[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2012043611A1 - Organic el display device and method for manufacturing same - Google Patents

Organic el display device and method for manufacturing same Download PDF

Info

Publication number
WO2012043611A1
WO2012043611A1 PCT/JP2011/072154 JP2011072154W WO2012043611A1 WO 2012043611 A1 WO2012043611 A1 WO 2012043611A1 JP 2011072154 W JP2011072154 W JP 2011072154W WO 2012043611 A1 WO2012043611 A1 WO 2012043611A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic
electrode
layer
substrate
display device
Prior art date
Application number
PCT/JP2011/072154
Other languages
French (fr)
Japanese (ja)
Inventor
勇毅 小林
充浩 向殿
悦昌 藤田
別所 久徳
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2012043611A1 publication Critical patent/WO2012043611A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/878Arrangements for extracting light from the devices comprising reflective means

Definitions

  • the present invention relates to an organic EL display device and a manufacturing method thereof.
  • This application claims priority based on Japanese Patent Application No. 2010-220133 filed in Japan on September 30, 2010, the contents of which are incorporated herein by reference.
  • electroluminescence (EL: ELECTRO Luminescence) light-emitting elements have high visibility because they are self-luminous. Moreover, since the EL light emitting device is a completely solid device, it has excellent impact resistance and is easy to handle. For this reason, the EL light emitting element is attracting attention as a light emitting element in various display devices.
  • the EL light emitting element includes an inorganic EL element using an inorganic compound as a light emitting material and an organic EL element using an organic compound as a light emitting material. Among these, organic EL elements have been actively researched for practical use since the applied voltage can be significantly reduced.
  • An organic EL display device which is a light emitting device using such organic EL elements, has full-color display by creating various colors typified by white by juxtaposing pixels emitting red, green, and blue as one unit. It is carried out.
  • an organic EL display device having a light emitting layer that emits blue to blue-green light, and a green layer composed of a phosphor layer that absorbs blue to blue-green light emitted from the organic EL display device as excitation light and emits green light.
  • a method for realizing full-color display by combining a pixel, a red pixel composed of a phosphor layer that emits red light, and a blue pixel composed of a blue color filter that improves color purity (for example, Patent Documents). 1).
  • One embodiment of the present invention has been made in view of such a conventional situation, and an object thereof is to provide a high-efficiency (high luminance) organic EL display device and a manufacturing method thereof.
  • An organic EL display device includes a substrate, a first electrode formed on the substrate, an edge cover that covers an end of the first electrode, an organic layer including an organic light emitting layer, and a second electrode
  • An organic EL element including: a phosphor layer that is excited by the excitation light generated in the organic EL element to emit light; a barrier that surrounds the side of the phosphor layer; and a first part that covers a part of the edge cover.
  • An optical reflector and a second optical reflector covering the barrier are provided.
  • the first optical reflector may be formed so as to further cover the first electrode.
  • the tip of the barrier may be in close contact with the edge cover.
  • the first and second optical reflectors may have a reflectance with respect to visible light of 80% or more.
  • the first and second optical reflectors may contain aluminum or silver.
  • At least one of the edge cover and the barrier may have a tapered portion formed in a tapered shape.
  • the height of the barrier may be larger than the thickness of the phosphor layer.
  • the phosphor layer may contain an inorganic phosphor.
  • the organic EL display device may further include an active element that drives the organic EL element.
  • the first optical reflector is a first reflective film that covers a part of the edge cover
  • the second optical reflector is a first reflective film that covers the barrier. Two reflective films may be used.
  • An organic EL display device includes a substrate, a first electrode formed on the substrate, an edge cover that covers an end of the first electrode, an organic layer including an organic light emitting layer, and a second electrode
  • An organic EL element comprising: a phosphor layer that is excited by the excitation light generated in the organic EL element and emits light; a barrier that surrounds the side of the phosphor layer and is formed of a first reflector; and the edge A second optical reflector covering a part of the surface of the cover;
  • An organic EL display device includes a substrate, a first electrode formed on the substrate, an edge cover that covers an end of the first electrode, an organic layer including an organic light emitting layer, and a second electrode And an optical reflector on the side surface of the edge cover, the optical reflector being in contact with the organic layer and provided between the edge cover and the organic layer.
  • the optical reflector may be formed so as to further cover the first electrode.
  • the optical reflector may have a reflectance with respect to visible light of 80% or more.
  • the optical reflector may contain aluminum or silver.
  • the edge cover may have a tapered portion formed in a tapered shape.
  • the organic EL display device may further include an active element that drives the organic EL element.
  • the optical reflector may be a reflective film that covers a side surface of the edge cover.
  • a method for manufacturing an organic EL display device includes a first electrode formed on one side of a substrate, an edge cover covering an edge portion of the first electrode, an organic layer including at least an organic light emitting layer, and a first electrode
  • An organic EL element having two electrodes; a phosphor layer that emits light by being excited by excitation light generated in the organic EL element; and a barrier that surrounds the phosphor layer, and a part of at least a surface of the edge cover
  • a method of manufacturing an organic EL display device in which an optical reflector is formed on at least a part of the surface of the barrier the method including the step of forming the phosphor layer by a screen printing method, an ink jet method, or a nozzle coating method.
  • a highly efficient (high brightness) organic EL display device and a method for manufacturing the same can be provided.
  • FIG. 1 is a cross-sectional view illustrating an organic EL display device according to a first embodiment of the present invention.
  • 10 is a cross-sectional view showing an organic EL display device according to Comparative Example 1.
  • FIG. 10 is a cross-sectional view showing an organic EL display device according to Comparative Example 1.
  • FIG. 10 is a cross-sectional view showing an organic EL display device according to Comparative Example 1.
  • FIG. 1 is a cross-sectional view illustrating an organic EL display device according to Example 1.
  • FIG. 1 is a cross-sectional view illustrating an organic EL display device according to Example 1.
  • FIG. 1 is a cross-sectional view illustrating an organic EL display device according to Example 1.
  • FIG. 10 is a cross-sectional view showing an organic EL display device according to Comparative Example 2.
  • FIG. 6 is a cross-sectional view showing an organic EL display device according to Example 2.
  • FIG. 6 is a cross-sectional view showing an organic EL display device according to Example 3.
  • FIG. 6 is a cross-sectional view showing an organic EL display device according to Example 3.
  • FIG. 6 is a cross-sectional view showing an organic EL display device according to Example 3.
  • FIG. 10 is a cross-sectional view illustrating an organic EL display device according to a modification example of Example 3.
  • FIG. 10 is a cross-sectional view illustrating an organic EL display device according to another modification of Example 3.
  • 6 is a cross-sectional view showing an organic EL display device according to Example 4.
  • FIG. 6 is a cross-sectional view showing an organic EL display device according to Example 4.
  • FIG. 6 is a cross-sectional view showing an organic EL display device according to Example 4.
  • FIG. 6 is a cross-sectional view showing an organic EL display device according to Example 4.
  • FIG. It is a schematic diagram which shows the structural example of the control part of the organic electroluminescence display of this invention. It is an external view which shows the mobile telephone which is an example of application of the organic electroluminescence display of this invention. It is an external view which shows the thin television which is one application example of the organic electroluminescence display of this invention. It is sectional drawing which shows the organic electroluminescence display which concerns on the comparative example 3. It is sectional drawing which shows the organic electroluminescence display which concerns on the comparative example 3.
  • 10 is a cross-sectional view showing an organic EL display device according to Example 5. FIG. 10 is a cross-sectional view showing an organic EL display device according to Example 5.
  • FIG. 10 is a cross-sectional view showing an organic EL display device according to Example 5.
  • FIG. 1 is a schematic cross-sectional view showing an example of an organic EL display device according to an embodiment of the present invention.
  • the organic EL display device 1 includes a first substrate 10, an organic EL element 19, and a second substrate (sealing substrate) 21.
  • the first substrate 10 includes, for example, a TFT (Thin Film Transistor) circuit 18.
  • the organic EL element 19 is formed on the one surface side 10 a of the first substrate 10.
  • the second substrate 21 is formed to face the first substrate 10.
  • the organic EL element 19 includes a first electrode (pixel electrode) 11, an edge cover 12, a reflective film (optical reflector) 13, an organic layer (organic EL layer) 14, and a second electrode (counter electrode) 15. I have.
  • the first electrode 11 is arranged on the one surface side 10 a of the first substrate 10.
  • the edge cover 12 covers the edge portion (end portion) of the first electrode 11.
  • the reflective film 13 covers the first electrode 11 and the edge cover 12.
  • the organic layer 14 is formed on the reflective film (optical reflector) 13 in order.
  • the organic layer 14 includes at least an organic light emitting layer.
  • the second substrate (sealing substrate) 21 includes a phosphor layer 22 (a blue phosphor layer 22B, a green phosphor layer 22G, and a red phosphor layer 22R) on one surface side 21a facing the first substrate 10. ) And a barrier 23 are formed.
  • the phosphor layer 22 is excited by the excitation light generated in the organic EL element 19 and emits light.
  • the barrier 23 surrounds the side of the phosphor layer 22.
  • a reflective film (optical reflector) 17 is formed on the surface of the barrier 23.
  • an inorganic substrate made of glass, quartz, etc. a plastic substrate made of polyethylene terephthalate, polycarbazole, polyimide, etc., an insulating substrate such as a ceramic substrate made of alumina, Alternatively, a metal substrate made of aluminum (Al), iron (Fe), or the like, or a substrate coated with an insulator made of silicon oxide (SiO 2 ), an organic insulating material, or the like on the substrate, a metal substrate made of Al, etc. And a substrate obtained by subjecting the surface of the substrate to insulation treatment by a method such as anodic oxidation.
  • a substrate in which a plastic substrate is coated with an inorganic material and a substrate in which a metal substrate is coated with an inorganic insulating material are more preferable.
  • leakage (short) due to protrusions on the metal substrate that can occur when the metal substrate is used as an organic EL substrate the organic layer has a very thin film thickness of about 100 nm to 200 nm. It is known that leakage (short circuit) occurs.
  • the TFT circuit 18 for active matrix driving it is preferable to use a substrate that does not melt at a temperature of 500 ° C. or less and does not cause distortion.
  • a general metal substrate has a coefficient of thermal expansion different from that of glass, it is difficult to form a TFT on the metal substrate with a conventional production apparatus, but the linear expansion coefficient is 1 ⁇ 10 ⁇ 5 / ° C. or less.
  • the TFT circuit 18 is formed on the glass substrate and then transferred to the plastic substrate, thereby transferring the TFT onto the plastic substrate. It is possible to do. Further, when the phosphor layer 22 is on the second electrode 15 side, that is, when light emitted from the organic layer 14 is taken out from the side opposite to the first substrate 10, there is no restriction on the transparency of the substrate. When the phosphor layer 22 is on the first electrode 15 side, that is, when light emitted from the organic layer 14 is taken out through the first substrate 10, in order to take out light emitted from the organic layer 14 to the outside as a substrate to be used. It is necessary to use a transparent or translucent substrate.
  • the TFT circuit 18 formed on the first substrate 10 is formed in advance on the one surface 10a of the first substrate 10 before the organic EL element 19 is formed, and functions as a switching device and a driving device.
  • a known TFT circuit may be used.
  • a metal-insulator-metal (MIM) diode can be used in place of the TFT circuit 18.
  • the TFT circuit 18 that can be used for an active drive type organic EL display and an organic EL display device can be formed using a known material, structure, and formation method.
  • an active layer material of the TFT circuit for example, amorphous silicon (amorphous silicon), polycrystalline silicon (polysilicon), microcrystalline silicon, inorganic semiconductor materials such as cadmium selenide, zinc oxide, indium oxide-gallium oxide, etc. -Oxide semiconductor materials such as zinc oxide or organic semiconductor materials such as polythiophene derivatives, thiophene oligomers, poly (p-ferylene vinylene) derivatives, naphthacene and pentacene.
  • Examples of the structure of the TFT circuit 18 include a staggered type, an inverted staggered type, a top gate type, and a coplanar type.
  • Examples of the method for forming the active layer constituting the TFT circuit 18 include the following methods. (1) Method of ion doping impurities into amorphous silicon formed by plasma induced chemical vapor deposition (PECVD) method, (2) Amorphous by low pressure chemical vapor deposition (LPCVD) method using silane (SiH 4 ) gas After forming silicon and crystallizing amorphous silicon by solid phase growth to obtain polysilicon, ion doping by ion implantation, (3) LPCVD using Si 2 H 6 gas or SiH 4 gas Amorphous silicon is formed by the PECVD method used, annealed by a laser such as an excimer laser, and the amorphous silicon is crystallized to obtain polysilicon, followed by ion doping (low temperature process), (4) LPCVD method or PECVD A polysilicon layer is formed by the method 10 A gate insulating film formed by thermal oxidation at 0 °C above, thereon, a gate electrode of the n + polysilicon, then
  • the gate insulating film of the TFT circuit 18 used in this embodiment can be formed using a known material. Examples thereof include SiO 2 formed by PECVD, LPCVD, etc., or SiO 2 obtained by thermally oxidizing a polysilicon film.
  • the signal electrode line, the scanning electrode line, the common electrode line, the first drive electrode, and the second drive electrode of the TFT circuit 18 used in this embodiment can be formed using a known material, for example, tantalum. (Ta), aluminum (Al), copper (Cu), and the like.
  • the TFT of the organic EL panel according to this embodiment can be formed with the above-described configuration, but is not limited to these materials, structures, and formation methods.
  • An interlayer insulating film that can be used for an active drive type organic EL display device can be formed using a known material, for example, silicon oxide (SiO 2 ), silicon nitride (SiN, or Si 2 N). 4 ), an inorganic material such as tantalum oxide (TaO or Ta 2 O 5 ), or an organic material such as an acrylic resin or a resist material.
  • a known material for example, silicon oxide (SiO 2 ), silicon nitride (SiN, or Si 2 N). 4 ), an inorganic material such as tantalum oxide (TaO or Ta 2 O 5 ), or an organic material such as an acrylic resin or a resist material.
  • the formation method include dry processes such as chemical vapor deposition (CVD) and vacuum deposition, and wet processes such as spin coating. Moreover, it can also pattern by the photolithographic method etc. as needed.
  • the TFT circuit 18 When light emitted from the organic layer 14 is taken out from the opposite side (second electrode 15 side) of the first substrate 10, external light is incident on the TFT circuit 18 formed on the one surface 10a of the first substrate 10, for the purpose of preventing changes in the characteristics of the TFT circuit 18, it is also preferable to form a light-shielding insulating film having light-shielding properties.
  • the above insulating film and a light-shielding insulating film can be used in combination.
  • the light-shielding interlayer insulating film examples include, for example, pigments or dyes such as phthalocyanine and quinaclonone dispersed in a polymer resin such as polyimide, color resist, black matrix material, and inorganic insulating materials such as Ni x Zn y Fe 2 O 4 Etc.
  • a polymer resin such as polyimide, color resist, black matrix material, and inorganic insulating materials such as Ni x Zn y Fe 2 O 4 Etc.
  • this embodiment is not limited to these materials and forming methods.
  • the active drive type organic EL display device 1 when the TFT circuit 18 is formed on the one surface side 10 a of the first substrate 10, unevenness is formed on the surface thereof, and the organic EL element 19 is formed by, for example, a pixel. There is a possibility that phenomena such as an electrode defect, an organic layer defect, a disconnection of the second electrode, a short circuit between the first electrode and the counter electrode, and a decrease in breakdown voltage may occur. In order to prevent these phenomena, a planarizing film may be provided on the interlayer insulating film.
  • planarizing film can be formed using a known material, and examples thereof include inorganic materials such as silicon oxide, silicon nitride, and tantalum oxide, and organic materials such as polyimide, acrylic resin, and resist material.
  • examples of the method for forming the planarizing film include a dry process such as a CVD method and a vacuum deposition method, and a wet process such as a spin coating method.
  • the present embodiment is not limited to these materials and the forming method.
  • the planarization film may have a single layer structure or a multilayer structure.
  • the first electrode (pixel electrode) 11 and the second electrode (counter electrode) 15 function as a pair as an anode or a cathode of the organic EL element 19. That is, when the first electrode 11 is an anode, the second electrode 15 is a cathode, and when the first electrode 11 is a cathode, the second electrode 15 is an anode.
  • Specific compounds and formation methods are exemplified below, but the present embodiment is not limited to these materials and formation methods.
  • an electrode material for forming the first electrode 11 and the second electrode 15 a known electrode material can be used.
  • a metal such as gold (Au), platinum (Pt), nickel (Ni) having a work function of 4.5 eV or more
  • an oxide (IZO) composed of indium (In) and zinc (Zn) are transparent electrodes.
  • a material As a material.
  • lithium (Li), calcium (Ca), cerium (Ce), a work function of 4.5 eV or less from the viewpoint of more efficiently injecting electrons into the organic EL layer examples thereof include metals such as barium (Ba) and aluminum (Al), and alloys such as Mg: Ag alloy and Li: Al alloy containing these metals.
  • the first electrode 11 and the second electrode 15 can be formed by a known method such as an EB vapor deposition method, a sputtering method, an ion plating method, or a resistance heating vapor deposition method using the above materials. It is not limited to these formation methods. If necessary, the formed electrode can be patterned by a photolithographic fee method or a laser peeling method, or a patterned electrode can be directly formed by combining with a shadow mask.
  • the film thickness is preferably 50 nm or more. When the film thickness is less than 50 nm, the wiring resistance is increased, which may increase the drive voltage.
  • the second electrode It is preferable to use a translucent electrode as 15.
  • a translucent electrode when taking out light emitted from the organic layer 14 from the second electrode 15 side, it is preferable to use a translucent electrode as the first electrode 15.
  • the film thickness of the semitransparent electrode is preferably 5 nm to 30 nm. When the film thickness is less than 5 nm, light cannot be sufficiently reflected, and interference effects cannot be obtained sufficiently. On the other hand, when the film thickness exceeds 30 nm, the light transmittance is lowered, so that the luminance and efficiency may be lowered.
  • Electrode paired with the translucent electrode it is preferable to use an electrode with high reflectivity that reflects light.
  • Preferred electrode materials include, for example, reflective metal electrodes such as aluminum, silver, gold, aluminum-lithium alloys, aluminum-neodymium alloys, and aluminum-silicon alloys, and a combination of a transparent electrode and the reflective metal electrode (reflective electrode). An electrode etc. are mentioned.
  • the organic layer (organic EL layer) 14 including at least an organic light emitting layer may be a single layer structure of an organic light emitting layer or a multilayer structure of an organic light emitting layer and a charge transport layer, and specifically includes the following configurations. However, the present embodiment is not limited to these.
  • the organic light emitting layer may be composed only of the organic light emitting material exemplified below, or may be composed of a combination of a light emitting dopant and a host material, and optionally, a hole transport material, an electron transport material, and an additive
  • An agent (donor, acceptor, etc.) or the like may be included, and these materials may be dispersed in a polymer material (binding resin) or an inorganic material. From the viewpoint of luminous efficiency and lifetime, a material in which a luminescent dopant is dispersed in a host material is preferable.
  • the organic light emitting material a known light emitting material for an organic EL element can be used.
  • Such light-emitting materials are classified into low-molecular light-emitting materials, polymer light-emitting materials, and the like. Specific examples of these compounds are given below, but the present embodiment is not limited to these materials.
  • the light-emitting material may be classified into a fluorescent material, a phosphorescent material, and the like, and it is preferable to use a phosphorescent material with high light emission efficiency from the viewpoint of reducing power consumption.
  • the present embodiment is not limited to these materials.
  • a known dopant material for organic EL elements can be used.
  • a dopant material for example, as an ultraviolet light emitting material, p-quaterphenyl, 3,5,3,5 tetra-t-butylsecphenyl, 3,5,3,5 tetra-t-butyl-p -Fluorescent materials such as quinckphenyl.
  • fluorescent light emitting materials such as styryl derivatives, bis [(4,6-difluorophenyl) -pyridinato-N, C2 ′] picolinate iridium (III) (FIrpic), bis (4 ′, 6′-difluoro) And phosphorescent organometallic complexes such as phenylpolydinato) tetrakis (1-pyrazolyl) borate iridium (III) (FIr6).
  • a full color display is provided by providing an organic EL element having a red light emitting layer, an organic EL element having a green light emitting layer, and an organic EL element having a blue light emitting layer.
  • red light-emitting materials include tris (1-phenylisoquinolinate-C2, N) -iridium (III), tris (dibenzoylmethane) -mono- (1,10-phenanthroline) europium (III), 5 6,11,12-tetraphenylnaphthacene and the like.
  • green luminescent materials include tris (2-phenylpyridinate-C2, N) -iridium (III), coumarin 6,5,12-dihydro-5,12 dimethylquino [2,3-b] acridine-7,14 -Dione and the like.
  • a known host material for an organic EL element can be used as a host material when using a dopant.
  • host materials include the low-molecular light-emitting materials, the polymer light-emitting materials, 4,4′-bis (carbazole) biphenyl, 9,9-di (4-dicarbazole-benzyl) fluorene (CPF), 3 , 6-bis (triphenylsilyl) carbazole (mCP), carbazole derivatives such as (PCF), aniline derivatives such as 4- (diphenylphosphoyl) -N, N-diphenylaniline (HM-A1), 1,3- And fluorene derivatives such as bis (9-phenyl-9H-fluoren-9-yl) benzene (mDPFB) and 1,4-bis (9-phenyl-9H-fluoren-9-yl) benzene (pDPFB).
  • the charge injection / transport layer is used to more efficiently inject charges (holes, electrons) from the electrode and transport (injection) to the light emitting layer, and the charge injection layer (hole injection layer, electron injection layer). It is classified as a transport layer (hole transport layer, electron transport layer).
  • Each of the charge injection layer and the charge transport layer may be composed only of the charge injection / transport material exemplified below.
  • Each of the charge injection layer and the charge transport layer may optionally contain an additive (donor, acceptor, etc.) or the like in the charge injection / transport material exemplified below.
  • Each of the charge injection layer and the charge transport layer may have a structure in which a charge injection / transport material exemplified below is dispersed in a polymer material (binding resin) or an inorganic material.
  • charge injecting and transporting material known charge transporting materials for organic EL elements and organic photoconductors can be used. Such charge injecting and transporting materials are classified into hole injecting and transporting materials and electron injecting and transporting materials. Specific examples of these compounds are given below, but this embodiment is not limited to these materials. .
  • the hole injection transport material examples include oxides such as vanadium oxide (V 2 O 5 ) and molybdenum oxide (MoO 2 ), inorganic p-type semiconductor materials, porphyrin compounds, N, N′-bis (3-methylphenyl) ) -N, N′-bis (phenyl) -benzidine (TPD), N, N′-di (naphthalen-1-yl) -N, N′-diphenyl-benzidine (NPD) Compounds, low molecular weight materials such as hydrazone compounds, quinacridone compounds, styrylamine compounds, polyaniline (PANI), polyaniline-camphor sulfonic acid (PANI-CSA), 3,4-polyethylenedioxythiophene / polystyrene sulfonate (PEDOT / PSS) ), Poly (triphenylamine) derivatives (Poly-TPD), polyvinylcarbazole (PVCz), Examples thereof include polymer materials such
  • the highest occupied molecular orbital (HOMO) is better than the hole injection transport material used for the hole transport layer. It is preferable to use a material having a low energy level, and as the hole transport layer, it is preferable to use a material having higher hole mobility than the hole injection transport material used for the hole injection layer.
  • the hole injecting and transporting material in order to further improve the hole injecting and transporting properties, it is preferable to dope the hole injecting and transporting material with an acceptor.
  • an acceptor a known acceptor material for organic EL elements can be used. Although these specific compounds are illustrated below, this embodiment is not limited to these materials.
  • Acceptor materials include Au, Pt, W, Ir, POCl 3 , AsF 6 , Cl, Br, I, vanadium oxide (V 2 O 5 ), molybdenum oxide (MoO 2 ), and other inorganic materials, TCNQ (7, 7 , 8,8, -tetracyanoquinodimethane), TCNQF 4 (tetrafluorotetracyanoquinodimethane), TCNE (tetracyanoethylene), HCNB (hexacyanobutadiene), DDQ (dicyclodicyanobenzoquinone), etc.
  • TNF trinitrofluorenone
  • DNF dinitrofluorenone
  • organic materials such as fluoranyl, chloranil and bromanyl.
  • compounds having a cyano group such as TCNQ, TCNQF 4 , TCNE, HCNB, DDQ and the like are more preferable because they can increase the carrier concentration more effectively.
  • Examples of the electron injecting and transporting material include n-type semiconductor inorganic materials, oxadiazole derivatives, triazole derivatives, thiopyrazine dioxide derivatives, benzoquinone derivatives, naphthoquinone derivatives, anthraquinone derivatives, diphenoquinone derivatives, fluorenone derivatives, benzodifuran derivatives, etc. Low molecular materials; polymer materials such as poly (oxadiazole) (Poly-OXZ) and polystyrene derivatives (PSS) can be mentioned.
  • examples of the electron injection material include fluorides such as lithium fluoride (LiF) and barium fluoride (BaF 2 ), and oxides such as lithium oxide (Li 2 O).
  • the material used for the electron injection layer is a material having an energy level of the lowest unoccupied molecular orbital (LUMO) higher than that of the electron injection and transport material used for the electron transport layer in that the electron injection and transport from the cathode are performed more efficiently. It is preferable to use a material having a higher electron mobility than the electron injecting and transporting material used for the electron injecting layer.
  • LUMO lowest unoccupied molecular orbital
  • the electron injecting and transporting material in order to further improve the electron injecting and transporting properties, it is preferable to dope the electron injecting and transporting material with a donor.
  • a donor a known donor material for organic EL can be used. Although these specific compounds are illustrated below, this embodiment is not limited to these materials.
  • Donor materials include inorganic materials such as alkali metals, alkaline earth metals, rare earth elements, Al, Ag, Cu, In, anilines, phenylenediamines, benzidines (N, N, N ′, N′-tetraphenyl) Benzidine, N, N'-bis- (3-methylphenyl) -N, N'-bis- (phenyl) -benzidine, N, N'-di (naphthalen-1-yl) -N, N'-diphenyl- Benzidine, etc.), triphenylamines (triphenylamine, 4,4′4 ′′ -tris (N, N-diphenyl-amino) -triphenylamine, 4,4′4 ′′ -tris (N-3- Methylphenyl-N-phenyl-amino) -triphenylamine, 4,4′4 ′′ -tris (N- (1-naphthyl) -N
  • the organic layer 19 composed of a light emitting layer, a hole transport layer, an electron transport layer, a hole injection layer, an electron injection layer, and the like uses an organic EL layer forming coating solution in which the above materials are dissolved and dispersed in a solvent.
  • Known coating methods such as spin coating method, dipping method, doctor blade method, discharge coating method, spray coating method, ink jet method, letterpress printing method, intaglio printing method, screen printing method, printing method such as microgravure coating method, etc.
  • the coating liquid for organic layer formation may contain the additive for adjusting the physical properties of coating liquid, such as a leveling agent and a viscosity modifier.
  • each organic layer is usually about 1 nm to 1000 nm, preferably 10 nm to 200 nm. If the film thickness is less than 10 nm, the properties (charge injection characteristics, transport characteristics, confinement characteristics) that are originally required may not be obtained. In addition, pixel defects due to foreign matters such as dust may occur. On the other hand, when the film thickness exceeds 200 nm, the drive voltage increases due to the resistance component of the organic layer, leading to an increase in power consumption.
  • the edge cover 12 is formed for the purpose of preventing leakage between the first electrode 11 and the second electrode 15.
  • the edge cover 12 can be formed by a known method such as an EB vapor deposition method, a sputtering method, an ion plating method, a resistance heating vapor deposition method or the like using an insulating material, and a known dry and wet photolithography.
  • the present embodiment is not limited to these forming methods.
  • a known material can be used as a material constituting the insulating layer, and it is not particularly limited in this embodiment, but it is necessary to transmit light.
  • a known material can be used as a material constituting the insulating layer, and it is not particularly limited in this embodiment, but it is necessary to transmit light.
  • the film thickness is preferably 100 nm to 2000 nm. When the film thickness is 100 nm or less, the insulation is not sufficient, and leakage occurs between the first electrode 11 and the second electrode 15, which causes an increase in power consumption and non-light emission. In addition, when the film thickness is 2000 nm or more, the film forming process takes time, resulting in deterioration of productivity and disconnection of the second electrode 15 at the edge cover 12.
  • the organic EL element 19 has a microcavity structure (light-emitting) due to an interference effect between a reflective electrode and a translucent electrode used as the first electrode 11 and the second electrode 15 composed of an anode and a cathode, or a dielectric multilayer film. It is preferable to have a microresonator structure. Thereby, it is possible to condense the light emitted from the organic EL element 19 toward the front direction (that is, in the direction of the second substrate (sealing substrate) 21) (provide directivity). In addition, it is possible to reduce the light emission loss that escapes to the surroundings. Furthermore, it is possible to increase the light emission efficiency in the front.
  • the emission spectrum can be adjusted due to the interference effect, and the emission spectrum can be adjusted by adjusting to a desired emission peak wavelength and half width. Therefore, it is possible to control the spectrum so that the red and green phosphors can be excited more effectively. Further, it is possible to improve the color purity of the blue pixel.
  • the organic EL display device is electrically connected to an external drive circuit (scanning line electrode circuit, data signal electrode circuit, power supply circuit) for driving.
  • the first substrate 10 constituting the organic EL display device is a glass substrate, more preferably a metal substrate, a plastic substrate, and more preferably a metal substrate or a substrate obtained by coating an insulating material on a plastic substrate. May be.
  • the organic EL display device may be directly connected to an external circuit and driven.
  • a switching circuit such as a TFT circuit is arranged in a pixel, and an external driving circuit (scanning line electrode circuit) for driving the organic EL element 19 to a wiring to which the TFT circuit or the like is connected.
  • an external driving circuit scanning line electrode circuit for driving the organic EL element 19 to a wiring to which the TFT circuit or the like is connected.
  • Source driver data signal electrode circuit (gate driver), power supply circuit
  • driving circuit may be electrically connected.
  • the active substrate on which the organic EL elements constituting the active drive type organic EL display device are formed is on a glass substrate, more preferably on a metal substrate, on a plastic substrate, and more preferably on a metal substrate or a plastic substrate.
  • a TFT circuit 18 is disposed on a substrate coated with an insulating material on a plurality of scanning signal lines, data signal lines, and intersections between the scanning signal lines and the data signal lines.
  • the organic EL element according to the present embodiment may be driven by, for example, a voltage driven digital gradation method.
  • the organic EL element according to this embodiment may be driven by a current drive analog gradation method.
  • the phosphor layer 22 is composed of a blue phosphor layer 22B, a red phosphor layer 22R, a green phosphor layer 22G, and the like that absorb the excitation light of the blue light emitting organic EL element and emit light in blue, green, and red, respectively.
  • a light scattering layer that scatters the excitation light having the directivity of the blue light emitting organic EL element and can extract it to the outside by isotropic light emission may be applied.
  • phosphors that emit cyan and yellow it is preferable to add phosphors that emit cyan and yellow to the pixels as necessary.
  • the color purity of each pixel emitting light by setting the color purity of each pixel emitting light to cyan and yellow outside the triangle connected by the color purity points of red, green, and blue light emitting pixels on the chromaticity diagram, red,
  • the color reproduction range can be further expanded as compared with a display device using pixels that emit three primary colors of green and blue.
  • the phosphor layer 22 may be composed of only the phosphor material exemplified below.
  • the phosphor layer 22 may contain a phosphor material exemplified below, and optionally an additive or the like.
  • the phosphor layer 22 may have a configuration in which a phosphor material exemplified below is dispersed in a polymer material (binding resin) or an inorganic material.
  • a known phosphor material can be used as the phosphor material constituting the phosphor layer 22.
  • Such phosphor materials are classified into organic phosphor materials and inorganic phosphor materials. Specific examples of these compounds are given below, but the present embodiment is not limited to these materials. .
  • Organic phosphor materials include blue fluorescent dyes, stilbenzene dyes: 1,4-bis (2-methylstyryl) benzene, trans-4,4′-diphenylstilbenzene, coumarin dyes: 7-hydroxy- 4-methylcoumarin and the like can be mentioned.
  • a green fluorescent dye a coumarin dye: 2,3,5,6-1H, 4H-tetrahydro-8-trifluoromethylquinolidine (9,9a, 1-gh) coumarin (coumarin 153), 3- ( 2'-benzothiazolyl) -7-diethylaminocoumarin (coumarin 6), 3- (2'-benzoimidazolyl) -7-N, N-diethylaminocoumarin (coumarin 7), naphthalimide dyes: basic yellow 51, solvent yellow 11, Solvent yellow 116 etc. are mentioned.
  • the red fluorescent dye includes cyanine dye: 4-dicyanomethylene-2-methyl-6- (p-dimethylaminostyryl) -4H-pyran, pyridine dye: 1-ethyl-2- [4- ( p-dimethylaminophenyl) -1,3-butadienyl] -pyridinium-perchlorate, and rhodamine dyes: rhodamine B, rhodamine 6G, rhodamine 3B, rhodamine 101, rhodamine 110, basic violet 11, sulforhodamine 101 and the like. .
  • blue phosphors such as Sr 2 P 2 O 7 : Sn 4+ , Sr 4 Al 14 O 25 : Eu 2+ , BaMgAl 10 O 17 : Eu 2+ , SrGa 2 S 4 are used.
  • Y 2 O 2 S Eu 3+ , YAlO 3 : Eu 3+ , Ca 2 Y 2 (SiO 4 ) 6 : Eu 3+ , LiY 9 (SiO 4 ) 6 O 2 : Eu 3+ , YVO 4 : Eu 3+ , CaS: Eu 3+ , Gd 2 O 3 : Eu 3+ , Gd 2 O 2 S: Eu 3+ , Y (P, V) O 4 : Eu 3+ , Mg 4 GeO 5.5 F: Mn 4+ , Mg 4 GeO 6 : Mn 4+ , K 5 Eu 2.5 (WO 4 ) 6.25 , Na 5 Eu 2.5 (WO 4 ) 6.25 , K 5 Eu 2.5 (MoO 4 ) 6.25 , Na 5 Eu 2.5 (MoO 4 ) 6.25 and the like.
  • the inorganic phosphor may be subjected to a surface modification treatment as necessary.
  • the surface modification treatment include chemical treatment using a silane coupling agent, physical treatment using addition of fine particles on the order of submicrons, and combinations thereof.
  • an inorganic material it is preferable to use an inorganic material.
  • the average particle size (d 50 ) is preferably 0.5 ⁇ m to 50 ⁇ m.
  • the average particle size is 1 ⁇ m or less, the luminous efficiency of the phosphor is drastically reduced.
  • the average particle size is 50 ⁇ m or more, it becomes very difficult to form a flat film, and depletion occurs between the phosphor layer and the organic EL element (organic EL element (refractive index: About 1.7) and the inorganic phosphor layer (refractive index: about 2.3) depletion (refractive index: 1.0))
  • the light from the organic EL element does not efficiently reach the inorganic phosphor layer, and the phosphor The luminous efficiency of the layer is reduced.
  • the phosphor layer is formed by using a phosphor layer forming coating solution obtained by dissolving and dispersing the phosphor material and the resin material in a solvent, using a spin coating method, a dipping method, a doctor blade method, a discharge coating method, a spraying method.
  • Known wet processes such as coating methods such as coating methods, ink jet methods, letterpress printing methods, intaglio printing methods, screen printing methods, printing methods such as micro gravure coating methods, etc.
  • It can be formed by a known dry process such as a vapor deposition method, molecular beam epitaxy (MBE) method, sputtering method, organic vapor deposition (OVPD) method, or a laser transfer method.
  • the phosphor layer 22 can be patterned by a photolithography method using a photosensitive resin as a polymer resin.
  • a photosensitive resin one of photosensitive resins (photo-curable resist material) having a reactive vinyl group such as acrylic acid resin, methacrylic acid resin, polyvinyl cinnamate resin, and hard rubber resin. It is possible to use one kind or a mixture of plural kinds.
  • wet process such as ink jet method, relief printing method, intaglio printing method, screen printing method, dispenser method, resistance heating vapor deposition method using shadow mask, electron beam (EB) vapor deposition method, molecular beam epitaxy (MBE) method, It is also possible to directly pattern the phosphor material by a known dry process such as a sputtering method, an organic vapor deposition (OVPD) method, or a laser transfer method.
  • a dry process such as a sputtering method, an organic vapor deposition (OVPD) method, or a laser transfer method.
  • the thickness of the phosphor is usually about 100 nm to 100 ⁇ m, but preferably 1 ⁇ m to 100 ⁇ m. If the film thickness is less than 100 nm, it is impossible to sufficiently absorb the blue light emitted from the organic EL element 19, so that the light emission efficiency is lowered, and the color purity due to the blue transmitted light being mixed with the required color. Deterioration occurs. Further, in order to increase the absorption of light emitted from the organic EL element 19 and reduce blue transmitted light to such an extent that the color purity is not adversely affected, the film thickness is preferably 1 ⁇ m or more. Further, when the film thickness exceeds 100 ⁇ m, the blue light emission from the organic EL element is already sufficiently absorbed, so that the efficiency is not increased, but only the material is consumed and the material cost is increased.
  • the light scattering particles may be made of an organic material or an inorganic material, but may be made of an inorganic material. It is preferable. This makes it possible to diffuse or scatter light having directivity from the organic EL element 19 more isotropically and effectively. Further, by using an inorganic material, it is possible to provide a light scattering layer that is stable to light and heat.
  • the light scattering particles have high transparency.
  • the refractive index ratio with a resin material is contained in the numerical range mentioned above.
  • the main component is an oxide of at least one metal selected from the group consisting of silicon, titanium, zirconium, aluminum, indium, zinc, tin, and antimony. Examples thereof include particles (fine particles).
  • particles (inorganic fine particles) made of an inorganic material for example, silica beads (refractive index: 1.44), alumina beads (refractive index: 1.63), titanium oxide.
  • examples thereof include beads (refractive index: anatase type: 2.50, rutile type: 2.70), zirconia oxide beads (refractive index: 2.05), and zinc oxide beads (refractive index: 2.00).
  • particles (organic fine particles) made of an organic material are used as the light scattering particles, for example, polymethyl methacrylate beads (refractive index: 1.49), acrylic beads (refractive index: 1.50), acrylic- Styrene copolymer beads (refractive index: 1.54), melamine beads (refractive index: 1.57), high refractive index melamine beads (refractive index: 1.65), polycarbonate beads (refractive index: 1.57), Styrene beads (refractive index: 1.60), crosslinked polystyrene beads (refractive index: 1.61), polyvinyl chloride beads (refractive index: 1.60), benzoguanamine-melamine formaldehyde beads (refractive index: 1.68), Examples thereof include silicone beads (refractive index: 1.50).
  • the resin material used by mixing with the light scattering particles described above is preferably a translucent resin.
  • the resin material include melamine resin (refractive index: 1.57), nylon (refractive index: 1.53), polystyrene (refractive index: 1.60), melamine beads (refractive index: 1.57).
  • Polycarbonate (refractive index: 1.57), polyvinyl chloride (refractive index: 1.60), polyvinylidene chloride (refractive index: 1.61), polyvinyl acetate (refractive index: 1.46), polyethylene (refractive Ratio: 1.53), polymethyl methacrylate (refractive index: 1.49), poly MBS (refractive index: 1.54), medium density polyethylene (refractive index: 1.53), high density polyethylene (refractive index: 1.54), tetrafluoroethylene (refractive index: 1.35), polytrifluoroethylene chloride (refractive index: 1.42), polytetrafluoroethylene (refractive index: 1.35), and the like.
  • the barrier 23 surrounding the phosphor layer 22 can be formed by patterning a resin material such as a photosensitive polyimide resin, an acrylic resin, a methallyl resin, a novolac resin, or an epoxy resin by a photolithography technique or the like. Further, in order to prevent contrast leakage due to light leakage or external light, a material obtained by patterning a material containing light-shielding particles such as carbon fine particles or metal oxides in the above-described photosensitive resin material may be used. . Further, the barrier may be formed by directly patterning the non-photosensitive resin material by screen printing or the like.
  • the barrier 23 may be formed of a material that reflects visible light, in addition to the reflective film (optical reflector) 17 on the surface thereof. By doing so, it is possible to change the fluorescent component that escapes laterally from the phosphor layer in the external light extraction direction.
  • a reflective material include reflective metals such as aluminum, silver, gold, aluminum-lithium alloy, aluminum-neodymium alloy, and aluminum-silicon alloy, but high reflectivity over the entire visible light range. From the viewpoint of having aluminum, aluminum or silver is preferable.
  • the materials listed here are merely examples, and the present embodiment is naturally not limited to these materials.
  • the barrier 23 surrounding the side of the phosphor layer 22 is formed thicker than the phosphor layer 22.
  • the phosphor layer 22 can be prevented from coming into contact with the organic EL element 19 and being damaged.
  • various shapes surrounding the phosphor layer 22 such as a lattice shape and a stripe shape can be adopted.
  • the reflective film (optical reflector) 13 that covers the first electrode 11 and the edge cover 12 and the reflective film (optical reflector) 17 that forms the surface of the barrier 23 are, for example, aluminum, silver, gold, aluminum-lithium alloy, aluminum- Examples thereof include reflective metals such as neodymium alloy and aluminum-silicon alloy, and aluminum or silver is preferable from the viewpoint of having a high reflectance over the entire visible light region.
  • the materials listed here are merely examples, and the present embodiment is naturally not limited to these materials.
  • the reflective films 13 and 17 of this embodiment are formed by, for example, a screen printing method, a dispenser method, a resistance heating vapor deposition method, an electron beam (EB) vapor deposition method, a molecular beam epitaxy (MBE) method, a sputtering method, or the like. Can do.
  • the reflective film (optical reflector) 13 and the reflective film (optical reflector) 17 are not necessarily made of the same material, and may be formed of different materials. For example, since the reflective film 13 functions as a part of the first electrode 11, the material of the reflective film 13 may be appropriately selected according to the work function of the first electrode 11.
  • a color filter on the second substrate (sealing substrate) 21 at a position from the phosphor layer 22 toward the external light extraction surface (light emission surface).
  • it may be provided directly on the external light extraction surface (light emission surface) of the phosphor layer 22, or the phosphor layer 22 is formed on the second substrate 21 for sealing the organic EL element 19. If present, it can be provided between the phosphor layer 22 and the second substrate 21 or on the external light extraction surface (light emission surface) of the second substrate 21.
  • ⁇ ⁇ Known color filters can be used as such color filters.
  • the color filter By providing the color filter, the color purity of red, green, and blue pixels can be increased, and the color reproduction range of the organic EL display device can be expanded. Further, a blue color filter is formed on the blue phosphor layer 22B, a green color filter is formed on the green phosphor layer 22G, and a red color filter is formed on the red phosphor layer 22R. Thus, the excitation light that excites each phosphor is absorbed.
  • substrate 11 can be used, for example, an inorganic material board
  • An insulating substrate such as a plastic substrate made of polyimide, a ceramic substrate made of alumina, or the like, or a metal substrate made of aluminum (Al), iron (Fe), or the like, or silicon oxide (SiO 2 ), organic on the substrate
  • the substrate include a substrate coated with an insulating material made of an insulating material or the like, and a substrate obtained by subjecting the surface of a metal substrate made of Al or the like to an insulating treatment by a method such as anodization. It is not limited.
  • the conventional sealing film, protective film, and adhesive layer may be used as the sealing film, protective film, and adhesive layer for bonding and sealing the first substrate 11 and the second substrate (sealing substrate) 21.
  • This embodiment is not particularly limited.
  • the same layer can be used for the sealing film and the protective film.
  • the sealing film and the protective film can be formed as a sealing film by applying a resin material using a spin coating method, an ODF, or a laminating method.
  • an inorganic film such as SiO, SiON, SiN, etc. by plasma CVD, ion plating, ion beam, sputtering, etc.
  • the resin material is further spin-coated, ODF, laminated. It can also be set as a sealing film by apply
  • Such a sealing film can prevent oxygen and moisture from entering the light emitting element from the outside.
  • a conventional ultraviolet curable resin, a thermosetting resin, etc. as an adhesive layer.
  • inert gas such as nitrogen gas and argon gas
  • FIG. 10 is a schematic diagram showing a configuration example of the control portion of the organic EL display device according to one embodiment of the present invention.
  • the organic EL display device 1 includes a first substrate 10, a pixel portion G, a gate signal side drive circuit 51, a data signal side drive circuit 52, a wiring 53, a current supply line 54, a second substrate (sealing substrate) 21, and an FPC ( (Flexible printed circuits) 55 and an external drive circuit 56.
  • FPC Flexible printed circuits
  • the external driving circuit 56 sequentially selects the scanning lines (scanning lines) of the pixel portion G by the gate signal side driving circuit 51, and the data signal side for each pixel element arranged along the selected scanning line. Pixel data is written by the drive circuit 52. That is, the gate signal side driving circuit 51 sequentially drives the scanning lines, and the data signal side driving circuit 52 outputs the pixel data to the data lines, whereby the driven scanning lines and the data lines from which the data is output intersect. The pixel element arranged at the position to be driven is driven.
  • the operation of the organic EL display device having the configuration described in detail above will be described.
  • the light emitted from the phosphor layer 22 by the excitation light emitted from the organic EL element 19 is isotropically radiated from each phosphor 22B, 22R, 22G.
  • the light emitted toward the second substrate (sealing substrate) 21 side is taken out from the second substrate (sealing substrate) 21 side as it is (FIG. 1). (See the solid arrow in).
  • the light toward the barrier 23 and the light toward the organic EL element 19 side are on the surface of the barrier 23.
  • the light is reflected by the formed reflective film (optical reflector) 17 and the reflective film (optical reflector) 13 that covers the first electrode 11 and the edge cover 12.
  • the reflective films (optical reflectors) 13 and 17 are reflected by the reflective films (optical reflectors) 13 and 17 and can be taken out from the second substrate (sealing substrate) 21 side.
  • the excitation light emitted from the organic EL element 19 that excites the phosphor layer 22 is also directed to the first substrate 10 in addition to the excitation light directed directly from the organic EL element 19 to each phosphor 22B, 22R, 22G.
  • Components such as excitation light confined in the organic EL element 19 and scattered components in a direction not absorbed by the phosphor layer 22 are also reflected toward the phosphor layer 22 by the reflective film (optical reflector) 13.
  • the amount of excitation light absorbed by the phosphor layer 22 can be increased (fluorescence quantum yield increased), and the amount of light emitted from the phosphor layer 22 itself can be increased.
  • excitation light is reflected toward the phosphor layer 22 by the reflective film (optical reflector) 13, and fluorescence is reflected by the reflective films (optical reflectors) 13 and 17 on the second substrate (sealing substrate) 21.
  • the reflective film (optical reflector) 13 By reflecting toward the side, it is possible to reduce loss of excitation light and fluorescence, increase the amount of emitted fluorescence, and reduce power consumption.
  • the reflective film (optical reflector) 13 covers the first electrode 11 and the edge cover 12, but the first electrode 11 is not a transparent electrode and has high light reflectivity.
  • the material is formed of a reflective metal such as aluminum, silver, gold, aluminum-lithium alloy, aluminum-neodymium alloy, aluminum-silicon alloy, etc.
  • the first electrode 11 is also used as a reflective film to reflect
  • the film (optical reflector) 13 may have a structure that covers only the edge cover 12.
  • the reflection film (optical reflector) 17 forms the surface of the barrier 23.
  • the entire barrier 23 is made of a material having high light reflectivity, such as aluminum, silver, gold, aluminum-lithium. It may be formed of a reflective metal such as an alloy, an aluminum-neodymium alloy, or an aluminum-silicon alloy.
  • the organic EL display device 1 can be applied to, for example, a mobile phone shown in FIG.
  • a cellular phone 60 shown in FIG. 11 includes an audio input unit 61, an audio output unit 62, an antenna 63, an operation switch 64, a display unit 65, a housing 66, and the like.
  • the organic EL display device of this embodiment can be suitably applied as the display unit 61.
  • the organic EL display device 1 can be applied to, for example, a flat-screen television shown in FIG.
  • a thin television 70 shown in FIG. 12 includes a display unit 71, speakers 72, a cabinet 73, a stand 74, and the like.
  • the organic EL display device of this embodiment can be suitably applied as the display unit 71.
  • FIG. 1 are cross-sectional views showing a conventional organic EL display device 100 of Comparative Example 1.
  • FIG. A red phosphor layer 102R, a green phosphor layer 102G, a blue phosphor layer 102B and a barrier 103 are formed on a glass substrate 101 having a thickness of 0.7 mm, and the red phosphor layer 102R, the green phosphor layer 102G, The sealing substrate 101 provided with the blue phosphor layer 102B was formed.
  • the barrier 103 surrounds the red phosphor layer 102R, the green phosphor layer 102G, and the blue phosphor layer 102B.
  • the barrier 103 was formed by patterning a photosensitive epoxy resin with a width of 5 ⁇ m, a film thickness of 60 ⁇ m, and a forward taper shape at a pitch of 200 ⁇ m on the sealing substrate 101. Next, a red phosphor layer 102R, a green phosphor layer 102G, and a blue phosphor layer 102B were formed on the substrate 101. In order to form the red phosphor layer 102R, first, 15 g of ethanol and 0.22 g of ⁇ -glycidoxypropyltriethoxysilane were added to 0.16 g of Aerosil having an average particle diameter of 5 nm, and the mixture was stirred at room temperature for 1 hour.
  • blue phosphor layer 102B 7-hydroxy-4-methylcoumarin (coumarin 4) (0.02 mol / kg (solid content ratio)) is mixed with an epoxy thermosetting resin by a stirrer.
  • a stirred blue phosphor-forming coating solution was prepared.
  • the blue scattering layer forming coating solution prepared above was applied to the region surrounded by the barrier 103 by screen printing. Subsequently, it was dried by heating in a vacuum oven (200 ° C., 10 mmHg) for 4 hours to form a blue phosphor layer 9B having a thickness of 50 ⁇ m.
  • a silver film is formed by sputtering to have a film thickness of 100 nm, and an indium-tin oxide (ITO) film is formed thereon by a sputtering method so as to have a film thickness of 20 nm.
  • ITO indium-tin oxide
  • the first electrode 106 was formed. Thereafter, the first electrode 106 was patterned into stripes with a width of 160 ⁇ m and a pitch of 200 ⁇ m by a conventional photolithography method.
  • SiO 2 was laminated on the first electrode 106 with a film thickness of 200 nm by a sputtering method, and a patterned edge cover 107 was formed by a conventional photolithography method so as to cover only the edge portion of the first electrode 106. .
  • the short side is covered with SiO 2 by 10 ⁇ m from the end of the first electrode 106. This was washed with water, then subjected to pure water ultrasonic cleaning for 10 minutes, acetone ultrasonic cleaning for 10 minutes, and isopropyl alcohol vapor cleaning for 5 minutes, and dried at 120 ° C. for 1 hour.
  • this substrate 105 was fixed to a substrate holder in a resistance heating evaporation apparatus, and the pressure was reduced to a vacuum of 1 ⁇ 10 ⁇ 4 Pa or less, and an organic layer 108 including an organic light emitting layer was formed by a resistance heating evaporation method.
  • a hole injection layer having a thickness of 100 nm is formed by resistance heating vapor deposition using 1,1-bis-di-4-tolylamino-phenyl-cyclohexane (TAPC) as a hole injection material. did.
  • TAPC 1,1-bis-di-4-tolylamino-phenyl-cyclohexane
  • N, N′-di-1-naphthyl-N, N′-diphenyl-1,1′-biphenyl-1,1′-biphenyl-4,4′-diamine is used as a hole transport material.
  • a hole transport layer having a thickness of 40 nm was formed by resistance heating vapor deposition.
  • This blue organic light-emitting layer comprises 1,4-bis-triphenylsilyl-benzene (UGH-2) (host material) and bis [(4,6-difluorophenyl) -pyridinato-N, C2 ′] picolinate iridium ( III) (FIrpic) (blue phosphorescent light emitting dopant) was prepared by co-evaporation at a deposition rate of 1.5 ⁇ / sec and 0.2 ⁇ / sec.
  • a hole blocking layer (thickness: 10 nm) was formed on the blue organic light emitting layer using 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP).
  • BCP 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline
  • an electron transport layer (thickness: 30 nm) was formed on the hole blocking layer using tris (8-hydroxyquinoline) aluminum (Alq 3 ).
  • an electron injection layer (thickness: 0.5 nm) was formed on the electron transport layer using lithium fluoride (LiF).
  • a translucent electrode was formed as the second electrode 109.
  • the substrate 105 was fixed in a metal deposition chamber.
  • a shadow mask for forming the second electrode 109 (a mask having an opening so that the second electrode 109 can be formed in a stripe shape having a width of 500 ⁇ m and a pitch of 600 ⁇ m in a direction opposite to the stripe of the first electrode 106)
  • the substrate 105 are aligned, and magnesium and silver are co-deposited in a desired pattern on the surface of the electron injection layer by vapor deposition at a rate of 0.1 ⁇ / sec and 0.9 ⁇ / sec respectively. (Thickness: 1 nm).
  • silver is formed in a desired pattern at a deposition rate of 1 mm / sec (thickness: 19 nm) for the purpose of emphasizing the interference effect and preventing voltage drop due to wiring resistance in the second electrode 109. did. Thereby, the second electrode 109 was formed.
  • a microcavity effect (interference effect) appears between the reflective electrode (first electrode) 106 and the semi-transmissive electrode (second electrode) 109, and the front luminance can be increased.
  • the emission peak is adjusted to 460 nm and the half-value width is adjusted to 50 nm by the microcavity effect.
  • an inorganic protective layer made of SiO 2 having a thickness of 3 ⁇ m was formed by patterning from the edge of the display portion to a sealing area of 2 mm in the vertical and horizontal directions by a plasma CVD method (not shown).
  • the organic EL element side substrate 105 (see FIG. 2A) and the phosphor layer side substrate 101 (see FIG. 2B) produced as described above are aligned by the alignment marker formed outside the display unit. Went.
  • the sealing substrate 101 on which the phosphor layer is formed in advance is coated with a thermosetting resin.
  • the two substrates are brought into close contact with each other through the thermosetting resin and cured by heating at 80 ° C. for 2 hours. It was.
  • the bonding step was performed in a dry air environment (water content: ⁇ 80 ° C.) for the purpose of preventing deterioration of the organic EL element due to water.
  • an organic EL display device was formed by connecting terminals formed in the periphery to an external power source (see FIG. 2C).
  • Example 1 3A to 3C are cross-sectional views showing the organic EL display device 110 according to the first embodiment of the present invention.
  • a red phosphor layer 112R, a green phosphor layer 112G, a blue phosphor layer 112B and a barrier 113 are formed on a glass substrate 111 having a thickness of 0.7 mm, and the red phosphor layer 112R, the green phosphor layer 112G, The sealing substrate 111 provided with the blue phosphor layer 112B was formed.
  • the barrier 113 surrounds the red phosphor layer 112R, the green phosphor layer 112G, and the blue phosphor layer 112B.
  • a photosensitive epoxy resin having a width of 5 ⁇ m, a film thickness of 60 ⁇ m, and a pattern with a forward taper shape at a pitch of 200 ⁇ m was formed, and the barrier 113 was produced.
  • aluminum was formed to a thickness of 500 nm as the reflective film 401 by an EB vapor deposition method on the surface of the barrier 113 that was not in contact with the substrate 111.
  • red phosphor layer 112R a red phosphor layer 112R, a green phosphor layer 112G, and a blue phosphor layer 112B were formed on the substrate 111.
  • red phosphor layer 112R first, 15 g of ethanol and 0.22 g of ⁇ -glycidoxypropyltriethoxysilane were added to 0.16 g of Aerosil having an average particle diameter of 5 nm, and the mixture was stirred at room temperature for 1 hour.
  • This mixture and 20 g of red phosphor K 5 Eu 2.5 (WO 4 ) 6.25 were transferred to a mortar, mixed well, and then heated in an oven at 70 ° C. for 2 hours and further in an oven at 120 ° C. for 2 hours to modify the surface.
  • K 5 Eu 2.5 (WO 4 ) 6.25 was obtained.
  • blue phosphor layer 112B In order to form the blue phosphor layer 112B, first, 7-hydroxy-4-methylcoumarin (coumarin 4) (0.02 mol / kg (solid content ratio)) is mixed with an epoxy thermosetting resin and stirred with a stirrer. A blue phosphor-forming coating solution was prepared. The blue scattering layer forming coating solution prepared above was applied to the area surrounded by the barrier 8 by screen printing. Subsequently, it was dried by heating in a vacuum oven (200 ° C., 10 mmHg conditions) for 4 hours to form a blue phosphor layer 112B having a thickness of 50 ⁇ m.
  • a vacuum oven 200 ° C., 10 mmHg conditions
  • a film of silver is formed on a glass substrate 115 having a thickness of 0.7 mm so as to have a film thickness of 100 nm by sputtering, and indium-tin oxide (ITO) is formed thereon so as to have a thickness of 20 nm.
  • ITO indium-tin oxide
  • a first electrode 116 was formed by sputtering. Thereafter, the first electrode 116 was patterned into stripes with a width of 160 ⁇ m and a pitch of 200 ⁇ m by a conventional photolithography method.
  • SiO 2 was laminated on the first electrode 116 with a film thickness of 200 nm by sputtering, and a patterned edge cover 117 was formed by conventional photolithography so as to cover only the edge portion of the first electrode 116. .
  • the short side is covered with SiO 2 by 10 ⁇ m from the end of the first electrode 116. This was washed with water, then subjected to pure water ultrasonic cleaning for 10 minutes, acetone ultrasonic cleaning for 10 minutes, and isopropyl alcohol vapor cleaning for 5 minutes, and dried at 120 ° C. for 1 hour.
  • silver was laminated to a thickness of 100 nm by resistance heating vapor deposition so as to cover the first electrode 116 and part of the edge cover 117.
  • the reflective film 402 is formed by covering the edge cover 117 with silver by 5 ⁇ m from both ends.
  • the substrate 115 was fixed to a substrate holder in a resistance heating evaporation apparatus, and the pressure was reduced to a vacuum of 1 ⁇ 10 ⁇ 4 Pa or less, and an organic layer 118 including an organic light emitting layer was formed by a resistance heating evaporation method.
  • a hole injection material 1,1-bis-di-4-tolylamino-phenyl-cyclohexane (TAPC) was used, and a hole injection layer having a thickness of 100 nm was formed by resistance heating vapor deposition.
  • TAPC 1,1-bis-di-4-tolylamino-phenyl-cyclohexane
  • N, N′-di-1-naphthyl-N, N′-diphenyl-1,1′-biphenyl-1,1′-biphenyl-4,4′-diamine is used as a hole transport material.
  • a hole transport layer having a thickness of 40 nm was formed by resistance heating vapor deposition.
  • This blue organic light-emitting layer comprises 1,4-bis-triphenylsilyl-benzene (UGH-2) (host material) and bis [(4,6-difluorophenyl) -pyridinato-N, C2 ′] picolinate iridium ( III) (FIrpic) (blue phosphorescent light emitting dopant) was prepared by co-evaporation at a deposition rate of 1.5 ⁇ / sec and 0.2 ⁇ / sec.
  • a hole blocking layer (thickness: 10 nm) was formed on the blue organic light emitting layer using 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP).
  • BCP 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline
  • an electron transport layer (thickness: 30 nm) was formed on the hole blocking layer using tris (8-hydroxyquinoline) aluminum (Alq 3 ).
  • an electron injection layer (thickness: 0.5 nm) was formed on the electron transport layer using lithium fluoride (LiF).
  • a translucent electrode was formed as the second electrode 119.
  • the substrate 115 was fixed to a metal deposition chamber.
  • a shadow mask for forming the second electrode 119 (a mask having an opening so that the second electrode 119 can be formed in a stripe shape having a width of 500 ⁇ m and a pitch of 600 ⁇ m in a direction opposite to the stripe of the first electrode 116. )
  • the substrate 115, and magnesium and silver are co-deposited on the surface of the electron injection layer by a vacuum deposition method at a deposition rate of 0.1 ⁇ / sec and 0.9 ⁇ / sec respectively in a desired pattern. Formation (thickness: 1 nm).
  • silver is formed in a desired pattern at a deposition rate of 1 mm / sec (thickness: 19 nm) for the purpose of emphasizing the interference effect and preventing voltage drop due to wiring resistance at the second electrode 119. To do. Thereby, the second electrode 119 is formed.
  • a microcavity effect (interference effect) appears between the reflective electrode (first electrode) 116 and the semi-transmissive electrode (second electrode) 119, and it is possible to increase the front luminance.
  • Light emission energy from the EL element can be more efficiently propagated to the phosphor layer.
  • the emission peak is adjusted to 460 nm and the half-value width is adjusted to 50 nm by the microcavity effect.
  • an inorganic protective layer made of SiO 2 having a thickness of 3 ⁇ m is patterned by plasma CVD from the edge of the display portion to a sealing area of 2 mm in the vertical and horizontal directions (not shown). As described above, the substrate 115 including the organic EL element is manufactured.
  • the organic EL element side substrate 115 (see FIG. 3A) and the phosphor layer side substrate 111 (see FIG. 3B) manufactured as described above are aligned by the alignment marker formed outside the display unit. Went.
  • the thermosetting resin was previously apply
  • the bonding step was performed in a dry air environment (water content: ⁇ 80 ° C.) for the purpose of preventing deterioration of the organic EL element due to water.
  • the organic EL display device 110 was completed by connecting terminals formed in the periphery to an external power source (see FIG. 3C).
  • a red phosphor layer 112R, a green phosphor layer 112G, and a blue phosphor layer 112B are used as an excitation light source capable of arbitrarily switching the blue light emitting organic EL by applying a desired current to a desired stripe electrode by an external power source.
  • the blue light was converted into red, green, and blue, respectively, and isotropic light emission of red, green, and blue was obtained, and a full-color display with lower power consumption and higher luminance than Comparative Example 1 could be obtained.
  • FIG. 4 is a cross-sectional view showing a conventional organic EL display device 120 of Comparative Example 2.
  • an acrylic resin was spin coated to minimize the surface height imbalance of the substrate 121, and the entire surface of the substrate 121 was formed by spin coating.
  • the planarization layer 501 was formed by heating at 120 ° C. for 30 minutes.
  • an indium-tin oxide (ITO) film was formed on the planarizing layer 501 by a sputtering method so as to have a thickness of 200 nm, whereby the first electrode 126 was formed. Thereafter, the first electrode 126 is patterned into stripes with a width of 160 ⁇ m and a pitch of 200 ⁇ m by a conventional photolithography method.
  • ITO indium-tin oxide
  • SiO 2 was laminated to a thickness of 200 nm on the first electrode 126 by sputtering, and a patterned edge cover 127 was formed by conventional photolithography so as to cover only the edge portion of the first electrode 126. .
  • the short side is covered with SiO 2 by 10 ⁇ m from the end of the first electrode 126. This was washed with water, then subjected to pure water ultrasonic cleaning for 10 minutes, acetone ultrasonic cleaning for 10 minutes, and isopropyl alcohol vapor cleaning for 5 minutes, and dried at 120 ° C. for 1 hour.
  • the substrate 121 was fixed to a substrate holder in a resistance heating vapor deposition apparatus, and the pressure was reduced to a vacuum of 1 ⁇ 10 ⁇ 4 Pa or less, and an organic layer 128 including an organic light emitting layer was formed by a resistance heating vapor deposition method.
  • a hole injection material 1,1-bis-di-4-tolylamino-phenyl-cyclohexane (TAPC) was used, and a hole injection layer having a thickness of 25 nm was formed by resistance heating vapor deposition.
  • TAPC 1,1-bis-di-4-tolylamino-phenyl-cyclohexane
  • N, N′-di-1-naphthyl-N, N′-diphenyl-1,1′-biphenyl-1,1′-biphenyl-4,4′-diamine is used as a hole transport material.
  • a 30 nm thick hole transport layer was formed by resistance heating vapor deposition.
  • This blue organic light-emitting layer comprises 1,4-bis-triphenylsilyl-benzene (UGH-2) (host material) and bis [(4,6-difluorophenyl) -pyridinato-N, C2 ′] picolinate iridium ( III) (FIrpic) (blue phosphorescent light emitting dopant) was prepared by co-evaporation at a deposition rate of 1.5 ⁇ / sec and 0.2 ⁇ / sec.
  • a hole blocking layer (thickness: 10 nm) was formed on the light emitting layer using 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP).
  • BCP 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline
  • an electron transport layer (thickness: 20 nm) was formed on the hole blocking layer using tris (8-hydroxyquinoline) aluminum (Alq 3 ).
  • an electron injection layer (thickness: 0.5 nm) was formed on the electron transport layer using lithium fluoride (LiF).
  • a reflective electrode was formed as the second electrode 129.
  • the substrate 121 was fixed to a metal deposition chamber.
  • a shadow mask for forming the second electrode 129 (a mask having an opening so that the second electrode 129 can be formed in a stripe shape having a width of 500 ⁇ m and a pitch of 600 ⁇ m in a direction opposite to the stripe of the first electrode 126. )
  • the substrate 121 were aligned, and aluminum was formed in a desired pattern (thickness: 100 m) on the surface of the electron injection layer by a vacuum deposition method at a deposition rate of 1 kg / sec.
  • the substrate 121 and the sealing substrate 125 produced as described above are sealed through a thermosetting resin previously applied to the sealing substrate 125 side, and cured by heating at 80 ° C. for 2 hours. went.
  • the above bonding step was performed in a dry air environment (water content: ⁇ 80 ° C.) for the purpose of preventing deterioration of the organic EL element due to moisture.
  • the organic EL display device 120 was completed by connecting terminals formed in the periphery to an external power source.
  • FIG. 5 is a cross-sectional view showing an organic EL display device 130 of Example 2 of the present invention.
  • acrylic resin was spin-coated with an acrylic resin to a thickness of 20 ⁇ m to minimize imbalance in the surface height of the substrate 131.
  • the planarization layer 502 was formed by forming the entire surface and heating at 120 ° C. for 30 minutes.
  • an indium-tin oxide (ITO) film was formed on the planarizing layer 502 by a sputtering method so as to have a thickness of 200 nm, whereby a first electrode 136 was formed. Thereafter, the first electrode 136 was patterned into stripes with a width of 160 ⁇ m and a pitch of 200 ⁇ m by a conventional photolithography method.
  • ITO indium-tin oxide
  • SiO 2 was laminated to a thickness of 200 nm on the first electrode 136 by sputtering, and a patterned edge cover 137 was formed by conventional photolithography so as to cover only the edge portion of the first electrode 136. .
  • a short side of 10 ⁇ m from the end of the first electrode 136 is covered with SiO 2 .
  • the reflective film 403 is formed by covering the edge cover 137 with silver by 5 ⁇ m from both ends.
  • the substrate 131 was fixed to a substrate holder in a resistance heating evaporation apparatus, and the pressure was reduced to a vacuum of 1 ⁇ 10 ⁇ 4 Pa or less, and an organic layer 138 including an organic light emitting layer was formed by a resistance heating evaporation method.
  • a hole injection material 1,1-bis-di-4-tolylamino-phenyl-cyclohexane (TAPC) was used, and a hole injection layer having a thickness of 25 nm was formed by resistance heating vapor deposition.
  • TAPC 1,1-bis-di-4-tolylamino-phenyl-cyclohexane
  • N, N′-di-1-naphthyl-N, N′-diphenyl-1,1′-biphenyl-1,1′-biphenyl-4,4′-diamine is used as a hole transport material.
  • a 30 nm thick hole transport layer was formed by resistance heating vapor deposition.
  • This blue organic light-emitting layer comprises 1,4-bis-triphenylsilyl-benzene (UGH-2) (host material) and bis [(4,6-difluorophenyl) -pyridinato-N, C2 ′] picolinate iridium ( III) (FIrpic) (blue phosphorescent light emitting dopant) was prepared by co-evaporation at a deposition rate of 1.5 ⁇ / sec and 0.2 ⁇ / sec.
  • a hole blocking layer (thickness: 10 nm) was formed on the light emitting layer using 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP).
  • BCP 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline
  • an electron transport layer (thickness: 20 nm) was formed on the hole blocking layer using tris (8-hydroxyquinoline) aluminum (Alq 3 ).
  • an electron injection layer (thickness: 0.5 nm) was formed on the electron transport layer using lithium fluoride (LiF).
  • a reflective electrode was formed as the second electrode 139.
  • the substrate 131 was fixed to a metal deposition chamber.
  • a shadow mask for forming the second electrode 139 (a mask having an opening so that the second electrode 139 can be formed in a stripe shape having a width of 500 ⁇ m and a pitch of 600 ⁇ m in a direction opposite to the stripe of the first electrode 136)
  • the substrate 131 were aligned, and aluminum was formed in a desired pattern (thickness: 100 m) on the surface of the electron injection layer by a vacuum deposition method at a deposition rate of 1 kg / sec.
  • the substrate 131 and the sealing substrate 135 manufactured as described above are sealed with a thermosetting resin previously applied to the sealing substrate 135 side, and cured by heating at 80 ° C. for 2 hours. went.
  • the above bonding step was performed in a dry air environment (water content: ⁇ 80 ° C.) for the purpose of preventing deterioration of the organic EL element due to moisture.
  • the organic EL display device 130 was completed by connecting terminals formed in the periphery to an external power source.
  • a blue light emitting organic EL is used as an excitation light source that can be arbitrarily switched by applying a desired current to a desired striped electrode from an external power source, and a red phosphor layer 132R, a green phosphor layer 132G, and a blue phosphor layer.
  • 132B light emission was converted from blue light to red, green, and blue, respectively, and isotropic light emission of red, green, and blue was obtained, and a full color display with lower power consumption and higher luminance than Comparative Example 2 could be obtained.
  • Example 3 are cross-sectional views showing an organic EL display device 140 according to Embodiment 3 of the present invention.
  • an organic EL element including a sealing substrate 141 on which a phosphor layer 142 was formed, a first electrode 146, an organic layer 148 including an organic light emitting layer, a second electrode 149, and a reflective film 406 was formed.
  • a substrate 145 was produced.
  • the organic EL element side substrate 145 (see FIG. 6A) and the phosphor layer side substrate 141 (see FIG. 6B) manufactured as described above are sealed with an alignment marker formed outside the display portion.
  • the reflective film 405 formed on the surface of the barrier 143 of the stop substrate 141 is directly on the edge cover 147 having a width of 15 ⁇ m from which the organic layer 148, the second electrode 149, and the inorganic protective layer (not shown) are removed by the ashing. Alignment was performed.
  • the bonding step was performed in a dry air environment (water content: ⁇ 80 ° C.) for the purpose of preventing deterioration of the organic EL element due to water.
  • the organic EL display device 140 was completed by connecting terminals formed in the periphery to an external power source (see FIG. 6C).
  • the blue light-emitting organic EL is used as an excitation light source that can be arbitrarily switched, and the red phosphor layer 142R, the green phosphor layer 142G, and the blue phosphor layer 142B.
  • the light emitted from the blue light is converted into red, green, and blue, respectively, and isotropic light emission of red, green, and blue can be obtained.
  • a full color display with lower power consumption and higher luminance than that of Example 1 can be obtained.
  • Example 3 the organic layer 148, the second electrode 149, and the inorganic protective layer (not shown) deposited on the upper surface of the edge cover were removed by the reactive ion etching method. Is not limited to this.
  • the organic layer 148, the second electrode 149, and the inorganic protective layer (not shown) deposited on the upper surface of the edge cover are subjected to a reactive gas etching method, a reactive ion beam etching method, an ion beam etching method, and a reactive laser beam etching. It may be removed by another dry etching method such as a method, or may be removed by a wet etching method.
  • any of the methods described above it is necessary to perform the treatment before attaching the substrate on which the organic layer is formed and the substrate on which the phosphor layer is formed.
  • the organic layer deposited on the upper surface of the edge cover, the second electrode, and the inorganic protective layer can be removed by applying pressure so as to penetrate the electrode and the inorganic protective layer.
  • the pressurization is small so that the substrate on which the organic layer is formed by pressurization and the substrate on which the phosphor layer is formed are not damaged.
  • the shape of the barrier is a spindle shape or a strong taper shape.
  • one embodiment of the present invention is not limited to this, and the pressure may be reduced by another shape, or the pressure may be reduced by a method other than the shape.
  • bonding may be performed so that a part of the barrier 143 a enters the inside of the edge cover 147 a.
  • the barrier 143 b and the substrate 145 may be bonded to each other via the edge cover 147 b.
  • the fluorescence component and the excitation light component that propagate through the edge cover 147b and enter the adjacent pixels can be reduced to the utmost limit. It is possible to reduce power consumption.
  • Example 4 9A to 9C are cross-sectional views showing an organic EL display device 150 of Example 4 of the present invention.
  • a red phosphor layer 152R, a green phosphor layer 152G, a blue phosphor layer 152B, and a barrier 153 are formed on a 0.7 mm glass substrate 151.
  • a sealing substrate 151 having a body layer 152B was formed.
  • the barrier 153 surrounds the red phosphor layer 152R, the green phosphor layer 152G, and the blue phosphor layer 152B.
  • a silver paste was patterned in a forward taper shape with a width of 5 ⁇ m, a film thickness of 60 ⁇ m, and a pitch of 200 ⁇ m by a screen printing method, whereby a barrier 153 was manufactured.
  • a red phosphor layer 152R, a green phosphor layer 152G, and a blue phosphor layer 152B were formed on the substrate 151 in the same manner as in Example 1 to produce a sealing substrate 151.
  • Example 2 a substrate 155 on which an organic EL element including the first electrode 156, the organic layer 158 including the organic light emitting layer, the second electrode 159, and the reflective film 407 was formed.
  • the organic EL element side substrate 155 (see FIG. 9A) and the phosphor layer side substrate 151 (see FIG. 9B) manufactured as described above are aligned by the alignment marker formed outside the display unit. Went.
  • the thermosetting resin is applied to the sealing substrate 151 on which the phosphor layer is formed in advance. The both substrates are tightly sealed through the thermosetting resin and cured by heating at 80 ° C. for 2 hours. Went.
  • the above bonding step was performed in a dry air environment (water content: ⁇ 80 ° C.) for the purpose of preventing deterioration of the organic EL element due to moisture.
  • the organic EL display device 150 was completed by connecting terminals formed in the periphery to an external power source (see FIG. 9C).
  • a red phosphor layer 152R, a green phosphor layer 152G, and a blue phosphor layer 152B are used as an excitation light source capable of arbitrarily switching the blue light-emitting organic EL by applying a desired current to a desired stripe electrode by an external power source.
  • a silver film is formed on a 0.7 mm thick glass substrate 165 by sputtering to have a film thickness of 100 nm, and an indium-tin oxide (ITO) film is formed thereon by sputtering to a film thickness of 20 nm.
  • ITO indium-tin oxide
  • a first electrode 166 was formed. Thereafter, the first electrode 166 was patterned into stripes with a width of 160 ⁇ m and a pitch of 200 ⁇ m by a conventional photolithography method.
  • SiO 2 was laminated on the first electrode 166 to a thickness of 200 nm by sputtering, and a patterned edge cover 167 was formed by conventional photolithography so as to cover only the edge portion of the first electrode 166. .
  • the short side is covered with SiO 2 by 10 ⁇ m from the end of the first electrode 166. This was washed with water, then subjected to pure water ultrasonic cleaning for 10 minutes, acetone ultrasonic cleaning for 10 minutes, and isopropyl alcohol vapor cleaning for 5 minutes, and dried at 120 ° C. for 1 hour.
  • the substrate 165 was fixed to a substrate holder in a resistance heating evaporation apparatus, and the pressure was reduced to a vacuum of 1 ⁇ 10 ⁇ 4 Pa or less, and an organic layer 168 including an organic light emitting layer was formed by resistance heating evaporation.
  • TAPC 1,1-bis-di-4-tolylamino-phenyl-cyclohexane
  • a hole injection layer having a thickness of 50 nm, a green light emitting organic EL element portion having a thickness of 150 nm, and a blue light emitting organic EL element portion having a thickness of 100 nm was formed.
  • N, N′-di-1-naphthyl-N, N′-diphenyl-1,1′-biphenyl-1,1′-biphenyl-4,4′-diamine (NPD) is used as a hole transport material.
  • a hole transport layer having a thickness of 40 nm was formed by resistance heating vapor deposition.
  • red organic light-emitting layer (thickness: 30 nm) was formed on the hole transport layer of the red light-emitting organic EL element part by a mask coating method using a shadow mask.
  • This red organic light emitting layer comprises 3-phenyl-4 (1′-naphthyl) -5-phenyl-1,2,4-triazole (TAZ) (host material) and bis (2- (2′-benzo [4 , 5- ⁇ ] thienyl) pyridinate-N, C3 ′) iridium (acetylacetonate) (btp2Ir (acac)) (red phosphorescent dopant) with a deposition rate of 1.4 ⁇ / sec and 0.15 ⁇ / sec, respectively.
  • a green organic light emitting layer (thickness: 30 nm) was formed on the hole transport layer of the green light emitting organic EL element part by a mask coating method using a shadow mask.
  • the green organic light-emitting layer comprises TAZ (host material) and tris (2-phenylpyridine) iridium (III) (Ir (ppy) 3 ) (green phosphorescent dopant) with a deposition rate of 1.5 ⁇ / second, It was made by co-evaporation at 0.2 liter / second.
  • a blue organic light-emitting layer (thickness: 30 nm) was formed on the hole transport layer of the blue light-emitting organic EL element part by a mask coating method using a shadow mask.
  • This blue organic light-emitting layer comprises 1,4-bis-triphenylsilyl-benzene (UGH-2) (host material) and bis [(4,6-difluorophenyl) -pyridinato-N, C2 ′] picolinate iridium ( III) (FIrpic) (blue phosphorescent light emitting dopant) was prepared by co-evaporation at a deposition rate of 1.5 ⁇ / sec and 0.2 ⁇ / sec.
  • a hole blocking layer (thickness: 10 nm) using 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP) on the red organic light emitting layer, the green organic light emitting layer, and the blue organic light emitting layer. ) was formed.
  • an electron transport layer (thickness: 30 nm) was formed on the hole blocking layer using tris (8-hydroxyquinoline) aluminum (Alq 3 ).
  • an electron injection layer (thickness: 0.5 nm) was formed on the electron transport layer using lithium fluoride (LiF).
  • a semitransparent electrode was formed as the second electrode 169.
  • the substrate 165 was fixed to a metal deposition chamber.
  • a shadow mask for forming the second electrode 169 (a mask having an opening so that the second electrode 169 can be formed in a stripe shape having a width of 500 ⁇ m and a pitch of 600 ⁇ m in a direction opposite to the stripe of the first electrode 166)
  • the substrate 165 are aligned, and magnesium and silver are co-deposited on the surface of the electron injection layer by a vacuum deposition method at a deposition rate of 0.1 ⁇ / sec and 0.9 ⁇ / sec, respectively, in a desired pattern. (Thickness: 1 nm).
  • silver is formed in a desired pattern at a deposition rate of 1 mm / sec (thickness: 19 nm) for the purpose of emphasizing the interference effect and preventing voltage drop due to wiring resistance at the second electrode 169. did. Thereby, the second electrode 169 was formed.
  • a microcavity effect (interference effect) appears between the reflective electrode (first electrode) 166 and the semi-transmissive electrode (second electrode) 169, and the front luminance can be increased.
  • the emission peak is adjusted to 460 nm and the half-value width is adjusted to 50 nm by the microcavity effect.
  • an inorganic protective layer made of SiO 2 having a thickness of 3 ⁇ m was formed by patterning from the edge of the display portion to a sealing area of 2 mm in the vertical and horizontal directions by a plasma CVD method (not shown).
  • the organic EL element side substrate 165 (see FIG. 13A) and the substrate 161 manufactured as described above were aligned with an alignment marker formed outside the display portion.
  • the thermosetting resin is applied to the sealing substrate 161 on which the phosphor layer is formed in advance.
  • the both substrates are brought into close contact with each other through the thermosetting resin and cured by heating at 80 ° C. for 2 hours. It was.
  • the bonding step was performed in a dry air environment (water content: ⁇ 80 ° C.) for the purpose of preventing deterioration of the organic EL element due to water.
  • an organic EL display device was formed by connecting terminals formed in the periphery to an external power source (see FIG. 13B).
  • Example 5 14A to 14B are sectional views showing an organic EL display device 170 of Example 5 of the present invention.
  • a silver film is formed on a glass substrate 175 having a thickness of 0.7 mm by sputtering to have a film thickness of 100 nm, and an indium-tin oxide (ITO) film is formed thereon by sputtering to a thickness of 20 nm.
  • ITO indium-tin oxide
  • SiO 2 was laminated on the first electrode 176 to a thickness of 200 nm by sputtering, and a patterned edge cover 117 was formed by conventional photolithography so as to cover only the edge portion of the first electrode 176.
  • a structure in which the short side of the first electrode 176 from the end by 10 ⁇ m is covered with SiO 2 is employed. This was washed with water, then subjected to pure water ultrasonic cleaning for 10 minutes, acetone ultrasonic cleaning for 10 minutes, and isopropyl alcohol vapor cleaning for 5 minutes, and dried at 120 ° C. for 1 hour.
  • silver was laminated with a film thickness of 100 nm by resistance heating vapor deposition so as to cover the first electrode 176 and part of the edge cover 177.
  • the reflective film 408 is formed by covering the edge cover 177 with silver by 5 ⁇ m from both ends.
  • this substrate 175 was fixed to a substrate holder in a resistance heating evaporation apparatus, and the pressure was reduced to a vacuum of 1 ⁇ 10 ⁇ 4 Pa or less, and an organic layer 178 including an organic light emitting layer was formed by resistance heating evaporation.
  • TAPC 1,1-bis-di-4-tolylamino-phenyl-cyclohexane
  • a film is formed on the red light emitting organic EL element portion by resistance heating vapor deposition.
  • a hole injection layer having a thickness of 50 nm, a green light emitting organic EL element portion having a thickness of 150 nm, and a blue light emitting organic EL element portion having a thickness of 100 nm was formed.
  • N, N′-di-1-naphthyl-N, N′-diphenyl-1,1′-biphenyl-1,1′-biphenyl-4,4′-diamine (NPD) is used as a hole transport material.
  • a hole transport layer having a thickness of 40 nm was formed by resistance heating vapor deposition.
  • red organic light-emitting layer (thickness: 30 nm) was formed on the hole transport layer of the red light-emitting organic EL element part by a mask coating method using a shadow mask.
  • This red organic light emitting layer comprises 3-phenyl-4 (1′-naphthyl) -5-phenyl-1,2,4-triazole (TAZ) (host material) and bis (2- (2′-benzo [4 , 5- ⁇ ] thienyl) pyridinate-N, C3 ′) iridium (acetylacetonate) (btp2Ir (acac)) (red phosphorescent dopant) with a deposition rate of 1.4 ⁇ / sec and 0.15 ⁇ / sec, respectively.
  • a green organic light emitting layer (thickness: 30 nm) was formed on the hole transport layer of the green light emitting organic EL element part by a mask coating method using a shadow mask.
  • the green organic light-emitting layer comprises TAZ (host material) and tris (2-phenylpyridine) iridium (III) (Ir (ppy) 3 ) (green phosphorescent dopant) with a deposition rate of 1.5 ⁇ / second, It was made by co-evaporation at 0.2 liter / second.
  • a blue organic light-emitting layer (thickness: 30 nm) was formed on the hole transport layer of the blue light-emitting organic EL element part by a mask coating method using a shadow mask.
  • This blue organic light-emitting layer comprises 1,4-bis-triphenylsilyl-benzene (UGH-2) (host material) and bis [(4,6-difluorophenyl) -pyridinato-N, C2 ′] picolinate iridium ( III) (FIrpic) (blue phosphorescent light emitting dopant) was prepared by co-evaporation at a deposition rate of 1.5 ⁇ / sec and 0.2 ⁇ / sec.
  • a hole blocking layer (thickness: 10 nm) using 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP) on the red organic light emitting layer, the green organic light emitting layer, and the blue organic light emitting layer. ) was formed.
  • an electron transport layer (thickness: 30 nm) was formed on the hole blocking layer using tris (8-hydroxyquinoline) aluminum (Alq 3 ).
  • an electron injection layer (thickness: 0.5 nm) was formed on the electron transport layer using lithium fluoride (LiF).
  • a translucent electrode was formed as the second electrode 179.
  • the substrate 175 was fixed to a metal deposition chamber.
  • a shadow mask for forming the second electrode 179 (a mask having an opening so that the second electrode 179 can be formed in a stripe shape having a width of 500 ⁇ m and a pitch of 600 ⁇ m in a direction opposite to the stripe of the first electrode 176. )
  • the substrate 175, and the surface of the electron injection layer is co-deposited with magnesium and silver at a deposition rate of 0.1 ⁇ / sec and 0.9 ⁇ / sec, respectively, by a vacuum evaporation method to form magnesium silver in a desired pattern. Formation (thickness: 1 nm).
  • silver is formed in a desired pattern at a deposition rate of 1 mm / sec (thickness: 19 nm) for the purpose of emphasizing the interference effect and preventing voltage drop due to wiring resistance at the second electrode 179. To do. Thereby, the second electrode 179 is formed.
  • a microcavity effect (interference effect) appears between the reflective electrode (first electrode) 176 and the semi-transmissive electrode (second electrode) 179, and the front luminance can be increased. Light emission energy from the EL element can be extracted to the outside more efficiently. Similarly, the emission peak is adjusted to 460 nm and the half-value width is adjusted to 50 nm by the microcavity effect.
  • an inorganic protective layer made of SiO 2 having a thickness of 3 ⁇ m is patterned by plasma CVD from the edge of the display portion to a sealing area of 2 mm in the vertical and horizontal directions (not shown).
  • the substrate 175 provided with the organic EL element is manufactured.
  • the organic EL element side substrate 115 (see FIG. 14A) and the substrate 171 manufactured as described above were aligned with an alignment marker formed outside the display portion.
  • the thermosetting resin was apply
  • the bonding step was performed in a dry air environment (water content: ⁇ 80 ° C.) for the purpose of preventing deterioration of the organic EL element due to water.
  • the organic EL display device 110 was completed by connecting terminals formed in the periphery to an external power source (see FIG. 14B).
  • red, green, and blue light emission can be obtained from the red organic EL element, the green organic EL element, and the blue organic EL element, respectively.
  • a full color display with lower power consumption and higher luminance than in Example 3 could be obtained.
  • a highly efficient (high luminance) organic EL display device and a manufacturing method thereof can be provided.
  • SYMBOLS 1 Organic EL display apparatus, 10 ... 1st board

