[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2012043408A1 - 液晶表示装置、駆動方法、および、ディスプレイ装置 - Google Patents

液晶表示装置、駆動方法、および、ディスプレイ装置 Download PDF

Info

Publication number
WO2012043408A1
WO2012043408A1 PCT/JP2011/071707 JP2011071707W WO2012043408A1 WO 2012043408 A1 WO2012043408 A1 WO 2012043408A1 JP 2011071707 W JP2011071707 W JP 2011071707W WO 2012043408 A1 WO2012043408 A1 WO 2012043408A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
pixel
boundary
display device
subpixel
Prior art date
Application number
PCT/JP2011/071707
Other languages
English (en)
French (fr)
Inventor
昇平 勝田
豪 鎌田
誠二 大橋
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to US13/823,234 priority Critical patent/US9236023B2/en
Publication of WO2012043408A1 publication Critical patent/WO2012043408A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3696Generation of voltages supplied to electrode drivers
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3648Control of matrices with row and column drivers using an active matrix
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B35/00Stereoscopic photography
    • G03B35/18Stereoscopic photography by simultaneous viewing
    • G03B35/26Stereoscopic photography by simultaneous viewing using polarised or coloured light separating different viewpoint images
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/66Transforming electric information into light information
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134345Subdivided pixels, e.g. for grey scale or redundancy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/332Displays for viewing with the aid of special glasses or head-mounted displays [HMD]
    • H04N13/337Displays for viewing with the aid of special glasses or head-mounted displays [HMD] using polarisation multiplexing

Definitions

  • the present invention relates to a liquid crystal display device that displays an image using liquid crystal.
  • the present invention relates to a liquid crystal display device that displays an image in a stereoscopic manner using the Patterned-Retarder method.
  • the present invention also relates to a driving method for driving such a liquid crystal display device.
  • the present invention also relates to a display device including such a liquid crystal display device.
  • an active shutter system As a technique for displaying a stereoscopic image, an active shutter system, a naked-eye lenticular system, a Patterned-Retarder system (also called a polarization system or a PR system), and the like are known. In either method, the right-eye image is presented only to the user's right eye, and the left-eye image is presented only to the user's left eye, so that the user can visually recognize the image in three dimensions.
  • a left-eye frame (L frame) and a right-eye frame (R frame) are alternately displayed.
  • the user observes an image displayed on the liquid crystal display device through 3D glasses having a left-eye lens and a right-eye lens that perform a shutter operation in synchronization with switching between the L frame and the R frame. By doing so, the image can be visually recognized in three dimensions.
  • a liquid crystal display device using a naked-eye lenticular system individually presents a left-eye image and a right-eye image to the user's left eye and right eye via a lenticular lens formed on the front side of the liquid crystal panel. Thereby, the user can visually recognize the image stereoscopically without using the 3D glasses.
  • a right-eye image is displayed by pixels defined by odd-numbered horizontal scanning lines
  • a left-eye image is displayed by images defined by even-numbered horizontal scanning lines.
  • FIG. 11A is an exploded perspective view showing a backlight unit 50, a liquid crystal panel 60, and a Patterned Retarder 70 included in a conventional liquid crystal display device using the Patterned Retarder method.
  • the backlight unit 50 supplies backlight to the liquid crystal panel 60 from the back surface of the liquid crystal panel 60.
  • the liquid crystal panel 60 includes horizontal scanning lines (horizontal scanning lines) HL1 to HLN (N is the total number of horizontal scanning lines) and vertical scanning lines (vertical scanning lines) VL1 to VLM (M is the total number of vertical scanning lines). ) Are defined by each of the above.
  • the liquid crystal panel 60 can control the transmittance of the backlight for each pixel by controlling the orientation of the liquid crystal included in each pixel.
  • the liquid crystal panel 60 displays an image for the right eye with pixels defined by odd-numbered horizontal scanning lines HL1, HL3,..., And is defined by pixels defined by even-numbered horizontal scanning lines HL2, HL4,. , Display the image for the left eye.
  • the Patterned Retarder 70 is a retardation plate whose longitudinal direction is the horizontal scanning line direction, and is composed of two types of retardation plates RR and RL having different characteristics.
  • the phase difference plate RR converts linearly polarized light to rightward circularly polarized light
  • the phase difference plate RL converts linearly polarized light to leftward circularly polarized light.
  • a phase difference plate RR is arranged on the front side of pixels defined by odd-numbered horizontal scanning lines HL1, HL3,..., And even-numbered horizontal scanning lines HL2, HL4.
  • a phase difference plate RL is arranged on the front side of the pixel defined by.
  • the image for the right eye displayed by the pixels defined by the odd-numbered horizontal scanning lines is represented by the light circularly polarized to the right after passing through the Patterned Retarder, and is defined by the even-numbered horizontal scanning lines.
  • the image for the left eye displayed by is represented by light that is circularly polarized leftward after passing through the Patterned Retarder.
  • FIG. 11 shows the 3D glasses 80 used in the Patterned-Retarder system.
  • the 3D glasses 80 include a right-eye lens and a left-eye lens.
  • the right-eye lens transmits only the light circularly polarized rightward
  • the left-eye lens transmits only the light circularly polarized leftward. Therefore, by using the 3D glasses 80, the user observes the right-eye image displayed by the pixels defined by the odd-numbered horizontal scanning lines among the images displayed by the liquid crystal display device only by the right eye.
  • the left-eye image displayed by the pixels defined by the even-numbered horizontal scanning lines can be observed only by the left eye. Thereby, the user can visually recognize the image three-dimensionally.
  • the Patterned-Retarder type liquid crystal display device can also display a 2D image using both pixels defined by odd-numbered horizontal scanning lines and pixels defined by even-numbered horizontal scanning lines. . In this case, the user may observe the image displayed by the liquid crystal display device without using the 3D glasses.
  • the 3D glasses 80 used in the Patterned Retarder system do not require electrical control like the 3D glasses used in the active shutter system, and can be realized with a simple configuration.
  • crosstalk refers to a right eye displayed by pixels defined by odd-numbered horizontal scanning lines when the user observes the liquid crystal panel from an oblique upper side or from the oblique lower side.
  • a part of the image for observation is observed after passing through the left-eye phase difference plate arranged on the front side of the pixels defined by the even-numbered horizontal scanning lines, and is displayed by the pixels defined by the even-numbered horizontal scanning lines.
  • the left-eye image is observed after being transmitted through the right-eye retardation plate disposed on the front side of the pixel defined by the odd-numbered horizontal scanning lines, and thus by left-circularly polarized light.
  • This is a phenomenon in which the right-eye image is mixed in the left-eye image represented, and the left-eye image is mixed in the right-eye image represented by the light circularly polarized in the right direction.
  • FIG. 12 is a cross-sectional view taken along the vertical scanning line direction (longitudinal direction) of the backlight unit 50, the liquid crystal panel 60, and the Patterned Retarder 70 included in the conventional liquid crystal display device, and is defined by the nth horizontal scanning line.
  • FIG. 6 is a diagram illustrating a configuration around a pixel defined by the pixel and a pixel defined by an (n + 1) th horizontal scanning line.
  • FIG. 12 shows a liquid crystal panel 60 configured to suppress crosstalk by a black matrix and black stripes, and a Patterned Retarder 70.
  • a backlight unit 50 is disposed on the back side of the liquid crystal panel 60 (left side in FIG. 12), and on the front side of the liquid crystal panel 60 (right side in FIG. 12) Is arranged.
  • the liquid crystal panel 60 includes a first polarizing plate 60a, a TFT-Glass 60b, a TFT substrate 60c, a color filter 60d, a CF-Glass 60e, and a second polarizing plate 60f.
  • a black matrix BM is formed between the pixel Pn defined by the nth horizontal scanning line and the pixel Pn + 1 defined by the n + 1th horizontal scanning line. ing. Further, on the front side of the black matrix BM, a black matrix BM ′ is formed in the color filter 60 d, and a black stripe BS is formed in the Patterned Retarder 70.
  • crosstalk occurs when the angle formed between the normal direction and the line-of-sight direction of the liquid crystal panel 60 is within ⁇ degrees in the vertical scanning line direction. Can be suppressed.
  • Non-Patent Document 1 discloses a technique for suppressing crosstalk without using black stripes by dividing each pixel into two subpixels (an upper subpixel and a lower subpixel) in the vertical scanning line direction. Proposed.
  • a display image data voltage is supplied to both subpixels.
  • a display image data voltage is applied only to the upper subpixel.
  • the black sub-pixel is supplied with a data voltage for black display.
  • the lower subpixel to which the data voltage for black display is supplied functions as a black matrix.
  • Non-Patent Document 1 the brightness of the image does not decrease when a 2D image is displayed. Further, when displaying a 3D image, the occurrence of crosstalk can be suppressed by the black matrix.
  • Non-Patent Document 1 when displaying a 3D image, it is necessary to supply different data voltages to the upper subpixel and the lower subpixel. In comparison with the configuration displaying only the image data, twice as many data lines (data bus lines and source bus lines) are required, and the design of the liquid crystal panel is complicated.
  • the present invention has been made in view of the above problems, and an object thereof is to realize a liquid crystal display device capable of suppressing the occurrence of crosstalk without increasing the number of data bus lines. .
  • a liquid crystal display device is a liquid crystal display device capable of displaying in a first display mode and a second display mode, and includes a plurality of pixels arranged in a matrix.
  • the liquid crystal display device after applying a common data voltage for each pixel to the liquid crystal layer for the plurality of subpixels, the first of the plurality of subpixels.
  • the voltage applied to the liquid crystal layer for the sub-pixel near the boundary that is the sub-pixel closest to the boundary between the first optical plate and the second optical plate the liquid crystal layer for the sub-pixel near the boundary is changed. Drive to reduce transmittance.
  • a data bus line for applying a data voltage compared to the conventional configuration in which a data voltage needs to be individually applied to the boundary vicinity subpixel and a subpixel other than the boundary vicinity subpixel.
  • the number of can be reduced. More specifically, when each pixel has two subpixels, according to the liquid crystal display device according to the present invention configured as described above, the number of data bus lines is approximately half that of the conventional configuration. Can be.
  • the data voltage is a transmittance of the liquid crystal layer for each sub-pixel in the first display mode in the first display mode. Is set to be smaller than the maximum value of the transmittance of the liquid crystal layer for each of the sub-pixels in the second display mode, so that the sub-pixels near the boundary in the first display mode exhibit The luminance is smaller than the luminance exhibited by the near-boundary subpixel in the second display mode.
  • the viewing angle in the second display mode Characteristics can be improved.
  • the driving method according to the present invention is a liquid crystal display device capable of displaying in the first display mode and the second display mode, and a plurality of pixels arranged in a matrix and each pixel is arranged.
  • a liquid crystal panel having a plurality of subpixels and a subpixel electrode arranged for each of the subpixels, the subpixel electrode facing the counter electrode through the liquid crystal layer;
  • a first optical plate that generates outgoing light in a state, and a second optical plate that generates outgoing light in a second polarization state different from the first polarization state from incident light, respectively, the liquid crystal panel
  • an optical panel formed at a position corresponding to the odd-numbered and even-numbered rows of the liquid crystal display device are examples of the liquid crystal display device.
  • the liquid crystal layer After applying the data voltage, By changing the voltage applied to the liquid crystal layer for a sub-pixel near the boundary that is the sub-pixel closest to the boundary between the first optical plate and the second optical plate among the number of sub-pixels, The liquid crystal layer is driven so that the transmittance of the subpixel near the boundary is reduced, and the data voltage is transmitted in the first display mode in the liquid crystal layer in each of the subpixels in the first display mode. Is set to be smaller than the maximum value of the transmittance of the liquid crystal layer for each of the sub-pixels in the second display mode.
  • the first optical plate and the sub-pixels By changing the voltage applied to the liquid crystal layer for the sub-pixel near the boundary that is the sub-pixel closest to the boundary with the second optical plate, the transmittance of the liquid crystal layer for the sub-pixel near the boundary is reduced. To drive.
  • the number of can be reduced. More specifically, when each pixel has two sub-pixels, according to the liquid crystal display device driven by the above driving method, the number of data bus lines is substantially halved compared to the conventional configuration. Can do.
  • the data voltage is the maximum value of the transmittance of the liquid crystal layer for each sub-pixel in the first display mode in the first display mode.
  • the luminance exhibited by the sub-pixels near the boundary in the first display mode is It is smaller than the luminance exhibited by the subpixel near the boundary in the second display mode.
  • the viewing angle in the second display mode Characteristics can be improved.
  • the liquid crystal display device is a liquid crystal display device capable of display in the first display mode and the second display mode, and includes a plurality of pixels arranged in a matrix and the pixels.
  • a liquid crystal panel having a plurality of sub-pixels arranged for each sub-pixel, a sub-pixel electrode arranged for each sub-pixel, the sub-pixel electrode facing the counter electrode via the liquid crystal layer, and incident light
  • an optical panel formed at positions corresponding to the odd-numbered and even-numbered rows of the liquid crystal panel, and common data for each pixel with respect to the liquid crystal layer of the plurality of subpixels After applying the voltage, the plurality of By changing the voltage applied to the liquid crystal layer for a sub-pixel near the boundary that is the sub-pixel closest to the boundary between the first optical plate and the second optical plate among
  • liquid crystal display device configured as described above, data for applying a data voltage compared to the conventional configuration in which a data voltage needs to be individually applied to each sub-pixel. It is possible to effectively suppress the occurrence of crosstalk while reducing the number of bus lines.
  • FIG. 1 is a diagram illustrating an overall configuration of a liquid crystal display device according to an embodiment of the present invention.
  • FIG. 4D shows a waveform
  • FIG. 4D shows a voltage waveform of a subpixel electrode of a bright pixel included in a pixel displaying red
  • FIG. 3E shows a subpixel electrode of an intermediate pixel included in a pixel displaying red
  • (F) shows the voltage waveform of the sub-pixel electrode of the dark pixel provided in the pixel displaying red.
  • FIG. 4 is a diagram for explaining an operation when a 2D display mode is selected in the liquid crystal display device according to the embodiment, and FIG.
  • FIG. 5A is a lookup that is referred to by the control circuit when the 2D display mode is selected.
  • FIG. 7 shows an example of a table, where (b) is a graph showing the gradation-luminance characteristics of each subpixel in the 2D display mode, and (c) is a luminance exhibited by each subpixel in the 2D display mode.
  • FIG. FIG. 4 is a diagram for explaining an operation when a 3D display mode is selected in the liquid crystal display device according to the embodiment
  • FIG. 5A is a lookup that is referred to by the control circuit when the 3D display mode is selected.
  • FIG. 4B shows an example of a table, in which (b) is a graph showing gradation-luminance characteristics of each subpixel in the 3D display mode, and (c) is a luminance exhibited by each subpixel in the 3D display mode.
  • FIG. In the liquid crystal display device according to the embodiment it is a cross-sectional view along a straight line parallel to the source bus line of the backlight unit, the liquid crystal panel, and Patterned Retarder when the 3D display mode is selected.
  • FIG. 6 is a diagram for explaining the effect of suppressing the color misregistration phenomenon by the liquid crystal display device according to the embodiment, in which (a) shows the gradation when the 2D display mode is selected in the liquid crystal display device according to the embodiment;
  • FIG. 4A is a graph showing local ⁇ characteristics
  • FIG. 4A is a graph showing gradation-local ⁇ characteristics when the 3D display mode is selected in the liquid crystal display device according to the embodiment
  • FIG. 6 is a graph showing a gray-scale ⁇ characteristic in such a liquid crystal display device.
  • FIG. 6 is a diagram showing image light observed by an observer when the angle formed with the normal direction of the liquid crystal panel and the angle along the vertical direction of the liquid crystal panel is a predetermined angle ⁇ (beta); ) Is an angle between the line-of-sight direction and the normal direction of the liquid crystal panel, and shows the image light observed by the observer when the angle along the vertical direction of the liquid crystal panel is larger than a predetermined angle. is there.
  • is a figure for demonstrating the conventional liquid crystal display device, Comprising: (a) is a disassembled perspective view which shows the backlight with which the conventional liquid crystal display device is equipped, a liquid crystal panel, and Patterned Retarder, (b), It is a figure which shows 3D glasses used with the conventional liquid crystal display device. It is sectional drawing along the straight line parallel to a vertical scanning line of the backlight unit in a conventional liquid crystal display device, a liquid crystal panel, and Patterned Retarder.
  • a vertical alignment type liquid crystal display device (VA (Vertical Alignment) type liquid crystal display device) using a liquid crystal material having a negative dielectric anisotropy is exemplified, but the present invention is not limited to this.
  • the present invention can also be applied to TN (Twisted Nematic) type and IPS (In-Plane Switching) type liquid crystal display devices.
  • TN Transmission Nematic
  • IPS In-Plane Switching
  • a normally black type liquid crystal display device in which the transmittance of the liquid crystal layer increases as the absolute value of the voltage applied to the liquid crystal layer increases is illustrated, but this embodiment is not limited thereto.
  • the present invention can also be applied to a normally white liquid crystal display device in which the transmittance of the liquid crystal layer decreases as the absolute value of the voltage applied to the liquid crystal layer increases.
  • FIG. 2 is a diagram showing an overall configuration of the liquid crystal display device 1 according to the present embodiment.
  • the liquid crystal display device 1 includes a control circuit 20, a gate driver 22, a source driver 24, a CS driver 26, and a liquid crystal panel 100.
  • the liquid crystal display device 1 operates in any one of a 2D display mode for displaying an image that cannot be stereoscopically viewed and a 3D display mode for displaying an image that can be stereoscopically viewed.
  • the liquid crystal display device 1 may be configured so that the user can select one of the two display modes, or by referring to mode information associated with image data indicating an image to be displayed, It may be configured to automatically select one of the two display modes.
  • One of the 2D display mode and the 3D display mode is also referred to as the first display mode, and the other is also referred to as the second display mode.
  • the liquid crystal display device 1 includes a plurality of gate bus lines 2, a plurality of source bus lines 4, a plurality of CS bus lines 6, and each gate bus line and each source bus line in the liquid crystal panel 100. And a pixel defined by.
  • the total number of gate bus lines 2 is N (N is a positive integer)
  • the total number of source bus lines 4 is M (M is a positive integer)
  • the total number of CS bus lines 6 is. Is N.
  • a gate bus line 2n indicates the n-th gate bus line 2 (where n is an integer satisfying 1 ⁇ n ⁇ N).
  • the source bus line 4m indicates the m-th source bus line 4m (where m is an integer satisfying 1 ⁇ m ⁇ M).
  • a CS bus line 6n indicates the nth CS bus line 6.
  • each pixel defined by the gate bus line 2n is also expressed as each pixel defined by the nth horizontal scanning line HLn, and each pixel defined by the source bus line 4m is represented by mth.
  • Each pixel defined by the vertical scanning line VLm may be expressed.
  • the liquid crystal panel included in the liquid crystal display device 1 includes a gate driver 22 that supplies a gate signal to each gate bus line 2, a source driver 24 that supplies a data signal to each source bus line 4, A CS driver 26 that supplies a storage capacitor driving signal to each CS bus line 6 is connected to each CS bus line 6.
  • Each of these drivers operates based on a control signal output from the control circuit 20.
  • the source bus line 4 refers to data voltage information supplied from the control circuit 20 described later, and supplies a data voltage indicated by the data voltage information to each pixel.
  • the control circuit 20 calculates the gradation value for each pixel from the luminance information indicating the luminance for each picture element and the color difference information indicating the color difference for each pixel included in the image data indicating the image to be displayed. calculate.
  • a picture element is a unit composed of pixels that individually display a plurality of different colors.
  • one picture element is a pixel that displays red, and green. It is comprised from the pixel which displays, and the pixel which displays blue.
  • the control circuit 20 controls the timing of the gate signal supplied by the gate driver 22 and the data signal supplied by the source driver 24.
  • the memory included in the control circuit 20 stores correspondence information (also referred to as a correspondence table or a lookup table) indicating a correspondence relationship between the gradation value and the data voltage, and the control circuit 20 stores the correspondence information.
  • correspondence information also referred to as a correspondence table or a lookup table
  • the control circuit 20 stores the correspondence information.
  • the gradation value for each pixel is converted into data voltage information indicating the data voltage to be supplied to the pixel electrode of the pixel, and the data voltage information is supplied to the source bus line 4.
  • the lookup table referred to by the control circuit 20 when the 2D display mode is selected and the lookup table referenced by the control circuit 20 when the 3D display mode is selected are mutually different. Is different. Since a specific example of the lookup table referred to in each display mode will be described later, description thereof is omitted here.
  • FIG. 3A is an exploded perspective view showing a configuration around the liquid crystal panel 100 in the liquid crystal display device 1.
  • the liquid crystal display device 1 has a backlight unit BLU on the back side of the liquid crystal panel 100, and a patterned retarder 200 on the front side of the liquid crystal panel 100.
  • the backlight unit BLU, the liquid crystal panel 100, the control circuit 20 (not shown in FIG. 3A), each driver (not shown in FIG. 3A), and the Patterned Retarder 200 are arranged in the back case.
  • the front side of the patterned retarder 200 is covered with a transparent protective panel (not shown).
  • the liquid crystal panel 100 and the patterned retarder 200 may be collectively referred to as a display panel.
  • the backlight unit BLU supplies backlight to the liquid crystal panel 100 from the back surface of the liquid crystal panel 100.
  • the backlight unit BLU can have, for example, a configuration in which a plurality of LEDs (light emitting diodes) that emit white light are arranged substantially uniformly on the back surface of the liquid crystal panel 100 (configuration of a direct type LED).
  • the backlight unit BLU is configured to include a diffusion plate, and the light emitted from the plurality of LEDs is configured to irradiate the back surface of the liquid crystal panel 100 after making the uniform backlight with the diffusion plate. Can do.
  • the luminance unevenness of the backlight can be suppressed and the light use efficiency can be increased, so that power consumption can be reduced.
  • the backlight unit BLU may have a configuration in which a light source for backlight such as an LED and a fluorescent tube is disposed near the edge of the liquid crystal panel 100 (edge light type configuration).
  • the backlight unit BLU further includes a light guide plate and a reflection plate on the back surface of the diffusion plate, and the light emitted from the light source is converted into a uniform backlight by the light guide plate and the reflection plate, and then the liquid crystal What is necessary is just to set it as the structure irradiated to the back surface of the panel 100.
  • the Patterned Retarder 200 is a retardation plate whose longitudinal direction is parallel to the gate bus line, and is composed of two types of retardation plates RR and RL having different characteristics.
  • the phase difference plate RR converts linearly polarized light to rightward circularly polarized light
  • the phase difference plate RL converts linearly polarized light to leftward circularly polarized light.
  • a phase difference plate RR is arranged on the front side of the pixels defined by the odd-numbered horizontal scanning lines HL1, HL3,. , HL4,..., HL4,.
  • the image displayed by the pixels defined by the odd-numbered gate bus lines is represented by the right circularly polarized light after passing through the Patterned Retarder 200 and displayed by the pixels defined by the even-numbered gate bus lines.
  • the image to be displayed is represented by light that is circularly polarized leftward after passing through the Patterned Retarder 200.
  • the phase difference plate RR and the phase difference plate RL can be constituted by, for example, ⁇ / 4 wavelength plates having different optical axes.
  • phase difference plate RR and the phase difference plate RL can be generally expressed as optical plates that generate outgoing lights having different polarization states from incident light.
  • phase difference plate RR and the phase difference plate RL are also referred to as a first optical plate, and the other is also referred to as a second optical plate.
  • the light converted by the first optical plate is also referred to as outgoing light in the first polarization state
  • the light converted by the second optical plate is also referred to as outgoing light in the second polarization state.
  • FIG. 3B shows 3D glasses 300 used in the present embodiment.
  • the 3D glasses 300 include a right-eye lens and a left-eye lens.
  • the right-eye lens transmits only light polarized in the right direction and the left-eye lens transmits only light polarized in the left direction. Therefore, by using the 3D glasses 300, the user observes an image displayed by the pixels defined by the odd-numbered gate bus lines among the images displayed by the liquid crystal display device 1 only with the right eye. The image displayed by the pixels defined by the even-numbered gate line can be observed only by the left eye.
  • the right-eye image and the left-eye image different in viewpoint from the right-eye image are displayed. Therefore, the user can visually recognize the image in three dimensions.
  • the liquid crystal display device 1 can also display a 2D image using both pixels defined by odd-numbered gate bus lines and pixels defined by even-numbered gate bus lines. In this case, the user may observe the image displayed on the liquid crystal display device 1 without using the 3D glasses 300.
  • the 3D glasses 300 used in the present embodiment do not require electrical control like the 3D glasses used in the active shutter system, and can be realized with a simple configuration.
  • FIG. 3 is a schematic view of a liquid crystal color television receiver including the liquid crystal display device 1 according to the present embodiment.
  • the liquid crystal display device 1 is mounted on the display unit of the liquid crystal color television receiver.
  • the liquid crystal display device 1 according to the present invention can be used for, for example, a notebook personal computer, various displays, a mobile phone terminal, a portable information terminal, and the like in addition to a liquid crystal color television receiver.
  • FIG. 1 is a diagram showing an equivalent circuit of a pixel having a multi-pixel structure for each picture element of the liquid crystal panel 100 included in the liquid crystal display device 1 according to the present embodiment, together with each driver and the control circuit 20.
  • the memory included in the control circuit 20 stores a lookup table LUT1 for 2D display mode and a lookup table LUT2 for 3D display mode.
  • the control circuit 20 refers to any lookup table.
  • the source driver 24 is controlled.
  • a plurality of pixels are formed in a liquid crystal panel 100 provided in the liquid crystal display device 1, and the liquid crystal display device 1 drives each pixel by a driving method corresponding to a 3TFT driving method.
  • Each pixel has a liquid crystal layer and an electrode for applying a voltage to the liquid crystal layer, and is arranged in a matrix having rows and columns.
  • a picture element is a unit composed of pixels that individually display a plurality of different colors. In this embodiment, one picture element is an R pixel 8 that displays red, and a G pixel that displays green. 10 and a B pixel 12 that displays blue.
  • a liquid crystal panel 100 included in the liquid crystal display device 1 includes a plurality of gate bus lines 2, a plurality of source bus lines 4, and a plurality of CS bus lines 6 (referred to as auxiliary capacity wiring or storage capacity bus lines).
  • a plurality of switching elements TFT1 to TFT5 a plurality of liquid crystal capacitors Clc1 to Clc3, and a plurality of capacitors (storage capacitors) Cd1 to Cd3.
  • the plurality of gate bus lines 2 and the plurality of source bus lines 4 are formed so as to intersect each other via an insulating film (not shown).
  • an R pixel 8 that displays red, a G pixel 10 that displays green, and blue are displayed for each region defined by one gate bus line 2 and one source bus line 4.
  • One of the B pixels 12 is formed.
  • the R pixel 8, the G pixel 10, and the B pixel 12 are formed adjacent to each other along the gate bus line 2.
  • the liquid crystal display device 1 will be described by taking as an example a configuration including the R pixel, the G pixel, and the B pixel.
  • the present embodiment is not limited to this, and for example, the liquid crystal display device 1 may be configured to include one or both of a Ye pixel that displays yellow and a W pixel that displays white in addition to the R pixel, the G pixel, and the B pixel. Even if it exists, there exists an effect mentioned later.
  • Each of the R pixel 8, the G pixel 10, and the B pixel 12 has three sub-pixels (bright pixel, dark pixel, and intermediate pixel) that can apply different voltages to the liquid crystal layer.
  • the R pixel 8 has a bright pixel 8a, an intermediate pixel 8b, and a dark pixel 8c
  • the G pixel 10 has a bright pixel 10a, an intermediate pixel 10b, and a dark pixel 10c.
  • the B pixel 12 has a bright pixel 12a, an intermediate pixel 12b, and a dark pixel 12c.
  • Each intermediate pixel and each dark pixel also have a storage capacitor with one end connected to the CS bus line 6.
  • each pixel constituting each picture element is arranged along the gate bus line 2 in the order of the R pixel 8, the G pixel 10, and the B pixel 12.
  • Each bright pixel is arranged on a first straight line parallel to the gate bus line 2
  • each intermediate pixel is arranged on a second straight line parallel to the gate bus line 2
  • each dark pixel is The pixels are arranged on a third straight line parallel to the gate bus line 2.
  • the dark pixel 8c of the R pixel 8 defined by the gate bus line 2n and the bright pixel 8a of the R pixel 8 defined by the gate bus line 2 (n + 1) pass through a boundary parallel to the gate bus line 2. Are adjacent to each other. The same applies to the G pixel 10 and the B pixel 12.
  • the dark pixel 8c of the R pixel 8 and the dark pixel 10c of the G pixel 10 are adjacent to each other via a boundary parallel to the source bus line 4, and the dark pixel 10c of the G pixel 10 and the dark pixel 12c of the B pixel 12 are adjacent to each other.
  • the dark pixel 10c of the G pixel 10 and the dark pixel 12c of the B pixel 12 are adjacent to each other.
  • a sub-pixel included in each pixel has a liquid crystal capacitance.
  • the bright pixel has a liquid crystal capacitor Clc1
  • the intermediate pixel has a liquid crystal capacitor Clc2
  • the dark pixel has a liquid crystal capacitor Clc3. More specifically, as shown in FIG. 1, the bright pixel 8a of the R pixel 8 has a liquid crystal capacitance Clc1R, the intermediate pixel 8b has a liquid crystal capacitance Clc2R, and the dark pixel 8c It has a liquid crystal capacitance Clc3R.
  • the bright pixel 10a of the G pixel 10 has a liquid crystal capacitance Clc1G
  • the intermediate pixel 10b has a liquid crystal capacitance Clc2G
  • the dark pixel 10c has a liquid crystal capacitance Clc3G
  • the bright pixel 12a of the B pixel 12 has a liquid crystal capacitance Clc1B
  • the intermediate pixel 12b has a liquid crystal capacitance Clc2B
  • the dark pixel 12c has a liquid crystal capacitance Clc3B.
  • Each liquid crystal capacitor is formed by a sub-pixel electrode, a liquid crystal layer, and a counter electrode facing the sub-pixel electrode through the liquid crystal layer.
  • Each intermediate pixel and each dark pixel have a storage capacitor Cd. More specifically, as shown in FIG. 1, the intermediate pixel 8b of the R pixel 8 has a storage capacitor Cd2R, and the dark pixel 8c has a storage capacitor Cd3R. Further, the intermediate pixel 10b of the G pixel 10 has a storage capacitor Cd2G, and the dark pixel 10c has a storage capacitor Cd3G. Further, the intermediate pixel 12b of the B pixel 12 has a storage capacitor Cd2B, and the dark pixel 12c has a storage capacitor Cd3B.
  • Each storage capacitor Cd2 is formed by a storage capacitor electrode connected to the source electrode of the corresponding TFT 4, an insulating film, and a storage capacitor counter electrode facing the storage capacitor electrode through the insulating film.
  • Each storage capacitor Cd3 is formed by a storage capacitor electrode connected to the source electrode of the corresponding TFT 5, an insulating film, and a storage capacitor counter electrode facing the storage capacitor electrode through the insulating film.
  • Each storage capacitor counter electrode is connected to a CS bus line 6n.
  • switching elements TFT1 to TFT3 In each of the R pixel 8, the G pixel 10, and the B pixel 12, a TFT (Thin Film Transistor) 1, a TFT 2, and a TFT 3 are formed.
  • the gate electrodes of TFT1 to TFT3 are connected to a common gate bus line 2n, and the source electrodes of TFT1 to TFT3 are connected to a common source bus line 4. That is, as shown in FIG. 1, the source electrodes of the TFT 1R, TFT 2R, and TFT 3R of the R pixel 8 are connected to the source bus line 4m.
  • the source electrodes of the TFT 1G, TFT 2G, and TFT 3G of the G pixel 10 are connected to the source bus line 4 (m + 1), and the source electrodes of the TFT 1B, TFT 2B, and TFT 3B of the B pixel 12 are connected to the source bus. Connected to line 4 (m + 2).
  • the drain electrodes of TFT1, TFT2, and TFT3 are connected to the corresponding subpixel electrodes.
  • Each of TFT1 to TFT3, and TFT4 and TFT5, which will be described later, is in a conductive state (ON state) when a high level gate signal is applied to its own gate electrode, and low level is applied to its own gate electrode.
  • the gate signal is applied, the non-conduction state (off state, cutoff state) is established.
  • a TFT 4 is formed in each intermediate pixel of the R pixel 8, G pixel 10, and B pixel 12, and a TFT 5 is formed in each dark pixel. More specifically, the TFT 4R is formed in the intermediate pixel 8b of the R pixel 8, and the TFT 5R is formed in the dark pixel 8c. Further, a TFT 4G is formed in the intermediate pixel 10b of the G pixel 10, and a TFT 5G is formed in the dark pixel 10c. Further, a TFT 4B is formed in the intermediate pixel 12b of the B pixel 12, and a TFT 5B is formed in the dark pixel 12c.
  • the gate electrodes of TFT4 and TFT5 are electrically connected to the gate bus line at the next stage of the pixel, that is, the gate bus line 2 (n + 1).
  • the drain electrode of each TFT 4 is electrically connected to the sub-pixel electrode of each intermediate pixel 8b, 10b, and 12b through a contact hole.
  • the source electrode of each TFT 4 is connected to the storage capacitor electrode of the corresponding storage capacitor Cd. More specifically, the source electrode of the TFT 4R is connected to the storage capacitor electrode of the storage capacitor Cd2R, the source electrode of the TFT 4G is connected to the storage capacitor electrode of the storage capacitor Cd2G, and the source electrode of the TFT 4B is connected to the storage capacitor Cd2B. Connected to the storage capacitor electrode.
  • each TFT 5 is electrically connected to the sub-pixel electrodes of the dark pixels 8c, 10c, and 12c through contact holes.
  • the source electrode of each TFT 5 is connected to the storage capacitor electrode of the corresponding storage capacitor Cd. More specifically, the source electrode of the TFT 5R is connected to the storage capacitor electrode of the storage capacitor Cd3R, the source electrode of the TFT 5G is connected to the storage capacitor electrode of the storage capacitor Cd3G, and the source electrode of the TFT 5B is connected to the storage capacitor Cd3B. Connected to the storage capacitor electrode.
  • the gate bus line 2n is selected, and charges are stored in the liquid crystal capacitance Clc1 of each bright pixel, the liquid crystal capacitance Clc2 of each intermediate pixel, and the liquid crystal capacitance Clc3 of each dark pixel.
  • the next gate bus line 2 (n + 1) is selected with a time difference, and the TFT 4 and the TFT 5 are turned on, so that charge redistribution occurs, and the subpixel electrode of each bright pixel and the subpixel of each intermediate pixel A voltage difference is generated between the electrode and the sub-pixel electrode of each dark pixel.
  • the capacitance value of each Cd is set so that the bright pixel exhibits higher luminance than the intermediate pixel and the dark pixel, and the intermediate pixel exhibits higher luminance than the dark pixel.
  • the gate electrodes of the TFT 4 and the TFT 5 are connected to the gate bus line 2 (n + 1) in the next stage of the image.
  • the present embodiment is not limited to this, In general, it can be configured to be connected to the gate bus line 2 (n + p) in the subsequent stage of the pixel (p is an integer satisfying 1 ⁇ p ⁇ n).
  • a CS bus line 6 extends in parallel to the gate bus line 2 so as to cross a pixel region defined by the gate bus line 2 and the source bus line 4.
  • Each CS bus line 6 is provided in common to the R pixel 8, the G pixel 10, and the B pixel 12 formed in the same row in the liquid crystal display device 1.
  • the CS bus line 6n is connected to each storage capacitor counter electrode.
  • each liquid crystal capacitor and the value of each storage capacitor have a dependency on the voltage applied to each, but in the present embodiment, they are not essential matters. So ignore such dependencies. However, this premise does not limit the present embodiment, and can be similarly applied to a case where there is such dependency.
  • the CS bus line 6 has a rectangular shape.
  • a wave voltage signal may be supplied.
  • the description will be made assuming that the charge stored in the storage capacitor Cd is 0 immediately before the TFT 4 and the TFT 5 are turned on, but this does not limit the present embodiment. More generally, the same can be considered when the charge stored in the storage capacitor Cd is not 0 immediately before the TFT 4 and the TFT 5 are turned on.
  • 4 (a) to 4 (f) are timing charts schematically showing waveforms and timings of the respective voltages when the liquid crystal display device 1 is driven.
  • FIG. 4A shows the voltage waveform Vs of the data signal supplied from the source driver 24 to the source bus line 4
  • FIG. 4B shows the gate supplied from the gate driver 22 to the gate bus line 2n.
  • 4 shows the voltage waveform Vgn of the signal
  • FIG. 4C shows the voltage waveform Vg (n + 1) of the gate signal supplied to the gate bus line 2 (n + 1) by the gate driver 22,
  • FIG. 4D shows the voltage waveform Vlc1R of the subpixel electrode of the bright pixel 8a included in the R pixel 8.
  • FIG. 4E shows the voltage waveform Vlc2R of the subpixel electrode of the intermediate pixel 8b included in the R pixel 8.
  • 4F shows the voltage waveform Vlc3R of the subpixel electrode of the dark pixel 8c included in the R pixel 8.
  • FIG. Moreover, the broken line in the figure indicates the voltage waveform COMMON (Vcom) of the counter electrode.
  • the voltage Vgn of the gate signal changes from VgL (low) to VgH (high), so that the TFT1R, TFT2R, and TFT3R are simultaneously turned on (ON state). Accordingly, the voltage of the data signal is applied via the source bus line 4 to the subpixel electrode of the bright pixel 8a, the subpixel electrode of the intermediate pixel 8b, and the subpixel electrode of the dark pixel 8c.
  • Vlc1R VsR (1a)
  • Vlc2R VsR (1b)
  • Vlc3R VsR (1c) It becomes.
  • the voltage VsR of the data signal transmitted through the source bus line 4 is a display voltage corresponding to the gradation to be displayed in the pixel, and the TFT is in an on state (sometimes referred to as “selection period”). , The corresponding pixel is written.
  • the voltage Vgn of the gate signal changes from VgH to VgL, so that TFT1R, TFT2R, and TFT3R are simultaneously turned off (off state). Accordingly, the sub-pixel electrode of the bright pixel 8a, the sub-pixel electrode of the intermediate pixel 8b, and the sub-pixel electrode of the dark pixel 8c are all electrically insulated from the source bus line 4 (the period in this state) Sometimes called “non-selection period.”)
  • TFT1R, TFT2R, and TFT3R are switched from the on-state to the off-state, due to a pull-in phenomenon (also referred to as a field-through phenomenon) due to the influence of the parasitic capacitance of the TFT1R, TFT2R, and TFT3R.
  • the voltages Vlc1R, Vlc2R, and Vlc3R of the respective subpixel electrodes are decreased by ⁇ Vd1R, ⁇ Vd2R, and ⁇ Vd3R, respectively.
  • Vlc1R VsR ⁇ Vd1R (2a)
  • Vlc2R VsR ⁇ Vd2R (2b)
  • Vlc3R VsR ⁇ Vd3R (2c)
  • the voltage Vg (n + 1) of the gate signal changes from VgL to VgH, so that the TFT 4R and the TFT 5R become conductive.
  • the subpixel electrode of the intermediate pixel 8b and the storage capacitor electrode of the storage capacitor Cd2R become conductive, and the subpixel electrode of the dark pixel 8c and the storage capacitor electrode of the storage capacitor Cd3R become conductive.
  • Vlc2R VsR ⁇ VR2 (3a)
  • Vlc3R VsR ⁇ VR3 (3b)
  • ⁇ VR3 VsR ⁇ Cd3R / (Clc3R + Cd3R) (4b)
  • Clc2R, Clc3R, Cd2R, and Cd3R are: ⁇ VR2 ⁇ VR3 (5) Is set to be satisfied.
  • the voltage Vlc1R of the subpixel electrode of the bright pixel 8a does not change at time T3.
  • the voltage Vg (n + 1) of the gate signal changes from VgH to VgL, so that the TFT 4R and the TFT 5R are turned off. Accordingly, the subpixel electrode of the intermediate pixel 8b is insulated from the storage capacitor electrode of the storage capacitor Cd2R, and the subpixel electrode of the dark pixel 8c is insulated from the storage capacitor electrode of the storage capacitor Cd3R.
  • V1R VsR ⁇ Vcom (6a)
  • V2R VsR ⁇ VR2 ⁇ Vcom (6b)
  • V3R VsR ⁇ VR3-Vcom (6c) It becomes.
  • ⁇ VR2 ⁇ VR3 is satisfied, and V1R, V2R, and V3R are V3R ⁇ V2R ⁇ V1R Is assumed to be satisfied.
  • the transmittance of the liquid crystal layer included in the bright pixel 8a is higher than the transmittance of the liquid crystal layer included in each of the intermediate pixel 8b and the dark pixel 8c.
  • the transmittance is higher than the transmittance of the liquid crystal layer included in the dark pixel 8c.
  • the viewing angle characteristics are improved as described later.
  • VsG VsG-Vcom 8a
  • V2G VsG ⁇ VG2 ⁇ Vcom 8b
  • V3G VsG- ⁇ VG3-Vcom (8c) It becomes.
  • VsG indicates the voltage of the data signal supplied to each sub-pixel electrode provided in the G pixel 10 when the TFTs 1G to 3G are turned on.
  • the transmittance of the liquid crystal layer included in the bright pixel 10a is higher than the transmittance of the liquid crystal layer included in each of the intermediate pixel 10b and the dark pixel 10c, and the transmittance of the liquid crystal layer included in the intermediate pixel 10b is equal to that of the dark pixel 10c.
  • the bright pixel 10a exhibits higher luminance than the intermediate pixel 10b and the dark pixel 10c
  • the intermediate pixel 10b exhibits higher luminance than the dark pixel 10c.
  • ⁇ V12G V1G ⁇ V2G
  • ⁇ V13G V1G ⁇ V3G
  • ⁇ V23G V2G ⁇ V3G
  • VsB VsB-Vcom (11a)
  • V2B VsB ⁇ VB2 ⁇ Vcom (11b)
  • V3B VsB ⁇ VB3 ⁇ Vcom (11c) It becomes.
  • VsB indicates the voltage of the data signal supplied to each sub-pixel electrode included in the B pixel 12 when the TFTs 1B to 3B are turned on.
  • the transmittance of the liquid crystal layer included in the bright pixel 12a is higher than the transmittance of the liquid crystal layer included in each of the intermediate pixel 12b and the dark pixel 12c, and the transmittance of the liquid crystal layer included in the intermediate pixel 12b is equal to that of the dark pixel 12c.
  • the bright pixel 12a exhibits higher luminance than the intermediate pixel 12b and the dark pixel 12c
  • the intermediate pixel 12b exhibits higher luminance than the dark pixel 12c.
  • the size of the liquid crystal panel 100 can be 60 inches, and the total number of picture elements can be 3840 (horizontal direction) ⁇ 2160 (vertical direction).
  • the sizes of the R pixel 8, the G pixel 10, and the B pixel 12 constituting each picture element are 115.3 ⁇ m (micrometer) (lateral direction) ⁇ 345, respectively. .9 ⁇ m (longitudinal direction).
  • the size of the bright pixel 8a is 115.3 ⁇ m (horizontal direction) ⁇ 155.6 ⁇ m (vertical direction)
  • the size of the intermediate pixel 8b is 115.3 ⁇ m (horizontal direction) ⁇ 103.8 ⁇ m (vertical direction)
  • the pixel 8c can be configured to have a size of 115.3 ⁇ m (horizontal direction) ⁇ 86.5 ⁇ m (vertical direction). The same applies to the G pixel 10 and the B pixel 12.
  • the area of the subpixel electrode included in the bright pixel 8a of the R pixel 8 is Sa
  • the area of the subpixel electrode included in the intermediate pixel 8b is Sb
  • the area of the subpixel electrode included in the dark pixel 8c is Sc.
  • the area ratio and the capacitance values of the sub-pixel electrodes for the G pixel 10 and the B pixel 12 are set in the same manner as the area ratio and the capacitance values for the R pixel 8.
  • the liquid crystal layer (liquid crystal) included in each pixel has a non-zero threshold voltage Vth.
  • the threshold voltage is a voltage at which the alignment of the liquid crystal starts to change when the voltage applied to the liquid crystal is increased.
  • a pixel included in a VA mode liquid crystal display device does not exhibit luminance when the voltage applied to the liquid crystal included in the pixel is equal to or lower than a threshold voltage, and the voltage applied to the liquid crystal. Begins to exhibit brightness when exceeds the threshold voltage.
  • the threshold voltage Vth is described as being 2.0 V.
  • the specific threshold voltage value depends on the characteristics of the liquid crystal to be used and the specific structure of the pixel.
  • the present embodiment is not limited by the specific value of the threshold voltage.
  • FIG. 5A shows an example of the lookup table LUT1 that the control circuit 20 refers to when the 2D display mode is selected.
  • the data voltage corresponding to the maximum gradation of 255 gradations is 7.6 V (volts) and corresponds to each gradation.
  • the data voltage to be expressed is expressed as a gradation increasing function.
  • the look-up table LUT1 shown in FIG. 5A is set with gradation so that the ⁇ (gamma) value at the front viewing angle is 2.2.
  • VsR 7.6
  • V1R 7.6 (V) (6a ′′)
  • Vcom is assumed to be 0.
  • the voltages that are effectively applied to the liquid crystal layers included in each of the bright pixel 8a, the intermediate pixel 8b, and the dark pixel 8c are all threshold voltages. Greater than Vth. Therefore, when the control circuit 20 refers to the lookup table LUT1, that is, when the 2D display mode is selected, all of the bright pixels 8a, the intermediate pixels 8b, and the dark pixels 8c exhibit luminance. The same applies to the G pixel 10 and the B pixel 12.
  • FIG. 5B shows a gradation-luminance characteristic (“A” in FIG. 5B) for the bright pixel 8a and a gradation-luminance characteristic (FIG. 5) for the intermediate pixel 8b in the 2D display mode.
  • 6B is a graph showing gradation-luminance characteristics (“C” in FIG. 5B) for the dark pixel 8c.
  • a + B indicates the sum of the luminance of the bright pixel and the luminance of the intermediate pixel
  • Total indicates the luminance of the bright pixel, the luminance of the intermediate pixel, and the dark pixel. Is the sum of the luminances.
  • the dark pixel exhibits luminance at a gradation of approximately 225 gradations or more.
  • the bright pixel 8a has higher brightness than the intermediate pixel 8b and the dark pixel 8c, and the intermediate pixel 8b has higher brightness than the dark pixel 8c.
  • the dark pixel is compared with the sum of the luminance of the bright pixel, the intermediate pixel, and the dark pixel in the vicinity of the maximum gradation of 255 gradations.
  • the luminance contributes about 10%.
  • the luminance is about 10% in the 2D display mode as compared with the configuration in which the black matrix that does not exhibit the luminance in any display mode is arranged instead of the dark pixel. Will be improved.
  • FIG. 5 is a diagram schematically showing the luminance exhibited by the sub-pixels included in the R pixel 8, the G pixel 10, and the B pixel 12 in the 2D display mode.
  • the bright pixel, the intermediate pixel, and the dark pixel included in each of the R pixel 8, the G pixel 10, and the B pixel 12 all exhibit luminance. Further, as described above, the bright pixel exhibits higher luminance than the intermediate pixel and the dark pixel, and the intermediate pixel exhibits higher luminance than the dark pixel.
  • FIG. 6 shows an example of the lookup table LUT2 that the control circuit 20 refers to when the 3D display mode is selected.
  • the data voltage corresponding to the maximum gradation of 255 gradations is 5.1 V (volts), and each floor The data voltage corresponding to the tone is expressed as an increasing function of the tone.
  • the look-up table LUT2 shown in FIG. 6A is set with gradation so that the ⁇ (gamma) value at the front viewing angle is 2.2.
  • VsR 5.1
  • V1R 5.1 (V) (6a ′)
  • Vcom is assumed to be 0.
  • the voltage effectively applied to the liquid crystal layer included in each of the bright pixel 8a and the intermediate pixel 8b is larger than the threshold voltage Vth, but the dark pixel 8c includes The voltage that is effectively applied to the liquid crystal layer is smaller than the threshold voltage Vth. Therefore, when the control circuit 20 refers to the look-up table LUT2, that is, when the 3D display mode is selected, the bright pixel 8a and the intermediate pixel 8b exhibit luminance, but the dark pixel 8c has the highest gradation. Even when a data voltage corresponding to is supplied, no luminance is exhibited. Therefore, when the 3D display mode is selected, the dark pixel 8c of the R pixel 8 functions as a black matrix. Similarly, when the 3D display mode is selected, the dark pixel 10c of the G pixel 10 and the dark pixel 12c of the B pixel 12 function as a black matrix.
  • FIG. 6B shows the gradation-luminance characteristic (“A” in FIG. 6B) for the bright pixel 8a and the gradation-luminance characteristic (“(A” in FIG. 6) for the intermediate pixel 8b in the 3D display mode.
  • FIG. 7B is a graph showing “B”) in b) and gradation-luminance characteristics (“C” in FIG. 6B) for the dark pixel 8c.
  • “Total” indicates the sum of the brightness of the bright pixel, the brightness of the intermediate pixel, and the brightness of the dark pixel.
  • the dark pixel does not exhibit luminance even at the maximum gradation of 225 gradations.
  • the bright pixel 8a has a higher luminance than the intermediate pixel 8b. The same applies to the G pixel 10 and the B pixel 12.
  • FIG. 6C is a figure which shows typically the brightness
  • the dark pixel functions as a black matrix. is doing.
  • the specific size of the dark pixel is as described above, the dark pixel functions as a black matrix having a vertical width of 86.5 ⁇ m.
  • the look-up table referred to by the control circuit 20 is not limited to the LUT 2 shown in FIG.
  • the look-up table referred to by the control circuit 20 in the 3D display mode is that V3R, V3G, and V3B represented by the equations (6c), (8c), and (11c) are all Vth in the highest gradation. What is necessary is just to designate VsR, VsG, and VsB as follows.
  • FIG. 7 exemplarily shows a cross-sectional view of the backlight unit BLU, the liquid crystal panel 100, and the Patterned® Retarder 200 with a plane parallel to the source bus line 4 as a cut surface.
  • the liquid crystal panel 100 includes a first polarizing plate 100a, a TFT-Glass 100b, a TFT substrate 100c, a color filter 100d, a CF-Glass 100e, and a second polarizing plate 100f.
  • the TFT, liquid crystal capacitor, and storage capacitor of the pixel are formed on the TFT substrate 100c.
  • the polarization state of the light emitted from the backlight unit BLU and transmitted through the liquid crystal panel 100 is linearly polarized by the action of the second polarizing plate 100f.
  • the Patterned Retarder 200 converts the linearly polarized light into right circularly polarized light on the side facing the liquid crystal panel 100, and converts the linearly polarized light into left circularly polarized light.
  • a phase difference plate RL is provided. Further, the boundary between the phase difference plate RR and the phase difference plate RL is arranged such that a perpendicular line extending from the boundary to the TFT substrate 100c intersects the dark pixel.
  • the boundary between the retardation film RR and the retardation film RL is preferably arranged so that a perpendicular line extending from the boundary to the TFT substrate 100c intersects a straight line that bisects the dark pixels in the vertical direction. . With such an arrangement, the crosstalk reduction effect can be enhanced.
  • dark pixels do not exhibit luminance, and thus function as a black matrix.
  • the light emitted from the intermediate pixels arranged on the back surface of the phase difference plate RL has the propagation direction of the light.
  • the phase difference plate RL is transmitted.
  • the light emitted from the bright pixels arranged on the back surface of the phase difference plate RR the light emitted from the vicinity of the boundary between the bright pixels and the dark pixels has the propagation direction of the light of the liquid crystal panel.
  • the light passes through the retardation plate RR when it is within ⁇ degrees upward from the normal direction in the vertical direction of the liquid crystal panel.
  • the liquid crystal display device 1 has crosstalk when the angle formed between the normal direction and the line-of-sight direction of the liquid crystal panel 100 is within ⁇ degrees along the vertical direction of the liquid crystal panel. Occurrence can be suppressed.
  • the display is compared with a configuration in which a black matrix that does not exhibit luminance in any display mode is disposed instead of the dark pixels.
  • the configurations of the liquid crystal panel 100 and the Patterned Retarder 200 according to the present embodiment are not limited to the example shown in FIG.
  • a black stripe having a width smaller than the width of the dark pixel in the vertical direction may be arranged near the boundary between the phase difference plate RR and the phase difference plate RL.
  • the presence of black stripes can improve the crosstalk suppression effect.
  • the vertical width of the black stripe is smaller than the vertical width of the dark pixel, it is displayed in comparison with a configuration in which a black matrix that does not exhibit luminance in any display mode is arranged instead of the dark pixel. The brightness of the image to be improved can be improved.
  • the liquid crystal display device 1 in the 3D display mode, after a common data voltage is applied to the liquid crystal layer included in each subpixel, the liquid crystal layer included in the dark pixel is applied to the liquid crystal layer. By changing the applied voltage, the dark pixel can function as a black matrix.
  • the conventional configuration in which data voltages are supplied independently to dark pixels and subpixels other than dark pixels, data voltages are supplied to dark pixels and subpixels other than dark pixels, respectively. A data bus line is required.
  • the number of data bus lines can be reduced to half or less compared to such a conventional configuration.
  • each of the R pixel 8, the G pixel 10, and the B pixel 12 has three subpixels (bright pixel, intermediate pixel, and dark pixel), Since each sub-pixel exhibits different brightness, there is also an effect that the phenomenon of color shift that can occur in the display image is reduced.
  • the phenomenon of color misregistration is a phenomenon in which the color tone of a display image looks different when observed obliquely compared to when the display screen is observed from the front.
  • the effect of reducing color misregistration by the liquid crystal display device 1 will be described.
  • RGB color system a color system that is a system for quantitatively expressing colors
  • RGB color system using three primary colors of red (R), green (G), and blue (B).
  • R red
  • G green
  • B blue
  • RGB color system not all perceptible colors can be expressed completely, and a single wavelength color found in, for example, laser light is outside the RGB color system. If a negative value is permitted for the coefficient of the RGB value, an arbitrary color can be represented even in the RGB color system, but inconvenience arises in handling. In general, therefore, an XYZ color system in which the RGB color system is improved is used.
  • a desired color is represented by a combination of tristimulus values (X value, Y value, Z value).
  • X values, Y values, and Z values that are new stimulus values are obtained by adding the original R value, G value, and B value to each other.
  • Y value corresponds to brightness stimulus. That is, the Y value can be used as a representative value of brightness.
  • the X value is a stimulus value mainly representing red, but also contains a certain amount of color stimulus in the blue wavelength region.
  • the Z value is mainly a color stimulus representative of blue, but also includes a certain amount of color stimulus in the green and red wavelength regions.
  • colors expressed by a mixed color of red, green, blue, and yellow displayed by each pixel can also be expressed using the XYZ color system.
  • FIG. 8A shows an oblique viewing angle (more specific) for the X value, the Y value, and the Z value when the liquid crystal display device 1 according to the present embodiment displays an image in the 2D display mode.
  • it is a graph showing gradation-local ⁇ characteristics at a polar angle of 60 degrees.
  • the polar angle is an angle formed by the line-of-sight direction and the normal direction of the liquid crystal panel 100.
  • the polar angle is 0 degrees, the user observes the liquid crystal panel 100 from the front. Correspond.
  • the value of local ⁇ is desirably constant even at an oblique viewing angle. This is because the value of local ⁇ is adjusted to be constant at the front viewing angle.
  • both the local ⁇ for the X value and the local ⁇ for the Y value tend to decrease gently from around 15 gradations to around 70 gradations.
  • the trend tends to increase around 70 gradations. This is because the brightness exhibited by the intermediate pixel contributes to gradations of 70 gradations or more.
  • the local ⁇ for the Z value tends to decrease gradually from around 15 gradations to around 100 gradations.
  • the trend is increasing. This is because the intermediate pixel contributes to the local ⁇ for the Z value in gradations of 100 gradations or more.
  • both the local ⁇ for the X value and the local ⁇ for the Y value are 210 floors from around 15 gradations in the 2D display mode. It is kept substantially constant in the range up to the vicinity of the key.
  • FIG. 8B shows a floor at a polar angle of 60 degrees with respect to the X value, the Y value, and the Z value when the liquid crystal display device 1 according to the present embodiment displays an image in the 3D display mode.
  • 3 is a graph showing a tone-local ⁇ characteristic.
  • dark pixels do not exhibit luminance and function as black stripes, but as described above, bright pixels and intermediate pixels exhibit luminance.
  • the bright pixel exhibits higher brightness than the intermediate pixel.
  • both the local ⁇ for the X value and the local ⁇ for the Y value tend to decrease gradually from around 15 gradations to around 70 gradations.
  • the trend is increasing around 70 gradations. This is because the brightness exhibited by the intermediate pixel contributes to gradations of 70 gradations or more.
  • the local ⁇ with respect to the Z value tends to decrease gently from around 15 gradations to around 100 gradations.
  • the trend is increasing. This is because the intermediate pixel contributes to the local ⁇ for the Z value in gradations of 100 gradations or more.
  • both the local ⁇ for the X value and the local ⁇ for the Y value are 230 from around 15 gradations in the 3D display mode. It is kept substantially constant in the range up to the vicinity of the gradation.
  • FIG. 8C is a graph showing the gradation-local ⁇ characteristics at a polar angle of 60 degrees for the X value, the Y value, and the Z value in the liquid crystal display device according to the comparative example.
  • the liquid crystal display device according to the comparative example is different from the liquid crystal display device 1 according to the present embodiment, and each color pixel does not have a sub-pixel, but is composed of a single pixel. That is, in the liquid crystal display device according to the comparative example, each color pixel is composed of only pixels corresponding to the bright pixels in the liquid crystal display device 1.
  • both the local ⁇ for the X value and the local ⁇ for the Y value are gently decreased from around 15 gradations to around 180 gradations. There is a tendency, and there is no rise in the vicinity of 80 gradations as in the liquid crystal display device 1 according to the present embodiment. This is because, in the liquid crystal display device according to the comparative example, unlike the liquid crystal display device 1 according to the present embodiment, the pixels of each color do not have sub-pixels but are composed of a single pixel. .
  • the local ⁇ with respect to the Z value is gradually decreasing from about 15 gradations to about 220 gradations.
  • FIG. 9 is a diagram showing the grayscale-local ⁇ characteristic for the Y value in each of the 2D display mode and 3D display mode by the liquid crystal display device 1 according to the present embodiment, and the liquid crystal display device according to the comparative example.
  • “A” in FIG. 9 indicates the case of the 2D display mode by the liquid crystal display device 1
  • “B” in FIG. 9 indicates the case of the 3D display mode by the liquid crystal display device 1
  • “C” indicates the case of the liquid crystal display device according to the comparative example.
  • the local ⁇ in the 2D display mode by the liquid crystal display device 1 and the local ⁇ in the 3D display mode by the liquid crystal display device 1 are both more constant than the local ⁇ in the liquid crystal display device according to the comparative example. It is close to.
  • the phenomenon of color misregistration is suppressed in both the 2D display mode and the 3D display mode as compared with the liquid crystal display device according to the comparative example having no subpixel.
  • liquid crystal display device 1 it is possible to suppress the crosstalk in the 3D display mode while suppressing the reduction in the luminance of the display image in the 2D display mode, and the phenomenon of color misregistration. Can also be suppressed.
  • the dark pixels included in the liquid crystal display device 1 do not exhibit luminance.
  • the present embodiment is not limited to this.
  • crosstalk can also be suppressed by driving the liquid crystal display device 1 so that the luminance exhibited by the dark pixels is equal to or lower than a predetermined luminance.
  • FIGS. 10A to 10D are diagrams for explaining the case where the liquid crystal display device 1 is driven so that the luminance exhibited by the dark pixels is equal to or lower than the predetermined luminance.
  • FIG. It is sectional drawing which shows a part of panel 100 and Patterned
  • (b) is a figure which shows the image light which an observer observes when a visual line direction is a normal line direction of the liquid crystal panel 100
  • (C) is an angle formed between the line-of-sight direction and the normal direction of the liquid crystal panel 100, and when the angle along the vertical direction of the liquid crystal panel 100 is a predetermined angle ⁇ (beta)
  • (D) is an angle formed by the line-of-sight direction and the normal direction of the liquid crystal panel 100, and the angle along the vertical direction of the liquid crystal panel 100 is a predetermined angle ⁇ .
  • RB represents a dark pixel that displays the image for the right eye
  • RA represents the subpixels of both the bright pixel and the intermediate pixel that display the image for the right eye.
  • LB represents a dark pixel that displays the left-eye image
  • LA represents both the bright pixel and the intermediate pixel that display the left-eye image.
  • the dark pixel RB and the dark pixel LB correspond to any of the dark pixel 8c, the dark pixel 10c, and the dark pixel 12c, and the sub-pixel RA and the sub-pixel LA are (the bright pixel 8a and the intermediate pixel 8b).
  • Bright pixel 10a, intermediate pixel 10b represents the sub-pixel 12a, intermediate pixel 12b).
  • the boundary between the phase difference plate RR and the phase difference plate RL is a vertical line extending from the boundary to the TFT substrate 100c. It is assumed that they are arranged so as to intersect with an equally dividing straight line. With such an arrangement, the crosstalk reduction effect can be enhanced.
  • the predetermined angle ⁇ is, as shown in FIG. 10C, (1) the boundary between the sub-pixel RA and the dark pixel RB, and (2) the phase difference plate RR and the phase difference plate RL. Is an angle formed by a straight line passing through both of the boundaries closest to the dark pixel RB and a normal line of the liquid crystal panel 100, and an angle along the vertical direction of the liquid crystal panel 100. . Note that the angle ⁇ in FIG. 10C corresponds to the angle ⁇ in FIG.
  • the luminance of the image light emitted from the dark pixel RB and transmitted through the phase difference plate RL is represented by IRBL, and is emitted from the sub-pixel LA.
  • the luminance of the image light after passing through the phase difference plate RL is expressed as ILAL and emitted from the dark pixel LB, and the luminance of the image light after passing through the phase difference plate RL is expressed as ILBL and emitted from the sub-pixel RA.
  • the luminance of the image light after passing through the phase difference plate RL is represented as IRAL.
  • the luminance IRBL, the luminance ILAL, the luminance ILBL, and the luminance IRAL are emitted from the corresponding subpixels, respectively, and the effective luminance of the image light after passing through the phase difference plate, that is, as shown in FIG. It is assumed that the luminance is after time T4 in the timing chart.
  • the image light emitted from the dark pixel RB and transmitted through the phase difference plate RL is image light that causes crosstalk, and the image light emitted from the subpixel LA and transmitted through the phase difference plate RL.
  • the image light emitted from the dark pixel LB and transmitted through the phase difference plate RL is image light that does not cause crosstalk.
  • the angle formed between the viewing direction and the normal direction of the liquid crystal panel 100, and the angle along the vertical direction of the liquid crystal panel 100 is ⁇ or less.
  • the luminance IRAL is 0, and as shown in FIG. 10D, the angle formed between the line-of-sight direction and the normal direction of the liquid crystal panel 100 and the angle along the vertical direction of the liquid crystal panel 100 is ⁇
  • the luminance IRAL is generally not zero.
  • ⁇ 3 gradations in 32 gradation display corresponds to a luminance difference of 20 percent.
  • the liquid crystal display device 1 drives each subpixel so that the following inequality (A2) is satisfied in the line-of-sight direction where the luminance IRAL is zero. .
  • A2 The inequality (A2) is preferably satisfied even at the maximum gradation, that is, when the data voltage supplied to each sub-pixel has the maximum value.
  • the liquid crystal display device 1 when the angle between the line-of-sight direction and the normal direction of the liquid crystal panel 100 and the angle along the vertical direction of the liquid crystal panel 100 is equal to or less than ⁇ , the liquid crystal display device 1 is separated from the liquid crystal panel 100. After the image light emitted in the line-of-sight direction and transmitted through the phase difference plate RL, the luminance of the image light causing the crosstalk is emitted from the liquid crystal panel 100 in the line-of-sight direction and transmitted through the phase difference plate RL. It is preferable to drive each sub-pixel so that it becomes less than 20% of the luminance of the image light that does not cause crosstalk.
  • the liquid crystal display device 1 is Of the image light emitted in the line-of-sight direction and transmitted through the phase difference plate RR, the luminance of the image light causing the crosstalk is emitted from the liquid crystal panel 100 in the line-of-sight direction and transmitted through the phase difference plate RR. It is preferable to drive each sub-pixel so that it becomes less than 20% of the luminance of the image light that does not cause crosstalk among the image light.
  • the inventor determines whether the luminance of the image light that has passed through one of the phase difference plate RL and the phase difference plate RR and causes crosstalk is the level of either one of the phase difference plates RL and the phase difference plate RR. It was found that the observer does not perceive crosstalk when the image light has passed through the phase difference plate and is less than 20 percent of the luminance of the image light that does not cause crosstalk.
  • phase difference plate RR and the phase difference plate RL can be formed so that both transmittances are substantially the same.
  • the luminance exhibited by the dark pixel RB is the sub-pixel LA. Is less than 20% of the luminance, the inequality (A2) is satisfied in the line-of-sight direction where the luminance IRAL is zero.
  • the R pixel 8, the G pixel 10, and the B pixel 12 are each exemplified as a configuration including three sub-pixels (bright pixel, intermediate pixel, and dark pixel).
  • the embodiment is not limited to this.
  • at least one of the R pixel 8, the G pixel 10, and the B pixel 12 may be configured not to include an intermediate pixel. That is, for each color pixel, the number of subpixels may be two.
  • the R pixel 8, the G pixel 10, and the B pixel 12 may each include a plurality of intermediate pixels. That is, the number of subpixels may be four or more for each color pixel.
  • the effective voltage applied to the liquid crystal layer of each of the plurality of intermediate pixels for each pixel may be different from each other, and the transmittance of each of the liquid crystal layers of the plurality of intermediate pixels may be different from each other. preferable. Thereby, the phenomenon of color misregistration can be more effectively suppressed.
  • the luminance value of a subpixel decreases as the absolute value of a voltage applied to the liquid crystal layer included in each subpixel increases. Therefore, when the above-described liquid crystal panel 100 is applied to a normally white liquid crystal display device, for example, the absolute value of the difference between the voltage supplied to the CS bus line 6 and the voltage Vcom of the counter electrode is sufficiently set.
  • the effective voltage applied to the liquid crystal layer of each dark pixel at the highest gradation in the 3D display mode is larger than the effective voltage applied to the liquid crystal layer of each dark pixel at the highest gradation in the 2D display mode. May be set to be larger.
  • the above-described formula (A2) can be satisfied.
  • the liquid crystal display device is a liquid crystal display device capable of displaying in the first display mode and the second display mode, and includes a plurality of pixels arranged in a matrix and the pixels.
  • a liquid crystal panel having a plurality of sub-pixels arranged for each sub-pixel, a sub-pixel electrode arranged for each sub-pixel, the sub-pixel electrode facing the counter electrode via the liquid crystal layer, and incident light
  • an optical panel formed at positions corresponding to the odd-numbered and even-numbered rows of the liquid crystal panel, and common data for each pixel with respect to the liquid crystal layer of the plurality of subpixels After applying the voltage, the plurality of By changing the voltage applied to the liquid crystal layer for a sub-pixel near the boundary that is the sub-pixel closest to the boundary between the first optical
  • the liquid crystal display device after applying a common data voltage for each pixel to the liquid crystal layer for the plurality of subpixels, the first of the plurality of subpixels.
  • the voltage applied to the liquid crystal layer for the sub-pixel near the boundary that is the sub-pixel closest to the boundary between the first optical plate and the second optical plate the liquid crystal layer for the sub-pixel near the boundary is changed. Drive to reduce transmittance.
  • a data bus line for applying a data voltage compared to the conventional configuration in which a data voltage needs to be individually applied to the boundary vicinity subpixel and a subpixel other than the boundary vicinity subpixel.
  • the number of can be reduced. More specifically, when each pixel has two subpixels, according to the liquid crystal display device according to the present invention configured as described above, the number of data bus lines is approximately half that of the conventional configuration. Can be.
  • the data voltage is a transmittance of the liquid crystal layer for each sub-pixel in the first display mode in the first display mode. Is set to be smaller than the maximum value of the transmittance of the liquid crystal layer for each of the sub-pixels in the second display mode, so that the sub-pixels near the boundary in the first display mode exhibit The luminance is smaller than the luminance exhibited by the near-boundary subpixel in the second display mode.
  • the viewing angle in the second display mode Characteristics can be improved.
  • the number of subpixels for each pixel is three or more, and after a data voltage is applied to the liquid crystal layer for each subpixel, By changing the voltage applied to the liquid crystal layer, the transmittance of the liquid crystal layer for the sub-pixels near the boundary is reduced, and the transmittance of the liquid crystal layer for each sub-pixel other than the sub-pixels near the boundary is different from each other. Is preferable.
  • the luminance exhibited by the boundary neighboring subpixels in the first display mode is made smaller than the luminance exhibited by the boundary neighboring subpixels in the second display mode.
  • the luminance exhibited by the three or more sub-pixels of each pixel is different from each other. Therefore, the viewing angle characteristics can be further improved in the second display mode. .
  • the maximum luminance value after the decrease in the transmittance of the liquid crystal layer is the luminance exhibited by the boundary neighboring subpixel. It is preferably less than 20% of the maximum value of luminance exhibited by subpixels other than.
  • the inventor said that the observer recognizes the boundary vicinity pixel as a black pixel when the maximum brightness value of the boundary vicinity pixel is less than 20% of the maximum brightness value of the boundary vicinity pixel. Obtained knowledge.
  • the maximum luminance value after the decrease in the transmittance of the liquid crystal layer is the luminance of the sub-pixel near the boundary. Since it is less than 20 percent of the maximum value of the luminance to be exhibited, the observer recognizes the pixel near the boundary as a black pixel, that is, a black matrix.
  • the occurrence of crosstalk can be more effectively suppressed by causing the boundary vicinity subpixels to function as a black matrix.
  • a boundary between the boundary neighboring subpixel and a subpixel adjacent to the boundary neighboring subpixel is formed along a row direction.
  • a direction perpendicular to both the normal direction of the liquid crystal panel and the column direction of the liquid crystal panel is an angle formed by a straight line passing through both of the boundaries near the boundary subpixel and the normal direction of the liquid crystal panel.
  • the light is emitted from the sub-pixel near the boundary in the line-of-sight direction, and any of the first optical plate and the second optical plate in the optical panel is obtained.
  • the luminance of the image light transmitted through one of the optical plates, and the maximum value of the luminance after the transmittance of the liquid crystal layer is reduced, passes through the boundary in the row direction with respect to the subpixel near the boundary. It is preferable that it is less than 20 percent of the maximum value of the luminance of the image light emitted from the adjacent pixel in the visual line direction and transmitted through any one of the optical plates in the optical panel.
  • the inventor also provides image light emitted from the pixels near the boundary and transmitted through one of the first optical plate and the second optical plate in the optical panel.
  • the luminance is the maximum of the luminance of the image light that is emitted in the line-of-sight direction from a pixel adjacent to the boundary neighboring sub-pixel through the boundary in the row direction and transmitted through the one optical plate in the optical panel.
  • the observer has obtained knowledge that the boundary neighboring pixels are recognized as black pixels.
  • the observer recognizes the boundary neighboring pixels as black pixels, that is, a black matrix.
  • the occurrence of crosstalk can be more effectively suppressed by causing the boundary vicinity subpixels to function as a black matrix.
  • the sub-pixel near the boundary includes at least one storage capacitor formed by a storage capacitor electrode and a storage capacitor counter electrode facing the storage capacitor electrode through an insulating layer.
  • a transistor comprising a source electrode electrically connected to the storage capacitor electrode and a drain electrode electrically connected to the sub-pixel electrode
  • the liquid crystal display device comprising: After the data voltage is applied to the liquid crystal layer for each sub-pixel, the voltage applied to the liquid crystal layer for the sub-pixel near the boundary is changed by conducting the source electrode and the drain electrode included in the transistor, It is preferable that the transmittance of the liquid crystal layer with respect to the border subpixel is reduced.
  • the source electrode and the drain electrode included in the transistor are made conductive, whereby the liquid crystal layer for the sub-pixel near the boundary is formed. Since the applied voltage is changed and the transmissivity of the liquid crystal layer for the boundary subpixel is decreased, the number of data bus lines can be increased with a simple configuration in which the boundary subpixel includes the transistor. And the occurrence of crosstalk can be suppressed.
  • the display device is a display device including the liquid crystal display device, and displays a stereoscopically visible image in the first display mode.
  • the display device configured as described above, in the first display mode, a stereoscopically viewable image is displayed, so that occurrence of crosstalk can be suppressed.
  • the driving method according to the present invention is a liquid crystal display device capable of displaying in the first display mode and the second display mode, and a plurality of pixels arranged in a matrix and each pixel is arranged.
  • a liquid crystal panel having a plurality of subpixels and a subpixel electrode arranged for each of the subpixels, the subpixel electrode facing the counter electrode through the liquid crystal layer;
  • a first optical plate that generates outgoing light in a state, and a second optical plate that generates outgoing light in a second polarization state different from the first polarization state from incident light, respectively, the liquid crystal panel
  • an optical panel formed at a position corresponding to the odd-numbered and even-numbered rows of the liquid crystal display device are examples of the liquid crystal display device.
  • the liquid crystal layer After applying the data voltage, By changing the voltage applied to the liquid crystal layer for a sub-pixel near the boundary that is the sub-pixel closest to the boundary between the first optical plate and the second optical plate among the number of sub-pixels, The liquid crystal layer is driven so that the transmittance of the subpixel near the boundary is reduced, and the data voltage is transmitted in the first display mode in the liquid crystal layer in each of the subpixels in the first display mode. Is set to be smaller than the maximum value of the transmittance of the liquid crystal layer for each of the sub-pixels in the second display mode.
  • the first optical plate and the sub-pixels By changing the voltage applied to the liquid crystal layer for the sub-pixel near the boundary that is the sub-pixel closest to the boundary with the second optical plate, the transmittance of the liquid crystal layer for the sub-pixel near the boundary is reduced. To drive.
  • the number of can be reduced. More specifically, when each pixel has two sub-pixels, according to the liquid crystal display device driven by the above driving method, the number of data bus lines is substantially halved compared to the conventional configuration. Can do.
  • the data voltage is the maximum value of the transmittance of the liquid crystal layer for each sub-pixel in the first display mode in the first display mode.
  • the luminance exhibited by the sub-pixels near the boundary in the first display mode is It is smaller than the luminance exhibited by the subpixel near the boundary in the second display mode.
  • the viewing angle in the second display mode Characteristics can be improved.
  • the present invention can be suitably applied to a liquid crystal display device that displays an image in a stereoscopic manner using the Patterned-Retarder method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Liquid Crystal (AREA)

Abstract

 液晶表示装置(1)は、行列状に配置された複数の画素を有しており、各画素の副画素についての液晶層に対して画素毎に共通のデータ電圧を印加した後に、位相差板(RR)と位相差板(RL)との境界に最も近い副画素についての液晶層の透過率が減少するように駆動し、第1の表示モードにおける各副画素についての液晶層の透過率の最大値は、第2の表示モードにおける各副画素についての液晶層の透過率の最大値よりも小さい。

Description

液晶表示装置、駆動方法、および、ディスプレイ装置
 本発明は、液晶を用いて画像を表示する液晶表示装置に関する。特に、Patterned Retarder方式を用いて、画像を立体視可能に表示する液晶表示装置に関する。また、そのような液晶表示装置を駆動する駆動方法に関する。また、そのような液晶表示装置を備えているディスプレイ装置に関する。
 近年、画像を立体視不能に表示する(以下、「2D(平面)画像を表示する」とも言う)機能に加え、画像を立体視可能に表示する(以下、「3D(立体)映像を表示する」とも言う)機能を有する液晶表示装置が実現されている。
 立体映像を表示する技術としては、アクティブシャッター方式、裸眼レンチキュラー(lenticular)方式、及び、Patterned Retarder方式(偏光方式、PR方式とも呼ぶ)等が知られている。何れの方式においても、右目用画像がユーザの右目のみに提示され、左目用画像がユーザの左目のみに提示されることによって、ユーザは画像を立体的に視認することができる。
 アクティブシャッター方式を用いる液晶表示装置では、左目用のフレーム(L用フレーム)と右目用のフレーム(R用フレーム)とが交互に表示される。ユーザは、当該液晶表示装置に表示される画像を、L用フレームとR用フレームとの切り替えに同期してシャッター動作が行われる左目用レンズと右目用レンズとを有する3D用メガネを介して観測することによって、当該画像を立体的に視認することができる。
 裸眼レンチキュラー方式を用いる液晶表示装置は、左目用画像と右目用画像とを、液晶パネルの正面側に形成されたレンチキュラーレンズを介してユーザの左目と右目とに個別に提示する。これにより、ユーザは、3D用メガネを用いることなく、当該画像を立体的に視認することができる。
 Patterned Retarder方式を用いる液晶表示装置では、奇数番目の水平走査線によって画定される画素により右目用の画像が表示され、偶数番目の水平走査線によって画定される画像により左目用の画像が表示される。
 以下では、図11の(a)~(b)、および、図12を参照して、Patterned Retarder方式についてより具体的に説明を行う。図11の(a)は、Patterned Retarder方式を用いる従来の液晶表示装置の備えるバックライトユニット50、液晶パネル60、および、Patterned Retarder70を示す分解斜視図である。
 バックライトユニット50は、液晶パネル60に対して、該液晶パネル60の背面からバックライトを供給する。液晶パネル60には、水平走査線(横方向走査線)HL1~HLN(Nは水平走査線の総数)、および、垂直走査線(縦方向走査線)VL1~VLM(Mは垂直走査線の総数)のそれぞれによって画定される画素が形成されている。液晶パネル60は、各画素の備える液晶の配向を制御することによって、バックライトの透過率を画素毎に制御することができる。また、液晶パネル60は、奇数番目の水平走査線HL1、HL3、…によって画定される画素によって、右目用の画像を表示し、偶数番目の水平走査線HL2、HL4、…によって画定される画素によって、左目用の画像を表示する。
 Patterned Retarder70は、水平走査線方向を長手方向とする位相差板であって、互いに特性の異なる2種類の位相差板RRおよびRLから構成されている。ここで、位相差板RRは、直線偏光した光を右向きに円偏光した光に変換するものであり、位相差板RLは、直線偏光した光を左向きに円偏光した光に変換するものである。図11の(a)に示すように、奇数番目の水平走査線HL1、HL3、…によって画定される画素の正面側には、位相差板RRが配置され、偶数番目の水平走査線HL2、HL4、…によって画定される画素の正面側には、位相差板RLが配置されている。
 したがって、奇数番目の水平走査線によって画定される画素によって表示される右目用画像は、Patterned Retarderを透過した後、右向きに円偏光した光によって表され、偶数番目の水平走査線によって画定される画素によって表示される左目用画像は、Patterned Retarderを透過した後、左向きに円偏光した光によって表される。
 図11の(b)は、Patterned Retarder方式において用いられる3D用メガネ80を示している。図11の(b)に示すように、3D用メガネ80は、右目用レンズと左目用レンズとを備えている。右目用レンズは、右向きに円偏光した光のみを透過するものであり、左目用レンズは、左向きに円偏光した光のみを透過するものである。したがって、ユーザは、当該3D用メガネ80を使用することによって、液晶表示装置の表示する画像のうち、奇数番目の水平走査線によって画定される画素によって表示される右目用画像を、右目のみによって観測し、偶数番目の水平走査線によって画定される画素によって表示される左目用画像を、左目のみによって観測することができる。これにより、ユーザは、当該画像を立体的に視認することができる。
 また、Patterned Retarder方式の液晶表示装置は、奇数番目の水平走査線によって画定される画素、および、偶数番目の水平走査線によって画定される画素の双方を用いて、2D画像を表示することもできる。この場合、ユーザは、3D用メガネを用いることなく、当該液晶表示装置の表示する画像を観測すればよい。
 また、Patterned Retarder方式に用いられる3D用メガネ80は、アクティブシャッター方式に用いられる3D用メガネのような電気的な制御が不要なので、簡易な構成によって実現することができる。
 一方で、Patterned Retarder方式では、主として、液晶パネルを構成するGlass層の厚みが有限であることに起因して、クロストークと呼ばれる現象が生じることが知られている。
 ここで、クロストークとは、ユーザが斜め上側から液晶パネルを観測する場合、または、斜め下側から液晶パネルを観測する場合に、奇数番目の水平走査線によって画定される画素により表示される右目用画像の一部が、偶数番目の水平走査線によって画定される画素の正面側に配置された左目用位相差板を透過した後に観測され、偶数番目の水平走査線によって画定される画素により表示される左目用画像の一部が、奇数番目の水平走査線によって画定される画素の正面側に配置された右目用位相差板を透過した後に観測されることにより、左向きに円偏光した光によって表される左目用画像の中に、右目用画像が混在し、右向きに円偏光した光によって表される右目用画像の中に、左目用画像が混在してしまうという現象である。
 従来、液晶パネルおよびPatterned Retarderに、それぞれ水平走査線に沿ってブラックマトリックスおよびブラックストライプを形成することによって、上記のクロストークを抑制する構成が知られている。
 図12は、従来の液晶表示装置の備えるバックライトユニット50、液晶パネル60、および、Patterned Retarder70の垂直走査線方向(縦方向)に沿った断面図であって、n番目の水平走査線によって画定される画素、および、n+1番目の水平走査線によって画定される画素の周辺の構成を示す図である。図12においては、ブラックマトリックスおよびブラックストライプによってクロストークを抑制するように構成された液晶パネル60、および、Patterned Retarder70が示されている。
 図12に示すように、液晶パネル60の背面側(図12において向かって左側)にはバックライトユニット50が配置され、液晶パネル60の正面側(図12において向かって右側)には、Patterned Retarder70が配置されている。また、液晶パネル60は、第1の偏光板60a、TFT-Glass60b、TFT基板60c、カラーフィルタ60d、CF-Glass60e、第2の偏光板60fより構成されている。
 図12に示すように、TFT基板60cにおいて、n番目の水平走査線によって画定される画素Pnと、n+1番目の水平走査線によって画定される画素Pn+1との間には、ブラックマトリックスBMが形成されている。また、当該ブラックマトリックスBMの正面側には、カラーフィルタ60d内にブラックマトリックスBM’が形成されており、Patterned Retarder70内にブラックストライプBSが形成されている。
 このようなブラックマトリックスおよびブラックストライプによって、図12に示すように、液晶パネル60の法線方向と視線方向とのなす角が、垂直走査線方向にα度以内である場合に、クロストークの発生を抑制することができる。
 しかしながら、このような構成では、ブラックマトリックスおよびブラックストライプによって開口率が低下するため、画像の輝度が低下するという問題がある。
 非特許文献1には、各画素を垂直走査線方向に2つの副画素(上側の副画素および下側の副画素)に分割することによって、ブラックストライプを用いることなくクロストークを抑制する技術が提案されている。この技術においては、2D画像を表示する場合には、双方の副画素に、表示画像用データ電圧が供給され、3D画像を表示する場合には、上側の副画素のみに表示画像用データ電圧が供給され、下側の副画素には、黒表示用のデータ電圧が供給される。黒表示用のデータ電圧が供給される当該下側の副画素は、ブラックマトリックスとして機能する。
 したがって、非特許文献1に開示された技術によれば、2D画像を表示する場合に画像の輝度が低下することがない。また、3D画像を表示する場合には、ブラックマトリックスによってクロストークの発生を抑制することができる。
"A Nobel Polarizer Glasses-type 3D Displays with a Patterned Retarder", 2010 SID International Symposium, Washington State Convention Center, Seattle, Washington USA, May 25 2010
 しかしながら、非特許文献1に開示された技術においては、3D画像を表示する場合、上側の副画素と下側の副画素とに対して、互いに異なるデータ電圧を供給する必要があるため、2D画像のみを表示する構成に比べて、2倍の本数のデータライン(データバスライン、ソースバスライン)が必要となり、液晶パネルの設計が複雑になるという問題を有している。
 本発明は、上記の問題に鑑みてなされたものであり、その目的は、データバスラインの本数を増大させることなく、クロストークの発生を抑制することのできる液晶表示装置を実現することにある。
 上記の問題を解決するために、本発明に係る液晶表示装置は、第1の表示モードおよび第2の表示モードにより表示が可能な液晶表示装置であって、行列状に配置された複数の画素と、前記画素毎に配置された複数の副画素と、前記副画素毎に配置された副画素電極であって、液晶層を介して対向電極に対向する副画素電極と、を有する液晶パネルと、入射光から第1の偏光状態の出射光を生成する第1の光学板、および、入射光から前記第1の偏光状態とは異なる第2の偏光状態の出射光を生成する第2の光学板が、それぞれ、前記液晶パネルの奇数行および偶数行に対応する位置に形成されている光学パネルと、を備えている液晶表示装置において、前記複数の副画素についての液晶層に対して画素毎に共通のデータ電圧を印加した後に、前記複数の副画素のうち、前記第1の光学板と前記第2の光学板との境界に最も近い副画素である境界近傍副画素についての液晶層に印加される電圧を変化させることによって、当該境界近傍副画素についての液晶層の透過率が減少するように駆動し、前記データ電圧は、前記第1の表示モードにおいて、前記第1の表示モードにおける前記各副画素についての液晶層の透過率の最大値が、前記第2の表示モードにおける前記各副画素についての液晶層の透過率の最大値よりも小さくなるように設定されている、ことを特徴としている。
 上記のように構成された本発明に係る液晶表示装置は、前記複数の副画素についての液晶層に対して画素毎に共通のデータ電圧を印加した後に、前記複数の副画素のうち、前記第1の光学板と前記第2の光学板との境界に最も近い副画素である境界近傍副画素についての液晶層に印加される電圧を変化させることによって、当該境界近傍副画素についての液晶層の透過率が減少するように駆動する。
 したがって、前記境界近傍副画素と、前記境界近傍副画素以外の副画素とに対して、個別にデータ電圧を印加する必要がある従来の構成に比べて、データ電圧を印加するためのデータバスラインの本数を少なくすることができる。より具体的には、各画素が2つの副画素を有する場合、上記のように構成された本発明に係る液晶表示装置によれば、従来の構成に比べて、データバスラインの本数を略半分にすることができる。
 また、上記のように構成された本発明に係る液晶表示装置においては、前記データ電圧は、前記第1の表示モードにおいて、前記第1の表示モードにおける前記各副画素についての液晶層の透過率の最大値が、前記第2の表示モードにおける前記各副画素についての液晶層の透過率の最大値よりも小さくなるように設定されているため、第1の表示モードにおける境界近傍副画素の呈する輝度は、第2の表示モードにおける境界近傍副画素の呈する輝度よりも小さい。
 したがって、上記第1の表示モードにおいて、Patterned Retarder方式の立体視可能な画像を表示することにより、境界近傍副画素の表示する画像に起因するクロストークの発生を抑制することができる。
 また、上記第2の表示モードにおいても、各画素について、境界近傍副画素の呈する輝度は、境界近傍副画素以外の副画素の呈する輝度よりも小さいので、上記第2の表示モードにおいて、視野角特性を向上させることができる。
 また、本発明に係る駆動方法は、第1の表示モードおよび第2の表示モードにより表示が可能な液晶表示装置であって、行列状に配置された複数の画素と、前記画素毎に配置された複数の副画素と、前記副画素毎に配置された副画素電極であって、液晶層を介して対向電極に対向する副画素電極と、を有する液晶パネルと、入射光から第1の偏光状態の出射光を生成する第1の光学板、および、入射光から前記第1の偏光状態とは異なる第2の偏光状態の出射光を生成する第2の光学板が、それぞれ、前記液晶パネルの奇数行および偶数行に対応する位置に形成されている光学パネルと、を備えている液晶表示装置を駆動する駆動方法において、前記複数の副画素についての液晶層に対して画素毎に共通のデータ電圧を印加した後に、前記複数の副画素のうち、前記第1の光学板と前記第2の光学板との境界に最も近い副画素である境界近傍副画素についての液晶層に印加される電圧を変化させることによって、当該境界近傍副画素についての液晶層の透過率が減少するように駆動し、前記データ電圧は、前記第1の表示モードにおいて、前記第1の表示モードにおける前記各副画素についての液晶層の透過率の最大値が、前記第2の表示モードにおける前記各副画素についての液晶層の透過率の最大値よりも小さくなるように設定されている、ことを特徴としている。
 本発明に係る上記の駆動方法においては、前記複数の副画素についての液晶層に対して画素毎に共通のデータ電圧を印加した後に、前記複数の副画素のうち、前記第1の光学板と前記第2の光学板との境界に最も近い副画素である境界近傍副画素についての液晶層に印加される電圧を変化させることによって、当該境界近傍副画素についての液晶層の透過率が減少するように駆動する。
 したがって、前記境界近傍副画素と、前記境界近傍副画素以外の副画素とに対して、個別にデータ電圧を印加する必要がある従来の構成に比べて、データ電圧を印加するためのデータバスラインの本数を少なくすることができる。より具体的には、各画素が2つの副画素を有する場合、上記駆動方法にて駆動される液晶表示装置によれば、従来の構成に比べて、データバスラインの本数を略半分にすることができる。
 また、上記駆動方法にて駆動される液晶表示装置においては、前記データ電圧は、前記第1の表示モードにおいて、前記第1の表示モードにおける前記各副画素についての液晶層の透過率の最大値が、前記第2の表示モードにおける前記各副画素についての液晶層の透過率の最大値よりも小さくなるように設定されているため、第1の表示モードにおける境界近傍副画素の呈する輝度は、第2の表示モードにおける境界近傍副画素の呈する輝度よりも小さい。
 したがって、上記第1の表示モードにおいて、Patterned Retarder方式の立体視可能な画像を表示することにより、境界近傍副画素の表示する画像に起因するクロストークの発生を抑制することができる。
 また、上記第2の表示モードにおいても、各画素について、境界近傍副画素の呈する輝度は、境界近傍副画素以外の副画素の呈する輝度よりも小さいので、上記第2の表示モードにおいて、視野角特性を向上させることができる。
 以上のように、本発明に係る液晶表示装置は、第1の表示モードおよび第2の表示モードにより表示が可能な液晶表示装置であって、行列状に配置された複数の画素と、前記画素毎に配置された複数の副画素と、前記副画素毎に配置された副画素電極であって、液晶層を介して対向電極に対向する副画素電極と、を有する液晶パネルと、入射光から第1の偏光状態の出射光を生成する第1の光学板、および、入射光から前記第1の偏光状態とは異なる第2の偏光状態の出射光を生成する第2の光学板が、それぞれ、前記液晶パネルの奇数行および偶数行に対応する位置に形成されている光学パネルと、を備えている液晶表示装置において、前記複数の副画素についての液晶層に対して画素毎に共通のデータ電圧を印加した後に、前記複数の副画素のうち、前記第1の光学板と前記第2の光学板との境界に最も近い副画素である境界近傍副画素についての液晶層に印加される電圧を変化させることによって、当該境界近傍副画素についての液晶層の透過率が減少するように駆動し、前記データ電圧は、前記第1の表示モードにおいて、前記第1の表示モードにおける前記各副画素についての液晶層の透過率の最大値が、前記第2の表示モードにおける前記各副画素についての液晶層の透過率の最大値よりも小さくなるように設定されている、ことを特徴としている。
 上記のように構成された本発明に係る液晶表示装置によれば、各副画素に対して、個別にデータ電圧を印加する必要がある従来の構成に比べて、データ電圧を印加するためのデータバスラインの本数を少なくしつつ、クロストークの発生を効果的に抑制することができる。
本発明の実施形態に係る液晶表示装置の備える液晶パネルの等価回路を、各ドライバ、および、制御回路と共に示す図である。 本発明の実施形態に係る液晶表示装置の全体構成を示す図である。 本発明の実施形態に係る液晶表示装置を説明するための図であって、(a)は、実施形態に係る液晶表示装置の備える液晶パネルの周辺の構成を示す分解斜視図であり、(b)は、実施形態に係る液晶表示装置と共に用いられる3D用メガネを示す図であり、(c)は、実施形態に係る液晶表示装置を備えている液晶カラーテレビ受像機の概観図である。 実施形態に係る液晶表示装置を駆動する際の各電圧の波形およびタイミングを模式的に示すタイミングチャートであり、(a)は、ソースドライバがソースバスラインに供給するデータ信号の電圧波形を示しており、(b)は、ゲートドライバがn本目のゲートバスラインに供給するゲート信号の電圧波形を示しており、(c)は、ゲートドライバがn+1本目のゲートバスラインに供給するゲート信号の電圧波形を示しており、(d)は、赤色を表示する画素の備える明画素の副画素電極の電圧波形を示しており、(e)は、赤色を表示する画素の備える中間画素の副画素電極の電圧波形を示しており、(f)は、赤色を表示する画素の備える暗画素の副画素電極の電圧波形を示している。 実施形態に係る液晶表示装置において、2D表示モードが選択された場合の動作を説明するための図であって、(a)は、2D表示モードが選択された場合に制御回路が参照するルックアップテーブルの例を示すものであり、(b)は、2D表示モードにおける、各副画素の階調-輝度特性を示すグラフであり、(c)は、2D表示モードにおける、各副画素の呈する輝度を模式的に示す図である。 実施形態に係る液晶表示装置において、3D表示モードが選択された場合の動作を説明するための図であって、(a)は、3D表示モードが選択された場合に制御回路が参照するルックアップテーブルの例を示すものであり、(b)は、3D表示モードにおける、各副画素の階調-輝度特性を示すグラフであり、(c)は、3D表示モードにおける、各副画素の呈する輝度を模式的に示す図である。 実施形態に係る液晶表示装置において、3D表示モードが選択された場合の、バックライトユニット、液晶パネル、および、Patterned Retarderの、ソースバスラインに平行な直線に沿った断面図である。 実施形態に係る液晶表示装置による色ずれ現象の抑制効果を説明するための図であって、(a)は、実施形態に係る液晶表示装置において2D表示モードが選択された場合の、階調-localγ特性を示すグラフであり、(a)は、実施形態に係る液晶表示装置において3D表示モードが選択された場合の、階調-localγ特性を示すグラフであり、(c)は、比較例に係る液晶表示装置における階調-localγ特性を示すグラフである。 実施形態に係る液晶表示装置において2D表示モードが選択された場合、実施形態に係る液晶表示装置において3D表示モードが選択された場合、および、比較例に係る液晶表示装置におけるY値についての階調-localγ特性を示すグラフである。 暗画素の呈する輝度が所定の輝度以下となるように実施形態に係る液晶表示装置を駆動する場合を説明するための図であって、(a)は、液晶パネル、および、Patterned Retarderの一部を示す断面図であり、(b)は、視線方向が、液晶パネルの法線方向である場合に、観測者が観測する画像光を示す図であり、(c)は、視線方向と液晶パネルの法線方向とのなす角度であって、液晶パネルの縦方向に沿った角度が、所定の角度β(beta)である場合に、観測者が観測する画像光を示す図であり、(d)は、視線方向と液晶パネルの法線方向とのなす角度であって、液晶パネルの縦方向に沿った角度が、所定の角度より大きい場合に、観測者が観測する画像光を示す図である。 従来の液晶表示装置を説明するための図であって、(a)は、従来の液晶表示装置の備えるバックライト、液晶パネル、および、Patterned Retarderを示す分解斜視図であり、(b)は、従来の液晶表示装置と共に用いられる3D用メガネを示す図である。 従来の液晶表示装置における、バックライトユニット、液晶パネル、および、Patterned Retarderの、垂直走査線に平行な直線に沿った断面図である。
 本発明に係る実施形態について、図1~図9を参照して以下に説明する。以下の説明では、誘電異方性が負の液晶材料を用いた垂直配向型液晶表示装置(VA(Vertical Alignment)型の液晶表示装置)を例示するが、本発明はこれに限定されず、例えば、TN(Twisted Nematic)型やIPS(In-Plane Switching)型の液晶表示装置にも適用できる。また、以下の説明においては、液晶層に印加される電圧の絶対値が大きい程、液晶層の透過率が高くなるノーマリーブラック型の液晶表示装置を例示するが、本実施形態はこれに限定されるものではなく、液晶層に印加される電圧の絶対値が大きい程、液晶層の透過率が低くなるノーマリーホワイト型の液晶表示装置に対しても適用が可能である。
 (液晶表示装置1の構成)
 まず、本実施形態に係る液晶表示装置1の全体構成について図2~図3を参照して説明する。図2は、本実施形態に係る液晶表示装置1の全体構成を示す図である。図2に示すように、液晶表示装置1は、制御回路20、ゲートドライバ22、ソースドライバ24、CSドライバ26、および、液晶パネル100を備えている。
 液晶表示装置1は、立体視不能な画像を表示する2D表示モード、および、立体視可能な画像を表示する3D表示モードの何れかのモードで動作する。液晶表示装置1は、ユーザにより、当該2つの表示モードの何れか一方を選択できるように構成してもよいし、表示すべき画像を示す画像データに関連付けられたモード情報を参照することによって、当該2つの表示モードの何れか一方を自動的に選択する構成としてもよい。
 なお、2D表示モード及び3D表示モードの何れか一方を第1の表示モードをも称し、他方と第2の表示モードとも称する。
 図2に示すように、液晶表示装置1は、液晶パネル100において、複数のゲートバスライン2、複数のソースバスライン4、複数のCSバスライン6、および、各ゲートバスラインと各ソースバスラインとによって画定される画素を備えている。なお、本実施形態においては、ゲートバスライン2の総数はN(Nは正の整数)であり、ソースバスライン4の総数はM(Mは正の整数)であり、CSバスライン6の総数はNである。
 図2において、ゲートバスライン2nは、n(ただしnは1≦n≦Nを満たす整数)本目のゲートバスライン2を示している。また、ソースバスライン4mは、m(ただしmは1≦m≦Mを満たす整数)本目のソースバスライン4mを示している。また、CSバスライン6nは、n本目のCSバスライン6を示している。
 以下では、ゲートバスライン2nによって画定される各画素のことを、n番目の水平走査線HLnによって画定される各画素とも表現し、ソースバスライン4mによって画定される各画素のことを、m番目の垂直走査線VLmによって画定される各画素とも表現することがある。
 (ドライバ)
 図2に示すように、液晶表示装置1の備える液晶パネルには、各ゲートバスライン2にゲート信号を供給するゲートドライバ22と、各ソースバスライン4にデータ信号を供給するソースドライバ24と、各CSバスライン6に補助容量駆動信号を供給するCSドライバ26とが、それぞれ接続されている。これらのドライバはいずれも、制御回路20から出力された制御信号に基づいて動作する。
 また、ソースバスライン4は、後述する制御回路20から供給されるデータ電圧情報を参照し、各画素に対して、該データ電圧情報の示すデータ電圧を供給する。
 (制御回路)
 制御回路20は、表示すべき画像を示す画像データに含まれる、各絵素についての輝度を示す輝度情報、および、各絵素についての色差を示す色差情報から、各画素についての階調値を算出する。ここで、絵素とは、相異なる複数の色を個別に表示する画素から構成される単位で、本実施形態においては、後述するように、1絵素は、赤色を表示する画素、緑色を表示する画素、および、青色を表示する画素から構成されている。
 また、制御回路20は、ゲートドライバ22が供給するゲート信号、および、ソースドライバ24が供給するデータ信号のタイミングを制御する。
 制御回路20の備えるメモリには、階調値とデータ電圧との対応関係を示す対応情報(対応表、または、ルックアップテーブルとも称する)が格納されており、制御回路20は、当該対応情報を参照することによって、各画素についての階調値を、該画素の画素電極に供給すべきデータ電圧を示すデータ電圧情報に変換し、当該データ電圧情報を、ソースバスライン4に供給する。
 本実施形態においては、2D表示モードが選択されている場合に制御回路20が参照するルックアップテーブルと、3D表示モードが選択されている場合に制御回路20が参照するルックアップテーブルとは、互いに異なっている。各表示モードにおいて参照されるルックアップテーブルの具体例については、後述するため、ここでは説明を省略する。
 (液晶パネル100の周辺構成)
 図3の(a)は、液晶表示装置1における液晶パネル100の周辺の構成を示す分解斜視図である。図3の(a)に示すように、液晶表示装置1は、液晶パネル100の背面側にバックライトユニットBLUを有しており、液晶パネル100の正面側にPatterned Retarder200を有している。バックライトユニットBLU、液晶パネル100、制御回路20(図3の(a)においては図示せず)、各ドライバ(図3の(a)においては図示せず)、および、Patterned Retarder200は、背面ケースに格納される。また、Patterned Retarder200の正面側は、透明な保護パネル(図示せず)によってカバーされる。なお、以下では、液晶パネル100とPatterned Retarder200とを合わせて表示パネルと呼ぶこともある。
 バックライトユニットBLUは、液晶パネル100に対して、該液晶パネル100の背面からバックライトを供給する。バックライトユニットBLUは、例えば、白色を発光する複数のLED(Light Emitting Diode:発光ダイオード)を液晶パネル100の背面に略一様に配置する構成(直下型LEDの構成)とすることができる。この場合、バックライトユニットBLUは、拡散板を備える構成とし、上記複数のLEDが発光する光を、拡散板によって一様なバックライトとした後、液晶パネル100の背面に照射する構成とすることができる。これにより、バックライトの輝度ムラを抑制することができると共に、光の利用効率を高めることができるため消費電力を低減することができる。
 また、バックライトユニットBLUは、LEDおよび蛍光管などのバックライト用の光源を液晶パネル100のエッジ付近に配置する構成(エッジライト型の構成)としてもよい。この場合、バックライトユニットBLUは、拡散板の背面に、導光板、および、反射板をさらに備える構成とし、光源が発光する光を導光板および反射板によって一様なバックライトとした後、液晶パネル100の背面に照射する構成とすればよい。
 Patterned Retarder200は、ゲートバスラインと平行な方向を長手方向とする位相差板であって、互いに特性の異なる2種類の位相差板RRおよびRLから構成されている。ここで、位相差板RRは、直線偏光した光を右向きに円偏光した光に変換するものであり、位相差板RLは、直線偏光した光を左向きに円偏光した光に変換するものである。図3の(a)に示すように、奇数番目の水平走査線HL1、HL3、・・・によって画定される画素の正面側には、位相差板RRが配置され、偶数番目の水平走査線HL2、HL4、・・・によって画定される画素の正面側には、位相差板RLが配置されている。
 したがって、奇数番目のゲートバスラインによって画定される画素によって表示される画像は、Patterned Retarder200を透過した後、右向きに円偏光した光によって表され、偶数番目のゲートバスラインによって画定される画素によって表示される画像は、Patterned Retarder200を透過した後、左向きに円偏光した光によって表される。
 なお、位相差板RRおよび位相差板RLは、例えば、互いに光学軸の異なるλ/4波長板によって構成することができる。
 また、位相差板RRおよび位相差板RLは、より一般に、入射光から互いに異なる偏光状態の出射光を生成する光学板であると表現することができる。
 また、位相差板RRおよび位相差板RLの何れか一方を、第1の光学板とも称し、他方を第2の光学板とも称する。第1の光学板によって変換された光を第1の偏光状態の出射光とも称し、第2の光学板によって変換された光を第2の偏光状態の出射光とも称する。
 図3の(b)は、本実施形態において用いられる3D用メガネ300を示している。図3の(b)に示すように、3D用メガネ300は、右目用レンズと左目用レンズとを備えている。
 右目用レンズは、右向きに円偏光した光のみを透過するものであり、左目用レンズは、左向きに円偏光した光のみを透過するものである。したがって、ユーザは、当該3D用メガネ300を使用することによって、液晶表示装置1の表示する画像のうち、奇数番目のゲートバスラインによって画定される画素によって表示される画像を、右目のみによって観測し、偶数番目のゲートナスラインによって画定される画素によって表示される画像を、左目のみによって観測することができる。
 したがって、奇数番目のゲートバスラインによって画定される画素、および、偶数番目のゲートバスラインによって画定される画素を用いて、それぞれ、右目用画像、および、当該右目用画像と視点の異なる左目用画像を表示することによって、ユーザは当該画像を立体的に視認することができる。
 また、液晶表示装置1は、奇数番目のゲートバスラインによって画定される画素、および、偶数番目のゲートバスラインによって画定される画素の双方を用いて、2D画像を表示することもできる。この場合、ユーザは、3D用メガネ300を用いることなく、液晶表示装置1の表示する画像を観測すればよい。
 なお、本実施形態に用いられる3D用メガネ300は、アクティブシャッター方式に用いられる3D用メガネのような電気的な制御が不要なので、簡易な構成によって実現することができる。
 図3の(c)は、本実施形態に係る液晶表示装置1を備えている液晶カラーテレビ受像機の概観図である。当該液晶カラーテレビ受像機の表示部には、液晶表示装置1が実装されている。本発明に係る液晶表示装置1は、液晶カラーテレビ受像機以外にも、例えば、ノートパソコン、各種ディスプレイ、携帯電話端末、および、携帯情報端末などにも用いることができる。
 (画素構造)
 図1は、本実施形態に係る液晶表示装置1の備える液晶パネル100の1絵素当たりについての、マルチ画素構造を有する画素の等価回路を、各ドライバ、および、制御回路20と共に示す図である。制御回路20の備えるメモリには、2D表示モード用のルックアップテーブルLUT1、および、3D表示モード用のルックアップテーブルLUT2が格納されており、制御回路20は、何れかのルックアップテーブルを参照して、ソースドライバ24を制御する。
 図1に示すように、液晶表示装置1の備える液晶パネル100には複数の画素が形成されており、液晶表示装置1は、各画素を3TFT駆動方式に相当する駆動方式によって駆動する。各画素はいずれも液晶層と、当該液晶層に電圧を印加する電極とを有し、行および列を有するマトリックス状に配列されている。なお、絵素とは、相異なる複数の色を個別に表示する画素から構成される単位で、本実施形態においては、1絵素は、赤色を表示するR画素8、緑色を表示するG画素10、および、青色を表示するB画素12から構成されている。
 図1に示すように、液晶表示装置1の備える液晶パネル100は、複数のゲートバスライン2、複数のソースバスライン4、複数のCSバスライン6(補助容量配線または蓄積容量バスラインと称することもある)、複数のスイッチング素子TFT1~TFT5、複数の液晶容量Clc1~Clc3、並びに複数のキャパシタ(蓄積容量)Cd1~Cd3を備えている。
 複数のゲートバスライン2および複数のソースバスライン4は、図示しない絶縁膜を介して、互いに交差して形成されている。液晶表示装置1では、1つのゲートバスライン2と1つのソースバスライン4とによって画定される領域ごとに、赤色を表示するR画素8、緑色を表示するG画素10、および、青色を表示するB画素12の何れかが形成されている。また、R画素8、G画素10、および、B画素12は、ゲートバスライン2に沿って隣接して形成されている。これらの画素を組み合わせて用いることによって、所望のカラー画像を表示することができる。
 このように、液晶表示装置1が、R画素、G画素、および、B画素を備える構成を例に挙げ説明を行うが、本実施形態はこれに限定されるものではなく、例えば、液晶表示装置1は、R画素、G画素、および、B画素に加えて、黄色を表示するYe画素、および、白色を表示するW画素の何れか一方若しくは双方を備える構成としてもよく、そのような場合であっても、後述する効果を奏する。
 (明画素、暗画素、および中間画素)
 R画素8、G画素10、および、B画素12は、いずれも、液晶層に互いに異なる電圧を印加することができる3つ副画素(明画素、暗画素、中間画素)を有している。図1に示すように、R画素8は、明画素8a、中間画素8b、および、暗画素8cを有しており、G画素10は、明画素10a、中間画素10b、および、暗画素10cを有しており、B画素12は、明画素12a、中間画素12b、および、暗画素12cを有している。また、各中間画素、および、各暗画素は、何れも、一端がCSバスライン6に接続された蓄積容量も有している。
 本実施形態においては、各絵素を構成する各画素は、ゲートバスライン2に沿って、R画素8、G画素10、B画素12の順に配置されている。また、各明画素は、ゲートバスライン2に平行な第1の直線上に配置されており、各中間画素は、ゲートバスライン2に平行な第2の直線上に配置されており、各暗画素は、ゲートバスライン2に平行な第3の直線上に配置されている。
 また、ゲートバスライン2nによって画定されるR画素8の暗画素8cと、ゲートバスライン2(n+1)によって画定されるR画素8の明画素8aとは、ゲートバスライン2に平行な境界を介して互いに隣接している。G画素10およびB画素12についても同様である。
 また、R画素8の暗画素8cとG画素10の暗画素10cとは、ソースバスライン4に平行な境界を介して互いに隣接し、G画素10の暗画素10cとB画素12の暗画素12cとは、ソースバスライン4に平行な境界を介して互いに隣接している。明画素、および、中間画素についても同様である。
 (液晶容量)
 各画素の有する副画素は、液晶容量を有している。明画素は、液晶容量Clc1を有しており、中間画素は、液晶容量Clc2を有しており、暗画素は、液晶容量Clc3を有している。より具体的には、図1に示すように、R画素8の明画素8aは、液晶容量Clc1Rを有しており、中間画素8bは、液晶容量Clc2Rを有しており、暗画素8cは、液晶容量Clc3Rを有している。同様に、G画素10の明画素10aは、液晶容量Clc1Gを有しており、中間画素10bは、液晶容量Clc2Gを有しており、暗画素10cは、液晶容量Clc3Gを有している。同様に、B画素12の明画素12aは、液晶容量Clc1Bを有しており、中間画素12bは、液晶容量Clc2Bを有しており、暗画素12cは、液晶容量Clc3Bを有している。
 また、各液晶容量は、副画素電極と、液晶層と、該液晶層を介して該副画素電極に対向する対向電極とによって形成されている。
 (蓄積容量)
 各中間画素、および、各暗画素は、蓄積容量Cdを有している。より具体的には、図1に示すように、R画素8の中間画素8bは、蓄積容量Cd2Rを有しており、暗画素8cは、蓄積容量Cd3Rを有している。また、G画素10の中間画素10bは、蓄積容量Cd2Gを有しており、暗画素10cは、蓄積容量Cd3Gを有している。また、B画素12の中間画素12bは、蓄積容量Cd2Bを有しており、暗画素12cは、蓄積容量Cd3Bを有している。
 各蓄積容量Cd2は、対応するTFT4のソース電極に接続された蓄積容量電極と、絶縁膜と、当該絶縁膜を介して蓄積容量電極に対向する蓄積容量対向電極とによって形成されている。また、各蓄積容量Cd3は、対応するTFT5のソース電極に接続された蓄積容量電極と、絶縁膜と、当該絶縁膜を介して蓄積容量電極に対向する蓄積容量対向電極とによって形成されている。各蓄積容量対向電極は、CSバスライン6nに接続されている。
 (スイッチング素子TFT1~TFT3)
 R画素8、G画素10、および、B画素12には、いずれも、TFT(薄膜トランジスタ)1、TFT2、および、TFT3がそれぞれ形成されている。TFT1~TFT3のゲート電極は共通のゲートバスライン2nに接続されており、TFT1~TFT3のソース電極は共通のソースバスライン4に接続されている。すなわち、図1に示すように、R画素8のTFT1R、TFT2R、および、TFT3Rのソース電極は、ソースバスライン4mに接続されている。同様に、G画素10のTFT1G、TFT2G、および、TFT3Gのソース電極は、ソースバスライン4(m+1)に接続されており、B画素12のTFT1B、TFT2B、および、TFT3Bのソース電極は、ソースバスライン4(m+2)に接続されている。また、TFT1、TFT2、および、TFT3のドレイン電極は、それぞれ対応する副画素電極に接続されている。
 TFT1~TFT3、並びに、後述するTFT4およびTFT5は、それぞれ、自身の備えるゲート電極にハイレベルのゲート信号が印加されているとき、導通状態(オン状態)となり、自身の備えるゲート電極にローレベルのゲート信号が印加されているとき、非導通状態(オフ状態、遮断状態)となる。
 (スイッチング素子TFT4およびTFT5)
 また、R画素8、G画素10、および、B画素12の備える各中間画素には、TFT4が形成され、各暗画素には、TFT5が形成されている。より具体的には、R画素8の中間画素8bには、TFT4Rが形成され、暗画素8cには、TFT5Rが形成されている。また、G画素10の中間画素10bには、TFT4Gが形成され、暗画素10cには、TFT5Gが形成されている。また、B画素12の中間画素12bには、TFT4Bが形成され、暗画素12cには、TFT5Bが形成されている。
 TFT4およびTFT5のゲート電極は、当該画素の次段のゲートバスライン、すなわちゲートバスライン2(n+1)に電気的に接続されている。各TFT4のドレイン電極は、コンタクトホールを介して各中間画素8b、10b、および12bの副画素電極にそれぞれ電気的に接続されている。また、各TFT4のソース電極は、対応する蓄積容量Cdの蓄積容量電極に接続されている。より具体的には、TFT4Rのソース電極は、蓄積容量Cd2Rの蓄積容量電極に接続され、TFT4Gのソース電極は、蓄積容量Cd2Gの蓄積容量電極に接続され、TFT4Bのソース電極は、蓄積容量Cd2Bの蓄積容量電極に接続されている。
 同様に、各TFT5のドレイン電極は、コンタクトホールを介して各暗画素8c、10c、および12cの副画素電極に電気的に接続されている。また、各TFT5のソース電極は、対応する蓄積容量Cdの蓄積容量電極に接続されている。より具体的には、TFT5Rのソース電極は、蓄積容量Cd3Rの蓄積容量電極に接続され、TFT5Gのソース電極は、蓄積容量Cd3Gの蓄積容量電極に接続され、TFT5Bのソース電極は、蓄積容量Cd3Bの蓄積容量電極に接続されている。
 本実施形態の液晶表示装置1においては、ゲートバスライン2nが選択されて各明画素の液晶容量Clc1、各中間画素の液晶容量Clc2、および、各暗画素の液晶容量Clc3に電荷が蓄えられた後に、時間差で次のゲートバスライン2(n+1)が選択され、TFT4およびTFT5がオン状態となることによって、電荷の再配分が生じ、各明画素の副画素電極と、各中間画素の副画素電極と、各暗画素の副画素電極との間に電圧差を生じさせている。本実施形態においては、各Cdの容量値は、明画素が中間画素および暗画素よりも高い輝度を呈し、中間画素が暗画素よりも高い輝度を呈するように設定されているものとする。
 なお、上記の説明では、TFT4およびTFT5のゲート電極は、当該画像の次段のゲートバスライン2(n+1)に接続されているとしたが、本実施形態はこれに限定されるものではなく、一般に、当該画素の後段のゲートバスライン2(n+p)(pは1≦p<nを満たす整数)に接続される構成とすることができる。
 (CSバスライン6)
 ゲートバスライン2およびソースバスライン4により画定された画素領域を横切るように、CSバスライン6がゲートバスライン2に並列して延びている。各CSバスライン6は、液晶表示装置1における同一行に形成されたR画素8、G画素10、および、B画素12に共通して設けられている。CSバスライン6nは、各蓄積容量対向電極に接続されている。
 (液晶表示装置1の基本動作)
 以下では、液晶表示装置1の備える液晶パネル100の基本的な駆動方法について、図4の(a)~(f)を参照して説明する。なお、以下では、まず、R画素8の駆動について説明を行い、その後、G画素10、および、B画素12の駆動について説明を行う。
 また、一般には、各液晶容量の値、および、各蓄積容量の値は、それぞれに印加される電圧への依存性を有するが、本実施形態においては本質的な事項ではないため、以下の説明ではそのような依存性を無視する。ただし、この前提は、本実施形態を限定するものではなく、そのような依存性がある場合に対しても、同様に適用することができる。
 また、以下では、簡単化のため、CSバスライン6の電位が0である場合を例にとり説明を行うが、本実施形態はこれに限定されるものではなく、例えば、CSバスライン6に矩形波の電圧信号が供給される構成としてもよい。
 また、以下では、簡単のため、TFT4およびTFT5が導通する直前の時点において、蓄積容量Cdに蓄積されている電荷が0であるとして説明を行うが、これは本実施形態を限定するものではなく、より一般的に、TFT4およびTFT5が導通する直前の時点において、蓄積容量Cdに蓄積されている電荷が0でない場合にも同様に考えることができる。
 また、以下では、簡単のため、ソースバスラインから各副画素電極に対して、正極性の電圧が供給される場合について説明を行うが、ソースバスラインから各副画素電極に対して、負極性の電圧が供給される場合についても同様に考えることができる。
 図4の(a)~(f)は、液晶表示装置1を駆動する際の各電圧の波形およびタイミングを模式的に示したタイミングチャートである。
 図4の(a)は、ソースドライバ24がソースバスライン4に供給するデータ信号の電圧波形Vsを示しており、図4の(b)は、ゲートドライバ22がゲートバスライン2nに供給するゲート信号の電圧波形Vgnを示しており、図4の(c)は、ゲートドライバ22がゲートバスライン2(n+1)に供給するゲート信号の電圧波形Vg(n+1)を示しており、図4の(d)は、R画素8の備える明画素8aの副画素電極の電圧波形Vlc1Rを示しており、図4の(e)は、R画素8の備える中間画素8bの副画素電極の電圧波形Vlc2Rを示しており、図4の(f)は、R画素8の備える暗画素8cの副画素電極の電圧波形Vlc3Rを示している。また、図中の破線は、対向電極の電圧波形COMMON(Vcom)を示している。
 (R画素8の駆動)
 まず、時刻T1において、ゲート信号の電圧Vgnが、VgL(ロー)からVgH(ハイ)に変化することにより、TFT1R、TFT2R、および、TFT3Rが同時に導通状態(オン状態)となる。これに伴い、明画素8aの副画素電極、中間画素8bの副画素電極、および、暗画素8cの副画素電極に対し、ソースバスライン4を介してデータ信号の電圧が印加され、明画素8aの副画素電極の電圧Vlc1R、中間画素8bの副画素電極の電圧Vlc2R、および、暗画素8cの副画素電極の電圧Vlc3Rは、時刻T1におけるデータ信号の電圧VsRへと変化し、
 Vlc1R=VsR   …(1a)
 Vlc2R=VsR   …(1b)
 Vlc3R=VsR   …(1c)
となる。
 ソースバスライン4を介して伝達されるデータ信号の電圧VsRは当該画素において表示すべき階調に対応する表示電圧であり、TFTがオン状態の間(「選択期間」ということもある。)に、対応する画素に書き込まれる。
 続いて、時刻T2において、ゲート信号の電圧VgnがVgHからVgLに変化することにより、TFT1R、TFT2R、および、TFT3Rが同時に非導通状態(オフ状態)となる。これに伴い、明画素8aの副画素電極、中間画素8bの副画素電極、および、暗画素8cの副画素電極は、全てソースバスライン4と電気的に絶縁される(この状態にある期間を「非選択期間」ということがある。)。
 なお、一般には、TFT1R、TFT2R、および、TFT3Rがオン状態からオフ状態に切り替わった直後、TFT1R、TFT2R、および、TFT3Rの有する寄生容量等の影響による引き込み現象(フィールドスルー現象とも呼ばれる)のために、それぞれの副画素電極の電圧Vlc1R、Vlc2R、および、Vlc3Rは、それぞれ、ΔVd1R、ΔVd2R、および、ΔVd3Rだけ低下し、
 Vlc1R=VsR-ΔVd1R   …(2a)
 Vlc2R=VsR-ΔVd2R   …(2b)
 Vlc3R=VsR-ΔVd3R   …(2c)
となるが、以下の説明においては、このようなフィールドスルー現象による電圧降下ΔVd1R、ΔVd2R、および、ΔVd3Rの寄与を無視することにする。
 続いて、時刻T3において、ゲート信号の電圧Vg(n+1)が、VgLからVgHに変化することにより、TFT4RおよびTFT5Rが導通状態となる。これに伴い、中間画素8bの副画素電極と、蓄積容量Cd2Rの蓄積容量電極とが導通状態となり、暗画素8cの副画素電極と、蓄積容量Cd3Rの蓄積容量電極とが導通状態となる。
 これにより、中間画素8bの副画素電極の電圧Vlc2R、および、暗画素8cの副画素電極の電圧Vlc3Rは、
 Vlc2R=VsR-ΔVR2   …(3a)
 Vlc3R=VsR-ΔVR3   …(3b)
となる。ここで、ΔVR2、および、ΔVR3は、
 ΔVR2=VsR×Cd2R/(Clc2R+Cd2R)   …(4a)
 ΔVR3=VsR×Cd3R/(Clc3R+Cd3R)   …(4b)
によって与えられる。なお、本実施形態においては、Clc2R、Clc3R、Cd2R、および、Cd3Rは、
 ΔVR2<ΔVR3   …(5)
が満たされるように設定されているものとする。
 一方で、明画素8aの副画素電極の電圧Vlc1Rは、時刻T3において、変化しない。
 続いて、時刻T4において、ゲート信号の電圧Vg(n+1)がVgHからVgLに変化することにより、TFT4RおよびTFT5Rが非導通状態となる。これに伴い、中間画素8bの副画素電極は、蓄積容量Cd2Rの蓄積容量電極と絶縁され、暗画素8cの副画素電極は、蓄積容量Cd3Rの蓄積容量電極と絶縁される。
 以上の過程を経た後、明画素8a、中間画素8b、および、暗画素8cのそれぞれの液晶層に印加される実効電圧V1R、V2R、および、V3Rは、
 V1R=VsR-Vcom        …(6a)
 V2R=VsR-ΔVR2-Vcom   …(6b)
 V3R=VsR-ΔVR3-Vcom   …(6c)
となる。上述のように、本実施形態においては、ΔVR2<ΔVR3が満たされており、V1R、V2R、および、V3Rは、
 V3R<V2R<V1R
を満たしているものとする。したがって、以上の過程を経た後、明画素8aの備える液晶層の透過率は、中間画素8bおよび暗画素8cのそれぞれの備える液晶層の透過率よりも高くなり、中間画素8bの備える液晶層の透過率は、暗画素8cの備える液晶層の透過率よりも高くなる。これにより、明画素8aは、中間画素8bおよび暗画素8cよりも高い輝度を呈し、中間画素8bは、暗画素8cよりも高い輝度を呈する。
 なお、R画素の備える明画素8aおよび中間画素8bのそれぞれの液晶層に印加される実効電圧の差ΔV12R(=V1R-V2R)は、
 ΔV12R=ΔVR2        …(7a)
と表され、R画素の備える明画素8aおよび暗画素8cのそれぞれの液晶層に印加される実効電圧の差ΔV13R(=V1R-V3R)は、
 ΔV13R=ΔVR3        …(7b)
と表され、R画素の備える中間画素8bおよび暗画素8cのそれぞれの液晶層に印加される実効電圧の差ΔV23R(=V2R-V3R)は、
 ΔV23R=ΔVR3-ΔVR2   …(7c)
と表される。
 このように、各副画素の液晶層に印加される実効電圧を互いに異ならせることにより、後述するように、視野角特性が向上するという効果を奏する。
 (G画素10の駆動)
 G画素10についても、同様の駆動が行われ、G画素10の明画素10a、中間画素10b、および、暗画素10cのそれぞれの液晶層に印加される実効電圧V1G、V2G、および、V3Gは、
 V1G=VsG-Vcom        …(8a)
 V2G=VsG-ΔVG2-Vcom   …(8b)
 V3G=VsG-ΔVG3-Vcom   …(8c)
となる。ここで、VsGは、TFT1G~TFT3Gが導通状態になったときに、G画素10の備える各副画素電極に供給されるデータ信号の電圧を示している。また、ΔVG2およびΔVG3は、
 ΔVG2=VsG×Cd2G/(Clc2G+Cd2G)   …(9a)
 ΔVG3=VsG×Cd3G/(Clc3G+Cd3G)   …(9b)
によって与えられる。
 また、R画素8と同様に、本実施形態においては、ΔVG2<ΔVG3が満たされており、V1G、V2G、および、V3Gは、
 V3G<V2G<V1G
を満たしているものとする。したがって、明画素10aの備える液晶層の透過率は、中間画素10bおよび暗画素10cのそれぞれの備える液晶層の透過率よりも高くなり、中間画素10bの備える液晶層の透過率は、暗画素10cの備える液晶層の透過率よりも高くなる。これにより、明画素10aは、中間画素10bおよび暗画素10cよりも高い輝度を呈し、中間画素10bは、暗画素10cよりも高い輝度を呈する。
 なお、G画素の備える明画素10aおよび中間画素10bのそれぞれの液晶層に印加される実効電圧の差ΔV12G(=V1G-V2G)は、
 ΔV12G=ΔVG2        …(10a)
と表され、G画素の備える明画素10aおよび暗画素10cのそれぞれの液晶層に印加される実効電圧の差ΔV13G(=V1G-V3G)は、
 ΔV13G=ΔVG3        …(10b)
と表され、G画素の備える中間画素10bおよび暗画素10cのそれぞれの液晶層に印加される実効電圧の差ΔV23G(=V2G-V3G)は、
 ΔV23G=ΔVG3-ΔVG2   …(10c)
と表される。
 (B画素12の駆動)
 B画素12についても、同様の駆動が行われ、B画素12の明画素12a、中間画素12b、および、暗画素12cのそれぞれの液晶層に印加される実効電圧V1B、V2B、および、V3Bは、
 V1B=VsB-Vcom        …(11a)
 V2B=VsB-ΔVB2-Vcom   …(11b)
 V3B=VsB-ΔVB3-Vcom   …(11c)
となる。ここで、VsBは、TFT1B~TFT3Bが導通状態になったときに、B画素12の備える各副画素電極に供給されるデータ信号の電圧を示している。また、ΔVB2およびΔVB3は、
 ΔVB2=VsB×Cd2B/(Clc2B+Cd2B)   …(12a)
 ΔVB3=VsB×Cd3B/(Clc3B+Cd3B)   …(12b)
によって与えられる。
 また、R画素8およびG画素10と同様に、本実施形態においては、ΔVB2<ΔVB3が満たされており、V1B、V2B、および、V3Bは、
 V3B<V2B<V1B
を満たしているものとする。したがって、明画素12aの備える液晶層の透過率は、中間画素12bおよび暗画素12cのそれぞれの備える液晶層の透過率よりも高くなり、中間画素12bの備える液晶層の透過率は、暗画素12cの備える液晶層の透過率よりも高くなる。これにより、明画素12aは、中間画素12bおよび暗画素12cよりも高い輝度を呈し、中間画素12bは、暗画素12cよりも高い輝度を呈する。
 なお、B画素の備える明画素12aおよび中間画素12bのそれぞれの液晶層に印加される実効電圧の差ΔV12B(=V1B-V2B)は、
 ΔV12B=ΔVB2        …(13a)
と表され、B画素の備える明画素12aおよび暗画素12cのそれぞれの液晶層に印加される実効電圧の差ΔV13B(=V1B-V3B)は、
 ΔV13B=ΔVB3        …(13b)
と表され、B画素の備える中間画素12bおよび暗画素12cのそれぞれの液晶層に印加される実効電圧の差ΔV23B(=V2B-V3B)は、
 ΔV23B=ΔVB3-ΔVB2   …(13c)
と表される。
 (各画素のサイズ、および、各容量値の具体例)
 以下に、本実施形態における液晶パネル100の備える各画素のサイズ、各液晶容量の容量値、および、各蓄積容量の容量値の例について説明する。
 本実施形態においては、例えば、液晶パネル100のサイズを60インチとし、絵素の総数を3840(横方向)×2160(縦方向)とすることができる。このような構成の場合、液晶パネル100は、各絵素を構成するR画素8、G画素10、および、B画素12のサイズが、それぞれ、115.3μm(マイクロメートル)(横方向)×345.9μm(縦方向)となるように構成することができる。また、この場合、明画素8aのサイズが115.3μm(横方向)×155.6μm(縦方向)、中間画素8bのサイズが115.3μm(横方向)×103.8μm(縦方向)、暗画素8cのサイズが、115.3μm(横方向)×86.5μm(縦方向)となるように構成することができる。G画素10、および、B画素12についても同様である。
 また、本実施形態においては、R画素8の明画素8aが備える副画素電極の面積をSa、中間画素8bが備える副画素電極の面積をSb、暗画素8cが備える副画素電極の面積をScと表すことにすると、Sa、Sb、および、Scは、
 Sa:Sb:Sc=1.8:1.2:1.0
を満たしており、R画素8の明画素8aの液晶容量Clc1R、中間画素8bの液晶容量Clc2R、および、暗画素8cの液晶容量Clc3Rは、
 Clc1R=180pF(ピコファラド)
 Clc2R=120pF
 Clc3R=100pF
である。
 また、本実施形態においては、R画素8の中間画素8bおよび暗画素8cがそれぞれ備える蓄積容量Cd2RおよびCd3Rの値は、
 Cd2R=48pF
 Cd3R=156pF
に設定されている。
 なお、G画素10およびB画素12についての副画素電極の面積比並びに各容量値は、R画素8についての面積比並びに各容量値と同様に設定されている。
 各容量値が、上記のように設定されている場合、数式(4a)および(4b)によって定義されるΔVR2およびΔVR3の値は、
 ΔVR2=VsR×48/(120+48)=VsR×2/7   …(4a’)
 ΔVR3=VsR×156/(100+156)=VsR×39/64 …(4b’)
となって、ΔVR2<ΔVR3が満たされている。
 ΔVG2、ΔVG3、ΔVB2、および、ΔVB3についても同様である。
 (液晶の閾値電圧について)
 各画素の有する液晶層(液晶)は、0でない閾値電圧Vthを有する。ここで、閾値電圧とは、液晶に印加される電圧を上昇させていったときに、液晶の配向が変化し始める電圧のことである。本実施形態のようにVAモードの液晶表示装置の有する画素は、該画素の備える液晶に印加される電圧が閾値電圧以下である場合には、輝度を呈することはなく、液晶に印加される電圧が閾値電圧を越えた場合に、輝度を呈し始める。
 本実施形態においては、閾値電圧Vthは、2.0Vであるとして説明を行うが、具体的な閾値電圧の値は、使用する液晶の特性、および、画素の具体的な構造に依存するものであり、本実施形態は、閾値電圧の具体的な値によって限定されるものではない。
 (2D表示モード)
 以下では、2D表示モードが選択されている場合、すなわち、制御回路20が2D表示モード用のルックアップテーブルを参照する場合に、各画素が呈する輝度について図5の(a)~(c)を参照して説明する。
 図5の(a)は、2D表示モードが選択されている場合に、制御回路20が参照するルックアップテーブルLUT1の例を示している。
 図5の(a)に示すように、2D表示モード用のルックアップテーブルLUT1においては、最高階調である255階調に対応するデータ電圧は7.6V(ボルト)であり、各階調に対応するデータ電圧は、階調の増加関数として表現されている。また、図5の(a)に示すルックアップテーブルLUT1は、正面視野角におけるγ(ガンマ)値が2.2となるように階調設定されたものである。
 ルックアップテーブルLUT1における255階調に対応するデータ電圧が、ソースバスライン4を介して供給された場合、数式(4a’)および(4b’)に、VsR=7.6を代入して、
 ΔVR2=7.6×2/7=2.17(V)    …(4a’’)
 ΔVR3=7.6×39/64=4.63(V)   …(4b’’)
であるので、R画素8の明画素8a、中間画素8b、および、暗画素8cのそれぞれの液晶層に印加される実効電圧V1R、V2R、および、V3Rは、
 V1R=7.6(V)             …(6a’’)
 V2R=7.6-2.17=5.43(V)   …(6b’’)
 V3R=7.6-4.63=2.97(V)   …(6c’’)
となる。ここで、Vcomは0であるとした。
 数式(6a’’)~(6c’’)が示すように、明画素8a、中間画素8b、および、暗画素8cのそれぞれが備える液晶層に実効的に印加される電圧は、何れも閾値電圧Vthより大きい。したがって、制御回路20が、ルックアップテーブルLUT1を参照する場合、すなわち、2D表示モードが選択されている場合、明画素8a、中間画素8b、および、暗画素8cは何れも輝度を呈する。また、G画素10およびB画素12についても同様である。
 図5の(b)は、2D表示モードにおける、明画素8aについての階調-輝度特性(図5の(b)における「A」)、中間画素8bについての階調-輝度特性(図5の(b)における「B」)、および、暗画素8cについての階調-輝度特性(図5の(b)における「C」)を示すグラフである。図5の(b)において、「A+B」は、明画素の輝度と中間画素の輝度との和を示すものであり、「Total」は、明画素の輝度、中間画素の輝度、および、暗画素の輝度の総和を示すものである。図5の(b)から明らかなように、暗画素は、略225階調以上の階調において輝度を呈している。また、明画素8aは、中間画素8bおよび暗画素8cよりも高い輝度を呈し、中間画素8bは、暗画素8cよりも高い輝度を呈している。また、G画素10およびB画素12についても同様である。
 また、図5の(b)に示すように、2D表示モードにおいては、最高階調の255階調付近において、明画素、中間画素、および、暗画素の輝度の総和に対して、暗画素の輝度は10パーセント程度寄与している。
 したがって、本実施形態に係る液晶表示装置1によれば、暗画素に代えて、何れの表示モードにおいても輝度を呈しないブラックマトリックスを配置する構成に比べて、2D表示モードにおいて、10パーセント程度輝度が向上することになる。
 図5の(c)は、2D表示モードにおける、R画素8、G画素10、および、B画素12の備える各副画素の呈する輝度を模式的に示す図である。図5の(c)に示すように、R画素8、G画素10、および、B画素12の各画素の備える明画素、中間画素、および、暗画素は、何れも輝度を呈している。また、上述したように、明画素は、中間画素および暗画素よりも高い輝度を呈し、中間画素は、暗画素よりも高い輝度を呈している。
 (3D表示モード)
 続いて、3D表示モードが選択されている場合、すなわち、制御回路20が3D表示モード用のルックアップテーブルを参照する場合に、各画素が呈する輝度について図6の(a)~(c)を参照して説明する。
 図6の(a)は、3D表示モードが選択されている場合に、制御回路20が参照するルックアップテーブルLUT2の例を示している。
 一方で、図6の(a)に示すように、3D表示モード用のルックアップテーブルLUT2においては、最高階調である255階調に対応するデータ電圧は5.1V(ボルト)であり、各階調に対応するデータ電圧は、階調の増加関数として表現されている。また、図6の(a)に示すルックアップテーブルLUT2は、正面視野角におけるγ(ガンマ)値が2.2となるように階調設定されたものである。
 ルックアップテーブルLUT2における255階調に対応するデータ電圧が、ソースバスライン4を介して供給された場合、数式(4a’)および(4b’)に、VsR=5.1を代入して、
 ΔVR2=5.1×2/7=1.46(V)   …(4a’’’)
 ΔVR3=5.1×39/64=3.11(V)   …(4b’’’)
であるので、R画素8の明画素8a、中間画素8b、および、暗画素8cのそれぞれの液晶層に印加される実効電圧V1R、V2R、および、V3Rは、
 V1R=5.1(V)            …(6a’)
 V2R=5.1-1.46=3.64(V)  …(6b’)
 V3R=5.1-3.11=1.99(V)    …(6c’)
となる。ここで、Vcomは0であるとした。
 数式(6a’)~(6c’)が示すように、明画素8aおよび中間画素8bのそれぞれが備える液晶層に実効的に印加される電圧は、閾値電圧Vthより大きいが、暗画素8cの備える液晶層に実効的に印加される電圧は、閾値電圧Vthより小さい。したがって、制御回路20が、ルックアップテーブルLUT2を参照する場合、すなわち、3D表示モードが選択されている場合、明画素8aおよび中間画素8bは、輝度を呈するが、暗画素8cは、最高階調に対応するデータ電圧が供給された場合であっても、輝度を呈しない。したがって、3D表示モードが選択されている場合、R画素8の暗画素8cは、ブラックマトリックスとして機能することになる。同様に、3D表示モードが選択されている場合、G画素10の暗画素10c、および、B画素12の暗画素12cは、ブラックマトリックスとして機能することになる。
 図6の(b)は、3D表示モードにおける、明画素8aについての階調-輝度特性(図6(b)における「A」)、中間画素8bについての階調-輝度特性(図6の(b)における「B」)、および、暗画素8cについての階調-輝度特性(図6の(b)における「C」)を示すグラフである。図6の(b)において、「Total」は、明画素の輝度、中間画素の輝度、および、暗画素の輝度の和を示すものである。図6の(b)から明らかなように、暗画素は、最高階調の225階調においても、輝度を呈しない。また、明画素8aは、中間画素8bよりも高い輝度を呈している。また、G画素10およびB画素12についても同様である。
 図6の(c)は、3D表示モードにおける、R画素8、G画素10、および、B画素12の備える各副画素の呈する輝度を模式的に示す図である。図6の(c)に示すように、R画素8、G画素10、および、B画素12のそれぞれについて、明画素は中間画素よりも高い輝度を呈しており、暗画素は、ブラックマトリックスとして機能している。なお、暗画素の具体的なサイズが上述したものである場合、暗画素は、縦方向の幅が86.5μmのブラックマトリックスとして機能することになる。
 なお、3D表示モードにおいて、制御回路20が参照するルックアップデーブルは、図6の(a)に示すLUT2に限定されるものではない。一般に、3D表示モードにおいて制御回路20が参照するルックアップデーブルは、最高階調において、数式(6c)、(8c)および(11c)によって表されるV3R、V3G、およびV3Bが、何れも、Vth以下となるような、VsR、VsG、および、VsBを指定するものであればよい。
 また、上記の例では、Cd2R=48pF、および、Cd3R=156pFであるとして説明を行ったが、Nf番目のフレームとNf+1番目のフレームとに対して、互いに反対極性のデータ信号を供給する極性反転駆動を行う場合には、蓄積容量Cd2RおよびCd3Rの容量値をより小さく設定したとしても、上述した効果と同様の効果が得られる。具体的には、正極性のデータ信号に対して図6の(a)に示したルックアップテーブルLUT2を用い、負極性のデータ信号に対して、図6の(a)に示したルックアップテーブルLUT2でデータ電圧の極性を反転させたものを用いる場合には、Cd2R=24pF、および、Cd3R=70pFまで容量値を小さくしたとしても、各暗画素はブラックマトリックスとして機能する。
 (3D表示モードにおけるクロストーク抑制効果)
 以下では、3D表示モードが選択された場合の、液晶表示装置1によるクロストーク抑制効果について説明する。
 図7は、バックライトユニットBLU、液晶パネル100、および、Patterned Retarder200の、ソースバスライン4に平行な面を切断面とする断面図を例示的に示している。図7に示す例においては、液晶パネル100は、第1の偏光板100a、TFT-Glass100b、TFT基板100c、カラーフィルタ100d、CF-Glass100e、および、第2の偏光板100fを備えており、各画素のTFT、液晶容量、および、蓄積容量は、TFT基板100cに形成されている。
 バックライトユニットBLUから出射され、液晶パネル100を透過した光の偏光状態は、第2の偏光板100fの作用により、直線偏光となっている。
 Patterned Retarder200は、液晶パネル100に面する側に、当該直線偏光した光を右向きに円偏光した光に変換する位相差板RR、および、当該直線偏光した光を左向きに円偏光した光に変換する位相差板RLを備えている。また、位相差板RRと位相差板RLとの境界は、当該境界からTFT基板100cに下ろした垂線が暗画素と交わるように配置されている。
 また、位相差板RRと位相差板RLとの境界は、当該境界からTFT基板100cに下ろした垂線が、暗画素を縦方向に2等分する直線と交わるように配置されていることが好ましい。このような配置とすることにより、クロストークの低減効果を高めることができる。
 上述のように、3D表示モードにおいては、暗画素は、輝度を呈しないため、ブラックマトリックスとして機能することになる。
 図7に示すように、位相差板RLの背面に配置された中間画素から出射される光のうち、該中間画素と暗画素との境界付近から出射される光は、該光の伝播方向が、液晶パネルの法線方向から、液晶パネルの縦方向下向きにθ(theta)度以内である場合に、該位相差板RLを透過する。同様に、位相差板RRの背面に配置された明画素から出射される光のうち、該明画素と暗画素との境界付近から出射される光は、該光の伝播方向が、液晶パネルの法線方向から、液晶パネルの縦方向上向きにθ度以内である場合に、該位相差板RRを透過する。
 したがって、液晶表示装置1は、図7に示すように、液晶パネル100の法線方向と視線方向とのなす角が、液晶パネルの縦方向に沿ってθ度以内である場合に、クロストークの発生を抑制することができる。
 また、液晶表示装置1の備える暗画素は、2D表示モードにおいては、輝度を呈するため、暗画素に代えて、何れの表示モードにおいても輝度を呈しないブラックマトリックスを配置する構成に比べて、表示する画像の輝度が向上する。
 なお、本実施形態に係る液晶パネル100およびPatterned Retarder200の構成は、図7に示す例に限定されるものではない。例えば、位相差板RRと位相差板RLとの境界付近に、暗画素の縦方向の幅よりも小さい幅を有するブラックストライプを配置する構成としてもよい。このような構成においては、ブラックストライプが存在することによって、クロストークの抑制効果を向上させることができる。また、ブラックストライプの縦方向の幅は、暗画素の縦方向の幅よりも小さいので、暗画素に代えて、何れの表示モードにおいても輝度を呈しないブラックマトリックスを配置する構成に比べて、表示する画像の輝度を向上させることができる。
 以上のように、本実施形態に係る液晶表示装置1によれば、3D表示モードにおいて、各副画素の備える液晶層に対して共通のデータ電圧が印加された後に、暗画素の備える液晶層に印加される電圧を変化させることによって、当該暗画素をブラックマトリックスとして機能させることができる。一方で、暗画素と暗画素以外の副画素とに対して、データ電圧を独立に供給する従来の構成においては、暗画素と暗画素以外の副画素とに対して、各々データ電圧を供給するためのデータバスラインが必要になる。
 本実施形態に係る液晶表示装置1によれば、そのような従来の構成に比べて、データバスラインの本数を半分以下にすることができる。
 (色ずれ抑制効果)
 本実施形態に係る液晶表示装置1においては、R画素8、G画素10、および、B画素12のそれぞれが3つの副画素(明画素、中間画素、および、暗画素)を有しており、各副画素は互いに異なる輝度を呈するので、表示画像に生じ得る色ずれの現象が低減されるという効果も奏する。ここで、色ずれの現象とは、表示画面を正面から観察した場合に比べて、斜めから観察したときでは表示画像の色調が異なって見えてしまう現象のことである。以下では、液晶表示装置1による色ずれの低減効果について説明する。
 (XYZ表色系)
 まず、色を定量的に表す体系である表色系について説明する。代表的な表色系として、赤(R)、緑(G)、および青(B)の三原色を用いたRGB表色系がある。しかし、RGB表色系では知覚可能な色の全てを必ずしも完全に表色できるわけではなく、例えばレーザー光などに見られる単一波長の色はRGB表色系の外側にある。RGB値の係数に負の値を許可すれば、RGB表色系においても任意の色を表色できるようになるが、取り扱いに不便さが生じる。そこで一般には、RGB表色系を改善したXYZ表色系が用いられる。
 XYZ表色系においては、三刺激値(X値、Y値、Z値)の組み合わせによって、所望の色を表色する。新たな刺激値であるX値、Y値、Z値は、元のR値、G値、B値を相互に足し合わせることによって得られる。これらの三刺激値を組み合わせれば、特定のスペクトルの色も、スペクトルの光の混合光も、さらに物体の色もすべて表色することが可能になる。
 X値、Y値、Z値のうち、Y値は明るさの刺激に対応している。すなわち、Y値は明度の代表値として用いることが可能である。また、X値は主に赤色を代表する刺激値であるが、青色の波長領域の色刺激も一定量含んでいる。Z値は、主として青色を代表する色刺激であるが、緑色および赤色の波長領域の色刺激も一定量含んでいる。
 また、本実施形態のように、各画素が表示する赤色、緑色、青色、および黄色の混色によって表現される色も、上記XYZ表色系を用いて表現することができる。
 (階調-localγ特性)
 続いて、階調-localγ特性を参照して、液晶表示装置1による色ずれの低減効果について説明する。
 図8の(a)は、本実施形態に係る液晶表示装置1が、2D表示モードにて画像を表示する場合の、X値、Y値、および、Z値についての、斜め視野角(より具体的には極角60度)における階調-localγ特性を示すグラフである。ここで、極角とは、視線方向と、液晶パネル100の法線方向とのなす角のことであり、極角が0度である場合が、ユーザが液晶パネル100を正面から観測する場合に対応する。
 また、localγとは、γ値の局所的な傾きを示す指標である。より具体的には、表示画面の法線方向に対して所定の角度から測定した光学特性における最大輝度をTとし、前記所定の角度と同方向からの、階調値aに基づく輝度をta、階調値b(aとbとは異なる値)に基づく輝度をtbとし、前記最大輝度T に対する前記輝度ta及び前記輝度tbのそれぞれの輝度比をTa及びTbとすると、localγは、
 localγ=(log(Ta)-log(Tb))/(log(a)-log(b))   …(A1)
によって定義される。
 色ずれが生じないようにするためには、localγの値は、斜め視野角においても一定であることが望ましい。これは、正面視野角において、localγの値が一定となるように調整されているためである。
 図8の(a)に示すように、2D表示モードの場合、X値についてのlocalγ、およびY値についてのlocalγ共に、15階調付近から70階調付近まで、なだらかな減少傾向にあるが、70階調付近で増加傾向に転じている。これは、70階調以上の階調において、中間画素の呈する輝度が寄与するためである。
 また、図8の(a)に示すように、2D表示モードの場合、Z値についてのlocalγは、15階調付近から100階調付近まで、なだらかな減少傾向にあるが、100階調付近で増加傾向に転じている。これは、100階調以上の階調において、Z値についてのlocalγに、中間画素が寄与するためである。
 このように、液晶表示装置1は、各色の画素について中間画素を有しているため、X値についてのlocalγ、およびY値についてのlocalγは共に、2D表示モードにおいて、15階調付近から210階調付近までの範囲において略一定に保たれている。
 図8の(b)は、本実施形態に係る液晶表示装置1が、3D表示モードにて画像を表示する場合の、X値、Y値、および、Z値についての、極角60度における階調-localγ特性を示すグラフである。
 3D表示モードにおいては、暗画素が輝度を呈せず、ブラックストライプとして機能するが、上述のように、明画素および中間画素は輝度を呈する。また、明画素は、中間画素よりも高い輝度を呈する。
 図8の(b)に示すように、3D表示モードの場合、X値についてのlocalγ、および、Y値についてのlocalγ共に、15階調付近から70階調付近まで、なだらかな減少傾向にあるが、70階調付近で増加傾向に転じている。これは、70階調以上の階調において、中間画素の呈する輝度が寄与するためである。
 また、図8の(b)に示すように、2D表示モードの場合、Z値についてのlocalγは、15階調付近から100階調付近まで、なだらかな減少傾向にあるが、100階調付近で増加傾向に転じている。これは、100階調以上の階調において、Z値についてのlocalγに、中間画素が寄与するためである。
 このように、液晶表示装置1は、各色の画素について中間画素を有しているため、X値についてのlocalγ、および、Y値についてのlocalγは共に、3D表示モードにおいて、15階調付近から230階調付近までの範囲において略一定に保たれている。
 一方で、図8の(c)は、比較例に係る液晶表示装置における、X値、Y値、および、Z値についての、極角60度における階調-localγ特性を示すグラフである。
 ここで、比較例に係る液晶表示装置とは、本実施形態に係る液晶表示装置1とは異なり、各色の画素は副画素を有しておらず、単一の画素から成っている。すなわち、当該比較例に係る液晶表示装置においては、各色の画素は、液晶表示装置1における明画素に対応する画素のみから構成されている。
 図8の(c)に示すように、比較例に係る液晶表示装置においては、X値についてのlocalγ、および、Y値についてのlocalγ共に、15階調付近から180階調付近まで、なだらかな減少傾向にあり、本実施形態に係る液晶表示装置1のように、80階調付近における立ち上がりは存在しない。これは、比較例に係る液晶表示装置においては、本実施形態に係る液晶表示装置1とは異なり、各色の画素は副画素を有しておらず、単一の画素から成っているためである。
 また、同様の理由により、比較例に係る液晶表示装置においては、図8の(c)に示すように、Z値についてのlocalγは、15階調付近から220階調付近まで、なだらかな減少傾向にあり、本実施形態に係る液晶表示装置1のように、100階調付近における立ち上がりは存在しない。
 図9は、本実施形態に係る液晶表示装置1による2D表示モードおよび3D表示モード、並びに、比較例に係る液晶表示装置のそれぞれにおける、Y値についての階調-localγ特性を示す図である。図9における「A」は、液晶表示装置1による2D表示モードの場合を示しており、図9における「B」は、液晶表示装置1による3D表示モードの場合を示しており、図9における「C」は、比較例に係る液晶表示装置の場合を示している。
 図9から明らかなように、液晶表示装置1による2D表示モードにおけるlocalγ、および、液晶表示装置1による3D表示モードにおけるlocalγは、共に、比較例に係る液晶表示装置におけるlocalγに比べて、より一定に近いものとなっている。
 したがって、本実施形態に係る液晶表示装置1は、2D表示モードおよび3D表示モード共に、副画素を有しない比較例に係る液晶表示装置に比べて、色ずれの現象が抑制されている。
 このように、本実施形態に係る液晶表示装置1によれば、2D表示モードにおける表示画像の輝度の低減を抑制しつつ、3D表示モードにおけるクロストークを抑制することができると共に、色ずれの現象を抑制することもできる。
 (変形例1)
 以上の説明においては、3D表示モードにおいて、液晶表示装置1の備える暗画素は輝度を呈しないものとしたが、本実施形態はこれに限定されるものではない。例えば、3D表示モードにおいて、暗画素の呈する輝度が所定の輝度以下となるように液晶表示装置1を駆動することによっても、クロストークを抑制することができる。
 以下では、参照する図面を替えて、暗画素の呈する輝度が所定の輝度以下となるように液晶表示装置1を駆動する場合について説明を行う。
 図10の(a)~(d)は、暗画素の呈する輝度が所定の輝度以下となるように液晶表示装置1を駆動する場合を説明するための図であって、(a)は、液晶パネル100、および、Patterned Retarder200の一部を示す断面図であり、(b)は、視線方向が、液晶パネル100の法線方向である場合に、観測者が観測する画像光を示す図であり、(c)は、視線方向と液晶パネル100の法線方向とのなす角度であって、液晶パネル100の縦方向に沿った角度が、所定の角度β(beta)である場合に、観測者が観測する画像光を示す図であり、(d)は、視線方向と液晶パネル100の法線方向とのなす角度であって、液晶パネル100の縦方向に沿った角度が、所定の角度βより大きい場合に、観測者が観測する画像光を示す図である。
 図10の(a)~(d)において、RBは、右目用画像を表示する暗画素を表しており、RAは、右目用画像を表示する明画素および中間画素の双方の副画素をまとめて表している。同様に、LBは、左目用画像を表示する暗画素を表しており、LAは、左目用画像を表示する明画素および中間画素の双方の副画素をまとめて表している。なお、暗画素RBおよび暗画素LBは、暗画素8c、暗画素10c、および、暗画素12cの何れかに対応しており、副画素RAおよび副画素LAは、(明画素8a、中間画素8b)、(明画素10a、中間画素10b)、および、(明画素12a、中間画素12b)の何れかに対応している。
 以下の説明においては、図10の(a)に示すように、位相差板RRと位相差板RLとの境界は、当該境界からTFT基板100cに下ろした垂線が、暗画素を縦方向に2等分する直線と交わるように配置されているものとする。このような配置とすることにより、クロストークの低減効果を高めることができる。
 また、上記所定の角度βとは、図10の(c)に示すように、(1)副画素RAと暗画素RBとの境界、および、(2)位相差板RRと位相差板RLとの境界のうち当該暗画素RBに最も近い境界、の双方の境界を通る直線と、液晶パネル100の法線とのなす角度であって、液晶パネル100の縦方向に沿った角度のことである。なお、図10の(c)における角度βは、図7における角度θに対応するものである。
 まず、図10の(b)~(d)に示すように、暗画素RBから出射され、位相差板RLを透過した後の画像光の輝度をIRBLと表し、副画素LAから出射され、位相差板RLを透過した後の画像光の輝度をILALと表し、暗画素LBから出射され、位相差板RLを透過した後の画像光の輝度をILBLと表すことにし、副画素RAから出射され、位相差板RLを透過した後の画像光の輝度をIRALと表すことにする。
 ここで、輝度IRBL、輝度ILAL、輝度ILBL、および、輝度IRALは、それぞれ対応する副画素から出射され、位相差板を透過した後の画像光の実効的な輝度、すなわち、図4に示したタイミングチャートにおける時刻T4以降での輝度であるとする。
 また、暗画素RBから出射され位相差板RLを透過した後の画像光は、クロストークの原因となる画像光であり、副画素LAから出射され位相差板RLを透過した後の画像光、および、暗画素LBから出射され位相差板RLを透過した後の画像光は、何れもクロストークの原因とならない画像光である。
 また、図10の(b)~(c)に示すように、視線方向と液晶パネル100の法線方向とのなす角度であって、液晶パネル100の縦方向に沿った角度がβ以下であるとき、輝度IRALは0であり、図10の(d)に示すように、視線方向と液晶パネル100の法線方向とのなす角度であって、液晶パネル100の縦方向に沿った角度がβより大きいとき、輝度IRALは一般に0でない。
 発明者は、実験により、32階調表示時に±3階調分以内のクロストークであれば、観測者がクロストークとして認識しないとの知見を得た。ここで、32階調表示時における±3階調分とは、20パーセントの輝度差に相当する。
 発明者によって得られた上記の知見によれば、液晶表示装置1は、輝度IRALが0となる視線方向において、以下の不等式(A2)が満たされるように、各副画素を駆動することが好ましい。
 IRBL/(ILAL+ILBL)<0.2   …(A2)
 また、不等式(A2)は、最大階調においても、すなわち、各副画素に供給されるデータ電圧が最大値をとる場合にも満たされることが好ましい。
 換言すれば、視線方向と液晶パネル100の法線方向とのなす角度であって、液晶パネル100の縦方向に沿った角度が上記β以下であるとき、液晶表示装置1は、液晶パネル100から当該視線方向に出射され位相差板RLを透過した後の画像光のうち、クロストークの原因となる画像光の輝度が、液晶パネル100から当該視線方向に出射され位相差板RLを透過した後の画像光のうち、クロストークの原因とならない画像光の輝度の20パーセント未満となるように各副画素を駆動することが好ましい。
 同様に、視線方向と液晶パネル100の法線方向とのなす角度であって、液晶パネル100の縦方向に沿った角度が上記β以下であるとき、液晶表示装置1は、液晶パネル100から当該視線方向に出射され位相差板RRを透過した後の画像光のうち、クロストークの原因となる画像光の輝度が、液晶パネル100から当該視線方向に出射され位相差板RRを透過した後の画像光のうち、クロストークの原因とならない画像光の輝度の20パーセント未満となるように各副画素を駆動することが好ましい。
 発明者は、位相差板RLおよび位相差板RRのうち、何れか一方の位相差板を透過した画像光であって、クロストークの原因となる画像光の輝度が、当該何れか一方の位相差板を透過した後の画像光であって、クロストークの原因とならない画像光の輝度の20パーセント未満である場合に、観測者はクロストークを知覚しないという知見を得た。
 したがって、上記の構成によれば、暗画素の呈する輝度がゼロでない場合であっても、観測者にとってクロストークが知覚されないことになる。
 また、位相差板RRおよび位相差板RLは、両者の透過率が略同一となるように形成することが可能であり、このような場合には、暗画素RBの呈する輝度が、副画素LAの呈する輝度の20パーセント未満であれば、輝度IRALが0となる視線方向において、不等式(A2)が満たされることになる。
 したがって、このような構成によっても、観測者にとってクロストークが知覚されないことになる。
 (変形例2)
 以上の説明においては、R画素8、G画素10、および、B画素12が、それぞれ、3つの副画素(明画素、中間画素、および、暗画素)を備える構成を例に挙げたが、本実施形態はこれに限定されるものではない。例えば、R画素8、G画素10、および、B画素12のうち少なくとも1つの画素は、中間画素を備えない構成としてもよい。すなわち、各色の画素について、副画素の数を2としてもよい。
 また、例えば、R画素8、G画素10、および、B画素12は、それぞれ、複数の中間画素を備える構成としてもよい。すなわち、各色の画素について、副画素の数を4以上としてもよい。このような構成の場合、各画素についての複数の中間画素の各々の液晶層に印加される実効電圧を互いに異ならせ、当該複数の中間画素の各々の液晶層の透過率を互いに異ならせることが好ましい。これにより、色ずれの現象をより効果的に抑制することができる。
 (ノーマリーホワイト型の液晶表示装置への適用について)
 ノーマリーホワイト型の液晶表示装置においては、各副画素の備える液晶層に印加される電圧の絶対値が大きいほど、当該副画素の呈する輝度は小さくなる。したがって、上述した液晶パネル100をノーマリーホワイト型の液晶表示装置に適用する場合には、例えば、CSバスライン6に供給される電圧と、対向電極の電圧Vcomとの差の絶対値を十分に大きくしておき、3D表示モードにおける最高階調にて各暗画素の液晶層に印加される実効電圧を、2D表示モードにおける最高階調にて各暗画素の液晶層に印加される実効電圧よりも大きくなるように設定すればよい。また、ノーマリーホワイト型の液晶表示装置に適用する場合にも、上述した数式(A2)を満たすような構成とすることができる。
 (付加事項)
 上述したように、本発明に係る液晶表示装置は、第1の表示モードおよび第2の表示モードにより表示が可能な液晶表示装置であって、行列状に配置された複数の画素と、前記画素毎に配置された複数の副画素と、前記副画素毎に配置された副画素電極であって、液晶層を介して対向電極に対向する副画素電極と、を有する液晶パネルと、入射光から第1の偏光状態の出射光を生成する第1の光学板、および、入射光から前記第1の偏光状態とは異なる第2の偏光状態の出射光を生成する第2の光学板が、それぞれ、前記液晶パネルの奇数行および偶数行に対応する位置に形成されている光学パネルと、を備えている液晶表示装置において、前記複数の副画素についての液晶層に対して画素毎に共通のデータ電圧を印加した後に、前記複数の副画素のうち、前記第1の光学板と前記第2の光学板との境界に最も近い副画素である境界近傍副画素についての液晶層に印加される電圧を変化させることによって、当該境界近傍副画素についての液晶層の透過率が減少するように駆動し、前記データ電圧は、前記第1の表示モードにおいて、前記第1の表示モードにおける前記各副画素についての液晶層の透過率の最大値が、前記第2の表示モードにおける前記各副画素についての液晶層の透過率の最大値よりも小さくなるように設定されている、ことを特徴としている。
 上記のように構成された本発明に係る液晶表示装置は、前記複数の副画素についての液晶層に対して画素毎に共通のデータ電圧を印加した後に、前記複数の副画素のうち、前記第1の光学板と前記第2の光学板との境界に最も近い副画素である境界近傍副画素についての液晶層に印加される電圧を変化させることによって、当該境界近傍副画素についての液晶層の透過率が減少するように駆動する。
 したがって、前記境界近傍副画素と、前記境界近傍副画素以外の副画素とに対して、個別にデータ電圧を印加する必要がある従来の構成に比べて、データ電圧を印加するためのデータバスラインの本数を少なくすることができる。より具体的には、各画素が2つの副画素を有する場合、上記のように構成された本発明に係る液晶表示装置によれば、従来の構成に比べて、データバスラインの本数を略半分にすることができる。
 また、上記のように構成された本発明に係る液晶表示装置においては、前記データ電圧は、前記第1の表示モードにおいて、前記第1の表示モードにおける前記各副画素についての液晶層の透過率の最大値が、前記第2の表示モードにおける前記各副画素についての液晶層の透過率の最大値よりも小さくなるように設定されているため、第1の表示モードにおける境界近傍副画素の呈する輝度は、第2の表示モードにおける境界近傍副画素の呈する輝度よりも小さい。
 したがって、上記第1の表示モードにおいて、Patterned Retarder方式の立体視可能な画像を表示することにより、境界近傍副画素の表示する画像に起因するクロストークの発生を抑制することができる。
 また、上記第2の表示モードにおいても、各画素について、境界近傍副画素の呈する輝度は、境界近傍副画素以外の副画素の呈する輝度よりも小さいので、上記第2の表示モードにおいて、視野角特性を向上させることができる。
 また、本発明に係る液晶表示装置においては、前記各画素についての副画素の数は3以上であり、前記各副画素についての液晶層にデータ電圧が印加された後に、前記各副画素についての液晶層に印加される電圧を変化させることによって、前記境界近傍副画素についての液晶層の透過率を減少させると共に、前記境界近傍副画素以外の各副画素についての液晶層の透過率を互いに異ならせる、ことが好ましい。
 上記の構成によれば、第1の表示モードにおける境界近傍副画素の呈する輝度を、第2の表示モードにおける境界近傍副画素の呈する輝度よりも小さくすることによって、上記第1の表示モードにおいて、Patterned Retarder方式の立体視可能な画像を表示する際のクロストークの発生を抑制しつつ、各画素について、境界近傍副画素以外の複数の副画素の呈する輝度を互いに異ならせることによって、第1の表示モードにおいても、視野角特性を向上させることができる。
 また、上記の構成によれば、第2の表示モードにおいて、各画素の有する3以上の副画素の呈する輝度は互いに異なるので、第2の表示モードにおいて、視野角特性を更に向上させることができる。
 また、本発明に係る液晶表示装置においては、前記各画素について、前記境界近傍副画素の呈する輝度であって前記液晶層の透過率が減少した後の輝度の最大値は、前記境界近傍副画素以外の副画素の呈する輝度の最大値の20パーセント未満である、ことが好ましい。
 発明者は、前記境界近傍画素の呈する輝度の最大値が、前記境界近傍画素の呈する輝度の最大値の20パーセント未満である場合に、観測者は、前記境界近傍画素を黒画素として認識するとの知見を得た。
 上記の構成によれば、前記各画素について、前記境界近傍副画素の呈する輝度であって前記液晶層の透過率が減少した後の輝度の最大値は、前記境界近傍副画素以外の副画素の呈する輝度の最大値の20パーセント未満であるため、観測者は、前記境界近傍画素を、黒画素、すなわち、ブラックマトリックスとして認識することになる。
 したがって、上記の構成によれば、前記境界近傍副画素をブラックマトリックスとして機能させることによって、クロストークの発生をより効果的に抑制することができる。
 また、本発明に係る液晶表示装置においては、前記各画素について、前記境界近傍副画素と、前記境界近傍副画素に隣接する副画素との境界は、行方向に沿って形成されており、視線方向と前記液晶パネルの法線方向とのなす角を前記液晶パネルの法線方向および前記液晶パネルの列方向の双方に垂直な方向を法線方向とする平面に射影して得られる角度が、前記境界近傍副画素と、該境界近傍副画素を含む画素において該境界近傍副画素に隣接する副画素との境界、および、前記第1の光学板と前記第2の光学板との境界のうち該境界近傍副画素に最も近い境界、の双方の境界を通る直線と前記液晶パネルの法線方向とのなす角を前記液晶パネルの法線方向および前記液晶パネルの列方向の双方に垂直な方向を法線方向とする平面に射影して得られる角度以下である場合に、前記第1の表示モードにおいて、前記境界近傍副画素から前記視線方向に出射され、前記光学パネルにおける前記第1の光学板および前記第2の光学板の何れか一方の光学板を透過した画像光の輝度であって、前記液晶層の透過率が減少した後の輝度の最大値は、前記境界近傍副画素に対して行方向に沿った境界を介して隣接する画素から前記視線方向に出射され前記光学パネルにおける前記何れか一方の光学板を透過した画像光の輝度の最大値の20パーセント未満である、ことが好ましい。
 発明者は、また、前記境界近傍画素から出射された画像光であって、前記光学パネルにおける前記第1の光学板および前記第2の光学板の何れか一方の光学板を透過した画像光の輝度が、前記境界近傍副画素に対して行方向に沿った境界を介して隣接する画素から前記視線方向に出射され前記光学パネルにおける前記何れか一方の光学板を透過した画像光の輝度の最大値の20パーセント未満である場合に、観測者は、前記境界近傍画素を黒画素として認識するとの知見を得た。
 上記の構成によれば、観測者は、前記境界近傍画素を、黒画素、すなわち、ブラックマトリックスとして認識することになる。
 したがって、上記の構成によれば、前記境界近傍副画素をブラックマトリックスとして機能させることによって、クロストークの発生をより効果的に抑制することができる。
 また、本発明に係る液晶表示装置においては、前記境界近傍副画素は、蓄積容量電極と、絶縁層を介して前記蓄積容量電極に対向する蓄積容量対向電極とによって形成された少なくとも1つの蓄積容量と、前記蓄積容量電極に電気的に接続されたソース電極と、前記副画素電極に電気的に接続されたドレイン電極とを備えるトランジスタと、を更に有しており、当該液晶表示装置は、前記各副画素についての液晶層にデータ電圧が印加された後に、前記トランジスタの備えるソース電極とドレイン電極とを導通させることによって、前記境界近傍副画素についての液晶層に印加される電圧を変化させ、前記境界近傍副画素についての液晶層の透過率を減少させるものである、ことが好ましい。
 上記の構成によれば、前記各副画素についての液晶層にデータ電圧が印加された後に、前記トランジスタの備えるソース電極とドレイン電極とを導通させることによって、前記境界近傍副画素についての液晶層に印加される電圧を変化させ、前記境界近傍副画素についての液晶層の透過率を減少させるので、前記境界近傍副画素が前記トランジスタを備えるという単純な構成によって、データバスラインの本数を増加させることなく、クロストークの発生を抑制することができる。
 また、本発明に係るディスプレイ装置は、上記液晶表示装置を備えているディスプレイ装置であって、前記第1の表示モードにおいて、立体視可能な画像を表示する、ことを特徴としている。
 上記のように構成されたディスプレイ装置によれば、前記第1の表示モードにおいて、立体視可能な画像を表示するので、クロストークの発生を抑制することができる。
 また、本発明に係る駆動方法は、第1の表示モードおよび第2の表示モードにより表示が可能な液晶表示装置であって、行列状に配置された複数の画素と、前記画素毎に配置された複数の副画素と、前記副画素毎に配置された副画素電極であって、液晶層を介して対向電極に対向する副画素電極と、を有する液晶パネルと、入射光から第1の偏光状態の出射光を生成する第1の光学板、および、入射光から前記第1の偏光状態とは異なる第2の偏光状態の出射光を生成する第2の光学板が、それぞれ、前記液晶パネルの奇数行および偶数行に対応する位置に形成されている光学パネルと、を備えている液晶表示装置を駆動する駆動方法において、前記複数の副画素についての液晶層に対して画素毎に共通のデータ電圧を印加した後に、前記複数の副画素のうち、前記第1の光学板と前記第2の光学板との境界に最も近い副画素である境界近傍副画素についての液晶層に印加される電圧を変化させることによって、当該境界近傍副画素についての液晶層の透過率が減少するように駆動し、前記データ電圧は、前記第1の表示モードにおいて、前記第1の表示モードにおける前記各副画素についての液晶層の透過率の最大値が、前記第2の表示モードにおける前記各副画素についての液晶層の透過率の最大値よりも小さくなるように設定されている、ことを特徴としている。
 本発明に係る上記の駆動方法においては、前記複数の副画素についての液晶層に対して画素毎に共通のデータ電圧を印加した後に、前記複数の副画素のうち、前記第1の光学板と前記第2の光学板との境界に最も近い副画素である境界近傍副画素についての液晶層に印加される電圧を変化させることによって、当該境界近傍副画素についての液晶層の透過率が減少するように駆動する。
 したがって、前記境界近傍副画素と、前記境界近傍副画素以外の副画素とに対して、個別にデータ電圧を印加する必要がある従来の構成に比べて、データ電圧を印加するためのデータバスラインの本数を少なくすることができる。より具体的には、各画素が2つの副画素を有する場合、上記駆動方法にて駆動される液晶表示装置によれば、従来の構成に比べて、データバスラインの本数を略半分にすることができる。
 また、上記駆動方法にて駆動される液晶表示装置においては、前記データ電圧は、前記第1の表示モードにおいて、前記第1の表示モードにおける前記各副画素についての液晶層の透過率の最大値が、前記第2の表示モードにおける前記各副画素についての液晶層の透過率の最大値よりも小さくなるように設定されているため、第1の表示モードにおける境界近傍副画素の呈する輝度は、第2の表示モードにおける境界近傍副画素の呈する輝度よりも小さい。
 したがって、上記第1の表示モードにおいて、Patterned Retarder方式の立体視可能な画像を表示することにより、境界近傍副画素の表示する画像に起因するクロストークの発生を抑制することができる。
 また、上記第2の表示モードにおいても、各画素について、境界近傍副画素の呈する輝度は、境界近傍副画素以外の副画素の呈する輝度よりも小さいので、上記第2の表示モードにおいて、視野角特性を向上させることができる。
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
 本発明は、Patterned Retarder方式を用いて、画像を立体視可能に表示する液晶表示装置に好適に適用することができる。
1        液晶表示装置
100       液晶パネル
200   Patterned Retarder(光学パネル)
2      ゲートバスライン
4      ソースバスライン
6       CSバスライン
8           R画素(画素)
8a      R画素の明画素(副画素)
8b     R画素の中間画素(副画素)
8c      R画素の暗画素(副画素、境界近傍副画素)
10          G画素(画素)
10a     G画素の明画素(副画素)
10b    G画素の中間画素(副画素)
10c     G画素の暗画素(副画素、境界近傍副画素)
12          B画素(画素)
12a     B画素の明画素(副画素)
12b    B画素の中間画素(副画素)
12c     B画素の暗画素(副画素、境界近傍副画素)
TFT1R~TFT5R  薄膜トランジスタ(トランジスタ)
TFT1G~TFT5G  薄膜トランジスタ(トランジスタ)
TFT1B~TFT5B  薄膜トランジスタ(トランジスタ)
Clc1R、Clc2R、Clc3R  液晶容量
Clc1G、Clc2G、Clc3G  液晶容量
Clc1B、Clc2B、Clc3B  液晶容量
Cd2R、Cd3R  蓄積容量
Cd2G、Cd3G  蓄積容量
Cd2B、Cd3B  蓄積容量
RR         位相差板
RL         位相差板
LUT1 ルックアップテーブル
LUT2 ルックアップテーブル

Claims (7)

  1.  第1の表示モードおよび第2の表示モードにより表示が可能な液晶表示装置であって、
     行列状に配置された複数の画素と、前記画素毎に配置された複数の副画素と、前記副画素毎に配置された副画素電極であって、液晶層を介して対向電極に対向する副画素電極と、を有する液晶パネルと、
     入射光から第1の偏光状態の出射光を生成する第1の光学板、および、入射光から前記第1の偏光状態とは異なる第2の偏光状態の出射光を生成する第2の光学板が、それぞれ、前記液晶パネルの奇数行および偶数行に対応する位置に形成されている光学パネルと、を備えている液晶表示装置において、
     前記複数の副画素についての液晶層に対して画素毎に共通のデータ電圧を印加した後に、前記複数の副画素のうち、前記第1の光学板と前記第2の光学板との境界に最も近い副画素である境界近傍副画素についての液晶層に印加される電圧を変化させることによって、当該境界近傍副画素についての液晶層の透過率が減少するように駆動し、
     前記データ電圧は、前記第1の表示モードにおいて、前記第1の表示モードにおける前記各副画素についての液晶層の透過率の最大値が、前記第2の表示モードにおける前記各副画素についての液晶層の透過率の最大値よりも小さくなるように設定されている、
    ことを特徴とする液晶表示装置。
  2.  前記各画素についての副画素の数は3以上であり、
     前記各副画素についての液晶層にデータ電圧が印加された後に、前記各副画素についての液晶層に印加される電圧を変化させることによって、前記境界近傍副画素についての液晶層の透過率を減少させると共に、前記境界近傍副画素以外の各副画素についての液晶層の透過率を互いに異ならせる、
    ことを特徴とする請求項1に記載の液晶表示装置。
  3.  前記各画素について、前記境界近傍副画素の呈する輝度であって前記液晶層の透過率が減少した後の輝度の最大値は、前記境界近傍副画素以外の副画素の呈する輝度の最大値の20パーセント未満である、
    ことを特徴とする請求項1または2に記載の液晶表示装置。
  4.  前記各画素について、前記境界近傍副画素と、前記境界近傍副画素に隣接する副画素との境界は、行方向に沿って形成されており、
     視線方向と前記液晶パネルの法線方向とのなす角を前記液晶パネルの法線方向および前記液晶パネルの列方向の双方に垂直な方向を法線方向とする平面に射影して得られる角度が、
      前記境界近傍副画素と、該境界近傍副画素を含む画素において該境界近傍副画素に隣接する副画素との境界、および、
      前記第1の光学板と前記第2の光学板との境界のうち該境界近傍副画素に最も近い境界、
    の双方の境界を通る直線と前記液晶パネルの法線方向とのなす角を前記液晶パネルの法線方向および前記液晶パネルの列方向の双方に垂直な方向を法線方向とする平面に射影して得られる角度以下である場合に、
     前記第1の表示モードにおいて、前記境界近傍副画素から前記視線方向に出射され、前記光学パネルにおける前記第1の光学板および前記第2の光学板の何れか一方の光学板を透過した画像光の輝度であって、前記液晶層の透過率が減少した後の輝度の最大値は、前記境界近傍副画素に対して行方向に沿った境界を介して隣接する画素から前記視線方向に出射され前記光学パネルにおける前記何れか一方の光学板を透過した画像光の輝度の最大値の20パーセント未満である、
    ことを特徴とする請求項1または2に記載の液晶表示装置。
  5.  前記境界近傍副画素は、
     蓄積容量電極と、絶縁層を介して前記蓄積容量電極に対向する蓄積容量対向電極とによって形成された少なくとも1つの蓄積容量と、
     前記蓄積容量電極に電気的に接続されたソース電極と、前記副画素電極に電気的に接続されたドレイン電極とを備えるトランジスタと、
    を更に有しており、
     当該液晶表示装置は、
     前記各副画素についての液晶層にデータ電圧が印加された後に、前記トランジスタの備えるソース電極とドレイン電極とを導通させることによって、前記境界近傍副画素についての液晶層に印加される電圧を変化させ、前記境界近傍副画素についての液晶層の透過率を減少させるものである、
    ことを特徴とする請求項1から4の何れか1項に記載の液晶表示装置。
  6.  請求項1から5に記載の液晶表示装置を備えているディスプレイ装置であって、前記第1の表示モードにおいて、立体視可能な画像を表示する、
    ことを特徴とするディスプレイ装置。
  7.  第1の表示モードおよび第2の表示モードにより表示が可能な液晶表示装置であって、行列状に配置された複数の画素と、前記画素毎に配置された複数の副画素と、前記副画素毎に配置された副画素電極であって、液晶層を介して対向電極に対向する副画素電極と、を有する液晶パネルと、入射光から第1の偏光状態の出射光を生成する第1の光学板、および、入射光から前記第1の偏光状態とは異なる第2の偏光状態の出射光を生成する第2の光学板が、それぞれ、前記液晶パネルの奇数行および偶数行に対応する位置に形成されている光学パネルと、を備えている液晶表示装置を駆動する駆動方法において、
     前記複数の副画素についての液晶層に対して画素毎に共通のデータ電圧を印加した後に、前記複数の副画素のうち、前記第1の光学板と前記第2の光学板との境界に最も近い副画素である境界近傍副画素についての液晶層に印加される電圧を変化させることによって、当該境界近傍副画素についての液晶層の透過率が減少するように駆動し、
     前記データ電圧は、前記第1の表示モードにおいて、前記第1の表示モードにおける前記各副画素についての液晶層の透過率の最大値が、前記第2の表示モードにおける前記各副画素についての液晶層の透過率の最大値よりも小さくなるように設定されている、
    ことを特徴とする駆動方法。
PCT/JP2011/071707 2010-09-29 2011-09-22 液晶表示装置、駆動方法、および、ディスプレイ装置 WO2012043408A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/823,234 US9236023B2 (en) 2010-09-29 2011-09-22 Liquid crystal display device, driving method, and display apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-219710 2010-09-29
JP2010219710 2010-09-29

Publications (1)

Publication Number Publication Date
WO2012043408A1 true WO2012043408A1 (ja) 2012-04-05

Family

ID=45892859

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/071707 WO2012043408A1 (ja) 2010-09-29 2011-09-22 液晶表示装置、駆動方法、および、ディスプレイ装置

Country Status (2)

Country Link
US (1) US9236023B2 (ja)
WO (1) WO2012043408A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016159271A1 (ja) * 2015-03-31 2017-07-27 富士フイルム株式会社 レンチキュラー表示体、レンチキュラー画像の形成方法、及びレンチキュラー表示体の製造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9800862B2 (en) * 2012-06-12 2017-10-24 The Board Of Trustees Of The University Of Illinois System and methods for visualizing information
KR20170030720A (ko) * 2015-09-09 2017-03-20 삼성디스플레이 주식회사 표시패널

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008287021A (ja) * 2007-05-17 2008-11-27 Semiconductor Energy Lab Co Ltd 液晶表示装置
JP2010204389A (ja) * 2009-03-03 2010-09-16 Sony Corp 表示装置
JP2010250257A (ja) * 2009-04-17 2010-11-04 Lg Display Co Ltd 映像表示装置
WO2010143348A1 (ja) * 2009-06-11 2010-12-16 シャープ株式会社 液晶表示装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110041282A (ko) * 2009-10-15 2011-04-21 삼성전자주식회사 표시장치 및 이의 구동방법
WO2012039345A1 (ja) * 2010-09-22 2012-03-29 シャープ株式会社 液晶表示装置、および、ディスプレイ装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008287021A (ja) * 2007-05-17 2008-11-27 Semiconductor Energy Lab Co Ltd 液晶表示装置
JP2010204389A (ja) * 2009-03-03 2010-09-16 Sony Corp 表示装置
JP2010250257A (ja) * 2009-04-17 2010-11-04 Lg Display Co Ltd 映像表示装置
WO2010143348A1 (ja) * 2009-06-11 2010-12-16 シャープ株式会社 液晶表示装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016159271A1 (ja) * 2015-03-31 2017-07-27 富士フイルム株式会社 レンチキュラー表示体、レンチキュラー画像の形成方法、及びレンチキュラー表示体の製造方法

Also Published As

Publication number Publication date
US9236023B2 (en) 2016-01-12
US20130181985A1 (en) 2013-07-18

Similar Documents

Publication Publication Date Title
US9171524B2 (en) Display device
TWI449024B (zh) 畫素電路、畫素結構、可切換二維/三維顯示裝置及其顯示驅動方法
WO2012039345A1 (ja) 液晶表示装置、および、ディスプレイ装置
US8976083B2 (en) Three-dimensional image display device and method for driving the same
US9007287B2 (en) Liquid-crystal display device
US20110234605A1 (en) Display having split sub-pixels for multiple image display functions
WO2012063830A1 (ja) 液晶表示装置、表示装置およびゲート信号線駆動方法
JP2012234176A (ja) 立体映像表示装置とその駆動方法
US20130027525A1 (en) Liquid-crystal display device and three-dimensional display system
JP5425977B2 (ja) 映像表示装置
US8953106B2 (en) Display unit, barrier device, and method of driving display unit
US20130063332A1 (en) Display device, display method, and electronic apparatus
KR101279127B1 (ko) 입체영상표시장치
WO2012043408A1 (ja) 液晶表示装置、駆動方法、および、ディスプレイ装置
JP2013083945A (ja) 立体映像表示装置
US8957841B2 (en) Liquid crystal display
WO2013047099A1 (ja) 表示装置
US8913109B2 (en) Stereoscopic image display apparatus
CN109461421B (zh) 一种场序显示器及驱动方法
US8810494B2 (en) Electro-optical device and electronic apparatus
KR20130020294A (ko) 영상표시장치
KR101900938B1 (ko) 입체영상 표시장치
KR101878483B1 (ko) 영상표시장치
WO2012073795A1 (ja) 表示装置およびその駆動方法、並びに電子装置
US20120299984A1 (en) Display device and displaying method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11828964

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13823234

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11828964

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP