[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2012043116A1 - モータ制御装置 - Google Patents

モータ制御装置 Download PDF

Info

Publication number
WO2012043116A1
WO2012043116A1 PCT/JP2011/069703 JP2011069703W WO2012043116A1 WO 2012043116 A1 WO2012043116 A1 WO 2012043116A1 JP 2011069703 W JP2011069703 W JP 2011069703W WO 2012043116 A1 WO2012043116 A1 WO 2012043116A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
value
abnormality
control device
current
Prior art date
Application number
PCT/JP2011/069703
Other languages
English (en)
French (fr)
Inventor
安島 俊幸
浩志 田村
則和 松崎
悟 大野
賢 佐久間
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Publication of WO2012043116A1 publication Critical patent/WO2012043116A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/0481Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such monitoring the steering system, e.g. failures
    • B62D5/0487Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such monitoring the steering system, e.g. failures detecting motor faults
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/22Current control, e.g. using a current control loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/032Preventing damage to the motor, e.g. setting individual current limits for different drive conditions

Definitions

  • the present invention relates to a motor control device that detects motor abnormality during motor operation.
  • Japanese Patent Application Laid-Open No. 2004-228561 describes a technique for detecting a motor abnormality by performing a self-test during the initial operation of the motor.
  • An object of the present invention is to provide a motor control device capable of detecting intermediate-level motor abnormalities such as motor interlayer drop and position sensor error increase during motor operation from zero speed to high speed rotation.
  • a motor control device that solves the above-described problem is a motor control device that detects a current value of an output current output to a motor and controls the current value according to a target torque.
  • the motor operation state value is calculated based on the output current value and the output voltage value, and it is determined whether an abnormality has occurred in the motor based on the calculated motor operation state value. It has a motor abnormality determination part.
  • the motor operation state value is calculated based on the current value of the output current output to the motor and the voltage value of the output voltage during operation of the motor, and the calculated motor operation state value Therefore, it is determined whether or not an abnormality has occurred in the motor, so that it is possible to detect an intermediate level motor abnormality such as a motor interlayer drop or an increase in position sensor error during motor operation.
  • This specification includes the contents described in the specification and / or drawings of Japanese Patent Application No. 2010-220166, which is the basis of the priority of the present application.
  • the block diagram which shows the structure of the motor apparatus of this invention The wave form diagram which shows the change of the operation state of the motor in 1st Embodiment.
  • the vector diagram which carried out relative conversion of the output voltage and output current of a motor control apparatus.
  • the wave form diagram which shows the change of the operation state at the time of abnormality of the position sensor of a motor.
  • FIG. 1 is a block diagram showing a configuration of a motor device having a motor control device of the present invention.
  • the motor device 300 is suitable for use in fail-safe by detecting a motor abnormality in an operation state from zero speed (stop state) to high speed rotation during motor operation.
  • the motor device 300 includes a motor 310 and a motor control device 100.
  • the motor control device 100 includes a current detection unit 120, a current control unit 110, an inverter 130, a motor position detection unit 150, and a motor abnormality determination unit 140.
  • the battery 200 is a DC voltage source of the motor control device 100, and the DC voltage of the battery 200 is converted into a variable voltage and variable frequency three-phase AC by the inverter 130 of the motor control device 100 and applied to the motor 310.
  • the motor 310 is a synchronous motor that is rotationally driven by supplying three-phase alternating current.
  • a position sensor unit 320 is attached to the motor 310 in order to control the phase of the three-phase AC applied voltage in accordance with the phase of the induced voltage of the motor 310.
  • the current detection unit 120 detects the three-phase motor current values Iu, Iv, and Iw, and the current control unit 110 controls the current values according to the target torque.
  • the position detection unit 150 detects the position detection value ⁇ s from the signal of the position sensor unit 320 and calculates the motor rotation speed ⁇ r.
  • the current control unit 110 uses the position detection value ⁇ s and the motor current values Iu, Iv, and Iw to generate a current command (a three-phase current command for AC control and a d-axis for vector control. , A known pulse width modulated (PWM) drive signal is generated so as to coincide with the q-axis current command. The generated drive signal is used to turn on / off the semiconductor switch element of the inverter 130.
  • PWM pulse width modulated
  • the motor abnormality determination unit 140 detects the motor operating state by calculation from the output voltage Vu, the output current Iu, and the motor rotation speed ⁇ r of the motor control device 100, and outputs a motor abnormality signal when determining that the motor is abnormal. The detailed operation of the motor abnormality determination unit 140 will be described later with reference to FIG.
  • a voltage command is created so that the rotational speed calculated using the motor rotational speed ⁇ r matches the speed command from the host controller.
  • the motor current is detected, the motor output torque is calculated from the detected motor current, and the calculated motor output torque matches the torque command from the host controller. Create a current command.
  • FIG. 2 is an operation waveform showing a calculation result of the motor state when the motor rotates at a constant speed.
  • the motor torque when the motor is normal is output as a substantially constant torque by current control
  • the motor operating state value is as shown by the solid line in FIG. 2 (b).
  • a stable constant value is shown.
  • the motor operation state value does not depend on the acceleration / deceleration state of the motor by correcting and calculating a portion corresponding to the counter electromotive voltage generated according to the motor rotation speed. A substantially constant value of the motor operating state can be obtained.
  • the motor operating state value when the motor is abnormal greatly fluctuates within one electrical angle cycle as shown by the broken line in FIG.
  • the motor abnormality determination unit 140 detects the motor abnormality by detecting the change in the motor operation state value. That is, when the motor operation state value reaches a predetermined determination value set in advance, it is determined that a motor abnormality has occurred and a motor abnormality signal is output.
  • a state in which the motor operating state value is detected with a fluctuation range within one cycle of electrical angle and the fluctuation range of the motor operating state value is equal to or greater than a predetermined determination value Th is set using a level of the fluctuation range.
  • the current control unit 110 operates so as to adjust the applied voltage such as a PWM pulse so that the current becomes constant, so the ratio between the output voltage of the inverter 130 and the output current changes.
