[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2012046764A1 - 太陽電池モジュール用保護シート及び太陽電池モジュール - Google Patents

太陽電池モジュール用保護シート及び太陽電池モジュール Download PDF

Info

Publication number
WO2012046764A1
WO2012046764A1 PCT/JP2011/072973 JP2011072973W WO2012046764A1 WO 2012046764 A1 WO2012046764 A1 WO 2012046764A1 JP 2011072973 W JP2011072973 W JP 2011072973W WO 2012046764 A1 WO2012046764 A1 WO 2012046764A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
cell module
fluororesin
protective sheet
layer
Prior art date
Application number
PCT/JP2011/072973
Other languages
English (en)
French (fr)
Inventor
誉也 ▲高▼梨
Original Assignee
リンテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リンテック株式会社 filed Critical リンテック株式会社
Priority to CN2011800479256A priority Critical patent/CN103155169A/zh
Priority to US13/877,883 priority patent/US20130192674A1/en
Priority to EP11830696.8A priority patent/EP2626912A1/en
Publication of WO2012046764A1 publication Critical patent/WO2012046764A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/049Protective back sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/16Layered products comprising a layer of synthetic resin specially treated, e.g. irradiated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/308Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • B32B27/322Layered products comprising a layer of synthetic resin comprising polyolefins comprising halogenated polyolefins, e.g. PTFE
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/10Interconnection of layers at least one layer having inter-reactive properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/0481Encapsulation of modules characterised by the composition of the encapsulation material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/10Coating on the layer surface on synthetic resin layer or on natural or synthetic rubber layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/26Polymeric coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/12Photovoltaic modules
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/3154Of fluorinated addition polymer from unsaturated monomers