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

Disclosed is an organic EL display device which comprises: a substrate; an organic EL element that has a first electrode that is formed on the substrate, an edge cover that covers an edge portion of the first electrode, an organic layer including an organic light emitting layer, and a second electrode; and an optical reflector on the lateral surface of the edge cover. The optical reflector is arranged between the edge cover and the organic layer so as to be in contact with the organic layer.

Description

有機EL表示装置、及びその製造方法Organic EL display device and manufacturing method thereof
 本発明は、有機EL表示装置及びその製造方法に関する。
 本願は、2010年9月30日に、日本に出願された特願2010-220133号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to an organic EL display device and a manufacturing method thereof.
This application claims priority based on Japanese Patent Application No. 2010-220133 filed in Japan on September 30, 2010, the contents of which are incorporated herein by reference.
  一般に、エレクトロルミネッセンス(EL:ELECTRO Luminescence)発光素子は自己発光性であるため視認性が高い。かつEL発光素子は、完全固体素子であるため、耐衝撃性に優れるとともに、取扱いが容易である。このことから、EL発光素子は各種表示装置における発光素子としての利用が注目されている。EL発光素子には、発光材料に無機化合物を用いた無機EL素子と、発光材料に有機化合物を用いた有機EL素子とがある。このうち、有機EL素子は、印加電圧を大幅に低くしうるため、その実用化研究が積極的になされている。 Generally, electroluminescence (EL: ELECTRO Luminescence) light-emitting elements have high visibility because they are self-luminous. Moreover, since the EL light emitting device is a completely solid device, it has excellent impact resistance and is easy to handle. For this reason, the EL light emitting element is attracting attention as a light emitting element in various display devices. The EL light emitting element includes an inorganic EL element using an inorganic compound as a light emitting material and an organic EL element using an organic compound as a light emitting material. Among these, organic EL elements have been actively researched for practical use since the applied voltage can be significantly reduced.
  こうした有機EL素子を用いた発光装置である有機EL表示装置は、赤色、緑色、青色を発光する画素を1単位として並置する事によって、白色を代表とする様々な色を作り出すことでフルカラー表示化を行っている。 An organic EL display device, which is a light emitting device using such organic EL elements, has full-color display by creating various colors typified by white by juxtaposing pixels emitting red, green, and blue as one unit. It is carried out.
  有機EL表示装置の場合、フルカラー表示化を行うために、シャドーマスクを用いたマスク蒸着法により有機発光層を塗り分けることで、赤色、緑色、青色の画素を形成する方法が一般的である。しかし、こうした方法では、マスクの加工精度の向上、マスクのアライメント精度の向上、マスクの大型化が必要とされている。 In the case of an organic EL display device, in order to achieve full color display, a method of forming red, green, and blue pixels by coating an organic light emitting layer by a mask vapor deposition method using a shadow mask is generally used. However, such a method requires improvement in mask processing accuracy, mask alignment accuracy, and mask size.
  大型ディスプレイの製造においては、大型基板に対応したマスクの作製、加工が必要となり、マスクの大型化によるディスプレイの製造コストの増加に繋がる。このため、例えば、青色~青緑色発光する発光層を有する有機EL表示装置と、この有機EL表示装置から発した青色~青緑色発光を励起光として吸収し緑色を発光する蛍光体層からなる緑色画素と、赤色に発光する蛍光体層からなる赤色画素と、色純度を向上させる青色カラーフィルターからなる青色画素とを組み合わせることによって、フルカラー表示を実現する方式が提案されている(例えば、特許文献1参照)。 Manufacture of large-sized displays requires the production and processing of masks that support large substrates, leading to an increase in display manufacturing costs due to larger masks. Therefore, for example, an organic EL display device having a light emitting layer that emits blue to blue-green light, and a green layer composed of a phosphor layer that absorbs blue to blue-green light emitted from the organic EL display device as excitation light and emits green light. There has been proposed a method for realizing full-color display by combining a pixel, a red pixel composed of a phosphor layer that emits red light, and a blue pixel composed of a blue color filter that improves color purity (for example, Patent Documents). 1).
  しかしながら、こうした特許文献1記載の方式では、蛍光体層からの発光が等方的であるために、蛍光体層から発光を外部に取り出す際の損失が大きく、得られる発光効率が低い。 However, in the method described in Patent Document 1, since the light emission from the phosphor layer is isotropic, loss when taking out the light emission from the phosphor layer to the outside is large, and the obtained light emission efficiency is low.
  このため、例えば、隣接する蛍光層同士の間に隔壁を設け、この隔壁の側面に反射膜を形成することによって、側面に照射された光を正面側(出射側)に反射させ、正面側(出射側)から効率良く光を取り出す方法が提案されている(例えば、特許文献2参照)。 For this reason, for example, by providing a partition wall between adjacent fluorescent layers and forming a reflective film on the side surface of the partition wall, the light irradiated on the side surface is reflected on the front side (outgoing side), and the front side ( A method for efficiently extracting light from the emission side) has been proposed (see, for example, Patent Document 2).
特許第2795932号公報Japanese Patent No. 2795932 国際公開第2006/022123号International Publication No. 2006/022123
 しかしながら、隔壁の側面に反射膜を形成するだけでは、蛍光体層から等方的に広がった光のうち、側面に向けて照射された光を正面側(出射側)に反射することはできるものの、出射側とは反対方向である有機EL素子側へ広がった光(蛍光成分)は依然として損失となってしまい、正面側(出射側)から取り出せる光の光量増加は限界があった。 However, only by forming a reflective film on the side surface of the partition wall, among the light that isotropically spread from the phosphor layer, the light irradiated toward the side surface can be reflected to the front side (outgoing side). The light (fluorescent component) spreading toward the organic EL element, which is the direction opposite to the emission side, is still lost, and there is a limit to the increase in the amount of light that can be extracted from the front side (emission side).
 本発明の一態様は、このような従来の実情に鑑みてなされたものであり、高効率(高輝度)の有機EL表示装置、及びその製造方法を提供することを課題とする。 One embodiment of the present invention has been made in view of such a conventional situation, and an object thereof is to provide a high-efficiency (high luminance) organic EL display device and a manufacturing method thereof.
  本発明の一態様における有機EL表示装置は、基板と、前記基板上に形成された第一電極、前記第一電極の端部を覆うエッジカバー、有機発光層を含む有機層、および第二電極を具備する有機EL素子と、前記有機EL素子で生じた励起光により励起され発光する蛍光体層と、該蛍光体層の側方を囲う障壁と、前記エッジカバーの一部を覆う第1の光学反射体と、前記障壁を覆う第2の光学反射体を備える。 An organic EL display device according to an aspect of the present invention includes a substrate, a first electrode formed on the substrate, an edge cover that covers an end of the first electrode, an organic layer including an organic light emitting layer, and a second electrode An organic EL element including: a phosphor layer that is excited by the excitation light generated in the organic EL element to emit light; a barrier that surrounds the side of the phosphor layer; and a first part that covers a part of the edge cover. An optical reflector and a second optical reflector covering the barrier are provided.
  本発明の一態様における有機EL表示装置において、前記第1の光学反射体は、更に前記第一電極を覆うように形成されていてもよい。 In the organic EL display device according to an aspect of the present invention, the first optical reflector may be formed so as to further cover the first electrode.
  本発明の一態様における有機EL表示装置において、前記障壁の先端部は、前記エッジカバーに密着していてもよい。 In the organic EL display device according to an aspect of the present invention, the tip of the barrier may be in close contact with the edge cover.
  本発明の一態様における有機EL表示装置において、前記第1および第2の光学反射体の可視光に対する反射率は、80%以上であってもよい。 In the organic EL display device according to an aspect of the present invention, the first and second optical reflectors may have a reflectance with respect to visible light of 80% or more.
  本発明の一態様における有機EL表示装置において、前記第1および第2の光学反射体は、アルミニウムまたは銀を含有していてもよい。 In the organic EL display device according to an aspect of the present invention, the first and second optical reflectors may contain aluminum or silver.
  本発明の一態様における有機EL表示装置において、前記エッジカバー及び前記障壁の少なくとも一方には、テーパー形状に成形されたテーパー部を有していてもよい。 In the organic EL display device according to an aspect of the present invention, at least one of the edge cover and the barrier may have a tapered portion formed in a tapered shape.
  本発明の一態様における有機EL表示装置において、前記障壁の高さは、前記蛍光体層の厚みよりも大きくてもよい。 In the organic EL display device according to an aspect of the present invention, the height of the barrier may be larger than the thickness of the phosphor layer.
  本発明の一態様における有機EL表示装置において、前記蛍光体層は、無機蛍光体を含有していてもよい。 In the organic EL display device according to an aspect of the present invention, the phosphor layer may contain an inorganic phosphor.
  本発明の一態様における有機EL表示装置において、前記有機EL素子を駆動するアクティブ素子を更に備えていてもよい。 The organic EL display device according to one embodiment of the present invention may further include an active element that drives the organic EL element.
  本発明の一態様における有機EL表示装置において、前記第1の光学反射体は、前記エッジカバーの一部を覆う第1の反射膜であり、前記第2の光学反射体は前記障壁を覆う第2の反射膜であってもよい。 In the organic EL display device according to an aspect of the present invention, the first optical reflector is a first reflective film that covers a part of the edge cover, and the second optical reflector is a first reflective film that covers the barrier. Two reflective films may be used.
 本発明の一態様における有機EL表示装置は、基板と、前記基板上に形成された第一電極、前記第一電極の端部を覆うエッジカバー、有機発光層を含む有機層、および第二電極を有する有機EL素子と、前記有機EL素子で生じた励起光により励起され発光する蛍光体層と、前記蛍光体層の側方を囲い、第1の反射体で形成された障壁と、前記エッジカバーの表面の一部を覆う第2の光学反射体と備える。 An organic EL display device according to an aspect of the present invention includes a substrate, a first electrode formed on the substrate, an edge cover that covers an end of the first electrode, an organic layer including an organic light emitting layer, and a second electrode An organic EL element comprising: a phosphor layer that is excited by the excitation light generated in the organic EL element and emits light; a barrier that surrounds the side of the phosphor layer and is formed of a first reflector; and the edge A second optical reflector covering a part of the surface of the cover;
 本発明の一態様における有機EL表示装置は、基板と、前記基板上に形成された第一電極、前記第一電極の端部を覆うエッジカバー、有機発光層を含む有機層、および第二電極を有する有機EL素子と、前記エッジカバーの側面上の光学反射体を備え、前記光学反射体は、前記有機層と接し、エッジカバーと前記有機層との間に設けられている。 An organic EL display device according to an aspect of the present invention includes a substrate, a first electrode formed on the substrate, an edge cover that covers an end of the first electrode, an organic layer including an organic light emitting layer, and a second electrode And an optical reflector on the side surface of the edge cover, the optical reflector being in contact with the organic layer and provided between the edge cover and the organic layer.
 本発明の一態様における有機EL表示装置において、前記光学反射体は、更に前記第一電極を覆うように形成されていてもよい。 In the organic EL display device according to an aspect of the present invention, the optical reflector may be formed so as to further cover the first electrode.
 本発明の一態様における有機EL表示装置において、前記光学反射体の可視光に対する反射率は、80%以上であってもよい。 In the organic EL display device according to an aspect of the present invention, the optical reflector may have a reflectance with respect to visible light of 80% or more.
 本発明の一態様における有機EL表示装置において、前記光学反射体は、アルミニウムまたは銀を含有していてもよい。 In the organic EL display device according to one aspect of the present invention, the optical reflector may contain aluminum or silver.
 本発明の一態様における有機EL表示装置において、前記エッジカバーは、テーパー形状に成形されたテーパー部を有していてもよい。 In the organic EL display device according to an aspect of the present invention, the edge cover may have a tapered portion formed in a tapered shape.
 本発明の一態様における有機EL表示装置において、前記有機EL素子を駆動するアクティブ素子を更に備えていてもよい。 The organic EL display device according to an aspect of the present invention may further include an active element that drives the organic EL element.
 本発明の一態様における有機EL表示装置において、前記光学反射体は、前記エッジカバーの側面を覆う反射膜であってもよい。 In the organic EL display device according to an aspect of the present invention, the optical reflector may be a reflective film that covers a side surface of the edge cover.
  本発明の一態様における有機EL表示装置の製造方法は、基板の一面側に形成された第一電極、該第一電極のエッジ部を覆うエッジカバー、少なくとも有機発光層を含む有機層、および第二電極を具備する有機EL素子と、前記有機EL素子で生じた励起光により励起され発光する蛍光体層と、該蛍光体層を囲う障壁と、を備え、前記エッジカバーの少なくとも表面の一部、および前記障壁の少なくとも表面の一部に光学反射体を形成した有機EL表示装置の製造方法であって、前記蛍光体層をスクリーン印刷法、インクジェット法、またはノズルコート法によって形成する工程を備える。 A method for manufacturing an organic EL display device according to an aspect of the present invention includes a first electrode formed on one side of a substrate, an edge cover covering an edge portion of the first electrode, an organic layer including at least an organic light emitting layer, and a first electrode An organic EL element having two electrodes; a phosphor layer that emits light by being excited by excitation light generated in the organic EL element; and a barrier that surrounds the phosphor layer, and a part of at least a surface of the edge cover And a method of manufacturing an organic EL display device in which an optical reflector is formed on at least a part of the surface of the barrier, the method including the step of forming the phosphor layer by a screen printing method, an ink jet method, or a nozzle coating method. .
  本発明一態様におけるによれば、高効率(高輝度)の有機EL表示装置およびその製造方法を提供することができる。 According to one embodiment of the present invention, a highly efficient (high brightness) organic EL display device and a method for manufacturing the same can be provided.
本発明の第1実施形態に係る有機EL表示装置を示す断面図である。1 is a cross-sectional view illustrating an organic EL display device according to a first embodiment of the present invention. 比較例1に係る有機EL表示装置を示す断面図である。10 is a cross-sectional view showing an organic EL display device according to Comparative Example 1. FIG. 比較例1に係る有機EL表示装置を示す断面図である。10 is a cross-sectional view showing an organic EL display device according to Comparative Example 1. FIG. 比較例1に係る有機EL表示装置を示す断面図である。10 is a cross-sectional view showing an organic EL display device according to Comparative Example 1. FIG. 実施例1に係る有機EL表示装置を示す断面図である。1 is a cross-sectional view illustrating an organic EL display device according to Example 1. FIG. 実施例1に係る有機EL表示装置を示す断面図である。1 is a cross-sectional view illustrating an organic EL display device according to Example 1. FIG. 実施例1に係る有機EL表示装置を示す断面図である。1 is a cross-sectional view illustrating an organic EL display device according to Example 1. FIG. 比較例2に係る有機EL表示装置を示す断面図である。10 is a cross-sectional view showing an organic EL display device according to Comparative Example 2. FIG. 実施例2に係る有機EL表示装置を示す断面図である。6 is a cross-sectional view showing an organic EL display device according to Example 2. FIG. 実施例3に係る有機EL表示装置を示す断面図である。6 is a cross-sectional view showing an organic EL display device according to Example 3. FIG. 実施例3に係る有機EL表示装置を示す断面図である。6 is a cross-sectional view showing an organic EL display device according to Example 3. FIG. 実施例3に係る有機EL表示装置を示す断面図である。6 is a cross-sectional view showing an organic EL display device according to Example 3. FIG. 実施例3の変形例に係る有機EL表示装置を示す断面図である。FIG. 10 is a cross-sectional view illustrating an organic EL display device according to a modification example of Example 3. 実施例3の別な変形例に係る有機EL表示装置を示す断面図である。FIG. 10 is a cross-sectional view illustrating an organic EL display device according to another modification of Example 3. 実施例4に係る有機EL表示装置を示す断面図である。6 is a cross-sectional view showing an organic EL display device according to Example 4. FIG. 実施例4に係る有機EL表示装置を示す断面図である。6 is a cross-sectional view showing an organic EL display device according to Example 4. FIG. 実施例4に係る有機EL表示装置を示す断面図である。6 is a cross-sectional view showing an organic EL display device according to Example 4. FIG. 本発明の有機EL表示装置の制御部分の構成例を示す概要図である。It is a schematic diagram which shows the structural example of the control part of the organic electroluminescence display of this invention. 本発明の有機EL表示装置の一適用例である携帯電話を示す外観図である。It is an external view which shows the mobile telephone which is an example of application of the organic electroluminescence display of this invention. 本発明の有機EL表示装置の一適用例である薄型テレビを示す外観図である。It is an external view which shows the thin television which is one application example of the organic electroluminescence display of this invention. 比較例3に係る有機EL表示装置を示す断面図である。It is sectional drawing which shows the organic electroluminescence display which concerns on the comparative example 3. 比較例3に係る有機EL表示装置を示す断面図である。It is sectional drawing which shows the organic electroluminescence display which concerns on the comparative example 3. 実施例5に係る有機EL表示装置を示す断面図である。10 is a cross-sectional view showing an organic EL display device according to Example 5. FIG. 実施例5に係る有機EL表示装置を示す断面図である。10 is a cross-sectional view showing an organic EL display device according to Example 5. FIG.
(第1実施形態)
  以下、図面を参照して、本発明の一態様に係る有機EL表示装置について説明する。なお、以下に示す実施形態は、発明の趣旨をより良く理解させるために具体的に説明するものであり、特に指定のない限り、本発明の一態様を限定するものではない。また、以下の説明で用いる図面は、本発明の一態様の特徴をわかりやすくするために、便宜上、要部となる部分を拡大して示している場合があり、各構成要素の寸法比率などが実際と同じであるとは限らない。
(First embodiment)
Hereinafter, an organic EL display device according to one embodiment of the present invention will be described with reference to the drawings. Note that the embodiment described below is specifically described for better understanding of the gist of the invention, and does not limit one embodiment of the present invention unless otherwise specified. In addition, in the drawings used in the following description, in order to make the characteristics of one embodiment of the present invention easier to understand, a part that is a main part may be shown in an enlarged manner for convenience. It is not always the same as actual.
  図1は本発明の実施形態に係る有機EL表示装置の一例を示す概略断面図である。
  有機EL表示装置1は、第一基板10と、有機EL素子19と、第二基板(封止基板)21とを有する。第一基板10は、例えばTFT(薄膜トランジスタ)回路18を備える。有機EL素子19は、第一基板10の一面側10aに形成される。第二基板21は、第一基板10に対向して形成される。
FIG. 1 is a schematic cross-sectional view showing an example of an organic EL display device according to an embodiment of the present invention.
The organic EL display device 1 includes a first substrate 10, an organic EL element 19, and a second substrate (sealing substrate) 21. The first substrate 10 includes, for example, a TFT (Thin Film Transistor) circuit 18. The organic EL element 19 is formed on the one surface side 10 a of the first substrate 10. The second substrate 21 is formed to face the first substrate 10.
  有機EL素子19は、第一電極(画素電極)11と、エッジカバー12と、反射膜(光学反射体)13と、有機層(有機EL層)14と、第二電極(対向電極)15を備えている。第一電極11は、第一基板10の一面側10aに配列されている。エッジカバー12は、第一電極11のエッジ部(端部)を覆う。反射膜13は、第一電極11およびエッジカバー12を覆う。有機層14は、反射膜(光学反射体)13に順に重ねて形成される。有機層14は、少なくとも有機発光層を含む。 The organic EL element 19 includes a first electrode (pixel electrode) 11, an edge cover 12, a reflective film (optical reflector) 13, an organic layer (organic EL layer) 14, and a second electrode (counter electrode) 15. I have. The first electrode 11 is arranged on the one surface side 10 a of the first substrate 10. The edge cover 12 covers the edge portion (end portion) of the first electrode 11. The reflective film 13 covers the first electrode 11 and the edge cover 12. The organic layer 14 is formed on the reflective film (optical reflector) 13 in order. The organic layer 14 includes at least an organic light emitting layer.
  一方、第二基板(封止基板)21における第一基板10と対向する一面側21aには、蛍光体層22(青色蛍光体層22B、緑色蛍光体層22G、赤色蛍光体層22Rから成る。)と、障壁23とが形成されている。蛍光体層22は、有機EL素子19で生じた励起光により励起され発光する。障壁23は、蛍光体層22の側方を囲う。更に、障壁23の表面には、反射膜(光学反射体)17が形成されている。 On the other hand, the second substrate (sealing substrate) 21 includes a phosphor layer 22 (a blue phosphor layer 22B, a green phosphor layer 22G, and a red phosphor layer 22R) on one surface side 21a facing the first substrate 10. ) And a barrier 23 are formed. The phosphor layer 22 is excited by the excitation light generated in the organic EL element 19 and emits light. The barrier 23 surrounds the side of the phosphor layer 22. Furthermore, a reflective film (optical reflector) 17 is formed on the surface of the barrier 23.
  以下、上述した本発明の一態様に係る有機EL表示装置1を構成する各構成部材及びその形成方法について具体的に説明するが、本発明の一態様はこれら構成部材及び形成方法に限定されるものではない。 Hereinafter, although each structural member which comprises the organic electroluminescence display 1 which concerns on 1 aspect of this invention mentioned above, and its formation method are demonstrated concretely, 1 aspect of this invention is limited to these structural members and formation method. It is not a thing.
  本実施形態で用いられる第一基板10としては、例えば、ガラス、石英等からなる無機材料基板、ポリエチレンテレフタレート、ポリカルバゾール、ポリイミド等からなるプラスティック基板、アルミナ等からなるセラミックス基板等の絶縁性基板、又は、アルミニウム(Al)、鉄(Fe)等からなる金属基板、または、基板上に酸化シリコン(SiO)、有機絶縁材料等からなる絶縁物を表面にコーティングした基板、Al等からなる金属基板の表面を陽極酸化等の方法で絶縁化処理を施した基板等が挙げられる。 As the first substrate 10 used in the present embodiment, for example, an inorganic substrate made of glass, quartz, etc., a plastic substrate made of polyethylene terephthalate, polycarbazole, polyimide, etc., an insulating substrate such as a ceramic substrate made of alumina, Alternatively, a metal substrate made of aluminum (Al), iron (Fe), or the like, or a substrate coated with an insulator made of silicon oxide (SiO 2 ), an organic insulating material, or the like on the substrate, a metal substrate made of Al, etc. And a substrate obtained by subjecting the surface of the substrate to insulation treatment by a method such as anodic oxidation.
  さらに、プラスティック基板に無機材料をコートした基板、金属基板に無機絶縁材料をコートした基板が更に好ましい。これにより、プラスティック基板を有機EL表示装置の基板として用いた場合に生じ得る水分の透過(有機EL素子は、特に少量の水分に対しても劣化が起こることが知られている)を解消する事が可能となる。また、金属基板を有機ELの基板として用いた場合に生じ得る金属基板の突起によるリーク(ショート)(有機層の膜厚は、100nm~200nm程度と非常に薄いため、突起による画素部での電流リーク(ショート)が起こることが知られている。)を解消する事が可能となる。 Furthermore, a substrate in which a plastic substrate is coated with an inorganic material and a substrate in which a metal substrate is coated with an inorganic insulating material are more preferable. This eliminates moisture permeation that occurs when a plastic substrate is used as the substrate of an organic EL display device (organic EL elements are known to deteriorate even with a small amount of moisture). Is possible. Also, leakage (short) due to protrusions on the metal substrate that can occur when the metal substrate is used as an organic EL substrate (the organic layer has a very thin film thickness of about 100 nm to 200 nm. It is known that leakage (short circuit) occurs.
  また、アクティブマトリックス駆動するためのTFT回路18を形成する場合には、500℃以下の温度で融解せず、歪みも生じない基板を用いることが好ましい。また、一般的な金属基板は、ガラスと熱膨張率が異なるため、従来の生産装置で金属基板上にTFTを形成することが困難であるが、線膨張係数が1×10-5/ ℃ 以下の鉄-ニッケル系合金である金属基板を用いて、線膨張係数をガラスに合わせ込む事で金属基板上にTFTを従来の生産装置を用いて安価に形成する事が可能となる。 Further, when forming the TFT circuit 18 for active matrix driving, it is preferable to use a substrate that does not melt at a temperature of 500 ° C. or less and does not cause distortion. In addition, since a general metal substrate has a coefficient of thermal expansion different from that of glass, it is difficult to form a TFT on the metal substrate with a conventional production apparatus, but the linear expansion coefficient is 1 × 10 −5 / ° C. or less. By using a metal substrate which is an iron-nickel alloy of this type and adjusting the linear expansion coefficient to glass, it becomes possible to form TFTs on the metal substrate at low cost using a conventional production apparatus.
  また、プラスティック基板の場合には、ガラス基板より耐熱温度が低いため、ガラス基板上にTFT回路18を形成した後、プラスティック基板にTFT回路18を転写する事で、プラスティック基板上にTFTを転写形成する事が可能である。
  更に、蛍光体層22が第二電極15側にある場合、すなわち有機層14からの発光を第一基板10とは逆側から取り出す場合には、基板の透明性に関して制約はない。蛍光体層22が第一電極15側にある場合、すなわち有機層14からの発光を第一基板10を介して取り出す場合には、用いる基板として、有機層14からの発光を外部に取り出す為に、透明又は半透明の基板を用いる必要がある。
In the case of a plastic substrate, since the heat resistant temperature is lower than that of a glass substrate, the TFT circuit 18 is formed on the glass substrate and then transferred to the plastic substrate, thereby transferring the TFT onto the plastic substrate. It is possible to do.
Further, when the phosphor layer 22 is on the second electrode 15 side, that is, when light emitted from the organic layer 14 is taken out from the side opposite to the first substrate 10, there is no restriction on the transparency of the substrate. When the phosphor layer 22 is on the first electrode 15 side, that is, when light emitted from the organic layer 14 is taken out through the first substrate 10, in order to take out light emitted from the organic layer 14 to the outside as a substrate to be used. It is necessary to use a transparent or translucent substrate.
  第一基板10に形成されるTFT回路18は、有機EL素子19を形成する前に、予め第一基板10の一面側10aに形成され、スイッチング用及び駆動用として機能する。
 本実施形態で用いられるTFT回路18としては、例えば、公知のTFT回路を用いればよい。また、こうしたTFT回路18の代わりに金属-絶縁体-金属(MIM)ダイオードを用いることもできる。
The TFT circuit 18 formed on the first substrate 10 is formed in advance on the one surface 10a of the first substrate 10 before the organic EL element 19 is formed, and functions as a switching device and a driving device.
As the TFT circuit 18 used in the present embodiment, for example, a known TFT circuit may be used. Further, a metal-insulator-metal (MIM) diode can be used in place of the TFT circuit 18.
  アクティブ駆動型有機ELディスプレイ、有機EL表示装置に用いる事が可能なTFT回路18は、公知の材料、構造及び形成方法を用いて形成することができる。TFT回路の活性層の材料としては、例えば、非晶質シリコン(アモルファスシリコン)、多結晶シリコン(ポリシリコン)、微結晶シリコン、セレン化カドミウム等の無機半導体材料、酸化亜鉛、酸化インジウム-酸化ガリウム-酸化亜鉛等の酸化物半導体材料又は、ポリチオフェン誘導体、チオフエンオリゴマー、ポリ(p-フェリレンビニレン)誘導体、ナフタセン、ペンタセン等の有機半導体材料が挙げられる。また、TFT回路18の構造としては、例えば、スタガ型、逆スタガ型、トップゲート型、コプレーナ型が挙げられる。 The TFT circuit 18 that can be used for an active drive type organic EL display and an organic EL display device can be formed using a known material, structure, and formation method. As an active layer material of the TFT circuit, for example, amorphous silicon (amorphous silicon), polycrystalline silicon (polysilicon), microcrystalline silicon, inorganic semiconductor materials such as cadmium selenide, zinc oxide, indium oxide-gallium oxide, etc. -Oxide semiconductor materials such as zinc oxide or organic semiconductor materials such as polythiophene derivatives, thiophene oligomers, poly (p-ferylene vinylene) derivatives, naphthacene and pentacene. Examples of the structure of the TFT circuit 18 include a staggered type, an inverted staggered type, a top gate type, and a coplanar type.
  TFT回路18を構成する活性層の形成方法としては、以下の方法などが挙げられる。(1)プラズマ誘起化学気相成長(PECVD)法により成膜したアモルファスシリコンに不純物をイオンドーピングする方法、(2)シラン(SiH)ガスを用いた減圧化学気相成長(LPCVD)法によりアモルファスシリコンを形成し、固相成長法によりアモルファスシリコンを結晶化してポリシリコンを得た後、イオン打ち込み法によりイオンドーピングする方法、(3)Siガスを用いたLPCVD法又はSiHガスを用いたPECVD法によりアモルファスシリコンを形成し、エキシマレーザー等のレーザーによりアニールし、アモルファスシリコンを結晶化してポリシリコンを得た後、イオンドーピングを行う方法(低温プロセス)、(4)LPCVD法又はPECVD法によりポリシリコン層を形成し、1000℃以上で熱酸化することによりゲート絶縁膜を形成し、その上に、nポリシリコンのゲート電極を形成し、その後、イオンドーピングを行う方法(高温プロセス)、(5)有機半導体材料をインクジェット法等により形成する方法、(6)有機半導体材料の単結晶膜を得る方法。 Examples of the method for forming the active layer constituting the TFT circuit 18 include the following methods. (1) Method of ion doping impurities into amorphous silicon formed by plasma induced chemical vapor deposition (PECVD) method, (2) Amorphous by low pressure chemical vapor deposition (LPCVD) method using silane (SiH 4 ) gas After forming silicon and crystallizing amorphous silicon by solid phase growth to obtain polysilicon, ion doping by ion implantation, (3) LPCVD using Si 2 H 6 gas or SiH 4 gas Amorphous silicon is formed by the PECVD method used, annealed by a laser such as an excimer laser, and the amorphous silicon is crystallized to obtain polysilicon, followed by ion doping (low temperature process), (4) LPCVD method or PECVD A polysilicon layer is formed by the method 10 A gate insulating film formed by thermal oxidation at 0 ℃ above, thereon, a gate electrode of the n + polysilicon, then, a method of performing ion doping (high temperature process), (5) an organic semiconductor material (6) A method for obtaining a single crystal film of an organic semiconductor material.
  本実施形態で用いられるTFT回路18のゲート絶縁膜は、公知の材料を用いて形成することができる。例えば、PECVD法、LPCVD法等により形成されたSiO又はポリシリコン膜を熱酸化して得られるSiO等が挙げられる。 The gate insulating film of the TFT circuit 18 used in this embodiment can be formed using a known material. Examples thereof include SiO 2 formed by PECVD, LPCVD, etc., or SiO 2 obtained by thermally oxidizing a polysilicon film.
  また、本実施形態で用いられるTFT回路18の信号電極線、走査電極線、共通電極線、第1駆動電極及び第2駆動電極は、公知の材料を用いて形成することができ、例えば、タンタル(Ta)、アルミニウム(Al)、銅(Cu)等が挙げられる。本実施形態に係る有機ELパネルのTFTは、上記のような構成で形成することができるが、これらの材料、構造及び形成方法に限定されるものではない。 Further, the signal electrode line, the scanning electrode line, the common electrode line, the first drive electrode, and the second drive electrode of the TFT circuit 18 used in this embodiment can be formed using a known material, for example, tantalum. (Ta), aluminum (Al), copper (Cu), and the like. The TFT of the organic EL panel according to this embodiment can be formed with the above-described configuration, but is not limited to these materials, structures, and formation methods.
  アクティブ駆動型の有機EL表示装置に用いる事が可能な層間絶縁膜は、公知の材料を用いて形成することができ、例えば、酸化シリコン(SiO)、窒化シリコン(SiN、又は、Si)、酸化タンタル(TaO、又は、Ta)等の無機材料、又は、アクリル樹脂、レジスト材料等の有機材料等が挙げられる。
  また、その形成方法としては、化学気相成長(CVD)法、真空蒸着法等のドライプロセス、スピンコート法等のウエットプロセスが挙げられる。また、必要に応じてフォトリソグラフィー法等によりパターニングすることもできる。
An interlayer insulating film that can be used for an active drive type organic EL display device can be formed using a known material, for example, silicon oxide (SiO 2 ), silicon nitride (SiN, or Si 2 N). 4 ), an inorganic material such as tantalum oxide (TaO or Ta 2 O 5 ), or an organic material such as an acrylic resin or a resist material.
Examples of the formation method include dry processes such as chemical vapor deposition (CVD) and vacuum deposition, and wet processes such as spin coating. Moreover, it can also pattern by the photolithographic method etc. as needed.
  有機層14からの発光を第一基板10の逆側(第二電極15側)から取り出す場合には、外光が第一基板10の一面側10aに形成されたTFT回路18に入射して、TFT回路18の特性に変化が生じることを防ぐ目的で、遮光性を兼ね備えた遮光性絶縁膜を形成することも好ましい。また、上記の絶縁膜と遮光性絶縁膜を組み合わせて用いることもできる。遮光性層間絶縁膜としては、例えば、フタロシアニン、キナクロドン等の顔料又は染料をポリイミド等の高分子樹脂に分散したもの、カラーレジスト、ブラックマトリクス材料、NiZnFe等の無機絶縁材料等が挙げられる。しかしながら、本実施形態はこれらの材料及び形成方法に限定されるものではない。 When light emitted from the organic layer 14 is taken out from the opposite side (second electrode 15 side) of the first substrate 10, external light is incident on the TFT circuit 18 formed on the one surface 10a of the first substrate 10, For the purpose of preventing changes in the characteristics of the TFT circuit 18, it is also preferable to form a light-shielding insulating film having light-shielding properties. In addition, the above insulating film and a light-shielding insulating film can be used in combination. Examples of the light-shielding interlayer insulating film include, for example, pigments or dyes such as phthalocyanine and quinaclonone dispersed in a polymer resin such as polyimide, color resist, black matrix material, and inorganic insulating materials such as Ni x Zn y Fe 2 O 4 Etc. However, this embodiment is not limited to these materials and forming methods.
  アクティブ駆動型の有機EL表示装置1では、第一基板10の一面側10aにTFT回路18を形成した場合には、その表面に凸凹が形成され、この凸凹によって有機EL素子19に、例えば、画素電極の欠損、有機層の欠損、第二電極の断線、第一電極と対向電極の短絡、耐圧の低下等の現象が発生するおそれがある。これらの現象を防止するために、層間絶縁膜上に平坦化膜を設けてもよい。 In the active drive type organic EL display device 1, when the TFT circuit 18 is formed on the one surface side 10 a of the first substrate 10, unevenness is formed on the surface thereof, and the organic EL element 19 is formed by, for example, a pixel. There is a possibility that phenomena such as an electrode defect, an organic layer defect, a disconnection of the second electrode, a short circuit between the first electrode and the counter electrode, and a decrease in breakdown voltage may occur. In order to prevent these phenomena, a planarizing film may be provided on the interlayer insulating film.
  こうした平坦化膜は、公知の材料を用いて形成することができ、例えば、酸化シリコン、窒化シリコン、酸化タンタル等の無機材料、ポリイミド、アクリル樹脂、レジスト材料等の有機材料等が挙げられる。平坦化膜の形成方法としては、CVD法、真空蒸着法等のドライプロセス、スピンコート法等のウエットプロセスが挙げられるが、本実施形態はこれらの材料及び形成方法に限定されるものではない。また、平坦化膜は、単層構造でも多層構造でもよい。 Such a planarizing film can be formed using a known material, and examples thereof include inorganic materials such as silicon oxide, silicon nitride, and tantalum oxide, and organic materials such as polyimide, acrylic resin, and resist material. Examples of the method for forming the planarizing film include a dry process such as a CVD method and a vacuum deposition method, and a wet process such as a spin coating method. However, the present embodiment is not limited to these materials and the forming method. Further, the planarization film may have a single layer structure or a multilayer structure.
  第一電極(画素電極)11及び第二電極(対向電極)15は、有機EL素子19の陽極又は陰極として対で機能する。つまり、第一電極11を陽極とした場合には、第二電極15は陰極となり、第一電極11を陰極とした場合には、第二電極15は陽極となる。以下に、具体的な化合物及び形成方法を例示するが、本実施形態はこれらの材料及び形成方法に限定されるものではない。 The first electrode (pixel electrode) 11 and the second electrode (counter electrode) 15 function as a pair as an anode or a cathode of the organic EL element 19. That is, when the first electrode 11 is an anode, the second electrode 15 is a cathode, and when the first electrode 11 is a cathode, the second electrode 15 is an anode. Specific compounds and formation methods are exemplified below, but the present embodiment is not limited to these materials and formation methods.