  • the applied voltage is cyclically repeated as an AC voltage. That is, a state where a large amount of current is passed through a normal motor winding and a state where a large amount of current is passed through an abnormal winding are periodically repeated as the motor rotates, and the motor operation state value is determined by the output voltage of the inverter 130. Then, periodic pulsation is generated in accordance with the change in the ratio of the output current.
  • a motor abnormality can be determined by comparing the peak value of the pulsation component that is periodically repeated with a preset determination value.
  • the motor abnormality is determined by comparing the motor operation state value with the determination value. For example, the motor winding or the like according to the magnitude of the peak value of the pulsation component that is periodically repeated in the motor operation state value. Therefore, it is also possible to notify the user of the degree of motor abnormality steplessly using the detected degree of deterioration or the average value thereof.
  • FIG. 3 is a vector diagram obtained by dq conversion (relative conversion) of the output voltage and output current of the motor control device.
  • the voltage vector V has a magnitude Vu and a lead phase ( ⁇ + ⁇ ), and the current vector I has a magnitude Iu and a lead phase ⁇ .
  • the angle ⁇ formed by the voltage and current is a power factor angle, and the effective power P and the apparent power S for one phase are expressed by the following equations (1) and (2).
  • pp is the number of pole pairs
  • ke is an induced voltage constant
  • the output Po and the input Pi of the inverter 130 are expressed by the following equations (4) and (5).
  • Edc is a DC voltage and Idc is a DC current.
  • the q-axis output voltage Vq is expressed by the following formula (7).
  • the current control unit 110 also matches the d-axis current command value Id * corresponding to the target output torque and the q-axis current command value Iq * even when an intermediate level motor abnormality such as an interlayer short circuit occurs. Since the motor operates, the motor power consumption is constant, the motor output fluctuates, and the active power fluctuates.
  • the presence or absence of an abnormality or the state quantity may be determined from the fluctuation of the active power.
  • a q-axis current value and a q-axis voltage value related to active power are shown in the following formula (8).
  • Ke ′ including a back electromotive voltage constant changes depending on the motor rotation position.
  • the change in active power is taken as an index, but the same effect can be obtained even with reactive power.
  • the current command value (Id * or Iq *) is a substantially constant value, it can be simplified only by the output voltage or the q-axis voltage value, and the load of the control processing calculation can be reduced.
  • a motor abnormality fluctuation in motor operation state value
  • the motor abnormality can be detected using only the d-axis current Iq and the q-axis voltage Vq.
  • the active power is larger than the reactive power. Under such conditions, the motor abnormality is detected using the q-axis current Iq and the q-axis voltage Vq.
  • the measurement of the active power and the power factor requires one cycle or more in electrical angle, resulting in a slower response than the normal inverter overcurrent protection operation.
  • a protective operation can be performed by comparison.
  • the motor operation can be continued within the allowable range in which the temperature rise of the motor 310 or the inverter 130 is set in advance or the allowable current range of the inverter 130. At this time, it is preferable to limit the motor operation according to the motor operation state value.
  • the q-axis current value and the q-axis voltage value are used, and when the instantaneous motor operation state value is at the abnormality determination level, one electrical angle cycle is measured. Therefore, it is possible to hold the motor abnormality and promptly notify the user of the motor abnormality.
  • FIG. 4 is a waveform diagram showing changes in the operating state when the position sensor unit of the motor is abnormal.
  • FIG. 2 is different from FIG. 2 in that the abnormal state of the motor is not an interlayer short circuit but an abnormality of the position sensor unit 320 attached to the motor 310, and the others are the same as FIG.
  • the position detection error is a case where an error is superimposed on the position detection value ⁇ due to an abnormality of the position sensor unit 320 such as a resolver, and the detection signal line from the position sensor unit 320 is contacted.
  • the output voltage modulation rate indicates the PWM modulation rate. As shown in FIG. 4B, the modulation rate changes according to the position detection error, and as a result, the output current changes.
  • the motor current detection value (Id, Iq) that is the output signal of the current detection unit 120. included. That is, although the current control unit 110 operates so that the current command value (Id *, Iq *) matches the motor current detection value (Id, Iq), the output current (Iu, Iv, Iw) indicates that the three-phase current value obtained from the current command value (Id *, Iq *) does not match.
  • the peak value of the absolute value of the three-phase output voltage greatly fluctuates, and the abnormality of the position sensor unit 320 can be detected using the peak value of the absolute value of the three-phase output voltage.
  • the abnormality of the position sensor unit 320 can be detected and the abnormality can be notified to the user.
  • an upper limit value Tha and a lower limit value Thb are set in advance as determination values for the motor operation state value, and the motor operation state value exceeds the upper limit value Tha, or the lower limit value. When the value is less than Thb, it can be determined that the position sensor unit 320 is abnormal.
  • the motor operation state value is calculated based on the current value of the output current output to the motor 310 and the voltage value of the output voltage during the operation of the motor 310, and the calculated motor operation. Since it is determined whether or not an abnormality has occurred in the motor 310 based on the state value, it is possible to detect an intermediate-level motor abnormality such as a drop in the interlayer of the motor 310 or an increase in error in the position sensor unit 320 during the motor operation.
  • FIG. 5 is a configuration diagram of an electric power steering device to which the motor control device shown in each embodiment of the present invention is applied.
  • the electric actuator includes a torque transmission mechanism 902, a motor 310, and a motor control device 100.
  • the electric power steering apparatus includes an electric actuator, a handle (steering) 900, a steering detector 901, and an operation amount command unit 903, and the operation force of the handle 900 steered by the driver is torque-assisted using the electric actuator.
  • the torque command ⁇ * of the electric actuator is a steering assist torque command (created by the operation amount command unit 903) of the handle 900, and the steering force of the driver is reduced by using the output of the electric actuator.
  • the motor control device 100 receives the torque command ⁇ * as an input command, and controls the motor current so as to follow the torque command value from the torque constant of the motor 310 and the torque command ⁇ *.
  • the motor output ⁇ m output from the output shaft directly connected to the rotor of the motor 310 transmits torque to the rack 910 of the steering device via a torque transmission mechanism 902 using a reduction mechanism such as a worm, a wheel, a planetary gear, or a hydraulic mechanism. Then, the steering force (operation force) of the driver's handle 900 is reduced (assisted) by the electric force, and the steering angles of the wheels 920 and 921 are operated.
  • a reduction mechanism such as a worm, a wheel, a planetary gear, or a hydraulic mechanism.
  • the assist amount is detected by a steering detector 901 that detects a steering state incorporated in the steering shaft, and an operation amount is detected as a steering angle or a steering torque, and an operation amount command unit is added in consideration of a state amount such as a vehicle speed or a road surface state. 903 is determined as the torque command ⁇ *.
  • the motor control device 100 of the present invention is capable of high-efficiency motor drive by correcting the phase difference generated in the rotation sensor for the torque command ⁇ * required for the electric actuator that rapidly accelerates and decelerates. Even in the field-weakening region of high-speed and high-torque operation, it can be driven without reducing the motor efficiency.
  • the motor can be driven with stable and low torque fluctuation by reducing sensor mounting errors. That is, the electric power steering apparatus to which the motor control apparatus 100 is applied can provide an electric power steering apparatus with high torque and high response without impairing the steering feeling to the driver.
  • the electric power steering device has been described, but the same effect can be obtained even with an electric brake device.
  • FIG. 6 is a configuration diagram of a hybrid vehicle system to which the motor control device of the present invention is applied
  • FIG. 7 is a waveform diagram showing changes in the operating state of the motor.
  • the hybrid vehicle system has a power train in which a synchronous motor 620 is applied as a motor / generator.
  • reference numeral 600 denotes a vehicle body.
  • a front wheel axle 601 is rotatably supported at the front portion of the vehicle body 600, and front wheels 602 and 603 are provided at both ends of the front wheel axle 601.
  • a rear wheel axle 604 is rotatably supported at the rear portion of the vehicle body 600, and rear wheels 605 and 606 are provided at both ends of the rear wheel axle 604.
  • a differential gear 611 that is a power distribution mechanism is provided at the center of the front wheel axle 601, and the rotational driving force transmitted from the engine 610 via the transmission 612 is distributed to the left and right front wheel axles 601. ing.
  • the engine 610 and the synchronous motor 620 are mechanically connected via a belt to a pulley provided on the crankshaft of the engine 610 and a pulley provided on the rotating shaft of the synchronous motor 620.
  • the rotational driving force of the synchronous motor 620 can be transmitted to the engine 610, and the rotational driving force of the engine 610 can be transmitted to the synchronous motor 620.
  • synchronous motor 620 when the three-phase AC power controlled by motor control device 100 is supplied to the stator coil of the stator, the rotor rotates, and a rotational driving force corresponding to the three-phase AC power is generated.
  • the synchronous motor 620 is controlled by the motor control device 100 and operates as a motor.
  • the rotor rotates by receiving the rotational driving force of the engine 610, an electromotive force is induced in the stator coil of the stator. Operates as a generator that generates AC power.
  • the motor control device 100 is a power conversion device that converts DC power supplied from a high-voltage battery 622, which is a high-voltage (42V) system power supply, into three-phase AC power, and corresponds to the magnetic pole position of the rotor according to the operation command value.
  • the three-phase alternating current flowing in the stator coil of the synchronous motor 620 is controlled.
  • the three-phase AC power generated by the synchronous motor 620 is converted to DC power by the motor control device 100 and charges the high voltage battery 622.
  • the high voltage battery 622 is electrically connected to the low voltage battery 623 via a DC-DC converter 624.
  • the low-voltage battery 623 constitutes a low-voltage (14v) power source of the automobile, and is used as a power source for a starter 625, a radio, a light, and the like that initially starts the engine 610 (cold start).
  • the motor controller 100 drives the synchronous motor 620, The engine 610 is restarted.
  • the idle stop mode when the charge amount of the high voltage battery 622 is insufficient or when the engine 610 is not sufficiently warmed, the engine 610 is not stopped and the driving is continued. Further, during the idle stop mode, it is necessary to secure a drive source for auxiliary equipment that uses the engine 610 as a drive source, such as an air conditioner compressor. In this case, the synchronous motor 620 is driven to drive the auxiliary machines.
  • the synchronous motor 620 is driven to assist the driving of the engine 610 even in the acceleration mode or the high load operation mode. Conversely, when the high voltage battery 622 is in a charge mode that requires charging, the engine 610 causes the synchronous motor 620 to generate power and charge the high voltage battery 622. That is, the regeneration mode such as when the vehicle is braked or decelerated is performed.
  • the first determination value Th1 shown in FIG. 7 (b) is an abnormality determination level for determining whether the motor abnormality is such that the motor operation can be continued, and the second determination value Th2 shown in FIG. This is an abnormality determination level for determining whether it is a motor abnormality that makes it difficult to continue motor operation (Th1 ⁇ Th2).
  • the motor abnormality is notified to the driver and the vehicle is stopped or serviced promptly. It is possible to urge the vehicle to move to the station, and while restricting the output of the inverter (not shown) of the motor control device 100 as necessary, it is possible to move the vehicle to a safe stop or move the vehicle to the service station. Can be possible. At this time, it is possible to add a restriction on the motor operation state set in advance or a restriction on the motor operation according to the peak value of the motor operation state value.
  • one of the abnormalities that occur in motor windings is the insulation deterioration of the windings.
  • it is often caused by aging or repeated damage rather than rapid deterioration, and gradually after the motor operating state value (state value during operation) from a normal state to an abnormal state where continuous operation is possible, It reaches an abnormal state that should be stopped. Therefore, the motor operation can be more precisely controlled by determining the degree of abnormality of the motor using two or more determination values.
  • the motor torque also changes periodically within one electrical angle cycle, and is an abnormal level (a level exceeding the first determination value Th1 or the second determination value Th2) and a normal level (the first determination value Th1). It can be seen that the following levels occur repeatedly. That is, the abnormality level is detected by detecting the abnormality level with one period of electrical angle as the abnormality detection period. It is possible to prevent erroneous detection by determining that an abnormality is detected when an abnormality is detected for several consecutive cycles at each repetition period of the electrical angle. It should be noted that an abnormality in the position sensor unit 320 can be dealt with similarly.
  • the motor control apparatus 100 of the present invention can move to a place where it can safely stop or move to a service station even when such a synchronous motor 620 is applied as a motor / generator. Can be provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

 本発明は、ゼロ速度から高速度回転までのモータ運転中において、モータの層間短落および位置センサ部の誤差増大等の中間レベルのモータ異常を検知できるモータ制御装置を得ることを課題とする。本発明のモータ制御装置100は、モータ310に出力される出力電流の電流値を検知して目標トルクに応じた電流値に制御するモータ制御装置100であって、モータ310の運転中にモータ310に出力される出力電流の電流値と出力電圧の電圧値に基づいてモータ運転状態値を演算し、その演算されたモータ運転状態値に基づいてモータ310に異常が発生しているか否かを判定するモータ異常判定部140を有する。

Description

モータ制御装置
 本発明は、モータ運転中にモータの異常を検知するモータ制御装置に関する。
 モータを使用するモータ装置には、モータの異常を検知して異常状態をユーザに通知して早期メンテナンスにて安全動作を維持することが望まれている。特許文献1には、モータの初期動作時にセルフテストを行い、モータの異常を検知する技術が記載されている。
特開2003-348898号公報
 しかしながら、モータ運転中にセルフテストを行うことはできない。したがって、モータ運転中は、モータ欠相あるいは短落等の大きなモータ異常を検知することはできるが、モータの層間短落および位置センサの誤差増大等の中間レベルのモータ異常を検知することはできなかった。
 本発明の目的は、ゼロ速度から高速度回転までのモータ運転中において、モータの層間短落および位置センサの誤差増大等の中間レベルのモータ異常を検知できるモータ制御装置を提供することにある。
 上記課題を解決する本発明のモータ制御装置は、モータに出力される出力電流の電流値を検知して目標トルクに応じた電流値に制御するモータ制御装置であって、モータの運転中にモータに出力される出力電流の電流値と出力電圧の電圧値に基づいてモータ運転状態値を演算し、その演算されたモータ運転状態値に基づいてモータに異常が発生しているか否かを判定するモータ異常判定部を有することを特徴としている。
 本発明のモータ制御装置によれば、モータの運転中にモータに出力される出力電流の電流値と出力電圧の電圧値に基づいてモータ運転状態値を演算し、その演算されたモータ運転状態値に基づいてモータに異常が発生しているか否かを判定するので、モータ運転中にモータの層間短落や位置センサの誤差増大等の中間レベルのモータ異常を検知できる。本明細書は、本願の優先権の基礎である日本国特許出願2010-220166号の明細書及び/または図面に記載されている内容を包含する。
本発明のモータ装置の構成を示すブロック図。 第1の実施形態におけるモータの動作状態の変化を示す波形図。 モータ制御装置の出力電圧と出力電流を相対変換したベクトル図。 モータの位置センサの異常時における動作状態の変化を示す波形図。 本発明のモータ装置が適用された電動パワーステアリング装置の構成図。 本発明のモータ装置が適用されたハイブリッド自動車システムの構成図。 第2の実施形態におけるモータの動作状態の変化を示す波形図。
 以下、本発明の第1の実施形態について図面を用いて説明する。
 図1は、本発明のモータ制御装置を有するモータ装置の構成を示すブロック図である。
 モータ装置300は、モータ運転時のゼロ速度(停止状態)から高速度回転までの動作状態においてモータ異常を検知してフェールセーフする用途に適したものである。モータ装置300は、モータ310とモータ制御装置100を有している。
 モータ制御装置100は、電流検出部120、電流制御部110、インバータ130、モータ位置検出部150、モータ異常判定部140を有している。バッテリ200は、モータ制御装置100の直流電圧源であり、バッテリ200の直流電圧は、モータ制御装置100のインバータ130によって可変電圧、可変周波数の3相交流に変換され、モータ310に印加される。
 モータ310は、3相交流の供給により回転駆動される同期モータである。モータ310には、モータ310の誘起電圧の位相に合わせて3相交流の印加電圧の位相を制御するために位置センサ部320が取り付けられている。
 モータ310を高精度に制御するためには、電流検出部120で3相のモータ電流値Iu,Iv,Iwを検知し、電流制御部110により、目標トルクに応じた電流値に制御する。位置検出部150は、位置センサ部320の信号から位置検出値θsを検出し、モータ回転速度ωrを演算する。
 電流制御部110は、位置検出値θsと、モータ電流値Iu,Iv,Iwを用いて、電流指令(交流制御をする場合には3相の電流指令とし、ベクトル制御をする場合にはd軸、q軸の電流指令とする)に一致するように周知のパルス幅変調(PWM)されたドライブ信号を作成する。作成されたドライブ信号は、インバータ130の半導体スイッチ素子をオン/オフ制御するのに用いられる。
 モータ異常判定部140は、モータ制御装置100の出力電圧Vu、出力電流Iu、及びモータ回転速度ωrから演算によりモータ運転状態を検知し、モータ異常と判断する場合にモータ異常信号を出力する。モータ異常判定部140の詳細な動作については、図3を用いて後述する。
 なお、モータ装置300において、モータ310の回転速度を制御する場合には、モータ回転速度ωrを用いて演算した回転速度が、上位制御器からの速度指令と一致するように電圧指令を作成する。また、モータ出力トルクを制御する場合には、モータ電流を検出し、該検出したモータ電流からモータ出力トルクを演算し、該演算したモータ出力トルクが上位制御器からのトルク指令と一致するように電流指令を作成する。
 次に、図2を用いて、本実施の形態におけるモータ状態について説明する。
 図2は、モータの一定回転時におけるモータ状態の演算結果を示す動作波形である。
 モータが正常時のモータトルクは、図2(a)に実線で示すように、電流制御によりほぼ一定のトルクが出力され、モータ運転状態値は、図2(b)に実線で示すように、安定した一定値を示す。ここで、モータ運転状態値は、モータ310の回転速度の影響を除去するために、モータ回転速度に応じて発生する逆起電圧相当分を補正演算することによりモータの加減速状態によらず、ほぼ一定値のモータ運転状態値を得ることができる。
 一方、モータに中間レベルのモータ異常が発生した場合、具体的には、モータ310の1相巻線あるいは2相の巻線に層間短落が発生してモータ巻線(抵抗やインダクタンスなど)が約1/3となったモータ異常の場合、電流制御部110によりモータ電流はほぼ一定に制御されるが、層間短絡により逆起電圧のアンバランスが発生しているため、図2(a)に破線で示すように、モータトルクは大きな脈動を生じる。
 モータ異常時のモータ運転状態値は、図2(b)に破線で示すように、電気角1周期内で大きく変動する。モータ異常判定部140では、このモータ運転状態値の変化を検知して、モータ異常を判定する。すなわち、モータ運転状態値が予め設定された所定の判定値に達した場合に、モータ異常が発生していると判断して、モータ異常信号を出力する。
 好ましくは、モータ運転状態値を電気角1周期内の変動幅で検知し、変動幅のレベルを用いて、モータ運転状態値の変動幅が予め設定された所定の判定値Th以上となる状態を少なくとも1回以上検知した場合、もしくは連続して所定の回数検知した場合に、モータ異常が発生していると判断して、モータ異常信号を出力する。
 尚、モータ異常時において、電流制御部110は、電流が一定となるようにPWMパルスなどの印加電圧を調整するように動作するため、インバータ130の出力電圧と、出力電流の比率が変化する。
 交流モータの場合、印加電圧も交流として大小を周期的に繰り返す。すなわち、モータの回転にともない正常なモータ巻線に多く電流を流す状態と、異常な巻線に多く電流を流す状態とが周期的に繰り返され、モータ運転状態値は、インバータ130の出力電圧と、出力電流の比率変化に応じた分だけ周期的な脈動を生じる。この周期的に繰り返される脈動成分のピーク値と、予め設定された判定値とを比較することでモータ異常を判定できる。
 ここでは、モータ運転状態値と判定値と比較してモータ異常を判定しているが、例えば、モータ運転状態値の周期的に繰り返される脈動成分のピーク値の大きさに応じてモータ巻線などの劣化度合いを検知することができるので、その検知した劣化度合い、あるいはその平均値などを用いて無段階にてモータ異常の度合いを使用者に通知することも可能である。
 次に、図3を用いて、本実施の形態におけるモータ異常判定部140の動作について説明する。図3は、モータ制御装置の出力電圧と出力電流をdq変換(相対変換)したベクトル図である。
 電圧ベクトルVは、大きさVuで、進み位相(δ+β)であり、電流ベクトルIは、大きさIuで、進み位相βである。電圧と電流の成す角δは、力率角であり、1相分の有効電力Pと皮相電力Sは下記の式(1)、(2)に示される。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
 一方、モータ310の出力Pmは、下記の式(3)で示される。
Figure JPOXMLDOC01-appb-M000003
 特に、Id=0に制御している場合には、上記式(3a)に示すように、Iqの項のみで表される。
 上記式(3)、(3a)で、ppは極対数、keは誘起電圧定数である。
 インバータ130の出力Poと入力Piは、下記の式(4)、(5)で示される。
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
 なお、上記式(5)で、Edcは直流電圧、Idcは直流電流である。
 モータ効率ηmとしたときの、モータ出力Pmとインバータ出力Poの関係は、下記の式(6)で表される。
Figure JPOXMLDOC01-appb-M000006
 そして、q軸出力電圧Vqは、下記の式(7)で示される。
Figure JPOXMLDOC01-appb-M000007
 電流制御部110は、層間短絡などの中間レベルのモータ異常時にも、目標とする出力トルクに応じたd軸の電流指令値Id*と、q軸の電流指令値Iq*とに一致するように動作するため、モータ消費電力は一定で、モータ出力が変動し、有効電力が変動することとなる。
 すなわち、モータ制御装置100の出力電圧と出力電流から算出されるモータ運転状態値に応じて、有効電力の変動から異常の有無、あるいは状態量を判定すればよい。
 モータ運転状態値の1つの指標として、有効電力に関係するq軸電流値とq軸電圧値を下記の式(8)に示す。
Figure JPOXMLDOC01-appb-M000008
 上記式(8a)に示すように、Id=0に制御されているときは、q軸電流とq軸電圧の比は簡素化されて表現できる。
 ここで、層間短絡などのモータ異常が生じた場合には、逆起電圧定数を含んだKe’がモータ回転位置に依存して変化することとなる。
 また、式(8)、(8a)では、モータ回転速度ωrが数式に含まれるため、モータ運転状態値がモータ回転速度に影響されることが示され、モータ回転速度ωrを、式(8)の右辺と左辺に乗算することで、モータ運転状態値がモータ回転速度ωrの影響をキャンセルして、図2に示すようなほぼ一定値を得ることができる。
 ここでは、有効電力の変化を指標に取っているが、無効電力にしても同様な効果が得られる。さらには、電流指令値(Id*、ないしIq*)がほぼ一定値の場合には、出力電圧あるいはq軸電圧値のみで簡略化することができ、制御処理演算の負荷を軽減できる。
 すなわち、モータトルクを多く必要な領域を多用する用途には、q軸の電流Iqとq軸の電圧Vqのみを用いてもモータ異常(モータ運転状態値の変動)を検知できる。一方、d軸の電流Idを多く流した弱め界磁制御を多用する用途には、d軸の電流Idとd軸の電圧Vdのみを用いてもモータ異常を検知できる。一般には、モータトルクを必要とする用途が多いため、有効電力の方が無効電力よりも大きく、このような使用条件にてはq軸の電流Iqとq軸の電圧Vqを用いてモータ異常を判定することで実用上問題ない。
 本発明では、有効電力及び力率の計測には電気角で1周期以上が必要であり、通常のインバータ過電流保護動作より遅い応答となる。モータ巻線の地落などに対しては、これまで同様のインバータ過電流動作により保護し、Iu+Iv+Iw=0の条件が成立する層間短落などに対しては、モータ運転状態値と判定値とを比較することで保護動作ができる。
 あるいは、モータ運転を継続可能なモータ異常状態である場合には、モータ異常をユーザに通知してサービスステーションに行き、メンテナンスを受けるように知らせることもできる。モータ運転は、モータ310やインバータ130の温度上昇が予め設定された許容範囲内、あるいはインバータ130の許容電流範囲内にてモータ運転を継続することができる。このとき、モータ運転状態値に応じてモータ運転に制限を加えることが好ましい。
 モータ運転状態値の応答性を向上させるには、q軸電流値とq軸電圧値とを用いることにより、瞬時モータ運転状態値が異常判定レベルにある場合には、電気角1周期を計測することなく、モータ異常を保持し、モータ異常をユーザに速やかに通知することが可能である。
 上述の実施形態では、インバータ出力を用いる場合について説明したが、バッテリ200からの直流電圧値と直流電流値とから求められるモータ制御装置100の入力電力(有効電力分)を用いる場合でも同様にモータ異常を検知できる。
 図4は、モータの位置センサ部の異常時における動作状態の変化を示す波形図である。
 モータ異常の状態を層間短絡ではなく、モータ310に取り付けられた位置センサ部320の異常について示している点が図2と異なり、他は図2と同様である。
 位置検出誤差は、図4(a)に示すように、例えばレゾルバなどの位置センサ部320の異常によって位置検出値θに誤差が重畳した場合であり、位置センサ部320からの検出信号線の接触不良などによってノイズ量が時間変化して、モータ位置検出部にて演算した位置検出値θの誤差(位置検出誤差)が時間変化した場合を示している。
 出力電圧変調率は、PWM変調率を示しており、図4(b)に示すように、位置検出誤差に応じて変調率が変化し、その結果、出力電流が変化している。ここで、電流制御が働いているが、dq変換で用いる位置検出値θに誤差が生じているため、電流検出部120の出力信号であるモータ電流検出値(Id,Iq)には検出誤差が含まれる。すなわち、電流制御部110にて電流指令値(Id*,Iq*)とモータ電流検出値(Id,Iq)が一致するように動作をするものの、実際にモータに流れる出力電流(Iu、Iv,Iw)は、電流指令値(Id*,Iq*)から求まる三相の電流値とは一致しないことを示している。
 このときの三相出力電圧の絶対値のピーク値は大きく変動しており、三相出力電圧の絶対値のピーク値を用いても位置センサ部320の異常を検知できる。また、図3と式(1)~(8)を用いて説明したモータ運転状態値を用いた場合にも、位置センサ部320の異常を検知して、ユーザに異常を通知することができる。例えば、図4(e)に示すように、モータ運転状態値の判定値として上限値Thaと下限値Thbを予め設定しておき、モータ運転状態値が上限値Thaを超えた場合、もしくは下限値Thbを下回った場合に、位置センサ部320の異常と判断することができる。
 上記したモータ制御装置100によれば、モータ310の運転中にモータ310に出力される出力電流の電流値と出力電圧の電圧値に基づいてモータ運転状態値を演算し、その演算されたモータ運転状態値に基づいてモータ310に異常が発生しているか否かを判定するので、モータ運転中にモータ310の層間短落や位置センサ部320の誤差増大等の中間レベルのモータ異常を検知できる。
 次に、図5を用いて、本発明の各実施形態に示したモータ制御装置を適用した電動パワーステアリング装置の構成について説明する。 
 図5は、本発明の各実施形態に示したモータ制御装置を適用した電動パワーステアリング装置の構成図である。
 電動アクチュエータは、トルク伝達機構902と、モータ310と、モータ制御装置100から構成される。電動パワーステアリング装置は、電動アクチュエータと、ハンドル(ステアリング)900と、操舵検出器901および操作量指令器903を備え、運転者が操舵するハンドル900の操作力は電動アクチュエータを用いてトルクアシストする構成を有する。
 電動アクチュエータのトルク指令τ*は、ハンドル900の操舵アシストトルク指令(操作量指令器903にて作成)とし、電動アクチュエータの出力を用いて運転者の操舵力を軽減するようにしたものである。モータ制御装置100は、入力指令としてトルク指令τ*を受け、モータ310のトルク定数とトルク指令τ*とからトルク指令値に追従するようにモータ電流を制御する。
 モータ310のロータに直結された出力軸から出力されるモータ出力τmはウォーム、ホイールや遊星ギヤなどの減速機構あるいは油圧機構を用いたトルク伝達機構902を介し、ステアリング装置のラック910にトルクを伝達して運転者のハンドル900の操舵力(操作力)を電動力にて軽減(アシスト)し、車輪920,921の操舵角を操作する。
 このアシスト量は、ステアリングシャフトに組み込まれた操舵状態を検出する操舵検出器901により操舵角や操舵トルクとして操作量を検出し、車両速度や路面状態などの状態量を加味して操作量指令器903によりトルク指令τ*として決定される。
 本発明のモータ制御装置100は、急加減速する電動アクチュエータに要求されるトルク指令τ*に対しても回転センサに生じる位相差を補正して高効率なモータ駆動が可能なため、電動アクチュエータの高速・高トルク運転の弱め界磁領域に対してもモータ効率を低下させることなく駆動可能である。
 また、低速度おいてもセンサ取付誤差を低減して安定して低トルク変動にてモータ駆動ができる。すなわち、モータ制御装置100を適用した電動パワーステアリング装置では運転者に操舵フィーリングを損なうことなく高トルク・高応答な電動パワーステアリング装置が得られる。なお、本実施例では、電動パワーステアリング装置について説明したが、電動ブレーキ装置であっても同様の効果が得られる。
 次に、図6、図7を用いて、本発明に係るモータ制御装置を車両に適用したその他の実施形態を説明する。
 図6は、本発明のモータ制御装置が適用されたハイブリッド自動車システムの構成図、図7は、モータの動作状態の変化を示す波形図である。
 ハイブリッド自動車システムは、図6に示すように、同期電動機620をモータ/ジェネレータとして適用したパワートレインを有する。
 図6に示す自動車において符号600は車体である。車体600のフロント部には、前輪車軸601が回転可能に軸支されており、前輪車軸601の両端には、前輪602,603が設けられている。車体600のリア部には、後輪車軸604が回転可能に軸支されており、後輪車軸604の両端には後輪605,606が設けられている。
 前輪車軸601の中央部には、動力分配機構であるデファレンシャルギア611が設けられており、エンジン610から変速機612を介して伝達された回転駆動力を左右の前輪車軸601に分配するようになっている。エンジン610と同期電動機620とは、エンジン610のクランクシャフトに設けられたプーリーと同期電動機620の回転軸に設けられたプーリーとがベルトを介して機械的に連結されている。
 これにより、同期電動機620の回転駆動力がエンジン610に、エンジン610の回転駆動力が同期電動機620にそれぞれ伝達できるようになっている。同期電動機620は、モータ制御装置100によって制御された3相交流電力がステータのステータコイルに供給されることによって、ロータが回転し、3相交流電力に応じた回転駆動力を発生する。
 すなわち、同期電動機620は、モータ制御装置100によって制御されて電動機として動作する一方、エンジン610の回転駆動力を受けてロータが回転することによって、ステータのステータコイルに起電力が誘起され、3相交流電力を発生する発電機として動作する。
 モータ制御装置100は、高電圧(42V)系電源である高圧バッテリ622から供給された直流電力を3相交流電力に変換する電力変換装置であり、運転指令値に従ってロータの磁極位置に応じた,同期電動機620のステータコイルに流れる3相交流電流を制御する。
 同期電動機620によって発電された3相交流電力は、モータ制御装置100によって直流電力に変換されて高圧バッテリ622を充電する。高圧バッテリ622にはDC-DCコンバータ624を介して低圧バッテリ623に電気的に接続されている。低圧バッテリ623は、自動車の低電圧(14v)系電源を構成するものであり、エンジン610を初期始動(コールド始動)させるスタータ625,ラジオ,ライトなどの電源に用いられている。
 車両が信号待ちなどの停車時(アイドルストップモード)にあるとき、エンジン610を停止させ、再発車時にエンジン610を再始動(ホット始動)させる時には、モータ制御装置100で同期電動機620を駆動し、エンジン610を再始動させる。尚、アイドルストップモードにおいて、高圧バッテリ622の充電量が不足している場合や、エンジン610が十分に温まっていない場合などにおいては、エンジン610を停止せず駆動を継続する。また、アイドルストップモード中においては、エアコンのコンプレッサなど、エンジン610を駆動源としている補機類の駆動源を確保する必要がある。この場合、同期電動機620を駆動させて補機類を駆動する。
 加速モード時や高負荷運転モードにある時にも、同期電動機620を駆動させてエンジン610の駆動をアシストする。逆に、高圧バッテリ622の充電が必要な充電モードにある時には、エンジン610によって同期電動機620を発電させて高圧バッテリ622を充電する。すなわち、車両の制動時や減速時などの回生モードを行う。
 このような車両用のモータ駆動装置において、位置センサ部の異常や、同期電動機620の異常などが発生した場合には、異常を検知しても可能な限りモータ運転を継続することが望まれる。
 そこで、図7に示すように、異常を判定しても運転継続可能な状態と、継続せずに緊急停止させる状態とを判別するために複数の判定レベルを設けた。図7(b)に示す第1の判定値Th1は、モータ運転が継続可能なモータ異常であるかを判定する異常判定レベルであり、図7(b)に示す第2の判定値Th2は、モータ運転を継続することが困難なモータ異常であるかを判定する異常判定レベルである(Th1<Th2)。
 モータ運転状態値が、かかる第1の判定値Th1を超えて第2の判定値Th2との間の値となっている場合には、モータ異常を運転者に通知すると共に、速やかに停車あるいはサービスステーションまでの移動を促すことができ、必要に応じてモータ制御装置100のインバータ(図示せず)の出力制限をしながらも、安全な停車場所までの車両移動や、サービスステーションまでの車両移動を可能とすることができる。このとき、予め設定したモータ運転状態の制限や、モータ運転状態値のピーク値に応じたモータ運転の制限を加えることも可能である。
 そして、モータ運転状態値が、図7(b)に示す第2の判定値Th2を越えた場合には、インバータあるいはモータの焼損につながるような重度の異常状態であり、車両を緊急停止させるべきであると判断する。したがって、最終的にモータの異常によって搭乗者等に不具合が生ずることがないようモータ運転を緊急停止することができる。
 例えば、モータの巻線などに発生する異常のひとつに巻線の絶縁劣化などがある。この場合、急激な劣化よりも経年変化や、繰り返しによるダメージによって引き起こされることが多く、徐々にモータ運転状態値(運転中の状態値)が正常な状態から、継続運転可能な異常状態を経て、停止すべき異常状態に至る。したがって、2つ以上の判定値を用いてモータの異常度合いを判断することによって、モータ運転の制御をより細かく行うことができる。
 モータ異常時に、モータ運転状態値が第1の判定値Th1あるいは第2の判定値Th2と一致あるいは、それ以上になる瞬間と、それ以下になる瞬間とが交互に発生する。これは、異常になったモータ巻線に印加する電圧が交流電圧であるためで、モータの回転に伴って変化することに起因する。
 モータトルクも電気角1周期以内で周期的な変化となり、異常であるレベル(第1の判定値Th1あるいは第2の判定値Th2を超えるレベル)と、正常であるレベル(第1の判定値Th1以下のレベル)を繰り返し発生することがわかる。すなわち、電気角1周期を異常検出期間として異常レベルを検知し、異常を検出する。電気角の繰返し周期の都度、数周期連続して異常を検出したときに異常と判断することで、誤検知を防止することが可能となる。尚、位置センサ部320の異常においても同様に対処できる。
 上述の実施の形態では、本発明のモータ制御装置100をハイブリッド自動車システムに適用した場合について説明したが、電気自動車においても同様な効果が得られる。
 本発明のモータ制御装置100は、このような同期電動機620をモータ/ジェネレータにとして適用する場合にも、安全に停車可能な場所まで移動したり、サービスステーションまで移動可能とする自動車のパワートレインシステムを提供することができる。
 なお、本発明は、上述の実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々の変更が可能である。
100…モータ制御装置
110…電流制御部
120…電流検出部
130…インバータ
140…モータ異常判定部
150…モータ位置検出部
200…バッテリ
300…モータ装置
310…モータ
320…位置センサ部

Claims (11)

  1.  モータに出力される出力電流の電流値を検知して目標トルクに応じた電流値に制御するモータ制御装置であって、
     前記モータの運転中に前記モータに出力される出力電流の電流値と出力電圧の電圧値に基づいてモータ運転状態値を演算し、該演算されたモータ運転状態値に基づいて前記モータに異常が発生しているか否かを判定するモータ異常判定部を有することを特徴とするモータ制御装置。
  2.  前記モータ異常判定部は、前記モータの運転中に前記出力電流から検出した有効電流成分と前記出力電圧の電圧値の比から前記モータ運転状態値を演算することを特徴とする請求項1に記載のモータ制御装置。
  3.  前記モータ異常判定部は、前記モータ運転状態値が予め設定された判定値を越えた場合に、前記モータに異常が発生していると判定することを特徴とする請求項1に記載のモータ制御装置。
  4.  前記モータ異常判定部は、前記モータ運転状態値の電気角1周期内における変動幅が、予め設定された判定幅以上の場合に、前記モータに異常が発生していると判定することを特徴とする請求項1に記載のモータ制御装置。
  5.  前記モータ異常判定部は、電気角の繰返し周期の都度、予め設定された数周期連続して前記モータ運転状態値が予め設定された判定値を越えた場合に、前記モータに異常が発生していると判定することを特徴とする請求項1に記載のモータ制御装置。
  6.  前記モータ異常判定部は、前記モータの異常として、前記モータの巻線に層間短絡が発生しているか、もしくは、モータの位置を検出する位置センサ部に異常が発生していると判断することを特徴とする請求項1に記載のモータ制御装置。
  7.  前記モータ異常判定部は、前記モータ運転状態値のピーク値の大きさに応じて前記モータの巻線の劣化度合いを検知することを特徴とする請求項1に記載のモータ制御装置。
  8.  前記モータ異常判定部は、前記モータ運転状態値が予め設定された第1の判定値を越えた場合に、前記モータに該モータを継続運転可能な異常が発生していると判定し、前記モータ運転状態値が予め設定された第2の判定値を越えた場合に、前記モータに該モータを停止すべき異常が発生していると判定することを特徴とする請求項1に記載のモータ制御装置。
  9.  前記モータ異常判定部は、前記出力電圧の電圧値にq軸電圧値を用い、前記出力電流の電流値にq軸電流値を用いたことを特徴とする請求項1に記載のモータ制御装置。
  10.  前記モータ異常判定部は、前記出力電圧の電圧値にd軸電圧値を用い、前記出力電流の電流値にd軸電流値を用いたことを特徴とする請求項1に記載のモータ制御装置。
  11.  前記モータ異常判定部は、前記モータに異常が発生していると判定した場合に、モータ異常信号を出力することを特徴とする請求項1に記載のモータ制御装置。
PCT/JP2011/069703 2010-09-30 2011-08-31 モータ制御装置 WO2012043116A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-220166 2010-09-30
JP2010220166A JP5462121B2 (ja) 2010-09-30 2010-09-30 モータ制御装置