Definitions

  • the present invention relates to a solar cell module protective sheet used as a surface protective sheet or a back surface protective sheet of a solar cell module, and a solar cell module including the same.
  • a solar cell module includes a photovoltaic cell that performs photoelectric conversion, a sealing material (filling layer) laminated on both sides of the photovoltaic cell, and a surface protection sheet (front sheet) laminated on the surface side of the sealing material. ) And a back surface protection sheet (back sheet) laminated on the back surface side of the sealing material.
  • the main configuration of the solar cell module is composed of a photovoltaic cell that is a photovoltaic element, a sealing material that is an electrical insulator that prevents a short circuit in an electric circuit, and a protective sheet that protects them.
  • a surface protection sheet and a back surface protection sheet are bonded to the light receiving surface side (front surface side) and the back surface side of the solar cell module, respectively.
  • the solar cells and sealing material are protected from wind, rain, moisture, dust, mechanical shock, etc. It is necessary to keep the inside of the battery module sealed from the outside air. For this reason, it is calculated
  • a polyvinyl fluoride resin film is bonded to a base film in order to impart weather resistance and durability.
  • the polyvinyl fluoride resin film has a problem that it is difficult to obtain due to its high price and a small supply amount. Therefore, it has been proposed to form a similar layer with a fluororesin coating on a base film such as a polyester film instead of the polyvinyl fluoride resin film.
  • a base film such as a polyester film
  • Patent Document 1 Japanese Patent Publication No.
  • 2005-534520 discloses a protective layer (A) as an optional component, a layer (B) comprising a fluoropolymer and a functionalized polymer comprising an alkyl (meth) acrylate unit, A multilayer film is disclosed in which a layer (C) based on an ethylene / alkyl (meth) acrylate / unsaturated epoxide copolymer and a polyolefin tie layer (D) are laminated by coextrusion or the like.
  • PET polyethylene terephthalate
  • Patent Documents 1 and 2 do not sufficiently describe the adhesiveness of the laminated film to a base film such as PET, and each resin layer that provides sufficient adhesive strength when laminated on a PET film. There is no description at all about the configuration, particularly the configuration of each resin layer for sufficiently securing the adhesive strength between the base film and the fluororesin layer over a long period of time.
  • the present invention has been made in view of the above circumstances, and provides a protective sheet for a solar cell module capable of sufficiently securing the adhesive strength between a base film and a fluororesin layer over a long period of time and a solar cell module using the same. Is an issue.
  • the present invention provides a base film, a heat-adhesive resin layer made of a heat-adhesive resin having a functional group, directly bonded to at least one surface thereof, and a function of the heat-adhesive resin.
  • a protective sheet for a solar cell module which is made of a fluororesin having a functional group capable of reacting with a group to form a chemical bond and having a fluororesin layer directly bonded to the heat-adhesive resin layer.
  • the base film it is only necessary to have practically sufficient electrical insulation, weather resistance and moisture resistance as a protective sheet for a solar cell module, and the thermal adhesive resin layer can be laminated. It can be used by appropriately selecting from various resin films that are used as the resin film in the protective sheet.
  • the resin film used for the base film examples include polyolefin resins such as polyethylene and polypropylene, polyester resins such as polyethylene terephthalate (PET), polybutylene terephthalate (PBT), and polyethylene naphthalate (PEN), and polyamide resins.
  • polyolefin resins such as polyethylene and polypropylene
  • polyester resins such as polyethylene terephthalate (PET), polybutylene terephthalate (PBT), and polyethylene naphthalate (PEN)
  • PET polyethylene terephthalate
  • PBT polybutylene terephthalate
  • PEN polyethylene naphthalate
  • Resins polyimide resins, polycarbonate resins, polystyrene resins, polyvinyl alcohol resins, vinyl alcohol resins such as ethylene-vinyl acetate copolymer (EVA), polyphenylene oxide resins, polyphenylene sulfide resins, acrylonitrile resins,
  • a resin film or sheet made of a resin such as a vinyl chloride resin, a vinyl acetal resin, a vinyl butyral resin, or a fluorine resin is used.
  • a film made of polyester is preferable, and more specifically, a PET film is preferable.
  • the thickness of the base film is appropriately set based on the electrical insulation required for the solar cell module.
  • the thickness is preferably in the range of 10 ⁇ m to 300 ⁇ m. More specifically, when the base film is a PET film, the thickness is preferably in the range of 10 ⁇ m to 300 ⁇ m and more preferably in the range of 20 ⁇ m to 250 ⁇ m from the viewpoint of light weight and electrical insulation. The range of 30 ⁇ m to 200 ⁇ m is particularly preferable.
  • the thermoadhesive resin layer is made of a thermoadhesive resin having a functional group capable of chemically bonding to the functional group of the fluororesin, and is directly adhered to the surface of the base film.
  • this heat-adhesive resin low density polyethylene (LDPE, density: 0.910 g / cm 3 or more, less than 0.930 g / cm 3 ), medium density polyethylene (MDPE, density: 0.930 g / cm 3 or more, 0 .942 g / cm 3 ), polyethylene such as high density polyethylene (HDPE, density: 0.942 g / cm 3 or more), polypropylene (PP), olefin elastomer (TPO), cycloolefin resin, ethylene-vinyl acetate Polymer (EVA), ethylene-vinyl acetate-maleic anhydride copolymer, ethylene- (meth) acrylic acid copolymer, ethylene- (meth) acrylic acid ester
  • a functional group capable of chemical bonding is selected with respect to the functional group of the fluororesin.
  • the functional group of the fluororesin is an acid anhydride residue
  • examples of the functional group contained in the thermal adhesive resin layer include a glycidyl group, an amino group, an epoxy group, and an isocyanate group.
  • the content of the functional group in the heat-adhesive resin is 0.01 to 10 mol% (where mol% is (number of moles of functional group / number of moles of all repeating units of the heat-adhesive resin)) ⁇ 100 In the range of 0.05 to 5 mol%.
  • the functional group contained in a thermoadhesive resin layer is a glycidyl group.
  • the heat-adhesive resin layer having a glycidyl group is preferably an ethylene-glycidyl methacrylate copolymer.
  • a preferred commercial product of this ethylene-glycidyl methacrylate copolymer is “LOTADER AX8840” (trade name, manufactured by Arkema).
  • the fluororesin layer is made of a fluororesin having a functional group that can be chemically bonded to the functional group contained in the thermal adhesive resin layer, and is directly adhered to the surface of the thermal adhesive resin layer.
  • the fluororesin include tetrafluoroethylene / perfluoro (alkyl vinyl ether) copolymers, tetrafluoroethylene / hexafluoropropylene copolymers, tetrafluoroethylene / perfluoro (alkyl vinyl ether) / hexafluoropropylene copolymers.
  • the fluororesin preferably comprises one or both of an ethylene / tetrafluoroethylene copolymer and an ethylene / tetrafluoroethylene / hexafluoropropylene copolymer.
  • Examples of the functional group contained in the fluororesin include an acid anhydride residue, a carboxyl group, an epoxy group, and an acid halide group.
  • an acid anhydride residue is preferable from the viewpoint that the adhesive strength between the fluororesin layer and the heat-adhesive resin layer is increased and the high adhesive strength can be maintained over a long period of time.
  • the content of the functional group in the fluororesin is 0.01 to 10 mol% (here, mol% is calculated as (number of moles of functional group / number of moles of all repeating units of the thermal adhesive resin) ⁇ 100)
  • the range of 0.05 to 5 mol% is more preferable.
  • the fluorine-containing monomer constituting the fluororesin, another monomer such as ethylene monomer, and a functional group-containing monomer are supplied to the reactor, and in the presence of a polymerization initiator.
  • a polymerization initiator such as ethylene monomer
  • the functional group-containing monomer include maleic anhydride, itaconic anhydride, citraconic anhydride, and the like.
  • a method of copolymerization using a generally used radical polymerization initiator and chain transfer agent can be employed.
  • the polymerization method include conventionally known bulk polymerization, solution polymerization, suspension polymerization, and emulsion polymerization.
  • polymerization initiator used in this polymerization examples include peroxides such as pivaloyl tert-butyl peroxide, azo compounds such as azobisisobutyronitrile, and peroxyisobutyrate such as diisopropyl peroxydicarbonate.
  • solution polymerization medium examples include organic solvents such as fluorinated hydrocarbons, fluorinated chlorohydrocarbons, alcohols and hydrocarbons, and aqueous media. Among these, fluorinated hydrocarbons are preferred.
  • chain transfer agent examples include chlorofluorohydrocarbons such as 1,3-dichloro-1,1,2,2,3-pentafluoropropane, and hydrocarbons such as pentane and hexane.
  • the polymerization conditions are not particularly limited.
  • the polymerization temperature is preferably 0 to 100 ° C., more preferably 30 to 80 ° C.
  • the polymerization pressure is preferably in the range of 0.1 to 10 MPa, more preferably in the range of 0.5 to 3 MPa.
  • the polymerization time can be appropriately set depending on the polymerization temperature, polymerization pressure, monomer type, etc., and is usually preferably about 1 to 30 hours.
  • the thermal adhesive resin layer and the fluororesin layer are preferably laminated on the surface of the base film by a coextrusion method. More preferably, the thermal adhesive resin is charged into one extruder of the co-extrusion apparatus, the fluororesin is supplied to the other extruder, and the base film is moved at a constant speed by the T-die coextrusion method. Then, the thermal adhesive resin layer and the fluororesin layer are laminated in this order on one surface of the base film. Thereafter, a thermoadhesive resin layer and a fluororesin layer may be similarly laminated on the other surface of the base film.
  • each functional group reacts and a chemical bond is generated, so that these layers are firmly bonded.
  • the heat-adhesive resin layer is firmly heat-sealed to the surface of the base film.
  • the fluororesin layer is firmly bonded to one side or both sides of the base film via the thermal adhesive resin layer.
  • the thickness of the heat-adhesive resin layer and the fluororesin layer is not particularly limited, but it is usually more preferably in the range of 10 ⁇ m to 200 ⁇ m, and in the range of 15 ⁇ m to 150 ⁇ m. More preferably it is.
  • additives such as pigments, UV absorbers, UV stabilizers, flame retardants, plasticizers, antistatic agents, lubricants, antiblocking agents, etc.
  • An agent may be included.
  • the pigment is not particularly limited as long as the effect of the present invention is not impaired.
  • titanium dioxide, zinc oxide, aluminum oxide, silica, carbon black and the like can be mentioned.
  • the pigment it is particularly preferable to use a white pigment, and the type and the abundance in the layer containing it are as described in the second and first embodiments described later.
  • the ultraviolet absorber include benzophenone series, benzotriazole series, oxalic acid anilide series, cyanoacrylate series and triazine series.
  • the functional group of the fluororesin is preferably an acid anhydride residue.
  • the fluororesin may be one or both of an ethylene / tetrafluoroethylene copolymer and an ethylene / tetrafluoroethylene / hexafluoropropylene copolymer. preferable.
  • the functional group of the thermal adhesive resin is a glycidyl group.
  • the thermal adhesive resin is made of a polyolefin resin.
  • the present invention also provides a solar cell module using the solar cell module protective sheet.
  • a thermal adhesive resin layer made of a thermal adhesive resin having a functional group is directly bonded to at least one surface of a base film, and the thermal adhesive resin layer is heated to the thermal adhesive resin layer.
  • Adhesive strength between the base film and the fluororesin layer is made by directly adhering a fluororesin layer composed of a fluororesin having a functional group capable of reacting with the functional group of the adhesive resin to form a chemical bond. Can be sufficiently secured for a long period of time, and a solar cell module protective sheet excellent in durability can be provided.