  第1電極11及び第2電極15を形成する電極材料としては公知の電極材料を用いることができる。陽極である場合には、有機EL層への正孔の注入をより効率よく行う観点から、仕事関数が4.5eV以上の金(Au)、白金(Pt)、ニッケル(Ni)等の金属、及び、インジウム(In)と錫(Sn)からなる酸化物(ITO)、錫(Sn)の酸化物(SnO)インジウム(In)と亜鉛(Zn)からなる酸化物(IZO)等が透明電極材料として挙げられる。 As an electrode material for forming the first electrode 11 and the second electrode 15, a known electrode material can be used. In the case of an anode, from the viewpoint of more efficiently injecting holes into the organic EL layer, a metal such as gold (Au), platinum (Pt), nickel (Ni) having a work function of 4.5 eV or more, In addition, an oxide (ITO) composed of indium (In) and tin (Sn), an oxide (SnO 2 ) of tin (Sn), an oxide (IZO) composed of indium (In) and zinc (Zn), and the like are transparent electrodes. As a material.
  また、陰極を形成する電極材料としては、有機EL層への電子の注入をより効率よく行う観点から、仕事関数が4.5eV以下のリチウム(Li)、カルシウム(Ca)、セリウム(Ce)、バリウム(Ba)、アルミニウム(Al)等の金属、又は、これらの金属を含有するMg:Ag合金、Li:Al合金等の合金が挙げられる。 Moreover, as an electrode material for forming the cathode, lithium (Li), calcium (Ca), cerium (Ce), a work function of 4.5 eV or less from the viewpoint of more efficiently injecting electrons into the organic EL layer, Examples thereof include metals such as barium (Ba) and aluminum (Al), and alloys such as Mg: Ag alloy and Li: Al alloy containing these metals.
  第一電極11及び第二電極15は、上記の材料を用いてEB蒸着法、スパッタリング法、イオンプレーティング法、抵抗加熱蒸着法等の公知の方法により形成することができるが、本実施形態はこれらの形成方法に限定されるものではない。また、必要に応じて、フォトリソグラフフィー法、レーザー剥離法により、形成した電極をパターン化することもでき、シャドーマスクと組み合わせることで直接パターン化した電極を形成することもできる。その膜厚は、50nm以上が好ましい。膜厚が50nm未満の場合には、配線抵抗が高くなることから、駆動電圧の上昇が生じるおそれがある。 The first electrode 11 and the second electrode 15 can be formed by a known method such as an EB vapor deposition method, a sputtering method, an ion plating method, or a resistance heating vapor deposition method using the above materials. It is not limited to these formation methods. If necessary, the formed electrode can be patterned by a photolithographic fee method or a laser peeling method, or a patterned electrode can be directly formed by combining with a shadow mask. The film thickness is preferably 50 nm or more. When the film thickness is less than 50 nm, the wiring resistance is increased, which may increase the drive voltage.
  本実施形態の色純度の向上、発光効率の向上、正面輝度の向上等のためにマイクロキャビティ効果を用いる時、有機層14からの発光を第一電極11側から取り出す場合には、第二電極15として半透明電極を用いることが好ましい。また、有機層14からの発光を第二電極15側から取り出す場合には、第一電極15として半透明電極を用いることが好ましい。 When light emission from the organic layer 14 is extracted from the first electrode 11 side when the microcavity effect is used to improve the color purity, the light emission efficiency, the front luminance, etc. of the present embodiment, the second electrode It is preferable to use a translucent electrode as 15. In addition, when taking out light emitted from the organic layer 14 from the second electrode 15 side, it is preferable to use a translucent electrode as the first electrode 15.
  ここで用いる材料として、金属の半透明電極単体、もしくは、金属の半透明電極と透明電極材料の組み合わせを用いる事が可能であるが、半透明電極材料としては、反射率・透過率の観点から、銀が好ましい。半透明電極の膜厚は、5nm~30nmが好ましい。膜厚が5nm未満の場合には、光の反射が十分行えず、干渉の効果を十分得るとこができない。また、膜厚が30nmを超える場合には、光の透過率が低下することから輝度、効率が低下するおそれがある。 As the material used here, it is possible to use a metal translucent electrode alone or a combination of a metal translucent electrode and a transparent electrode material, but as a translucent electrode material, from the viewpoint of reflectance and transmittance Silver is preferred. The film thickness of the semitransparent electrode is preferably 5 nm to 30 nm. When the film thickness is less than 5 nm, light cannot be sufficiently reflected, and interference effects cannot be obtained sufficiently. On the other hand, when the film thickness exceeds 30 nm, the light transmittance is lowered, so that the luminance and efficiency may be lowered.
  また、半透明電極と対を成す電極としては、光を反射する反射率の高い電極を用いることが好ましい。好ましい電極材料としては、例えば、アルミニウム、銀、金、アルミニウム-リチウム合金、アルミニウム-ネオジウム合金、アルミニウム-シリコン合金等の反射性金属電極、透明電極と前記反射性金属電極(反射電極)を組み合わせた電極等が挙げられる。 In addition, as the electrode paired with the translucent electrode, it is preferable to use an electrode with high reflectivity that reflects light. Preferred electrode materials include, for example, reflective metal electrodes such as aluminum, silver, gold, aluminum-lithium alloys, aluminum-neodymium alloys, and aluminum-silicon alloys, and a combination of a transparent electrode and the reflective metal electrode (reflective electrode). An electrode etc. are mentioned.
  少なくとも有機発光層を含む有機層(有機EL層)14としては、有機発光層の単層構造でも、有機発光層と電荷輸送層の多層構造でもよく、具体的には、下記の構成が挙げられるが、本実施形態はこれらにより限定されるものではない。
(1)有機発光層
(2)正孔輸送層/有機発光層
(3)有機発光層/電子輸送層
(4)正孔輸送層/有機発光層/電子輸送層
(5)正孔注入層/正孔輸送層/有機発光層/電子輸送層
(6)正孔注入層/正孔輸送層/有機発光層/電子輸送層/電子注入層
(7)正孔注入層/正孔輸送層/有機発光層/正孔防止層/電子輸送層
(8)正孔注入層/正孔輸送層/有機発光層/正孔防止層/電子輸送層/電子注入層
(9)正孔注入層/正孔輸送層/電子防止層/有機発光層/正孔防止層/電子輸送層/電子注入層
  これら有機発光層、正孔注入層、正孔輸送層、正孔防止層、電子防止層、電子輸送層及び電子注入層の各層は、単層構造でも多層構造でもよい。
The organic layer (organic EL layer) 14 including at least an organic light emitting layer may be a single layer structure of an organic light emitting layer or a multilayer structure of an organic light emitting layer and a charge transport layer, and specifically includes the following configurations. However, the present embodiment is not limited to these.
(1) Organic light emitting layer (2) Hole transport layer / organic light emitting layer (3) Organic light emitting layer / electron transport layer (4) Hole transport layer / organic light emitting layer / electron transport layer (5) Hole injection layer / Hole transport layer / organic light emitting layer / electron transport layer (6) hole injection layer / hole transport layer / organic light emitting layer / electron transport layer / electron injection layer (7) hole injection layer / hole transport layer / organic Light emitting layer / Hole prevention layer / Electron transport layer (8) Hole injection layer / Hole transport layer / Organic light emitting layer / Hole prevention layer / Electron transport layer / Electron injection layer (9) Hole injection layer / Hole Transport layer / electron prevention layer / organic light emitting layer / hole prevention layer / electron transport layer / electron injection layer These organic light emission layers, hole injection layer, hole transport layer, hole prevention layer, electron prevention layer, electron transport layer Each layer of the electron injection layer may have a single layer structure or a multilayer structure.
  有機発光層は、以下に例示する有機発光材料のみから構成されていてもよく、発光性のドーパントとホスト材料の組み合わせから構成されていてもよく、任意に正孔輸送材料、電子輸送材料、添加剤(ドナー、アクセプター等)等を含んでいてもよく、また、これらの材料が高分子材料(結着用樹脂)又は無機材料中に分散された構成であってもよい。
 発光効率および寿命の観点からは、ホスト材料中に発光性のドーパントが分散されたものが好ましい。
The organic light emitting layer may be composed only of the organic light emitting material exemplified below, or may be composed of a combination of a light emitting dopant and a host material, and optionally, a hole transport material, an electron transport material, and an additive An agent (donor, acceptor, etc.) or the like may be included, and these materials may be dispersed in a polymer material (binding resin) or an inorganic material.
From the viewpoint of luminous efficiency and lifetime, a material in which a luminescent dopant is dispersed in a host material is preferable.
  有機発光材料としては、有機EL素子向けの公知の発光材料を用いることができる。
このような発光材料は、低分子発光材料、高分子発光材料等に分類され、これらの具体的な化合物を以下に例示するが、本実施形態はこれらの材料に限定されるものではない。また、上記発光材料は、蛍光材料、燐光材料等に分類されるものでもよく、低消費電力化の観点で、発光効率の高い燐光材料を用いる事が好ましい。
As the organic light emitting material, a known light emitting material for an organic EL element can be used.
Such light-emitting materials are classified into low-molecular light-emitting materials, polymer light-emitting materials, and the like. Specific examples of these compounds are given below, but the present embodiment is not limited to these materials. The light-emitting material may be classified into a fluorescent material, a phosphorescent material, and the like, and it is preferable to use a phosphorescent material with high light emission efficiency from the viewpoint of reducing power consumption.
  以下に、具体的な化合物を以下に例示するが、本実施形態はこれらの材料に限定されるものではない。
  発光層に任意に含まれる発光性のドーパントとしては、有機EL素子向けの公知のドーパント材料を用いることができる。このようなドーパント材料としては、例えば、紫外発光材料としては、p-クォーターフェニル、3,5,3,5テトラ-t-ブチルセクシフェニル、3,5,3,5テトラ-t-ブチル-p-クィンクフェニル等の蛍光発光材料等が挙げられる。青色発光材料として、スチリル誘導体等の蛍光発光材料、ビス[(4,6-ジフルオロフェニル)-ピリジナト-N,C2‘]ピコリネートイリジウム(III)(FIrpic)、ビス(4’,6‘-ジフルオロフェニルポリジナト)テトラキス(1-ピラゾイル)ボレート イリジウム(III)(FIr6)等の燐光発光有機金属錯体等が挙げられる。
 なお、第二基板21に蛍光体層22を設けない場合は、赤色発光層を有する有機EL素子、緑色発光層を有する有機EL素子、青色発光層を有する有機EL素子を設けることで、フルカラー表示が可能となる。赤色発光材料としては、例えば、トリス(1-フェニルイソキノリナート-C2,N)-イリジウム(III)、トリス(ジベンゾイルメタン)-モノ-(1,10-フェナントロリン)ユーロピウム(III)、5,6,11,12-テトラフェニルナフタセン等が挙げられる。緑色発光材料としては、トリス(2-フェニルピリジネートーC2,N)-イリジウム(III)、クマリン6,5,12-ジハイドロ-5,12ジメチルキノ[2,3-b]アクリジン-7,14-ジオン等が挙げられる。
Specific compounds are exemplified below, but the present embodiment is not limited to these materials.
As the light-emitting dopant optionally contained in the light-emitting layer, a known dopant material for organic EL elements can be used. As such a dopant material, for example, as an ultraviolet light emitting material, p-quaterphenyl, 3,5,3,5 tetra-t-butylsecphenyl, 3,5,3,5 tetra-t-butyl-p -Fluorescent materials such as quinckphenyl. As blue light emitting materials, fluorescent light emitting materials such as styryl derivatives, bis [(4,6-difluorophenyl) -pyridinato-N, C2 ′] picolinate iridium (III) (FIrpic), bis (4 ′, 6′-difluoro) And phosphorescent organometallic complexes such as phenylpolydinato) tetrakis (1-pyrazolyl) borate iridium (III) (FIr6).
In the case where the phosphor layer 22 is not provided on the second substrate 21, a full color display is provided by providing an organic EL element having a red light emitting layer, an organic EL element having a green light emitting layer, and an organic EL element having a blue light emitting layer. Is possible. Examples of red light-emitting materials include tris (1-phenylisoquinolinate-C2, N) -iridium (III), tris (dibenzoylmethane) -mono- (1,10-phenanthroline) europium (III), 5 6,11,12-tetraphenylnaphthacene and the like. Examples of green luminescent materials include tris (2-phenylpyridinate-C2, N) -iridium (III), coumarin 6,5,12-dihydro-5,12 dimethylquino [2,3-b] acridine-7,14 -Dione and the like.
  また、ドーパントを用いる時のホスト材料としては、有機EL素子向けの公知のホスト材料を用いることができる。このようなホスト材料としては、上述した低分子発光材料、高分子発光材料、4,4‘-ビス(カルバゾール)ビフェニル、9,9-ジ(4-ジカルバゾール-ベンジル)フルオレン(CPF)、3,6-ビス(トリフェニルシリル)カルバゾール(mCP)、(PCF)等のカルバゾール誘導体、4-(ジフェニルフォスフォイル)-N,N-ジフェニルアニリン(HM-A1)等のアニリン誘導体、1,3-ビス(9-フェニル-9H-フルオレン-9-イル)ベンゼン(mDPFB)、1,4-ビス(9-フェニル-9H-フルオレン-9-イル)ベンゼン(pDPFB)等のフルオレン誘導体等が挙げられる。 Also, as a host material when using a dopant, a known host material for an organic EL element can be used. Examples of such host materials include the low-molecular light-emitting materials, the polymer light-emitting materials, 4,4′-bis (carbazole) biphenyl, 9,9-di (4-dicarbazole-benzyl) fluorene (CPF), 3 , 6-bis (triphenylsilyl) carbazole (mCP), carbazole derivatives such as (PCF), aniline derivatives such as 4- (diphenylphosphoyl) -N, N-diphenylaniline (HM-A1), 1,3- And fluorene derivatives such as bis (9-phenyl-9H-fluoren-9-yl) benzene (mDPFB) and 1,4-bis (9-phenyl-9H-fluoren-9-yl) benzene (pDPFB).
  電荷注入輸送層は、電荷(正孔、電子)の電極からの注入と発光層への輸送(注入)をより効率よく行う目的で、電荷注入層(正孔注入層、電子注入層)と電荷輸送層(正孔輸送層、電子輸送層)に分類される。電荷注入層および電荷輸送層は、それぞれ以下に例示する電荷注入輸送材料のみから構成されていてもよい。電荷注入層および電荷輸送層は、それぞれ、以下に例示する電荷注入輸送材料に、任意に添加剤(ドナー、アクセプター等)等を含んでいてもよい。電荷注入層および電荷輸送層は、それぞれ、以下に例示する電荷注入輸送材料等が高分子材料(結着用樹脂)又は無機材料中に分散された構成であってもよい。 The charge injection / transport layer is used to more efficiently inject charges (holes, electrons) from the electrode and transport (injection) to the light emitting layer, and the charge injection layer (hole injection layer, electron injection layer). It is classified as a transport layer (hole transport layer, electron transport layer). Each of the charge injection layer and the charge transport layer may be composed only of the charge injection / transport material exemplified below. Each of the charge injection layer and the charge transport layer may optionally contain an additive (donor, acceptor, etc.) or the like in the charge injection / transport material exemplified below. Each of the charge injection layer and the charge transport layer may have a structure in which a charge injection / transport material exemplified below is dispersed in a polymer material (binding resin) or an inorganic material.
  電荷注入輸送材料としては、有機EL素子用、有機光導電体用の公知の電荷輸送材料を用いることができる。このような電荷注入輸送材料は、正孔注入輸送材料及び電子注入輸送材料に分類され、これらの具体的な化合物を以下に例示するが、本実施形態はこれらの材料に限定されるものではない。 As the charge injecting and transporting material, known charge transporting materials for organic EL elements and organic photoconductors can be used. Such charge injecting and transporting materials are classified into hole injecting and transporting materials and electron injecting and transporting materials. Specific examples of these compounds are given below, but this embodiment is not limited to these materials. .
  正孔注入輸送材料としては、例えば、酸化バナジウム(V)、酸化モリブデン(MoO)等の酸化物、無機p型半導体材料、ポルフィリン化合物、N,N’-ビス(3-メチルフェニル)-N,N’-ビス(フェニル)-ベンジジン(TPD)、N,N’-ジ(ナフタレン-1-イル)-N,N’-ジフェニル-ベンジジン(NPD)等の芳香族第三級アミン化合物、ヒドラゾン化合物、キナクリドン化合物、スチリルアミン化合物等の低分子材料、ポリアニリン(PANI)、ポリアニリン-樟脳スルホン酸(PANI-CSA)、3,4-ポリエチレンジオキシチオフェン/ポリスチレンサルフォネイト(PEDOT/PSS)、ポリ(トリフェニルアミン)誘導体(Poly-TPD)、ポリビニルカルバゾール(PVCz)、ポリ(p-フェニレンビニレン)(PPV)、ポリ(p-ナフタレンビニレン)(PNV)等の高分子材料等が挙げられる。 Examples of the hole injection transport material include oxides such as vanadium oxide (V 2 O 5 ) and molybdenum oxide (MoO 2 ), inorganic p-type semiconductor materials, porphyrin compounds, N, N′-bis (3-methylphenyl) ) -N, N′-bis (phenyl) -benzidine (TPD), N, N′-di (naphthalen-1-yl) -N, N′-diphenyl-benzidine (NPD) Compounds, low molecular weight materials such as hydrazone compounds, quinacridone compounds, styrylamine compounds, polyaniline (PANI), polyaniline-camphor sulfonic acid (PANI-CSA), 3,4-polyethylenedioxythiophene / polystyrene sulfonate (PEDOT / PSS) ), Poly (triphenylamine) derivatives (Poly-TPD), polyvinylcarbazole (PVCz), Examples thereof include polymer materials such as poly (p-phenylene vinylene) (PPV) and poly (p-naphthalene vinylene) (PNV).
  また、陽極からの正孔の注入および輸送をより効率よく行う点で、正孔注入層として用いる材料としては、正孔輸送層に使用する正孔注入輸送材料より最高被占分子軌道(HOMO)のエネルギー準位が低い材料を用いることが好ましく、正孔輸送層としては、正孔注入層に使用する正孔注入輸送材料より正孔の移動度が、高い材料を用いることが好ましい。 In addition, as a material used for the hole injection layer in terms of more efficient injection and transport of holes from the anode, the highest occupied molecular orbital (HOMO) is better than the hole injection transport material used for the hole transport layer. It is preferable to use a material having a low energy level, and as the hole transport layer, it is preferable to use a material having higher hole mobility than the hole injection transport material used for the hole injection layer.
  また、より正孔の注入性および輸送性を向上させるため、前記正孔注入輸送材料にアクセプターをドープする事が好ましい。アクセプターとしては、有機EL素子向けの公知のアクセプター材料を用いることができる。これらの具体的な化合物を以下に例示するが、本実施形態はこれらの材料に限定されるものではない。 In addition, in order to further improve the hole injecting and transporting properties, it is preferable to dope the hole injecting and transporting material with an acceptor. As the acceptor, a known acceptor material for organic EL elements can be used. Although these specific compounds are illustrated below, this embodiment is not limited to these materials.
  アクセプター材料としては、Au、Pt、W,Ir、POCl3 、AsF6 、Cl、Br、I、酸化バナジウム(V)、酸化モリブデン(MoO)等の無機材料、TCNQ(7,7,8,8,-テトラシアノキノジメタン)、TCNQF4 (テトラフルオロテトラシアノキノジメタン)、TCNE(テトラシアノエチレン)、HCNB(ヘキサシアノブタジエン)、DDQ(ジシクロジシアノベンゾキノン)等のシアノ基を有する化合物、TNF(トリニトロフルオレノン)、DNF(ジニトロフルオレノン)等のニトロ基を有する化合物、フルオラニル、クロラニル、ブロマニル等の有機材料が挙げられる。
 この内、TCNQ、TCNQF4 、TCNE、HCNB、DDQ等のシアノ基を有する化合物がよりキャリア濃度を効果的に増加させることが可能であるためより好ましい。
Acceptor materials include Au, Pt, W, Ir, POCl 3 , AsF 6 , Cl, Br, I, vanadium oxide (V 2 O 5 ), molybdenum oxide (MoO 2 ), and other inorganic materials, TCNQ (7, 7 , 8,8, -tetracyanoquinodimethane), TCNQF 4 (tetrafluorotetracyanoquinodimethane), TCNE (tetracyanoethylene), HCNB (hexacyanobutadiene), DDQ (dicyclodicyanobenzoquinone), etc. And compounds having a nitro group such as TNF (trinitrofluorenone) and DNF (dinitrofluorenone), and organic materials such as fluoranyl, chloranil and bromanyl.
Among these, compounds having a cyano group such as TCNQ, TCNQF 4 , TCNE, HCNB, DDQ and the like are more preferable because they can increase the carrier concentration more effectively.
  電子注入輸送材料としては、例えば、n型半導体である無機材料、オキサジアゾール誘導体、トリアゾール誘導体、チオピラジンジオキシド誘導体、ベンゾキノン誘導体、ナフトキノン誘導体、アントラキノン誘導体、ジフェノキノン誘導体、フルオレノン誘導体、ベンゾジフラン誘導体等の低分子材料;ポリ(オキサジアゾール)(Poly-OXZ)、ポリスチレン誘導体(PSS)等の高分子材料が挙げられる。特に、電子注入材料としては、特にフッ化リチウム(LiF)、フッ化バリウム(BaF)等のフッ化物、酸化リチウム(LiO)等の酸化物等が挙げられる。 Examples of the electron injecting and transporting material include n-type semiconductor inorganic materials, oxadiazole derivatives, triazole derivatives, thiopyrazine dioxide derivatives, benzoquinone derivatives, naphthoquinone derivatives, anthraquinone derivatives, diphenoquinone derivatives, fluorenone derivatives, benzodifuran derivatives, etc. Low molecular materials; polymer materials such as poly (oxadiazole) (Poly-OXZ) and polystyrene derivatives (PSS) can be mentioned. In particular, examples of the electron injection material include fluorides such as lithium fluoride (LiF) and barium fluoride (BaF 2 ), and oxides such as lithium oxide (Li 2 O).
  電子の陰極からの注入および輸送をより効率よく行う点で、電子注入層として用いる材料としては、電子輸送層に使用する電子注入輸送材料より最低空分子軌道(LUMO)のエネルギー準位が高い材料を用いることが好ましく、電子輸送層として用いる材料としては、電子注入層に使用する電子注入輸送材料より電子の移動度が高い材料を用いることが好ましい。 The material used for the electron injection layer is a material having an energy level of the lowest unoccupied molecular orbital (LUMO) higher than that of the electron injection and transport material used for the electron transport layer in that the electron injection and transport from the cathode are performed more efficiently. It is preferable to use a material having a higher electron mobility than the electron injecting and transporting material used for the electron injecting layer.
  また、より電子の注入性および輸送性を向上させるため、前記電子注入輸送材料にドナーをドープする事が好ましい。ドナーとしては、有機EL用の公知のドナー材料を用いることができる。これらの具体的な化合物を以下に例示するが、本実施形態はこれらの材料に限定されるものではない。 In addition, in order to further improve the electron injecting and transporting properties, it is preferable to dope the electron injecting and transporting material with a donor. As the donor, a known donor material for organic EL can be used. Although these specific compounds are illustrated below, this embodiment is not limited to these materials.
  ドナー材料としては、アルカリ金属、アルカリ土類金属、希土類元素、Al、Ag、Cu、In等の無機材料、アニリン類、フェニレンジアミン類、ベンジジン類(N,N,N’,N’-テトラフェニルベンジジン、N,N’-ビス-(3-メチルフェニル)-N,N’-ビス-(フェニル)-ベンジジン、N,N’-ジ(ナフタレン-1-イル)-N,N’-ジフェニル-ベンジジン等)、トリフェニルアミン類(トリフェニルアミン、4,4’4''-トリス(N,N-ジフェニル-アミノ)-トリフェニルアミン、4,4’4''-トリス(N-3-メチルフェニル-N-フェニル-アミノ)-トリフェニルアミン、4,4’4''-トリス(N-(1-ナフチル)-N-フェニル-アミノ)-トリフェニルアミン等)、トリフェニルジアミン類(N,N’-ジ-(4-メチル-フェニル)-N,N’-ジフェニル-1,4-フェニレンジアミン)等の芳香族3級アミンを骨格にもつ化合物、フェナントレン、ピレン、ペリレン、アントラセン、テトラセン、ペンタセン等の縮合多環化合物(ただし、縮合多環化合物は置換基を有してもよい)、TTF(テトラチアフルバレン)類、ジベンゾフラン、フェノチアジン、カルバゾール等の有機材料がある。この内特に、芳香族3級アミンを骨格にもつ化合物、縮合多環化合物、アルカリ金属がよりキャリア濃度を効果的に増加させることが可能であるためより好ましい。 Donor materials include inorganic materials such as alkali metals, alkaline earth metals, rare earth elements, Al, Ag, Cu, In, anilines, phenylenediamines, benzidines (N, N, N ′, N′-tetraphenyl) Benzidine, N, N'-bis- (3-methylphenyl) -N, N'-bis- (phenyl) -benzidine, N, N'-di (naphthalen-1-yl) -N, N'-diphenyl- Benzidine, etc.), triphenylamines (triphenylamine, 4,4′4 ″ -tris (N, N-diphenyl-amino) -triphenylamine, 4,4′4 ″ -tris (N-3- Methylphenyl-N-phenyl-amino) -triphenylamine, 4,4′4 ″ -tris (N- (1-naphthyl) -N-phenyl-amino) -triphenylamine, etc.), triphenyldia Compounds having an aromatic tertiary amine skeleton such as amines (N, N′-di- (4-methyl-phenyl) -N, N′-diphenyl-1,4-phenylenediamine), phenanthrene, pyrene, perylene Organic materials such as condensed polycyclic compounds such as anthracene, tetracene and pentacene (however, the condensed polycyclic compound may have a substituent), TTF (tetrathiafulvalene), dibenzofuran, phenothiazine and carbazole. Among these, a compound having an aromatic tertiary amine as a skeleton, a condensed polycyclic compound, and an alkali metal are more preferable because the carrier concentration can be increased more effectively.
  発光層、正孔輸送層、電子輸送層、正孔注入層及び電子注入層等からなる有機層19は、上記の材料を溶剤に溶解、分散させた有機EL層形成用塗液を用いて、スピンコーティング法、ディッピング法、ドクターブレード法、吐出コート法、スプレーコート法等の塗布法、インクジェット法、凸版印刷法、凹版印刷法、スクリーン印刷法、マイクログラビアコート法等の印刷法等による公知のウエットプロセス、上記の材料を抵抗加熱蒸着法、電子線(EB)蒸着法、分子線エピタキシー(MBE)法、スパッタリング法、有機気相蒸着(OVPD)法等の公知のドライプロセス、又は、レーザー転写法等により形成することができる。なお、ウエットプロセスにより有機EL層を形成する場合には、有機層形成用塗液は、レベリング剤、粘度調整剤等の塗液の物性を調整するための添加剤を含んでいてもよい。 The organic layer 19 composed of a light emitting layer, a hole transport layer, an electron transport layer, a hole injection layer, an electron injection layer, and the like uses an organic EL layer forming coating solution in which the above materials are dissolved and dispersed in a solvent. Known coating methods such as spin coating method, dipping method, doctor blade method, discharge coating method, spray coating method, ink jet method, letterpress printing method, intaglio printing method, screen printing method, printing method such as microgravure coating method, etc. Wet process, known dry processes such as resistance heating vapor deposition, electron beam (EB) vapor deposition, molecular beam epitaxy (MBE), sputtering, organic vapor deposition (OVPD), etc., or laser transfer It can be formed by a method or the like. In addition, when forming an organic EL layer by a wet process, the coating liquid for organic layer formation may contain the additive for adjusting the physical properties of coating liquid, such as a leveling agent and a viscosity modifier.
  上記の各有機層の膜厚は、通常1nm~1000nm程度であるが、10nm~200nmが好ましい。膜厚が10nm未満であると、本来必要とされる物性(電荷の注入特性、輸送特性、閉じ込め特性)が得られないおそれがある。また、ゴミ等の異物による画素欠陥が生じるおそれがある。また、膜厚が200nmを超えると有機層の抵抗成分により駆動電圧の上昇が生じ、消費電力の上昇に繋がる。 The thickness of each organic layer is usually about 1 nm to 1000 nm, preferably 10 nm to 200 nm. If the film thickness is less than 10 nm, the properties (charge injection characteristics, transport characteristics, confinement characteristics) that are originally required may not be obtained. In addition, pixel defects due to foreign matters such as dust may occur. On the other hand, when the film thickness exceeds 200 nm, the drive voltage increases due to the resistance component of the organic layer, leading to an increase in power consumption.
  本発明の一実施形態に係る有機EL表示装置1は、第一電極11と第二電極15との間に、第一基板10側に形成された第一電極11のエッジ部(端部)において、第一電極11と第二電極15間でリークを起こす事を防止する目的でエッジカバー12が形成されている。ここで、エッジカバー12は、絶縁材料を用いてEB蒸着法、スパッタリング法、イオンプレーティング法、抵抗加熱蒸着法等の公知の方法により形成することができ、公知のドライ及びウエット法のフォトリソグラフィー法によりパターン化をすることができるが、本実施形態はこれらの形成方法に限定されるものではない。 In the organic EL display device 1 according to an embodiment of the present invention, an edge portion (end portion) of the first electrode 11 formed on the first substrate 10 side between the first electrode 11 and the second electrode 15. The edge cover 12 is formed for the purpose of preventing leakage between the first electrode 11 and the second electrode 15. Here, the edge cover 12 can be formed by a known method such as an EB vapor deposition method, a sputtering method, an ion plating method, a resistance heating vapor deposition method or the like using an insulating material, and a known dry and wet photolithography. However, the present embodiment is not limited to these forming methods.
  また、絶縁層を構成する材料は、公知の材料を使用することができ、本実施形態では特に限定されないが、光を透過する必要があり、例えば、SiO、SiON、SiN、SiOC、SiC、HfSiON、ZrO、HfO、LaO等が挙げられる。また、膜厚としては、100nm~2000nmが好ましい。膜厚が100nm以下であると、絶縁性が十分ではなく、第1電極11と第2電極15との間でリークが起こり、消費電力の上昇、非発光の原因となる。また、膜厚が2000nm以上であると、成膜プロセスに時間が係り生産性の悪化、エッジカバー12での第2電極15の断線の原因となる。 In addition, a known material can be used as a material constituting the insulating layer, and it is not particularly limited in this embodiment, but it is necessary to transmit light. For example, SiO, SiON, SiN, SiOC, SiC, HfSiON , ZrO, HfO, LaO and the like. The film thickness is preferably 100 nm to 2000 nm. When the film thickness is 100 nm or less, the insulation is not sufficient, and leakage occurs between the first electrode 11 and the second electrode 15, which causes an increase in power consumption and non-light emission. In addition, when the film thickness is 2000 nm or more, the film forming process takes time, resulting in deterioration of productivity and disconnection of the second electrode 15 at the edge cover 12.
  ここで、有機EL素子19は、陽極、陰極からなる第一電極11、第二電極15として用いられる反射電極と半透明電極との干渉効果による、もしくは、誘電体多層膜によるマイクロキャビティ構造(光微小共振器構造)を有する事が好ましい。これにより、有機EL素子19の発光を正面方向(即ち、第二基板(封止基板)21方向)に向けて集光する(指向性を持たせる)事が可能となる。また、周囲に逃げる発光ロスを低減する事が可能となる。さらに、正面での発光効率を高める事が可能となる。 Here, the organic EL element 19 has a microcavity structure (light-emitting) due to an interference effect between a reflective electrode and a translucent electrode used as the first electrode 11 and the second electrode 15 composed of an anode and a cathode, or a dielectric multilayer film. It is preferable to have a microresonator structure. Thereby, it is possible to condense the light emitted from the organic EL element 19 toward the front direction (that is, in the direction of the second substrate (sealing substrate) 21) (provide directivity). In addition, it is possible to reduce the light emission loss that escapes to the surroundings. Furthermore, it is possible to increase the light emission efficiency in the front.
  これにより、より効率良く有機EL素子19の発光層中で生じる発光エネルギーを蛍光体層へ伝搬する事が可能となり、また、正面輝度を高める事が可能となる。また、干渉効果により、発光スペクトルの調整も可能となり、所望の発光ピーク波長、半値幅に調整する事により発光スペクトルの調整が可能となる。したがって、赤色、緑色蛍光体をより効果的に励起することが可能なスペクトルに制御する事が可能となる。また、青色画素の色純度を向上させる事が可能となる。 This makes it possible to more efficiently propagate the light emission energy generated in the light emitting layer of the organic EL element 19 to the phosphor layer, and to increase the front luminance. Further, the emission spectrum can be adjusted due to the interference effect, and the emission spectrum can be adjusted by adjusting to a desired emission peak wavelength and half width. Therefore, it is possible to control the spectrum so that the red and green phosphors can be excited more effectively. Further, it is possible to improve the color purity of the blue pixel.
  また、本実施形態に係る有機EL表示装置は、駆動するために外部駆動回路(走査線電極回路、データ信号電極回路、電源回路)に電気的に接続される。ここで、有機EL表示装置を構成する第一基板10は、ガラス基板、より好ましくは、金属基板、プラスティック基板、更に好ましくは、金属基板、もしくは、プラスティック基板上に絶縁材料をコートした基板を用いてもよい。 In addition, the organic EL display device according to the present embodiment is electrically connected to an external drive circuit (scanning line electrode circuit, data signal electrode circuit, power supply circuit) for driving. Here, the first substrate 10 constituting the organic EL display device is a glass substrate, more preferably a metal substrate, a plastic substrate, and more preferably a metal substrate or a substrate obtained by coating an insulating material on a plastic substrate. May be.
  また、本実施形態に係る有機EL表示装置は、直接外部回路に接続され、駆動しても良い。本実施形態に係る有機EL表示装置は、TFT回路等のスイッチング回路を画素内に配置し、TFT回路等が接続される配線に有機EL素子19を駆動するための外部駆動回路(走査線電極回路(ソースドライバ)、データ信号電極回路(ゲートドライバ)、電源回路)を電気的に接続しても良い。 In addition, the organic EL display device according to this embodiment may be directly connected to an external circuit and driven. In the organic EL display device according to this embodiment, a switching circuit such as a TFT circuit is arranged in a pixel, and an external driving circuit (scanning line electrode circuit) for driving the organic EL element 19 to a wiring to which the TFT circuit or the like is connected. (Source driver), data signal electrode circuit (gate driver), power supply circuit) may be electrically connected.
  アクティブ駆動型の有機EL表示装置を構成する有機EL素子が形成されるアクティブ基板は、ガラス基板上、より好ましくは、金属基板上、プラスティック基板上、更に好ましくは、金属基板、もしくは、プラスティック基板上に絶縁材料をコートした基板上に、複数の走査信号線、データ信号線、及び、走査信号線とデータ信号線との交差部にTFT回路18が配置されたものである。  The active substrate on which the organic EL elements constituting the active drive type organic EL display device are formed is on a glass substrate, more preferably on a metal substrate, on a plastic substrate, and more preferably on a metal substrate or a plastic substrate. A TFT circuit 18 is disposed on a substrate coated with an insulating material on a plurality of scanning signal lines, data signal lines, and intersections between the scanning signal lines and the data signal lines. *
  本実施形態に係る有機EL素子は、例えば、電圧駆動デジタル階調方式によって駆動されてもよい。あるいは、本実施形態に係る有機EL素子は、電流駆動アナログ階調方式で駆動されても良い。 The organic EL element according to the present embodiment may be driven by, for example, a voltage driven digital gradation method. Alternatively, the organic EL element according to this embodiment may be driven by a current drive analog gradation method.
  蛍光体層22は、青色発光有機EL素子の励起光を吸収し、それぞれ青色、緑色、赤色に発光する青色蛍光体層22B、赤色蛍光体層22R、緑色蛍光体層22G等から構成されている。ただし、青色蛍光体層22Gに関しては、青色発光有機EL素子の指向性を有する励起光を散乱し、等方発光にして外部へ取り出すことができるような光散乱層を適用してもよい。 The phosphor layer 22 is composed of a blue phosphor layer 22B, a red phosphor layer 22R, a green phosphor layer 22G, and the like that absorb the excitation light of the blue light emitting organic EL element and emit light in blue, green, and red, respectively. . However, for the blue phosphor layer 22G, a light scattering layer that scatters the excitation light having the directivity of the blue light emitting organic EL element and can extract it to the outside by isotropic light emission may be applied.
  また、必要に応じて、シアン、イエローに発光する蛍光体を画素に加える事が好ましい。ここで、シアン、イエローに発光する画素のそれぞれの色純度を、色度図上での赤色、緑色、青色に発光する画素の色純度の点で結ばれる三角形より外側にすることで、赤色、緑色、青色の3原色を発光する画素を使用する表示装置より色再現範囲を更に広げる事が可能となる。 In addition, it is preferable to add phosphors that emit cyan and yellow to the pixels as necessary. Here, by setting the color purity of each pixel emitting light to cyan and yellow outside the triangle connected by the color purity points of red, green, and blue light emitting pixels on the chromaticity diagram, red, The color reproduction range can be further expanded as compared with a display device using pixels that emit three primary colors of green and blue.
  蛍光体層22は、以下に例示する蛍光体材料のみから構成されていてもよい。蛍光体層22は、以下に例示する蛍光体材料と、任意に添加剤等を含んでいてもよい。蛍光体層22は、以下に例示する蛍光体材料が高分子材料(結着用樹脂)又は無機材料中に分散された構成であってもよい。
  蛍光体層22を構成する蛍光体材料としては、公知の蛍光体材料を用いることができる。このような蛍光体材料は、有機系蛍光体材料と無機系蛍光体材料に分類され、これらの具体的な化合物を以下に例示するが、本実施形態はこれらの材料に限定されるものではない。
The phosphor layer 22 may be composed of only the phosphor material exemplified below. The phosphor layer 22 may contain a phosphor material exemplified below, and optionally an additive or the like. The phosphor layer 22 may have a configuration in which a phosphor material exemplified below is dispersed in a polymer material (binding resin) or an inorganic material.
A known phosphor material can be used as the phosphor material constituting the phosphor layer 22. Such phosphor materials are classified into organic phosphor materials and inorganic phosphor materials. Specific examples of these compounds are given below, but the present embodiment is not limited to these materials. .
  有機系蛍光体材料としては、青色蛍光色素として、スチルベンゼン系色素:1,4-ビス(2-メチルスチリル)ベンゼン、トランス-4,4‘-ジフェニルスチルベンゼン、クマリン系色素:7-ヒドロキシ-4-メチルクマリン等が挙げられる。 Organic phosphor materials include blue fluorescent dyes, stilbenzene dyes: 1,4-bis (2-methylstyryl) benzene, trans-4,4′-diphenylstilbenzene, coumarin dyes: 7-hydroxy- 4-methylcoumarin and the like can be mentioned.
  また、緑色蛍光色素として、クマリン系色素:2,3,5,6-1H、4H-テトラヒドロ-8-トリフロメチルキノリジン(9,9a、1-gh)クマリン(クマリン153)、3-(2′-ベンゾチアゾリル)―7-ジエチルアミノクマリン(クマリン6)、3-(2′-ベンゾイミダゾリル)―7-N,N-ジエチルアミノクマリン(クマリン7)、ナフタルイミド系色素:ベーシックイエロー51、ソルベントイエロー11、ソルベントイエロー116等が挙げられる。 Further, as a green fluorescent dye, a coumarin dye: 2,3,5,6-1H, 4H-tetrahydro-8-trifluoromethylquinolidine (9,9a, 1-gh) coumarin (coumarin 153), 3- ( 2'-benzothiazolyl) -7-diethylaminocoumarin (coumarin 6), 3- (2'-benzoimidazolyl) -7-N, N-diethylaminocoumarin (coumarin 7), naphthalimide dyes: basic yellow 51, solvent yellow 11, Solvent yellow 116 etc. are mentioned.
  また、赤色蛍光色素としては、シアニン系色素:4-ジシアノメチレン-2-メチル-6-(p-ジメチルアミノスチルリル)-4H-ピラン、ピリジン系色素:1-エチル-2-[4-(p-ジメチルアミノフェニル)-1,3-ブタジエニル]-ピリジニウム-パークロレート、及びローダミン系色素:ローダミンB、ローダミン6G、ローダミン3B、ローダミン101、ローダミン110、ベーシックバイオレット11、スルホローダミン101等が挙げられる。 The red fluorescent dye includes cyanine dye: 4-dicyanomethylene-2-methyl-6- (p-dimethylaminostyryl) -4H-pyran, pyridine dye: 1-ethyl-2- [4- ( p-dimethylaminophenyl) -1,3-butadienyl] -pyridinium-perchlorate, and rhodamine dyes: rhodamine B, rhodamine 6G, rhodamine 3B, rhodamine 101, rhodamine 110, basic violet 11, sulforhodamine 101 and the like. .
  また、無機系蛍光体材料としては、青色蛍光体として、Sr227:Sn4+、Sr4Al1425:Eu2+、BaMgAl1017:Eu2+、SrGa24:Ce3+、CaGa24:Ce3+、(Ba、Sr)(Mg、Mn)Al1017:Eu2+、(Sr、Ca、Ba2、0 Mg)10(PO46Cl2:Eu2+、BaAl2SiO8:Eu2+、Sr227:Eu2+、Sr5(PO43Cl:Eu2+、(Sr,Ca,Ba)5(PO43Cl:Eu2+、BaMg2Al1627:Eu2+、(Ba,Ca)5(PO43Cl:Eu2+、Ba3MgSi28:Eu2+、Sr3MgSi28:Eu2+等が挙げられる。 As the inorganic phosphor material, blue phosphors such as Sr 2 P 2 O 7 : Sn 4+ , Sr 4 Al 14 O 25 : Eu 2+ , BaMgAl 10 O 17 : Eu 2+ , SrGa 2 S 4 are used. : Ce 3+ , CaGa 2 S 4 : Ce 3+ , (Ba, Sr) (Mg, Mn) Al 10 O 17 : Eu 2+ , (Sr, Ca, Ba 2 , 0 Mg) 10 (PO 4 ) 6 Cl 2 : Eu 2+ , BaAl 2 SiO 8 : Eu 2+ , Sr 2 P 2 O 7 : Eu 2+ , Sr 5 (PO 4 ) 3 Cl: Eu 2+ , (Sr, Ca, Ba) 5 (PO 4) 3 Cl: Eu 2+, BaMg 2 Al 16 O 27: Eu 2+, (Ba, Ca) 5 (PO 4) 3 Cl: Eu 2+, Ba 3 MgSi 2 O 8: Eu 2+, Sr 3 MgSi 2 O 8: Eu 2+ and the like.
  また、緑色蛍光体として、(BaMg)Al1627:Eu2+,Mn2+、Sr4Al1425:Eu2+、(SrBa)Al12Si28:Eu2+、(BaMg)2SiO4:Eu2+、Y2SiO5:Ce3+,Tb3+、Sr227-Sr225:Eu2+、(BaCaMg)5(PO43Cl:Eu2+、Sr2Si38-2SrCl2:Eu2+、Zr2SiO4、MgAl1119:Ce3+,Tb3+、Ba2SiO4:Eu2+、Sr2SiO4:Eu2+、(BaSr)SiO4:Eu2+等が挙げられる。 Further, as the green phosphor, (BaMg) Al 16 O 27 : Eu 2+ , Mn 2+ , Sr 4 Al 14 O 25 : Eu 2+ , (SrBa) Al 12 Si 2 O 8 : Eu 2+ , (BaMg) ) 2 SiO 4 : Eu 2+ , Y 2 SiO 5 : Ce 3+ , Tb 3+ , Sr 2 P 2 O 7 —Sr 2 B 2 O 5 : Eu 2 +, (BaCaMg) 5 (PO 4 ) 3 Cl : Eu 2+ , Sr 2 Si 3 O 8 -2SrCl 2 : Eu 2+ , Zr 2 SiO 4 , MgAl 11 O 19 : Ce 3+ , Tb 3+ , Ba 2 SiO 4 : Eu 2+ , Sr 2 SiO 4 : Eu 2+ , (BaSr) SiO 4 : Eu 2+ and the like.
  また、赤色蛍光体としては、Y22S:Eu3+、YAlO3:Eu3+、Ca22(SiO46:Eu3+、LiY9(SiO462:Eu3+、YVO4:Eu3+、CaS:Eu3+、Gd23:Eu3+、Gd22S:Eu3+、Y(P,V)O4:Eu3+、Mg4GeO5.5F:Mn4+、Mg4GeO6:Mn4+、K5Eu2.5(WO46.25、Na5Eu2.5(WO46.25、K5Eu2.5(MoO46.25、Na5Eu2.5(MoO46.25等が挙げられる。 As red phosphors, Y 2 O 2 S: Eu 3+ , YAlO 3 : Eu 3+ , Ca 2 Y 2 (SiO 4 ) 6 : Eu 3+ , LiY 9 (SiO 4 ) 6 O 2 : Eu 3+ , YVO 4 : Eu 3+ , CaS: Eu 3+ , Gd 2 O 3 : Eu 3+ , Gd 2 O 2 S: Eu 3+ , Y (P, V) O 4 : Eu 3+ , Mg 4 GeO 5.5 F: Mn 4+ , Mg 4 GeO 6 : Mn 4+ , K 5 Eu 2.5 (WO 4 ) 6.25 , Na 5 Eu 2.5 (WO 4 ) 6.25 , K 5 Eu 2.5 (MoO 4 ) 6.25 , Na 5 Eu 2.5 (MoO 4 ) 6.25 and the like.
  また、上記無機系蛍光体は、必要に応じて表面改質処理を施してもよい。表面改質処理の方法としてはシランカップリング剤等の化学的処理によるものや、サブミクロンオーダーの微粒子等の添加による物理的処理によるもの、更にそれらの併用によるもの等が挙げられる。
 励起光による劣化、発光による劣化等の安定性を考慮すると、無機材料を使用する方が好ましい。更に無機材料を用いる場合には、平均粒径(d50)が、0.5μm~50μmであることが好ましい。
The inorganic phosphor may be subjected to a surface modification treatment as necessary. Examples of the surface modification treatment include chemical treatment using a silane coupling agent, physical treatment using addition of fine particles on the order of submicrons, and combinations thereof.
In consideration of stability such as deterioration due to excitation light and deterioration due to light emission, it is preferable to use an inorganic material. Further, when an inorganic material is used, the average particle size (d 50 ) is preferably 0.5 μm to 50 μm.
  平均粒径が1μm以下であると、蛍光体の発光効率が急激に低下する。また、平均粒径が50μm以上であると、平坦な膜を形成する事が非常に困難となり、蛍光体層と、有機EL素子との間に空乏が出来てしまい(有機EL素子(屈折率:約1.7)と無機蛍光体層(屈折率:約2.3)の間に空乏(屈折率:1.0))有機EL素子からの光が効率よく無機蛍光層に届かず、蛍光体層の発光効率が低下する。 If the average particle size is 1 μm or less, the luminous efficiency of the phosphor is drastically reduced. In addition, when the average particle size is 50 μm or more, it becomes very difficult to form a flat film, and depletion occurs between the phosphor layer and the organic EL element (organic EL element (refractive index: About 1.7) and the inorganic phosphor layer (refractive index: about 2.3) depletion (refractive index: 1.0)) The light from the organic EL element does not efficiently reach the inorganic phosphor layer, and the phosphor The luminous efficiency of the layer is reduced.
  また、蛍光体層は、上記の蛍光体材料と樹脂材料を溶剤に溶解、分散させた蛍光体層形成用塗液を用いて、スピンコーティング法、ディッピング法、ドクターブレード法、吐出コート法、スプレーコート法等の塗布法、インクジェット法、凸版印刷法、凹版印刷法、スクリーン印刷法、マイクログラビアコート法等の印刷法等による公知のウエットプロセス、上記の材料を抵抗加熱蒸着法、電子線(EB)蒸着法、分子線エピタキシー(MBE)法、スパッタリング法、有機気相蒸着(OVPD)法等の公知のドライプロセス、又は、レーザー転写法等により形成することができる。 In addition, the phosphor layer is formed by using a phosphor layer forming coating solution obtained by dissolving and dispersing the phosphor material and the resin material in a solvent, using a spin coating method, a dipping method, a doctor blade method, a discharge coating method, a spraying method. Known wet processes such as coating methods such as coating methods, ink jet methods, letterpress printing methods, intaglio printing methods, screen printing methods, printing methods such as micro gravure coating methods, etc. ) It can be formed by a known dry process such as a vapor deposition method, molecular beam epitaxy (MBE) method, sputtering method, organic vapor deposition (OVPD) method, or a laser transfer method.
  また、蛍光体層22は、高分子樹脂として、感光性の樹脂を用いる事で、フォトリソグラフィー法により、パターン化が可能となる。
  ここで、感光性樹脂としては、アクリル酸系樹脂、メタクリル酸系樹脂、ポリ桂皮酸ビニル系樹脂、硬ゴム系樹脂等の反応性ビニル基を有する感光性樹脂(光硬化型レジスト材料)の一種類又は複数種類の混合物を用いる事が可能である。
The phosphor layer 22 can be patterned by a photolithography method using a photosensitive resin as a polymer resin.
Here, as the photosensitive resin, one of photosensitive resins (photo-curable resist material) having a reactive vinyl group such as acrylic acid resin, methacrylic acid resin, polyvinyl cinnamate resin, and hard rubber resin. It is possible to use one kind or a mixture of plural kinds.
  また、インクジェット法、凸版印刷法、凹版印刷法、スクリーン印刷法、ディスペンサー法等のウエットプロセス、シャドーマスクを用いた抵抗加熱蒸着法、電子線(EB)蒸着法、分子線エピタキシー(MBE)法、スパッタリング法、有機気相蒸着(OVPD)法等の公知のドライプロセス、又は、レーザー転写法等により蛍光体材料をダイレクトにパターニングする事も可能である。 Also, wet process such as ink jet method, relief printing method, intaglio printing method, screen printing method, dispenser method, resistance heating vapor deposition method using shadow mask, electron beam (EB) vapor deposition method, molecular beam epitaxy (MBE) method, It is also possible to directly pattern the phosphor material by a known dry process such as a sputtering method, an organic vapor deposition (OVPD) method, or a laser transfer method.
  上記の蛍光体の膜厚は、通常100nm~100μm程度であるが、1μm~100μmが好ましい。膜厚が100nm未満であると、有機EL素子19からの青色発光を十分吸収することが不可能である為、発光効率の低下、必要とされる色に青色の透過光が混じる事による色純度の悪化が生じる。更にこの有機EL素子19からの発光の吸収を高め、色純度の悪影響を及ぼさない程度に青色の透過光を低減する為には、膜厚として、1μm以上とする事が好ましい。また、膜厚が100μmを超えると有機EL素子からの青色発光を既に十分吸収する事から、効率の上昇には繋がらず、材料を消費するだけに留まり、材料コストのアップに繋がる。 The thickness of the phosphor is usually about 100 nm to 100 μm, but preferably 1 μm to 100 μm. If the film thickness is less than 100 nm, it is impossible to sufficiently absorb the blue light emitted from the organic EL element 19, so that the light emission efficiency is lowered, and the color purity due to the blue transmitted light being mixed with the required color. Deterioration occurs. Further, in order to increase the absorption of light emitted from the organic EL element 19 and reduce blue transmitted light to such an extent that the color purity is not adversely affected, the film thickness is preferably 1 μm or more. Further, when the film thickness exceeds 100 μm, the blue light emission from the organic EL element is already sufficiently absorbed, so that the efficiency is not increased, but only the material is consumed and the material cost is increased.
  一方、青色蛍光体層22Bの代わりとして光散乱層を適用する場合、光散乱粒子は、有機材料により構成されていてもよいし、無機材料により構成されていてもよいが、無機材料により構成されていることが好ましい。これにより、有機EL素子19からの指向性を有する光を、より等方的に効果的に拡散または散乱させることが可能となる。また、無機材料を使用することにより、光および熱に安定な光散乱層を提供することが可能となる。 On the other hand, when a light scattering layer is applied instead of the blue phosphor layer 22B, the light scattering particles may be made of an organic material or an inorganic material, but may be made of an inorganic material. It is preferable. This makes it possible to diffuse or scatter light having directivity from the organic EL element 19 more isotropically and effectively. Further, by using an inorganic material, it is possible to provide a light scattering layer that is stable to light and heat.
  また、光散乱粒子としては、透明度が高いものであることが好ましい。また、樹脂材料と混合して用いる場合には、樹脂材料との屈折率比が上述した数値範囲に含まれるものであることが好ましい。 Moreover, it is preferable that the light scattering particles have high transparency. Moreover, when using it mixing with a resin material, it is preferable that the refractive index ratio with a resin material is contained in the numerical range mentioned above.
  光散乱粒子として、無機材料を用いる場合には、例えば、ケイ素、チタン、ジルコニウム、アルミニウム、インジウム、亜鉛、錫、およびアンチモンからなる群より選ばれる少なくとも1種の金属の酸化物を主成分とした粒子(微粒子)等が挙げられる。 When an inorganic material is used as the light scattering particle, for example, the main component is an oxide of at least one metal selected from the group consisting of silicon, titanium, zirconium, aluminum, indium, zinc, tin, and antimony. Examples thereof include particles (fine particles).
  また、光散乱粒子として、無機材料により構成された粒子(無機微粒子)を用いる場合には、例えば、シリカビーズ(屈折率:1.44)、アルミナビーズ(屈折率:1.63)、酸化チタンビーズ(屈折率 アナタース型:2.50、ルチル型:2.70)、酸化ジルコニアビーズ(屈折率:2.05)、酸化亜鉛ビーズ(屈折率:2.00)等が挙げられる。 Moreover, when using particles (inorganic fine particles) made of an inorganic material as the light scattering particles, for example, silica beads (refractive index: 1.44), alumina beads (refractive index: 1.63), titanium oxide. Examples thereof include beads (refractive index: anatase type: 2.50, rutile type: 2.70), zirconia oxide beads (refractive index: 2.05), and zinc oxide beads (refractive index: 2.00).
  光散乱粒子として、有機材料により構成された粒子(有機微粒子)を用いる場合には、例えば、ポリメチルメタクリレートビーズ(屈折率:1.49)、アクリルビーズ(屈折率:1.50)、アクリル-スチレン共重合体ビーズ(屈折率:1.54)、メラミンビーズ(屈折率:1.57)、高屈折率メラミンビーズ(屈折率:1.65)、ポリカーボネートビーズ(屈折率:1.57)、スチレンビーズ(屈折率:1.60)、架橋ポリスチレンビーズ(屈折率:1.61)、ポリ塩化ビニルビーズ(屈折率:1.60)、ベンゾグアナミン-メラミンホルムアルデヒドビーズ(屈折率:1.68)、シリコーンビーズ(屈折率:1.50)等が挙げられる。 When particles (organic fine particles) made of an organic material are used as the light scattering particles, for example, polymethyl methacrylate beads (refractive index: 1.49), acrylic beads (refractive index: 1.50), acrylic- Styrene copolymer beads (refractive index: 1.54), melamine beads (refractive index: 1.57), high refractive index melamine beads (refractive index: 1.65), polycarbonate beads (refractive index: 1.57), Styrene beads (refractive index: 1.60), crosslinked polystyrene beads (refractive index: 1.61), polyvinyl chloride beads (refractive index: 1.60), benzoguanamine-melamine formaldehyde beads (refractive index: 1.68), Examples thereof include silicone beads (refractive index: 1.50).
  上述した光散乱粒子と混合して用いる樹脂材料としては、透光性の樹脂であることが好ましい。また、樹脂材料としては、例えば、メラミン樹脂(屈折率:1.57)、ナイロン(屈折率:1.53)、ポリスチレン(屈折率:1.60)、メラミンビーズ(屈折率:1.57)、ポリカーボネート(屈折率:1.57)、ポリ塩化ビニル(屈折率:1.60)、ポリ塩化ビニリデン(屈折率:1.61)、ポリ酢酸ビニル(屈折率:1.46)、ポリエチレン(屈折率:1.53)、ポリメタクリル酸メチル(屈折率:1.49)、ポリMBS(屈折率:1.54)、中密度ポリエチレン(屈折率:1.53)、高密度ポリエチレン(屈折率:1.54)、テトラフルオロエチレン(屈折率:1.35)、ポリ三フッ化塩化エチレン(屈折率:1.42)、ポリテトラフルオロエチレン(屈折率:1.35)等が挙げられる。 The resin material used by mixing with the light scattering particles described above is preferably a translucent resin. Examples of the resin material include melamine resin (refractive index: 1.57), nylon (refractive index: 1.53), polystyrene (refractive index: 1.60), melamine beads (refractive index: 1.57). , Polycarbonate (refractive index: 1.57), polyvinyl chloride (refractive index: 1.60), polyvinylidene chloride (refractive index: 1.61), polyvinyl acetate (refractive index: 1.46), polyethylene (refractive Ratio: 1.53), polymethyl methacrylate (refractive index: 1.49), poly MBS (refractive index: 1.54), medium density polyethylene (refractive index: 1.53), high density polyethylene (refractive index: 1.54), tetrafluoroethylene (refractive index: 1.35), polytrifluoroethylene chloride (refractive index: 1.42), polytetrafluoroethylene (refractive index: 1.35), and the like.
  蛍光体層22を囲む障壁23は、例えば、感光性ポリイミド樹脂、アクリル樹脂、メタリル系樹脂、ノボラック系樹脂またはエポキシ樹脂などの樹脂材料をフォトリソ手法等によりパターニングして形成することができる。また、光の漏れや外光によるコントラスト低下を防ぐために、カーボン微粒子や金属酸化物等の遮光性粒子を上述の感光性樹脂材料に含有させたものをパターニングして形成したものを用いても良い。また非感光性樹脂材料をスクリーン印刷等により直接パターニングして障壁を形成してもよい。 The barrier 23 surrounding the phosphor layer 22 can be formed by patterning a resin material such as a photosensitive polyimide resin, an acrylic resin, a methallyl resin, a novolac resin, or an epoxy resin by a photolithography technique or the like. Further, in order to prevent contrast leakage due to light leakage or external light, a material obtained by patterning a material containing light-shielding particles such as carbon fine particles or metal oxides in the above-described photosensitive resin material may be used. . Further, the barrier may be formed by directly patterning the non-photosensitive resin material by screen printing or the like.
  また、障壁23は、その表面を反射膜(光学反射体)17とする以外にも、可視光を反射する材料で障壁23を形成してもよい。こうすることで、蛍光体層から側方に逃げる蛍光成分を外部光取出し方向に変更することができる。このような反射材料としては、例えば、アルミニウム、銀、金、アルミニウム-リチウム合金、アルミニウム-ネオジウム合金、アルミニウム-シリコン合金等の反射性金属等が挙げられるが、可視光全域に渡って高い反射率を有する観点ではアルミニウムもしくは銀が好ましい。ここで挙げた材料はあくまで一例であり、当然、本実施形態はこれらの材料に限定されるわけではない。 In addition, the barrier 23 may be formed of a material that reflects visible light, in addition to the reflective film (optical reflector) 17 on the surface thereof. By doing so, it is possible to change the fluorescent component that escapes laterally from the phosphor layer in the external light extraction direction. Examples of such a reflective material include reflective metals such as aluminum, silver, gold, aluminum-lithium alloy, aluminum-neodymium alloy, and aluminum-silicon alloy, but high reflectivity over the entire visible light range. From the viewpoint of having aluminum, aluminum or silver is preferable. The materials listed here are merely examples, and the present embodiment is naturally not limited to these materials.
  また、蛍光体層22の側方を囲む障壁23は、蛍光体層22よりも厚く形成されることが好ましい。これによって蛍光体層22が有機EL素子19と接触して損傷することを防止することができる。また、こうした障壁23の形状としては、格子状、ストライプ状など、蛍光体層22を囲む各種形状を採用することができる。 障壁 Moreover, it is preferable that the barrier 23 surrounding the side of the phosphor layer 22 is formed thicker than the phosphor layer 22. As a result, the phosphor layer 22 can be prevented from coming into contact with the organic EL element 19 and being damaged. As the shape of the barrier 23, various shapes surrounding the phosphor layer 22 such as a lattice shape and a stripe shape can be adopted.
  第一電極11およびエッジカバー12を覆う反射膜(光学反射体)13、障壁23の表面を成す反射膜(光学反射体)17は、例えば、アルミニウム、銀、金、アルミニウム-リチウム合金、アルミニウム-ネオジウム合金、アルミニウム-シリコン合金等の反射性金属等が挙げられるが、可視光全域に渡って高い反射率を有する観点ではアルミニウムもしくは銀が好ましい。ここで挙げた材料はあくまで一例であり、当然、本実施形態はこれらの材料に限定されるわけではない。また、本実施形態の反射膜13、17は、例えば、スクリーン印刷法、ディスペンサー法、抵抗加熱蒸着法、電子線(EB)蒸着法、分子線エピタキシー(MBE)法、スパッタリング法等により形成することができる。また、反射膜(光学反射体)13と反射膜(光学反射体)17とは同一の材料を用いる必然性はなく、異なる材料でそれぞれを形成してもよい。例えば、反射膜13は第一電極11の一部として機能しているので、第一電極11の仕事関数によって反射膜13の材料を適宜選択してもよい。 The reflective film (optical reflector) 13 that covers the first electrode 11 and the edge cover 12 and the reflective film (optical reflector) 17 that forms the surface of the barrier 23 are, for example, aluminum, silver, gold, aluminum-lithium alloy, aluminum- Examples thereof include reflective metals such as neodymium alloy and aluminum-silicon alloy, and aluminum or silver is preferable from the viewpoint of having a high reflectance over the entire visible light region. The materials listed here are merely examples, and the present embodiment is naturally not limited to these materials. Moreover, the reflective films 13 and 17 of this embodiment are formed by, for example, a screen printing method, a dispenser method, a resistance heating vapor deposition method, an electron beam (EB) vapor deposition method, a molecular beam epitaxy (MBE) method, a sputtering method, or the like. Can do. The reflective film (optical reflector) 13 and the reflective film (optical reflector) 17 are not necessarily made of the same material, and may be formed of different materials. For example, since the reflective film 13 functions as a part of the first electrode 11, the material of the reflective film 13 may be appropriately selected according to the work function of the first electrode 11.
  第二基板(封止基板)21には、蛍光体層22から外部光取出し面(光出射面)方向に向かう箇所にカラーフィルターを設けることも好ましい。例えば、蛍光体層22の外部光取出し面(光出射面)上に直接設けても良いし、蛍光体層22を有機EL素子19を封止するための第二基板21に形成しているのであれば、蛍光体層22と第二基板21との間、もしくは第二基板21の外部光取出し面(光出射面)上に設けることができる。 It is also preferable to provide a color filter on the second substrate (sealing substrate) 21 at a position from the phosphor layer 22 toward the external light extraction surface (light emission surface). For example, it may be provided directly on the external light extraction surface (light emission surface) of the phosphor layer 22, or the phosphor layer 22 is formed on the second substrate 21 for sealing the organic EL element 19. If present, it can be provided between the phosphor layer 22 and the second substrate 21 or on the external light extraction surface (light emission surface) of the second substrate 21.
  こうしたカラーフィルターとしては、公知のカラーフィルターを用いることが可能である。カラーフィルターを設けることによって、赤色、緑色、青色画素の色純度を高める事が可能となり、有機EL表示装置の色再現範囲を拡大する事ができる。また、青色蛍光体層22B上に青色カラーフィルターを形成し、緑色蛍光体層22G上に緑色カラーフィルターを形成し、赤色蛍光体層22R上に赤色カラーフィルターを形成することによって、外光の侵入により各蛍光体が励起される励起光を吸収する。 公 知 Known color filters can be used as such color filters. By providing the color filter, the color purity of red, green, and blue pixels can be increased, and the color reproduction range of the organic EL display device can be expanded. Further, a blue color filter is formed on the blue phosphor layer 22B, a green color filter is formed on the green phosphor layer 22G, and a red color filter is formed on the red phosphor layer 22R. Thus, the excitation light that excites each phosphor is absorbed.
  これにより、外光による蛍光体層の発光を低減または防止することが可能となり、コントラストの低下を低減または防止する事が出来る。このようなカラーフィルターの形成により、蛍光体層22により吸収されず、透過してしまう励起光が外部に漏れ出す事も防止できるため、蛍光体層22からの発光と励起光との混色による、発光の色純度の低下を防止する事が可能となる。 This makes it possible to reduce or prevent light emission of the phosphor layer due to external light, and to reduce or prevent a decrease in contrast. By forming such a color filter, it is possible to prevent the excitation light that is not absorbed and transmitted by the phosphor layer 22 from leaking to the outside, and therefore, by mixing light emitted from the phosphor layer 22 and the excitation light, It is possible to prevent a decrease in the color purity of light emission.
  本実施形態で用いられる第二基板(封止基板)21としては、第一基板11と同様のものを使用可能であり、例えば、ガラス、石英等からなる無機材料基板、ポリエチレンテレフタレート、ポリカルバゾール、ポリイミド等からなるプラスティック基板、アルミナ等からなるセラミックス基板等の絶縁性基板、又は、アルミニウム(Al)、鉄(Fe)等からなる金属基板、または、前記基板上に酸化シリコン(SiO)、有機絶縁材料等からなる絶縁物を表面にコーティングした基板、Al等からなる金属基板の表面を陽極酸化等の方法で絶縁化処理を施した基板等が挙げられるが、本実施形態はこれらの基板に限定されるものではない。 As the 2nd board | substrate (sealing board | substrate) 21 used by this embodiment, the thing similar to the 1st board | substrate 11 can be used, for example, an inorganic material board | substrate which consists of glass, quartz, etc., polyethylene terephthalate, polycarbazole, An insulating substrate such as a plastic substrate made of polyimide, a ceramic substrate made of alumina, or the like, or a metal substrate made of aluminum (Al), iron (Fe), or the like, or silicon oxide (SiO 2 ), organic on the substrate Examples of the substrate include a substrate coated with an insulating material made of an insulating material or the like, and a substrate obtained by subjecting the surface of a metal substrate made of Al or the like to an insulating treatment by a method such as anodization. It is not limited.
  なお、第一基板11と第二基板(封止基板)21とを貼り合わせ、封止する封止膜、保護膜、接着層は、従来の封止膜、保護膜、接着層を用いる事が可能であり、本実施形態は特に限定されるものではない。また、封止膜と保護膜は同一の層を使用することが可能である。例えば、封止膜、保護膜は、樹脂材料をスピンコート法、ODF、ラミレート法を用いて塗布する事によって封止膜とすることも可能である。また、プラズマCVD法、イオンプレーティング法、イオンビーム法、スパッタ法等により、SiO、SiON、SiN等の無機膜を形成した後、更に、樹脂材料をスピンコート法、ODF、ラミレート法を用いて塗布する、又は、貼り合わせることによって封止膜とすることもできる。 In addition, the conventional sealing film, protective film, and adhesive layer may be used as the sealing film, protective film, and adhesive layer for bonding and sealing the first substrate 11 and the second substrate (sealing substrate) 21. This embodiment is not particularly limited. Moreover, the same layer can be used for the sealing film and the protective film. For example, the sealing film and the protective film can be formed as a sealing film by applying a resin material using a spin coating method, an ODF, or a laminating method. In addition, after forming an inorganic film such as SiO, SiON, SiN, etc. by plasma CVD, ion plating, ion beam, sputtering, etc., the resin material is further spin-coated, ODF, laminated. It can also be set as a sealing film by apply | coating or bonding.
  こうした封止膜により、外部からの発光素子内への酸素や水分の混入を防止することができる。また、第一基板11と第二基板(封止基板)21とを接着させるときは、接着層として、従来の紫外線硬化樹脂、熱硬化樹脂等で接着させる事が可能である。また、第一基板11と第二基板(封止基板)21との間には、例えば、窒素ガス、アルゴンガス等の不活性ガスを充填させることも可能である。更に、封入した不活性ガス中に酸化バリウム等の吸湿剤等を混入する方がより水分による有機EL素子19の劣化を効果的に低減できるため好ましい。 Such a sealing film can prevent oxygen and moisture from entering the light emitting element from the outside. Moreover, when bonding the 1st board | substrate 11 and the 2nd board | substrate (sealing board | substrate) 21, it is possible to adhere | attach with a conventional ultraviolet curable resin, a thermosetting resin, etc. as an adhesive layer. Moreover, it is also possible to fill inert gas, such as nitrogen gas and argon gas, between the 1st board | substrate 11 and the 2nd board | substrate (sealing board | substrate) 21, for example. Furthermore, it is preferable to mix a hygroscopic agent such as barium oxide in the enclosed inert gas because deterioration of the organic EL element 19 due to moisture can be effectively reduced.
  図10は、こうした本発明の一実施形態に係る有機EL表示装置の制御部分の構成例を示す概要図である。
  有機EL表示装置1は、第一基板10、画素部G、ゲート信号側駆動回路51、データ信号側駆動回路52、配線53、電流供給線54、第二基板(封止基板)21、FPC(Flexible printed circuits)55、および外部駆動回路56とを有している。
FIG. 10 is a schematic diagram showing a configuration example of the control portion of the organic EL display device according to one embodiment of the present invention.
The organic EL display device 1 includes a first substrate 10, a pixel portion G, a gate signal side drive circuit 51, a data signal side drive circuit 52, a wiring 53, a current supply line 54, a second substrate (sealing substrate) 21, and an FPC ( (Flexible printed circuits) 55 and an external drive circuit 56.
  外部駆動回路56は、画素部Gの走査ライン(走査線)を順次ゲート信号側駆動回路51により選択し、選択されている走査ラインに沿って配置されている各画素素子に対し、データ信号側駆動回路52により画素データを書き込む。すなわち、ゲート信号側駆動回路51が走査線を順次駆動し、データ信号側駆動回路52がデータ線に画素データを出力することで、駆動された走査線とデータが出力されたデータ線との交差する位置に配置された画素素子が駆動される。 The external driving circuit 56 sequentially selects the scanning lines (scanning lines) of the pixel portion G by the gate signal side driving circuit 51, and the data signal side for each pixel element arranged along the selected scanning line. Pixel data is written by the drive circuit 52. That is, the gate signal side driving circuit 51 sequentially drives the scanning lines, and the data signal side driving circuit 52 outputs the pixel data to the data lines, whereby the driven scanning lines and the data lines from which the data is output intersect. The pixel element arranged at the position to be driven is driven.
  以上の詳細に説明したような構成の本発明の一実施形態に係る有機EL表示装置の作用について説明する。
  図1に示すように、有機EL素子19が発した励起光によって、蛍光体層22から発する発光は、各蛍光体22B,22R,22Gからそれぞれ等方的に放射する。蛍光体層22から放射された発光のうち、第二基板(封止基板)21側に向けて放射された光は、そのまま第二基板(封止基板)21側から外部に取り出される(図1の実線矢印参照)。
The operation of the organic EL display device according to one embodiment of the present invention having the configuration described in detail above will be described.
As shown in FIG. 1, the light emitted from the phosphor layer 22 by the excitation light emitted from the organic EL element 19 is isotropically radiated from each phosphor 22B, 22R, 22G. Of the light emitted from the phosphor layer 22, the light emitted toward the second substrate (sealing substrate) 21 side is taken out from the second substrate (sealing substrate) 21 side as it is (FIG. 1). (See the solid arrow in).
  一方、蛍光体層22から放射された発光のうち、障壁23に向かう光、および有機EL素子19側、即ち第一基板10に向かう光(図1の点線矢印参照)は、障壁23の表面に形成された反射膜(光学反射体)17や、第一電極11およびエッジカバー12を覆う反射膜(光学反射体)13によって反射される。これにより、蛍光体層22から放射された発光のうち、直接に第二基板(封止基板)21側から外部に出射される光以外の、障壁23に向かう光や第一基板10に向かう光も、反射膜(光学反射体)13,17によって反射され、第二基板(封止基板)21側から外部に取り出すことが可能になる。 On the other hand, of the light emitted from the phosphor layer 22, the light toward the barrier 23 and the light toward the organic EL element 19 side, that is, the first substrate 10 (see the dotted arrow in FIG. 1) are on the surface of the barrier 23. The light is reflected by the formed reflective film (optical reflector) 17 and the reflective film (optical reflector) 13 that covers the first electrode 11 and the edge cover 12. As a result, light emitted toward the barrier 23 or light directed toward the first substrate 10 other than light emitted directly from the second substrate (sealing substrate) 21 side out of the light emitted from the phosphor layer 22. Are reflected by the reflective films (optical reflectors) 13 and 17 and can be taken out from the second substrate (sealing substrate) 21 side.
  また、蛍光体層22を励起させる有機EL素子19から発した励起光においても、有機EL素子19から直接に各蛍光体22B,22R,22Gに向かう励起光以外にも、第一基板10に向かう励起光など、有機EL素子19内に閉じ込められる成分や蛍光体層22に吸収されない方向の散乱成分なども、反射膜(光学反射体)13によって蛍光体層22に向けて反射される。これによって、蛍光体層22に吸収される励起光の光量を増加(蛍光量子収率の増加)させることができ、蛍光体層22から発する発光量自体を増やすことが可能になる。 In addition, the excitation light emitted from the organic EL element 19 that excites the phosphor layer 22 is also directed to the first substrate 10 in addition to the excitation light directed directly from the organic EL element 19 to each phosphor 22B, 22R, 22G. Components such as excitation light confined in the organic EL element 19 and scattered components in a direction not absorbed by the phosphor layer 22 are also reflected toward the phosphor layer 22 by the reflective film (optical reflector) 13. As a result, the amount of excitation light absorbed by the phosphor layer 22 can be increased (fluorescence quantum yield increased), and the amount of light emitted from the phosphor layer 22 itself can be increased.
  以上のように反射膜(光学反射体)13によって励起光を蛍光体層22に向けて反射させ、また、反射膜(光学反射体)13,17によって蛍光を第二基板(封止基板)21側に向けて反射させることにより、励起光や蛍光のロスを低減し、出射される蛍光の光量の増大、消費電力の低減を実現することが可能となる。 As described above, excitation light is reflected toward the phosphor layer 22 by the reflective film (optical reflector) 13, and fluorescence is reflected by the reflective films (optical reflectors) 13 and 17 on the second substrate (sealing substrate) 21. By reflecting toward the side, it is possible to reduce loss of excitation light and fluorescence, increase the amount of emitted fluorescence, and reduce power consumption.
  なお、上述した実施形態では、反射膜(光学反射体)13は、第一電極11およびエッジカバー12を覆う構造となっているが、第一電極11が透明電極でなく、光反射性の高い材料、例えば、アルミニウム、銀、金、アルミニウム-リチウム合金、アルミニウム-ネオジウム合金、アルミニウム-シリコン合金等の反射性金属によって形成されている場合には、第一電極11を反射膜として兼用し、反射膜(光学反射体)13はエッジカバー12のみを覆う構造であっても良い。 In the above-described embodiment, the reflective film (optical reflector) 13 covers the first electrode 11 and the edge cover 12, but the first electrode 11 is not a transparent electrode and has high light reflectivity. When the material is formed of a reflective metal such as aluminum, silver, gold, aluminum-lithium alloy, aluminum-neodymium alloy, aluminum-silicon alloy, etc., the first electrode 11 is also used as a reflective film to reflect The film (optical reflector) 13 may have a structure that covers only the edge cover 12.
  また、上述した実施形態では、反射膜(光学反射体)17は障壁23の表面を構成しているが、障壁23全体を光反射性の高い材料、例えば、アルミニウム、銀、金、アルミニウム-リチウム合金、アルミニウム-ネオジウム合金、アルミニウム-シリコン合金等の反射性金属で形成してもよい。 In the above-described embodiment, the reflection film (optical reflector) 17 forms the surface of the barrier 23. The entire barrier 23 is made of a material having high light reflectivity, such as aluminum, silver, gold, aluminum-lithium. It may be formed of a reflective metal such as an alloy, an aluminum-neodymium alloy, or an aluminum-silicon alloy.
  本発明の一実施形態に係る有機EL表示装置1は、例えば、図11に示す携帯電話に適用できる。図11に示す携帯電話60は、音声入力部61、音声出力部62、アンテナ63、操作スイッチ64、表示部65、及び筐体66等を備えている。そして、表示部61として本実施形態の有機EL表示装置が好適に適用できる。本実施形態の一実施形態に係る有機EL表示装置1を携帯電話60の表示部65に適用することによって、少ない消費電力で高いコントラストの映像を表示することができる。 The organic EL display device 1 according to an embodiment of the present invention can be applied to, for example, a mobile phone shown in FIG. A cellular phone 60 shown in FIG. 11 includes an audio input unit 61, an audio output unit 62, an antenna 63, an operation switch 64, a display unit 65, a housing 66, and the like. The organic EL display device of this embodiment can be suitably applied as the display unit 61. By applying the organic EL display device 1 according to an embodiment of the present embodiment to the display unit 65 of the mobile phone 60, it is possible to display a high contrast image with low power consumption.
  また、本発明の一実施形態に係る有機EL表示装置1は、例えば、図12に示す薄型テレビに適用できる。図12に示す薄型テレビ70は、表示部71、スピーカ72、キャビネット73、およびスタンド74等を備えている。そして、表示部71として本実施形態の有機EL表示装置が好適に適用できる。本発明の一実施形態に係る有機EL表示装置1を薄型テレビ70の表示部71に適用することによって、少ない消費電力で高いコントラストの映像を表示することができる。 In addition, the organic EL display device 1 according to an embodiment of the present invention can be applied to, for example, a flat-screen television shown in FIG. A thin television 70 shown in FIG. 12 includes a display unit 71, speakers 72, a cabinet 73, a stand 74, and the like. The organic EL display device of this embodiment can be suitably applied as the display unit 71. By applying the organic EL display device 1 according to an embodiment of the present invention to the display unit 71 of the flat-screen television 70, it is possible to display a high-contrast image with low power consumption.
  以下、本発明の実施例、および従来の比較例を詳細に説明するが、本発明はこれら一例によってなんら限定されるものではない。
(比較例1)
  図2A~図2Cは従来の比較例1の有機EL表示装置100を示す断面図である。
  0.7mmの厚みのガラス製の基板101上に、赤色蛍光体層102R、緑色蛍光体層102G、青色蛍光体層102B及び障壁103を形成し、赤色蛍光体層102R、緑色蛍光体層102G、青色蛍光体層102Bを備えた封止基板101を形成した。障壁103は、赤色蛍光体層102R、緑色蛍光体層102G、青色蛍光体層102Bを囲む。
Examples of the present invention and conventional comparative examples will be described in detail below, but the present invention is not limited to these examples.
(Comparative Example 1)
2A to 2C are cross-sectional views showing a conventional organic EL display device 100 of Comparative Example 1. FIG.
A red phosphor layer 102R, a green phosphor layer 102G, a blue phosphor layer 102B and a barrier 103 are formed on a glass substrate 101 having a thickness of 0.7 mm, and the red phosphor layer 102R, the green phosphor layer 102G, The sealing substrate 101 provided with the blue phosphor layer 102B was formed. The barrier 103 surrounds the red phosphor layer 102R, the green phosphor layer 102G, and the blue phosphor layer 102B.
  障壁103は、封止基板101上に、感光性エポキシ樹脂を幅5μm、膜厚60μmで、200μmピッチで順テーパー形状にパターン形成して作製した。
  次に基板101上に赤色蛍光体層102R、緑色蛍光体層102G、青色蛍光体層102Bを形成した。赤色蛍光体層102Rを形成するために、まず、平均粒径5nmのエアロジル0.16gにエタノール15gおよびγ-グリシドキシプロピルトリエトキシシラン0.22gを加えて開放系室温下1時間攪拌した。この混合物と赤色蛍光体K5Eu2.5(WO46.25を20gとを乳鉢に移し、よくすり混ぜた後、70℃のオーブンで2時間、さらに120℃のオーブンで2時間加熱し、表面改質したK5Eu2.5(WO46.25を得た。
The barrier 103 was formed by patterning a photosensitive epoxy resin with a width of 5 μm, a film thickness of 60 μm, and a forward taper shape at a pitch of 200 μm on the sealing substrate 101.
Next, a red phosphor layer 102R, a green phosphor layer 102G, and a blue phosphor layer 102B were formed on the substrate 101. In order to form the red phosphor layer 102R, first, 15 g of ethanol and 0.22 g of γ-glycidoxypropyltriethoxysilane were added to 0.16 g of Aerosil having an average particle diameter of 5 nm, and the mixture was stirred at room temperature for 1 hour. This mixture and 20 g of red phosphor K 5 Eu 2.5 (WO 4 ) 6.25 were transferred to a mortar and mixed well, then heated in an oven at 70 ° C. for 2 hours and further in an oven at 120 ° C. for 2 hours to modify the surface. K 5 Eu 2.5 (WO 4 ) 6.25 was obtained.
  次に表面改質を施したK5Eu2.5(WO46.25 10gに、水/ジメチルスルホキシド=1/1の混合溶液(300g)で溶解されたポリビニルアルコール30gを加え、分散機により攪拌した赤色蛍光体形成用塗液を作製した。以上作製した赤色蛍光体形成用塗液を、スクリーン印刷法で、障壁103で囲われた領域に塗布した。引き続き真空オーブン(200℃、10mmHgの条件)で4時間加熱乾燥し、膜厚50μmの赤色蛍光体層102Rを形成した。 Next, 30 g of polyvinyl alcohol dissolved in a mixed solution of water / dimethyl sulfoxide = 1/1 (300 g) was added to 10 g of K 5 Eu 2.5 (WO 4 ) 6.25 subjected to surface modification, and the mixture was stirred by a disperser. A phosphor forming coating solution was prepared. The red phosphor-forming coating solution prepared above was applied to the region surrounded by the barrier 103 by screen printing. Subsequently, it was dried by heating in a vacuum oven (200 ° C., 10 mmHg) for 4 hours to form a red phosphor layer 102R having a thickness of 50 μm.
  次に、緑色蛍光体層102Gを形成するため、まず、平均粒径5nmのエアロジル0.16gにエタノール15gおよびγ-グリシドキシプロピルトリエトキシシラン0.22gを加えて開放系室温下1時間攪拌した。この混合物と緑色蛍光体Ba2SiO4:Eu2+を20gとを乳鉢に移し、よくすり混ぜた後、70℃のオーブンで2時間、さらに120℃のオーブンで2時間加熱し、表面改質したBa2SiO4:Eu2+を得た。 Next, in order to form the green phosphor layer 102G, first, 15 g of ethanol and 0.22 g of γ-glycidoxypropyltriethoxysilane were added to 0.16 g of aerosil having an average particle diameter of 5 nm and stirred for 1 hour at room temperature in an open system. did. This mixture and 20 g of green phosphor Ba 2 SiO 4 : Eu 2+ were transferred to a mortar and mixed well, and then heated in a 70 ° C. oven for 2 hours and further in a 120 ° C. oven for 2 hours to modify the surface. Ba 2 SiO 4 : Eu 2+ was obtained.