Publications (1)

Publication Number Publication Date
WO2012043116A1 true WO2012043116A1 (ja) 2012-04-05

Family

ID=45892590

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/069703 WO2012043116A1 (ja) 2010-09-30 2011-08-31 モータ制御装置

Country Status (2)

Country Link
JP (1) JP5462121B2 (ja)
WO (1) WO2012043116A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110168923A (zh) * 2017-02-28 2019-08-23 株式会社日立产机系统 交流电动机的控制装置
JP2019170056A (ja) * 2018-03-23 2019-10-03 ファナック株式会社 モータ制御装置およびモータ制御装置の制御方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6033172B2 (ja) * 2013-07-02 2016-11-30 アイシン精機株式会社 駆動切替用制御装置
JP6435993B2 (ja) * 2015-06-01 2018-12-12 株式会社デンソー 回転電機の制御装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0458778A (ja) * 1990-06-26 1992-02-25 Fuji Electric Co Ltd ベクトル制御形可変電圧・可変周波数インバータ
JP2004328828A (ja) * 2003-04-22 2004-11-18 Toshiba Mitsubishi-Electric Industrial System Corp 電動ファン異常検出装置
JP2007202220A (ja) * 2006-01-23 2007-08-09 Fanuc Ltd ファンモータ異常検出装置、ファンモータおよび電動機

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0458778A (ja) * 1990-06-26 1992-02-25 Fuji Electric Co Ltd ベクトル制御形可変電圧・可変周波数インバータ
JP2004328828A (ja) * 2003-04-22 2004-11-18 Toshiba Mitsubishi-Electric Industrial System Corp 電動ファン異常検出装置
JP2007202220A (ja) * 2006-01-23 2007-08-09 Fanuc Ltd ファンモータ異常検出装置、ファンモータおよび電動機

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110168923A (zh) * 2017-02-28 2019-08-23 株式会社日立产机系统 交流电动机的控制装置
EP3591835A4 (en) * 2017-02-28 2020-12-09 Hitachi Industrial Equipment Systems Co., Ltd. ALTERNATIVE CURRENT ELECTRIC MOTOR CONTROL DEVICE
US11273712B2 (en) 2017-02-28 2022-03-15 Hitachi Industrial Equipment Systems Co., Ltd. AC electric motor control device
CN110168923B (zh) * 2017-02-28 2022-10-28 株式会社日立产机系统 交流电动机的控制装置
JP2019170056A (ja) * 2018-03-23 2019-10-03 ファナック株式会社 モータ制御装置およびモータ制御装置の制御方法
US10924039B2 (en) 2018-03-23 2021-02-16 Fanuc Corporation Motor control device and control method for motor control device

Also Published As

Publication number Publication date
JP2012075293A (ja) 2012-04-12
JP5462121B2 (ja) 2014-04-02

Similar Documents

Publication Publication Date Title
JP5993616B2 (ja) 電動機の駆動制御装置
US7495411B2 (en) Controller for an electric four-wheel-drive vehicle
EP2097288B1 (en) Apparatus and method for controlling energy feedback for electric vehicle
EP2839983B1 (en) Electric-vehicle control device, and method for controlling electric vehicle
JP5511973B2 (ja) 電気機械のトルクの妥当性検査の方法を実行し、電気機械を制御する機械制御器
JP6062327B2 (ja) インバータ装置および電動車両
JP6445937B2 (ja) 電動パワーステアリング装置
US9461578B2 (en) Motor control device and motor control method
US20070216327A1 (en) Vehicle drive control system, motor control device and a method for drive control of a vehicle
WO2009119215A1 (ja) 回転電機制御システム及び当該回転電機制御システムを備えた車両駆動システム
JP6266280B2 (ja) 電気自動車のスリップ制御装置
WO2008077350A1 (en) Method and apparatus for controlling motor for skid mode of electric vehicle
CN106330035A (zh) 旋转电机控制装置
JP2013510555A5 (ja)
US9428079B2 (en) Electric vehicle
CN111869092B (zh) 永磁体同步电动机的控制装置、电动助力转向装置及电动车辆
JP2016052164A (ja) 車輪独立駆動式車両の駆動制御装置
JP5462121B2 (ja) モータ制御装置
JP5476795B2 (ja) 電動車両の制御装置
WO2015001849A1 (ja) 電動車両の制動制御装置
JP5786500B2 (ja) 駆動装置
JP5884747B2 (ja) 交流電動機の制御装置
JP6137045B2 (ja) 車両の駆動電動機制御装置
JP2013153594A (ja) 電動車両の制御装置および制御方法
JP2018085891A (ja) モータ駆動装置、及びモータ駆動装置の制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11828677

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11828677

Country of ref document: EP

Kind code of ref document: A1