  • the solar cell module of the present invention uses the protective sheet for a solar cell module according to the present invention as one or both of the surface protective sheet and the back surface protective sheet, it ensures excellent weather resistance over a long period of time. Can do.
  • FIG. 5 is a schematic cross-sectional view showing a protective sheet for a solar cell module produced in Comparative Example 2.
  • FIG. 10 is a schematic cross-sectional view showing a protective sheet for a solar cell module produced in Comparative Example 3.
  • FIG. 10 is a schematic sectional drawing which shows one Embodiment of the solar cell module of this invention.
  • FIG. 1 is a schematic sectional drawing which shows 1st embodiment of the protection sheet for solar cell modules of this invention.
  • thermal adhesive resin layers 12 and 12 made of a thermal adhesive resin having a functional group are directly bonded to both surfaces of a base film 11, and the thermal adhesiveness
  • the fluororesin layers 13 and 13 made of a fluororesin having a functional group capable of forming a chemical bond by reacting with the functional group of the thermoadhesive resin are directly bonded to the resin layers 12 and 12.
  • This protection sheet 10 for solar cell modules is applied to the surface protection sheet (henceforth a front sheet) or back surface protection sheet (henceforth a back sheet) of a solar cell module.
  • the base film 11 may be any solar cell module as long as it has practically sufficient electrical insulation, weather resistance, and moisture resistance as a protective sheet for a solar cell module, and the heat-adhesive resin layer 12 can be laminated. It can be used by appropriately selecting from various resin films that are used as the resin film in the protective sheet.
  • Examples of the resin film used for the base film 11 include polyolefin resins such as polyethylene and polypropylene, polyester resins such as polyethylene terephthalate (PET), polybutylene terephthalate (PBT), and polyethylene naphthalate (PEN), and polyamide resins.
  • polyolefin resins such as polyethylene and polypropylene
  • polyester resins such as polyethylene terephthalate (PET), polybutylene terephthalate (PBT), and polyethylene naphthalate (PEN)
  • PET polyethylene terephthalate
  • PBT polybutylene terephthalate
  • PEN polyethylene naphthalate
  • Resins polyimide resins, polycarbonate resins, polystyrene resins, polyvinyl alcohol resins, vinyl alcohol resins such as ethylene-vinyl acetate copolymer (EVA), polyphenylene oxide resins, polyphenylene sulfide resins, acrylonitrile resins,
  • a resin film or sheet made of a resin such as a vinyl chloride resin, a vinyl acetal resin, a vinyl butyral resin, or a fluorine resin is used.
  • a film made of polyester is preferable, and more specifically, a PET film is preferable.
  • the thickness of the base film 11 is appropriately set based on electrical insulation required for the solar cell module.
  • the thickness is preferably in the range of 10 ⁇ m to 300 ⁇ m. More specifically, when the base film 11 is a PET film, the thickness is preferably in the range of 10 ⁇ m to 300 ⁇ m, and in the range of 20 ⁇ m to 250 ⁇ m, from the viewpoint of lightness and electrical insulation. More preferably, it is in the range of 30 ⁇ m to 200 ⁇ m.
  • the thermal adhesive resin layer 12 is made of a thermal adhesive resin having a functional group capable of chemical bonding with respect to the functional group of the fluororesin, and is directly bonded to the surface of the base film 11.
  • a thermal adhesive resin having a functional group capable of chemical bonding with respect to the functional group of the fluororesin, and is directly bonded to the surface of the base film 11.
  • this heat-adhesive resin low density polyethylene (LDPE, density: 0.910 g / cm 3 or more, less than 0.930 g / cm 3 ), medium density polyethylene (MDPE, density: 0.930 g / cm 3 or more, 0 .942 g / cm 3 ), polyethylene such as high density polyethylene (HDPE, density: 0.942 g / cm 3 or more), polypropylene (PP), olefin elastomer (TPO), cycloolefin resin, ethylene-vinyl acetate Polymer (EVA), ethylene-vinyl a
  • a functional group that can be chemically bonded to the functional group of the fluororesin is selected.
  • the functional group of the fluororesin is an acid anhydride residue
  • examples of the functional group contained in the heat-adhesive resin layer 12 include a glycidyl group, an amino group, an epoxy group, and an isocyanate group.
  • the content of the functional group in the heat-adhesive resin is 0.01 to 10 mol% (where mol% is (number of moles of functional group / number of moles of all repeating units of the heat-adhesive resin)) ⁇ 100 In the range of 0.05 to 5 mol%.
  • the functional group contained in the thermal adhesive resin layer 12 is a glycidyl group.
  • an ethylene-glycidyl methacrylate copolymer as the thermally adhesive resin layer 12 having a glycidyl group.
  • a preferred commercial product of this ethylene-glycidyl methacrylate copolymer is “LOTADER AX8840” (trade name, manufactured by Arkema).
  • the fluororesin layer 13 is made of a fluororesin having a functional group that can be chemically bonded to the functional group contained in the thermal adhesive resin layer 12, and is directly adhered to the surface of the thermal adhesive resin layer 12.
  • the fluororesin include tetrafluoroethylene / perfluoro (alkyl vinyl ether) copolymers, tetrafluoroethylene / hexafluoropropylene copolymers, tetrafluoroethylene / perfluoro (alkyl vinyl ether) / hexafluoropropylene copolymers.
  • the fluororesin preferably comprises one or both of an ethylene / tetrafluoroethylene copolymer and an ethylene / tetrafluoroethylene / hexafluoropropylene copolymer.
  • Examples of the functional group contained in the fluororesin include an acid anhydride residue, a carboxyl group, an epoxy group, and an acid halide group.
  • an acid anhydride residue is preferable from the viewpoint that the adhesive strength between the fluororesin layer 13 and the heat-adhesive resin layer 12 becomes strong and high adhesive strength can be maintained over a long period of time.
  • the content of the functional group in the fluororesin is 0.01 to 10 mol% (here, mol% is calculated as (number of moles of functional group / number of moles of all repeating units of the thermal adhesive resin) ⁇ 100)
  • the range of 0.05 to 5 mol% is more preferable.
  • the fluorine-containing monomer constituting the fluororesin, another monomer such as ethylene monomer, and a functional group-containing monomer are supplied to the reactor, and in the presence of a polymerization initiator.
  • a polymerization initiator such as ethylene monomer
  • the functional group-containing monomer include maleic anhydride, itaconic anhydride, citraconic anhydride, and the like.
  • a method of copolymerization using a generally used radical polymerization initiator and chain transfer agent can be employed.
  • the polymerization method include conventionally known bulk polymerization, solution polymerization, suspension polymerization, and emulsion polymerization.
  • polymerization initiator used in this polymerization examples include peroxides such as pivaloyl tert-butyl peroxide, azo compounds such as azobisisobutyronitrile, and peroxyisobutyrate such as diisopropyl peroxydicarbonate.
  • solution polymerization medium examples include organic solvents such as fluorinated hydrocarbons, fluorinated chlorohydrocarbons, alcohols and hydrocarbons, and aqueous media. Among these, fluorinated hydrocarbons are preferred.
  • chain transfer agent examples include chlorofluorohydrocarbons such as 1,3-dichloro-1,1,2,2,3-pentafluoropropane, and hydrocarbons such as pentane and hexane.
  • the polymerization conditions are not particularly limited.
  • the polymerization temperature is preferably 0 to 100 ° C., more preferably 30 to 80 ° C.
  • the polymerization pressure is preferably in the range of 0.1 to 10 MPa, more preferably in the range of 0.5 to 3 MPa.
  • the polymerization time can be appropriately set depending on the polymerization temperature, polymerization pressure, monomer type, etc., and is usually preferably about 1 to 30 hours.
  • the thermal adhesive resin layer 12 and the fluororesin layer 13 are preferably laminated on the surface of the base film 11 by a coextrusion method. More preferably, the thermal adhesive resin is charged into one extruder of a co-extrusion apparatus, the fluororesin is supplied to the other extruder, and the base film 11 is moved at a constant speed by a T-die coextrusion method. While being moved, the thermal adhesive resin layer 12 and the fluororesin layer 13 are laminated in this order on one surface of the base film 11. Then, the protective sheet 10 for solar cell modules of the structure shown in FIG. 1 is manufactured by laminating
  • thermoadhesive resin layer 12 is firmly heat-sealed to the surface of the base film 11.
  • the fluororesin layers 13 and 13 are firmly bonded to both surfaces of the base film 11 via the heat adhesive resin layers 12 and 12.
  • the thickness of the heat-adhesive resin layer 12 and the fluororesin layer 13 is not particularly limited, but it is usually more preferably in the range of 10 ⁇ m to 200 ⁇ m, and preferably 15 ⁇ m to 150 ⁇ m. More preferably, it is in the range.
  • the base film 11, the heat-adhesive resin layer 12 and the fluororesin layer 13 may be provided with a pigment, an ultraviolet absorber, an ultraviolet stabilizer, a flame retardant, a plasticizer, an antistatic agent, a lubricant, an antiblocking agent, etc., as necessary. These various additives may be included.
  • the pigment is not particularly limited as long as the effect of the present invention is not impaired. Examples thereof include titanium dioxide and carbon black.
  • Examples of the ultraviolet absorber include benzophenone series, benzotriazole series, oxalic acid anilide series, cyanoacrylate series and triazine series.
  • thermoadhesive resin layers 12 and 12 made of a thermoadhesive resin having a functional group are directly bonded to both surfaces of the base film 11, and the thermoadhesiveness. Since the fluororesin layers 13 and 13 made of a fluororesin having a functional group capable of forming a chemical bond by reacting with the functional group of the thermoadhesive resin are directly bonded to the resin layers 12 and 12, the base film 11 and the fluororesin layer 13 can be sufficiently secured over a long period of time, and a solar cell module protective sheet excellent in durability can be provided.
  • the protection sheet 10 for solar cell modules of this embodiment is set as the structure which laminated
  • FIG. 2 is a schematic cross-sectional view showing a second embodiment of the protective sheet for a solar cell module of the present invention.
  • the solar cell module protective sheet 20 of this embodiment is applied to a back sheet of a solar cell module.
  • the thermal adhesive resin layer 12 is directly bonded to one surface of the base film 11, and the fluororesin layer 13 is formed on the thermal adhesive resin layer 12.
  • the white heat-adhesive layer 15 is laminated directly on the other surface of the base film 11 via the adhesive layer 14.
  • a polyacrylic adhesive As the adhesive constituting the adhesive layer 14, a polyacrylic adhesive, a polyurethane adhesive, an epoxy adhesive, a polyester adhesive, a polyester polyurethane adhesive, or the like is used. These adhesives may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the white heat-adhesive layer 15 is a heat-adhesive layer used for adhesion with a sealing material constituting the solar cell module.
  • the thermal adhesiveness is a characteristic that develops adhesiveness by heat treatment.
  • the temperature of the heat treatment exhibiting adhesiveness is preferably in the range of 50 to 200 ° C.
  • the white heat-adhesive layer 15 is bonded to the back surface side of the solar cell module, reflects light leaked from the solar cell module, and returns to the module side, thereby improving the power generation efficiency of the solar cell module. Is also intended.
  • the white thermal adhesive layer 15 is made of a material in which a white pigment is uniformly dispersed in a thermal adhesive resin as a base.
  • the thermal adhesive resin include low density polyethylene (LDPE, density: 0.910 g / cm 3 or more, less than 0.930 g / cm 3 ), medium density polyethylene (MDPE, density: 0.930 g / cm 3 or more).
  • EVA ethylene - A vinyl acetate copolymer
  • the white pigment to be contained in the white heat-adhesive layer 15 is not particularly limited as long as the effect of the present invention is not impaired, and for example, titanium dioxide, zinc oxide, aluminum oxide, silica and the like are used.