  次に表面改質を施したBa2SiO4:Eu2+ 10gに、水/ジメチルスルホキシド=1/1の混合溶液(300g)で溶解されたポリビニルアルコール30gを加え、分散機により攪拌した緑色蛍光体形成用塗液を作製した。以上作製した緑色蛍光体形成用塗液を、スクリーン印刷法で、前記障壁103で囲われた領域に塗布した。引き続き真空オーブン(200℃、10mmHgの条件)で4時間加熱乾燥し、膜厚50μmの緑色蛍光体層102Gを形成した。 Next, 30 g of polyvinyl alcohol dissolved in a mixed solution (300 g) of water / dimethyl sulfoxide = 1/1 was added to 10 g of Ba 2 SiO 4 : Eu 2+ subjected to surface modification, and the green fluorescence stirred by a disperser was added. A body-forming coating solution was prepared. The green phosphor-forming coating solution prepared above was applied to the area surrounded by the barrier 103 by screen printing. Subsequently, it was dried by heating in a vacuum oven (200 ° C., 10 mmHg) for 4 hours to form a green phosphor layer 102G having a thickness of 50 μm.
  次に、青色蛍光体層102Bを形成するために、まず、7-ヒドロキシ-4-メチルクマリン(クマリン4)(0.02mol/kg(固形分比))をエポキシ系熱硬化樹脂に混ぜ攪拌機により攪拌した青色蛍光体形成用塗液を作製した。以上作製した青色散乱層形成用塗液を、スクリーン印刷法で、前記障壁103で囲われた領域に塗布した。引き続き真空オーブン(200℃、10mmHgの条件)で4時間加熱乾燥し、膜厚50μmの青色蛍光体層9Bを形成した。 Next, in order to form the blue phosphor layer 102B, first, 7-hydroxy-4-methylcoumarin (coumarin 4) (0.02 mol / kg (solid content ratio)) is mixed with an epoxy thermosetting resin by a stirrer. A stirred blue phosphor-forming coating solution was prepared. The blue scattering layer forming coating solution prepared above was applied to the region surrounded by the barrier 103 by screen printing. Subsequently, it was dried by heating in a vacuum oven (200 ° C., 10 mmHg) for 4 hours to form a blue phosphor layer 9B having a thickness of 50 μm.
  一方、0.7mmの厚みのガラス基板105上に、銀をスパッタ法により膜厚保100nmとなるように成膜し、その上にインジウム-スズ酸化物(ITO)を膜厚20nmとなるようスパッタ法により成膜し、第一電極106を形成した。その後従来のフォトリソグラフィー法により、第一電極106の幅が160μm幅、200μmピッチでストライプにパターニングした。 On the other hand, on the glass substrate 105 with a thickness of 0.7 mm, a silver film is formed by sputtering to have a film thickness of 100 nm, and an indium-tin oxide (ITO) film is formed thereon by a sputtering method so as to have a film thickness of 20 nm. Then, the first electrode 106 was formed. Thereafter, the first electrode 106 was patterned into stripes with a width of 160 μm and a pitch of 200 μm by a conventional photolithography method.
  次に、第一電極106上にSiOをスパッタ法により膜厚200nmで積層し、従来のフォトリソグラフィー法により、第一電極106のエッジ部のみを覆うように、パターン化しエッジカバー107を形成した。ここでは、第一電極106の端から10μm分だけ短辺をSiOで覆う構造とした。これを水洗後、純水超音波洗浄10分、アセトン超音波洗浄10分、イソプロピルアルコール蒸気洗浄5分を行い、120℃にて1時間乾燥させた。 Next, SiO 2 was laminated on the first electrode 106 with a film thickness of 200 nm by a sputtering method, and a patterned edge cover 107 was formed by a conventional photolithography method so as to cover only the edge portion of the first electrode 106. . Here, the short side is covered with SiO 2 by 10 μm from the end of the first electrode 106. This was washed with water, then subjected to pure water ultrasonic cleaning for 10 minutes, acetone ultrasonic cleaning for 10 minutes, and isopropyl alcohol vapor cleaning for 5 minutes, and dried at 120 ° C. for 1 hour.
  次に、この基板105を抵抗加熱蒸着装置内の基板ホルダーに固定し、1×10-4Pa以下の真空まで減圧し、有機発光層を含む有機層108を抵抗加熱蒸着法により形成した。
  有機層108を形成するため、まず正孔注入材料として、1,1-ビス-ジ-4-トリルアミノ-フェニル-シクロヘキサン(TAPC)を用い抵抗加熱蒸着法により膜厚100nmの正孔注入層を形成した。次に正孔輸送材料として、N,N‘-di-l-ナフチル-N,N’-ジフェニル-1,1‘-ビフェニル-1,1’-ビフェニル-4,4‘-ジアミン(NPD)を用い抵抗加熱蒸着法により膜厚40nmの正孔輸送層を形成した。
Next, this substrate 105 was fixed to a substrate holder in a resistance heating evaporation apparatus, and the pressure was reduced to a vacuum of 1 × 10 −4 Pa or less, and an organic layer 108 including an organic light emitting layer was formed by a resistance heating evaporation method.
In order to form the organic layer 108, first, a hole injection layer having a thickness of 100 nm is formed by resistance heating vapor deposition using 1,1-bis-di-4-tolylamino-phenyl-cyclohexane (TAPC) as a hole injection material. did. Next, N, N′-di-1-naphthyl-N, N′-diphenyl-1,1′-biphenyl-1,1′-biphenyl-4,4′-diamine (NPD) is used as a hole transport material. A hole transport layer having a thickness of 40 nm was formed by resistance heating vapor deposition.
  次いで、正孔輸送層の上に青色有機発光層(厚さ:30nm)を形成する。この青色有機発光層は、1,4-ビス-トリフェニルシリル-ベンゼン(UGH-2)(ホスト材料)とビス[(4,6-ジフルオロフェニル)-ピリジナト-N,C2‘]ピコリネートイリジウム(III)(FIrpic)(青色燐光発光ドーパント)をそれぞれの蒸着速度を1.5Å/sec、0.2Å/ secとし、共蒸着することで作製した。 Next, a blue organic light emitting layer (thickness: 30 nm) is formed on the hole transport layer. This blue organic light-emitting layer comprises 1,4-bis-triphenylsilyl-benzene (UGH-2) (host material) and bis [(4,6-difluorophenyl) -pyridinato-N, C2 ′] picolinate iridium ( III) (FIrpic) (blue phosphorescent light emitting dopant) was prepared by co-evaporation at a deposition rate of 1.5 Å / sec and 0.2 Å / sec.
  青色有機発光層の上に2,9-ジメチルー4,7-ジフェニル-1,10-フェナントロリン(BCP)を用いて正孔防止層(厚さ:10nm)を形成した。次いで、正孔防止層の上にトリス(8-ヒドロキシキノリン)アルミニウム(Alq)を用いて電子輸送層(厚さ:30nm)を形成した。次いで、電子輸送層の上にフッ化リチウム(LiF)を用いて電子注入層(厚さ:0.5nm)を形成した。 A hole blocking layer (thickness: 10 nm) was formed on the blue organic light emitting layer using 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP). Next, an electron transport layer (thickness: 30 nm) was formed on the hole blocking layer using tris (8-hydroxyquinoline) aluminum (Alq 3 ). Next, an electron injection layer (thickness: 0.5 nm) was formed on the electron transport layer using lithium fluoride (LiF).
  この後、第二電極109として半透明電極を形成した。まず、基板105を金属蒸着用チャンバーに固定した。次に、第二電極109形成用のシャドーマスク(第一電極106のストライプと対抗する向きに500μm幅、600μmピッチのストライプ状に第二電極109を形成できるように開口部が空いているマスク)と基板105をアライメントし、電子注入層の表面に真空蒸着法によりマグネシウムと銀をそれぞれ0.1Å/sec、0.9Å/secの割合の蒸着速度で共蒸着でマグネシウム銀を所望のパターンで形成(厚さ:1nm)した。 After this, a translucent electrode was formed as the second electrode 109. First, the substrate 105 was fixed in a metal deposition chamber. Next, a shadow mask for forming the second electrode 109 (a mask having an opening so that the second electrode 109 can be formed in a stripe shape having a width of 500 μm and a pitch of 600 μm in a direction opposite to the stripe of the first electrode 106) And the substrate 105 are aligned, and magnesium and silver are co-deposited in a desired pattern on the surface of the electron injection layer by vapor deposition at a rate of 0.1 Å / sec and 0.9 Å / sec respectively. (Thickness: 1 nm).
  更にその上に、干渉効果を強調する目的、及び、第二電極109での配線抵抗による電圧降下を防止する目的で銀を1Å/secの蒸着速度で所望のパターンで形成(厚さ:19nm)した。これにより、第二電極109が形成された。ここで、有機EL素子としては、反射電極(第一電極)106と半透過電極(第二電極)109との間でマイクロキャビティ効果(干渉効果)が、発現し、正面輝度を高める事が可能となり有機EL素子からの発光エネルギーをより効率良く、蛍光体層102に伝搬させることが可能となる。また、同様にマイクロキャビティ効果により発光ピークを460nm、半値幅を50nmに調整している。 Furthermore, silver is formed in a desired pattern at a deposition rate of 1 mm / sec (thickness: 19 nm) for the purpose of emphasizing the interference effect and preventing voltage drop due to wiring resistance in the second electrode 109. did. Thereby, the second electrode 109 was formed. Here, as an organic EL element, a microcavity effect (interference effect) appears between the reflective electrode (first electrode) 106 and the semi-transmissive electrode (second electrode) 109, and the front luminance can be increased. Thus, it is possible to more efficiently propagate light emission energy from the organic EL element to the phosphor layer 102. Similarly, the emission peak is adjusted to 460 nm and the half-value width is adjusted to 50 nm by the microcavity effect.
  次にプラズマCVD法により、厚さ3μmのSiOからなる無機保護層をシャドーマスクを用いて表示部の端から上下左右2mmの封止エリアまでパターニング形成した(図示せず)。 Next, an inorganic protective layer made of SiO 2 having a thickness of 3 μm was formed by patterning from the edge of the display portion to a sealing area of 2 mm in the vertical and horizontal directions by a plasma CVD method (not shown).
  以上のようにして作製した有機EL素子側の基板105(図2A参照)と蛍光体層側の基板101(図2B参照)とを、表示部の外に形成されている位置合わせマーカーにより位置合わせを行った。なお、事前に蛍光体層を形成した封止基板101には、熱硬化樹脂が塗布されており、熱硬化樹脂を介して両基板を密着し、80℃、2時間加熱することで硬化を行った。また、上記貼り合わせ工程は、有機EL素子の水分による劣化を防止する目的でドライエアー環境下(水分量:-80℃)で行った。
  最後に、周辺に形成している端子を外部電源に接続することで有機EL表示装置を形成した(図2C参照)。
The organic EL element side substrate 105 (see FIG. 2A) and the phosphor layer side substrate 101 (see FIG. 2B) produced as described above are aligned by the alignment marker formed outside the display unit. Went. The sealing substrate 101 on which the phosphor layer is formed in advance is coated with a thermosetting resin. The two substrates are brought into close contact with each other through the thermosetting resin and cured by heating at 80 ° C. for 2 hours. It was. The bonding step was performed in a dry air environment (water content: −80 ° C.) for the purpose of preventing deterioration of the organic EL element due to water.
Finally, an organic EL display device was formed by connecting terminals formed in the periphery to an external power source (see FIG. 2C).
(実施例1)
  図3A~図3Cは本発明の実施例1の有機EL表示装置110を示す断面図である。
  0.7mmの厚みのガラス製の基板111上に、赤色蛍光体層112R、緑色蛍光体層112G、青色蛍光体層112B及び障壁113を形成し、赤色蛍光体層112R、緑色蛍光体層112G、青色蛍光体層112Bを備えた封止基板111を形成した。障壁113は、赤色蛍光体層112R、緑色蛍光体層112G、青色蛍光体層112Bを囲む。
Example 1
3A to 3C are cross-sectional views showing the organic EL display device 110 according to the first embodiment of the present invention.
A red phosphor layer 112R, a green phosphor layer 112G, a blue phosphor layer 112B and a barrier 113 are formed on a glass substrate 111 having a thickness of 0.7 mm, and the red phosphor layer 112R, the green phosphor layer 112G, The sealing substrate 111 provided with the blue phosphor layer 112B was formed. The barrier 113 surrounds the red phosphor layer 112R, the green phosphor layer 112G, and the blue phosphor layer 112B.
  まず、基板111上に、感光性エポキシ樹脂を幅5μm、膜厚60μmで、200μmピッチで順テーパー形状にパターン形成し、障壁113を作製した。
  次に、基板111と接していない部分の障壁113の表面に、反射膜401としてEB蒸着法によりアルミニウムを膜厚500nmで形成した。
First, on the substrate 111, a photosensitive epoxy resin having a width of 5 μm, a film thickness of 60 μm, and a pattern with a forward taper shape at a pitch of 200 μm was formed, and the barrier 113 was produced.
Next, aluminum was formed to a thickness of 500 nm as the reflective film 401 by an EB vapor deposition method on the surface of the barrier 113 that was not in contact with the substrate 111.
  次に基板111上に赤色蛍光体層112R、緑色蛍光体層112G、青色蛍光体層112Bを形成した。
  赤色蛍光体層112Rを形成するため、まず、平均粒径5nmのエアロジル0.16gにエタノール15gおよびγ-グリシドキシプロピルトリエトキシシラン0.22gを加えて開放系室温下1時間攪拌した。この混合物と赤色蛍光体K5Eu2.5(WO46.25を20gとを乳鉢に移し、よくすり混ぜた後、70℃のオーブンで2時間、さらに120℃のオーブンで2時間加熱し、表面改質したK5Eu2.5(WO46.25を得た。
Next, a red phosphor layer 112R, a green phosphor layer 112G, and a blue phosphor layer 112B were formed on the substrate 111.
In order to form the red phosphor layer 112R, first, 15 g of ethanol and 0.22 g of γ-glycidoxypropyltriethoxysilane were added to 0.16 g of Aerosil having an average particle diameter of 5 nm, and the mixture was stirred at room temperature for 1 hour. This mixture and 20 g of red phosphor K 5 Eu 2.5 (WO 4 ) 6.25 were transferred to a mortar, mixed well, and then heated in an oven at 70 ° C. for 2 hours and further in an oven at 120 ° C. for 2 hours to modify the surface. K 5 Eu 2.5 (WO 4 ) 6.25 was obtained.
  次に表面改質を施したK5Eu2.5(WO46.25 10gに、水/ジメチルスルホキシド=1/1の混合溶液(300g)で溶解されたポリビニルアルコール30gを加え、分散機により攪拌した赤色蛍光体形成用塗液を作製した。以上作製した赤色蛍光体形成用塗液を、スクリーン印刷法で、前記障壁113で囲われた領域に塗布した。引き続き真空オーブン(200℃、10mmHgの条件)で4時間加熱乾燥し、膜厚50μmの赤色蛍光体層112Rを形成した。 Next, 30 g of polyvinyl alcohol dissolved in a mixed solution of water / dimethyl sulfoxide = 1/1 (300 g) was added to 10 g of K 5 Eu 2.5 (WO 4 ) 6.25 subjected to surface modification, and the mixture was stirred by a disperser. A phosphor forming coating solution was prepared. The red phosphor-forming coating solution prepared above was applied to the area surrounded by the barrier 113 by screen printing. Subsequently, it was dried by heating in a vacuum oven (200 ° C., 10 mmHg) for 4 hours to form a red phosphor layer 112R having a thickness of 50 μm.
  次に、緑色蛍光体層112Gを形成するため、まず、平均粒径5nmのエアロジル0.16gにエタノール15gおよびγ-グリシドキシプロピルトリエトキシシラン0.22gを加えて開放系室温下1時間攪拌した。この混合物と緑色蛍光体Ba2SiO4:Eu2+を20gとを乳鉢に移し、よくすり混ぜた後、70℃のオーブンで2時間、さらに120℃のオーブンで2時間加熱し、表面改質したBa2SiO4:Eu2+を得た。 Next, in order to form the green phosphor layer 112G, first, 15 g of ethanol and 0.22 g of γ-glycidoxypropyltriethoxysilane were added to 0.16 g of aerosil having an average particle diameter of 5 nm, and the mixture was stirred for 1 hour at an open system room temperature. did. This mixture and 20 g of green phosphor Ba 2 SiO 4 : Eu 2+ were transferred to a mortar and mixed well, and then heated in a 70 ° C. oven for 2 hours and further in a 120 ° C. oven for 2 hours to modify the surface. Ba 2 SiO 4 : Eu 2+ was obtained.
  次に表面改質を施したBa2SiO4:Eu2+ 10gに、水/ジメチルスルホキシド=1/1の混合溶液(300g)で溶解されたポリビニルアルコール30gを加え、分散機により攪拌した緑色蛍光体形成用塗液を作製した。以上作製した緑色蛍光体形成用塗液を、スクリーン印刷法で、前記障壁113で囲われた領域に塗布した。引き続き真空オーブン(200℃、10mmHgの条件)で4時間加熱乾燥し、膜厚50μmの緑色蛍光体層112Gを形成した。 Next, 30 g of polyvinyl alcohol dissolved in a mixed solution (300 g) of water / dimethyl sulfoxide = 1/1 was added to 10 g of Ba 2 SiO 4 : Eu 2+ subjected to surface modification, and the green fluorescence stirred by a disperser was added. A body-forming coating solution was prepared. The green phosphor-forming coating solution prepared above was applied to the area surrounded by the barrier 113 by screen printing. Subsequently, it was dried by heating in a vacuum oven (200 ° C., 10 mmHg) for 4 hours to form a green phosphor layer 112G having a thickness of 50 μm.
  次に、青色蛍光体層112Bを形成するため、まず、7-ヒドロキシ-4-メチルクマリン(クマリン4)(0.02mol/kg(固形分比))をエポキシ系熱硬化樹脂に混ぜ攪拌機により攪拌した青色蛍光体形成用塗液を作製した。以上作製した青色散乱層形成用塗液を、スクリーン印刷法で、前記障壁8で囲われた領域に塗布した。引き続き真空オーブン(200℃、10mmHgの条件)で4時間加熱乾燥し、膜厚50μmの青色蛍光体層112Bを形成した。 Next, in order to form the blue phosphor layer 112B, first, 7-hydroxy-4-methylcoumarin (coumarin 4) (0.02 mol / kg (solid content ratio)) is mixed with an epoxy thermosetting resin and stirred with a stirrer. A blue phosphor-forming coating solution was prepared. The blue scattering layer forming coating solution prepared above was applied to the area surrounded by the barrier 8 by screen printing. Subsequently, it was dried by heating in a vacuum oven (200 ° C., 10 mmHg conditions) for 4 hours to form a blue phosphor layer 112B having a thickness of 50 μm.
  一方、0.7mmの厚みのガラス製の基板115上に、銀をスパッタ法により膜厚保100nmとなるように成膜し、その上にインジウム-スズ酸化物(ITO)を厚さ20nmとなるようスパッタ法により成膜し、第一電極116を形成した。
 その後、従来のフォトリソグラフィー法により、第一電極116の幅が160μm幅、200μmピッチでストライプにパターニングした。
On the other hand, a film of silver is formed on a glass substrate 115 having a thickness of 0.7 mm so as to have a film thickness of 100 nm by sputtering, and indium-tin oxide (ITO) is formed thereon so as to have a thickness of 20 nm. A first electrode 116 was formed by sputtering.
Thereafter, the first electrode 116 was patterned into stripes with a width of 160 μm and a pitch of 200 μm by a conventional photolithography method.
  次に、第一電極116上にSiOをスパッタ法により膜厚200nmで積層し、従来のフォトリソグラフィー法により、第一電極116のエッジ部のみを覆うように、パターン化しエッジカバー117を形成した。ここでは、第一電極116の端から10μm分だけ短辺をSiOで覆う構造とした。これを水洗後、純水超音波洗浄10分、アセトン超音波洗浄10分、イソプロピルアルコール蒸気洗浄5分を行い、120℃にて1時間乾燥させた。 Next, SiO 2 was laminated on the first electrode 116 with a film thickness of 200 nm by sputtering, and a patterned edge cover 117 was formed by conventional photolithography so as to cover only the edge portion of the first electrode 116. . Here, the short side is covered with SiO 2 by 10 μm from the end of the first electrode 116. This was washed with water, then subjected to pure water ultrasonic cleaning for 10 minutes, acetone ultrasonic cleaning for 10 minutes, and isopropyl alcohol vapor cleaning for 5 minutes, and dried at 120 ° C. for 1 hour.
  次に、第一電極116とエッジカバー117の一部を覆うように抵抗加熱蒸着法により銀を膜厚100nmで積層した。ここでは、エッジカバー117の両端部から5μm分だけ銀で覆う構造とし、反射膜402を形成した。 Next, silver was laminated to a thickness of 100 nm by resistance heating vapor deposition so as to cover the first electrode 116 and part of the edge cover 117. Here, the reflective film 402 is formed by covering the edge cover 117 with silver by 5 μm from both ends.
  次に、この基板115を抵抗加熱蒸着装置内の基板ホルダーに固定し、1×10-4Pa以下の真空まで減圧し、有機発光層を含む有機層118を抵抗加熱蒸着法により形成した。
  まず、正孔注入材料として、1,1-ビス-ジ-4-トリルアミノ-フェニル-シクロヘキサン(TAPC)を用い抵抗加熱蒸着法により膜厚100nmの正孔注入層を形成した。
 次に正孔輸送材料として、N,N‘-di-l-ナフチル-N,N’-ジフェニル-1,1‘-ビフェニル-1,1’-ビフェニル-4,4‘-ジアミン(NPD)を用い抵抗加熱蒸着法により膜厚40nmの正孔輸送層を形成した。
Next, the substrate 115 was fixed to a substrate holder in a resistance heating evaporation apparatus, and the pressure was reduced to a vacuum of 1 × 10 −4 Pa or less, and an organic layer 118 including an organic light emitting layer was formed by a resistance heating evaporation method.
First, as a hole injection material, 1,1-bis-di-4-tolylamino-phenyl-cyclohexane (TAPC) was used, and a hole injection layer having a thickness of 100 nm was formed by resistance heating vapor deposition.
Next, N, N′-di-1-naphthyl-N, N′-diphenyl-1,1′-biphenyl-1,1′-biphenyl-4,4′-diamine (NPD) is used as a hole transport material. A hole transport layer having a thickness of 40 nm was formed by resistance heating vapor deposition.
  次いで、正孔輸送層の上に青色有機発光層(厚さ:30nm)を形成した。この青色有機発光層は、1,4-ビス-トリフェニルシリル-ベンゼン(UGH-2)(ホスト材料)とビス[(4,6-ジフルオロフェニル)-ピリジナト-N,C2‘]ピコリネートイリジウム(III)(FIrpic)(青色燐光発光ドーパント)をそれぞれの蒸着速度を1.5Å/sec、0.2Å/ secとし、共蒸着することで作製した。 Next, a blue organic light emitting layer (thickness: 30 nm) was formed on the hole transport layer. This blue organic light-emitting layer comprises 1,4-bis-triphenylsilyl-benzene (UGH-2) (host material) and bis [(4,6-difluorophenyl) -pyridinato-N, C2 ′] picolinate iridium ( III) (FIrpic) (blue phosphorescent light emitting dopant) was prepared by co-evaporation at a deposition rate of 1.5 Å / sec and 0.2 Å / sec.
  次いで、青色有機発光層発光層の上に2,9-ジメチルー4,7-ジフェニル-1,10-フェナントロリン(BCP)を用いて正孔防止層(厚さ:10nm)を形成した。
  次いで、正孔防止層の上にトリス(8-ヒドロキシキノリン)アルミニウム(Alq)を用いて電子輸送層(厚さ:30nm)を形成した。
  次いで、電子輸送層の上にフッ化リチウム(LiF)を用いて電子注入層(厚さ:0.5nm)を形成した。
Next, a hole blocking layer (thickness: 10 nm) was formed on the blue organic light emitting layer using 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP).
Next, an electron transport layer (thickness: 30 nm) was formed on the hole blocking layer using tris (8-hydroxyquinoline) aluminum (Alq 3 ).
Next, an electron injection layer (thickness: 0.5 nm) was formed on the electron transport layer using lithium fluoride (LiF).
  この後、第二電極119として半透明電極を形成した。まず、上記基板115を金属蒸着用チャンバーに固定した。次に、第二電極119形成用のシャドーマスク(前記第一電極116のストライプと対抗する向きに500μm幅、600μmピッチのストライプ状に第二電極119を形成できるように開口部が空いているマスク)と基板115をアライメントし、電子注入層の表面に真空蒸着法によりマグネシウムと銀をそれぞれ0.1Å/sec、0.9Å/secの割合の蒸着速度で共蒸着でマグネシウム銀を所望のパターンで形成(厚さ:1nm)する。更にその上に、干渉効果を強調する目的、及び、第二電極119での配線抵抗による電圧降下を防止する目的で銀を1Å/secの蒸着速度で所望のパターンで形成(厚さ:19nm)する。これにより、第二電極119が形成される。 After this, a translucent electrode was formed as the second electrode 119. First, the substrate 115 was fixed to a metal deposition chamber. Next, a shadow mask for forming the second electrode 119 (a mask having an opening so that the second electrode 119 can be formed in a stripe shape having a width of 500 μm and a pitch of 600 μm in a direction opposite to the stripe of the first electrode 116. ) And the substrate 115, and magnesium and silver are co-deposited on the surface of the electron injection layer by a vacuum deposition method at a deposition rate of 0.1 Å / sec and 0.9 Å / sec respectively in a desired pattern. Formation (thickness: 1 nm). Furthermore, silver is formed in a desired pattern at a deposition rate of 1 mm / sec (thickness: 19 nm) for the purpose of emphasizing the interference effect and preventing voltage drop due to wiring resistance at the second electrode 119. To do. Thereby, the second electrode 119 is formed.
  ここで、有機EL素子としては、反射電極(第一電極)116と半透過電極(第二電極)119間でマイクロキャビティ効果(干渉効果)が、発現し、正面輝度を高める事が可能となり有機EL素子からの発光エネルギーをより効率良く、蛍光体層に伝搬させることが可能となる。また、同様にマイクロキャビティ効果により発光ピークを460nm、半値幅を50nmに調整している。 Here, as an organic EL element, a microcavity effect (interference effect) appears between the reflective electrode (first electrode) 116 and the semi-transmissive electrode (second electrode) 119, and it is possible to increase the front luminance. Light emission energy from the EL element can be more efficiently propagated to the phosphor layer. Similarly, the emission peak is adjusted to 460 nm and the half-value width is adjusted to 50 nm by the microcavity effect.
  次にプラズマCVD法により、厚さ3μmのSiOからなる無機保護層をシャドーマスクを用いて表示部の端から上下左右2mmの封止エリアまでパターニング形成する(図示せず)。以上により、有機EL素子を備えた基板115を作製する。 Next, an inorganic protective layer made of SiO 2 having a thickness of 3 μm is patterned by plasma CVD from the edge of the display portion to a sealing area of 2 mm in the vertical and horizontal directions (not shown). As described above, the substrate 115 including the organic EL element is manufactured.
  以上のようにして作製した有機EL素子側の基板115(図3A参照)と蛍光体層側の基板111(図3B参照)とを、表示部の外に形成されている位置合わせマーカーにより位置合わせを行った。尚、事前に蛍光体封止基板には、熱硬化樹脂が塗布されており、熱硬化樹脂を介して両基板を封止し、80℃、2時間加熱することで硬化を行った。また、上記貼り合わせ工程は、有機EL素子の水分による劣化を防止する目的でドライエアー環境下(水分量:-80℃)で行った。
  最後に、周辺に形成している端子を外部電源に接続することで有機EL表示装置110を完成した(図3C参照)。
The organic EL element side substrate 115 (see FIG. 3A) and the phosphor layer side substrate 111 (see FIG. 3B) manufactured as described above are aligned by the alignment marker formed outside the display unit. Went. In addition, the thermosetting resin was previously apply | coated to the fluorescent substance sealing board | substrate, both board | substrates were sealed through thermosetting resin, and it hardened | cured by heating at 80 degreeC for 2 hours. The bonding step was performed in a dry air environment (water content: −80 ° C.) for the purpose of preventing deterioration of the organic EL element due to water.
Finally, the organic EL display device 110 was completed by connecting terminals formed in the periphery to an external power source (see FIG. 3C).
  ここで、外部電源により所望の電流を所望のストライプ状電極に印加することで青色発光有機ELを任意にスイッチング可能な励起光源とし赤色蛍光体層112R、緑色蛍光体層112G、青色蛍光体層112Bで青色光から発光をそれぞれ赤色、緑色、青色に変換し、赤色、緑色、青色の等方発光が得られ、比較例1よりも低消費電力で高輝度なフルカラー表示を得ることができた。 Here, a red phosphor layer 112R, a green phosphor layer 112G, and a blue phosphor layer 112B are used as an excitation light source capable of arbitrarily switching the blue light emitting organic EL by applying a desired current to a desired stripe electrode by an external power source. The blue light was converted into red, green, and blue, respectively, and isotropic light emission of red, green, and blue was obtained, and a full-color display with lower power consumption and higher luminance than Comparative Example 1 could be obtained.
(比較例2)
  図4は従来の比較例2の有機EL表示装置120を示す断面図である。
  比較例1と同様に蛍光体層122を備えた基板121を作製した後、基板121表面高さの不釣り合いを最小限に抑えるためにアクリル樹脂をスピンコート法により厚さ20μmで基板121表面全体に形成し、120℃30分加熱することで平坦化層501を形成した。
(Comparative Example 2)
FIG. 4 is a cross-sectional view showing a conventional organic EL display device 120 of Comparative Example 2.
After producing the substrate 121 provided with the phosphor layer 122 in the same manner as in Comparative Example 1, an acrylic resin was spin coated to minimize the surface height imbalance of the substrate 121, and the entire surface of the substrate 121 was formed by spin coating. The planarization layer 501 was formed by heating at 120 ° C. for 30 minutes.
  次に、平坦化層501上に、インジウム-スズ酸化物(ITO)を厚さ200nmとなるようスパッタ法により成膜し、第一電極126を形成した。その後従来のフォトリソグラフィー法により、第一電極126の幅が160μm幅、200μmピッチでストライプにパターニングする。 Next, an indium-tin oxide (ITO) film was formed on the planarizing layer 501 by a sputtering method so as to have a thickness of 200 nm, whereby the first electrode 126 was formed. Thereafter, the first electrode 126 is patterned into stripes with a width of 160 μm and a pitch of 200 μm by a conventional photolithography method.
  次に、第一電極126上にSiOをスパッタ法により膜厚200nmで積層し、従来のフォトリソグラフィー法により、第一電極126のエッジ部のみを覆うように、パターン化しエッジカバー127を形成した。ここでは、第一電極126の端から10μm分だけ短辺をSiOで覆う構造とした。これを水洗後、純水超音波洗浄10分、アセトン超音波洗浄10分、イソプロピルアルコール蒸気洗浄5分を行い、120℃にて1時間乾燥させた。 Next, SiO 2 was laminated to a thickness of 200 nm on the first electrode 126 by sputtering, and a patterned edge cover 127 was formed by conventional photolithography so as to cover only the edge portion of the first electrode 126. . Here, the short side is covered with SiO 2 by 10 μm from the end of the first electrode 126. This was washed with water, then subjected to pure water ultrasonic cleaning for 10 minutes, acetone ultrasonic cleaning for 10 minutes, and isopropyl alcohol vapor cleaning for 5 minutes, and dried at 120 ° C. for 1 hour.
  次に、この基板121を抵抗加熱蒸着装置内の基板ホルダーに固定し、1×10-4Pa以下の真空まで減圧し、有機発光層を含む有機層128を抵抗加熱蒸着法により形成した。
  まず、正孔注入材料として、1,1-ビス-ジ-4-トリルアミノ-フェニル-シクロヘキサン(TAPC)を用い抵抗加熱蒸着法により膜厚25nmの正孔注入層を形成した。
 次に正孔輸送材料として、N,N‘-di-l-ナフチル-N,N’-ジフェニル-1,1‘-ビフェニル-1,1’-ビフェニル-4,4‘-ジアミン(NPD)を用い抵抗加熱蒸着法により膜厚30nmの正孔輸送層を形成した。
Next, the substrate 121 was fixed to a substrate holder in a resistance heating vapor deposition apparatus, and the pressure was reduced to a vacuum of 1 × 10 −4 Pa or less, and an organic layer 128 including an organic light emitting layer was formed by a resistance heating vapor deposition method.
First, as a hole injection material, 1,1-bis-di-4-tolylamino-phenyl-cyclohexane (TAPC) was used, and a hole injection layer having a thickness of 25 nm was formed by resistance heating vapor deposition.
Next, N, N′-di-1-naphthyl-N, N′-diphenyl-1,1′-biphenyl-1,1′-biphenyl-4,4′-diamine (NPD) is used as a hole transport material. A 30 nm thick hole transport layer was formed by resistance heating vapor deposition.
  次いで、正孔輸送層の上に青色有機発光層(厚さ:30nm)を形成した。この青色有機発光層は、1,4-ビス-トリフェニルシリル-ベンゼン(UGH-2)(ホスト材料)とビス[(4,6-ジフルオロフェニル)-ピリジナト-N,C2‘]ピコリネートイリジウム(III)(FIrpic)(青色燐光発光ドーパント)をそれぞれの蒸着速度を1.5Å/sec、0.2Å/secとし、共蒸着することで作製した。 Next, a blue organic light emitting layer (thickness: 30 nm) was formed on the hole transport layer. This blue organic light-emitting layer comprises 1,4-bis-triphenylsilyl-benzene (UGH-2) (host material) and bis [(4,6-difluorophenyl) -pyridinato-N, C2 ′] picolinate iridium ( III) (FIrpic) (blue phosphorescent light emitting dopant) was prepared by co-evaporation at a deposition rate of 1.5 Å / sec and 0.2 Å / sec.
  次いで、発光層の上に2,9-ジメチルー4,7-ジフェニル-1,10-フェナントロリン(BCP)を用いて正孔防止層(厚さ:10nm)を形成した。
  次いで、正孔防止層の上にトリス(8-ヒドロキシキノリン)アルミニウム(Alq)を用いて電子輸送層(厚さ:20nm)を形成した。
  次いで、電子輸送層の上にフッ化リチウム(LiF)を用いて電子注入層(厚さ:0.5nm)を形成した。
Next, a hole blocking layer (thickness: 10 nm) was formed on the light emitting layer using 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP).
Next, an electron transport layer (thickness: 20 nm) was formed on the hole blocking layer using tris (8-hydroxyquinoline) aluminum (Alq 3 ).
Next, an electron injection layer (thickness: 0.5 nm) was formed on the electron transport layer using lithium fluoride (LiF).
  この後、第二電極129として反射電極を形成した。まず、上記基板121を金属蒸着用チャンバーに固定した。次に、第二電極129形成用のシャドーマスク(前記第一電極126のストライプと対抗する向きに500μm幅、600μmピッチのストライプ状に第二電極129を形成できるように開口部が空いているマスク)と基板121をアライメントし、電子注入層の表面に真空蒸着法によりアルミニウムを1Å/secの割合の蒸着速度で所望のパターンで形成(厚さ:100m)した。 After this, a reflective electrode was formed as the second electrode 129. First, the substrate 121 was fixed to a metal deposition chamber. Next, a shadow mask for forming the second electrode 129 (a mask having an opening so that the second electrode 129 can be formed in a stripe shape having a width of 500 μm and a pitch of 600 μm in a direction opposite to the stripe of the first electrode 126. ) And the substrate 121 were aligned, and aluminum was formed in a desired pattern (thickness: 100 m) on the surface of the electron injection layer by a vacuum deposition method at a deposition rate of 1 kg / sec.
  以上のようにして作製した基板121と封止基板125とを、封止基板125側にあらかじめ塗布した熱硬化樹脂を介して両基板を封止し、80℃、2時間加熱することで硬化を行った。尚、上記貼り合わせ工程は、有機EL素子の水分による劣化を防止する目的でドライエアー環境下(水分量:-80℃)で行った。
  最後に、周辺に形成している端子を外部電源に接続することで有機EL表示装置120を完成した。
The substrate 121 and the sealing substrate 125 produced as described above are sealed through a thermosetting resin previously applied to the sealing substrate 125 side, and cured by heating at 80 ° C. for 2 hours. went. The above bonding step was performed in a dry air environment (water content: −80 ° C.) for the purpose of preventing deterioration of the organic EL element due to moisture.
Finally, the organic EL display device 120 was completed by connecting terminals formed in the periphery to an external power source.
(実施例2)
  図5は本発明の実施例2の有機EL表示装置130を示す断面図である。
  実施例1と同様に蛍光体層132を備えた基板131を作製した後、基板131の表面高さの不釣り合いを最小限に抑えるためにアクリル樹脂をスピンコート法により厚さ20μmで基板131の表面全体に形成し、120℃30分加熱することで平坦化層502を形成した。
(Example 2)
FIG. 5 is a cross-sectional view showing an organic EL display device 130 of Example 2 of the present invention.
After producing the substrate 131 having the phosphor layer 132 in the same manner as in Example 1, acrylic resin was spin-coated with an acrylic resin to a thickness of 20 μm to minimize imbalance in the surface height of the substrate 131. The planarization layer 502 was formed by forming the entire surface and heating at 120 ° C. for 30 minutes.
  次に、平坦化層502上に、インジウム-スズ酸化物(ITO)を厚さ200nmとなるようスパッタ法により成膜し、第一電極136を形成した。その後、従来のフォトリソグラフィー法により、第一電極136の幅が160μm幅、200μmピッチでストライプにパターニングした。 Next, an indium-tin oxide (ITO) film was formed on the planarizing layer 502 by a sputtering method so as to have a thickness of 200 nm, whereby a first electrode 136 was formed. Thereafter, the first electrode 136 was patterned into stripes with a width of 160 μm and a pitch of 200 μm by a conventional photolithography method.
  次に、第一電極136上にSiOをスパッタ法により膜厚200nmで積層し、従来のフォトリソグラフィー法により、第一電極136のエッジ部のみを覆うように、パターン化しエッジカバー137を形成した。ここでは、第一電極136の端から10μm分だけ短辺をSiOで覆う構造とした。これを水洗後、純水超音波洗浄10分、アセトン超音波洗浄10分、イソプロピルアルコール蒸気洗浄5分を行い、120℃にて1時間乾燥させた。 Next, SiO 2 was laminated to a thickness of 200 nm on the first electrode 136 by sputtering, and a patterned edge cover 137 was formed by conventional photolithography so as to cover only the edge portion of the first electrode 136. . Here, a short side of 10 μm from the end of the first electrode 136 is covered with SiO 2 . This was washed with water, then subjected to pure water ultrasonic cleaning for 10 minutes, acetone ultrasonic cleaning for 10 minutes, and isopropyl alcohol vapor cleaning for 5 minutes, and dried at 120 ° C. for 1 hour.
  次に、エッジカバー137の一部を覆うように抵抗加熱蒸着法により銀を膜厚100nmで積層した。ここでは、エッジカバー137の両端部から5μm分だけ銀で覆う構造とし、反射膜403を形成した。 Next, silver was laminated with a film thickness of 100 nm by resistance heating vapor deposition so as to cover a part of the edge cover 137. Here, the reflective film 403 is formed by covering the edge cover 137 with silver by 5 μm from both ends.
  次に、この基板131を抵抗加熱蒸着装置内の基板ホルダーに固定し、1×10-4Pa以下の真空まで減圧し、有機発光層を含む有機層138を抵抗加熱蒸着法により形成した。
  まず、正孔注入材料として、1,1-ビス-ジ-4-トリルアミノ-フェニル-シクロヘキサン(TAPC)を用い抵抗加熱蒸着法により膜厚25nmの正孔注入層を形成した。
  次に正孔輸送材料として、N,N‘-di-l-ナフチル-N,N’-ジフェニル-1,1‘-ビフェニル-1,1’-ビフェニル-4,4‘-ジアミン(NPD)を用い抵抗加熱蒸着法により膜厚30nmの正孔輸送層を形成した。
Next, the substrate 131 was fixed to a substrate holder in a resistance heating evaporation apparatus, and the pressure was reduced to a vacuum of 1 × 10 −4 Pa or less, and an organic layer 138 including an organic light emitting layer was formed by a resistance heating evaporation method.
First, as a hole injection material, 1,1-bis-di-4-tolylamino-phenyl-cyclohexane (TAPC) was used, and a hole injection layer having a thickness of 25 nm was formed by resistance heating vapor deposition.
Next, N, N′-di-1-naphthyl-N, N′-diphenyl-1,1′-biphenyl-1,1′-biphenyl-4,4′-diamine (NPD) is used as a hole transport material. A 30 nm thick hole transport layer was formed by resistance heating vapor deposition.
  次いで、正孔輸送層の上に青色有機発光層(厚さ:30nm)を形成した。この青色有機発光層は、1,4-ビス-トリフェニルシリル-ベンゼン(UGH-2)(ホスト材料)とビス[(4,6-ジフルオロフェニル)-ピリジナト-N,C2‘]ピコリネートイリジウム(III)(FIrpic)(青色燐光発光ドーパント)をそれぞれの蒸着速度を1.5Å/sec、0.2Å/secとし、共蒸着することで作製した。 Next, a blue organic light emitting layer (thickness: 30 nm) was formed on the hole transport layer. This blue organic light-emitting layer comprises 1,4-bis-triphenylsilyl-benzene (UGH-2) (host material) and bis [(4,6-difluorophenyl) -pyridinato-N, C2 ′] picolinate iridium ( III) (FIrpic) (blue phosphorescent light emitting dopant) was prepared by co-evaporation at a deposition rate of 1.5 Å / sec and 0.2 Å / sec.
  次いで、発光層の上に2,9-ジメチルー4,7-ジフェニル-1,10-フェナントロリン(BCP)を用いて正孔防止層(厚さ:10nm)を形成した。
  次いで、正孔防止層の上にトリス(8-ヒドロキシキノリン)アルミニウム(Alq)を用いて電子輸送層(厚さ:20nm)を形成した。
  次いで、電子輸送層の上にフッ化リチウム(LiF)を用いて電子注入層(厚さ:0.5nm)を形成した。
Next, a hole blocking layer (thickness: 10 nm) was formed on the light emitting layer using 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP).
Next, an electron transport layer (thickness: 20 nm) was formed on the hole blocking layer using tris (8-hydroxyquinoline) aluminum (Alq 3 ).
Next, an electron injection layer (thickness: 0.5 nm) was formed on the electron transport layer using lithium fluoride (LiF).
  この後、第二電極139として反射電極を形成した。まず、基板131を金属蒸着用チャンバーに固定した。次に、第二電極139形成用のシャドーマスク(第一電極136のストライプと対抗する向きに500μm幅、600μmピッチのストライプ状に第二電極139を形成できるように開口部が空いているマスク)と基板131をアライメントし、電子注入層の表面に真空蒸着法によりアルミニウムを1Å/secの割合の蒸着速度で所望のパターンで形成(厚さ:100m)した。 Thereafter, a reflective electrode was formed as the second electrode 139. First, the substrate 131 was fixed to a metal deposition chamber. Next, a shadow mask for forming the second electrode 139 (a mask having an opening so that the second electrode 139 can be formed in a stripe shape having a width of 500 μm and a pitch of 600 μm in a direction opposite to the stripe of the first electrode 136) And the substrate 131 were aligned, and aluminum was formed in a desired pattern (thickness: 100 m) on the surface of the electron injection layer by a vacuum deposition method at a deposition rate of 1 kg / sec.
