structural unit, and, if necessary, a raw material for another structural unit. It is manufactured by copolymerizing with the monomer which becomes.
  • specific examples of the structural unit including the first structural unit include the first structural unit, the structural unit represented by the formula (3), or the formula (4).
  • the monomer that is a raw material of the structural unit including the first structural unit is, for example, a compound in which a halogen atom is bonded to the bond of the structural unit including the first structural unit.
  • This compound is produced by halogenating a compound in which a hydrogen atom is bonded to a bond of a structural unit including the first structural unit.
  • Halogenation of a compound in which a hydrogen atom is bonded to a bond of a structural unit including the first structural unit may be performed by dissolving the compound in a suitable solvent and reacting with a halogenating agent.
  • a suitable solvent chloroform, tetrahydrofuran, dimethylformamide, acetic acid and the like can be used.
  • halogenating agent N-bromosuccinimide (NBS), bromine, N-iodosuccinimide (NIS), N-chlorosuccinimide (NCS) Etc. can be used.
  • the monomer used as the raw material of the second structural unit is, for example, an alkyl metal group such as a trialkylstannyl group, a dihydroxyboryl group (—B (OH) 2 ), or a bond of the second structural unit, It is a compound in which a group obtained by removing a hydroxyl group from boric acid diester is bonded.
  • a compound in which an alkyl metal group, dihydroxyboryl group, or a group obtained by removing a hydroxyl group from a boric acid diester is bonded to the bond of the second structural unit is a compound in which a hydrogen atom is bonded to the bond of the second structural unit. , Dihydroxyborylation or boric acid diesterification.
  • Alkyl metalation of a compound in which a hydrogen atom is bonded to the bond of the second structural unit is obtained by dissolving a compound in which a hydrogen atom is bonded to the bond of the second structural unit in an appropriate solvent and alkylating in the presence of a base. What is necessary is just to make it react.
  • the solvent diethyl ether, tetrahydrofuran (THF), hexane, heptane, toluene or the like can be used, and as the base, n-butyllithium, sec-butyllithium, tert-butyllithium, lithium diisopropylamide or the like can be used.
  • THF tetrahydrofuran
  • hexane hexane
  • heptane hexane
  • toluene or the like can be used
  • the base n-butyllithium, sec-butyllithium, tert-butyllithium
  • Dihydroxyborylation or boric acid diesterification of a compound in which a hydrogen atom is bonded to the bond of the second structural unit is performed by dissolving the compound in which the hydrogen atom is bonded to the bond of the second structural unit in an appropriate solvent, and the presence of a base. What is necessary is just to make trialkyl borate react below.
  • the solvent diethyl ether, tetrahydrofuran (THF), hexane, heptane, toluene or the like can be used, and as the base, n-butyllithium, sec-butyllithium, tert-butyllithium, lithium diisopropylamide or the like can be used.
  • THF tetrahydrofuran
  • hexane hexane
  • heptane hexane
  • heptane hexane
  • toluene or the like can be used
  • the base n-butyllithium
  • the monomer used as the raw material for the other structural unit is, for example, a group obtained by removing a hydroxyl group from a halogen atom, an alkali metal group, a dihydroxyboryl group, or a boric acid diester at the bond of the group exemplified as the other structural unit. It is a bound compound.
  • These compounds are obtained by halogenating, alkylating, dihydroxyborating, or boric acid diester a compound in which a hydrogen atom is bonded to a bond of a group exemplified as another structural unit using the same method as described above. Manufactured by.
  • a compound in which a group obtained by removing a hydroxyl group from a halogen atom, an alkali metal group, a dihydroxyboryl group, or a boric acid diester is bonded to a bond of a group exemplified as another structural unit.
  • the polymer compound of the present invention is obtained by dissolving in a solution and heating in the presence of a transition metal complex and, if necessary, a phosphine compound and a base, and reacting.
  • the reaction amount of the monomer as the raw material of the structural unit containing the first structural unit and the monomer as the raw material of the second structural unit is 30/70 to 70/30, preferably 35 in terms of molar ratio. / 65 to 65/35, more preferably 40/60 to 60/40.
  • the ratio of the reaction amount of both monomers is less than 40 mol%, the molecular weight of the polymer compound is low, and the field effect mobility may be low.
  • the amount used is 50 mol% or less, preferably 30 mol% or less based on the total amount of monomers. It is.
  • Solvents include aromatic hydrocarbon solvents such as toluene and benzene, ether solvents such as tetrahydrofuran and anisole, 1-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, acetonitrile, etc.
  • a transition metal complex includes Pd 2 (dba) 3 (where dba represents trans, trans-dibenzylideneacetone), Pd (dba) 2 , tetrakis (Triphenylphosphine) palladium, palladium (II) acetate, dichlorobis (triphenylphosphine) palladium, bis (1,5-cyclooctadiene) nickel (0) and the like can be used.
  • phosphine compound tri-n -Butylphosphine, tri-ter -Butylphosphine, tricyclohexylphosphine, triphenylphosphine, tristolylphosphine (the tolyl group in the compound may be an orthotolyl group, a metatolyl group or a paratolyl group), tris (methoxyphenyl) phosphine (a methoxyphenyl group in the compound) May be an orthomethoxyphenyl group, a metamethoxyphenyl group or a paramethoxyphenyl group), (2-biphenylyl) di-tert-butylphosphine, 1,2-bis (diphenylphosphino) ethane, 1,3- Bis (diphenylphosphino) propane, 1,1′-bis (diphenylphosphino) ferrocene and the like can be used, and as the base, sodium carbonate, potassium carbonate,
  • purification operations such as reprecipitation, Soxhlet washing, extraction, silica gel column purification, gel permeation chromatography purification and the like are performed to obtain the polymer compound of the present invention.
  • the polymer compound of the present invention Since the polymer compound of the present invention has high carrier mobility, it can be used as an organic semiconductor material, for example, in an organic layer of an organic semiconductor element.
  • the organic semiconductor element include an organic transistor, an organic solar battery, and an organic electroluminescence element.
  • the polymer compound of the present invention is particularly useful as a charge transport material for organic transistors.
  • the organic semiconductor material may contain one kind of the polymer compound of the present invention alone, or may contain two or more kinds.
  • the organic semiconductor material may further contain a low molecular compound or a polymer compound having carrier transportability in addition to the polymer compound of the present invention in order to enhance carrier transportability.
  • the polymer compound of the present invention is preferably contained in an amount of 30% by mass or more, and more preferably 50% by mass or more.
  • the content of the polymer compound of the present invention is less than 30% by mass, it may be difficult to form a thin film or to obtain good charge mobility.
  • Compounds having carrier transport properties include arylamine derivatives, stilbene derivatives, oligothiophenes and derivatives thereof, low molecular compounds such as oxadiazole derivatives, fullerenes and derivatives thereof, polyvinylcarbazole and derivatives thereof, polyaniline and derivatives thereof, polythiophene And polymer derivatives thereof, such as polypyrrole and derivatives thereof, polyphenylene vinylene and derivatives thereof, polythienylene vinylene and derivatives thereof, and polyfluorene and derivatives thereof.
  • the organic semiconductor material may contain a polymer compound material as a polymer binder in order to improve its characteristics.
  • a polymer binder those that do not excessively lower the carrier transportability are preferable.
  • polymer binders examples include poly (N-vinylcarbazole), polyaniline and derivatives thereof, polythiophene and derivatives thereof, poly (p-phenylene vinylene) and derivatives thereof, poly (2,5-thienylene vinylene) and derivatives thereof , Polycarbonate, polyacrylate, polymethyl acrylate, polymethyl methacrylate, polystyrene, polyvinyl chloride, and polysiloxane.
  • Organic transistor has a source electrode and a drain electrode, a current path between these electrodes, an active layer containing the polymer compound of the present invention, and a gate electrode that controls the amount of current passing through the current path The thing which has is mentioned.
  • Examples of the organic transistor having such a configuration include a field effect organic transistor and a static induction organic transistor.
  • a field effect organic transistor usually has a source electrode and a drain electrode, a current path between these electrodes, an active layer containing the polymer compound of the present invention, and a gate electrode that controls the amount of current passing through the current path.
  • the organic transistor having an active layer and an insulating layer disposed between the gate electrode.
  • an organic transistor in which a source electrode and a drain electrode are provided in contact with an active layer and a gate electrode is provided with an insulating layer in contact with the active layer interposed therebetween is preferable.
  • the electrostatic induction organic transistor usually has a source electrode and a drain electrode, a current path between these electrodes, an active layer containing the polymer compound of the present invention, and a gate electrode that controls the amount of current passing through the current path And the gate electrode is provided in the active layer.
  • a source electrode, a drain electrode, and the gate electrode are provided in contact with the active layer is preferable.
  • the gate electrode may be a structure that can form a current path flowing from the source electrode to the drain electrode and that can control the amount of current flowing through the current path with a voltage applied to the gate electrode, and is, for example, a comb electrode.
  • FIG. 1 is a schematic cross-sectional view showing an example of an organic transistor (field-effect organic transistor) of the present invention.
  • An organic transistor 100 shown in FIG. 1 includes a substrate 1, a source electrode 5 and a drain electrode 6 formed on the substrate 1 at a predetermined interval, and a source electrode 5 and a drain electrode 6 so as to cover the substrate 1.
  • the gate electrode 4 is provided.
  • FIG. 2 is a schematic cross-sectional view showing another example of the organic transistor (field effect organic transistor) of the present invention.
  • An organic transistor 110 shown in FIG. 2 includes a substrate 1, a source electrode 5 formed on the substrate 1, an active layer 2 formed on the substrate 1 so as to cover the source electrode 5, a source electrode 5, and a predetermined electrode
  • the drain electrode 6 formed on the active layer 2 with an interval, the insulating layer 3 formed on the active layer 2 and the drain electrode 6, and the insulating layer on the region between the source electrode 5 and the drain electrode 6
  • a gate electrode 4 formed on the insulating layer 3 so as to cover 3.
  • FIG. 3 is a schematic cross-sectional view showing another example of the organic transistor (field effect type organic transistor) of the present invention.
  • the organic transistor 120 shown in FIG. 3 includes a substrate 1, a gate electrode 4 formed on the substrate 1, an insulating layer 3 formed on the substrate 1 so as to cover the gate electrode 4, and the gate electrode 4 at the bottom.
  • an active layer 2 formed on the insulating layer 3 so as to cover the surface.
  • FIG. 4 is a schematic cross-sectional view showing another example of the organic transistor (field effect organic transistor) of the present invention.
  • An organic transistor 130 shown in FIG. 4 includes a substrate 1, a gate electrode 4 formed on the substrate 1, an insulating layer 3 formed on the substrate 1 so as to cover the gate electrode 4, and the gate electrode 4 at the bottom.
  • a layer 2 and a drain electrode 6 formed on the insulating layer 3 at a predetermined interval so as to cover a part of the active layer 2 are provided.
  • FIG. 5 is a schematic sectional view showing another example of the organic transistor (electrostatic induction type organic transistor) of the present invention.
  • the organic transistor 140 shown in FIG. 5 includes a substrate 1, a source electrode 5 formed on the substrate 1, an active layer 2 formed on the source electrode 5, and a plurality of active transistors 2 with a predetermined interval on the active layer 2.
  • a drain electrode 6 formed on the active layer 2a.
  • FIG. 6 is a schematic cross-sectional view showing another example of the organic transistor (field effect type organic transistor) of the present invention.
  • the organic transistor 150 shown in FIG. 6 includes a substrate 1, an active layer 2 formed on the substrate 1, a source electrode 5 and a drain electrode 6 formed on the active layer 2 with a predetermined interval, and a source electrode. 5 and an insulating layer 3 formed on the active layer 2 so as to cover a part of the drain electrode 6, a region of the insulating layer 3 in which the source electrode 5 is formed in the lower portion, and a drain electrode 6 are formed in the lower portion.
  • a gate electrode 4 formed on the insulating layer 3 so as to partially cover each region of the insulating layer 3.
  • FIG. 7 is a schematic cross-sectional view showing another example of the organic transistor (field-effect organic transistor) of the present invention.
  • the organic transistor 160 shown in FIG. 7 includes a substrate 1, a gate electrode 4 formed on the substrate 1, an insulating layer 3 formed on the substrate 1 so as to cover the gate electrode 4, and the gate electrode 4 at the bottom.
  • An active layer 2 formed so as to cover the region of the insulating layer 3 formed on the active layer 2, a source electrode 5 formed on the active layer 2 so as to cover a part of the active layer 2, and one of the active layers 2
  • a source electrode 5 and a drain electrode 6 formed on the active layer 2 with a predetermined interval are provided so as to cover the portion.
  • FIG. 8 is a schematic cross-sectional view showing another example of the organic transistor (field-effect organic transistor) of the present invention.
  • An organic transistor 170 shown in FIG. 8 has a gate electrode 4, an insulating layer 3 formed on the gate electrode 4, an active layer 2 formed on the insulating layer 3, and a predetermined interval on the active layer 2.
  • the gate electrode 4 also serves as the substrate 1.
  • the active layer 2 and / or the active layer 2a is composed of a film containing the polymer compound of the present invention, and a current path (channel) between the source electrode 5 and the drain electrode 6 is formed. )
  • the gate electrode 4 controls the amount of current passing through the current path (channel) by applying a voltage.
  • Such a field effect organic transistor can be produced by a known method, for example, a method described in JP-A-5-110069.
  • the electrostatic induction organic transistor can be manufactured by a known method such as the method described in Japanese Patent Application Laid-Open No. 2004-006476.
  • the material of the substrate 1 may be any material that does not hinder the characteristics of the organic transistor.
  • a glass substrate, a flexible film substrate, or a plastic substrate can be used as the substrate.
  • the material of the insulating layer 3 may be any material having high electrical insulation, and SiO x , SiN x , Ta 2 O 5 , polyimide, polyvinyl alcohol, polyvinyl phenol, organic glass, photoresist, and the like can be used. From the viewpoint of lowering the voltage, it is preferable to use a material having a high dielectric constant.
  • the surface of the insulating layer 3 is treated with a surface treatment agent such as a silane coupling agent in order to improve the interface characteristics between the insulating layer 3 and the active layer 2. It is also possible to form the active layer 2 after the modification.
  • silane coupling agents include alkylchlorosilanes (octyltrichlorosilane (OTS), octadecyltrichlorosilane (ODTS), phenylethyltrichlorosilane, etc.), alkylalkoxysilanes, fluorinated alkylchlorosilanes, fluorinated alkylalkoxy.
  • alkylalkoxysilanes fluorinated alkylchlorosilanes, fluorinated alkylalkoxy.
  • silylamine compounds such as silanes and hexamethyldisilazane (HMDS).
  • the surface of the insulating layer may be subjected to ozone UV treatment or O 2 plasma treatment before treatment with the surface treatment agent.
  • the surface energy of the silicon oxide film used as the insulating layer can be controlled. Further, the surface treatment improves the orientation of the film constituting the active layer on the insulating layer, and high charge transportability (mobility) can be obtained.
  • the gate electrode 4 includes metals such as gold, platinum, silver, copper, chromium, palladium, aluminum, indium, molybdenum, low-resistance polysilicon, low-resistance amorphous silicon, tin oxide, indium oxide, indium / tin oxide.
  • a material such as (ITO) can be used. These materials may be used alone or in combination of two or more.
  • a highly doped silicon substrate can be used as the gate electrode 4.
  • a highly doped silicon substrate has not only the performance as a gate electrode but also the performance as a substrate. When the gate electrode 4 having such a performance as a substrate is used, the substrate 1 may be omitted in the organic transistor in which the substrate 1 and the gate electrode 4 are in contact with each other.
  • the source electrode 5 and the drain electrode 6 are preferably made of a low resistance material, and particularly preferably made of gold, platinum, silver, copper, chromium, palladium, aluminum, indium, molybdenum or the like. These materials may be used alone or in combination of two or more.
  • a layer composed of another compound may be interposed between the source electrode 5 and the drain electrode 6 and the active layer 2.
  • Such layers include low molecular compounds having electron transport properties, low molecular compounds having hole transport properties, alkali metals, alkaline earth metals, rare earth metals, complexes of these metals with organic compounds, iodine, bromine, Halogens such as chlorine and iodine chloride, sulfur oxide compounds such as sulfuric acid, sulfuric anhydride, sulfur dioxide and sulfate, nitric oxide compounds such as nitric acid, nitrogen dioxide and nitrate, halogenated compounds such as perchloric acid and hypochlorous acid, Examples thereof include layers made of aromatic thiol compounds such as alkyl thiol compounds, aromatic thiols, and fluorinated alkyl aromatic thiols.
  • the organic transistor after manufacturing the organic transistor as described above, it is preferable to form a protective film on the organic transistor in order to protect the element. Thereby, an organic transistor is interrupted
  • Examples of the method for forming the protective film include a method of covering the organic transistor with a UV curable resin, a thermosetting resin, an inorganic SiON x film, or the like.
  • a protective film after the organic transistor is manufactured without exposing the organic transistor to the atmosphere (for example, in a dry nitrogen atmosphere or in a vacuum).
  • An organic field effect transistor which is a kind of organic transistor configured as described above, can be applied as a pixel drive switching element of an active matrix drive type liquid crystal display or an organic electroluminescence display. And since the organic field effect transistor of embodiment mentioned above is equipped with the active compound which contains the high molecular compound of this invention as an active layer, and the charge transport property improved by it, the field effect mobility is provided. Is expensive. Therefore, it is useful for manufacturing a display having a sufficient response speed.
  • NMR analysis The NMR measurement was performed by dissolving the compound in deuterated chloroform and using an NMR apparatus (Varian, INOVA300).
  • Mass spectrometry Mass spectrometry was determined using a mass spectrometer (AccuTOF TLC JMS-T100TD, manufactured by JEOL Ltd.).
  • the number average molecular weight and the weight average molecular weight of the polymer compound were determined using gel permeation chromatography (GPC, manufactured by Shimadzu Corporation, trade name: LC-10AD).
  • GPC gel permeation chromatography
  • the polymer compound to be measured was dissolved in tetrahydrofuran and injected into GPC. Tetrahydrofuran was used for the mobile phase of GPC.
  • PLgel MIXED-B manufactured by Polymer Laboratories
  • a UV detector manufactured by Shimadzu Corporation, trade name: SPD-M10A was used as the detector.
  • a flask was charged with 25 g (0.22 mol) of 3-methoxythiophene, 2.5 g (11 mmol) of paratoluenesulfonic acid monohydrate, 44 g (0.22 mol) of dodecanethiol, and 250 mL of toluene. Stir for hours. The reaction solution was added to water, and the toluene layer was extracted. After the toluene solution was washed with water, the solvent was distilled off with an evaporator to obtain a liquid.
  • the obtained liquid was diluted with n-hexane, and the diluted solution was purified with a silica gel column using n-hexane as a developing solvent, and an n-hexane solution was recovered. Thereafter, n-hexane was evaporated to obtain 3-dodecylthiothiophene.
  • the yield was 55 g and the yield was 88%.
  • the flask was charged with 55 g (0.19 mol) of 3-dodecylthiothiophene and 165 mL of chloroform and stirred at 0 ° C.
  • 34 g (0.19 mol) of N-bromosuccinimide was added little by little.
  • the reaction solution was stirred at 0 ° C. for 3 hours.
  • the reaction solution was added to an aqueous sodium thiosulfate solution, and the chloroform layer was extracted. After the chloroform solution was washed with water, the solvent was distilled off with an evaporator to obtain a liquid.
  • the obtained liquid was diluted with n-hexane and purified with a silica gel column using n-hexane as a developing solvent to recover an n-hexane solution. Thereafter, n-hexane was evaporated to obtain 2-bromo-3-dodecylthiothiophene. The yield was 70 g and the yield was 95%.
  • reaction solution was concentrated, the concentrated reaction solution was poured into water, toluene was further added, and the toluene layer was extracted. After the toluene solution was washed with water, the solvent was distilled off with an evaporator to obtain a liquid. The obtained liquid was diluted with n-hexane and purified with a silica gel column using n-hexane as a developing solvent to recover an n-hexane solution. Thereafter, n-hexane was evaporated to obtain Compound 1. The yield was 1.7 g and the yield was 90%.
  • the obtained liquid was diluted with n-hexane and purified with a silica gel column using n-hexane as a developing solvent to recover an n-hexane solution. Thereafter, n-hexane was evaporated to obtain Compound 2.
  • the yield was 1.9 g, and the yield was 91%.
  • the obtained solid was diluted with n-hexane and purified with a silica gel column using n-hexane as a developing solvent to recover an n-hexane solution. Thereafter, n-hexane was evaporated to obtain a solid. The solid was recrystallized using 2-propanol to obtain Compound 4. The yield was 8.0 g and the yield was 94%.
  • the obtained solid was diluted with n-hexane and purified with a silica gel column using n-hexane as a developing solvent to recover an n-hexane solution. Thereafter, n-hexane was evaporated to obtain Compound 5.
  • the yield was 7.0 g and the yield was 78%.
  • the toluene solution was washed with an acetic acid aqueous solution and water, the toluene solution was added dropwise to acetone to obtain a precipitate.
  • the precipitate was dissolved in chloroform and purified with a silica gel column using chloroform as a developing solvent.
  • the purified chloroform solution was added dropwise to methanol, and the precipitate was filtered to obtain Compound 6.
  • the yield was 0.18 g, the number average molecular weight in terms of polystyrene was 2.5 ⁇ 10 3 , and the weight average molecular weight was 5.3 ⁇ 10 3 .
  • Example 3 (Production and Evaluation of Organic Transistor 1) An organic transistor 1 having a structure shown in FIG. 8 was prepared using a solution containing Compound 6 as a charge transporting compound. The surface of the heavily doped n-type silicon substrate serving as the gate electrode was thermally oxidized to form a silicon oxide film (hereinafter referred to as “thermal oxide film”). The thermal oxide film functions as an insulating layer. Next, a source electrode and a drain electrode were formed on the thermal oxide film by a photolithography process. The source electrode and the drain electrode had a chromium (Cr) layer and a gold (Au) layer from the thermal oxide film side, and had a channel length of 20 ⁇ m and a channel width of 2 mm.
  • Cr chromium
  • Au gold
  • the substrate on which the thermal oxide film, the source electrode, and the drain electrode thus obtained were ultrasonically cleaned with acetone, and UV ozone treatment was performed with an ozone UV cleaner. Thereafter, the surface of the thermal oxide film was modified with ⁇ -phenethyltrichlorosilane, and the surfaces of the source electrode and the drain electrode were modified with pentafluorobenzenethiol. Next, an organic semiconductor layer was formed by spin-coating 0.5 wt% of an orthodichlorobenzene solution of Compound 6 on the surface-treated thermal oxide film, source electrode and drain electrode at a rotation speed of 1000 rpm. Thereafter, the organic semiconductor layer was heated at 230 ° C. for 1 hour to manufacture the organic transistor 1.
  • the transistor characteristics were measured by changing the gate voltage Vg and the source-drain voltage Vsd of the organic transistor 1 obtained.
  • the field effect mobility was 3.8 ⁇ 10 ⁇ 3 cm 2 / Vs.
  • Example 4 (Production and Evaluation of Organic Transistor 2) Organic transistor 2 was produced in the same manner as in Example 3 except that compound 7 was used instead of compound 6.
  • the transistor characteristics were measured by changing the gate voltage Vg and the source-drain voltage Vsd of the organic transistor 2 obtained.
  • the field effect mobility was 2.4 ⁇ 10 ⁇ 3 cm 2 / Vs.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Thin Film Transistor (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

[Problem] To provide a polymeric compound which increases the field effect mobility of an organic transistor when used in an active layer (organic semiconductor layer) of the organic transistor. [Solution] A polymeric compound containing a structural unit represented by formula (1) (wherein R1 represents an alkyl group, an aryl group, or a heteroaryl group; and R2 represents a hydrogen atom, an alkyl group, an alkoxy group, an alkylthio group, an aryl group, or a heteroaryl group) and a structural unit represented by formula (2-1) or (2-2) (wherein Z1 represents -CR5=CR6-, -S-, -O-, -Se-, or -NR7-; R3, R4, R5, and R6 each independently represent a hydrogen atom, an alkyl group, an aryl group, a heteroaryl group, a halogen atom, a cyano group, or a nitro group; R7 represents a hydrogen atom, an alkyl group, an aryl group, or a heteroaryl group; and Z2 represents =S=, =CR5-CR6=, or =Se=).

Description

高分子化合物、有機半導体材料及び有機トランジスタPolymer compound, organic semiconductor material and organic transistor
 本発明は、有機半導体材料として有用な高分子化合物及びそれを用いた有機トランジスタに関する。 The present invention relates to a polymer compound useful as an organic semiconductor material and an organic transistor using the same.
 有機半導体材料を利用した有機トランジスタは、従来の無機半導体材料を利用したトランジスタと比較して、デバイスの軽量化や、製造コストの低下、低温で製造できることが期待されるため、盛んに研究開発が行われている。 Since organic transistors using organic semiconductor materials are expected to be lighter, have lower manufacturing costs and can be manufactured at lower temperatures than conventional transistors using inorganic semiconductor materials, they are actively researched and developed. Has been done.
 有機トランジスタの性能の一つである電界効果移動度は、活性層に含まれる有機半導体材料のキャリア移動度に大きく依存するため、様々な有機半導体材料を有機トランジスタの活性層に用いることが検討されている。 The field effect mobility, which is one of the performances of organic transistors, greatly depends on the carrier mobility of the organic semiconductor material contained in the active layer. Therefore, it is considered to use various organic semiconductor materials for the active layer of the organic transistor. ing.
 例えば、非特許文献1では、有機半導体材料として下記高分子化合物を用いて、有機トランジスタが製造され、トランジスタ特性が測定されている。 For example, in Non-Patent Document 1, an organic transistor is manufactured using the following polymer compound as an organic semiconductor material, and transistor characteristics are measured.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 しかしながら、前記高分子化合物を有機半導体材料として用いた有機トランジスタは、電界効果移動度が1.0×10-3cm/Vs程度であり、電界効果移動度が必ずしも十分に高くないという問題がある。 However, an organic transistor using the polymer compound as an organic semiconductor material has a field effect mobility of about 1.0 × 10 −3 cm 2 / Vs, and the field effect mobility is not necessarily high enough. is there.
 本発明は上記従来の問題を解決するものであり、その目的とするところは、有機トランジスタの活性層(有機半導体層)に用いた場合に、有機トランジスタの電界効果移動度が高くなる高分子化合物を提供することにある。 The present invention solves the above-mentioned conventional problems, and the object of the present invention is to provide a polymer compound that increases the field effect mobility of an organic transistor when used in an active layer (organic semiconductor layer) of the organic transistor. Is to provide.
 即ち、本発明は、式 That is, the present invention has the formula
Figure JPOXMLDOC01-appb-C000005
 (1)
Figure JPOXMLDOC01-appb-C000005
(1)
〔式中、Rは、アルキル基、アリール基又はヘテロアリール基を表す。Rは、水素原子、アルキル基、アルコキシ基、アルキルチオ基、アリール基又はヘテロアリール基を表す。〕
で表される構造単位と、式
[Wherein, R 1 represents an alkyl group, an aryl group, or a heteroaryl group. R 2 represents a hydrogen atom, an alkyl group, an alkoxy group, an alkylthio group, an aryl group or a heteroaryl group. ]
And the structural unit represented by
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
〔式中、Zは、-CR=CR-、-S-、-O-、-Se-又は-NR-を表す。R、R、R及びRは、それぞれ独立に、水素原子、アルキル基、アリール基、ヘテロアリール基、ハロゲン原子、シアノ基又はニトロ基を表す。Rは、水素原子、アルキル基、アリール基又はヘテロアリール基を表す。Zは、=S=、=CR-CR=又は=Se=を表す。〕
で表される構造単位とを含む高分子化合物を提供する。
[Wherein Z 1 represents —CR 5 ═CR 6 —, —S—, —O—, —Se— or —NR 7 —. R 3 , R 4 , R 5 and R 6 each independently represent a hydrogen atom, an alkyl group, an aryl group, a heteroaryl group, a halogen atom, a cyano group or a nitro group. R 7 represents a hydrogen atom, an alkyl group, an aryl group or a heteroaryl group. Z 2 represents = S =, = CR 5 -CR 6 = or = Se =. ]
The polymer compound containing the structural unit represented by these is provided.
 ある一形態においては、前記高分子化合物は、式 In one embodiment, the polymer compound has the formula
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
〔式中、R及びRは、前記と同じ意味を表す。aは1~4の整数を表す。bは0~4の整数を表す。cは1~4の整数を表す。複数個あるRは、同一であっても相異なってもよい。複数個あるRは、同一であっても相異なってもよい。〕
で表される構造単位を有する。
[Wherein R 1 and R 2 represent the same meaning as described above. a represents an integer of 1 to 4. b represents an integer of 0 to 4. c represents an integer of 1 to 4. A plurality of R 1 may be the same or different. A plurality of R 2 may be the same or different. ]
It has the structural unit represented by these.
 また、本発明は、前記高分子化合物を含む有機半導体材料を提供する。本発明において、「有機半導体材料」とは、半導体挙動を示す有機化合物を含有する材料を意味する。 The present invention also provides an organic semiconductor material containing the polymer compound. In the present invention, the “organic semiconductor material” means a material containing an organic compound exhibiting semiconductor behavior.
 また、本発明は、前記有機半導体材料を含む有機層を有する有機半導体素子を提供する。本発明において、「有機半導体素子」とは、有機半導体材料を含む有機層を有する半導体素子を意味する。 The present invention also provides an organic semiconductor element having an organic layer containing the organic semiconductor material. In the present invention, the “organic semiconductor element” means a semiconductor element having an organic layer containing an organic semiconductor material.
 また、本発明は、ソース電極、ドレイン電極、ゲート電極及び活性層を有し、該活性層に前記有機半導体材料を含む有機トランジスタを提供する。 The present invention also provides an organic transistor having a source electrode, a drain electrode, a gate electrode, and an active layer, wherein the active layer includes the organic semiconductor material.
 本発明の高分子化合物を活性層に含む有機トランジスタは、高い電界効果移動度を示すため、本発明は極めて有用である。 Since the organic transistor containing the polymer compound of the present invention in the active layer exhibits high field effect mobility, the present invention is extremely useful.
本発明の有機トランジスタの一例を示す模式断面図である。It is a schematic cross section which shows an example of the organic transistor of this invention. 本発明の有機トランジスタの他の例を示す模式断面図である。It is a schematic cross section which shows the other example of the organic transistor of this invention. 本発明の有機トランジスタの他の例を示す模式断面図である。It is a schematic cross section which shows the other example of the organic transistor of this invention. 本発明の有機トランジスタの他の例を示す模式断面図である。It is a schematic cross section which shows the other example of the organic transistor of this invention. 本発明の有機トランジスタの他の例を示す模式断面図である。It is a schematic cross section which shows the other example of the organic transistor of this invention. 本発明の有機トランジスタの他の例を示す模式断面図である。It is a schematic cross section which shows the other example of the organic transistor of this invention. 本発明の有機トランジスタの他の例を示す模式断面図である。It is a schematic cross section which shows the other example of the organic transistor of this invention. 本発明の有機トランジスタの他の例を示す模式断面図である。It is a schematic cross section which shows the other example of the organic transistor of this invention.
 以下、必要に応じて図面を参照することにより、本発明の好適な実施の形態について詳細に説明する。なお、図面の説明においては、同一の要素には同一の符号を付し、重複する説明は省略する。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings as necessary. In the description of the drawings, the same elements are denoted by the same reference numerals, and redundant descriptions are omitted.
 本明細書中、「構造単位」とは、高分子化合物中に1個以上存在する単位構造を意味する。「構造単位」は、「繰返し単位」(即ち、高分子化合物中に2個以上存在する単位構造)として高分子化合物中に含まれることが好ましい。 In the present specification, the “structural unit” means a unit structure present in one or more polymer compounds. The “structural unit” is preferably contained in the polymer compound as a “repeating unit” (that is, a unit structure present in two or more in the polymer compound).
 <高分子化合物>
(第1構造単位)
 本発明の高分子化合物は、式(1)で表される構造単位(以下、「第1構造単位」という場合がある。)を含む。第1構造単位は、高分子化合物中に一種のみ含まれていても二種以上含まれていてもよい。
<Polymer compound>
(First structural unit)
The polymer compound of the present invention includes a structural unit represented by the formula (1) (hereinafter sometimes referred to as “first structural unit”). The first structural unit may be contained alone or in combination of two or more in the polymer compound.
 式(1)中、Rは、アルキル基、アリール基又はヘテロアリール基を表す。Rは、水素原子、アルキル基、アルコキシ基、アルキルチオ基、アリール基又はヘテロアリール基を表す。 In formula (1), R 1 represents an alkyl group, an aryl group, or a heteroaryl group. R 2 represents a hydrogen atom, an alkyl group, an alkoxy group, an alkylthio group, an aryl group or a heteroaryl group.
 ここで、アルキル基は、直鎖、分岐のいずれでもよく、シクロアルキル基であってもよい。アルキル基が有する炭素数は、通常1~60であり、1~20であることが好ましい。アルキル基の中でも、直鎖アルキル基、分岐アルキル基が好ましく、直鎖アルキル基がより好ましい。 Here, the alkyl group may be linear or branched, and may be a cycloalkyl group. The alkyl group usually has 1 to 60 carbon atoms, preferably 1 to 20 carbon atoms. Among the alkyl groups, a linear alkyl group and a branched alkyl group are preferable, and a linear alkyl group is more preferable.
 アルキル基の具体例としては、メチル基、エチル基、n-プロピル基、n-ブチル基、n-ヘキシル基、n-オクチル基、n-ドデシル基、n-オクタデシル基等の直鎖アルキル基、イソプロピル基、イソブチル基、sec-ブチル基、tert-ブチル基、2-エチルヘキシル基、3,7-ジメチルオクチル基等の分岐アルキル基、シクロペンチル基、シクロヘキシル基等のシクロアルキル基が挙げられる。 Specific examples of the alkyl group include a straight chain alkyl group such as a methyl group, an ethyl group, an n-propyl group, an n-butyl group, an n-hexyl group, an n-octyl group, an n-dodecyl group, and an n-octadecyl group, Examples thereof include branched alkyl groups such as isopropyl group, isobutyl group, sec-butyl group, tert-butyl group, 2-ethylhexyl group and 3,7-dimethyloctyl group, and cycloalkyl groups such as cyclopentyl group and cyclohexyl group.
 アルキル基は置換基を有していてもよく、アルキル基が有していてもよい置換基としては、アルコキシ基、アリール基、ハロゲン原子等が挙げられる。置換基を有しているアルキル基の具体例としては、メトキシエチル基、ベンジル基、トリフルオロメチル基、パーフルオロヘキシル基等が挙げられる。 The alkyl group may have a substituent, and examples of the substituent that the alkyl group may have include an alkoxy group, an aryl group, and a halogen atom. Specific examples of the alkyl group having a substituent include a methoxyethyl group, a benzyl group, a trifluoromethyl group, and a perfluorohexyl group.
 アルコキシ基は、置換基を有していてもよく、置換基を除いたアルコキシ基の炭素数は、通常1~20である。アルコキシ基は、直鎖、分岐いずれでもよく、シクロアルコキシ基であってもよい。 The alkoxy group may have a substituent, and the number of carbon atoms of the alkoxy group excluding the substituent is usually 1-20. The alkoxy group may be linear or branched, and may be a cycloalkoxy group.
 アルコキシ基の具体例としては、n-ブチルオキシ基、n-ヘキシルオキシ基、2-エチルヘキシルオキシ基、3,7-ジメチルオクチルオキシ基、n-ドデシルオキシ基等が挙げられる。 Specific examples of the alkoxy group include n-butyloxy group, n-hexyloxy group, 2-ethylhexyloxy group, 3,7-dimethyloctyloxy group, n-dodecyloxy group and the like.
 アルコキシ基の中でも、n-ブチルオキシ基、n-ヘキシルオキシ基、n-ドデシルオキシ基等の直鎖アルキルオキシ基が好ましい。 Among the alkoxy groups, linear alkyloxy groups such as n-butyloxy group, n-hexyloxy group, n-dodecyloxy group and the like are preferable.
 アルキルチオ基は、置換基を有していてもよく、置換基を除いたアルキルチオ基の炭素数は、通常1~20である。アルキルチオ基は、直鎖、分岐いずれでもよく、シクロアルキルチオ基であってもよい。 The alkylthio group may have a substituent, and the alkylthio group excluding the substituent usually has 1 to 20 carbon atoms. The alkylthio group may be linear or branched, and may be a cycloalkylthio group.
 アルキルチオ基の具体例としては、n-ブチルチオ基、n-ヘキシルチオ基、2-エチルヘキシルチオ基、3,7-ジメチルオクチルチオ基、n-ドデシルチオ基等が挙げられる。 Specific examples of the alkylthio group include n-butylthio group, n-hexylthio group, 2-ethylhexylthio group, 3,7-dimethyloctylthio group, n-dodecylthio group and the like.
 アルキルチオ基の中でも、n-ブチルチオ基、n-ヘキシルチオ基、n-ドデシルチオ基等の直鎖アルキルチオ基が好ましい。 Among the alkylthio groups, linear alkylthio groups such as n-butylthio group, n-hexylthio group, and n-dodecylthio group are preferable.
 アリール基は、芳香族炭化水素化合物から芳香環に直接結合する水素原子1個を除いた原子団であり、ベンゼン環を有する基、縮合環を有する基、独立した芳香族環又は縮合環2個以上が直接結合した基を含む。アリール基が有する炭素数は、通常6~60であり、6~20であることが好ましい。アリール基としては、フェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基、1-ピレニル基、2-ピレニル基、4-ピレニル基、2-フルオレニル基、3-フルオレニル基、4-フルオレニル基、4-フェニルフェニル基等が挙げられる。 An aryl group is an atomic group obtained by removing one hydrogen atom directly bonded to an aromatic ring from an aromatic hydrocarbon compound, a group having a benzene ring, a group having a condensed ring, an independent aromatic ring or two condensed rings. These include groups directly attached. The aryl group usually has 6 to 60 carbon atoms, preferably 6 to 20 carbon atoms. Aryl groups include phenyl, 1-naphthyl, 2-naphthyl, 1-anthracenyl, 2-anthracenyl, 9-anthracenyl, 1-pyrenyl, 2-pyrenyl, 4-pyrenyl, 2- Examples include a fluorenyl group, a 3-fluorenyl group, a 4-fluorenyl group, and a 4-phenylphenyl group.
 アリール基は置換基を有していてもよい。アリール基が有していてもよい置換基としては、アルキル基、アルコキシ基、アルキルチオ基、ヘテロアリール基、ハロゲン原子等が挙げられる。置換基を有しているアリール基としては、4-ヘキシルフェニル基、3,5-ジメトキシフェニル基、ペンタフルオロフェニル基等が挙げられる。アリール基が置換基を有する場合、置換基としてはアルキル基が好ましい。 The aryl group may have a substituent. Examples of the substituent that the aryl group may have include an alkyl group, an alkoxy group, an alkylthio group, a heteroaryl group, and a halogen atom. Examples of the aryl group having a substituent include a 4-hexylphenyl group, a 3,5-dimethoxyphenyl group, and a pentafluorophenyl group. When the aryl group has a substituent, the substituent is preferably an alkyl group.
 ヘテロアリール基は、芳香族性を有する複素環式化合物から、芳香環に直接結合する水素原子1個を除いた原子団であり、縮合環を有する基、独立した複素芳香族環又は縮合環2個以上が直接結合した基を含む。ヘテロアリール基が有する炭素数は、通常2~60であり、3~20であることが好ましい。ヘテロアリール基としては、2-フリル基、3-フリル基、2-チエニル基、3-チエニル基、2-ピロリル基、3-ピロリル基、2-オキサゾリル基、2-チアゾリル基、2-イミダゾリル基、2-ピリジル基、3-ピリジル基、4-ピリジル基、2-ベンゾフリル基、2-ベンゾチエニル基、2-チエノチエニル基等が挙げられる。 A heteroaryl group is an atomic group obtained by removing one hydrogen atom directly bonded to an aromatic ring from a heterocyclic compound having aromaticity, a group having a condensed ring, an independent heteroaromatic ring or a condensed ring 2 Includes groups in which more than one are directly bonded. The heteroaryl group usually has 2 to 60 carbon atoms, and preferably 3 to 20 carbon atoms. Heteroaryl groups include 2-furyl group, 3-furyl group, 2-thienyl group, 3-thienyl group, 2-pyrrolyl group, 3-pyrrolyl group, 2-oxazolyl group, 2-thiazolyl group, 2-imidazolyl group 2-pyridyl group, 3-pyridyl group, 4-pyridyl group, 2-benzofuryl group, 2-benzothienyl group, 2-thienothienyl group and the like.
 ヘテロアリール基は置換基を有していてもよい。ヘテロアリール基が有していてもよい置換基としては、アルキル基、アルコキシ基、アルキルチオ基、アリール基、ハロゲン原子等が挙げられる。置換基を有しているヘテロアリール基としては、5-オクチル-2-チエニル基、5-フェニル-2-フリル基等が挙げられる。ヘテロアリール基が置換基を有する場合、置換基としてはアルキル基が好ましい。 The heteroaryl group may have a substituent. Examples of the substituent that the heteroaryl group may have include an alkyl group, an alkoxy group, an alkylthio group, an aryl group, and a halogen atom. Examples of the heteroaryl group having a substituent include a 5-octyl-2-thienyl group and a 5-phenyl-2-furyl group. When the heteroaryl group has a substituent, the substituent is preferably an alkyl group.
 ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。 Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
 Rは、高分子化合物の溶解性を向上させて素子作製を容易にする観点からは、アルキル基が好ましい。 R 1 is preferably an alkyl group from the viewpoint of improving the solubility of the polymer compound and facilitating device fabrication.
 Rは、第1構造単位を含む化合物の合成の容易さ及び高分子化合物の溶解性を向上させて素子作成を容易にする観点から、水素原子、アルキル基又はアルキルチオ基が好ましく、水素原子又はアルキル基がより好ましく、水素原子がさらに好ましい。 R 2 is preferably a hydrogen atom, an alkyl group or an alkylthio group from the viewpoint of facilitating the device preparation by improving the synthesis of the compound containing the first structural unit and the solubility of the polymer compound, An alkyl group is more preferable, and a hydrogen atom is more preferable.
 第1構造単位としては、例えば、式(1-001)で表される構造単位~式(1-010)で表される構造単位が挙げられる。中でも、合成の容易さの観点からは、式(1-001)で表される構造単位が好ましい。 Examples of the first structural unit include a structural unit represented by the formula (1-001) to a structural unit represented by the formula (1-010). Among these, from the viewpoint of ease of synthesis, a structural unit represented by the formula (1-001) is preferable.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
〔式(1-001)~式(1-010)中、Rは、水素原子、アルキル基、アルコキシ基、アルキルチオ基、アリール基又はヘテロアリール基を表し、Rは、アルキル基、アリール基又はヘテロアリール基を表す。複数存在するRは同一でも異なっていてもよい。複数存在するRは同一でも異なっていてもよい〕 [In the formulas (1-001) to (1-010), R represents a hydrogen atom, an alkyl group, an alkoxy group, an alkylthio group, an aryl group or a heteroaryl group, and R a represents an alkyl group, an aryl group or Represents a heteroaryl group. A plurality of R may be the same or different. A plurality of R a may be the same or different.]
 高分子化合物のキャリア移動度を向上させる観点からは、高分子化合物が、第1構造単位を含む式(3)で表される構造単位又は式(4)で表される構造単位を含むことが好ましい。 From the viewpoint of improving the carrier mobility of the polymer compound, the polymer compound may include a structural unit represented by the formula (3) including the first structural unit or a structural unit represented by the formula (4). preferable.
 式(3)及び式(4)中、aは1~4の整数を表す。合成の容易さの観点からは、1~2が好ましい。 In formula (3) and formula (4), a represents an integer of 1 to 4. From the viewpoint of ease of synthesis, 1 or 2 is preferable.
 式(3)及び式(4)中、bは0~4の整数を表す。合成の容易さの観点から、0~2が好ましい。 In the formulas (3) and (4), b represents an integer of 0 to 4. From the viewpoint of ease of synthesis, 0 to 2 is preferable.
 式(3)及び式(4)中、cは1~4の整数を表す。合成の容易さの観点から、1~2が好ましい。 In the formulas (3) and (4), c represents an integer of 1 to 4. From the viewpoint of ease of synthesis, 1 or 2 is preferable.
 合成の容易さの観点からは、aとcが同一であることが好ましい。 From the viewpoint of ease of synthesis, a and c are preferably the same.
 式(3)で表される構造単位としては、例えば、式(3-001)で表される構造単位~式(3-014)で表される構造単位が挙げられる。中でも、式(3-001)で表される構造単位~式(3-005)で表される構造単位が好ましい。 Examples of the structural unit represented by the formula (3) include a structural unit represented by the formula (3-001) to a structural unit represented by the formula (3-014). Among these, a structural unit represented by the formula (3-001) to a structural unit represented by the formula (3-005) are preferable.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
〔式(3-001)~式(3-014)中、Rは、水素原子、アルキル基、アルコキシ基、アルキルチオ基、アリール基又はヘテロアリール基を表し、Rは、アルキル基、アリール基又はヘテロアリール基を表す。複数存在するRは同一でも異なっていてもよい。複数存在するRは同一でも異なっていてもよい〕 [In the formulas (3-001) to (3-014), R represents a hydrogen atom, an alkyl group, an alkoxy group, an alkylthio group, an aryl group or a heteroaryl group, and R a represents an alkyl group, an aryl group or Represents a heteroaryl group. A plurality of R may be the same or different. A plurality of R a may be the same or different.]
 式(4)で表される構造単位としては、例えば、式(4-001)で表される構造単位~式(4-014)で表される構造単位が挙げられる。中でも、式(4-001)で表される構造単位~式(4-005)で表される構造単位が好ましい。
Examples of the structural unit represented by the formula (4) include a structural unit represented by the formula (4-001) to a structural unit represented by the formula (4-014). Among these, a structural unit represented by formula (4-001) to a structural unit represented by formula (4-005) are preferable.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
〔式(4-001)~式(4-014)中、Rは、水素原子、アルキル基、アルコキシ基、アルキルチオ基、アリール基又はヘテロアリール基を表し、Rは、アルキル基、アリール基又はヘテロアリール基を表す。複数存在するRは同一でも異なっていてもよい。複数存在するRは同一でも異なっていてもよい〕 [In the formulas (4-001) to (4-014), R represents a hydrogen atom, an alkyl group, an alkoxy group, an alkylthio group, an aryl group or a heteroaryl group, and R a represents an alkyl group, an aryl group or Represents a heteroaryl group. A plurality of R may be the same or different. A plurality of R a may be the same or different.]
 合成の容易さの観点からは、式(3)で表される構造単位が式(4)で表される構造単位よりも好ましい。 From the viewpoint of ease of synthesis, the structural unit represented by the formula (3) is preferable to the structural unit represented by the formula (4).
(第2構造単位)
 本発明の高分子化合物は、式(2-1)で表される構造単位又は式(2-2)で表される構造単位(以下、式(2-1)で表される構造単位又は式(2-2)で表される構造単位を「第2構造単位」という場合がある。)を含む。第2構造単位は、高分子化合物中に一種のみ含まれていても二種以上含まれていてもよい。
(Second structural unit)
The polymer compound of the present invention includes a structural unit represented by the formula (2-1) or a structural unit represented by the formula (2-2) (hereinafter referred to as a structural unit or a formula represented by the formula (2-1)). (2-2) may be referred to as “second structural unit”). The second structural unit may be contained alone or in combination of two or more in the polymer compound.
 式(2-1)及び式(2-2)中、Zは、-CR=CR-、-S-、-O-、-Se-又は-NR-を表す。R、R、R及びRは、それぞれ独立に、水素原子、アルキル基、アリール基、ヘテロアリール基、ハロゲン原子、シアノ基又はニトロ基を表す。Rは、水素原子、アルキル基、アリール基又はヘテロアリール基を表す。Zは、=S=、=CR-CR=又は=Se=を表す。R、R、R及びRで表される、アルキル基、アリール基及びヘテロアリール基の定義、具体例は、前述のRで表されるアルキル基、アリール基及びヘテロアリール基の定義、具体例と同じである。R、R、R及びRで表されるハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。 In Formula (2-1) and Formula (2-2), Z 1 represents —CR 5 ═CR 6 —, —S—, —O—, —Se— or —NR 7 —. R 3 , R 4 , R 5 and R 6 each independently represent a hydrogen atom, an alkyl group, an aryl group, a heteroaryl group, a halogen atom, a cyano group or a nitro group. R 7 represents a hydrogen atom, an alkyl group, an aryl group or a heteroaryl group. Z 2 represents = S =, = CR 5 -CR 6 = or = Se =. Definitions and specific examples of alkyl groups, aryl groups, and heteroaryl groups represented by R 3 , R 4 , R 5, and R 6 include the alkyl groups, aryl groups, and heteroaryl groups represented by R 1 described above. Definitions and examples are the same. Examples of the halogen atom represented by R 3 , R 4 , R 5 and R 6 include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
 Rで表される、アルキル基、アリール基及びヘテロアリール基の定義、具体例は、前述のRで表されるアルキル基、アリール基及びヘテロアリール基の定義、具体例と同じである。 The definitions and specific examples of the alkyl group, aryl group and heteroaryl group represented by R 7 are the same as the definitions and specific examples of the alkyl group, aryl group and heteroaryl group represented by R 1 described above.
 本発明の高分子化合物は、式(2-1)で表される構造単位を含むことが好ましい。 The polymer compound of the present invention preferably contains a structural unit represented by the formula (2-1).
 Zは、本発明の高分子化合物のキャリア移動度を高める観点からは、-S-であることが好ましい。 Z 1 is preferably —S— from the viewpoint of increasing the carrier mobility of the polymer compound of the present invention.
 第2構造単位としては、例えば、式(2-001)で表される構造単位~式(2-006)で表される構造単位が挙げられる。 Examples of the second structural unit include a structural unit represented by the formula (2-001) to a structural unit represented by the formula (2-006).
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
〔式(2-001)~式(2-006)中、Rは、アルキル基、アリール基又はヘテロアリール基を表し、Rは、水素原子、アルキル基、アルコキシ基、アルキルチオ基、アリール基、ヘテロアリール基又はハロゲン原子を表す。複数存在するRは同一でも異なっていてもよい。複数存在するRは同一でも異なっていてもよい〕 [In the formulas (2-001) to (2-006), R a represents an alkyl group, an aryl group or a heteroaryl group, and R b represents a hydrogen atom, an alkyl group, an alkoxy group, an alkylthio group or an aryl group. Represents a heteroaryl group or a halogen atom. A plurality of R a may be the same or different. A plurality of R b may be the same or different.]
 第2構造単位は、第1構造単位と比較して、相対的に電子をより受容する構造である。
そのため、高分子化合物中に第2構造単位を有する高分子では、第2構造単位は比較的負に分極し、第1構造単位は比較的正に分極する。この結果、高分子化合物間で静電的な引力が生じ、分子間のキャリア移動が促進されると推測される。
The second structural unit is a structure that relatively accepts electrons compared to the first structural unit.
Therefore, in the polymer having the second structural unit in the polymer compound, the second structural unit is polarized relatively negatively, and the first structural unit is polarized relatively positively. As a result, it is presumed that an electrostatic attractive force is generated between the polymer compounds, and intermolecular carrier movement is promoted.
 (他の構造単位)
 本発明の高分子化合物は、第1構造単位、第2構造単位、式(3)で表される構造単位、式(4)で表される構造単位以外の構造単位(以下、「他の構造単位」という場合がある。)を含んでいてもよい。他の構造単位は、高分子化合物中に一種のみ含まれていても二種以上含まれていてもよい。
(Other structural units)
The polymer compound of the present invention includes a first structural unit, a second structural unit, a structural unit represented by the formula (3), and a structural unit other than the structural unit represented by the formula (4) (hereinafter referred to as “other structures”). May be referred to as “unit”.). Other structural units may be contained alone or in combination of two or more in the polymer compound.
 他の構造単位としては、例えば、2価の芳香族基、式-CR=CR-で表される基、式-C≡C-で表される基が挙げられる。 Examples of the other structural unit include a divalent aromatic group, a group represented by the formula —CR c ═CR c —, and a group represented by the formula —C≡C—.
 2価の芳香族基は、芳香環から水素原子2個を除いた原子団であり、ベンゼン環を有する基、縮合環を有する基、独立した芳香族環又は縮合環2個以上が直接結合した基を含む。2価の芳香族基としては、フェニレン基、ナフタレンジイル基、アントラセンジイル基、フェナントレンジイル基、テトラセンジイル基、ピレンジイル基、ペンタセンジイル基、ペリレンジイル基、フルオレンジイル基、オキサジアゾールジイル基、チアジアゾールジイル基、オキサゾールジイル基、チアゾールジイル基、チオフェンジイル基、ビチオフェンジイル基、テルチオフェンジイル基、クアテルチオフェンジイル基、ピロールジイル基、フランジイル基、セレノフェンジイル基、ピリジンジイル基、ピラジンジイル基、ピリミジンジイル基、トリアジンジイル基、ベンゾチオフェンジイル基、ベンゾピロールジイル基、ベンゾフランジイル基、キノリンジイル基、イソキノリンジイル基、チエノチオフェンジイル基、ベンゾジチオフェンジイル基等が挙げられる。2価の芳香族基は置換基を有していてもよい。 A divalent aromatic group is an atomic group obtained by removing two hydrogen atoms from an aromatic ring, and a group having a benzene ring, a group having a condensed ring, an independent aromatic ring or two or more condensed rings are directly bonded. Contains groups. Divalent aromatic groups include phenylene group, naphthalenediyl group, anthracenediyl group, phenanthenediyl group, tetracenediyl group, pyrenediyl group, pentacenediyl group, perylenediyl group, fluorenediyl group, oxadiazolediyl group, thiadiazole Diyl group, oxazole diyl group, thiazole diyl group, thiophene diyl group, bithiophene diyl group, terthiophene diyl group, quaterthiophene diyl group, pyrrole diyl group, frangyl group, selenophene diyl group, pyridine diyl group, pyrazine diyl group, Pyrimidinediyl group, triazinediyl group, benzothiophenediyl group, benzopyrrolediyl group, benzofuranyl group, quinolinediyl group, isoquinolinediyl group, thienothiophenediyl group, benzodithio Enjiiru group, and the like. The divalent aromatic group may have a substituent.
 -CR=CR-で表される基中、Rは、それぞれ独立に、水素原子、アルキル基、アリール基、ヘテロアリール基又はシアノ基を表す。Rで表されるアルキル基、アリール基及びヘテロアリール基の定義、具体例は、前述のRで表されるアルキル基、アリール基及びヘテロアリール基の定義、具体例と同じである。 -CR c = CR c - in the group represented by, R c each independently represents a hydrogen atom, an alkyl group, an aryl group, a heteroaryl group or a cyano group. The definitions and specific examples of the alkyl group, aryl group and heteroaryl group represented by R c are the same as the definitions and specific examples of the alkyl group, aryl group and heteroaryl group represented by R 1 described above.
 他の構造単位は、本発明の高分子化合物のキャリア移動度を高める観点からは、2価の芳香族基が好ましく、置換基を有していてもよいフェニレンジイル基、置換基を有していてもよいフルオレンジイル基、置換基としてアルキル基、アリール基又はヘテロアリール基を有していてもよいチオフェンジイル基、置換基を有していてもよいチエノチオフェンジイル基、置換基を有していてもよいベンゾジチオフェンジイル基がより好ましく、以下の式(A-001)で表される基~式(A-005)で表される基が特に好ましい。 From the viewpoint of increasing the carrier mobility of the polymer compound of the present invention, the other structural unit is preferably a divalent aromatic group, and may have a phenylenediyl group which may have a substituent, or a substituent. A fluorenediyl group which may have a thiophene diyl group which may have an alkyl group, an aryl group or a heteroaryl group as a substituent, a thienothiophene diyl group which may have a substituent, a substituent The benzodithiophenediyl group which may be present is more preferable, and the group represented by the following formula (A-001) to the group represented by the formula (A-005) is particularly preferable.
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
〔式中、Rは、水素原子、アルキル基、アルコキシ基、アルキルチオ基、アリール基、ヘテロアリール基又はハロゲン原子を表す。複数存在するRは同一でも異なっていてもよい。Rは、水素原子、アルキル基、アリール基又はヘテロアリール基を表す。複数存在するRは同一でも異なっていてもよい。〕 [Wherein, R b represents a hydrogen atom, an alkyl group, an alkoxy group, an alkylthio group, an aryl group, a heteroaryl group, or a halogen atom. A plurality of R b may be the same or different. R d represents a hydrogen atom, an alkyl group, an aryl group or a heteroaryl group. A plurality of R d may be the same or different. ]
 Rで表されるアルキル基、アリール基及びヘテロアリール基の定義、具体例は、前述のRで表されるアルキル基、アリール基及びヘテロアリール基の定義、具体例と同じである。 The definitions and specific examples of the alkyl group, aryl group and heteroaryl group represented by R d are the same as the definitions and specific examples of the alkyl group, aryl group and heteroaryl group represented by R 1 described above.
 本発明の高分子化合物は、共役高分子化合物であることが好ましい。本発明において、「共役高分子化合物」とは、高分子化合物であって、その高分子化合物を構成する全てのモノマーが、その構造の一部または全体で共役している高分子化合物を意味する。 The polymer compound of the present invention is preferably a conjugated polymer compound. In the present invention, the “conjugated polymer compound” means a polymer compound in which all monomers constituting the polymer compound are conjugated with a part or the whole of the structure. .
 本発明の高分子化合物が第1構造単位と第2構造単位と他の構造単位からなる場合、高分子化合物のキャリア移動度を高める観点からは、高分子化合物が有する構造単位の合計に対して、第1構造単位と第2構造単位の合計が、50モル%以上であることが好ましく、70モル%以上であることがより好ましい。 When the polymer compound of the present invention is composed of the first structural unit, the second structural unit, and another structural unit, from the viewpoint of increasing the carrier mobility of the polymer compound, the polymer compound has a total of structural units. The total of the first structural unit and the second structural unit is preferably 50 mol% or more, and more preferably 70 mol% or more.
 本発明の高分子化合物が、式(3)で表される構造単位及び式(4)で表される構造単位からなる群から選ばれる1種以上の構造単位と、第2構造単位と他の構造単位からなる場合、高分子化合物のキャリア移動度を高める観点からは、高分子化合物が有する構造単位の合計に対して、式(3)で表される構造単位と式(4)で表される構造単位と第2構造単位の合計が、50モル%以上であることが好ましく、70モル%以上であることがより好ましい。 The polymer compound of the present invention comprises at least one structural unit selected from the group consisting of a structural unit represented by formula (3) and a structural unit represented by formula (4), a second structural unit, and other structural units. In the case of consisting of structural units, from the viewpoint of increasing the carrier mobility of the polymer compound, the structural unit represented by the formula (3) and the formula (4) are represented with respect to the total of the structural units of the polymer compound. The total of the structural unit and the second structural unit is preferably 50 mol% or more, and more preferably 70 mol% or more.
 本発明の高分子化合物としては、第1構造単位、式(3)で表される構造単位、式(4)で表される構造単位、第2構造単位、その他の構造単位を組み合わせた高分子化合物P01~P12が挙げられる。各構造単位の合計は、100モル%である。 The polymer compound of the present invention includes a first structural unit, a structural unit represented by the formula (3), a structural unit represented by the formula (4), a second structural unit, and other structural units. Examples thereof include compounds P01 to P12. The total of each structural unit is 100 mol%.
[表1]
Figure JPOXMLDOC01-appb-I000018
[Table 1]
Figure JPOXMLDOC01-appb-I000018
 本発明の高分子化合物は、分子鎖末端に重合反応に活性である基が残っていると、該高分子化合物のキャリア移動度が低下する可能性がある。そのため、分子鎖末端は、アリール基、ヘテロアリール基等の安定な基であることが好ましい。 In the polymer compound of the present invention, if a group active in the polymerization reaction remains at the end of the molecular chain, the carrier mobility of the polymer compound may be lowered. Therefore, the molecular chain terminal is preferably a stable group such as an aryl group or a heteroaryl group.
 本発明の高分子化合物は、いかなる種類の共重合体であってもよく、例えば、ブロック共重合体、ランダム共重合体、交互共重合体、グラフト共重合体等のいずれであってもよい。 The polymer compound of the present invention may be any type of copolymer, such as a block copolymer, a random copolymer, an alternating copolymer, or a graft copolymer.
 高分子化合物のキャリア移動度を高める観点からは、式(3)で表される構造単位又は式(4)で表される構造単位と、式(2-1)で表される構造単位又は式(2-2)で表される構造単位との交互共重合体であることがより好ましく、式(3)で表される構造単位と式(2-1)で表される構造単位又は式(2-2)で表される構造単位との交互共重合体であることがさらに好ましい。 From the viewpoint of increasing the carrier mobility of the polymer compound, the structural unit represented by formula (3) or the structural unit represented by formula (4), and the structural unit or formula represented by formula (2-1) It is more preferable that the copolymer is an alternating copolymer with the structural unit represented by (2-2), and the structural unit represented by the formula (3) and the structural unit represented by the formula (2-1) or the formula (2-1) It is more preferable that the copolymer be an alternating copolymer with the structural unit represented by 2-2).
 本発明の高分子化合物のゲルパーミエーションクロマトグラフィー(以下、「GPC」と言う。)で測定したポリスチレン換算の数平均分子量(Mn)は、通常、1×10~1×10である。 The number average molecular weight (Mn) in terms of polystyrene measured by gel permeation chromatography (hereinafter referred to as “GPC”) of the polymer compound of the present invention is usually 1 × 10 3 to 1 × 10 8 .
 薄膜作製時に良好な薄膜を形成する観点からは、数平均分子量は2×10以上が好ましい。 From the viewpoint of forming a good thin film during thin film production, the number average molecular weight is preferably 2 × 10 3 or more.
 溶媒への溶解性を高め、薄膜作製を容易にする観点からは、数平均分子量は1×10以下であることが好ましい。 The number average molecular weight is preferably 1 × 10 6 or less from the viewpoint of enhancing the solubility in a solvent and facilitating the production of a thin film.
 <高分子化合物の製造方法>
 本発明の高分子化合物の製造方法は特に制限されるものではなく、Ni触媒を用いた還元的カップリング反応を用いる方法、Stilleカップリング反応を用いる方法、Suzukiカップリング反応を用いる方法が挙げられる。化合物の合成の容易さ、交互共重合化合物が得られやすい観点からは、Stilleカップリング反応及びSuzukiカップリング反応を用いる方法が好ましい。
<Method for producing polymer compound>
The production method of the polymer compound of the present invention is not particularly limited, and examples thereof include a method using a reductive coupling reaction using a Ni catalyst, a method using a Stille coupling reaction, and a method using a Suzuki coupling reaction. . From the viewpoint of easy synthesis of the compound and the ability to obtain an alternating copolymer compound, a method using a Stille coupling reaction and a Suzuki coupling reaction is preferred.
 本発明の高分子化合物は、例えば、第1構造単位を含む構造単位の原料になる単量体と、第2構造単位の原料になる単量体と、要すれば他の構造単位の原料になる単量体とを共重合することにより製造される。ここで、第1構造単位を含む構造単位として、具体的には、第1構造単位、又は式(3)又は式(4)で表される構造単位等が挙げられる。 The polymer compound of the present invention includes, for example, a monomer that is a raw material for a structural unit including a first structural unit, a monomer that is a raw material for a second structural unit, and, if necessary, a raw material for another structural unit. It is manufactured by copolymerizing with the monomer which becomes. Here, specific examples of the structural unit including the first structural unit include the first structural unit, the structural unit represented by the formula (3), or the formula (4).
 第1構造単位を含む構造単位の原料になる単量体は、例えば、第1構造単位を含む構造単位の結合手にハロゲン原子が結合した化合物である。この化合物は、第1構造単位を含む構造単位の結合手に水素原子が結合した化合物をハロゲン化して製造される。 The monomer that is a raw material of the structural unit including the first structural unit is, for example, a compound in which a halogen atom is bonded to the bond of the structural unit including the first structural unit. This compound is produced by halogenating a compound in which a hydrogen atom is bonded to a bond of a structural unit including the first structural unit.
 第1構造単位を含む構造単位の結合手に水素原子が結合した化合物のハロゲン化は、この化合物を適当な溶媒に溶解し、ハロゲン化剤を反応させて行えばよい。溶媒としては、クロロホルム、テトラヒドロフラン、ジメチルホルムアミド、酢酸等を用いることができ、ハロゲン化剤としては、N-ブロモスクシンイミド(NBS)、臭素、N-ヨードスクシンイミド(NIS)、N-クロロスクシンイミド(NCS)等を用いることができる。 Halogenation of a compound in which a hydrogen atom is bonded to a bond of a structural unit including the first structural unit may be performed by dissolving the compound in a suitable solvent and reacting with a halogenating agent. As the solvent, chloroform, tetrahydrofuran, dimethylformamide, acetic acid and the like can be used. As the halogenating agent, N-bromosuccinimide (NBS), bromine, N-iodosuccinimide (NIS), N-chlorosuccinimide (NCS) Etc. can be used.
 この場合、第2構造単位の原料になる単量体は、例えば、第2構造単位の結合手にトリアルキルスタンニル基等のアルキル金属基、ジヒドロキシボリル基(-B(OH))、又はホウ酸ジエステルから水酸基を除去した基が結合した化合物である。 In this case, the monomer used as the raw material of the second structural unit is, for example, an alkyl metal group such as a trialkylstannyl group, a dihydroxyboryl group (—B (OH) 2 ), or a bond of the second structural unit, It is a compound in which a group obtained by removing a hydroxyl group from boric acid diester is bonded.
 第2構造単位の結合手にアルキル金属基、ジヒドロキシボリル基、又は、ホウ酸ジエステルから水酸基を除去した基が結合した化合物は、第2構造単位の結合手に水素原子が結合した化合物をアルキル金属化、ジヒドロキシボリル化又はホウ酸ジエステル化等して製造される。 A compound in which an alkyl metal group, dihydroxyboryl group, or a group obtained by removing a hydroxyl group from a boric acid diester is bonded to the bond of the second structural unit is a compound in which a hydrogen atom is bonded to the bond of the second structural unit. , Dihydroxyborylation or boric acid diesterification.
 第2構造単位の結合手に水素原子が結合した化合物のアルキル金属化は、第2構造単位の結合手に水素原子が結合した化合物を適当な溶媒に溶解し、塩基の存在下にアルキル金属化剤を反応させて行えばよい。溶媒としては、ジエチルエーテル、テトラヒドロフラン(THF)、ヘキサン、ヘプタン、トルエン等を用いることができ、塩基としては、n-ブチルリチウム、sec-ブチルリチウム、tert-ブチルリチウム、リチウムジイソプロピルアミド等を用いることができ、アルキル金属化剤としては、塩化トリメチルスズ、塩化トリブチルスズ等を用いることができる。 Alkyl metalation of a compound in which a hydrogen atom is bonded to the bond of the second structural unit is obtained by dissolving a compound in which a hydrogen atom is bonded to the bond of the second structural unit in an appropriate solvent and alkylating in the presence of a base. What is necessary is just to make it react. As the solvent, diethyl ether, tetrahydrofuran (THF), hexane, heptane, toluene or the like can be used, and as the base, n-butyllithium, sec-butyllithium, tert-butyllithium, lithium diisopropylamide or the like can be used. As the alkyl metallizing agent, trimethyltin chloride, tributyltin chloride or the like can be used.
 第2構造単位の結合手に水素原子が結合した化合物のジヒドロキシボリル化又はホウ酸ジエステル化は、第2構造単位の結合手に水素原子が結合した化合物を適当な溶媒に溶解し、塩基の存在下にトリアルキルボレートを反応させて行えばよい。溶媒としては、ジエチルエーテル、テトラヒドロフラン(THF)、ヘキサン、ヘプタン、トルエン等を用いることができ、塩基としては、n-ブチルリチウム、sec-ブチルリチウム、tert-ブチルリチウム、リチウムジイソプロピルアミド等を用いることができ、トリアルキルボレートとしては、トリメチルボレート、トリイソプロピルボレート、2-イソプロポキシ-4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン等を用いることができる。 Dihydroxyborylation or boric acid diesterification of a compound in which a hydrogen atom is bonded to the bond of the second structural unit is performed by dissolving the compound in which the hydrogen atom is bonded to the bond of the second structural unit in an appropriate solvent, and the presence of a base. What is necessary is just to make trialkyl borate react below. As the solvent, diethyl ether, tetrahydrofuran (THF), hexane, heptane, toluene or the like can be used, and as the base, n-butyllithium, sec-butyllithium, tert-butyllithium, lithium diisopropylamide or the like can be used. As the trialkyl borate, trimethyl borate, triisopropyl borate, 2-isopropoxy-4,4,5,5-tetramethyl-1,3,2-dioxaborolane and the like can be used.
 他の構造単位の原料になる単量体は、例えば、他の構造単位として例示した基の結合手にハロゲン原子、アルカリ金属基、ジヒドロキシボリル基、又は、ホウ酸ジエステルから水酸基を除去した基が結合した化合物である。これらの化合物は、上記と同様の方法を用いて、他の構造単位として例示した基の結合手に水素原子が結合した化合物をハロゲン化、アルキル金属化、ジヒドロキシボリル化又はホウ酸ジエステル化することにより製造される。 The monomer used as the raw material for the other structural unit is, for example, a group obtained by removing a hydroxyl group from a halogen atom, an alkali metal group, a dihydroxyboryl group, or a boric acid diester at the bond of the group exemplified as the other structural unit. It is a bound compound. These compounds are obtained by halogenating, alkylating, dihydroxyborating, or boric acid diester a compound in which a hydrogen atom is bonded to a bond of a group exemplified as another structural unit using the same method as described above. Manufactured by.
 次いで、第1構造単位を含む構造単位の結合手にハロゲン原子が結合した化合物、第2構造単位の結合手にアルカリ金属基、ジヒドロキシボリル基、又は、ホウ酸ジエステルから水酸基を除去した基が結合した化合物、及び要すれば、他の構造単位として例示した基の結合手にハロゲン原子、アルカリ金属基、ジヒドロキシボリル基、又は、ホウ酸ジエステルから水酸基を除去した基が結合した化合物を適当な溶媒に溶解し、遷移金属錯体、並びに、要すればホスフィン化合物、及び、塩基の存在下で加熱して、反応させて、本発明の高分子化合物が得られる。 Next, a compound in which a halogen atom is bonded to the bond of the structural unit including the first structural unit, and a group in which the hydroxyl group is removed from the alkali metal group, dihydroxyboryl group, or boric acid diester bond to the bond of the second structural unit And, if necessary, a compound in which a group obtained by removing a hydroxyl group from a halogen atom, an alkali metal group, a dihydroxyboryl group, or a boric acid diester is bonded to a bond of a group exemplified as another structural unit. The polymer compound of the present invention is obtained by dissolving in a solution and heating in the presence of a transition metal complex and, if necessary, a phosphine compound and a base, and reacting.
 その際、第1構造単位を含む構造単位の原料になる単量体と第2構造単位の原料になる単量体の反応量は、モル比において、30/70~70/30、好ましくは35/65~65/35、より好ましくは40/60~60/40になるように調整される。両単量体の反応量の割合が40モル%未満であると、高分子化合物の分子量が低く、電界効果移動度が低くなる場合がある。 At that time, the reaction amount of the monomer as the raw material of the structural unit containing the first structural unit and the monomer as the raw material of the second structural unit is 30/70 to 70/30, preferably 35 in terms of molar ratio. / 65 to 65/35, more preferably 40/60 to 60/40. When the ratio of the reaction amount of both monomers is less than 40 mol%, the molecular weight of the polymer compound is low, and the field effect mobility may be low.
 上記反応の際に、他の構造単位の原料になる単量体も使用する場合は、その使用量は、単量体の合計に対して50モル%以下、好ましくは30モル%以下になる量である。 In the case of using the monomer as a raw material for other structural units in the above reaction, the amount used is 50 mol% or less, preferably 30 mol% or less based on the total amount of monomers. It is.
 溶媒としては、トルエン、ベンゼン等の芳香族炭化水素溶媒、テトラヒドロフラン、アニソール等のエーテル溶媒、1-メチル-2-ピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、アセトニトリル等の非プロトン性極性溶媒等を用いることができ、遷移金属錯体としては、Pd(dba)(ここでdbaは、トランス、トランス-ジベンジリデンアセトンを表す。)、Pd(dba)、テトラキス(トリフェニルホスフィン)パラジウム、酢酸パラジウム(II)、ジクロロビス(トリフェニルホスフィン)パラジウム、ビス(1,5-シクロオクタジエン)ニッケル(0)等を用いることができ、ホスフィン化合物としては、トリ-n-ブチルホスフィン、トリ-tert-ブチルホスフィン、トリシクロヘキシルホスフィン、トリフェニルホスフィン、トリストリルホスフィン(化合物中のトリル基は、オルトトリル基でも、メタトリル基でも、パラトリル基でもよい)、トリス(メトキシフェニル)ホスフィン(化合物中のメトキシフェニル基は、オルトメトキシフェニル基でも、メタメトキシフェニル基でも、パラメトキシフェニル基でもよい)、(2-ビフェニリル)ジ-tert-ブチルホスフィン、1,2-ビス(ジフェニルホスフィノ)エタン、1,3-ビス(ジフェニルホスフィノ)プロパン、1,1’-ビス(ジフェニルホスフィノ)フェロセン等を用いることができ、塩基としては、炭酸ナトリウム、炭酸カリウム、炭酸セシウム、水酸化カリウム、水酸化ナトリウム、水酸化リチウム、酢酸カリウム、酢酸ナトリウム等を用いることができる。反応温度は、化合物の安定性及び反応時間を考慮して、0~200℃に調整される。この場合、反応時間は30分~100時間である。 Solvents include aromatic hydrocarbon solvents such as toluene and benzene, ether solvents such as tetrahydrofuran and anisole, 1-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, acetonitrile, etc. And a transition metal complex includes Pd 2 (dba) 3 (where dba represents trans, trans-dibenzylideneacetone), Pd (dba) 2 , tetrakis (Triphenylphosphine) palladium, palladium (II) acetate, dichlorobis (triphenylphosphine) palladium, bis (1,5-cyclooctadiene) nickel (0) and the like can be used. As the phosphine compound, tri-n -Butylphosphine, tri-ter -Butylphosphine, tricyclohexylphosphine, triphenylphosphine, tristolylphosphine (the tolyl group in the compound may be an orthotolyl group, a metatolyl group or a paratolyl group), tris (methoxyphenyl) phosphine (a methoxyphenyl group in the compound) May be an orthomethoxyphenyl group, a metamethoxyphenyl group or a paramethoxyphenyl group), (2-biphenylyl) di-tert-butylphosphine, 1,2-bis (diphenylphosphino) ethane, 1,3- Bis (diphenylphosphino) propane, 1,1′-bis (diphenylphosphino) ferrocene and the like can be used, and as the base, sodium carbonate, potassium carbonate, cesium carbonate, potassium hydroxide, sodium hydroxide, hydroxide Lithium, vinegar Potassium, and sodium acetate. The reaction temperature is adjusted to 0 to 200 ° C. in consideration of the stability of the compound and the reaction time. In this case, the reaction time is 30 minutes to 100 hours.
 その後、再沈殿、ソックスレー洗浄、抽出、シリカゲルカラム精製、ゲルパーミッションクロマト精製等の精製操作を行って、本発明の高分子化合物が得られる。 Thereafter, purification operations such as reprecipitation, Soxhlet washing, extraction, silica gel column purification, gel permeation chromatography purification and the like are performed to obtain the polymer compound of the present invention.
 <有機半導体素子>
 本発明の高分子化合物は、キャリア移動度が高いことから、有機半導体材料として、例えば、有機半導体素子の有機層に含ませて用いることができる。有機半導体素子としては、有機トランジスタ、有機太陽電池、有機エレクトロルミネッセンス素子等が挙げられる。本発明の高分子化合物は、中でも、有機トランジスタの電荷輸送材料として特に有用である。
<Organic semiconductor element>
Since the polymer compound of the present invention has high carrier mobility, it can be used as an organic semiconductor material, for example, in an organic layer of an organic semiconductor element. Examples of the organic semiconductor element include an organic transistor, an organic solar battery, and an organic electroluminescence element. The polymer compound of the present invention is particularly useful as a charge transport material for organic transistors.
 <有機半導体材料>
 有機半導体材料は、本発明の高分子化合物の1種類を単独で含むものであってもよく、また2種類以上を含むものであってもよい。また、有機半導体材料は、キャリア輸送性を高めるため、キャリア輸送性を有する低分子化合物又は高分子化合物を本発明の高分子化合物に加えて更に含んでいてもよい。有機半導体材料が、本発明の高分子化合物以外の成分を含む場合は、本発明の高分子化合物を30質量%以上含むことが好ましく、50質量%以上含むことがより好ましい。本発明の高分子化合物の含有量が30質量%未満である場合、薄膜化が困難となったり、良好な電荷移動度が得られ難くなったりする場合がある。
<Organic semiconductor materials>
The organic semiconductor material may contain one kind of the polymer compound of the present invention alone, or may contain two or more kinds. The organic semiconductor material may further contain a low molecular compound or a polymer compound having carrier transportability in addition to the polymer compound of the present invention in order to enhance carrier transportability. When the organic semiconductor material contains a component other than the polymer compound of the present invention, the polymer compound of the present invention is preferably contained in an amount of 30% by mass or more, and more preferably 50% by mass or more. When the content of the polymer compound of the present invention is less than 30% by mass, it may be difficult to form a thin film or to obtain good charge mobility.
 キャリア輸送性を有する化合物としては、アリールアミン誘導体、スチルベン誘導体、オリゴチオフェン及びその誘導体、オキサジアゾール誘導体、フラーレン類及びその誘導体等の低分子化合物、ポリビニルカルバゾール及びその誘導体、ポリアニリン及びその誘導体、ポリチオフェン及びその誘導体、ポリピロール及びその誘導体、ポリフェニレンビニレン及びその誘導体、ポリチエニレンビニレン及びその誘導体、ポリフルオレン及びその誘導体等の高分子化合物が例示できる。 Compounds having carrier transport properties include arylamine derivatives, stilbene derivatives, oligothiophenes and derivatives thereof, low molecular compounds such as oxadiazole derivatives, fullerenes and derivatives thereof, polyvinylcarbazole and derivatives thereof, polyaniline and derivatives thereof, polythiophene And polymer derivatives thereof, such as polypyrrole and derivatives thereof, polyphenylene vinylene and derivatives thereof, polythienylene vinylene and derivatives thereof, and polyfluorene and derivatives thereof.
 有機半導体材料は、その特性を向上させるために、高分子化合物材料を高分子バインダーとして含有していてもよい。高分子バインダーとしては、キャリア輸送性を過度に低下させないものが好ましい。 The organic semiconductor material may contain a polymer compound material as a polymer binder in order to improve its characteristics. As the polymer binder, those that do not excessively lower the carrier transportability are preferable.
 高分子バインダーの例としては、ポリ(N-ビニルカルバゾール)、ポリアニリン及びその誘導体、ポリチオフェン及びその誘導体、ポリ(p-フェニレンビニレン)及びその誘導体、ポリ(2,5-チエニレンビニレン)及びその誘導体、ポリカーボネート、ポリアクリレート、ポリメチルアクリレート、ポリメチルメタクリレート、ポリスチレン、ポリ塩化ビニル、ポリシロキサンが挙げられる。 Examples of polymer binders include poly (N-vinylcarbazole), polyaniline and derivatives thereof, polythiophene and derivatives thereof, poly (p-phenylene vinylene) and derivatives thereof, poly (2,5-thienylene vinylene) and derivatives thereof , Polycarbonate, polyacrylate, polymethyl acrylate, polymethyl methacrylate, polystyrene, polyvinyl chloride, and polysiloxane.
 <有機トランジスタ>
 有機トランジスタとしては、ソース電極及びドレイン電極と、これらの電極間の電流経路となり、本発明の高分子化合物を含む活性層と、該電流経路を通る電流量を制御するゲート電極とを備えた構成を有するものが挙げられる。このような構成を有する有機トランジスタとしては、電界効果型有機トランジスタ、静電誘導型有機トランジスタ等が挙げられる。
<Organic transistor>
The organic transistor has a source electrode and a drain electrode, a current path between these electrodes, an active layer containing the polymer compound of the present invention, and a gate electrode that controls the amount of current passing through the current path The thing which has is mentioned. Examples of the organic transistor having such a configuration include a field effect organic transistor and a static induction organic transistor.
 電界効果型有機トランジスタは、通常、ソース電極及びドレイン電極と、これらの電極間の電流経路となり、本発明の高分子化合物を含む活性層と、該電流経路を通る電流量を制御するゲート電極と、活性層とゲート電極との間に配置される絶縁層とを有する有機トランジスタである。特に、ソース電極及びドレイン電極が、活性層に接して設けられており、さらに活性層に接した絶縁層を挟んでゲート電極が設けられている有機トランジスタが好ましい。 A field effect organic transistor usually has a source electrode and a drain electrode, a current path between these electrodes, an active layer containing the polymer compound of the present invention, and a gate electrode that controls the amount of current passing through the current path. The organic transistor having an active layer and an insulating layer disposed between the gate electrode. In particular, an organic transistor in which a source electrode and a drain electrode are provided in contact with an active layer and a gate electrode is provided with an insulating layer in contact with the active layer interposed therebetween is preferable.
 静電誘導型有機トランジスタは、通常、ソース電極及びドレイン電極と、これらの電極間の電流経路となり、本発明の高分子化合物を含む活性層と、該電流経路を通る電流量を制御するゲート電極とを有し、該ゲート電極が活性層中に設けられている有機トランジスタである。特に、ソース電極、ドレイン電極、及び前記ゲート電極が、前記活性層に接して設けられている有機トランジスタが好ましい。 The electrostatic induction organic transistor usually has a source electrode and a drain electrode, a current path between these electrodes, an active layer containing the polymer compound of the present invention, and a gate electrode that controls the amount of current passing through the current path And the gate electrode is provided in the active layer. In particular, an organic transistor in which a source electrode, a drain electrode, and the gate electrode are provided in contact with the active layer is preferable.
 ゲート電極は、ソース電極からドレイン電極へ流れる電流経路が形成でき、かつ、ゲート電極に印加した電圧で該電流経路を流れる電流量が制御できる構造であればよく、例えば、くし型電極である。 The gate electrode may be a structure that can form a current path flowing from the source electrode to the drain electrode and that can control the amount of current flowing through the current path with a voltage applied to the gate electrode, and is, for example, a comb electrode.
 図1は、本発明の有機トランジスタ(電界効果型有機トランジスタ)の一例を示す模式断面図である。図1に示す有機トランジスタ100は、基板1と、基板1上に所定の間隔を持って形成されたソース電極5及びドレイン電極6と、ソース電極5及びドレイン電極6を覆うようにして基板1上に形成された活性層2と、活性層2上に形成された絶縁層3と、ソース電極5とドレイン電極6との間の領域上の絶縁層3を覆うように絶縁層3上に形成されたゲート電極4とを備えるものである。 FIG. 1 is a schematic cross-sectional view showing an example of an organic transistor (field-effect organic transistor) of the present invention. An organic transistor 100 shown in FIG. 1 includes a substrate 1, a source electrode 5 and a drain electrode 6 formed on the substrate 1 at a predetermined interval, and a source electrode 5 and a drain electrode 6 so as to cover the substrate 1. Formed on the insulating layer 3 so as to cover the active layer 2 formed on the insulating layer 3, the insulating layer 3 formed on the active layer 2, and the insulating layer 3 on the region between the source electrode 5 and the drain electrode 6. The gate electrode 4 is provided.
 図2は、本発明の有機トランジスタ(電界効果型有機トランジスタ)の他の例を示す模式断面図である。図2に示す有機トランジスタ110は、基板1と基板1上に形成されたソース電極5と、ソース電極5を覆うようにして基板1上に形成された活性層2と、ソース電極5と所定の間隔を持って活性層2上に形成されたドレイン電極6と、活性層2及びドレイン電極6上に形成された絶縁層3と、ソース電極5とドレイン電極6との間の領域上の絶縁層3を覆うように絶縁層3上に形成されたゲート電極4とを備えるものである。 FIG. 2 is a schematic cross-sectional view showing another example of the organic transistor (field effect organic transistor) of the present invention. An organic transistor 110 shown in FIG. 2 includes a substrate 1, a source electrode 5 formed on the substrate 1, an active layer 2 formed on the substrate 1 so as to cover the source electrode 5, a source electrode 5, and a predetermined electrode The drain electrode 6 formed on the active layer 2 with an interval, the insulating layer 3 formed on the active layer 2 and the drain electrode 6, and the insulating layer on the region between the source electrode 5 and the drain electrode 6 And a gate electrode 4 formed on the insulating layer 3 so as to cover 3.
 図3は、本発明の有機トランジスタ(電界効果型有機トランジスタ)の他の例を示す模式断面図である。図3に示す有機トランジスタ120は、基板1と基板1上に形成されたゲート電極4と、ゲート電極4を覆うようにして基板1上に形成された絶縁層3と、ゲート電極4が下部に形成されている絶縁層3の領域の一部を覆うように、絶縁層3上に所定の間隔を持って形成されたソース電極5及びドレイン電極6と、ソース電極5及びドレイン電極6の一部を覆うように絶縁層3上に形成された活性層2とを備えるものである。 FIG. 3 is a schematic cross-sectional view showing another example of the organic transistor (field effect type organic transistor) of the present invention. The organic transistor 120 shown in FIG. 3 includes a substrate 1, a gate electrode 4 formed on the substrate 1, an insulating layer 3 formed on the substrate 1 so as to cover the gate electrode 4, and the gate electrode 4 at the bottom. A source electrode 5 and a drain electrode 6 formed on the insulating layer 3 with a predetermined interval so as to cover a part of the region of the insulating layer 3 formed, and a part of the source electrode 5 and the drain electrode 6 And an active layer 2 formed on the insulating layer 3 so as to cover the surface.
 図4は、本発明の有機トランジスタ(電界効果型有機トランジスタ)の他の例を示す模式断面図である。図4に示す有機トランジスタ130は、基板1と、基板1上に形成されたゲート電極4と、ゲート電極4を覆うようにして基板1上に形成された絶縁層3と、ゲート電極4が下部に形成されている絶縁層3の領域の一部を覆うように絶縁層3上に形成されたソース電極5と、ソース電極5の一部を覆うようにして絶縁層3上に形成された活性層2と、活性層2の一部を覆うように、ソース電極5と所定の間隔を持って絶縁層3上に形成されたドレイン電極6とを備えるものである。 FIG. 4 is a schematic cross-sectional view showing another example of the organic transistor (field effect organic transistor) of the present invention. An organic transistor 130 shown in FIG. 4 includes a substrate 1, a gate electrode 4 formed on the substrate 1, an insulating layer 3 formed on the substrate 1 so as to cover the gate electrode 4, and the gate electrode 4 at the bottom. The source electrode 5 formed on the insulating layer 3 so as to cover a part of the region of the insulating layer 3 formed on the active layer 3 and the active formed on the insulating layer 3 so as to cover a part of the source electrode 5 A layer 2 and a drain electrode 6 formed on the insulating layer 3 at a predetermined interval so as to cover a part of the active layer 2 are provided.
 図5は、本発明の有機トランジスタ(静電誘導型有機トランジスタ)の他の例を示す模式断面図である。図5に示す有機トランジスタ140は、基板1と、基板1上に形成されたソース電極5と、ソース電極5上に形成された活性層2と、活性層2上に所定の間隔を持って複数形成されたゲート電極4と、ゲート電極4の全てを覆うようにして活性層2上に形成された活性層2a(活性層2aを構成する材料は、活性層2と同一であっても異なっていてもよい)と、活性層2a上に形成されたドレイン電極6とを備えるものである。 FIG. 5 is a schematic sectional view showing another example of the organic transistor (electrostatic induction type organic transistor) of the present invention. The organic transistor 140 shown in FIG. 5 includes a substrate 1, a source electrode 5 formed on the substrate 1, an active layer 2 formed on the source electrode 5, and a plurality of active transistors 2 with a predetermined interval on the active layer 2. The formed gate electrode 4 and the active layer 2a formed on the active layer 2 so as to cover the gate electrode 4 (the material constituting the active layer 2a is the same as or different from that of the active layer 2). And a drain electrode 6 formed on the active layer 2a.
 図6は、本発明の有機トランジスタ(電界効果型有機トランジスタ)の他の例を示す模式断面図である。図6に示す有機トランジスタ150は、基板1と、基板1上に形成された活性層2と、活性層2上に所定の間隔を持って形成されたソース電極5及びドレイン電極6と、ソース電極5及びドレイン電極6の一部を覆うようにして活性層2上に形成された絶縁層3と、ソース電極5が下部に形成されている絶縁層3の領域とドレイン電極6が下部に形成されている絶縁層3の領域とをそれぞれ一部覆うように、絶縁層3上に形成されたゲート電極4とを備えるものである。 FIG. 6 is a schematic cross-sectional view showing another example of the organic transistor (field effect type organic transistor) of the present invention. The organic transistor 150 shown in FIG. 6 includes a substrate 1, an active layer 2 formed on the substrate 1, a source electrode 5 and a drain electrode 6 formed on the active layer 2 with a predetermined interval, and a source electrode. 5 and an insulating layer 3 formed on the active layer 2 so as to cover a part of the drain electrode 6, a region of the insulating layer 3 in which the source electrode 5 is formed in the lower portion, and a drain electrode 6 are formed in the lower portion. And a gate electrode 4 formed on the insulating layer 3 so as to partially cover each region of the insulating layer 3.
 図7は、本発明の有機トランジスタ(電界効果型有機トランジスタ)の他の例を示す模式断面図である。図7に示す有機トランジスタ160は、基板1と、基板1上に形成されたゲート電極4と、ゲート電極4を覆うようにして基板1上に形成された絶縁層3と、ゲート電極4が下部に形成されている絶縁層3の領域を覆うように形成された活性層2と、活性層2の一部を覆うように活性層2上に形成されたソース電極5と、活性層2の一部を覆うように、ソース電極5と所定の間隔を持って活性層2上に形成されたドレイン電極6とを備えるものである。 FIG. 7 is a schematic cross-sectional view showing another example of the organic transistor (field-effect organic transistor) of the present invention. The organic transistor 160 shown in FIG. 7 includes a substrate 1, a gate electrode 4 formed on the substrate 1, an insulating layer 3 formed on the substrate 1 so as to cover the gate electrode 4, and the gate electrode 4 at the bottom. An active layer 2 formed so as to cover the region of the insulating layer 3 formed on the active layer 2, a source electrode 5 formed on the active layer 2 so as to cover a part of the active layer 2, and one of the active layers 2 A source electrode 5 and a drain electrode 6 formed on the active layer 2 with a predetermined interval are provided so as to cover the portion.
 図8は、本発明の有機トランジスタ(電界効果型有機トランジスタ)の他の例を示す模式断面図である。図8に示す有機トランジスタ170は、ゲート電極4と、ゲート電極4上に形成された絶縁層3と、絶縁層3上に形成された活性層2と、活性層2上に所定の間隔を持って形成されたソース電極5及びドレイン電極6と、を備えるものである。この場合、ゲート電極4は基板1を兼ねる構成となっている。 FIG. 8 is a schematic cross-sectional view showing another example of the organic transistor (field-effect organic transistor) of the present invention. An organic transistor 170 shown in FIG. 8 has a gate electrode 4, an insulating layer 3 formed on the gate electrode 4, an active layer 2 formed on the insulating layer 3, and a predetermined interval on the active layer 2. A source electrode 5 and a drain electrode 6 formed in this manner. In this case, the gate electrode 4 also serves as the substrate 1.
 上述した本発明の有機トランジスタにおいては、活性層2及び/又は活性層2aは、本発明の高分子化合物を含有する膜によって構成され、ソース電極5とドレイン電極6との間の電流通路(チャネル)となる。また、ゲート電極4は、電圧を印加することにより電流通路(チャネル)を通る電流量を制御する。 In the above-described organic transistor of the present invention, the active layer 2 and / or the active layer 2a is composed of a film containing the polymer compound of the present invention, and a current path (channel) between the source electrode 5 and the drain electrode 6 is formed. ) The gate electrode 4 controls the amount of current passing through the current path (channel) by applying a voltage.
 このような電界効果型有機トランジスタは、公知の方法、例えば特開平5-110069号公報記載の方法により製造することができる。また、静電誘導型有機トランジスタは、特開2004-006476号に公報記載の方法等の公知の方法により製造することができる。 Such a field effect organic transistor can be produced by a known method, for example, a method described in JP-A-5-110069. The electrostatic induction organic transistor can be manufactured by a known method such as the method described in Japanese Patent Application Laid-Open No. 2004-006476.
 基板1の材料は、有機トランジスタの特性を阻害しない材料であればよい。基板としては、ガラス基板、フレキシブルなフィルム基板、プラスチック基板を用いることができる。 The material of the substrate 1 may be any material that does not hinder the characteristics of the organic transistor. As the substrate, a glass substrate, a flexible film substrate, or a plastic substrate can be used.
 絶縁層3の材料は、電気の絶縁性が高い材料であればよく、SiOx、SiNx、Ta25、ポリイミド、ポリビニルアルコール、ポリビニルフェノール、有機ガラス、フォトレジスト等を用いることができるが、低電圧化の観点からは、誘電率の高い材料を用いることが好ましい。 The material of the insulating layer 3 may be any material having high electrical insulation, and SiO x , SiN x , Ta 2 O 5 , polyimide, polyvinyl alcohol, polyvinyl phenol, organic glass, photoresist, and the like can be used. From the viewpoint of lowering the voltage, it is preferable to use a material having a high dielectric constant.
 絶縁層3の上に活性層2を形成する場合は、絶縁層3と活性層2の界面特性を改善するため、シランカップリング剤等の表面処理剤で絶縁層3の表面を処理して表面改質した後に活性層2を形成することも可能である。 When the active layer 2 is formed on the insulating layer 3, the surface of the insulating layer 3 is treated with a surface treatment agent such as a silane coupling agent in order to improve the interface characteristics between the insulating layer 3 and the active layer 2. It is also possible to form the active layer 2 after the modification.
 有機電界効果トランジスタの場合、電子やホール等の電荷は、一般に絶縁層と活性層の界面付近を通過する。従って、この界面の状態がトランジスタの移動度に大きな影響を与える。そこで、界面状態を改良して特性を向上させる方法として、シランカップリング剤による界面の制御が提案されている(例えば、表面化学、2007年、第28巻、第5号、p.242-248)。 In the case of an organic field effect transistor, charges such as electrons and holes generally pass near the interface between the insulating layer and the active layer. Therefore, the state of this interface greatly affects the mobility of the transistor. Therefore, as a method for improving the interface state and improving the properties, control of the interface with a silane coupling agent has been proposed (for example, Surface Chemistry, 2007, Vol. 28, No. 5, p. 242-248). ).
 シランカップリング剤の例としては、アルキルクロロシラン類(オクチルトリクロロシラン(OTS)、オクタデシルトリクロロシラン(ODTS)、フェニルエチルトリクロロシラン等)、アルキルアルコキシしラン類、フッ素化アルキルクロロシラン類、フッ素化アルキルアルコキシシラン類、ヘキサメチルジシラザン(HMDS)等のシリルアミン化合物が挙げられる。また、表面処理剤で処理する前に、絶縁層表面をオゾンUV処理、O2プラズマ処理してもよい。 Examples of silane coupling agents include alkylchlorosilanes (octyltrichlorosilane (OTS), octadecyltrichlorosilane (ODTS), phenylethyltrichlorosilane, etc.), alkylalkoxysilanes, fluorinated alkylchlorosilanes, fluorinated alkylalkoxy. Examples thereof include silylamine compounds such as silanes and hexamethyldisilazane (HMDS). Further, the surface of the insulating layer may be subjected to ozone UV treatment or O 2 plasma treatment before treatment with the surface treatment agent.
 このような処理によって、絶縁層として用いられるシリコン酸化膜等の表面エネルギーを制御することができる。また、表面処理により、活性層を構成している膜の絶縁層上での配向性が向上し、高い電荷輸送性(移動度)が得られる。 By such treatment, the surface energy of the silicon oxide film used as the insulating layer can be controlled. Further, the surface treatment improves the orientation of the film constituting the active layer on the insulating layer, and high charge transportability (mobility) can be obtained.
 ゲート電極4には、金、白金、銀、銅、クロム、パラジウム、アルミニウム、インジウム、モリブデン、低抵抗ポリシリコン、低抵抗アモルファスシリコン等の金属や、錫酸化物、酸化インジウム、インジウム・錫酸化物(ITO)等の材料を用いることができる。
これらの材料は、1種を単独で用いても2種以上を併用してもよい。なお、ゲート電極4としては、高濃度にドープされたシリコン基板を用いることも可能である。高濃度にドープされたシリコン基板は、ゲート電極としての性能とともに、基板としての性能も併有する。このような基板としての性能も有するゲート電極4を用いる場合には、基板1とゲート電極4とが接している有機トランジスタにおいて、基板1を省略してもよい。
The gate electrode 4 includes metals such as gold, platinum, silver, copper, chromium, palladium, aluminum, indium, molybdenum, low-resistance polysilicon, low-resistance amorphous silicon, tin oxide, indium oxide, indium / tin oxide. A material such as (ITO) can be used.
These materials may be used alone or in combination of two or more. Note that a highly doped silicon substrate can be used as the gate electrode 4. A highly doped silicon substrate has not only the performance as a gate electrode but also the performance as a substrate. When the gate electrode 4 having such a performance as a substrate is used, the substrate 1 may be omitted in the organic transistor in which the substrate 1 and the gate electrode 4 are in contact with each other.
 ソース電極5及びドレイン電極6は、低抵抗の材料から構成されることが好ましく、金、白金、銀、銅、クロム、パラジウム、アルミニウム、インジウム、モリブデン等から構成されることが特に好ましい。これらの材料は1種単独で用いても2種以上を併用してもよい。 The source electrode 5 and the drain electrode 6 are preferably made of a low resistance material, and particularly preferably made of gold, platinum, silver, copper, chromium, palladium, aluminum, indium, molybdenum or the like. These materials may be used alone or in combination of two or more.
 前記有機トランジスタにおいて、ソース電極5及びドレイン電極6と、活性層2との間には、更に他の化合物から構成された層が介在していてもよい。このような層としては、電子輸送性を有する低分子化合物、ホール輸送性を有する低分子化合物、アルカリ金属、アルカリ土類金属、希土類金属、これらの金属と有機化合物との錯体、ヨウ素、臭素、塩素、塩化ヨウ素等のハロゲン、硫酸、無水硫酸、二酸化硫黄、硫酸塩等の酸化硫黄化合物、硝酸、二酸化窒素、硝酸塩等の酸化窒素化合物、過塩素酸、次亜塩素酸等のハロゲン化化合物、アルキルチオール化合物、芳香族チオール類、フッ素化アルキル芳香族チオール類等の芳香族チオール化合物等からなる層が挙げられる。 In the organic transistor, a layer composed of another compound may be interposed between the source electrode 5 and the drain electrode 6 and the active layer 2. Such layers include low molecular compounds having electron transport properties, low molecular compounds having hole transport properties, alkali metals, alkaline earth metals, rare earth metals, complexes of these metals with organic compounds, iodine, bromine, Halogens such as chlorine and iodine chloride, sulfur oxide compounds such as sulfuric acid, sulfuric anhydride, sulfur dioxide and sulfate, nitric oxide compounds such as nitric acid, nitrogen dioxide and nitrate, halogenated compounds such as perchloric acid and hypochlorous acid, Examples thereof include layers made of aromatic thiol compounds such as alkyl thiol compounds, aromatic thiols, and fluorinated alkyl aromatic thiols.
 また、上述したような有機トランジスタを作製した後には、素子を保護するため、有機トランジスタ上に保護膜を形成することが好ましい。これにより、有機トランジスタが大気から遮断され、有機トランジスタの特性の低下を抑制することができる。また、有機トランジスタの上に駆動する表示デバイスを形成する場合、その形成工程における有機トランジスタへの影響も該保護膜により低減することができる。 In addition, after manufacturing the organic transistor as described above, it is preferable to form a protective film on the organic transistor in order to protect the element. Thereby, an organic transistor is interrupted | blocked from air | atmosphere and the fall of the characteristic of an organic transistor can be suppressed. Further, when a display device to be driven is formed on an organic transistor, the protective film can also reduce the influence on the organic transistor in the formation process.
 保護膜を形成する方法としては、有機トランジスタを、UV硬化樹脂、熱硬化樹脂や無機のSiONx膜等で覆う方法等が挙げられる。大気との遮断を効果的に行うため、有機トランジスタを作製後、有機トランジスタを大気にさらすことなく(例えば、乾燥した窒素雰囲気中、真空中等で)保護膜を形成することが好ましい。 Examples of the method for forming the protective film include a method of covering the organic transistor with a UV curable resin, a thermosetting resin, an inorganic SiON x film, or the like. In order to effectively block the atmosphere, it is preferable to form a protective film after the organic transistor is manufactured without exposing the organic transistor to the atmosphere (for example, in a dry nitrogen atmosphere or in a vacuum).
 このように構成された有機トランジスタの一種である有機電界効果トランジスタは、アクティブマトリックス駆動方式の液晶ディスプレイや有機エレクトロルミネッセンスディスプレイの画素駆動スイッチング素子等として適用できる。そして、上述した実施形態の有機電界効果トランジスタは、活性層として、本発明の高分子化合物を含有し、そのことにより電荷輸送性が向上した活性層とを備えているため、その電界効果移動度が高いものとなる。したがって、十分な応答速度を持つディスプレイの製造等に有用である。
An organic field effect transistor, which is a kind of organic transistor configured as described above, can be applied as a pixel drive switching element of an active matrix drive type liquid crystal display or an organic electroluminescence display. And since the organic field effect transistor of embodiment mentioned above is equipped with the active compound which contains the high molecular compound of this invention as an active layer, and the charge transport property improved by it, the field effect mobility is provided. Is expensive. Therefore, it is useful for manufacturing a display having a sufficient response speed.
 以下、本発明をさらに詳細に説明するために実施例を示すが、本発明はこれらに限定されるものではない。 Hereinafter, examples will be shown to describe the present invention in more detail, but the present invention is not limited to these examples.
(NMR分析) 
 NMR測定は、化合物を重クロロホルムに溶解させ、NMR装置(Varian社製、INOVA300)を用いて行った。
(NMR analysis)
The NMR measurement was performed by dissolving the compound in deuterated chloroform and using an NMR apparatus (Varian, INOVA300).
(質量分析)
 質量分析は、質量分析装置(AccuTOF TLC JMS-T100TD、日本電子製)により求めた。
(Mass spectrometry)
Mass spectrometry was determined using a mass spectrometer (AccuTOF TLC JMS-T100TD, manufactured by JEOL Ltd.).
(分子量分析)
 高分子化合物の数平均分子量及び重量平均分子量は、ゲル透過クロマトグラフィ(GPC、島津製作所製、商品名:LC-10AD)を用いて求めた。測定する高分子化合物は、テトラヒドロフランに溶解させ、GPCに注入した。GPCの移動相にはテトラヒドロフランを用いた。カラムは、PLgel MIXED-B(ポリマーラボラトリーズ製)を用いた。検出器にはUV検出器(島津製作所製、商品名:SPD-M10A)を用いた。
(Molecular weight analysis)
The number average molecular weight and the weight average molecular weight of the polymer compound were determined using gel permeation chromatography (GPC, manufactured by Shimadzu Corporation, trade name: LC-10AD). The polymer compound to be measured was dissolved in tetrahydrofuran and injected into GPC. Tetrahydrofuran was used for the mobile phase of GPC. As the column, PLgel MIXED-B (manufactured by Polymer Laboratories) was used. A UV detector (manufactured by Shimadzu Corporation, trade name: SPD-M10A) was used as the detector.
 合成例1
(3-ドデシルチオチオフェンの合成)
Synthesis example 1
(Synthesis of 3-dodecylthiothiophene)
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
 フラスコに、3-メトキシチオフェンを25g(0.22mol)、パラトルエンスルホン酸一水和物を2.5g(11mmol)、ドデカンチオールを44g(0.22mol)、トルエンを250mL入れ、80℃で20時間加熱撹拌した。反応液を水に加え、トルエン層を抽出した。トルエン溶液を水で洗浄した後、溶媒をエバポレーターで留去して液体を得た。得られた液体をn-ヘキサンで希釈し、希釈した溶液をn-ヘキサンを展開溶媒として用いたシリカゲルカラムで精製を行い、n-へキサン溶液を回収した。その後、n-へキサンを蒸発させて3-ドデシルチオチオフェンを得た。得量は55gであり、収率は88%であった。 A flask was charged with 25 g (0.22 mol) of 3-methoxythiophene, 2.5 g (11 mmol) of paratoluenesulfonic acid monohydrate, 44 g (0.22 mol) of dodecanethiol, and 250 mL of toluene. Stir for hours. The reaction solution was added to water, and the toluene layer was extracted. After the toluene solution was washed with water, the solvent was distilled off with an evaporator to obtain a liquid. The obtained liquid was diluted with n-hexane, and the diluted solution was purified with a silica gel column using n-hexane as a developing solvent, and an n-hexane solution was recovered. Thereafter, n-hexane was evaporated to obtain 3-dodecylthiothiophene. The yield was 55 g and the yield was 88%.
 H-NMR(300MHz,CDCl)δ7.32(m,1H),7.11(m,1H),7.02(m,1H),2.84(t,2H),1.62(m,2H),1.15-1.40(m,18H),0.88(t,3H) 1 H-NMR (300 MHz, CDCl 3 ) δ 7.32 (m, 1H), 7.11 (m, 1H), 7.02 (m, 1H), 2.84 (t, 2H), 1.62 ( m, 2H), 1.15-1.40 (m, 18H), 0.88 (t, 3H)
 合成例2
(2-ブロモ-3-ドデシルチオチオフェンの合成)
Synthesis example 2
(Synthesis of 2-bromo-3-dodecylthiothiophene)
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
 フラスコに、3-ドデシルチオチオフェンを55g(0.19mol)、クロロホルムを165mL入れ、0℃で撹拌した。反応液にN-ブロモスクシンイミドを34g(0.19mol)少しずつ加えた。その後、反応液を0℃で3時間撹拌した。その後、反応液をチオ硫酸ナトリウム水溶液に加え、クロロホルム層を抽出した。クロロホルム溶液を水で洗浄した後、溶媒をエバポレーターで留去して液体を得た。得られた液体をn-ヘキサンで希釈し、n-ヘキサンを展開溶媒として用いたシリカゲルカラムで精製を行い、n-へキサン溶液を回収した。その後、n-へキサンを蒸発させて2-ブロモ-3-ドデシルチオチオフェンを得た。得量は70gであり、収率は95%であった。 The flask was charged with 55 g (0.19 mol) of 3-dodecylthiothiophene and 165 mL of chloroform and stirred at 0 ° C. To the reaction solution, 34 g (0.19 mol) of N-bromosuccinimide was added little by little. Thereafter, the reaction solution was stirred at 0 ° C. for 3 hours. Thereafter, the reaction solution was added to an aqueous sodium thiosulfate solution, and the chloroform layer was extracted. After the chloroform solution was washed with water, the solvent was distilled off with an evaporator to obtain a liquid. The obtained liquid was diluted with n-hexane and purified with a silica gel column using n-hexane as a developing solvent to recover an n-hexane solution. Thereafter, n-hexane was evaporated to obtain 2-bromo-3-dodecylthiothiophene. The yield was 70 g and the yield was 95%.
 H-NMR(300MHz,CDCl)δ7.25(d,1H),6.92(d,1H),2.85(t,2H),1.56(m,2H),1.15-1.50(m,18H),0.88(t,3H) 1 H-NMR (300 MHz, CDCl 3 ) δ 7.25 (d, 1H), 6.92 (d, 1H), 2.85 (t, 2H), 1.56 (m, 2H), 1.15 1.50 (m, 18H), 0.88 (t, 3H)
 合成例3
(化合物1の合成)
Synthesis example 3
(Synthesis of Compound 1)
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
 フラスコ内の気体を窒素で置換したフラスコに、2-ブロモ-3-ドデシルチオチオフェンを1.0g(2.8mmol)、5,5’-ビス(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)-2,2’-ビチオフェンを0.55g(1.3mmol)、テトラヒドロフランを20mL、トリス(ジベンジリデンアセトン)ジパラジウムを50mg、トリ-tert-ブチルホスホニウムテトラフルオロボレートを64mg入れた。反応液に2mol/Lの炭酸カリウム水溶液を5.5mL滴下し、5時間還流させた。その後、反応液を濃縮し、濃縮した反応液を水に注ぎ、さらにトルエンを加え、トルエン層を抽出した。トルエン溶液を水で洗浄した後、溶媒をエバポレーターで留去して液体を得た。得られた液体をn-ヘキサンで希釈し、n-ヘキサンを展開溶媒として用いたシリカゲルカラムで精製を行い、n-へキサン溶液を回収した。その後、n-へキサンを蒸発させて化合物1を得た。得量は1.7gであり、収率は90%であった。 To a flask in which the gas in the flask was replaced with nitrogen, 1.0 g (2.8 mmol) of 2-bromo-3-dodecylthiothiophene, 5,5′-bis (4,4,5,5-tetramethyl-1 , 3,2-dioxaborolan-2-yl) -2,2'-bithiophene, 20 mL of tetrahydrofuran, 50 mg of tris (dibenzylideneacetone) dipalladium, tri-tert-butylphosphonium tetra 64 mg of fluoroborate was added. To the reaction solution, 5.5 mL of a 2 mol / L potassium carbonate aqueous solution was dropped and refluxed for 5 hours. Thereafter, the reaction solution was concentrated, the concentrated reaction solution was poured into water, toluene was further added, and the toluene layer was extracted. After the toluene solution was washed with water, the solvent was distilled off with an evaporator to obtain a liquid. The obtained liquid was diluted with n-hexane and purified with a silica gel column using n-hexane as a developing solvent to recover an n-hexane solution. Thereafter, n-hexane was evaporated to obtain Compound 1. The yield was 1.7 g and the yield was 90%.
 H-NMR(300MHz,CDCl)δ7.29(m,2H),7.18(m,2H),7.15(m,2H),7.04(m,2H),2.87(t,4H),1.61(m,4H),1.15-1.50(m,36H),0.88(t,6H) 1 H-NMR (300 MHz, CDCl 3 ) δ 7.29 (m, 2H), 7.18 (m, 2H), 7.15 (m, 2H), 7.04 (m, 2H), 2.87 ( t, 4H), 1.61 (m, 4H), 1.15-1.50 (m, 36H), 0.88 (t, 6H)
 合成例4
(化合物2の合成)
Synthesis example 4
(Synthesis of Compound 2)
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
 フラスコに、化合物1を1.7g(2.4mmol)、クロロホルムを50mL入れ、0℃で撹拌した。反応液にN-ブロモスクシンイミドを0.88g(5.0mmol)加え、0℃で8時間撹拌した。その後、反応液をチオ硫酸ナトリウム水溶液に加え、クロロホルム層を抽出した。クロロホルム溶液を水で洗浄した後、溶媒をエバポレーターで留去して液体を得た。得られた液体をn-ヘキサンで希釈し、n-ヘキサンを展開溶媒として用いたシリカゲルカラムで精製を行い、n-へキサン溶液を回収した。その後、n-へキサンを蒸発させて化合物2を得た。得量は1.9gであり、収率は91%であった。 In a flask, 1.7 g (2.4 mmol) of Compound 1 and 50 mL of chloroform were added and stirred at 0 ° C. To the reaction solution, 0.88 g (5.0 mmol) of N-bromosuccinimide was added and stirred at 0 ° C. for 8 hours. Thereafter, the reaction solution was added to an aqueous sodium thiosulfate solution, and the chloroform layer was extracted. After the chloroform solution was washed with water, the solvent was distilled off with an evaporator to obtain a liquid. The obtained liquid was diluted with n-hexane and purified with a silica gel column using n-hexane as a developing solvent to recover an n-hexane solution. Thereafter, n-hexane was evaporated to obtain Compound 2. The yield was 1.9 g, and the yield was 91%.
 H-NMR(300MHz,CDCl)δ7.19(d,2H),7.12(d,2H),6.99(s,2H),2.84(t,4H),1.61(m,4H),1.15-1.50(m,36H),0.88(t,6H) 1 H-NMR (300 MHz, CDCl 3 ) δ 7.19 (d, 2H), 7.12 (d, 2H), 6.99 (s, 2H), 2.84 (t, 4H), 1.61 ( m, 4H), 1.15-1.50 (m, 36H), 0.88 (t, 6H)
 合成例5
(化合物4の合成)
Synthesis example 5
(Synthesis of Compound 4)
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
 フラスコ内の気体をアルゴンで置換したフラスコに、化合物1を4.8g(6.6mmol)、ジエチルエーテルを96mL入れ、-70℃に冷却した。反応液に2.6mol/Lのn-ブチルリチウムのヘキサン溶液を5.6mL滴下した後、室温(25℃)で1時間撹拌した。再度、反応液を-70℃に冷却し、塩化トリブチルスズを4.7g(14mmol)滴下した。その後、反応液を室温(25℃)で3時間撹拌した。その後、反応液中の溶媒をエバポレーターで留去して液体を得た。得られた液体をn-ヘキサンで希釈し、n-ヘキサンを展開溶媒として用いたアルミナカラムで精製を行い、n-へキサン溶液を回収した。その後、n-へキサンを蒸発させて化合物3を得た。 4.8 g (6.6 mmol) of Compound 1 and 96 mL of diethyl ether were placed in a flask where the gas in the flask was replaced with argon, and cooled to −70 ° C. After dropping 5.6 mL of a 2.6 mol / L n-butyllithium hexane solution into the reaction solution, the mixture was stirred at room temperature (25 ° C.) for 1 hour. Again, the reaction solution was cooled to −70 ° C., and 4.7 g (14 mmol) of tributyltin chloride was added dropwise. Thereafter, the reaction solution was stirred at room temperature (25 ° C.) for 3 hours. Thereafter, the solvent in the reaction solution was distilled off with an evaporator to obtain a liquid. The obtained liquid was diluted with n-hexane and purified with an alumina column using n-hexane as a developing solvent to recover an n-hexane solution. Thereafter, n-hexane was evaporated to obtain Compound 3.
 フラスコ内の気体を窒素で置換したフラスコに、上記方法で得られた化合物3を全量、2-ブロモ-3-ドデシルチオチオフェンを7.2g(20mmol)、トルエンを200mL、テトラキス(トリフェニルホスフィン)パラジウムを0.15g入れ、反応液を8時間還流させた。反応液を水に注ぎ、トルエン層を抽出した。トルエン溶液を水で洗浄した後、溶媒をエバポレーターで留去して固体を得た。得られた固体をn-ヘキサンで希釈し、n-ヘキサンを展開溶媒として用いたシリカゲルカラムで精製を行い、n-へキサン溶液を回収した。その後、n-へキサンを蒸発させて固体を得た。2-プロパノールを用いて該固体を再結晶し、化合物4を得た。得量は8.0gであり、収率は94%であった。 In a flask where the gas in the flask was replaced with nitrogen, the entire amount of Compound 3 obtained by the above method, 7.2 g (20 mmol) of 2-bromo-3-dodecylthiothiophene, 200 mL of toluene, tetrakis (triphenylphosphine) 0.15 g of palladium was added, and the reaction solution was refluxed for 8 hours. The reaction solution was poured into water and the toluene layer was extracted. After the toluene solution was washed with water, the solvent was distilled off with an evaporator to obtain a solid. The obtained solid was diluted with n-hexane and purified with a silica gel column using n-hexane as a developing solvent to recover an n-hexane solution. Thereafter, n-hexane was evaporated to obtain a solid. The solid was recrystallized using 2-propanol to obtain Compound 4. The yield was 8.0 g and the yield was 94%.
 H-NMR(300MHz,CDCl)δ7.35(m,2H),7.31(s,2H),7.16-7.21(m,4H),7.04(m,2H),2.91(t,4H),2.87(t,4H),1.50-1.70(m,8H),1.10-1.50(m,72H),0.87(t,12H) 1 H-NMR (300 MHz, CDCl 3 ) δ 7.35 (m, 2H), 7.31 (s, 2H), 7.16-7.21 (m, 4H), 7.04 (m, 2H), 2.91 (t, 4H), 2.87 (t, 4H), 1.50-1.70 (m, 8H), 1.10-1.50 (m, 72H), 0.87 (t, 12H)
 合成例6
(化合物5の合成)
Synthesis Example 6
(Synthesis of Compound 5)
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
 フラスコに、化合物4を8.0g(6.2mmol)、クロロホルムを50mL入れ、0℃で撹拌した。反応液にN-ブロモスクシンイミドを2.3g(13mmol)加えた。その後、反応液を0℃で8時間撹拌した。反応液をチオ硫酸ナトリウム水溶液に加え、クロロホルム層を抽出した。クロロホルム溶液を水で洗浄した後、溶媒をエバポレーターで留去して固体を得た。得られた固体をn-ヘキサンで希釈し、n-ヘキサンを展開溶媒として用いたシリカゲルカラムで精製を行い、n-へキサン溶液を回収した。その後、n-へキサンを蒸発させて化合物5を得た。得量は7.0gであり、収率は78%であった。 In a flask, 8.0 g (6.2 mmol) of Compound 4 and 50 mL of chloroform were added and stirred at 0 ° C. To the reaction solution, 2.3 g (13 mmol) of N-bromosuccinimide was added. Thereafter, the reaction solution was stirred at 0 ° C. for 8 hours. The reaction solution was added to an aqueous sodium thiosulfate solution, and the chloroform layer was extracted. After the chloroform solution was washed with water, the solvent was distilled off with an evaporator to obtain a solid. The obtained solid was diluted with n-hexane and purified with a silica gel column using n-hexane as a developing solvent to recover an n-hexane solution. Thereafter, n-hexane was evaporated to obtain Compound 5. The yield was 7.0 g and the yield was 78%.
 MS 1455.91 MS 1455.91
 実施例1
(化合物6の合成)
Example 1
(Synthesis of Compound 6)
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
 フラスコ内の気体を窒素で置換したフラスコに、化合物2を0.20g(0.22mmol)、4,7-ビス(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)-2,1,3-ベンゾチアジアゾールを0.079g(0.20mmol)、テトラヒドロフランを14mL、トリス(ジベンジリデンアセトン)ジパラジウムを4.1mg、トリ-tert-ブチルホスホニウムテトラフルオロボレートを5.2mg入れて撹拌した。反応液に2mol/Lの炭酸カリウム水溶液を1.1mL滴下し、15分還流させた。反応液にフェニルボロン酸を35mgとクロロベンゼンを14mL加えて、30分還流させた。次に、反応液にN,N-ジエチルジチオカルバミド酸ナトリウム三水和物を1.0g加えて、3時間還流させた。その後、反応液を水に注ぎ、トルエンを加え、トルエン層を抽出した。トルエン溶液を酢酸水溶液及び水で洗浄した後、トルエン溶液をアセトンに滴下し、析出物を得た。析出物をクロロホルムに溶解させ、クロロホルムを展開溶媒として用いたシリカゲルカラムで精製を行った。精製後のクロロホルム溶液をメタノールに滴下し、析出物をろ過し、化合物6を得た。得量は0.18gであり、ポリスチレン換算の数平均分子量は2.5×10であり、重量平均分子量は5.3×10であった。 Into a flask where the gas in the flask was replaced with nitrogen, 0.20 g (0.22 mmol) of compound 2, 4,7-bis (4,4,5,5-tetramethyl-1,3,2-dioxaborolane-2 was added. -Yl) -2,1,3-benzothiadiazole 0.079 g (0.20 mmol), tetrahydrofuran 14 mL, tris (dibenzylideneacetone) dipalladium 4.1 mg, tri-tert-butylphosphonium tetrafluoroborate 5 .2 mg was added and stirred. 1.1 mL of 2 mol / L potassium carbonate aqueous solution was dropped into the reaction solution, and the mixture was refluxed for 15 minutes. To the reaction solution, 35 mg of phenylboronic acid and 14 mL of chlorobenzene were added and refluxed for 30 minutes. Next, 1.0 g of sodium N, N-diethyldithiocarbamate trihydrate was added to the reaction solution, and the mixture was refluxed for 3 hours. Thereafter, the reaction solution was poured into water, toluene was added, and the toluene layer was extracted. After the toluene solution was washed with an acetic acid aqueous solution and water, the toluene solution was added dropwise to acetone to obtain a precipitate. The precipitate was dissolved in chloroform and purified with a silica gel column using chloroform as a developing solvent. The purified chloroform solution was added dropwise to methanol, and the precipitate was filtered to obtain Compound 6. The yield was 0.18 g, the number average molecular weight in terms of polystyrene was 2.5 × 10 3 , and the weight average molecular weight was 5.3 × 10 3 .
 実施例2
(化合物7の合成)
Example 2
(Synthesis of Compound 7)
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
 フラスコ内の気体を窒素で置換したフラスコに、化合物5を0.30g(0.21mmol)、4,7-ビス(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)-2,1,3-ベンゾチアジアゾールを0.076g(0.20mmol)、テトラヒドロフランを19mL、トリス(ジベンジリデンアセトン)ジパラジウムを3.8mg、トリ-tert-ブチルホスホニウムテトラフルオロボレートを4.8mg入れて撹拌した。反応液に2mol/Lの炭酸カリウム水溶液を1.0mL滴下し、30分還流させた。反応液にフェニルボロン酸を32mgとクロロベンゼンを19mL加えて、30分還流させた。次に、反応液にN,N-ジエチルジチオカルバミド酸ナトリウム三水和物を1.0g加えて、3時間還流させた。その後、反応液を水に注ぎ、トルエンを加え、トルエン層を抽出した。トルエン溶液を酢酸水溶液及び水で洗浄した後、有機層をアセトンに滴下し、析出物を得た。析出物をクロロベンゼンに溶解させ、クロロベンゼンを展開溶媒として用いたシリカゲルカラムで精製を行った。精製後のクロロベンゼン溶液をメタノールに滴下し、析出物をろ過し、化合物7を得た。得量は0.13gであり、ポリスチレン換算の数平均分子量は4.0×10であり、重量平均分子量は6.3×10であった。 Into a flask where the gas in the flask was replaced with nitrogen, 0.30 g (0.21 mmol) of compound 5 and 4,7-bis (4,4,5,5-tetramethyl-1,3,2-dioxaborolane-2 were added. -Yl) -2,1,3-benzothiadiazole 0.076 g (0.20 mmol), tetrahydrofuran 19 mL, tris (dibenzylideneacetone) dipalladium 3.8 mg, tri-tert-butylphosphonium tetrafluoroborate 4 .8 mg was added and stirred. 1.0 mL of 2 mol / L potassium carbonate aqueous solution was dripped at the reaction liquid, and it was made to recirculate | reflux for 30 minutes. To the reaction solution, 32 mg of phenylboronic acid and 19 mL of chlorobenzene were added and refluxed for 30 minutes. Next, 1.0 g of sodium N, N-diethyldithiocarbamate trihydrate was added to the reaction solution, and the mixture was refluxed for 3 hours. Thereafter, the reaction solution was poured into water, toluene was added, and the toluene layer was extracted. After the toluene solution was washed with an acetic acid aqueous solution and water, the organic layer was dropped into acetone to obtain a precipitate. The precipitate was dissolved in chlorobenzene and purified with a silica gel column using chlorobenzene as a developing solvent. The purified chlorobenzene solution was added dropwise to methanol, and the precipitate was filtered to obtain Compound 7. The yield was 0.13 g, the polystyrene-equivalent number average molecular weight was 4.0 × 10 3 , and the weight average molecular weight was 6.3 × 10 3 .
 実施例3
(有機トランジスタ1の作製及び評価)
 電荷輸送性化合物として化合物6を含む溶液を用いて、図8に示す構造を有する有機トランジスタ1を作製した。
 ゲート電極となる高濃度にドーピングされたn-型シリコン基板の表面を熱酸化し、シリコン酸化膜(以下、「熱酸化膜」という。)を形成した。熱酸化膜は絶縁層として機能する。次に、フォトリソ工程により熱酸化膜上にソース電極及びドレイン電極を作製した。該ソース電極及び該ドレイン電極は、熱酸化膜側からクロム(Cr)層と金(Au)層とを有し、チャネル長が20μm、チャネル幅が2mmであった。こうして得られた熱酸化膜、ソース電極及びドレイン電極を形成した基板をアセトンで超音波洗浄を行ない、オゾンUVクリーナーでUVオゾン処理を行なった。その後、β-フェネチルトリクロロシランで熱酸化膜の表面を修飾し、ペンタフルオロベンゼンチオールでソース電極及びドレイン電極の表面を修飾した。次に、上記表面処理した熱酸化膜、ソース電極及びドレイン電極上に、0.5重量%の化合物6のオルトジクロロベンゼン溶液を1000rpmの回転速度でスピンコートし、有機半導体層を形成した。その後、有機半導体層を230℃で1時間加熱し、有機トランジスタ1を製造した。
Example 3
(Production and Evaluation of Organic Transistor 1)
An organic transistor 1 having a structure shown in FIG. 8 was prepared using a solution containing Compound 6 as a charge transporting compound.
The surface of the heavily doped n-type silicon substrate serving as the gate electrode was thermally oxidized to form a silicon oxide film (hereinafter referred to as “thermal oxide film”). The thermal oxide film functions as an insulating layer. Next, a source electrode and a drain electrode were formed on the thermal oxide film by a photolithography process. The source electrode and the drain electrode had a chromium (Cr) layer and a gold (Au) layer from the thermal oxide film side, and had a channel length of 20 μm and a channel width of 2 mm. The substrate on which the thermal oxide film, the source electrode, and the drain electrode thus obtained were ultrasonically cleaned with acetone, and UV ozone treatment was performed with an ozone UV cleaner. Thereafter, the surface of the thermal oxide film was modified with β-phenethyltrichlorosilane, and the surfaces of the source electrode and the drain electrode were modified with pentafluorobenzenethiol. Next, an organic semiconductor layer was formed by spin-coating 0.5 wt% of an orthodichlorobenzene solution of Compound 6 on the surface-treated thermal oxide film, source electrode and drain electrode at a rotation speed of 1000 rpm. Thereafter, the organic semiconductor layer was heated at 230 ° C. for 1 hour to manufacture the organic transistor 1.
 得られた有機トランジスタ1のゲート電圧Vg、ソース・ドレイン間電圧Vsdを変化させ、トランジスタ特性を測定した。電界効果移動度は、3.8×10-3cm/Vsであった。 The transistor characteristics were measured by changing the gate voltage Vg and the source-drain voltage Vsd of the organic transistor 1 obtained. The field effect mobility was 3.8 × 10 −3 cm 2 / Vs.
 実施例4
(有機トランジスタ2の作製及び評価)
 化合物6にかえて化合物7を用いた以外は実施例3と同様に有機トランジスタ2を作製した。
Example 4
(Production and Evaluation of Organic Transistor 2)
Organic transistor 2 was produced in the same manner as in Example 3 except that compound 7 was used instead of compound 6.
 得られた有機トランジスタ2のゲート電圧Vg、ソース・ドレイン間電圧Vsdを変化させ、トランジスタ特性を測定した。電界効果移動度は、2.4×10-3cm/Vsであった。 The transistor characteristics were measured by changing the gate voltage Vg and the source-drain voltage Vsd of the organic transistor 2 obtained. The field effect mobility was 2.4 × 10 −3 cm 2 / Vs.
1…基板、
2、2a…活性層、
3…絶縁層、
4…ゲート電極、
5…ソース電極、
6…ドレイン電極、
100、110、120、130、140、150、160、170…有機トランジスタ。
1 ... substrate,
2, 2a ... active layer,
3. Insulating layer,
4 ... Gate electrode,
5 ... Source electrode,
6 ... drain electrode,
100, 110, 120, 130, 140, 150, 160, 170 ... Organic transistors.

Claims (11)

  1.  式
    Figure JPOXMLDOC01-appb-C000001
     (1)
    〔式中、Rは、アルキル基、アリール基又はヘテロアリール基を表す。Rは、水素原子、アルキル基、アルコキシ基、アルキルチオ基、アリール基又はヘテロアリール基を表す。〕
    で表される構造単位と、式
    Figure JPOXMLDOC01-appb-C000002
    〔式中、Zは、-CR=CR-、-S-、-O-、-Se-又は-NR-を表す。R、R、R及びRは、それぞれ独立に、水素原子、アルキル基、アリール基、ヘテロアリール基、ハロゲン原子、シアノ基又はニトロ基を表す。Rは、水素原子、アルキル基、アリール基又はヘテロアリール基を表す。Zは、=S=、=CR-CR=又は=Se=を表す。〕
    で表される構造単位とを含む高分子化合物。
    formula
    Figure JPOXMLDOC01-appb-C000001
    (1)
    [Wherein, R 1 represents an alkyl group, an aryl group, or a heteroaryl group. R 2 represents a hydrogen atom, an alkyl group, an alkoxy group, an alkylthio group, an aryl group or a heteroaryl group. ]
    And the structural unit represented by
    Figure JPOXMLDOC01-appb-C000002
    [Wherein Z 1 represents —CR 5 ═CR 6 —, —S—, —O—, —Se— or —NR 7 —. R 3 , R 4 , R 5 and R 6 each independently represent a hydrogen atom, an alkyl group, an aryl group, a heteroaryl group, a halogen atom, a cyano group or a nitro group. R 7 represents a hydrogen atom, an alkyl group, an aryl group or a heteroaryl group. Z 2 represents = S =, = CR 5 -CR 6 = or = Se =. ]
    A polymer compound comprising a structural unit represented by:
  2.  式
    Figure JPOXMLDOC01-appb-C000003
    〔式中、R及びRは、前記と同じ意味を表す。aは1~4の整数を表す。bは0~4の整数を表す。cは1~4の整数を表す。複数個あるRは、同一であっても相異なってもよい。複数個あるRは、同一であっても相異なってもよい。〕
    で表される構造単位を含む請求項1に記載の高分子化合物。
    formula
    Figure JPOXMLDOC01-appb-C000003
    [Wherein R 1 and R 2 represent the same meaning as described above. a represents an integer of 1 to 4. b represents an integer of 0 to 4. c represents an integer of 1 to 4. A plurality of R 1 may be the same or different. A plurality of R 2 may be the same or different. ]
    The high molecular compound of Claim 1 containing the structural unit represented by these.
  3.  aとcとが同一である請求項2に記載の高分子化合物。 The polymer compound according to claim 2, wherein a and c are the same.
  4.  式(2-1)で表される構造単位を含む請求項1~3のいずれか一項に記載の高分子化合物。 The polymer compound according to any one of claims 1 to 3, comprising a structural unit represented by the formula (2-1).
  5.  Zが-S-である請求項1~4のいずれか一項に記載の高分子化合物。 The polymer compound according to any one of claims 1 to 4, wherein Z 1 is -S-.
  6.  共役高分子化合物である請求項1~5のいずれか一項に記載の高分子化合物。 The polymer compound according to any one of claims 1 to 5, which is a conjugated polymer compound.
  7.  式(3)で表される構造単位又は式(4)で表される構造単位と、式(2-1)で表される構造単位又は式(2-2)で表される構造単位との交互共重合体である請求項2~6のいずれか一項に記載の高分子化合物。 A structural unit represented by formula (3) or a structural unit represented by formula (4) and a structural unit represented by formula (2-1) or a structural unit represented by formula (2-2) The polymer compound according to any one of claims 2 to 6, which is an alternating copolymer.
  8.  ポリスチレン換算の数平均分子量が2×10~1×10である請求項1~7のいずれか一項に記載の高分子化合物。 The polymer compound according to any one of claims 1 to 7, which has a polystyrene-reduced number average molecular weight of 2 × 10 3 to 1 × 10 6 .
  9.  請求項1~8のいずれか一項に記載の高分子化合物を含む有機半導体材料。 An organic semiconductor material comprising the polymer compound according to any one of claims 1 to 8.
  10.  請求項9に記載の有機半導体材料を含む有機層を有する有機半導体素子。 An organic semiconductor element having an organic layer containing the organic semiconductor material according to claim 9.
  11.  ソース電極、ドレイン電極、ゲート電極及び活性層を有し、該活性層に請求項9に記載の有機半導体材料を含む有機トランジスタ。 An organic transistor having a source electrode, a drain electrode, a gate electrode, and an active layer, wherein the active layer includes the organic semiconductor material according to claim 9.
PCT/JP2011/073372 2010-10-13 2011-10-12 Polymeric compound, organic semiconductor material, and organic transistor WO2012050102A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010230769A JP2012082345A (en) 2010-10-13 2010-10-13 Polymeric compound, organic semiconductor material, and organic transistor
JP2010-230769 2010-10-13

Publications (1)

Publication Number Publication Date
WO2012050102A1 true WO2012050102A1 (en) 2012-04-19

Family

ID=45938331

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/073372 WO2012050102A1 (en) 2010-10-13 2011-10-12 Polymeric compound, organic semiconductor material, and organic transistor

Country Status (3)

Country Link
JP (1) JP2012082345A (en)
TW (1) TW201229085A (en)
WO (1) WO2012050102A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108084408A (en) * 2017-12-13 2018-05-29 湘潭大学 A kind of polymer active layer material containing alkylthio group thiophene-fluoro diazosulfide and preparation method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI482796B (en) 2013-04-19 2015-05-01 Au Optronics Corp Organic semiconductor material and thin-film transistor
TWI678798B (en) * 2018-06-07 2019-12-01 國立成功大學 High-sensitivity organic light sensor and manufacturing method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005171243A (en) * 2003-12-08 2005-06-30 Samsung Electronics Co Ltd Organic semiconductor polymer having quinoxaline ring in main chain and used for organic thin-film transistor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005171243A (en) * 2003-12-08 2005-06-30 Samsung Electronics Co Ltd Organic semiconductor polymer having quinoxaline ring in main chain and used for organic thin-film transistor

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JEEVA,S. ET AL.: "Highly Emissive and Electrochemically Stable Thienylene Vinylene Oligomers and Copolymers: an Unusual Effect of Alkylsulfanyl Substituents", ADVANCED FUNCTIONAL MATERIALS, vol. 20, no. 10, 25 May 2010 (2010-05-25), pages 1661 - 1669 *
PAEK,S. ET AL.: "Synthesis of Polythiophenes with Electron-Donating Side-Chain and their Application to Organic Thin-Film Transistors", MOLECULAR CRYSTALS AND LIQUID CRYSTALS, vol. 504, 2009, pages 52 - 58 *
SEOL,Y.G. ET AL.: "Improvement of mechanical and electrical stabilities of flexible organic thin film transistor by using adhesive organic interlayer", ORGANIC ELECTRONICS, vol. 9, no. 3, 2008, pages 413 - 417 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108084408A (en) * 2017-12-13 2018-05-29 湘潭大学 A kind of polymer active layer material containing alkylthio group thiophene-fluoro diazosulfide and preparation method thereof

Also Published As

Publication number Publication date
JP2012082345A (en) 2012-04-26
TW201229085A (en) 2012-07-16

Similar Documents

Publication Publication Date Title
JP5164134B2 (en) Fused ring compound and method for producing the same, polymer, organic thin film containing them, and organic thin film element and organic thin film transistor comprising the same
KR20090021146A (en) Fused ring compound and method for producing same, polymer, organic thin film containing those, and organic thin film device and organic thin film transistor comprising such organic thin film
KR20100135741A (en) Condensed cyclic compound, its manufacturing method, polymer, organic thin film containing these, organic thin film element and organic thin film transistor comprising same
JP6497387B2 (en) Film and organic semiconductor device containing the film
JP6497386B2 (en) Composition and polymer compound, and organic semiconductor device containing the composition or the polymer compound
US10239886B2 (en) Polymer compound and organic semiconductor device using the same
JP6006573B2 (en) Polymer compound and organic transistor using the same
JP5760875B2 (en) Polymer compound and organic transistor using the same
JP2013057007A (en) Polymer compound, and thin film and composition containing the same
WO2012050102A1 (en) Polymeric compound, organic semiconductor material, and organic transistor
JP5987237B2 (en) Polymer compound, organic semiconductor material, organic transistor and organic solar cell using the same
JP2013181071A (en) Polymer compound, composition including the same, ink composition, thin film and element
JP2013028750A (en) Polymeric compound, and organic transistor using the same
JP6332023B2 (en) Organic semiconductor materials
JP6252264B2 (en) Polymer compound and organic semiconductor device using the same
JP5914238B2 (en) Polymer compound, and organic semiconductor device and organic transistor using the polymer compound
WO2012050103A1 (en) Condensed aromatic compound, organic semiconductor material, and organic transistor element
JP5995594B2 (en) Polymer compound and organic transistor using the same
JP5999172B2 (en) Polymer compound and organic thin film containing the polymer compound
JP2013237767A (en) Polymer compound and organic transistor produced by using the same
JP2015157910A (en) Polymer compound and organic semiconductor device using the same
JP2013159726A (en) Polymer compound and organic transistor using the same
JP2015218290A (en) Polymer compound and organic semiconductor element using the same
JP2013151622A (en) High polymer compound, organic semiconductor element using the same, and organic transistor
JP2013184932A (en) Compound, and organic semiconductor material, organic transistor and organic solar cell using the compound

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11832537

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11832537

Country of ref document: EP

Kind code of ref document: A1