  • titanium dioxide “Ti-Pure R105” (trade name, manufactured by DuPont), which is a rutile type titanium dioxide treated with silicon oxide to impart durability, and surface treatment of dimethylsilicone are used to treat the silica surface.
  • “CAB-O-SIL TS 720” (trade name, manufactured by Cabot), which is a hydrophobic silica modified with a hydroxyl group, is preferably used.
  • the amount of white pigment contained in the white heat-adhesive layer is preferably 2.5 to 35% by mass.
  • the thickness of the white heat-adhesive layer 15 is not particularly limited as long as the effects of the present invention are not impaired.
  • the thickness of the white heat-adhesive layer 15 is preferably in the range of 1 ⁇ m to 200 ⁇ m. A range of 200 ⁇ m is more preferable, and a range of 15 ⁇ m to 150 ⁇ m is more preferable.
  • the solar cell module protective sheet 20 of the present embodiment has the same effect as the solar cell module protective sheet 10 of the first embodiment, and further, the white thermal adhesive layer 15 is provided.
  • the adhesiveness with respect to the sealing material of a solar cell module can be improved. Therefore, by applying the solar cell module protection sheet 20 of the present embodiment to the solar cell module, the solar cell module is less likely to be peeled off from the sealing material of the solar cell module, and provides a solar cell module with excellent weather resistance for a long period of time. be able to.
  • FIG. 3 is a schematic cross-sectional view showing a third embodiment of the solar cell module protective sheet of the present invention. 3, the same components as those of the solar cell module protection sheet 10 shown in FIG. 1 are denoted by the same reference numerals, and the description thereof is omitted.
  • the solar cell module protection sheet 30 of this embodiment is applied to a back sheet of a solar cell module.
  • the heat-adhesive resin layers 12 and 12 made of a heat-adhesive resin having a functional group are directly bonded to both surfaces of the base film 11, and the heat-adhesiveness White fluororesin layers 16 and 16 made of a fluororesin having a functional group capable of forming a chemical bond by reacting with the functional group of the thermoadhesive resin are directly bonded to the resin layers 12 and 12. It has a configuration.
  • the white fluororesin layer 16 uses the same fluororesin as the fluororesin in the solar cell module protective sheet 10 of the first embodiment, and this is described in the second embodiment such as titanium dioxide. It is formed of a material in which a white pigment is uniformly dispersed. In order to uniformly disperse the white pigment in the fluororesin, it is preferable to use a master batch in which the white pigment is blended and dispersed in advance in a base resin such as a fluororesin. The amount of the white pigment contained in the white fluororesin layer is preferably 2.5 to 50% by mass.
  • This solar cell module protective sheet 30 is formed by coextrusion on the surface of the base film 11 and the heat-adhesive resin layer 12 in the same manner as the manufacturing method of the solar cell module protective sheet 10 of the first embodiment. It is preferable to manufacture by laminating the fluororesin layer 16.
  • the solar cell module protective sheet 30 of this embodiment has sufficient adhesive strength between the base film 11 and the white fluororesin layer 16 over a long period of time, like the solar cell module protective sheet 10 of the first embodiment.
  • a protective sheet for a solar cell module that can be secured and has excellent durability can be provided.
  • the white fluororesin layer 16 the power generation efficiency of the solar cell module is improved by adhering to the back side of the solar cell module and reflecting the light leaking from the solar cell module back to the module side. Can be made.
  • FIG. 4 is a schematic cross-sectional view showing a fourth embodiment of the solar cell module protective sheet of the present invention. 4, the same components as those of the solar cell module protection sheets 10 to 30 shown in FIGS. 1 to 3 are denoted by the same reference numerals, and the description thereof is omitted.
  • the solar cell module protective sheet 40 of this embodiment is applied to a back sheet of a solar cell module.
  • the thermal adhesive resin layer 12 is directly bonded to one surface side of the base film 11, and the white fluororesin layer 16 is formed on the thermal adhesive resin layer 12. Are directly bonded, and the white thermal adhesive layer 15 is laminated on the other surface of the base film 11 with the adhesive layer 14 interposed therebetween.
  • the solar cell module protective sheet 40 of this embodiment has sufficient adhesive strength between the base film 11 and the white fluororesin layer 16 over a long period of time, similar to the solar cell module protective sheet 10 of the first embodiment.
  • a protective sheet for a solar cell module that can be secured and has excellent durability can be provided.
  • the white heat-adhesive layer 15 it adheres to the back side of the solar cell module, reflects light leaking from the solar cell module and returns it to the module side, thereby improving the power generation efficiency of the solar cell module. Can be improved.
  • each protection sheet 10, 20, 30, 40 for solar cell modules is a mere illustration of this invention, and this invention is not limited to these illustrations.
  • Each protection sheet 10, 20, 30, 40 for solar cell modules can be changed or modified in various ways.
  • the base film 11 has a metal or metalloid, metal or metalloid oxide, nitride, silicide on both sides or one surface of the base film 11 in order to improve moisture resistance, weather resistance, and the like. You may form the vapor deposition film which consists of inorganic materials, such as.
  • FIG. 8 is a schematic cross-sectional view showing one embodiment of the solar cell module of the present invention.
  • the solar battery module 100 includes a solar battery cell 101 made of crystalline silicon, amorphous silicon, or the like, a sealing material (filling layer) 102 made of an electric insulator that seals the solar battery cell 101, and a surface of the sealing material 102. It is schematically configured from a laminated surface protective sheet (front sheet) 103 and a back surface protective sheet (back sheet) 104 laminated on the back surface of the sealing material 102.
  • the solar cell module 100 is provided with the solar cell module protective sheets 10, 20, 30, 40 in the first to fourth embodiments described above as the front sheet 103 or the back sheet 104. is there.
  • the solar cell module protective sheet 10, 20, 30, 40 of the first to fourth embodiments As a solar cell module applied to the front sheet or back sheet of the solar cell module, the solar cell module 100 is It is possible to ensure excellent weather resistance over a long period of time.
  • a master batch (trade name: “H5150 White”, manufactured by Dainichi Seika Kogyo Co., Ltd.) made of ETFE and titanium oxide was added to the fluororesin obtained as described above so that the content of titanium dioxide was 20% by mass. And kneaded to obtain a white fluororesin.
  • Example 1 A polyester film (trade name: “Teijin Tetron Film SL”, thickness 125 ⁇ m, manufactured by Teijin DuPont Films Ltd.) was used as a base film, and one side of the base film was subjected to corona treatment (output 2000 W). Then, using a T-die film forming machine (cylinder temperature: 200 ° C., T-die temperature: 300 ° C.), the fluororesin prepared as described above and an ethylene-glycidyl methacrylate copolymer (trade name) as a functional group-containing thermal adhesive resin.
  • a T-die film forming machine cylinder temperature: 200 ° C., T-die temperature: 300 ° C.
  • Example 2 A polyester film (trade name: “Teijin Tetron Film SL”, thickness 125 ⁇ m, manufactured by Teijin DuPont Films Ltd.) was used as a base film, and one side of the base film was subjected to corona treatment (output 2000 W). Then, using a T-die film forming machine (cylinder temperature: 200 ° C., T-die temperature: 300 ° C.), the fluororesin prepared as described above and an ethylene-glycidyl methacrylate copolymer (trade name) as a functional group-containing thermal adhesive resin.
  • a T-die film forming machine cylinder temperature: 200 ° C., T-die temperature: 300 ° C.
  • LOTADER AX8840 manufactured by Arkema Co., Ltd. was coextruded on the corona-treated surface of the base film so as to have a thickness of 25 ⁇ m. Furthermore, an adhesive (“Takelac A-515” (trade name) manufactured by Mitsui Chemicals, Inc.) and “Takenate A-3” (trade name) manufactured by Mitsui Chemicals, Inc., 9: 1 are applied to the other surface of the base film. The mixture was applied with a Meyer bar and dried at 80 ° C. for 1 minute to form an adhesive layer having a thickness of 10 ⁇ m.
  • thermoadhesive resin layer 12 By laminating this adhesive layer and an EVA film (thickness 100 ⁇ m) containing 5% by mass of titanium dioxide as a white thermal adhesive layer, as shown in FIG.
  • a glycidyl methacrylate copolymer layer thermaloadhesive resin layer 12
  • the fluororesin layer 13 is adhered directly to the thermoadhesive resin layer 12 and adhered to the other surface of the base film 11
  • Example 3 Except that the fluororesin was changed to a white fluororesin, in the same manner as in Example 1, as shown in FIG. 3, an ethylene-glycidyl methacrylate copolymer layer (thermal adhesive property) was formed on both surfaces of the base film 11. Resin layers 12 and 12) were directly bonded, and a protective sheet 30 for a solar cell module having a structure in which the white fluororesin layers 16 and 16 were directly bonded to the heat-adhesive resin layers 12 and 12 was produced.
  • Example 4 Except that the fluororesin was changed to a white fluororesin, as in Example 2, as shown in FIG. 4, an ethylene-glycidyl methacrylate copolymer layer (thermoadhesive resin) was formed on one surface side of the base film 11. Layer 12) is directly bonded, and the white fluororesin layer 16 is directly bonded on the heat-adhesive resin layer 12, and the white heat-adhesive layer 15 is formed on the other surface of the base film 11 via the adhesive layer 14. A protective sheet 40 for a solar cell module having a stacked configuration was produced.
  • thermoadhesive resin thermoadhesive resin
  • protective sheets for solar cell modules of Examples 1 to 4 and Comparative Examples 1 to 3 (hereinafter referred to as protective sheets) produced as described above, peel adhesion strength and breaking strength were measured according to the following measurement method and evaluation criteria.
  • the yellowing degree ⁇ YI was measured and evaluated.
  • the peel adhesion strength and breaking strength were measured and compared for the following protective sheet before the durability test and the protective sheet after the durability test.
  • yellowing degree (DELTA) YI was measured about the protective sheet after the following weathering tests.
  • UV resistance test ⁇ Weather resistance test (UV resistance test)> Using a weather resistance tester (trade name “I Super UV Tester SUV-W13”, manufactured by Iwasaki Electric Co., Ltd.), irradiation for 4 hours (black panel temperature 63 ° C., humidity 70%), rest 4 hours (black panel temperature 70 ° C., Humidity 90%), spray 10 seconds, dew 4 hours (black panel temperature 30 ° C., humidity 100%), spray 10 seconds conditions were repeated for 100 hours, and each protective sheet was placed under this repeated condition, and yellowing degree ⁇ YI Was measured.
  • a weather resistance tester trade name “I Super UV Tester SUV-W13”, manufactured by Iwasaki Electric Co., Ltd.
  • ⁇ Stripping adhesion strength> The protective sheet is cut into 25 mm ⁇ 150 mm, and the peel adhesion strength between the polyester film and the fluororesin layer in accordance with JIS K6854-3: 1999 (adhesive-peel adhesion strength test method-Part 3: T-shaped peel) was measured. The peeling speed was 300 mm / min.
  • the protective sheet was cut into 15 mm ⁇ 150 mm, and the load when the protective sheet broke was measured according to JIS K7127: 1999 (Plastics-Test method for tensile properties-Part 3: Test conditions for films and sheets). .
  • the present invention relates to a protective sheet used as a surface protective sheet or a back surface protective sheet of a solar cell module, and a solar cell module including the protective sheet.
  • the protective sheet of this invention can fully ensure the adhesive strength of a base film and a fluororesin layer over a long period of time.
  • Solar cell module protective sheet 11 base film 12: thermal adhesive resin layer 13: fluororesin layer 14: adhesive layer 15: white thermal adhesive layer 16: White fluororesin layer 17: ETFE film 100: solar cell module 101: solar cell 102: sealing material 103: surface protection sheet (front sheet) 104: Back surface protection sheet (back sheet)

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)
  • Laminated Bodies (AREA)

Abstract

 基材フィルムとフッ素樹脂層との接着強度を長期間にわたって十分に確保することが可能な太陽電池モジュール用保護シートおよびこれを用いた太陽電池モジュールが提供される。上記太陽電池モジュール用保護シートは、基材フィルム、その少なくとも一方の面に直接接着された、官能基を有する熱接着性樹脂からなる熱接着性樹脂層、及び前記熱接着性樹脂の官能基と反応して化学結合を形成可能な官能基を有するフッ素樹脂からなり、該熱接着性樹脂層に直接接着されたフッ素樹脂層を有する。

Description

太陽電池モジュール用保護シート及び太陽電池モジュール
 本発明は、太陽電池モジュールの表面保護シートまたは裏面保護シートとして用いられる太陽電池モジュール用保護シートと、それを備えた太陽電池モジュールに関する。
 本願は、2010年10月7日に、日本に出願された特願2010-227512号に基づき優先権を主張し、その内容をここに援用する。
 太陽の光エネルギーを電気エネルギーに変換する太陽電池モジュールは、大気汚染や地球温暖化などの環境問題に対応して、二酸化炭素を排出せずに発電できるクリーンなエネルギー源として注目されている。
 一般に、太陽電池モジュールは、光電変換を行う太陽電池セルと、太陽電池セルの両面に積層された封止材(充填層)と、封止材の表面側に積層された表面保護シート(フロントシート)と、封止材の裏面側に積層された裏面保護シート(バックシート)とから概略構成されている。
 太陽電池モジュールの主な構成は、光発電素子である太陽電池セル、電気回路のショートを防ぐ電気絶縁体である封止材、およびそれらを保護する保護シートからなる。この太陽電池モジュールの受光面側(表面側)とその裏面側には、それぞれ表面保護シートと裏面保護シートが接着されている。屋外および屋内において長期間の使用に耐えうる耐候性および耐久性を太陽電池モジュールに持たせるためには、太陽電池セルおよび封止材を風雨、湿気、砂埃、機械的な衝撃などから守り、太陽電池モジュールの内部を外気から遮断して密閉した状態に保つことが必要である。このため、太陽電池モジュール用保護シートには、耐候性に優れることが求められる。
 一般的な太陽電池モジュール用保護シートの構成としては、基材フィルムに耐候性および耐久性を付与するためにポリフッ化ビニル樹脂フィルムが貼り合わされているものが多い。しかし、ポリフッ化ビニル樹脂フィルムは価格が高く、さらに供給量が少ないため入手しにくいという問題点があった。
 そこで、ポリフッ化ビニル樹脂フィルムに代えて、ポリエステルフィルムなどの基材フィルム上にフッ素樹脂塗料で同様の層を形成することが提案されている。しかし、通常のフッ素樹脂塗料は、基材フィルム上に塗布、硬化させてフッ素樹脂層を形成した場合、該フッ素樹脂層と基材フィルムとの接着性が十分に得られず、剥離し易いという問題があった。この問題を解消するため、他の材料との接着性が高いフッ素樹脂として、例えば、特許文献1,2に開示された技術が提案されている。
 特許文献1(WO2006/134764)には、酸無水物残基等の官能基を含有するフッ素樹脂層と、エポキシ基等の官能基を有する熱接着性樹脂層とが、共押出等の手段により直接積層されたフッ素樹脂多積層体が開示されている。
 特許文献2(特表2005-534520号公報)には、任意成分としての保護層(A)、フロオロポリマーと、アルキル(メタ)アクリレート単位からなる官能化されたポリマーからなる層(B)、エチレン/アルキル(メタ)アクリレート/不飽和エポキシドコポリマーをベースにした層(C)、ポリオレフィンの結合層(D)を共押出等により積層した多層フィルムが開示されている。
WO2006/134764 特表2005-534520号公報
 太陽電池モジュール用保護シートは、野外での長期使用に耐えるために十分な耐候性、耐水性等が要求され、そのためには基材フィルムとフッ素樹脂層との接着強度が長期間にわたって十分に確保されていなければならない。前記基材フィルムとしては、ポリエチレンテレフタレート(以下、PETと記す)などが主に用いられている。
 しかしながら、特許文献1,2には、PETなどの基材フィルムに対する前記積層フィルムの接着性については十分記載されておらず、PETフィルムに積層する場合に十分な接着強度が得られる各樹脂層の構成、特に、基材フィルムとフッ素樹脂層との接着強度を長期間にわたって十分に確保するための各樹脂層の構成については全く記載されていない。
 本発明は、前記事情に鑑みてなされ、基材フィルムとフッ素樹脂層との接着強度を長期間にわたって十分に確保することが可能な太陽電池モジュール用保護シートおよびこれを用いた太陽電池モジュールの提供を課題とする。
 前記課題を達成するため、本発明は、基材フィルム、その少なくとも一方の面に直接接着された、官能基を有する熱接着性樹脂からなる熱接着性樹脂層、及び前記熱接着性樹脂の官能基と反応して化学結合を形成可能な官能基を有するフッ素樹脂からなり、該熱接着性樹脂層に直接接着されたフッ素樹脂層を有する太陽電池モジュール用保護シートを提供する。
 前記基材フィルムとしては、太陽電池モジュール用保護シートとして実用上十分な電気絶縁性、耐候性、防湿性を有し、かつ前記熱接着性樹脂層が積層可能であればよく、一般に太陽電池モジュール用保護シートにおける樹脂フィルムとして用いられている各種の樹脂フィルムの中から適宜選択して使用することができる。
 前記基材フィルムに用いられる樹脂フィルムとしては、例えば、ポリエチレン、ポリプロピレンなどのポリオレフィン系樹脂、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリエチレンナフタレート(PEN)などのポリエステル系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、ポリカーボネート系樹脂、ポリスチレン系樹脂、ポリビニルアルコール系樹脂、エチレン-酢酸ビニル共重合体(EVA)などのビニルアルコール系樹脂、ポリフェニレンオキサイド系樹脂、ポリフェニレンスルフィド系樹脂、アクリロニトリル系樹脂、塩化ビニル系樹脂、ビニルアセタール系樹脂、ビニルブチラール系樹脂、フッ素系樹脂などの樹脂からなる樹脂のフィルムまたはシートが用いられる。これらの樹脂フィルムのなかでも、ポリエステルからなるフィルムが好ましく、より具体的にはPETフィルムが好適である。
 前記基材フィルムの厚みは、太陽電池モジュールに要求される電気絶縁性に基づいて適宜設定される。例えば、基材フィルムが樹脂フィルムである場合、その厚みが10μm~300μmの範囲であることが好ましい。より具体的には、基材フィルムがPETフィルムである場合、軽量性および電気絶縁性の観点から、その厚みが10μm~300μmの範囲であることが好ましく、20μm~250μmの範囲であることがより好ましく、30μm~200μmの範囲であることが特に好ましい。
 前記熱接着性樹脂層は、前記フッ素樹脂が有する官能基に対し、化学結合が可能な官能基を有する熱接着性樹脂からなり、基材フィルムの表面に直接接着されている。この熱接着性樹脂としては、低密度ポリエチレン(LDPE、密度:0.910g/cm以上、0.930g/cm未満)、中密度ポリエチレン(MDPE、密度:0.930g/cm以上、0.942g/cm未満)、高密度ポリエチレン(HDPE、密度:0.942g/cm以上)などのポリエチレン、ポリプロピレン(PP)、オレフィン系エラストマー(TPO)、シクロオレフィン系樹脂、エチレン-酢酸ビニル共重合体(EVA)、エチレン-酢酸ビニル-無水マレイン酸共重合体、エチレン-(メタ)アクリル酸共重合体、エチレン-(メタ)アクリル酸エステル-無水マレイン酸共重合体などが挙げられ、それらの中でもポリエチレンなどのポリオレフィン系樹脂が好ましい。
 前記熱接着性樹脂層に含まれる官能基としては、前記フッ素樹脂が有する官能基に対し、化学結合が可能な官能基が選択される。前記フッ素樹脂が有する官能基が酸無水物残基である場合、この熱接着性樹脂層に含まれる官能基としては、グリシジル基、アミノ基、エポキシ基、イソシアナート基などが挙げられる。前記熱接着性樹脂中の官能基の含有量は、0.01~10モル%(ここで、モル%とは、(官能基のモル数/熱接着性樹脂の全繰り返し単位モル数)×100で算出された値を言う)の範囲が好ましく、0.05~5モル%の範囲がより好ましい。
 前記フッ素樹脂が有する官能基が酸無水物残基である場合、熱接着性樹脂層に含まれる官能基はグリシジル基であることが好ましい。さらに、グリシジル基を有する熱接着性樹脂層は、エチレン-グリシジルメタクリレート共重合体であることが好ましい。
 このエチレン-グリシジルメタクリレート共重合体の好ましい市販品としては、「LOTADER AX8840」(商品名、アルケマ社製)などが挙げられる。
 前記フッ素樹脂層は、前記熱接着性樹脂層に含まれる官能基と化学結合可能な官能基を有するフッ素樹脂からなり、前記熱接着性樹脂層の表面に直接接着されている。前記フッ素樹脂としては、例えば、テトラフルオロエチレン/ペルフルオロ(アルキルビニルエーテル)系共重合体、テトラフルオロエチレン/ヘキサフルオロプロピレン系共重合体、テトラフルオロエチレン/ペルフルオロ(アルキルビニルエーテル)/ヘキサフルオロプロピレン系共重合体、エチレン/テトラフルオロエチレン系共重合体(ETFE)、エチレン/クロロトリフルオロエチレン系共重合体、エチレン/テトラフルオロエチレン/ヘキサフルオロプロピレン系共重合体などが挙げられる。本発明の特に好ましい実施形態において、前記フッ素樹脂は、エチレン/テトラフルオロエチレン系共重合体とエチレン/テトラフルオロエチレン/ヘキサフルオロプロピレン系共重合体との一方又は両方からなるものであることが好ましい。
 前記フッ素樹脂に含まれる官能基としては、酸無水物残基、カルボキシル基、エポキシ基、酸ハライド基などが挙げられる。これらの官能基の中でも、フッ素樹脂層と熱接着性樹脂層との接着強度が強くなり、しかも高い接着強度を長期にわたり維持できる点から、酸無水物残基が好ましい。前記フッ素樹脂中の官能基の含有量は、0.01~10モル%(ここで、モル%とは、(官能基のモル数/熱接着性樹脂の全繰り返し単位モル数)×100で算出された値を言う)の範囲が好ましく、0.05~5モル%の範囲がより好ましい。
 この酸無水物残基を含むフッ素樹脂を得るには、前記フッ素樹脂を構成する含フッ素モノマー、エチレンモノマーなどの他のモノマー、官能基含有モノマーを反応器に供給し、重合開始剤の存在下で共重合反応させて得ることができる。官能基含有モノマーとしては、無水マレイン酸、無水イタコン酸、無水シトラコン酸などが挙げられる。この共重合反応は、一般に用いられているラジカル重合開始剤及び連鎖移動剤を用いて共重合させる方法を採用できる。重合方法としては、従来周知の塊状重合、溶液重合、懸濁重合、乳化重合などが挙げられる。
 この重合に使用される重合開始剤としては、例えば、ピバロイルtert-ブチルペルオキシド等のペルオキシド、アゾビスイソブチロニトリル等のアゾ化合物、ジイソプロピルペルオキシジカーボネート等のペルオキシイソブチレートなどが挙げられる。
 溶液重合の媒体としては、フッ化炭化水素、フッ化塩化炭化水素、アルコール、炭化水素等の有機溶媒、水性媒体等が挙げられ、その中でもフッ化炭化水素が好ましい。
 連鎖移動剤としては、1,3-ジクロロ-1,1,2,2,3-ペンタフルオロプロパン、等のクロロフルオロハイドロカーボン、ペンタンやヘキサン等の炭化水素が挙げられる。
 この重合条件は特に限定されないが、例えば、重合温度は0~100℃が好ましく、30~80℃がより好ましい。また重合圧力は0.1~10MPaの範囲が好ましく、0.5~3MPaの範囲がより好ましい。重合時間は、重合温度、重合圧力、モノマーの種類等により適宜設定可能であり、通常は1~30時間程度が好ましい。
 前記熱接着性樹脂層と前記フッ素樹脂層とは、共押出法によって前記基材フィルムの表面に積層することが好ましい。より好ましくは、前記熱接着性樹脂を共押出装置の一方の押出機に投入し、他方の押出機に前記フッ素樹脂を供給し、Tダイ共押出法によって基材フィルムを一定の速度にて移動させながら、基材フィルムの一方の面に、熱接着性樹脂層と、フッ素樹脂層との順に積層する。その後、基材フィルムの他方の面にも同様に熱接着性樹脂層とフッ素樹脂層とを積層してもよい。
 前記共押出によって形成された熱接着性樹脂層とフッ素樹脂層との層間では、それぞれの官能基が反応し、化学結合が生じることで、これらの層間は強固に接着される。また、熱接着性樹脂層は、基材フィルムの表面に強固に熱融着される。その結果、基材フィルムの片面又は両面には、熱接着性樹脂層を介してフッ素樹脂層が強固に接着される。
 この太陽電池モジュール用保護シートにおいて、前記熱接着性樹脂層とフッ素樹脂層との厚みは特に限定されないが、通常は、それぞれ10μm~200μmの範囲であることがより好ましく、15μm~150μmの範囲であることがさらに好ましい。
 基材フィルム、熱接着性樹脂層及びフッ素樹脂層には、必要に応じて、顔料、紫外線吸収剤、紫外線安定剤、難燃剤、可塑剤、帯電防止剤、滑剤、ブロッキング防止剤等の各種添加剤を含んでいてもよい。
 顔料としては、本発明の効果を損なうものでなければ特に限定されない。例えば、二酸化チタン、酸化亜鉛、酸化アルミニウム、シリカ、カーボンブラック等が挙げられる。顔料として、特に白色顔料を用いることが好ましく、その種類及びそれを含有する層中での存在量は、後記第二及び第一の実施形態に記載されたとおりである。
 紫外線吸収剤は、ベンゾフェノン系、ベンゾトリアゾール系、蓚酸アニリド系、シアノアクリレート系およびトリアジン系等が挙げられる。
 本発明の太陽電池モジュール用保護シートにおいて、前記フッ素樹脂の官能基は酸無水物残基であることが好ましい。
 本発明の太陽電池モジュール用保護シートにおいて、前記フッ素樹脂がエチレン/テトラフルオロエチレン系共重合体とエチレン/テトラフルオロエチレン/ヘキサフルオロプロピレン系共重合体との一方又は両方からなるものであることが好ましい。
 本発明の太陽電池モジュール用保護シートにおいて、前記熱接着性樹脂の官能基がグリシジル基であることが好ましい。
 本発明の太陽電池モジュール用保護シートにおいて、前記熱接着性樹脂がポリオレフィン系樹脂からなることが好ましい。
 また本発明は、前記太陽電池モジュール用保護シートを用いてなる太陽電池モジュールを提供する。
 本発明の太陽電池モジュール用保護シートは、基材フィルムの少なくとも一方の面に、官能基を有する熱接着性樹脂からなる熱接着性樹脂層が直接接着され、該熱接着性樹脂層に前記熱接着性樹脂の官能基と反応して化学結合を形成可能な官能基を有するフッ素樹脂からなるフッ素樹脂層が直接接着されてなる構成としたことによって、基材フィルムとフッ素樹脂層との接着強度を長期間にわたって十分に確保することができ、耐久性に優れた太陽電池モジュール用保護シートを提供できる。
 本発明の太陽電池モジュールは、表面保護シートと裏面保護シートとの一方又は両方に、本発明に係る前記太陽電池モジュール用保護シートを用いたものなので、長期間にわたり優れた耐候性を確保することができる。
本発明の太陽電池モジュール用保護シートの第一の実施形態を示す概略断面図である。 本発明の太陽電池モジュール用保護シートの第二の実施形態を示す概略断面図である。 本発明の太陽電池モジュール用保護シートの第三の実施形態を示す概略断面図である。 本発明の太陽電池モジュール用保護シートの第四の実施形態を示す概略断面図である。 比較例1で作製した太陽電池モジュール用保護シートを示す概略断面図である。 比較例2で作製した太陽電池モジュール用保護シートを示す概略断面図である。 比較例3で作製した太陽電池モジュール用保護シートを示す概略断面図である。 本発明の太陽電池モジュールの一実施形態を示す概略断面図である。
 以下、図面を参照して本発明の太陽電池モジュール用保護シートおよびそれを用いた太陽電池モジュールの実施形態(embodiment)を説明する。
(1)第一の実施形態
 図1は、本発明の太陽電池モジュール用保護シートの第一の実施形態を示す概略断面図である。
 この実施形態の太陽電池モジュール用保護シート10は、基材フィルム11の両方の面に、官能基を有する熱接着性樹脂からなる熱接着性樹脂層12,12が直接接着され、該熱接着性樹脂層12,12に前記熱接着性樹脂の官能基と反応して化学結合を形成可能な官能基を有するフッ素樹脂からなるフッ素樹脂層13,13が直接接着された構成になっている。
 この太陽電池モジュール用保護シート10は、太陽電池モジュールの表面保護シート(以下、フロントシートと記す)または裏面保護シート(以下、バックシートと記す)に適用されるものである。
 基材フィルム11としては、太陽電池モジュール用保護シートとして実用上十分な電気絶縁性、耐候性、防湿性を有し、かつ熱接着性樹脂層12が積層可能であればよく、一般に太陽電池モジュール用保護シートにおける樹脂フィルムとして用いられている各種の樹脂フィルムの中から適宜選択して使用することができる。
 基材フィルム11に用いられる樹脂フィルムとしては、例えば、ポリエチレン、ポリプロピレンなどのポリオレフィン系樹脂、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリエチレンナフタレート(PEN)などのポリエステル系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、ポリカーボネート系樹脂、ポリスチレン系樹脂、ポリビニルアルコール系樹脂、エチレン-酢酸ビニル共重合体(EVA)などのビニルアルコール系樹脂、ポリフェニレンオキサイド系樹脂、ポリフェニレンスルフィド系樹脂、アクリロニトリル系樹脂、塩化ビニル系樹脂、ビニルアセタール系樹脂、ビニルブチラール系樹脂、フッ素系樹脂などの樹脂からなる樹脂のフィルムまたはシートが用いられる。これらの樹脂フィルムのなかでも、ポリエステルからなるフィルムが好ましく、より具体的にはPETフィルムが好適である。
 基材フィルム11の厚みは、太陽電池モジュールに要求される電気絶縁性に基づいて適宜設定される。例えば、基材フィルム11が樹脂フィルムである場合、その厚みが10μm~300μmの範囲であることが好ましい。より具体的には、基材フィルム11がPETフィルムである場合、軽量性および電気絶縁性の観点から、その厚みが10μm~300μmの範囲であることが好ましく、20μm~250μmの範囲であることがより好ましく、30μm~200μmの範囲であることが特に好ましい。
 前記熱接着性樹脂層12は、前記フッ素樹脂が有する官能基に対し、化学結合が可能な官能基を有する熱接着性樹脂からなり、基材フィルム11の表面に直接接着されている。この熱接着性樹脂としては、低密度ポリエチレン(LDPE、密度:0.910g/cm以上、0.930g/cm未満)、中密度ポリエチレン(MDPE、密度:0.930g/cm以上、0.942g/cm未満)、高密度ポリエチレン(HDPE、密度:0.942g/cm以上)などのポリエチレン、ポリプロピレン(PP)、オレフィン系エラストマー(TPO)、シクロオレフィン系樹脂、エチレン-酢酸ビニル共重合体(EVA)、エチレン-酢酸ビニル-無水マレイン酸共重合体、エチレン-(メタ)アクリル酸共重合体、エチレン-(メタ)アクリル酸エステル-無水マレイン酸共重合体などが挙げられ、それらの中でもポリエチレンなどのポリオレフィン系樹脂が好ましい。
 熱接着性樹脂層12に含まれる官能基としては、前記フッ素樹脂が有する官能基に対し、化学結合が可能な官能基が選択される。前記フッ素樹脂が有する官能基が酸無水物残基である場合、熱接着性樹脂層12に含まれる官能基としては、グリシジル基、アミノ基、エポキシ基、イソシアナート基などが挙げられる。前記熱接着性樹脂中の官能基の含有量は、0.01~10モル%(ここで、モル%とは、(官能基のモル数/熱接着性樹脂の全繰り返し単位モル数)×100で算出された値を言う)の範囲が好ましく、0.05~5モル%の範囲がより好ましい。
 本発明の特に好ましい実施形態において、前記フッ素樹脂が有する官能基が酸無水物残基である場合、熱接着性樹脂層12に含まれる官能基はグリシジル基である。さらに、グリシジル基を有する熱接着性樹脂層12としては、エチレン-グリシジルメタクリレート共重合体を用いることが好ましい。
 このエチレン-グリシジルメタクリレート共重合体の好ましい市販品としては、「LOTADER AX8840」(商品名、アルケマ社製)などが挙げられる。
 前記フッ素樹脂層13は、前記熱接着性樹脂層12に含まれる官能基と化学結合可能な官能基を有するフッ素樹脂からなり、前記熱接着性樹脂層12の表面に直接接着されている。前記フッ素樹脂としては、例えば、テトラフルオロエチレン/ペルフルオロ(アルキルビニルエーテル)系共重合体、テトラフルオロエチレン/ヘキサフルオロプロピレン系共重合体、テトラフルオロエチレン/ペルフルオロ(アルキルビニルエーテル)/ヘキサフルオロプロピレン系共重合体、エチレン/テトラフルオロエチレン系共重合体(ETFE)、エチレン/クロロトリフルオロエチレン系共重合体、エチレン/テトラフルオロエチレン/ヘキサフルオロプロピレン系共重合体などが挙げられる。本発明の特に好ましい実施形態において、前記フッ素樹脂は、エチレン/テトラフルオロエチレン系共重合体とエチレン/テトラフルオロエチレン/ヘキサフルオロプロピレン系共重合体との一方又は両方からなるものであることが好ましい。
 前記フッ素樹脂に含まれる官能基としては、酸無水物残基、カルボキシル基、エポキシ基、酸ハライド基などが挙げられる。これらの官能基の中でも、フッ素樹脂層13と熱接着性樹脂層12との接着強度が強くなり、しかも高い接着強度を長期にわたり維持できる点から、酸無水物残基が好ましい。前記フッ素樹脂中の官能基の含有量は、0.01~10モル%(ここで、モル%とは、(官能基のモル数/熱接着性樹脂の全繰り返し単位モル数)×100で算出された値を言う)の範囲が好ましく、0.05~5モル%の範囲がより好ましい。
 この酸無水物残基を含むフッ素樹脂を得るには、前記フッ素樹脂を構成する含フッ素モノマー、エチレンモノマーなどの他のモノマー、官能基含有モノマーを反応器に供給し、重合開始剤の存在下で共重合反応させて得ることができる。官能基含有モノマーとしては、無水マレイン酸、無水イタコン酸、無水シトラコン酸などが挙げられる。この共重合反応は、一般に用いられているラジカル重合開始剤及び連鎖移動剤を用いて共重合させる方法を採用できる。重合方法としては、従来周知の塊状重合、溶液重合、懸濁重合、乳化重合などが挙げられる。
 この重合に使用される重合開始剤としては、例えば、ピバロイルtert-ブチルペルオキシド等のペルオキシド、アゾビスイソブチロニトリル等のアゾ化合物、ジイソプロピルペルオキシジカーボネート等のペルオキシイソブチレートなどが挙げられる。
 溶液重合の媒体としては、フッ化炭化水素、フッ化塩化炭化水素、アルコール、炭化水素等の有機溶媒、水性媒体等が挙げられ、その中でもフッ化炭化水素が好ましい。
 連鎖移動剤としては、1,3-ジクロロ-1,1,2,2,3-ペンタフルオロプロパン、等のクロロフルオロハイドロカーボン、ペンタンやヘキサン等の炭化水素が挙げられる。
 この重合条件は特に限定されないが、例えば、重合温度は0~100℃が好ましく、30~80℃がより好ましい。また重合圧力は0.1~10MPaの範囲が好ましく、0.5~3MPaの範囲がより好ましい。重合時間は、重合温度、重合圧力、モノマーの種類等により適宜設定可能であり、通常は1~30時間程度が好ましい。
 前記熱接着性樹脂層12と前記フッ素樹脂層13とは、共押出法によって前記基材フィルム11の表面に積層することが好ましい。より好ましくは、前記熱接着性樹脂を共押出装置の一方の押出機に投入し、他方の押出機に前記フッ素樹脂を供給し、Tダイ共押出法によって基材フィルム11を一定の速度にて移動させながら、基材フィルム11の一方の面に、熱接着性樹脂層12と、フッ素樹脂層13との順に積層する。その後、基材フィルム11の他方の面にも同様に熱接着性樹脂層12とフッ素樹脂層13とを積層することによって、図1に示す構成の太陽電池モジュール用保護シート10を製造する。
 前記共押出によって形成された熱接着性樹脂層12とフッ素樹脂層13との層間では、それぞれの官能基が反応し、化学結合が生じることで、これらの層間は強固に接着される。また、熱接着性樹脂層12は、基材フィルム11の表面に強固に熱融着される。その結果、基材フィルム11の両面には、熱接着性樹脂層12,12を介してフッ素樹脂層13,13が強固に接着される。
 この太陽電池モジュール用保護シート10において、前記熱接着性樹脂層12とフッ素樹脂層13との厚みは特に限定されないが、通常はそれぞれ10μm~200μmの範囲であることがより好ましく、15μm~150μmの範囲であることがさらに好ましい。
 基材フィルム11、熱接着性樹脂層12及びフッ素樹脂層13には、必要に応じて、顔料、紫外線吸収剤、紫外線安定剤、難燃剤、可塑剤、帯電防止剤、滑剤、ブロッキング防止剤等の各種添加剤を含んでいてもよい。
 顔料としては、本発明の効果を損なうものでなければ特に限定されない。例えば、二酸化チタン、カーボンブラック等が挙げられる。
 紫外線吸収剤は、ベンゾフェノン系、ベンゾトリアゾール系、蓚酸アニリド系、シアノアクリレート系およびトリアジン系等が挙げられる。
 本実施形態の太陽電池モジュール用保護シート10は、基材フィルム11の両方の面に、官能基を有する熱接着性樹脂からなる熱接着性樹脂層12,12が直接接着され、該熱接着性樹脂層12,12に前記熱接着性樹脂の官能基と反応して化学結合を形成可能な官能基を有するフッ素樹脂からなるフッ素樹脂層13,13が直接接着されてなる構成なので、基材フィルム11とフッ素樹脂層13との接着強度を長期間にわたって十分に確保することができ、耐久性に優れた太陽電池モジュール用保護シートを提供できる。
 なお、本実施形態の太陽電池モジュール用保護シート10は、基材フィルム11の両方の面にそれぞれ熱接着性樹脂層12,12及びフッ素樹脂層13,13を積層した構成としているが、基材フィルム11の片面のみに熱接着性樹脂層12及びフッ素樹脂層13を積層した構成としてもよい。
(第二の実施形態)
 図2は、本発明の太陽電池モジュール用保護シートの第二の実施形態を示す概略断面図である。
 図2において、図1に示した太陽電池モジュール用保護シート10と同じ構成要素には同一の符号を付し、その説明を省略する。
 この実施形態の太陽電池モジュール用保護シート20は、太陽電池モジュールのバックシートに適用される。
 この実施形態の太陽電池モジュール用保護シート20は、基材フィルム11の一方の面に、前記熱接着性樹脂層12が直接接着され、該熱接着性樹脂層12上に前記フッ素樹脂層13が直接接着され、基材フィルム11の他方の面に、接着層14を介して白色熱接着性層15が積層された構成になっている。
 前記接着層14を構成する接着剤としては、ポリアクリル系接着剤、ポリウレタン系接着剤、エポキシ系接着剤、ポリエステル系接着剤、ポリエステルポリウレタン系接着剤などが用いられる。これらの接着剤は1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 前記白色熱接着性層15は、太陽電池モジュールを構成する封止材との接着に用いられる熱接着層をなしている。ここで、熱接着性とは、加熱処理によって接着性を発現する特性である。接着性を発現する加熱処理の温度は、50~200℃の範囲が好ましい。また、この白色熱接着性層15は、太陽電池モジュールの裏面側に接着し、太陽電池モジュールから漏れだした光を反射してモジュール側に戻すことで、太陽電池モジュールの発電効率を向上させる機能も意図されている。
 前記白色熱接着性層15は、ベースとなる熱接着性樹脂に白色顔料を均一に分散させた材料からなっている。この熱接着性樹脂としては、例えば、低密度ポリエチレン(LDPE、密度:0.910g/cm以上、0.930g/cm未満)、中密度ポリエチレン(MDPE、密度:0.930g/cm以上、0.942g/cm未満)、高密度ポリエチレン(HDPE、密度:0.942g/cm以上)などのポリエチレン樹脂;ポリプロピレン樹脂(PP);オレフィン系エラストマー(TPO)、シクロオレフィン樹脂、エチレン-酢酸ビニル共重合体(EVA)などが挙げられる。その中でも、太陽電池モジュールの封止材との熱接着性が良好に得られるなどの点から、EVAが好ましい。
 前記白色熱接着性層15に含有させる白色顔料としては、本発明の効果を損なうものでなければ特に限定されず、例えば、二酸化チタン、酸化亜鉛、酸化アルミニウム、シリカなどが用いられる。具体的には、二酸化チタン、耐久性を付与するために酸化ケイ素で処理したルチル型二酸化チタンである「Ti-Pure R105」(商品名、デュポン社製)、ジメチルシリコーンの表面処理によってシリカ表面の水酸基を修飾した疎水性シリカである「CAB-O-SIL TS 720」(商品名、Cabot社製)などが好適に用いられる。この白色熱接着性層中に含まれる白色顔料の存在量は2.5~35質量%が好ましい。
 前記白色熱接着性層15の厚みは、本発明の効果を損なわない限り特に制限されず、例えば、1μm~200μmの範囲であることが好ましく、軽量性および電気絶縁性などの観点から、10μm~200μmの範囲であることがより好ましく、15μm~150μmの範囲であることがさらに好ましい。
 本実施形態の太陽電池モジュール用保護シート20は、前記第一の実施形態の太陽電池モジュール用保護シート10と同様の効果が得られ、さらに、白色熱接着性層15が設けられたことにより、太陽電池モジュールの封止材に対する接着性を向上させることができる。したがって、本実施形態の太陽電池モジュール用保護シート20を太陽電池モジュールに適用することにより、太陽電池モジュールの封止材から剥がれにくくなり、長期に亘り、耐候性に優れた太陽電池モジュールを提供することができる。
(第三の実施形態)
 図3は、本発明の太陽電池モジュール用保護シートの第三の実施形態を示す概略断面図である。
 図3において、図1に示した太陽電池モジュール用保護シート10と同じ構成要素には同一の符号を付し、その説明を省略する。
 この実施形態の太陽電池モジュール用保護シート30は、太陽電池モジュールのバックシートに適用される。
 この実施形態の太陽電池モジュール用保護シート30は、基材フィルム11の両方の面に、官能基を有する熱接着性樹脂からなる熱接着性樹脂層12,12が直接接着され、該熱接着性樹脂層12,12に前記熱接着性樹脂の官能基と反応して化学結合を形成可能な官能基を有し、且つ白色顔料を含むフッ素樹脂からなる白色フッ素樹脂層16,16が直接接着された構成になっている。
 前記白色フッ素樹脂層16は、前記第一の実施形態の太陽電池モジュール用保護シート10におけるフッ素樹脂と同様のフッ素樹脂を用い、これに二酸化チタンなどの上記第二の実施形態で記載したような白色顔料を均一に分散させた材料で形成される。前記フッ素樹脂に白色顔料を均一に分散させるため、予めフッ素樹脂などのベース樹脂中に白色顔料を配合して均一に分散させたマスターバッチを用いることが好ましい。この白色フッ素樹脂層中に含まれる白色顔料の存在量は2.5~50質量%が好ましい。
 この太陽電池モジュール用保護シート30は、前記第一の実施形態の太陽電池モジュール用保護シート10の製造方法と同じく、共押出法によって前記基材フィルム11の表面に熱接着性樹脂層12と白色フッ素樹脂層16とを積層して製造することが好ましい。
 この実施形態の太陽電池モジュール用保護シート30は、前記第一の実施形態の太陽電池モジュール用保護シート10と同じく、基材フィルム11と白色フッ素樹脂層16との接着強度を長期間にわたって十分に確保することができ、耐久性に優れた太陽電池モジュール用保護シートを提供できる。また、白色フッ素樹脂層16を用いたことによって、太陽電池モジュールの裏面側に接着し、太陽電池モジュールから漏れだした光を反射してモジュール側に戻すことで、太陽電池モジュールの発電効率を向上させることができる。
(第四の実施形態)
 図4は、本発明の太陽電池モジュール用保護シートの第四の実施形態を示す概略断面図である。
 図4において、図1~3に示した太陽電池モジュール用保護シート10~30と同じ構成要素には同一の符号を付し、その説明を省略する。
 この実施形態の太陽電池モジュール用保護シート40は、太陽電池モジュールのバックシートに適用される。
 この実施形態の太陽電池モジュール用保護シート40は、基材フィルム11の一方の面側に上記熱接着性樹脂層12が直接接着され、該熱接着性樹脂層12上に上記白色フッ素樹脂層16が直接接着され、基材フィルム11の他方の面に、上記接着層14を介して上記白色熱接着性層15が積層された構成になっている。
 この実施形態の太陽電池モジュール用保護シート40は、前記第一の実施形態の太陽電池モジュール用保護シート10と同じく、基材フィルム11と白色フッ素樹脂層16との接着強度を長期間にわたって十分に確保することができ、耐久性に優れた太陽電池モジュール用保護シートを提供できる。また、白色熱接着性層15を用いたことによって、太陽電池モジュールの裏面側に接着し、太陽電池モジュールから漏れだした光を反射してモジュール側に戻すことで、太陽電池モジュールの発電効率を向上させることができる。
 なお、前述した各太陽電池モジュール用保護シート10,20,30,40の構成は、本発明の単なる例示であって、本発明はこれらの例示に限定されない。各太陽電池モジュール用保護シート10,20,30,40は種々変更や修正が可能である。
 例えば、基材フィルム11は、防湿性、耐候性等を向上させるために、基材フィルム11の両面または一方の面に、金属または半金属、金属または半金属の酸化物、窒化物、珪化物などの無機材料からなる蒸着膜を形成してもよい。
(太陽電池モジュール)
 図8は、本発明の太陽電池モジュールの一実施形態を示す概略断面図である。
 太陽電池モジュール100は、結晶シリコン、アモルファスシリコンなどからなる太陽電池セル101と、太陽電池セル101を封止する電気絶縁体からなる封止材(充填層)102と、封止材102の表面に積層された表面保護シート(フロントシート)103と、封止材102の裏面に積層された裏面保護シート(バックシート)104とから概略構成されている。
 この実施形態では、太陽電池モジュール100は、上述の第一~第四の実施形態における太陽電池モジュール用保護シート10,20,30,40が、フロントシート103またはバックシート104として設けられたものである。
 第一~第四の実施形態の太陽電池モジュール用保護シート10,20,30,40を、太陽電池モジュールのフロントシートまたはバックシートに適用した太陽電池モジュールとすることにより、この太陽電池モジュール100は、長期間にわたり優れた耐候性を確保することができる。
[フッ素樹脂の重合]
 攪拌機付き重合釜中を脱気し、重合釜へ1H-トリデカフルオロヘキサン300.0g、1,3-ジクロロ-1,1,2,2,3-ペンタフルオロプロパン(和光ケミカル社製、商品名:「HCFC-225」)75.0g、3,3,4,4,5,5,6,6,6-ノナフルオロ-1-ヘキセン1.49gを注ぎ入れた。さらに、ヘキサプルオロプロパン157.3g、テトラフルオロエチレン49.2g、エチレン1.6gを圧入して、重合釜の温度を66℃に昇温させた。重合開始剤であるピバロイルtert-ブチルペルオキシド0.564gを添加し、重合を開始させた。重合中に圧力を一定に保たせるために、テトラフルオロエチレン/エチレン=54/46のモノマーガスを連続的に重合釜へ流入させた。さらに、1.0モル%の3,3,4,4,5,5,6,6,6-ノナフルオロ-1-ヘキセンと0.25モル%の無水イタコン酸、1質量%の1,3-ジクロロ-1,1,2,2,3-ペンタフルオロプロパンを含むテトラフルオロエチレン/エチレン混合モノマーガス(混合比:54/46)を連続的に流入させた。その後、モノマー混合ガスを70g仕込んだ時点で、重合を停止し、重合釜温度を室温まで冷却し、同時に常圧までパージを行った。得られたフッ素樹脂を120℃で24時間乾燥させて、目的のフッ素樹脂を得た。
[白色フッ素樹脂の作製]
 前記の通り得られたフッ素樹脂に、ETFEと酸化チタンからなるマスターバッチ(商品名:「H5150ホワイト」、大日精化工業社製)を、二酸化チタンの含有量が20質量%になるように添加して混錬し、白色フッ素樹脂を得た。
[実施例1]
 基材フィルムとしてポリエステルフィルム(商品名:「テイジン テトロン フィルム SL」、厚み125μm、帝人デュポンフィルム社製)を用い、該基材フィルムの一方の面にコロナ処理(出力2000W)を施した。その後、Tダイ製膜機(シリンダー温度:200℃、Tダイ温度:300℃)により、前記の通り作製したフッ素樹脂と、官能基含有熱接着性樹脂としてエチレン-グリシジルメタクリレート共重合体(商品名:「LOTADER AX8840」、アルケマ社製)とをそれぞれ厚さ25μmとなるように、前記基材フィルムのコロナ処理面に共押出コーティングした。さらに、基材フィルムの他方の面にも同様の方法によりフッ素樹脂/エチレン-グリシジルメタクリレート共重合体層を作製し、図1に示すように基材フィルム11の両方の面に、エチレン-グリシジルメタクリレート共重合体層(熱接着性樹脂層12,12)が直接接着され、該層にフッ素樹脂層13,13が直接接着された構成の太陽電池モジュール用保護シート10を得た。
[実施例2]
 基材フィルムとしてポリエステルフィルム(商品名:「テイジン テトロン フィルム SL」、厚み125μm、帝人デュポンフィルム社製)を用い、該基材フィルムの一方の面にコロナ処理(出力2000W)を施した。その後、Tダイ製膜機(シリンダー温度:200℃、Tダイ温度:300℃)により、前記の通り作製したフッ素樹脂と、官能基含有熱接着性樹脂としてエチレン-グリシジルメタクリレート共重合体(商品名:LOTADER AX8840;アルケマ社製)をそれぞれ厚さ25μmとなるように、前記基材フィルムのコロナ処理面に共押出コーティングした。
 さらに、基材フィルムの他方の面に、接着剤(三井化学社製、「タケラックA-515」(商品名)と三井化学社製、「タケネートA-3」(商品名)とを9:1の割合で混合)をマイヤーバーで塗布して、80℃、1分間乾燥して10μmとした接着層を形成した。この接着層と、白色熱接着性層として二酸化チタンを5質量%含有するEVAフィルム(厚み100μm)とをラミネートすることによって、図2に示すように、基材フィルム11の一方の面に、エチレン-グリシジルメタクリレート共重合体層(熱接着性樹脂層12)が直接接着され、該熱接着性樹脂層12上に前記フッ素樹脂層13が直接接着され、基材フィルム11の他方の面に、接着層14を介して白色熱接着性層15が積層された構成の太陽電池モジュール用保護シート20を作製した。
[実施例3]
 フッ素樹脂を白色フッ素樹脂に変更したこと以外は、実施例1と同様にして、図3に示すように、基材フィルム11の両方の面に、エチレン-グリシジルメタクリレート共重合体層(熱接着性樹脂層12,12)が直接接着され、該熱接着性樹脂層12,12に白色フッ素樹脂層16,16が直接接着された構成の太陽電池モジュール用保護シート30を作製した。
[実施例4]
 フッ素樹脂を白色フッ素樹脂に変更した以外は、実施例2と同様にして、図4に示すように、基材フィルム11の一方の面側にエチレン-グリシジルメタクリレート共重合体層(熱接着性樹脂層12)が直接接着され、該熱接着性樹脂層12上に白色フッ素樹脂層16が直接接着され、基材フィルム11の他方の面に、接着層14を介して白色熱接着性層15が積層された構成の太陽電池モジュール用保護シート40を作製した。
[比較例1]
 基材フィルム11の両面に、熱接着性樹脂層12を設けずフッ素樹脂層13を直接押出コーティングし、図5に示すように基材フィルム11の両面にフッ素樹脂層13,13を直接積層した構成の太陽電池モジュール用保護シート50を作製した。
[比較例2]
 フッ素樹脂を白色フッ素樹脂に変更したこと以外は、比較例1と同様にして、図6に示すように基材フィルム11の両面に白色フッ素樹脂層16、16を直接積層した構成の太陽電池モジュール用保護シート60を作製した。
[比較例3]
 基材フィルムとしてポリエステルフィルム(テイジン テトロン フィルム SL」、厚み125μm、帝人デュポンフィルム社製)の一方の面に接着剤(三井化学社製タケラックA-515と三井化学社製タケネートA-3とを9:1の割合で混合)をマイヤーバーで塗布して、80℃、1分間乾燥して厚み10μmの接着層14を形成した。この接着層14とETFEフィルム17(商品名:「アフレックス25WP」、厚み25μm、旭硝子社製)を貼り合わせた。さらに、基材フィルムの他方の面にも同様な方法により接着層を介してETFEフィルム17を貼り合わせ、図7に示すように基材フィルム11の両方の面に接着層14,14を介してETFEフィルム17,17を貼り合わせた構成の太陽電池モジュール用保護シート70を作製した。
 前述した通り作製した実施例1~4、比較例1~3の太陽電池モジュール用保護シート(以下、保護シートと記す)について、下記の測定方法及び評価基準に従って、はく離接着強さ、破断強さ及び黄変度ΔYIを測定・評価した。
 なお、はく離接着強さ及び破断強さは、以下の耐久試験前の保護シートと耐久試験後の保護シートについて測定し、比較した。
 また黄変度ΔYIは、以下の耐候試験後の保護シートについて測定した。
 これらの結果を表1にまとめて記す。
<耐久試験>
 温度121℃、湿度100%RH、圧力2atm条件下に各保護シートを24時間曝した。
<耐候試験(耐UV試験)>
 耐候性試験機(商品名「アイ スーパーUVテスター SUV-W13」、岩崎電気社製)を用い、照射4時間(ブラックパネル温度63℃、湿度70%)、レスト4時間(ブラックパネル温度70℃、湿度90%)、スプレー10秒間、デュー4時間(ブラックパネル温度30℃、湿度100%)、スプレー10秒間の条件を100時間繰り返し、各保護シートをこの繰り返し条件の下に置き、黄変度ΔYIを測定した。
<はく離接着強さ>
 保護シートを25mm×150mmに切断し、JIS K6854-3:1999(接着剤-はく離接着強さ試験方法-第3部:T形はく離)に準拠して、ポリエステルフィルムとフッ素樹脂層のはく離接着強さを測定した。はく離速度は300mm/分とした。
<破断強さ>
 保護シートを15mm×150mmに切断し、JIS K7127:1999(プラスチック-引張特性の試験方法-第3部:フィルムおよびシートの試験条件)に準拠して、保護シートが破断したときの荷重を測定した。
<黄変度ΔYI>
 JIS K7373:2006(プラスチック-黄色度及び黄変度の求め方)に準じて耐候性試験後の保護シートの黄変度ΔYIを測定した。
Figure JPOXMLDOC01-appb-T000001
 表1の結果から、本発明に係る実施例1~4の保護シートは、基材フィルムとフッ素樹脂層との間の接着強度に優れ、しかも高い接着強度を長期間にわたって維持できることが判明した。
 また、本発明に係る実施例1~4の保護シートは、優れた破断強さを長期間にわたって維持できることが判明した。
 本発明は、太陽電池モジュールの表面保護シートまたは裏面保護シートとして用いられる保護シートと、それを備えた太陽電池モジュールに関する。本発明の保護シートは、基材フィルムとフッ素樹脂層との接着強度を長期間にわたって十分に確保することができる。
10,20,30,40,50,60,70:太陽電池モジュール用保護シート
11:基材フィルム
12:熱接着性樹脂層
13:フッ素樹脂層
14:接着層
15:白色熱接着性層
16:白色フッ素樹脂層
17:ETFEフィルム
100:太陽電池モジュール
101:太陽電池セル
102:封止材
103:表面保護シート(フロントシート)
104:裏面保護シート(バックシート)

Claims (6)

  1.  基材フィルム、その少なくとも一方の面に直接接着された、官能基を有する熱接着性樹脂からなる熱接着性樹脂層、及び前記熱接着性樹脂の官能基と反応して化学結合を形成可能な官能基を有するフッ素樹脂からなり、該熱接着性樹脂に直接接着されたフッ素樹脂層を有する太陽電池モジュール用保護シート。
  2.  前記フッ素樹脂の官能基が酸無水物残基である請求項1に記載の太陽電池モジュール用保護シート。
  3.  前記フッ素樹脂がエチレン/テトラフルオロエチレン系共重合体とエチレン/テトラフルオロエチレン/ヘキサフルオロプロピレン系共重合体との一方又は両方からなる請求項1に記載の太陽電池モジュール用保護シート。
  4.  前記熱接着性樹脂の官能基がグリシジル基である請求項1に記載の太陽電池モジュール用保護シート。
  5.  前記熱接着性樹脂がポリオレフィン系樹脂からなる請求項1に記載の太陽電池モジュール用保護シート。
  6.  請求項1に記載の太陽電池モジュール用保護シートを有する太陽電池モジュール。
PCT/JP2011/072973 2010-10-07 2011-10-05 太陽電池モジュール用保護シート及び太陽電池モジュール WO2012046764A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2011800479256A CN103155169A (zh) 2010-10-07 2011-10-05 太阳能电池组件用保护片及太阳能电池组件
US13/877,883 US20130192674A1 (en) 2010-10-07 2011-10-05 Protective sheet for solar cell module and solar cell module
EP11830696.8A EP2626912A1 (en) 2010-10-07 2011-10-05 Protective sheet for solar cell module, and solar cell module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-227512 2010-10-07
JP2010227512A JP2012084587A (ja) 2010-10-07 2010-10-07 太陽電池モジュール用保護シート及び太陽電池モジュール

Publications (1)

Publication Number Publication Date
WO2012046764A1 true WO2012046764A1 (ja) 2012-04-12

Family

ID=45927759

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/072973 WO2012046764A1 (ja) 2010-10-07 2011-10-05 太陽電池モジュール用保護シート及び太陽電池モジュール

Country Status (5)

Country Link
US (1) US20130192674A1 (ja)
EP (1) EP2626912A1 (ja)
JP (1) JP2012084587A (ja)
CN (1) CN103155169A (ja)
WO (1) WO2012046764A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104428905A (zh) * 2012-07-03 2015-03-18 三菱丽阳株式会社 太阳能电池保护片材以及太阳能电池组件
JP2016215602A (ja) * 2015-05-26 2016-12-22 旭硝子株式会社 フッ素樹脂積層体およびその製造方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6007037B2 (ja) * 2012-08-22 2016-10-12 三菱樹脂株式会社 積層防湿フィルム、太陽電池用保護材、及び太陽電池
JPWO2014050451A1 (ja) * 2012-09-27 2016-08-22 パナソニックIpマネジメント株式会社 太陽電池モジュール
EP3088180B1 (en) * 2013-12-27 2020-02-05 AGC Inc. Coated article
KR101604283B1 (ko) * 2014-12-08 2016-03-17 엘에스산전 주식회사 태양전지 모듈

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005534520A (ja) 2001-11-29 2005-11-17 アルケマ 基材を保護するためのアクリルポリマーをベースにした熱成形可能な多層フィルムと、それから得られる物品
WO2006134764A1 (ja) 2005-06-14 2006-12-21 Asahi Glass Company, Limited フッ素樹脂多層積層体

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004319800A (ja) * 2003-04-17 2004-11-11 Canon Inc 太陽電池モジュール
JP2006310583A (ja) * 2005-04-28 2006-11-09 Fujikura Ltd 複合基板およびその製造方法
JP5237569B2 (ja) * 2007-02-27 2013-07-17 東洋アルミニウム株式会社 太陽電池用裏面保護シートとそれを備えた太陽電池モジュール
TW201038708A (en) * 2009-03-26 2010-11-01 Lintec Corp Protecting sheet for solar cell module and solar cell module provided therewith

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005534520A (ja) 2001-11-29 2005-11-17 アルケマ 基材を保護するためのアクリルポリマーをベースにした熱成形可能な多層フィルムと、それから得られる物品
WO2006134764A1 (ja) 2005-06-14 2006-12-21 Asahi Glass Company, Limited フッ素樹脂多層積層体

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104428905A (zh) * 2012-07-03 2015-03-18 三菱丽阳株式会社 太阳能电池保护片材以及太阳能电池组件
JP2016215602A (ja) * 2015-05-26 2016-12-22 旭硝子株式会社 フッ素樹脂積層体およびその製造方法

Also Published As

Publication number Publication date
EP2626912A1 (en) 2013-08-14
US20130192674A1 (en) 2013-08-01
CN103155169A (zh) 2013-06-12
JP2012084587A (ja) 2012-04-26

Similar Documents

Publication Publication Date Title
JP5882937B2 (ja) ポリフッ化ビニリデン背面シートを有する光起電モジュール
WO2010109896A1 (ja) 太陽電池モジュール用保護シートおよびこれを備えた太陽電池モジュール
WO2010116650A1 (ja) 太陽電池モジュール用保護シートおよびその製造方法、並びに、太陽電池モジュール
JP5769723B2 (ja) 太陽電池用保護シートおよびその製造方法、ならびに太陽電池モジュール
JP5623325B2 (ja) 太陽電池用保護シートおよびその製造方法、ならびに太陽電池モジュール
JP5714959B2 (ja) 太陽電池用保護シートおよびその製造方法、ならびに太陽電池モジュール
WO2010100943A1 (ja) 太陽電池モジュール用保護シートおよびこれを用いた太陽電池モジュール
WO2010073735A1 (ja) 太陽電池モジュール用裏面保護シート
WO2012046764A1 (ja) 太陽電池モジュール用保護シート及び太陽電池モジュール
WO2011118727A1 (ja) 太陽電池モジュール用保護シートおよび太陽電池モジュール
WO2013118570A1 (ja) 太陽電池用保護シートおよび太陽電池モジュール
JP2009137012A (ja) 積層体、太陽電池表面保護シート及び建材シート
JP2011124428A (ja) 太陽電池モジュール用保護シート及び太陽電池モジュール
JP2011176193A (ja) 太陽電池モジュール用裏面保護シート及び太陽電池モジュール
JP2011181671A (ja) 太陽電池モジュール用保護シートおよび太陽電池モジュール
JP2010232233A (ja) 太陽電池モジュール用保護シートおよびその製造方法、並びに、太陽電池モジュール
WO2013121838A1 (ja) 太陽電池用保護シートおよびその製造方法、ならびに太陽電池モジュール
WO2013129324A1 (ja) 太陽電池用保護シートおよびその製造方法、ならびに太陽電池モジュール
JP5368921B2 (ja) 太陽電池用裏面保護シート及びこれを用いた太陽電池モジュール
JP2011204880A (ja) 太陽電池モジュール用保護シート及び太陽電池モジュール
JP2011176192A (ja) 太陽電池モジュール用裏面保護シート及び太陽電池モジュール
JP2012015264A (ja) 太陽電池モジュール用保護シート及び太陽電池モジュール
JP2012089632A (ja) 太陽電池用保護シートおよびその製造方法、ならびに太陽電池モジュール
TWI546976B (zh) A protective sheet for a solar cell and a method for manufacturing the same, and a solar cell module
JP2001068695A (ja) 太陽電池モジュ−ル用保護シ−トおよびそれを使用した太陽電池モジュ−ル

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180047925.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11830696

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13877883

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011830696

Country of ref document: EP