  以上のようにして作製した基板131と封止基板135とを、封止基板135側にあらかじめ塗布した熱硬化樹脂を介して両基板を封止し、80℃、2時間加熱することで硬化を行った。尚、上記貼り合わせ工程は、有機EL素子の水分による劣化を防止する目的でドライエアー環境下(水分量:-80℃)で行った。
  最後に、周辺に形成している端子を外部電源に接続することで有機EL表示装置130を完成した。
The substrate 131 and the sealing substrate 135 manufactured as described above are sealed with a thermosetting resin previously applied to the sealing substrate 135 side, and cured by heating at 80 ° C. for 2 hours. went. The above bonding step was performed in a dry air environment (water content: −80 ° C.) for the purpose of preventing deterioration of the organic EL element due to moisture.
Finally, the organic EL display device 130 was completed by connecting terminals formed in the periphery to an external power source.
  ここで、外部電源により所望の電流を所望のストライプ状電極に印加することで青色発光有機ELを任意にスイッチング可能な励起光源とし、赤色蛍光体層132R、緑色蛍光体層132G、青色蛍光体層132Bで青色光から発光をそれぞれ赤色、緑色、青色に変換し、赤色、緑色、青色の等方発光が得られ、比較例2よりも低消費電力で高輝度なフルカラー表示を得ることができた。 Here, a blue light emitting organic EL is used as an excitation light source that can be arbitrarily switched by applying a desired current to a desired striped electrode from an external power source, and a red phosphor layer 132R, a green phosphor layer 132G, and a blue phosphor layer. In 132B, light emission was converted from blue light to red, green, and blue, respectively, and isotropic light emission of red, green, and blue was obtained, and a full color display with lower power consumption and higher luminance than Comparative Example 2 could be obtained. .
(実施例3)
  図6A~6Cは本発明の実施例3の有機EL表示装置140を示す断面図である。
  実施例1と同様に蛍光体層142を形成した封止基板141と、第一電極146、有機発光層を含む有機層148、第二電極149、反射膜406を備えた有機EL素子を形成した基板145を作製した。
(Example 3)
6A to 6C are cross-sectional views showing an organic EL display device 140 according to Embodiment 3 of the present invention.
As in Example 1, an organic EL element including a sealing substrate 141 on which a phosphor layer 142 was formed, a first electrode 146, an organic layer 148 including an organic light emitting layer, a second electrode 149, and a reflective film 406 was formed. A substrate 145 was produced.
  その後、有機EL素子を形成した基板145のエッジカバー147上面に蒸着されている有機EL層と第二電極149及び無機保護層(図示せず)をエッジカバー147中央を基準に15μm幅分だけ、反応性イオンエッチング法により除去した。 Thereafter, the organic EL layer deposited on the upper surface of the edge cover 147 of the substrate 145 on which the organic EL element is formed, the second electrode 149, and the inorganic protective layer (not shown) by a width of 15 μm based on the center of the edge cover 147, It was removed by reactive ion etching.
  以上のようにして作製した有機EL素子側の基板145(図6A参照)と蛍光体層側の基板141(図6B参照)とを、表示部の外に形成されている位置合わせマーカーにより、封止基板141の障壁143表面に形成された反射膜405が、前記アッシングにより有機層148と第二電極149及び無機保護層(図示せず)が除去された15μm幅のエッジカバー147直上に来るように位置合わせを行った。尚、事前に封止基板141には、熱硬化樹脂が塗布されており、熱硬化樹脂を介して両基板を封止し、80℃、2時間加熱することで硬化を行った。また、上記貼り合わせ工程は、有機EL素子の水分による劣化を防止する目的でドライエアー環境下(水分量:-80℃)で行った。
  最後に、周辺に形成している端子を外部電源に接続することで有機EL表示装置140を完成した(図6C参照)。
The organic EL element side substrate 145 (see FIG. 6A) and the phosphor layer side substrate 141 (see FIG. 6B) manufactured as described above are sealed with an alignment marker formed outside the display portion. The reflective film 405 formed on the surface of the barrier 143 of the stop substrate 141 is directly on the edge cover 147 having a width of 15 μm from which the organic layer 148, the second electrode 149, and the inorganic protective layer (not shown) are removed by the ashing. Alignment was performed. In addition, the thermosetting resin was apply | coated to the sealing substrate 141 in advance, both board | substrates were sealed through the thermosetting resin, and it hardened | cured by heating at 80 degreeC for 2 hours. The bonding step was performed in a dry air environment (water content: −80 ° C.) for the purpose of preventing deterioration of the organic EL element due to water.
Finally, the organic EL display device 140 was completed by connecting terminals formed in the periphery to an external power source (see FIG. 6C).
  ここで、外部電源により所望の電流を所望のストライプ状電極に印加することで青色発光有機ELを任意にスイッチング可能な励起光源とし赤色蛍光体層142R、緑色蛍光体層142G、青色蛍光体層142Bで青色光から発光をそれぞれ赤色、緑色、青色に変換し、赤色、緑色、青色の等方発光が得られ、実施例1よりも更に低消費電力で高輝度なフルカラー表示を得ることができた。 Here, by applying a desired current to a desired striped electrode from an external power source, the blue light-emitting organic EL is used as an excitation light source that can be arbitrarily switched, and the red phosphor layer 142R, the green phosphor layer 142G, and the blue phosphor layer 142B. The light emitted from the blue light is converted into red, green, and blue, respectively, and isotropic light emission of red, green, and blue can be obtained. Thus, a full color display with lower power consumption and higher luminance than that of Example 1 can be obtained. .
  なお、この実施例3では、エッジカバー上面に蒸着されている有機層148と第二電極149及び無機保護層(図示せず)を、反応性イオンエッチング法により除去したが、本発明の一態様はこれに限定されない。エッジカバー上面に蒸着されている有機層148と第二電極149及び無機保護層(図示せず)を、反応性ガスエッチング法、反応性イオンビームエッチング法、イオンビームエッチング法、反応性レーザビームエッチング法などの他のドライエッチング手法によって除去してもよいし、ウェットエッチング手法によって除去してもよい。 In Example 3, the organic layer 148, the second electrode 149, and the inorganic protective layer (not shown) deposited on the upper surface of the edge cover were removed by the reactive ion etching method. Is not limited to this. The organic layer 148, the second electrode 149, and the inorganic protective layer (not shown) deposited on the upper surface of the edge cover are subjected to a reactive gas etching method, a reactive ion beam etching method, an ion beam etching method, and a reactive laser beam etching. It may be removed by another dry etching method such as a method, or may be removed by a wet etching method.
  上述した手法は、いずれも有機層を形成した基板と蛍光体層を形成した基板とを貼りわせる前に処理する必要があるが、上述した手法を行わず、有機層を形成した基板と蛍光体層を形成した基板とを貼り合せる工程で、蛍光体層を形成した基板に設けられた障壁が、有機層を形成した基板に設けられたエッジカバー上面に蒸着されている有機層と第二電極及び無機保護層を突き抜けるように加圧して貼り合せを行うことで、エッジカバー上面に蒸着されている有機層と第二電極及び無機保護層を除去することもできる。 In any of the methods described above, it is necessary to perform the treatment before attaching the substrate on which the organic layer is formed and the substrate on which the phosphor layer is formed. In the step of bonding the substrate on which the body layer is formed, a barrier provided on the substrate on which the phosphor layer is formed, and the organic layer deposited on the upper surface of the edge cover provided on the substrate on which the organic layer is formed, and the second The organic layer deposited on the upper surface of the edge cover, the second electrode, and the inorganic protective layer can be removed by applying pressure so as to penetrate the electrode and the inorganic protective layer.
  この時、加圧によって有機層を形成した基板と蛍光体層を形成した基板に損傷が発生しないように加圧は小さいほうが好ましく、例えば障壁の形状を錘状形状や強テーパー形状などにするなどが考えられるが、本発明の一態様はこれに限定されることなく、他形状によって加圧を小さくしても良いし、形状以外の手法によって加圧を小さくしても良い。 At this time, it is preferable that the pressurization is small so that the substrate on which the organic layer is formed by pressurization and the substrate on which the phosphor layer is formed are not damaged. For example, the shape of the barrier is a spindle shape or a strong taper shape. However, one embodiment of the present invention is not limited to this, and the pressure may be reduced by another shape, or the pressure may be reduced by a method other than the shape.
  上述した実施例3の変形例として、例えば、図7に示すように、エッジカバー147aの内部に障壁143aの一部が侵入するように貼り合せても良い。このような構造で基板141と基板145とを貼り合せることで、エッジカバー147a内を伝播して隣接画素へ入る蛍光成分・励起光成分を低減し、さらに消費電力を下げることが可能となる。 As a modification of the above-described third embodiment, for example, as shown in FIG. 7, bonding may be performed so that a part of the barrier 143 a enters the inside of the edge cover 147 a. By bonding the substrate 141 and the substrate 145 with such a structure, it is possible to reduce the fluorescence component / excitation light component that propagates through the edge cover 147a and enters the adjacent pixels, and further reduces power consumption.
  また、上述した実施例3の別な変形例として、例えば、図8に示すように、エッジカバー147bを介して障壁143bと基板145とが密着するように貼り合せても良い。
 このような構造で基板141と基板145とを貼り合せることで、エッジカバー147b内を伝播して隣接画素へ入る蛍光成分および励起光成分を極限まで低減できるので、図7に示す例よりもさらに消費電力を下げることが可能となる。
Further, as another modification example of the above-described third embodiment, for example, as illustrated in FIG. 8, the barrier 143 b and the substrate 145 may be bonded to each other via the edge cover 147 b.
By bonding the substrate 141 and the substrate 145 with such a structure, the fluorescence component and the excitation light component that propagate through the edge cover 147b and enter the adjacent pixels can be reduced to the utmost limit. It is possible to reduce power consumption.
(実施例4)
  図9A~9Cは本発明の実施例4の有機EL表示装置150を示す断面図である。
  0.7mmのガラス製の基板151上に、赤色蛍光体層152R、緑色蛍光体層152G、青色蛍光体層152B及び障壁153を形成し、赤色蛍光体層152R、緑色蛍光体層152G、青色蛍光体層152Bを有する封止基板151を形成した。障壁153は、赤色蛍光体層152R、緑色蛍光体層152G、青色蛍光体層152Bを囲む。
Example 4
9A to 9C are cross-sectional views showing an organic EL display device 150 of Example 4 of the present invention.
A red phosphor layer 152R, a green phosphor layer 152G, a blue phosphor layer 152B, and a barrier 153 are formed on a 0.7 mm glass substrate 151. The red phosphor layer 152R, the green phosphor layer 152G, and the blue phosphor A sealing substrate 151 having a body layer 152B was formed. The barrier 153 surrounds the red phosphor layer 152R, the green phosphor layer 152G, and the blue phosphor layer 152B.
  まず、基板151上に、銀ペーストを幅5μm、膜厚60μmで、200μmピッチで順テーパー形状にスクリーン印刷手法によりパターン形成し、障壁153を作製した。
  次に基板151上に赤色蛍光体層152R、緑色蛍光体層152G、青色蛍光体層152Bを実施例1と同様に形成し、封止基板151を作製した。
First, on the substrate 151, a silver paste was patterned in a forward taper shape with a width of 5 μm, a film thickness of 60 μm, and a pitch of 200 μm by a screen printing method, whereby a barrier 153 was manufactured.
Next, a red phosphor layer 152R, a green phosphor layer 152G, and a blue phosphor layer 152B were formed on the substrate 151 in the same manner as in Example 1 to produce a sealing substrate 151.
  次に、実施例1と同様に第一電極156、有機発光層を含む有機層158、第二電極159、反射膜407を備えた有機EL素子を形成した基板155を作製した。
  以上のようにして作製した有機EL素子側の基板155(図9A参照)と蛍光体層側の基板151(図9B参照)とを、表示部の外に形成されている位置合わせマーカーにより位置合わせを行った。尚、事前に蛍光体層を形成した封止基板151には、熱硬化樹脂が塗布されており、熱硬化樹脂を介して両基板を密着封止し、80℃、2時間加熱することで硬化を行った。尚、上記貼り合わせ工程は、有機EL素子の水分による劣化を防止する目的でドライエアー環境下(水分量:-80℃)で行った。
  最後に、周辺に形成している端子を外部電源に接続することで有機EL表示装置150を完成した(図9C参照)。
  ここで、外部電源により所望の電流を所望のストライプ状電極に印加することで青色発光有機ELを任意にスイッチング可能な励起光源とし赤色蛍光体層152R、緑色蛍光体層152G、青色蛍光体層152Bで青色光から発光をそれぞれ赤色、緑色、青色に変換し、赤色、緑色、青色の等方発光が得られ、実施例1よりも低消費電力で高輝度なフルカラー表示を得ることができた。
  なお、こうした実施例4に、前述した実施例3の技術を併用してもよい。こうすることで相乗効果によって、さらなる消費電力の低減が可能となる。また言うまでもなく実施例3の変形例(図7、図8)もそれぞれ併用することができる。
Next, similarly to Example 1, a substrate 155 on which an organic EL element including the first electrode 156, the organic layer 158 including the organic light emitting layer, the second electrode 159, and the reflective film 407 was formed.
The organic EL element side substrate 155 (see FIG. 9A) and the phosphor layer side substrate 151 (see FIG. 9B) manufactured as described above are aligned by the alignment marker formed outside the display unit. Went. In addition, the thermosetting resin is applied to the sealing substrate 151 on which the phosphor layer is formed in advance. The both substrates are tightly sealed through the thermosetting resin and cured by heating at 80 ° C. for 2 hours. Went. The above bonding step was performed in a dry air environment (water content: −80 ° C.) for the purpose of preventing deterioration of the organic EL element due to moisture.
Finally, the organic EL display device 150 was completed by connecting terminals formed in the periphery to an external power source (see FIG. 9C).
Here, a red phosphor layer 152R, a green phosphor layer 152G, and a blue phosphor layer 152B are used as an excitation light source capable of arbitrarily switching the blue light-emitting organic EL by applying a desired current to a desired stripe electrode by an external power source. The blue light was converted into red, green, and blue, respectively, and isotropic light emission of red, green, and blue was obtained, and a full color display with lower power consumption and higher brightness than that of Example 1 could be obtained.
In addition, you may use together the technique of Example 3 mentioned above in such Example 4. FIG. In this way, the power consumption can be further reduced by a synergistic effect. Needless to say, the modifications of the third embodiment (FIGS. 7 and 8) can be used together.
(比較例3)
  図13A~図13Bは従来の比較例3の有機EL表示装置160を示す断面図である。
(Comparative Example 3)
13A to 13B are cross-sectional views showing a conventional organic EL display device 160 of Comparative Example 3. FIG.
 0.7mmの厚みのガラス基板165上に、銀をスパッタ法により膜厚保100nmとなるように成膜し、その上にインジウム-スズ酸化物(ITO)を膜厚20nmとなるようスパッタ法により成膜し、第一電極166を形成した。その後従来のフォトリソグラフィー法により、第一電極166の幅が160μm幅、200μmピッチでストライプにパターニングした。 A silver film is formed on a 0.7 mm thick glass substrate 165 by sputtering to have a film thickness of 100 nm, and an indium-tin oxide (ITO) film is formed thereon by sputtering to a film thickness of 20 nm. A first electrode 166 was formed. Thereafter, the first electrode 166 was patterned into stripes with a width of 160 μm and a pitch of 200 μm by a conventional photolithography method.
  次に、第一電極166上にSiOをスパッタ法により膜厚200nmで積層し、従来のフォトリソグラフィー法により、第一電極166のエッジ部のみを覆うように、パターン化しエッジカバー167を形成した。ここでは、第一電極166の端から10μm分だけ短辺をSiOで覆う構造とした。これを水洗後、純水超音波洗浄10分、アセトン超音波洗浄10分、イソプロピルアルコール蒸気洗浄5分を行い、120℃にて1時間乾燥させた。 Next, SiO 2 was laminated on the first electrode 166 to a thickness of 200 nm by sputtering, and a patterned edge cover 167 was formed by conventional photolithography so as to cover only the edge portion of the first electrode 166. . Here, the short side is covered with SiO 2 by 10 μm from the end of the first electrode 166. This was washed with water, then subjected to pure water ultrasonic cleaning for 10 minutes, acetone ultrasonic cleaning for 10 minutes, and isopropyl alcohol vapor cleaning for 5 minutes, and dried at 120 ° C. for 1 hour.
  次に、この基板165を抵抗加熱蒸着装置内の基板ホルダーに固定し、1×10-4Pa以下の真空まで減圧し、有機発光層を含む有機層168を抵抗加熱蒸着法により形成した。
  有機層168を形成するため、まず正孔注入材料として、1,1-ビス-ジ-4-トリルアミノ-フェニル-シクロヘキサン(TAPC)を用い抵抗加熱蒸着法により、赤色発光有機EL素子部には膜厚50nm、緑色発光有機EL素子部には膜厚150nm、青色発光有機EL素子部には膜厚100nmの正孔注入層を形成した。次に正孔輸送材料として、N,N‘-di-l-ナフチル-N,N’-ジフェニル-1,1‘-ビフェニル-1,1’-ビフェニル-4,4‘-ジアミン(NPD)を用い抵抗加熱蒸着法により膜厚40nmの正孔輸送層を形成した。
Next, the substrate 165 was fixed to a substrate holder in a resistance heating evaporation apparatus, and the pressure was reduced to a vacuum of 1 × 10 −4 Pa or less, and an organic layer 168 including an organic light emitting layer was formed by resistance heating evaporation.
In order to form the organic layer 168, first, 1,1-bis-di-4-tolylamino-phenyl-cyclohexane (TAPC) is used as a hole injecting material by resistance heating vapor deposition to form a film on the red light emitting organic EL element portion. A hole injection layer having a thickness of 50 nm, a green light emitting organic EL element portion having a thickness of 150 nm, and a blue light emitting organic EL element portion having a thickness of 100 nm was formed. Next, N, N′-di-1-naphthyl-N, N′-diphenyl-1,1′-biphenyl-1,1′-biphenyl-4,4′-diamine (NPD) is used as a hole transport material. A hole transport layer having a thickness of 40 nm was formed by resistance heating vapor deposition.
  次いで、シャドーマスクを用いたマスク塗り分け法により、赤色発光有機EL素子部の正孔輸送層の上に、赤色有機発光層(厚さ:30nm)を形成した。この赤色有機発光層は、3-フェニル-4(1’-ナフチル)-5-フェニル-1,2,4-トリアゾール(TAZ)(ホスト材)と、ビス(2-(2‘-ベンゾ[4,5-α]チエニル)ピリジナート-N,C3’)イリジウム(アセチルアセトネート)(btp2Ir(acac))(赤色燐光発光ドーパント)とを、それぞれ蒸着速度を1.4Å/秒、0.15Å/秒とし、共蒸着することで作製した。
 次いで、シャドーマスクを用いたマスク塗り分け法により、緑色発光有機EL素子部の正孔輸送層の上に、緑色有機発光層(厚さ:30nm)を形成した。この緑色有機発光層は、TAZ(ホスト材料)と、トリス(2-フェニルピリジン)イリジウム(III)(Ir(ppy))(緑色燐光ドーパント)とを、それぞれ蒸着速度を1.5Å/秒、0.2Å/秒とし、共蒸着することで作製した。
 次いで、シャドーマスクを用いたマスク塗り分け法により、青色発光有機EL素子部の正孔輸送層の上に、青色有機発光層(厚さ:30nm)を形成した。この青色有機発光層は、1,4-ビス-トリフェニルシリル-ベンゼン(UGH-2)(ホスト材料)とビス[(4,6-ジフルオロフェニル)-ピリジナト-N,C2‘]ピコリネートイリジウム(III)(FIrpic)(青色燐光発光ドーパント)をそれぞれの蒸着速度を1.5Å/sec、0.2Å/ secとし、共蒸着することで作製した。
Next, a red organic light-emitting layer (thickness: 30 nm) was formed on the hole transport layer of the red light-emitting organic EL element part by a mask coating method using a shadow mask. This red organic light emitting layer comprises 3-phenyl-4 (1′-naphthyl) -5-phenyl-1,2,4-triazole (TAZ) (host material) and bis (2- (2′-benzo [4 , 5-α] thienyl) pyridinate-N, C3 ′) iridium (acetylacetonate) (btp2Ir (acac)) (red phosphorescent dopant) with a deposition rate of 1.4 Å / sec and 0.15 Å / sec, respectively. And produced by co-evaporation.
Next, a green organic light emitting layer (thickness: 30 nm) was formed on the hole transport layer of the green light emitting organic EL element part by a mask coating method using a shadow mask. The green organic light-emitting layer comprises TAZ (host material) and tris (2-phenylpyridine) iridium (III) (Ir (ppy) 3 ) (green phosphorescent dopant) with a deposition rate of 1.5 Å / second, It was made by co-evaporation at 0.2 liter / second.
Next, a blue organic light-emitting layer (thickness: 30 nm) was formed on the hole transport layer of the blue light-emitting organic EL element part by a mask coating method using a shadow mask. This blue organic light-emitting layer comprises 1,4-bis-triphenylsilyl-benzene (UGH-2) (host material) and bis [(4,6-difluorophenyl) -pyridinato-N, C2 ′] picolinate iridium ( III) (FIrpic) (blue phosphorescent light emitting dopant) was prepared by co-evaporation at a deposition rate of 1.5 Å / sec and 0.2 Å / sec.
  次いで、赤色有機発光層、緑色有機発光層、青色有機発光層の上に2,9-ジメチルー4,7-ジフェニル-1,10-フェナントロリン(BCP)を用いて正孔防止層(厚さ:10nm)を形成した。次いで、正孔防止層の上にトリス(8-ヒドロキシキノリン)アルミニウム(Alq)を用いて電子輸送層(厚さ:30nm)を形成した。次いで、電子輸送層の上にフッ化リチウム(LiF)を用いて電子注入層(厚さ:0.5nm)を形成した。 Next, a hole blocking layer (thickness: 10 nm) using 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP) on the red organic light emitting layer, the green organic light emitting layer, and the blue organic light emitting layer. ) Was formed. Next, an electron transport layer (thickness: 30 nm) was formed on the hole blocking layer using tris (8-hydroxyquinoline) aluminum (Alq 3 ). Next, an electron injection layer (thickness: 0.5 nm) was formed on the electron transport layer using lithium fluoride (LiF).
  この後、第二電極169として半透明電極を形成した。まず、基板165を金属蒸着用チャンバーに固定した。次に、第二電極169形成用のシャドーマスク(第一電極166のストライプと対抗する向きに500μm幅、600μmピッチのストライプ状に第二電極169を形成できるように開口部が空いているマスク)と基板165をアライメントし、電子注入層の表面に真空蒸着法によりマグネシウムと銀をそれぞれ0.1Å/sec、0.9Å/secの割合の蒸着速度で共蒸着でマグネシウム銀を所望のパターンで形成(厚さ:1nm)した。 Thereafter, a semitransparent electrode was formed as the second electrode 169. First, the substrate 165 was fixed to a metal deposition chamber. Next, a shadow mask for forming the second electrode 169 (a mask having an opening so that the second electrode 169 can be formed in a stripe shape having a width of 500 μm and a pitch of 600 μm in a direction opposite to the stripe of the first electrode 166) And the substrate 165 are aligned, and magnesium and silver are co-deposited on the surface of the electron injection layer by a vacuum deposition method at a deposition rate of 0.1 Å / sec and 0.9 Å / sec, respectively, in a desired pattern. (Thickness: 1 nm).
  更にその上に、干渉効果を強調する目的、及び、第二電極169での配線抵抗による電圧降下を防止する目的で銀を1Å/secの蒸着速度で所望のパターンで形成(厚さ:19nm)した。これにより、第二電極169が形成された。ここで、有機EL素子としては、反射電極(第一電極)166と半透過電極(第二電極)169との間でマイクロキャビティ効果(干渉効果)が、発現し、正面輝度を高める事が可能となり有機EL素子からの発光エネルギーをより効率良く、外部に取り出すことが可能となる。また、同様にマイクロキャビティ効果により発光ピークを460nm、半値幅を50nmに調整している。 Furthermore, silver is formed in a desired pattern at a deposition rate of 1 mm / sec (thickness: 19 nm) for the purpose of emphasizing the interference effect and preventing voltage drop due to wiring resistance at the second electrode 169. did. Thereby, the second electrode 169 was formed. Here, as an organic EL element, a microcavity effect (interference effect) appears between the reflective electrode (first electrode) 166 and the semi-transmissive electrode (second electrode) 169, and the front luminance can be increased. Thus, the light emission energy from the organic EL element can be extracted to the outside more efficiently. Similarly, the emission peak is adjusted to 460 nm and the half-value width is adjusted to 50 nm by the microcavity effect.
  次にプラズマCVD法により、厚さ3μmのSiOからなる無機保護層をシャドーマスクを用いて表示部の端から上下左右2mmの封止エリアまでパターニング形成した(図示せず)。 Next, an inorganic protective layer made of SiO 2 having a thickness of 3 μm was formed by patterning from the edge of the display portion to a sealing area of 2 mm in the vertical and horizontal directions by a plasma CVD method (not shown).
  以上のようにして作製した有機EL素子側の基板165(図13A参照)と基板161とを、表示部の外に形成されている位置合わせマーカーにより位置合わせを行った。なお、事前に蛍光体層を形成した封止基板161には、熱硬化樹脂が塗布されており、熱硬化樹脂を介して両基板を密着し、80℃、2時間加熱することで硬化を行った。また、上記貼り合わせ工程は、有機EL素子の水分による劣化を防止する目的でドライエアー環境下(水分量:-80℃)で行った。
  最後に、周辺に形成している端子を外部電源に接続することで有機EL表示装置を形成した(図13B参照)。
The organic EL element side substrate 165 (see FIG. 13A) and the substrate 161 manufactured as described above were aligned with an alignment marker formed outside the display portion. In addition, the thermosetting resin is applied to the sealing substrate 161 on which the phosphor layer is formed in advance. The both substrates are brought into close contact with each other through the thermosetting resin and cured by heating at 80 ° C. for 2 hours. It was. The bonding step was performed in a dry air environment (water content: −80 ° C.) for the purpose of preventing deterioration of the organic EL element due to water.
Finally, an organic EL display device was formed by connecting terminals formed in the periphery to an external power source (see FIG. 13B).
(実施例5)
  図14A~図14Bは本発明の実施例5の有機EL表示装置170を示す断面図である。
(Example 5)
14A to 14B are sectional views showing an organic EL display device 170 of Example 5 of the present invention.
 0.7mmの厚みのガラス製の基板175上に、銀をスパッタ法により膜厚保100nmとなるように成膜し、その上にインジウム-スズ酸化物(ITO)を厚さ20nmとなるようスパッタ法により成膜し、第一電極176を形成した。
 その後、従来のフォトリソグラフィー法により、第一電極176の幅が160μm幅、200μmピッチでストライプにパターニングした。
A silver film is formed on a glass substrate 175 having a thickness of 0.7 mm by sputtering to have a film thickness of 100 nm, and an indium-tin oxide (ITO) film is formed thereon by sputtering to a thickness of 20 nm. To form a first electrode 176.
Thereafter, the first electrode 176 was patterned into stripes with a width of 160 μm and a pitch of 200 μm by a conventional photolithography method.
  次に、第一電極176上にSiOをスパッタ法により膜厚200nmで積層し、従来のフォトリソグラフィー法により、第一電極176のエッジ部のみを覆うように、パターン化しエッジカバー117を形成した。ここでは、第一電極176の端から10μm分だけ短辺をSiOで覆う構造とした。これを水洗後、純水超音波洗浄10分、アセトン超音波洗浄10分、イソプロピルアルコール蒸気洗浄5分を行い、120℃にて1時間乾燥させた。 Next, SiO 2 was laminated on the first electrode 176 to a thickness of 200 nm by sputtering, and a patterned edge cover 117 was formed by conventional photolithography so as to cover only the edge portion of the first electrode 176. . Here, a structure in which the short side of the first electrode 176 from the end by 10 μm is covered with SiO 2 is employed. This was washed with water, then subjected to pure water ultrasonic cleaning for 10 minutes, acetone ultrasonic cleaning for 10 minutes, and isopropyl alcohol vapor cleaning for 5 minutes, and dried at 120 ° C. for 1 hour.
  次に、第一電極176とエッジカバー177の一部を覆うように抵抗加熱蒸着法により銀を膜厚100nmで積層した。ここでは、エッジカバー177の両端部から5μm分だけ銀で覆う構造とし、反射膜408を形成した。 Next, silver was laminated with a film thickness of 100 nm by resistance heating vapor deposition so as to cover the first electrode 176 and part of the edge cover 177. Here, the reflective film 408 is formed by covering the edge cover 177 with silver by 5 μm from both ends.
  次に、この基板175を抵抗加熱蒸着装置内の基板ホルダーに固定し、1×10-4Pa以下の真空まで減圧し、有機発光層を含む有機層178を抵抗加熱蒸着法により形成した。
    有機層178を形成するため、まず正孔注入材料として、1,1-ビス-ジ-4-トリルアミノ-フェニル-シクロヘキサン(TAPC)を用い抵抗加熱蒸着法により、赤色発光有機EL素子部には膜厚50nm、緑色発光有機EL素子部には膜厚150nm、青色発光有機EL素子部には膜厚100nmの正孔注入層を形成した。
 次に正孔輸送材料として、N,N‘-di-l-ナフチル-N,N’-ジフェニル-1,1‘-ビフェニル-1,1’-ビフェニル-4,4‘-ジアミン(NPD)を用い抵抗加熱蒸着法により膜厚40nmの正孔輸送層を形成した。
Next, this substrate 175 was fixed to a substrate holder in a resistance heating evaporation apparatus, and the pressure was reduced to a vacuum of 1 × 10 −4 Pa or less, and an organic layer 178 including an organic light emitting layer was formed by resistance heating evaporation.
In order to form the organic layer 178, first, 1,1-bis-di-4-tolylamino-phenyl-cyclohexane (TAPC) is used as a hole injecting material, and a film is formed on the red light emitting organic EL element portion by resistance heating vapor deposition. A hole injection layer having a thickness of 50 nm, a green light emitting organic EL element portion having a thickness of 150 nm, and a blue light emitting organic EL element portion having a thickness of 100 nm was formed.
Next, N, N′-di-1-naphthyl-N, N′-diphenyl-1,1′-biphenyl-1,1′-biphenyl-4,4′-diamine (NPD) is used as a hole transport material. A hole transport layer having a thickness of 40 nm was formed by resistance heating vapor deposition.
  次いで、シャドーマスクを用いたマスク塗り分け法により、赤色発光有機EL素子部の正孔輸送層の上に、赤色有機発光層(厚さ:30nm)を形成した。この赤色有機発光層は、3-フェニル-4(1’-ナフチル)-5-フェニル-1,2,4-トリアゾール(TAZ)(ホスト材)と、ビス(2-(2‘-ベンゾ[4,5-α]チエニル)ピリジナート-N,C3’)イリジウム(アセチルアセトネート)(btp2Ir(acac))(赤色燐光発光ドーパント)とを、それぞれ蒸着速度を1.4Å/秒、0.15Å/秒とし、共蒸着することで作製した。
 次いで、シャドーマスクを用いたマスク塗り分け法により、緑色発光有機EL素子部の正孔輸送層の上に、緑色有機発光層(厚さ:30nm)を形成した。この緑色有機発光層は、TAZ(ホスト材料)と、トリス(2-フェニルピリジン)イリジウム(III)(Ir(ppy))(緑色燐光ドーパント)とを、それぞれ蒸着速度を1.5Å/秒、0.2Å/秒とし、共蒸着することで作製した。
 次いで、シャドーマスクを用いたマスク塗り分け法により、青色発光有機EL素子部の正孔輸送層の上に、青色有機発光層(厚さ:30nm)を形成した。この青色有機発光層は、1,4-ビス-トリフェニルシリル-ベンゼン(UGH-2)(ホスト材料)とビス[(4,6-ジフルオロフェニル)-ピリジナト-N,C2‘]ピコリネートイリジウム(III)(FIrpic)(青色燐光発光ドーパント)をそれぞれの蒸着速度を1.5Å/sec、0.2Å/ secとし、共蒸着することで作製した。
Next, a red organic light-emitting layer (thickness: 30 nm) was formed on the hole transport layer of the red light-emitting organic EL element part by a mask coating method using a shadow mask. This red organic light emitting layer comprises 3-phenyl-4 (1′-naphthyl) -5-phenyl-1,2,4-triazole (TAZ) (host material) and bis (2- (2′-benzo [4 , 5-α] thienyl) pyridinate-N, C3 ′) iridium (acetylacetonate) (btp2Ir (acac)) (red phosphorescent dopant) with a deposition rate of 1.4 Å / sec and 0.15 Å / sec, respectively. And produced by co-evaporation.
Next, a green organic light emitting layer (thickness: 30 nm) was formed on the hole transport layer of the green light emitting organic EL element part by a mask coating method using a shadow mask. The green organic light-emitting layer comprises TAZ (host material) and tris (2-phenylpyridine) iridium (III) (Ir (ppy) 3 ) (green phosphorescent dopant) with a deposition rate of 1.5 Å / second, It was made by co-evaporation at 0.2 liter / second.
Next, a blue organic light-emitting layer (thickness: 30 nm) was formed on the hole transport layer of the blue light-emitting organic EL element part by a mask coating method using a shadow mask. This blue organic light-emitting layer comprises 1,4-bis-triphenylsilyl-benzene (UGH-2) (host material) and bis [(4,6-difluorophenyl) -pyridinato-N, C2 ′] picolinate iridium ( III) (FIrpic) (blue phosphorescent light emitting dopant) was prepared by co-evaporation at a deposition rate of 1.5 Å / sec and 0.2 Å / sec.
   次いで、赤色有機発光層、緑色有機発光層、青色有機発光層の上に2,9-ジメチルー4,7-ジフェニル-1,10-フェナントロリン(BCP)を用いて正孔防止層(厚さ:10nm)を形成した。
  次いで、正孔防止層の上にトリス(8-ヒドロキシキノリン)アルミニウム(Alq)を用いて電子輸送層(厚さ:30nm)を形成した。
  次いで、電子輸送層の上にフッ化リチウム(LiF)を用いて電子注入層(厚さ:0.5nm)を形成した。
Next, a hole blocking layer (thickness: 10 nm) using 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP) on the red organic light emitting layer, the green organic light emitting layer, and the blue organic light emitting layer. ) Was formed.
Next, an electron transport layer (thickness: 30 nm) was formed on the hole blocking layer using tris (8-hydroxyquinoline) aluminum (Alq 3 ).
Next, an electron injection layer (thickness: 0.5 nm) was formed on the electron transport layer using lithium fluoride (LiF).
  この後、第二電極179として半透明電極を形成した。まず、上記基板175を金属蒸着用チャンバーに固定した。次に、第二電極179形成用のシャドーマスク(前記第一電極176のストライプと対抗する向きに500μm幅、600μmピッチのストライプ状に第二電極179を形成できるように開口部が空いているマスク)と基板175をアライメントし、電子注入層の表面に真空蒸着法によりマグネシウムと銀をそれぞれ0.1Å/sec、0.9Å/secの割合の蒸着速度で共蒸着でマグネシウム銀を所望のパターンで形成(厚さ:1nm)する。更にその上に、干渉効果を強調する目的、及び、第二電極179での配線抵抗による電圧降下を防止する目的で銀を1Å/secの蒸着速度で所望のパターンで形成(厚さ:19nm)する。これにより、第二電極179が形成される。 After this, a translucent electrode was formed as the second electrode 179. First, the substrate 175 was fixed to a metal deposition chamber. Next, a shadow mask for forming the second electrode 179 (a mask having an opening so that the second electrode 179 can be formed in a stripe shape having a width of 500 μm and a pitch of 600 μm in a direction opposite to the stripe of the first electrode 176. ) And the substrate 175, and the surface of the electron injection layer is co-deposited with magnesium and silver at a deposition rate of 0.1 Å / sec and 0.9 Å / sec, respectively, by a vacuum evaporation method to form magnesium silver in a desired pattern. Formation (thickness: 1 nm). Furthermore, silver is formed in a desired pattern at a deposition rate of 1 mm / sec (thickness: 19 nm) for the purpose of emphasizing the interference effect and preventing voltage drop due to wiring resistance at the second electrode 179. To do. Thereby, the second electrode 179 is formed.
  ここで、有機EL素子としては、反射電極(第一電極)176と半透過電極(第二電極)179間でマイクロキャビティ効果(干渉効果)が、発現し、正面輝度を高める事が可能となり有機EL素子からの発光エネルギーをより効率良く、外部に取り出すことが可能となる。また、同様にマイクロキャビティ効果により発光ピークを460nm、半値幅を50nmに調整している。 Here, as the organic EL element, a microcavity effect (interference effect) appears between the reflective electrode (first electrode) 176 and the semi-transmissive electrode (second electrode) 179, and the front luminance can be increased. Light emission energy from the EL element can be extracted to the outside more efficiently. Similarly, the emission peak is adjusted to 460 nm and the half-value width is adjusted to 50 nm by the microcavity effect.
  次にプラズマCVD法により、厚さ3μmのSiOからなる無機保護層をシャドーマスクを用いて表示部の端から上下左右2mmの封止エリアまでパターニング形成する(図示せず)。以上により、有機EL素子を備えた基板175を作製する。 Next, an inorganic protective layer made of SiO 2 having a thickness of 3 μm is patterned by plasma CVD from the edge of the display portion to a sealing area of 2 mm in the vertical and horizontal directions (not shown). Thus, the substrate 175 provided with the organic EL element is manufactured.
  以上のようにして作製した有機EL素子側の基板115(図14A参照)と基板171とを、表示部の外に形成されている位置合わせマーカーにより位置合わせを行った。尚、事前に基板171には、熱硬化樹脂が塗布されており、熱硬化樹脂を介して両基板を封止し、80℃、2時間加熱することで硬化を行った。また、上記貼り合わせ工程は、有機EL素子の水分による劣化を防止する目的でドライエアー環境下(水分量:-80℃)で行った。
  最後に、周辺に形成している端子を外部電源に接続することで有機EL表示装置110を完成した(図14B参照)。
The organic EL element side substrate 115 (see FIG. 14A) and the substrate 171 manufactured as described above were aligned with an alignment marker formed outside the display portion. In addition, the thermosetting resin was apply | coated to the board | substrate 171 in advance, both board | substrates were sealed through the thermosetting resin, and it hardened | cured by heating at 80 degreeC for 2 hours. The bonding step was performed in a dry air environment (water content: −80 ° C.) for the purpose of preventing deterioration of the organic EL element due to water.
Finally, the organic EL display device 110 was completed by connecting terminals formed in the periphery to an external power source (see FIG. 14B).
  ここで、外部電源により所望の電流を所望のストライプ状電極に印加することで、赤色有機EL素子、緑色有機EL素子、青色有機EL素子より、それぞれ赤色、緑色、青色の発光が得られ、比較例3よりも低消費電力で高輝度なフルカラー表示を得ることができた。 Here, by applying a desired current to a desired striped electrode from an external power source, red, green, and blue light emission can be obtained from the red organic EL element, the green organic EL element, and the blue organic EL element, respectively. A full color display with lower power consumption and higher luminance than in Example 3 could be obtained.
 高効率(高輝度)の有機EL表示装置、及びその製造方法を提供することができる。 A highly efficient (high luminance) organic EL display device and a manufacturing method thereof can be provided.
  1…有機EL表示装置、10…第一基板(基板)、11…第一電極、12…エッジカバー部、13…反射膜(光学反射体)、14…有機層(有機EL層)、15…第二電極(対向電極)、17…反射膜(光学反射体)、19…有機EL素子、21…第二基板(封止基板)、22…蛍光体層、23…障壁。 DESCRIPTION OF SYMBOLS 1 ... Organic EL display apparatus, 10 ... 1st board | substrate (board | substrate), 11 ... 1st electrode, 12 ... Edge cover part, 13 ... Reflective film (optical reflector), 14 ... Organic layer (organic EL layer), 15 ... Second electrode (counter electrode), 17 ... reflective film (optical reflector), 19 ... organic EL element, 21 ... second substrate (sealing substrate), 22 ... phosphor layer, 23 ... barrier.

Claims (19)

  1.  基板と、
     前記基板上に形成された第一電極、前記第一電極の端部を覆うエッジカバー、有機発光層を含む有機層、および第二電極を有する有機EL素子と、
     前記有機EL素子で生じた励起光により励起され発光する蛍光体層と、
     前記蛍光体層の側方を囲う障壁と、
     前記エッジカバーの一部を覆う第1の光学反射体と、
     前記障壁を覆う第2の光学反射体を備える有機EL表示装置。
    A substrate,
    An organic EL device having a first electrode formed on the substrate, an edge cover covering an end of the first electrode, an organic layer including an organic light emitting layer, and a second electrode;
    A phosphor layer that is excited by the excitation light generated in the organic EL element and emits light;
    A barrier surrounding the sides of the phosphor layer;
    A first optical reflector covering a part of the edge cover;
    An organic EL display device comprising a second optical reflector covering the barrier.
  2.  前記第1の光学反射体は、更に前記第一電極を覆うように形成されている請求項1に記載の有機EL表示装置。 The organic EL display device according to claim 1, wherein the first optical reflector is formed to further cover the first electrode.
  3.  前記障壁の先端部は、前記エッジカバーに密着している請求項1に記載の有機EL表示装置。 2. The organic EL display device according to claim 1, wherein the tip of the barrier is in close contact with the edge cover.
  4.  前記第1および第2の光学反射体の可視光に対する反射率は、80%以上である請求項1に記載の有機EL表示装置。 The organic EL display device according to claim 1, wherein the first and second optical reflectors have a reflectance of 80% or more with respect to visible light.
  5.  前記第1および第2の光学反射体は、アルミニウムまたは銀を含有する請求項1に記載の有機EL表示装置。 The organic EL display device according to claim 1, wherein the first and second optical reflectors contain aluminum or silver.
  6.  前記エッジカバー及び前記障壁の少なくとも一方は、テーパー形状に成形されたテーパー部を有する請求項1に記載の有機EL表示装置。 2. The organic EL display device according to claim 1, wherein at least one of the edge cover and the barrier has a tapered portion formed in a tapered shape.
  7.  前記障壁の高さは、前記蛍光体層の厚みよりも大きい請求項1に記載の有機EL表示装置。 2. The organic EL display device according to claim 1, wherein a height of the barrier is larger than a thickness of the phosphor layer.
  8.  前記蛍光体層は、無機蛍光体を含有している請求項1に記載の有機EL表示装置。 The organic EL display device according to claim 1, wherein the phosphor layer contains an inorganic phosphor.
  9.  前記有機EL素子を駆動するアクティブ素子を更に備えている請求項1に記載の有機EL表示装置。 The organic EL display device according to claim 1, further comprising an active element that drives the organic EL element.
  10.  前記第1の光学反射体は、前記エッジカバーの一部を覆う第1の反射膜であり、
     前記第2の光学反射体は、前記障壁を覆う第2の反射膜である請求項1に記載の有機EL表示装置。
    The first optical reflector is a first reflective film that covers a part of the edge cover,
    The organic EL display device according to claim 1, wherein the second optical reflector is a second reflective film that covers the barrier.
  11.  基板と、
     前記基板上に形成された第一電極、前記第一電極の端部を覆うエッジカバー、有機発光層を含む有機層、および第二電極を有する有機EL素子と、
     前記有機EL素子で生じた励起光により励起され発光する蛍光体層と、
     前記蛍光体層の側方を囲い、第1の反射体で形成された障壁と、
     前記エッジカバーの表面の一部を覆う第2の光学反射体と備える有機EL表示装置。
    A substrate,
    An organic EL device having a first electrode formed on the substrate, an edge cover covering an end of the first electrode, an organic layer including an organic light emitting layer, and a second electrode;
    A phosphor layer that is excited by the excitation light generated in the organic EL element and emits light;
    A barrier that surrounds the sides of the phosphor layer and is formed of a first reflector;
    An organic EL display device including a second optical reflector that covers a part of the surface of the edge cover.
  12.  基板と、
     前記基板上に形成された第一電極、前記第一電極の端部を覆うエッジカバー、有機発光層を含む有機層、および第二電極を有する有機EL素子と、
     前記エッジカバーの側面上の光学反射体を備え、
     前記光学反射体は、前記有機層と接し、エッジカバーと前記有機層との間に設けられている有機EL表示装置。
    A substrate,
    An organic EL device having a first electrode formed on the substrate, an edge cover covering an end of the first electrode, an organic layer including an organic light emitting layer, and a second electrode;
    Comprising an optical reflector on the side of the edge cover;
    The optical reflector is an organic EL display device in contact with the organic layer and provided between an edge cover and the organic layer.
  13.  前記光学反射体は、更に前記第一電極を覆うように形成されている請求項12に記載の有機EL表示装置。 The organic EL display device according to claim 12, wherein the optical reflector is formed so as to further cover the first electrode.
  14.  前記光学反射体の可視光に対する反射率は、80%以上である請求項12に記載の有機EL表示装置。 The organic EL display device according to claim 12, wherein the optical reflector has a reflectance with respect to visible light of 80% or more.
  15.  前記光学反射体は、アルミニウムまたは銀を含有する請求項12に記載の有機EL表示装置。 The organic EL display device according to claim 12, wherein the optical reflector contains aluminum or silver.
  16.  前記エッジカバーは、テーパー形状に成形されたテーパー部を有する請求項12に記載の有機EL表示装置。 The organic EL display device according to claim 12, wherein the edge cover has a tapered portion formed in a tapered shape.
  17.  前記有機EL素子を駆動するアクティブ素子を更に備えている請求項12に記載の有機EL表示装置。 The organic EL display device according to claim 12, further comprising an active element that drives the organic EL element.
  18.  前記光学反射体は、前記エッジカバーの側面を覆う反射膜である請求項12に記載の有機EL表示装置。 13. The organic EL display device according to claim 12, wherein the optical reflector is a reflective film that covers a side surface of the edge cover.
  19.  基板と、
     基板の一面側に形成された第一電極、前記第一電極のエッジ部を覆うエッジカバー、有機発光層を含む有機層、および第二電極を具備する有機EL素子と、
     前記有機EL素子で生じた励起光により励起され発光する蛍光体層と、
     前記蛍光体層を囲う障壁と、
     前記エッジカバーの表面の一部、および前記障壁の表面の一部に光学反射体を備えた有機EL表示装置の製造方法であって、
     前記蛍光体層をスクリーン印刷法、インクジェット法、またはノズルコート法によって形成する工程を備えたことを特徴とする有機EL表示装置の製造方法。
    A substrate,
    An organic EL device comprising a first electrode formed on one side of the substrate, an edge cover covering an edge portion of the first electrode, an organic layer including an organic light emitting layer, and a second electrode;
    A phosphor layer that is excited by the excitation light generated in the organic EL element and emits light;
    A barrier surrounding the phosphor layer;
    A method of manufacturing an organic EL display device comprising an optical reflector on a part of the surface of the edge cover and a part of the surface of the barrier,
    An organic EL display device manufacturing method comprising a step of forming the phosphor layer by a screen printing method, an ink jet method, or a nozzle coating method.
PCT/JP2011/072154 2010-09-30 2011-09-28 Organic el display device and method for manufacturing same WO2012043611A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-220133 2010-09-30
JP2010220133 2010-09-30

Publications (1)

Publication Number Publication Date
WO2012043611A1 true WO2012043611A1 (en) 2012-04-05

Family

ID=45893050

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/072154 WO2012043611A1 (en) 2010-09-30 2011-09-28 Organic el display device and method for manufacturing same

Country Status (1)

Country Link
WO (1) WO2012043611A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013183696A1 (en) * 2012-06-07 2013-12-12 シャープ株式会社 Fluorescent material substrate, display apparatus, and illuminating apparatus
WO2014103138A1 (en) * 2012-12-27 2014-07-03 Sony Corporation Display device, method of manufacturing display device, and electronic apparatus
CN108172608A (en) * 2018-01-31 2018-06-15 武汉华星光电半导体显示技术有限公司 The organic light-emitting display device of high contrast
CN108538885A (en) * 2018-03-07 2018-09-14 京东方科技集团股份有限公司 A kind of dot structure, array substrate and display device
CN109979969A (en) * 2017-12-27 2019-07-05 乐金显示有限公司 The method of miniscope and manufacture miniscope
WO2019187579A1 (en) * 2018-03-29 2019-10-03 ソニー株式会社 Electronic device, method for manufacturing electronic device, and apparatus for manufacturing electronic device
CN111009617A (en) * 2018-10-05 2020-04-14 乐金显示有限公司 Self-luminous display device
CN112785914A (en) * 2019-11-08 2021-05-11 京东方科技集团股份有限公司 Display panel and display device
US11545649B2 (en) 2016-03-31 2023-01-03 Sony Group Corporation Display device and electronic apparatus with relative misalignment between pixel and color filter

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006022123A1 (en) * 2004-08-26 2006-03-02 Idemitsu Kosan Co., Ltd. Organic el display device
JP2006100186A (en) * 2004-09-30 2006-04-13 Toshiba Matsushita Display Technology Co Ltd Organic el display device
JP2007165214A (en) * 2005-12-16 2007-06-28 Seiko Epson Corp Electroluminescent device and electronic apparatus
JP2007248484A (en) * 2006-03-13 2007-09-27 Sony Corp Display device
JP2010103500A (en) * 2008-09-26 2010-05-06 Toppan Printing Co Ltd Organic electroluminescent element, method for manufacturing the same, image display unit and illuminating device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006022123A1 (en) * 2004-08-26 2006-03-02 Idemitsu Kosan Co., Ltd. Organic el display device
JP2006100186A (en) * 2004-09-30 2006-04-13 Toshiba Matsushita Display Technology Co Ltd Organic el display device
JP2007165214A (en) * 2005-12-16 2007-06-28 Seiko Epson Corp Electroluminescent device and electronic apparatus
JP2007248484A (en) * 2006-03-13 2007-09-27 Sony Corp Display device
JP2010103500A (en) * 2008-09-26 2010-05-06 Toppan Printing Co Ltd Organic electroluminescent element, method for manufacturing the same, image display unit and illuminating device

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013183696A1 (en) * 2012-06-07 2013-12-12 シャープ株式会社 Fluorescent material substrate, display apparatus, and illuminating apparatus
WO2014103138A1 (en) * 2012-12-27 2014-07-03 Sony Corporation Display device, method of manufacturing display device, and electronic apparatus
US10048427B2 (en) 2012-12-27 2018-08-14 Joled Inc. Display device, method of manufacturing display device, and electronic apparatus
US11545649B2 (en) 2016-03-31 2023-01-03 Sony Group Corporation Display device and electronic apparatus with relative misalignment between pixel and color filter
DE112017001627B4 (en) 2016-03-31 2024-06-13 Sony Corporation DISPLAY DEVICE
CN109979969A (en) * 2017-12-27 2019-07-05 乐金显示有限公司 The method of miniscope and manufacture miniscope
CN109979969B (en) * 2017-12-27 2023-06-06 乐金显示有限公司 Micro display and method of manufacturing the same
CN108172608A (en) * 2018-01-31 2018-06-15 武汉华星光电半导体显示技术有限公司 The organic light-emitting display device of high contrast
CN108538885A (en) * 2018-03-07 2018-09-14 京东方科技集团股份有限公司 A kind of dot structure, array substrate and display device
WO2019187579A1 (en) * 2018-03-29 2019-10-03 ソニー株式会社 Electronic device, method for manufacturing electronic device, and apparatus for manufacturing electronic device
US11521951B2 (en) 2018-03-29 2022-12-06 Sony Corporation Wristband type electronic device
CN111009617B (en) * 2018-10-05 2024-05-24 乐金显示有限公司 Self-luminous display device
CN111009617A (en) * 2018-10-05 2020-04-14 乐金显示有限公司 Self-luminous display device
CN112785914A (en) * 2019-11-08 2021-05-11 京东方科技集团股份有限公司 Display panel and display device

Similar Documents

Publication Publication Date Title
WO2011129135A1 (en) Fluorescent substrate and method for producing the same, and display device
US9099409B2 (en) Organic electroluminescent display device, electronic apparatus including the same, and method for producing organic electroluminescent display device
WO2012090786A1 (en) Light-emitting device, display device, and illumination device
WO2012043611A1 (en) Organic el display device and method for manufacturing same
JP5538519B2 (en) Light emitting element, display and display device
US8796914B2 (en) Organic electroluminescence element, organic electroluminescence display, and organic electroluminescence display apparatus
WO2012108384A1 (en) Fluorescent substrate, and display device and lighting device using same
JP5858367B2 (en) ORGANIC EL DISPLAY UNIT, ORGANIC EL DISPLAY DEVICE, AND ORGANIC EL DISPLAY UNIT MANUFACTURING METHOD
WO2012026209A1 (en) Organic light emitting device and antistatic method for same
WO2013021941A1 (en) Phosphor substrate, display device, and electronic device
WO2012081568A1 (en) Fluorescent substrate, display device, and lighting device
WO2013111696A1 (en) Fluorescent material substrate, display apparatus, and electronic apparatus
WO2016204166A1 (en) Wavelength conversion-type light emission device, and display device, illumination device, and electronic instrument provided with same
JP2016218151A (en) Wavelength conversion substrate, light-emitting device and display device comprising the same, lighting device, and electronic apparatus
WO2013183696A1 (en) Fluorescent material substrate, display apparatus, and illuminating apparatus
WO2011145418A1 (en) Phosphor display device, and phosphor layer
JP2013109907A (en) Phosphor substrate and display device
WO2013073521A1 (en) Organic electroluminescent display device, electronic apparatus using same, and method for producing organic electroluminescent display device
WO2012121372A1 (en) Display element and electronic device
WO2012081536A1 (en) Light-emitting device, display device, electronic apparatus, and illumination device
JP2016143658A (en) Light emitting element and display device
US8547013B2 (en) Organic EL display device with a color converting layer
WO2012043172A1 (en) Phosphor substrate, and display device and lighting device each equipped with same
WO2012144426A1 (en) Fluorescent light body substrate and display device
WO2012017751A1 (en) Organic light emitting element, organic light emitting device, and color conversion method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11829164

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11829164

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP