WO2012042903A1 - 試薬組成物、センサ、センサシステム及びセンサの製造方法 - Google Patents
試薬組成物、センサ、センサシステム及びセンサの製造方法 Download PDFInfo
- Publication number
- WO2012042903A1 WO2012042903A1 PCT/JP2011/005544 JP2011005544W WO2012042903A1 WO 2012042903 A1 WO2012042903 A1 WO 2012042903A1 JP 2011005544 W JP2011005544 W JP 2011005544W WO 2012042903 A1 WO2012042903 A1 WO 2012042903A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- reagent composition
- group
- sensor
- composition according
- reagent
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/28—Electrolytic cell components
- G01N27/30—Electrodes, e.g. test electrodes; Half-cells
- G01N27/327—Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
- G01N27/3271—Amperometric enzyme electrodes for analytes in body fluids, e.g. glucose in blood
- G01N27/3272—Test elements therefor, i.e. disposable laminated substrates with electrodes, reagent and channels
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/001—Enzyme electrodes
- C12Q1/004—Enzyme electrodes mediator-assisted
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/001—Enzyme electrodes
- C12Q1/005—Enzyme electrodes involving specific analytes or enzymes
- C12Q1/006—Enzyme electrodes involving specific analytes or enzymes for glucose
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/26—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/26—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase
- C12Q1/32—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase involving dehydrogenase
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y101/00—Oxidoreductases acting on the CH-OH group of donors (1.1)
- C12Y101/05—Oxidoreductases acting on the CH-OH group of donors (1.1) with a quinone or similar compound as acceptor (1.1.5)
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2333/00—Assays involving biological materials from specific organisms or of a specific nature
- G01N2333/90—Enzymes; Proenzymes
- G01N2333/902—Oxidoreductases (1.)
- G01N2333/904—Oxidoreductases (1.) acting on CHOH groups as donors, e.g. glucose oxidase, lactate dehydrogenase (1.1)
Definitions
- the present invention relates to a reagent composition, a sensor, a sensor system, and a sensor manufacturing method.
- a sensor for detecting a target substance in a liquid sample has been proposed.
- the liquid sample is blood
- the target substance is glucose
- An electrochemical blood glucose sensor includes an enzyme and an electron acceptor. This enzyme oxidizes glucose by specifically reacting with glucose in the blood (enzyme-substrate reaction).
- the electron acceptor changes from an oxidant to a reductant by accepting electrons generated by oxidation.
- the electron acceptor that has become a reductant is electrochemically oxidized at, for example, an electrode. From the magnitude of the electric current obtained by this oxidation, the glucose concentration in the blood, that is, the blood glucose level is easily detected.
- an enzyme and an electron acceptor are applied on a substrate in a state of being dissolved in a reagent solution.
- the reagent layer is formed by drying the reagent solution. As the formed reagent layer dissolves in the liquid sample, the enzyme-substrate reaction proceeds.
- a reagent composition containing an oxidoreductase such as glucose dehydrogenase, an electron acceptor such as a quinone compound, and histidine or imidazole as an additive is known (for example, Patent Document 1). 2 and 4).
- a reagent composition a reagent composition containing a transition metal complex having an oxidation-reduction enzyme such as glucose dehydrogenase dependent on PQQ (pyrroloquinoline quinone) and a pyridylimidazole ligand is known (for example, (See Patent Document 3).
- a reagent composition containing a transition metal complex having an oxidation-reduction enzyme such as glucose dehydrogenase dependent on PQQ (pyrroloquinoline quinone) and a pyridylimidazole ligand
- PQQ pyrroloquinoline quinone
- a pyridylimidazole ligand for example, (See Patent Document 3).
- the inventors have found that the current value when a voltage is applied can change before and after the reagent solution or reagent layer passes through the storage period. Such a change in the current value reduces the measurement accuracy of the sensor. That is, the conventional reagent solution and reagent layer have room for improvement in storage stability.
- an object of the present invention is to provide a new reagent composition in which a change in current value before and after a storage period is suppressed, and a sensor and a sensor system including the reagent composition.
- the present invention has the following configuration.
- R 1 to R 5 each independently represents a hydrogen atom, an amino group, a hydroxyl group, a carboxyl group or a hydrocarbon group having 1 to 12 carbon atoms, and the hydrocarbon group is an amino group May have at least one substituent selected from the group consisting of a hydroxyl group and a carboxyl group, two or three of A 1 to A 5 are nitrogen atoms, and the others are carbon atoms And when two of A 1 to A 5 are nitrogen atoms, A 1 is a nitrogen atom, and A 2 and A 5 are carbon atoms.
- the electron acceptor is at least one selected from the group of quinone compounds comprising naphthoquinone, anthraquinone, phenanthrenequinone, phenanthrolinequinone, and quinone derivatives thereof.
- the heterocyclic compound does not contain histidine and two of A 1 to A 5 in the formula (I) are nitrogen atoms, R 1 to R 5 Of these, at least one group is a substituent other than a hydrogen atom.
- R 1 to R 5 is represented by C n H m- (a + b + c) (R 6 ) a (R 7 ) b (R 8 ) c
- n represents a natural number of 2 or less
- m represents a natural number of n + 1 or more and 2n + 1 or less
- a, b and c each independently represents a natural number of n or less
- R 6 to R 8 each independently represents a hydroxyl group, a carboxyl group or an amino group.
- [6] as the heterocyclic compound imidazole, histamine, histidine, 2-amino-imidazole, 4,5-bis (hydroxymethyl) imidazole, 2-methylimidazole, 1,2-dimethylimidazole, 1,2,4 At least one selected from the group consisting of triazole, 3-amino-1,2,4-triazole, 4-amino-1,2,4-triazole and 3,5-diamino-1,2,4-triazole.
- the reagent composition according to any one of [1] to [5], comprising a compound (excluding imidazole and histidine when the second requirement is satisfied).
- heterocyclic compound histamine, histidine, 2-amino-imidazole, 4,5-bis (hydroxymethyl) imidazole, 2-methylimidazole, 1,2-dimethylimidazole, 1,2,4-triazole At least one compound selected from the group consisting of 3-amino-1,2,4-triazole, 4-amino-1,2,4-triazole and 3,5-diamino-1,2,4-triazole ( However, when the second requirement is satisfied, the reagent composition according to any one of [1] to [6], which contains histidine).
- the quinone compound has a quinone and a substituent, and the substituent has an optionally substituted benzene ring and the hydrophilic functional group added to the benzene ring. 12].
- the quinone compound has at least one functional group selected from the group consisting of a sulfo group, a carboxyl group, and a phosphate group as the hydrophilic functional group, according to [12] or [13].
- Reagent composition has at least one functional group selected from the group consisting of a sulfo group, a carboxyl group, and a phosphate group as the hydrophilic functional group, according to [12] or [13].
- the quinone compounds include the following (a) to (c): (A) the sulfo group is 1-sulfonic acid, 2-sulfonic acid, 3-sulfonic acid, 4-sulfonic acid, and 2,7-disulfonic acid; The reagent composition according to [14], wherein (b) the carboxyl group is 2-carboxylic acid, and (c) the phosphoric acid group is 2-phosphoric acid.
- a sample chamber formed to receive a liquid sample; At least a pair of electrodes disposed in the sample chamber; A sensor layer comprising a reagent layer formed of the reagent composition according to any one of [1] to [19], which is disposed in contact with at least both of the pair of electrodes in the sample chamber.
- a measuring unit for measuring a current value between the at least one pair of electrodes A sensor system comprising: a calculation unit that calculates a concentration of a target substance in the liquid sample based on a measurement result by the measurement unit.
- the heterocyclic compound suppresses changes in the current value before and after the storage period.
- This reagent composition is preferably applied to the reagent layer of the sensor.
- FIG. 2 is a cyclic voltammogram for a reagent solution containing imidazole and sodium 9,10-phenanthrenequinone-2-sulfonate (PQSA), with the reagent solution immediately after preparation (initial) as a dotted line, and a reagent 21 hours after preparation
- the liquid is represented by a solid line.
- the reagent composition contains a heterocyclic compound, an electron acceptor, and an oxidoreductase.
- the reagent composition can contain at least one compound selected from the compounds described below as the heterocyclic compound.
- the heterocyclic compound is represented by the following formula (I).
- the heterocyclic compound represented by the formula (I) can suppress the shift of the oxidation potential of the electron acceptor to the positive side in the presence of the oxidoreductase.
- R 1 to R 5 each independently represents a hydrogen atom, an amino group, a hydroxyl group, a carboxyl group, or a hydrocarbon group having 1 to 12 carbon atoms.
- R 1 to R 5 are preferably a substituent capable of retaining the water solubility of the heterocyclic ring, and an additional group (at least one substituent selected from the group consisting of an amino group, a hydroxyl group and a carboxyl group, which will be described later). If it is a hydrocarbon that does not have it, it preferably has 1 to 4 carbon atoms, and if it is a hydrocarbon having an additional group, it preferably has 1 to 12 carbon atoms.
- the hydrocarbon group may have at least one substituent selected from the group consisting of an amino group, a hydroxyl group, and a carboxyl group.
- the hydrocarbon group may be either chain or cyclic.
- the chain hydrocarbon group may be branched or linear.
- the chain hydrocarbon group may be either a saturated hydrocarbon group or an unsaturated hydrocarbon group.
- R 1 to R 5 is represented by a chain formula represented by C n H m- (a + b + c) (R 6 ) a (R 7 ) b (R 8 ) c It may be a hydrocarbon group.
- n represents a natural number of 2 or less
- m represents a natural number of n + 1 or more and 2n + 1 or less
- a, b and c each independently represents a natural number of n or less
- R 6 to R 8 each independently represent hydroxyl Represents a group, a carboxyl group, or an amino group.
- m is represented by 2n + 1.
- R 1 to R 5 are each independently a hydrogen atom, —NH 2 , —CH 3 , —CH 2 OH, —C 2 H 4 NH 2, or —CH 2 —CH (NH 2 ) —. COOH may also be used.
- two or three of A 1 to A 5 may be nitrogen atoms and the others may be carbon atoms.
- the heterocyclic compound may be an optionally substituted imidazole or triazole.
- a 1 is a nitrogen atom
- a 2 and A 5 are carbon atoms.
- at least one group of R 1 to R 5 is preferably a substituent other than a hydrogen atom.
- the heterocyclic compound may contain at least 3 nitrogen atoms. That is, the total number of nitrogen atoms contained in the heterocyclic ring and the substituent may be 3 or more. In this case, for example, when the number of nitrogen atoms contained in the heterocyclic ring is 2, one or more substituents are bonded to the heterocyclic ring, and the number of nitrogen atoms contained in all the substituents is The sum is 1 or more. Further, when the number of nitrogen atoms contained in the heterocycle is 3, the heterocycle may not have a substituent, or may have a substituent that may contain nitrogen. Regardless of the number of nitrogen contained in the heterocyclic ring, the heterocyclic compound may have a substituent not containing nitrogen.
- the heterocyclic ring may be a five-membered ring, more specifically, a five-membered heterocyclic ring containing two or more, preferably two or three nitrogen atoms.
- the five-membered heterocyclic ring may be, for example, imidazole or triazole.
- the triazole 1,2,4-triazole is preferably used.
- a substituent containing a nitrogen atom is a substituent containing an amino group.
- Substituents containing amino groups include the amino group itself and hydrocarbon groups substituted with one or more amino groups.
- the heterocyclic compound having an amino group exhibits the above-described shift suppressing effect even in a high-temperature and high-humidity environment, in addition to suppressing the shift of the oxidation potential of the electron acceptor to the positive side in the presence of oxidoreductase. .
- the heterocyclic compound having an amino group is excellent in environmental stability.
- heterocyclic compound represented by the formula (I) examples include imidazole, histamine, histidine, 2-amino-imidazole, 4,5-bis (hydroxymethyl) imidazole, 2-methylimidazole, 1,2- Examples include dimethylimidazole, 1,2,4-triazole, 3-amino-1,2,4-triazole, 4-amino-1,2,4-triazole and 3,5-diamino-1,2,4-triazole. It is done. These heterocyclic compounds are preferable from the viewpoint of suppressing the shift of the oxidation potential of the electron acceptor to the positive side.
- histamine, histidine, 2-amino-imidazole, 4,5-bis (hydroxymethyl) imidazole, 2-methylimidazole, 1,2-dimethylimidazole, 1,2,4-triazole, 3-amino-1 , 2,4-triazole, 4-amino-1,2,4-triazole and 3,5-diamino-1,2,4-triazole are more preferable from the viewpoint of further excellent environmental stability.
- Electron acceptor may be rephrased as an electron transfer substance or a mediator.
- the electron acceptor can reversibly become an oxidant and a reductant.
- An electron acceptor can mediate the transfer of electrons between materials, either directly or in cooperation with another electron acceptor.
- One or more electron acceptors may be used.
- Examples of the electron acceptor include quinone compounds, iron cyano complexes, phenazine methosulfate and derivatives thereof, methylene blue and derivatives thereof, and ferrocene and derivatives thereof.
- iron cyano complex examples include ferricyanide complex salts.
- ferricyanide complex salts include potassium ferricyanide.
- the quinone compound is a compound containing quinone.
- the quinone compounds include quinones and quinone derivatives.
- Examples of the quinone derivative include compounds in which various functional groups (which may be referred to as substituents) are added to quinone.
- Examples of the quinone in the quinone compound include (a) benzoquinone, (b) naphthoquinone, (c) anthraquinone, (d) phenanthrenequinone, and (e) phenanthroline quinone.
- Specific examples of phenanthrenequinone include 9,10-phenanthrenequinone.
- Specific examples of the structural formula of each quinone are shown below. In the following formulas, isomers are omitted, but quinones include quinone isomers represented by the following formulas.
- One kind of quinone derivative may have two or more kinds of functional groups.
- a hydrophilic functional group is mentioned as an example of the addition functional group (substituent) in a quinone derivative.
- the hydrophilic functional group include a sulfo group (—SO 3 H), a carboxyl group (—COOH), and a phosphoric acid group (—PO 4 H 2 ).
- these salts sodium salt, potassium salt, calcium salt, etc.
- the substituent may be an optionally substituted hydrocarbon group having 1 to 16 carbon atoms.
- the substituent added to the hydrocarbon group the above-mentioned hydrophilic functional group is preferable.
- the hydrocarbon group include alkyl groups such as a methyl group and an ethyl group, vinyl groups, and aryl groups such as a phenyl group, a naphthyl group, a phenanthryl group, an anthryl group, and a pyrenyl group.
- the quinone derivative may have a substituent containing a benzene ring.
- the above-mentioned hydrophilic functional groups may be added to the benzene ring in the substituent.
- the hydrophilic functional group may be bonded to the quinone via a benzene ring.
- the sulfo group is 1-sulfonic acid, 2-sulfonic acid, 3-sulfonic acid, 4-sulfonic acid, and 2,7-disulfonic acid.
- the carboxyl group may satisfy at least one item of 2-carboxylic acid, and
- the phosphoric acid group is 2-phosphoric acid.
- at least one of the following substituents may be added to the quinones (a) to (e) described above.
- the “substituent” also includes the following positional isomers of substituents.
- two or more functional groups may be added to one benzene ring, or two or more types of functional groups may be added to one benzene ring.
- Another atom may be interposed between the above-mentioned hydrophilic functional group and the benzene ring.
- electron acceptors include the following compounds A, B, H ', I, I', and J.
- P-TsOH in the following scheme means p-toluenesulfonic acid.
- Compound A can be obtained by refluxing 9,10-phenanthrenequinone in 65% nitric acid.
- Compound B is obtained by reducing Compound A with sodium thiosulfate in the presence of sodium hydroxide.
- Compound B becomes Compound C by replacing the amino group with iodine through diazonium chloride with sodium nitrite.
- Compound C is converted to Compound D by substituting iodine for lithium with butyllithium and then reacting with 2-isopropoxy-4,4,5,5-tetramethyl-1,3,2-dioxaborolane.
- Compound H ′ is obtained by reacting compound D with sodium 4-iodobenzenesulfonate.
- Compound I is obtained by reacting compound D with sodium 4-iodobenzoate.
- Compound J is obtained by reacting Compound D with disodium 5-iodoisophthalate.
- Compound I ' is obtained by a condensation reaction between Compound I and aminoethanesulfonic acid.
- the substituent in the compound I ′ has a sulfo group, a benzene ring, and an amino carboxyl (—CONH—) between the sulfo group and the benzene ring.
- Table 1 shows the solubility of compounds A, B, H ′, I, I ′, and J, and disodium 9,10-phenanthrenequinone-2,7-disulfonate in water.
- the oxidation-reduction potential of each compound is as shown in Table 2.
- the oxidation-reduction potential (E0 ′) was calculated as follows. That is, cyclic voltammetry was performed using Ag
- the oxidation-reduction potential (E0 ′) is calculated as an average value [(Ered + Eox) / 2] of a potential value (Eox) when the oxidation current shows a peak and a potential value (Ered) when the reduction current shows a peak. It was.
- these compounds exhibit a relatively low redox potential.
- Such an electron acceptor exhibiting a low redox potential is preferably used for the sensor.
- the position of the substituent in the quinone is not particularly limited.
- at least one of positions 1, 2, 3, 4, and 7 is preferably selected as a substituent position.
- the reagent composition is a quinone derivative, specifically, 9,10-phenanthrenequinone-2-sulfonic acid, 9,10-phenanthrenequinone-1-sulfonic acid, 9,10-phenanthrenequinone-3-sulfonic acid, 9,10-phenanthrenequinone-4-sulfonic acid, 9,10-phenanthrenequinone-2,7-disulfonic acid, 9,10-phenanthrenequinone-2-carboxylic acid, and 9,10-phenanthrenequinone-2-phosphoric acid It may contain at least one compound selected from the group consisting of
- a manufacturing method of a quinone compound a conventional method is preferably used.
- Quinones are conventionally used in the fields of medicine, agricultural chemicals and industry. Quinones can be produced, for example, from aromatic hydrocarbons. Specifically, anthraquinone is easily produced by oxidation of anthracene.
- the manufacturing method of the quinone compound which has a hydrophilic functional group may also include the process of introduce
- the volatility of a quinone compound having a hydrophilic functional group tends to be lower than that of a quinone which is a main element of the quinone compound. Therefore, when a quinone compound is added with a hydrophilic functional group, the quinone compound is advantageous in that it functions as an electron acceptor by being contained in the reagent layer 4.
- the reagent composition may contain one or more kinds of enzymes.
- An oxidoreductase is used as the enzyme.
- the oxidoreductase includes an oxidase and a dehydrogenase.
- Glucose oxidase and glucose dehydrogenase are preferred as the enzyme using glucose as a substrate;
- the lactate substrate is preferably lactate oxidase or lactate dehydrogenase;
- the cholesterol-based enzyme is preferably cholesterol esterase or cholesterol oxidase;
- -Alcohol oxidase is preferred as the enzyme with alcohol as substrate; -As the enzyme using bilirubin as a substrate, bilirubin oxidase is preferable;
- the reagent composition may contain a coenzyme that matches the enzyme.
- the enzyme is not particularly limited with respect to its coenzyme dependency.
- the enzyme may have NAD (nicotinamide adenine dinucleotide), NADP (nicotinamide adenine phosphate), PQQ (Pyrroquinoline quinone), or FAD (flavin uid).
- the enzyme coenzyme is preferably FAD or PQQ.
- the coenzyme binds to or is contained in the enzyme protein. Therefore, it is not necessary to add a coenzyme separately from the enzyme when the sensor is manufactured and measured. As a result, the sensor configuration, manufacturing process, and measurement process are simplified.
- NAD and NADP-dependent enzymes for example, coenzymes NAD and NADP that function in a state in which they are not bound to enzyme proteins may be added separately.
- the enzyme may be a FAD-dependent oxidase, NAD-dependent, PQQ-dependent, FAD-dependent dehydrogenase, or the like. Specific examples of the oxidase and dehydrogenase are as described above.
- the present invention satisfies any of the following first and second requirements among these combinations.
- the oxidoreductase and the compound of the formula (1) are not particularly limited.
- the oxidoreductase and the electron acceptor are not particularly limited.
- the electron acceptor is at least one selected from the group of quinone compounds consisting of naphthoquinone, anthraquinone, phenanthrenequinone, phenanthroline quinone, and quinone derivatives thereof.
- the heterocyclic compound does not contain histidine; When two of A 1 to A 5 in formula (I) are nitrogen atoms, at least one group of R 1 to R 5 is a substituent other than a hydrogen atom.
- the reagent composition may contain other components other than the heterocyclic compound, oxidoreductase, and electron acceptor as long as the effects of the present invention are obtained.
- Such other components include, for example, when a reagent composition is applied to the sensor, -Increase the storage stability of enzymes or electron acceptors, -Increase the reactivity between the enzyme and the target substance, A substance exhibiting an effect of increasing the responsiveness to the target substance or increasing the linearity of the response current value with respect to the concentration of the target substance is preferably used.
- Examples of the other components include sugar alcohol.
- sugar alcohols include sorbitol, maltitol, xylitol, mannitol, lactitol, reduced palatinose, arabinitol, glycerol, ribitol, galactitol, sedheptitol, perseitol, boremitol, sfurtaitol, polygallitol, iditol, tallitol, allitol, icilitol, reduced.
- Examples include saccharified starch, chain polyhydric alcohols such as isilitol, and cyclic sugar alcohols.
- the stereoisomer of these sugar alcohol, a substituted body, and a derivative are also mentioned.
- examples of the other component include organic acids or organic acid salts having at least one amino group or carbonyl group in the molecule.
- organic acids and salts thereof include amino acids, substituted products thereof, derivatives thereof, and salts thereof.
- the amino acid include glycine, alanine, valine, leucine, isoleucine, serine, threonine, methionine, asparagine, glutamine, arginine, lysine, phenylalanine, proline, sarcosine, betaine, and taurine.
- amino acids and salts thereof glycine, serine, proline, threonine, lysine, and taurine are particularly preferable because of their high crystallization inhibitory effects. These compounds are preferable from the viewpoint of improving the final response.
- the reagent composition may further contain a buffer.
- the reagent composition may be sodium phosphate such as NaH 2 PO 4 and Na 2 HPO 4 , potassium phosphate such as KH 2 PO 4 and K 2 HPO 4 , N- (2-acetamido) -2-aminoethanesulfone.
- An acid (ACES), trishydroxymethylaminomethane (tris (hydroxymethyl) aminomethane: Tris), and the like may be included.
- the buffer includes a buffer. That is, the reagent composition may contain a buffer solution such as a sodium phosphate buffer solution, an ACES buffer solution, or a Tris buffer solution.
- a buffer solution such as a sodium phosphate buffer solution, an ACES buffer solution, or a Tris buffer solution.
- the reagent composition may further contain an additive such as one or both of citric acid-3Na and calcium chloride (CaCl 2 ). Citrate-3Na and calcium chloride can further improve the linearity of the sensor response current to glucose concentration when the reagent composition is used in the sensor.
- an additive such as one or both of citric acid-3Na and calcium chloride (CaCl 2 ). Citrate-3Na and calcium chloride can further improve the linearity of the sensor response current to glucose concentration when the reagent composition is used in the sensor.
- the reagent composition may further contain a hydrophilic polymer.
- a hydrophilic polymer When the reagent composition contains a hydrophilic polymer, peeling of the reagent layer from the electrode surface is suppressed when the reagent composition is applied to the reagent layer of the sensor.
- the hydrophilic polymer further has an effect of suppressing cracking of the reagent layer surface.
- hydrophilic polymers examples include carboxymethyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, methyl cellulose, ethyl cellulose, ethyl hydroxyethyl cellulose, carboxymethyl ethyl cellulose, polyethylene glycol, polyvinyl pyrrolidone, polyvinyl alcohol, polylysine and other polyamino acids, polystyrene sulfonic acid Gelatin and its derivatives, polymers of acrylic acid and its salts, polymers of methacrylic acid and its salts, starch and its derivatives, polymers of maleic anhydride and its salts, agarose gel and its derivatives are preferably used.
- the reagent composition may be a liquid or a solid.
- examples of the medium contained in the reagent composition include water (including buffer solution), alcohol (including ethanol, methanol, propanol, etc.), organic solvent (including benzene, toluene, xylene, etc.), etc. Is mentioned.
- the liquid reagent composition may be referred to as “reagent liquid”.
- the medium is preferably water from the viewpoint of compatibility with a biological sample.
- the concentration of the heterocyclic compound in the reagent solution is preferably 0.001 mM or more, more preferably 0.01 mM or more, and further preferably 0.1 mM or more. Preferably, it is 1 mM or more.
- the concentration of the heterocyclic compound in the reagent solution can be set to 10 mM or less, 5 mM or less, or 4 mM or less.
- the molecular ratio of the electron acceptor to the heterocyclic compound is preferably 10,000: 1 to 1: 1,000, more preferably 1,000: 1 to 1: 100, More preferably, it is ⁇ 1: 10.
- the amount of the heterocyclic compound per 1U of the enzyme is preferably 0.005 to 250 nmol, more preferably 0.1 to 40 nmol.
- the amount of electron acceptor per 1U of enzyme is preferably 0.05 to 2,500 nmol, more preferably 1 to 400 nmol.
- some diamine compounds suppress the positive shift of the electron acceptor oxidation potential in the presence of an oxidoreductase.
- some of such diamine compounds can be used in place of the heterocyclic compounds.
- the partial diamine compound include ethylenediamine, ornithine, lysine, and arginine.
- the sensor according to the present invention is disposed so as to be in contact with at least the pair of electrodes in the sample chamber, a sample chamber formed so that a liquid sample can enter, at least a pair of electrodes disposed in the sample chamber, and the sample chamber. And a reagent layer.
- the reagent layer is formed from the reagent composition of the present invention described above.
- the sensor of the present invention can be configured in the same manner as a known sensor that electrochemically detects a target substance in a liquid sample, except that the reagent layer is formed of the reagent composition of the present invention.
- the sensor of the present invention (A) providing at least a pair of electrodes on a substrate; (B) Applying the above-described reagent composition of the present invention on a substrate so as to contact both of the pair of electrodes; and (c) drying the reagent composition applied in (b).
- the method for producing the sensor of the present invention can be carried out in the same manner as the known method for producing a sensor for electrochemically detecting a target substance in a liquid sample, except that the reagent composition of the present invention is used for forming a reagent layer. it can.
- the above-described reagent composition of the present invention is used.
- This reagent composition contains the heterocyclic compound described above.
- the components in the reagent composition may temporarily become a high concentration and inactivate the enzyme.
- enzyme deactivation due to a change in the concentration of components in the composition can be suppressed. .
- FIG. 1 (2-1) Schematic Configuration of Sensor
- a sensor 1 shown in FIG. 1 is an example of a sensor that detects and / or quantifies a target substance in a liquid sample.
- the sensor 1 includes a substrate 2, a conductive layer 3, a reagent layer 4, a spacer 5, and a cover 6.
- the substrate 2 is a plate-like member.
- the substrate 2 has an insulating property.
- -Resins such as polyethylene terephthalate, vinyl polymers, polyimides, polyesters, and styrenics; -Glass; and-Ceramics;
- the dimensions of the substrate 2 are not limited to specific numerical values.
- the width of the substrate 2 is preferably 3 to 20 mm, more preferably 5 to 10 mm.
- the length of the substrate 2 is preferably 20 to 40 mm.
- the thickness of the substrate 2 is preferably 0.1 to 1 mm. It is preferable that the width, length, and thickness of the substrate 2 are all within the above range.
- the conductive layer 3 is formed on the substrate 2 with a substantially uniform thickness.
- the conductive layer 3 includes three electrodes 31 to 33.
- the electrode 31 may be referred to as a working electrode, the electrode 32 as a counter electrode, and the electrode 33 as a detection electrode.
- the detection electrode 33 can be omitted.
- the conductive layer 3 may be composed of four electrodes provided with Hct electrodes (not shown) for measuring a hematocrit value in addition to the three electrodes.
- each of the electrodes 31 to 33 is disposed so as to face the capillary 51.
- Other portions of the electrodes 31 to 33 are exposed at the end opposite to the introduction port 52 of the sensor 1 without being covered with the spacer 5 and the cover 6. These exposed portions function as leads. That is, these exposed portions correspond to connection portions that receive voltage application from the measuring device 101 and transmit current to the measuring device 101.
- the conductive layer 3 can be formed by sputtering palladium on the substrate 2, and the nonconductive track can be formed by laser ablation.
- the non-conductive track preferably has a width of 0.01 to 0.5 mm, more preferably 0.05 mm to 0.3 mm.
- the constituent material of the conductive layer 3 should just be an electroconductive material (electroconductive substance), and is not specifically limited.
- conductive materials include -Inorganic conductive materials such as metals, metal mixtures, alloys, metal oxides and metal compounds; Organic conductive materials such as hydrocarbon-based conductive polymers and heteroatom-containing conductive polymers; or a combination of these materials.
- a constituent material of the conductive layer 3 palladium, gold, platinum, carbon and the like are preferable, and palladium is particularly preferable.
- the thickness of the conductive layer 3 can be changed depending on its formation method and constituent materials.
- the thickness of the conductive layer 3 is preferably 0.1 to 20 nm, more preferably 1 to 10 nm.
- the thickness of the conductive layer 3 is preferably 0.1 to 50 ⁇ m, more preferably 1 to 30 ⁇ m.
- the reagent layer 4 is arranged in contact with the electrodes 31 to 33.
- the reagent layer 4 functions as an active part of the sensor 1 together with the electrodes 31 and 32.
- the active portion is an electrochemically active region that reacts with a specific substance in the liquid sample and generates an electric signal.
- the reagent layer 4 includes an enzyme and an electron acceptor.
- the reagent layer 4 should just be arrange
- the reagent layer 4 contains an electron acceptor, a heterocyclic compound, and an enzyme. Specifically, the reagent layer 4 may contain the reagent composition of the present invention.
- the content of the electron acceptor in the reagent layer 4 can be set to such an amount that the sensor can function, and is preferably about 1 to 500 nmol, more preferably about 10 to 200 nmol per measurement or per sensor.
- the content of the enzyme in the reagent layer 4 is set to such an extent that the target substance can be detected, and is preferably 0.2 to 20 U (unit), more preferably 0.2 per unit of measurement or per sensor. It is set to about 5-10U.
- the amount of electron acceptor per 1U of enzyme and the amount of heterocyclic compound are preferably the same values as the amount of each component in the reagent composition.
- the electron acceptor is included in the reagent layer 4, but the electron acceptor may be included in the electrode.
- the electron acceptor contained in the electrode compounds exemplified as the electron acceptor that can be contained in the reagent composition described above are preferably used.
- the function of the electron acceptor when the reagent layer 4 contains an enzyme that oxidizes the substrate will be described.
- the enzyme receives electrons from the substrate by oxidizing the substrate and gives electrons to the coenzyme.
- the coenzyme changes from an oxidant to a reductant.
- the electron acceptor that is an oxidant receives electrons from the coenzyme that has been reduced, and returns the coenzyme to the oxidant.
- the electron acceptor itself becomes a reductant.
- the electron acceptor that has become a reductant gives electrons to the electrode 31 or 32, and itself becomes an oxidant. In this way, the electron acceptor mediates electron transfer between the enzyme and the electrode.
- the coenzyme may be retained in the enzyme protein by binding to the enzyme protein (enzyme molecule).
- the coenzyme may be present in a state separated from the enzyme protein.
- the reagent layer 4 can be formed by various methods. Examples of the forming method include a printing method and a coating method.
- a certain amount of the liquid reagent composition described above is dropped on the electrodes 31 and 32 using a microsyringe or the like, and then, the reagent layer 4 is left to stand in an appropriate environment and dried. Can be formed.
- an aqueous solution may be dropped on the electrode 33 as necessary.
- the dropping amount of the aqueous solution is not limited to a specific value, but is preferably 0.1 to 20 ⁇ L, more preferably 0.5 to 5 ⁇ L.
- the shape of the reagent layer 4 is not limited to a specific shape. This shape may be rectangular or circular.
- the area of the reagent layer 4 (the area in the plane direction of the substrate 2) is determined according to the characteristics and size of the device. This area may be preferably 1 to 25 mm 2 , more preferably 2 to 10 mm 2 .
- the content of the enzyme, electron acceptor and other components contained in the applied aqueous solution is selected according to the required device characteristics and size.
- the spacer 5 is a member for providing a gap between the cover 6 and the conductive layer 3 formed on the substrate 2.
- the spacer 5 is a plate-like member and covers the entire conductive layer 3 except for the lead portions of the electrodes 31 to 33 and the later-described capillary 51 portion.
- the spacer 5 is provided with a rectangular notch that exposes the end opposite to the lead portions of the electrodes 31 to 33.
- the spacer 5 is provided with this notch so that the spacer 5, the conductive layer 3, and the cover 6 An enclosed capillary 51 is formed.
- the spacer 5 provides the side wall of the capillary 51 and can further define the length, width, height, etc. of the capillary 51.
- the capacity of the capillary 51 is set to about 0.05 to 5.0 ⁇ L (microliter), preferably about 0.1 to 1.0 ⁇ L (microliter).
- the thickness of the spacer 5 is 0.02 to 0.00.
- the thickness is about 5 mm, preferably about 0.1 to 0.2 mm.
- the length of the notch provided in the spacer 5 is preferably 1 to 5 mm.
- the width of the spacer 5 is about 0.25 to 4 mm, preferably about 0.5 to 2 mm. In addition, what is necessary is just to select these dimensions suitably so that the capillary 51 may become a desired capacity
- the spacer 5 having a length of 3.4 mm and a notch having a width of 1.2 mm and having a thickness of 0.145 mm is used, the length is 3.4 mm, the width is 1.2 mm, and the height is 0.8.
- a capillary 51 with a capacity of 145 mm and a capacity of 0.6 ⁇ L is provided.
- the capillary 51 is an example of a sample chamber.
- the capillary 51 sucks the liquid sample from the inlet 52 which is the opening thereof by capillary action and holds it on the electrodes 31 to 33.
- the cover 6 is a plate-like member that covers the entire spacer 5.
- the cover 6 includes a hole penetrating from the front surface to the back surface. This hole functions as a vent 61 communicating from the capillary 51 to the outside.
- the vent 61 is an exhaust hole for discharging the air in the capillary 51 out of the capillary when the liquid sample is sucked into the capillary 51. By discharging the air in this way, the liquid sample is easily sucked into the capillary 51.
- the vent 61 is preferably provided at a position away from the inlet 52, that is, at the back of the capillary 51 as viewed from the inlet 52.
- vent 61 is disposed on the back side of the reagent layer 4 placed on the conductive layer of the sensor 1.
- the sensor system of the present invention includes the above-described sensor of the present invention, a measurement unit that measures a current value between the at least one pair of electrodes, and a concentration of a target substance in the liquid sample based on a measurement result by the measurement unit. And a calculation unit for calculating.
- the sensor system of the present invention can be configured in the same manner as a known sensor system that electrochemically detects a target substance in a liquid sample, except that the sensor of the present invention is used.
- the sensor system of the present invention will be described based on an example including the sensor 1 described above.
- the sensor 1 described above is used in the sensor system 100 shown in FIG.
- the sensor system 100 includes a sensor 1 and a measuring device 101.
- the measuring instrument 101 includes a display unit 102, a mounting unit 103, a switching circuit 107, a reference voltage source 108, a current / voltage conversion circuit 109, an A / D conversion circuit 110, a calculation unit 111, An operation unit 113 and a power supply unit 112 are provided.
- the measuring instrument 101 corresponds to the aforementioned measuring unit.
- the measuring instrument 101 further has a connector corresponding to each electrode of the sensor 1. In FIG. 3, connectors 104 to 106 provided in the mounting portion 103 are depicted.
- the display unit 102 displays the state of the measuring instrument 101, measurement results, operation details, and the like. Specifically, the display unit 102 is realized by a liquid crystal display panel.
- the senor 1 is detachably inserted into the mounting portion 103.
- the connectors 104 to 106 are connected to the electrodes 31 to 33 of the sensor 1 when the sensor 1 is attached to the attachment portion 103, respectively.
- the switching circuit 107 can connect the connectors 104 to 106 to the reference voltage source 108 or to the current / voltage conversion circuit 109.
- the reference voltage source 108 applies a voltage to the electrodes 31 to 33 via the connectors 104 to 106.
- the current / voltage conversion circuit 109 receives the current from the sensor 1 via the connectors 104 to 106, converts it into a voltage, and outputs it to the A / D conversion circuit 110.
- the A / D conversion circuit 110 converts a voltage value (analog value) that is an output from the current / voltage conversion circuit 109 into a digital value.
- the calculation unit 111 includes a recording medium such as a CPU (Central Processing Unit), a ROM (Read Only Memory), and a RAM (Random Access Memory).
- the calculation unit 111 calculates the concentration of the target substance and controls the operation of each unit in the measuring instrument 101.
- the calculation unit 111 corresponds to the calculation unit described above.
- the concentration calculation function of the calculation unit 111 will be described.
- the storage medium of the calculation unit 111 stores a conversion table used for determining the concentration of the target substance in the sample, a correction amount table used for determining the concentration correction amount, and the like.
- the computing unit 111 calculates the temporary concentration of the target substance by referring to the conversion table based on the pulse from the A / D conversion circuit 110.
- the calculation unit 111 further determines the final concentration of the target substance using the correction amount in the correction amount table. The density thus calculated is displayed on the display unit 102.
- the calculation unit 111 performs switching control of the switching circuit 107, voltage control of the reference voltage source 108, measurement of time during concentration measurement and correction amount selection (timer function), and display on the display unit 102. It has data output and communication functions with external devices. Various functions of the calculation unit 111 are realized by the CPU reading and executing a program stored in a ROM (not shown) or the like.
- the operation unit 113 is provided on the surface of the measuring instrument 101.
- the operation unit 113 includes operation buttons used when the user refers to measurement data and setting data.
- the power supply unit 112 includes a battery that supplies power to each of the electric circuits, the display unit, the calculation unit, and the like.
- the sensor system of the present invention can be suitably used for a target substance concentration measurement method.
- the concentration measurement method includes (a) bringing a reagent composition containing at least an electron acceptor and an enzyme into contact with a liquid sample, (b) detecting the current generated by (a), and ( c) measuring the concentration of the target substance in the liquid sample based on the detection result of (b) above.
- the reagent composition of the present invention described above is used for the reagent composition.
- the concentration measurement method of the present invention since the reagent composition described above is used as the material for the reagent layer, a reagent layer that does not cause enzyme deactivation due to moisture absorption of the reagent layer described above is used. Therefore, the concentration measurement method of the present invention can measure the concentration of the target substance with higher measurement accuracy.
- the connectors 104 to 106 are connected to the electrodes 31 to 33, respectively. Further, when the sensor 1 is mounted on the mounting unit 103, a switch (not shown) in the mounting unit 103 is pressed. When pressed, the switch is turned on, and the calculation unit 111 determines that the sensor 1 is mounted, and puts the measuring instrument 101 in a sample standby state. In the sample standby state, the reference voltage source 108 starts to apply a voltage between the working electrode 31 and the detection electrode 33 via the connectors 104 and 106 under the control of the calculation unit 111, and the current / voltage conversion circuit 109. Is after the current measurement is started, and the liquid sample has not yet been subjected to the measurement.
- the liquid sample is drawn from the introduction port 52 into the capillary 51 by capillary action.
- a liquid sample derived from a living body such as blood, sweat or urine
- a liquid sample derived from the environment a liquid sample derived from food, or the like
- the sensor 1 punctures his / her finger, palm, arm, etc., squeezes a small amount of blood, and uses this blood as a liquid sample for measurement by the sensor 1. .
- the current value received by the computing unit 111 via the current / voltage conversion circuit 109 changes. From this change, the calculation unit 111 determines that the liquid sample has been correctly sucked into the sensor 1. Thus, measurement is started when the suction of the liquid sample is detected.
- the liquid sample In the sensor 1, components such as enzymes and electron acceptors in the reagent layer 4 are dissolved in the liquid sample. In this way, the liquid sample, the enzyme, and the electron acceptor come into contact with each other on the electrodes 31 and 32 of the sensor 1.
- the control circuit 111 controls the switching circuit 107 to connect the connector 104 and the connector 105 to the reference voltage source 108 and the current / voltage conversion circuit 109.
- a voltage is applied between the working electrode 31 and the counter electrode 32, and the current generated between the working electrode 31 and the counter electrode 32 is transmitted to the current / voltage conversion circuit 109.
- the current flowing into the current / voltage conversion circuit 109 is converted into voltage. This voltage is further converted into a digital value by the A / D conversion circuit 110.
- the calculation unit 111 calculates the concentration of the specific component from this digital value. The value calculated by the calculation unit 111 is displayed on the display unit 102. At that time, other information to the user can be displayed together.
- the user can remove the sensor 1 from the mounting portion 103.
- the reference voltage source 108 can apply a voltage sufficient to cause a target electrochemical reaction between the two electrodes 31 and 32. This voltage is mainly set according to the chemical reaction and electrode used.
- the sensor system 100 in the case of targeting a liquid sample such as blood, in the sensor system 100, (I) dissolving the electron acceptor and an enzyme that donates electrons to the electron acceptor using the target substance as a substrate in the liquid sample; (Ii) detecting a current generated in the solution obtained by (i), and (iii) measuring the concentration of the target substance based on the detection result of (ii). The method is executed.
- the quinone compound having a hydrophilic functional group is particularly preferably used when the reagent composition is applied to a sensor whose detection target is a sample (for example, blood) using water as a medium.
- a sample for example, blood
- the electron acceptor is a quinone compound having a hydrophilic functional group
- the chance of collision between the electron acceptor molecule and the enzyme molecule in the sample is increased.
- the reaction rate increases, the amount of current derived from the target substance increases, and the time required for measurement can be shortened.
- the electron acceptor is a quinone compound having a hydrophilic functional group
- the electron acceptor is simply arranged on the electrode by dropping and drying a solution containing the electron acceptor on the electrode. be able to.
- the electron acceptor is preferably disposed so as to be in contact with at least a part of the pair of electrodes constituting the sensor, that is, at least a part of the first electrode and at least a part of the second electrode.
- the first electrode and the second electrode correspond to a working electrode and a counter electrode.
- quinone to which a hydrophilic functional group is not added is preferably contained in the electrode. That is, the electrode is preferably formed from a mixture of a quinone and a conductive material.
- a method of immobilizing an electron acceptor molecule in or on a working electrode by blending a filler component or a binder component is known.
- an interfering substance that interferes with the accurate detection of the target substance by the sensor 1 may be contained in the sample.
- Interfering substances are sometimes referred to as interfering substances. Examples of interfering substances include ascorbic acid, uric acid, and acetaminophen.
- the measurement target is a non-biological sample (a sample other than a biological sample such as blood and urine)
- the interfering substance is an easily oxidizable substance contained in the non-biological sample.
- the interfering substance affects the measurement result of the sensor. As a result, an error occurs in the measurement result.
- the potential of the electrode necessary for oxidizing the electron acceptor is significantly higher than the potential of the electrode necessary for oxidizing ascorbic acid or the like contained in the blood (positive) ) Introduces an error.
- the electrode potential required to oxidize the electron acceptor depends on the redox potential of the electron acceptor itself. Therefore, it is preferable that the redox potential of the electron acceptor is more negative in terms of reducing the influence of interfering substances. Even if the influence of the interfering substance is more positive than the oxidation potential of the interfering substance, it can be reduced by using an electron acceptor having an oxidation-reduction potential as close as possible to the oxidation potential. In order to further reduce the influence, it is preferable to use an electron acceptor having a redox potential that is more negative than the oxidation potential of the interfering substance.
- the redox potential of the electron acceptor is preferably more positive than that of the coenzyme.
- the electron acceptor can easily accept electrons from the coenzyme.
- the redox potential of the electron acceptor is preferably more negative than that of the coenzyme. This allows the electron acceptor to easily donate electrons to the coenzyme.
- the relationship between the potentials of the coenzyme, electron acceptor, and interfering substance (reducible substance) is opposite to that when the target substance is detected by oxidation. .
- the specific redox potential of the coenzyme is as follows.
- the coenzymes FAD and PQQ typically function in cooperation with the enzyme protein while bound to the enzyme protein.
- the redox potentials of these coenzymes are about -300 and about -200 mV, respectively.
- NAD functions without binding to an enzyme protein.
- the redox potential of NAD is about -520 mV.
- the electron accepting ability of the electron acceptor tends to increase as the redox potential of the electron acceptor is more positive than that of the coenzyme. That is, the greater the difference between the redox potential of the electron acceptor and that of the coenzyme, the greater the difference in energy level. Therefore, the electron accepting speed of the electron acceptor is increased. Therefore, it is preferable that the redox potential of the electron acceptor is high on the positive side in terms of increasing the sensitivity and speed of measurement of the sensor.
- the positive side of the redox potential of the electron acceptor is related to the redox potential of the interfering substance, and the negative side is related to the electron accepting ability. It is limited by the redox potential of the coenzyme. This range may be very narrowly limited.
- Patent Document 2 discloses a sensor having an NAD-dependent enzyme and having a phenanthroline quinone that is a heterocyclic compound containing a nitrogen atom as an electron acceptor.
- the redox potential of phenanthroline quinone is about 0 mV and that of NAD is about -520 mV. That is, in the sensor of this document, there is a potential difference of about 520 mV between the electron acceptor and the coenzyme. Since the oxidation potential of ascorbic acid is about ⁇ 140 mV, when the electron acceptor is phenanthroline quinone, the influence of interfering substances cannot be completely avoided for the above reason.
- a sensor having a PQQ-dependent or FAD-dependent enzyme has an advantage that it can be manufactured at a low manufacturing cost.
- PQQ and FAD have a higher redox potential than NAD, it is not easy to search for an electron acceptor having a low potential applicable to PQQ-dependent and FAD-dependent enzymes.
- an electron acceptor having a low redox potential that can be applied to PQQ-dependent and FAD-dependent enzymes in order to reduce the influence of interfering substances and to suppress production costs.
- the coenzyme is FAD or PQQ
- the above range is particularly narrow because their potential is more positive.
- electron acceptors are 9,10-phenanthrenequinone, 9,10-phenanthrenequinone-2-sulfonic acid, 1,2-naphthoquinone-4-sulfonic acid, and 2,5-dimethyl-1,4-benzoquinone.
- the oxidation-reduction potential is ⁇ 180 mV, ⁇ 140 mV, ⁇ 16 mV, and ⁇ 5 mV, respectively. These redox potentials are more negative than 0 mV, more positive than the potential of NAD, and more positive than the potentials of FAD and PQQ.
- the oxidation-reduction potentials of 9,10-phenanthrenequinone and 9,10-phenanthrenequinone-2-sulfonic acid are more negative than the oxidation potential of ascorbic acid (about ⁇ 140 mV). That is, these electron acceptors are applicable to sensors having PQQ-dependent or FAD-dependent enzymes. Moreover, these electron acceptors can also reduce the influence of interfering substances on detection results.
- the electron accepting ability from the coenzyme is not determined only by the potential relationship.
- the electron accepting ability of quinone compounds affects, for example, the relationship between the charge of the quinone compound and the charge near the active site of the enzyme and the relationship between the molecular size of the quinone compound and the size of the active site space of the enzyme. receive.
- the electron acceptor is preferably 9,10-phenanthrenequinone (including derivatives thereof).
- 9,10-phenanthrenequinone does not have an aromatic ring linked in a horizontal row like anthraquinone, and has a compact molecular size. Therefore, 9,10-phenanthrenequinone is presumed to easily enter the active site space of the enzyme.
- 9,10-phenanthrenequinone since 9,10-phenanthrenequinone has no charge, it is expected to be hardly affected by the charge of the active site of the enzyme.
- PQSA showed a high solubility of 80 mM in water.
- Reagent Composition (Reagent Solution) Reagent solutions A and B having the following composition were prepared.
- composition is the same as composition A except that it does not contain imidazole.
- sensor electrode for measuring the characteristics of the reagent solutions A and B was produced. This electrode has the same configuration as that shown in FIG. 1 except that the reagent layer 4 is not included. Details are as follows.
- a conductive layer 3 having a thickness of 8 nm was formed by sputtering palladium on a substrate 2 containing polyethylene terephthalate having a length of 30 mm, a width of 7 mm, and a thickness of 0.2 mm as a main component. Thereafter, non-conductive tracks having a width of 0.1 mm were formed by laser ablation to form the electrodes 31 and 32.
- the electrode 31 corresponds to a working electrode
- the electrode 32 corresponds to a counter electrode.
- a spacer 5 (thickness 0.145 mm) having a notch having a length of 3.4 mm and a width of 1.2 mm and a cover 6 are sequentially pasted on a substrate on which an electrode is formed, so that 0.6 ⁇ L is obtained.
- a sensor electrode including a capillary 51 having a capacity was produced.
- the potential applied to the working electrode was scanned linearly with respect to time.
- the sweep rate was set to 0.1 V / sec.
- a first potential was applied to the working electrode, and the electrode potential was swept to the negative side from the potential to a more negative second potential.
- sweeping was performed to turn the electrode potential back to the positive side from the second potential to the first potential.
- the first potential and the second potential were 0.2V and 0.5V.
- the relationship between the oxidation potential and the oxidation current when the reagent solution A immediately after preparation (initial) is swept to the positive side by the above cyclic voltammetry is shown by a dotted line in FIG.
- the results for the reagent solution A) stored for 21 hours at a humidity (RH) of 5% are shown by a solid line in FIG.
- the results obtained by cyclic voltammetry for the reagent solution B immediately after preparation are shown by a dotted line in FIG. 5 and are stored for 21 hours at 21 hours after the reagent solution B (25 ° C., humidity (RH) 5%).
- the results for the reagent solution B) are shown by a solid line in FIG.
- a conductive layer 3 having a thickness of 8 nm was formed by sputtering palladium on a substrate 2 containing polyethylene terephthalate having a length of 30 mm, a width of 7 mm, and a thickness of 0.2 mm as a main component.
- electrodes 31 to 33 were formed by forming non-conductive tracks having a width of 0.1 mm by laser ablation.
- the electrode 31 was designed to function as a working electrode, the electrode 32 as a counter electrode, and the electrode 33 as a detection electrode.
- Reagent liquids C and D having the following composition were prepared.
- composition is the same as composition C except that it does not contain imidazole.
- the reagent layer 4 was formed by applying 1.2 ⁇ L of each reagent solution in a circular shape with a diameter of 2.2 mm using a microsyringe. After the reagent layer 4 is formed, a spacer 5 (thickness 0.145 mm) having a notch having a length of 3.4 mm and a width of 1.2 mm, and a cover 6 are sequentially attached to the substrate on which the electrodes are formed. Thus, a sensor including a capillary having a capacity of 0.6 ⁇ L was produced.
- reagent solutions C and D Two types of sensors were prepared: a reagent solution immediately after preparation, and a reagent solution that had been used for 21 hours in an environment of 25 ° C. and 5% humidity after preparation.
- FIG. 6 shows the divergence of the response current value of the sensor manufactured using the reagent solution C after 21 hours from the response current value of the sensor manufactured using the reagent solution C immediately after preparation.
- FIG. 7 shows the divergence degree of the response current value of the sensor manufactured using the reagent solution D after 21 hours from the response current value of the sensor manufactured using the reagent solution D immediately after preparation. The degree of divergence is based on the response current value of the sensor prepared using the reagent solution immediately after preparation (that is, 0%), and the response current value of the sensor manufactured using the reagent solution after 21 hours. The rate of change (%).
- reagent solutions were prepared by adding diamine compounds (ethylenediamine, butanediamine, pentanediamine, hexanediamine, ethyleneamine, ornithine, lysine, arginine) in place of the heterocyclic compounds.
- diamine compounds ethylenediamine, butanediamine, pentanediamine, hexanediamine, ethyleneamine, ornithine, lysine, arginine
- Fig. 8 shows the fluctuation rate of the response current value before and after storage.
- the response current value of the sensor produced using the reagent solution immediately after preparation is 0%
- the change rate of the response current value of the sensor due to storage is shown as the variation rate.
- the effect of improving the stability of the reagent solution was observed by adding the heterocyclic compound over the entire concentration range (0.01 to 6 mM) examined. In particular, a remarkable effect was observed at 1 to 6 mM.
- a sensor was prepared using a reagent solution having the same composition and immediately after preparation. The sensor was subjected to an exposure experiment under the conditions of 30 ° C., 80% humidity and 24 hours. Measure the response current value for a glucose solution of a predetermined concentration using an unexposed sensor (ie, a sensor that has been stored for 24 hours under normal conditions (25 ° C., 5% humidity)) and an exposed sensor. did.
- Figure 9 shows the fluctuation rate of the response current value before and after exposure.
- the response current value of the sensor not exposed is set to 0%, and the change rate of the response current value due to exposure is shown as the variation rate.
- the effect of suppressing the decrease in response current value due to exposure was observed particularly at 0.1 to 6 mM.
- ⁇ Reagent liquid F> The composition is the same as that of the reagent solution E except that 2,6-dimethylbenzoquinone is used as the electron acceptor.
- ⁇ Reagent liquid G> The set is the same as that of the reagent solution E, except that potassium ferricyanide is used as the electron acceptor.
- the reagent composition containing the oxidoreductase and the electron acceptor further contains a heterocyclic compound, thereby suppressing a change in current value before and after the storage period.
- This reagent composition is preferably applied to the reagent layer of the sensor. Therefore, a more accurate detection result can be obtained in the electrochemical detection of the target substance.
- the present invention is expected to contribute to further development in the field of electrochemical detection of target substances.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Zoology (AREA)
- Engineering & Computer Science (AREA)
- Wood Science & Technology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Molecular Biology (AREA)
- Analytical Chemistry (AREA)
- Immunology (AREA)
- Biophysics (AREA)
- Genetics & Genomics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- Microbiology (AREA)
- Biotechnology (AREA)
- Hematology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Physics & Mathematics (AREA)
- Pathology (AREA)
- Emergency Medicine (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
Description
[1]の試薬組成物において、前記電子受容体が、ナフトキノン、アントラキノン、フェナントレンキノン、フェナントロリンキノン並びにこれらのキノン誘導体からなるキノン類化合物の群から選択される一以上である。
(第二の要件)
[1]の試薬組成物において、前記複素環式化合物がヒスチジンを含まず、式(I)中のA1~A5のうちの2個が窒素原子であるときは、R1~R5のうち、少なくとも1個の基が水素原子以外の置換基である。
mはn+1以上2n+1以下の自然数を表し、a、b及びcはそれぞれ独立してn以下の自然数を表し、R6~R8は、それぞれ独立して、ヒドロキシル基、カルボキシル基、又はアミノ基を表す、[1]又は[2]に記載の試薬組成物。
(a)前記スルホ基は、1-スルホン酸、2-スルホン酸、3-スルホン酸、4-スルホン酸、及び2,7-ジスルホン酸である、
(b)前記カルボキシル基は、2-カルボン酸である、及び
(c)前記リン酸基は、2-リン酸である、の少なくとも一項目を満たす[14]に記載の試薬組成物。
前記試料室内に配置された少なくとも一対の電極と、
前記試料室内において、少なくとも前記一対の電極の両方に接するように配置された[1]~[19]のいずれか一項に記載の試薬組成物から形成される試薬層と、を有するセンサ。
前記少なくとも一対の電極間の電流値を測定する測定部と、
前記測定部による測定結果に基づいて、前記液体試料中の対象物質の濃度を算出する算出部と、を有するセンサシステム。
(a)基板上に、少なくとも一対の電極を設けること、
(b)基板上に、[1]~[19]のいずれか一項に記載の試薬組成物を、前記一対の電極の両方に接触するように塗布すること、及び
(c)前記(b)で塗布された試薬組成物を乾燥させること、を含むセンサの製造方法。
(b)上記(a)によって生じた電流を検出すること、及び
(c)上記(b)の検出結果に基づいて、液体試料中の標的物質の濃度を測定すること、を含み、
前記試薬組成物に、[1]~[19]のいずれか一項に記載の試薬組成物を用いる、標的物質の濃度測定方法。
試薬組成物は、複素環式化合物と、電子受容体と、酸化還元酵素と、を含有する。
試薬組成物は、複素環式化合物として、以下に説明される化合物から選択される少なくとも一種の化合物を含有することができる。複素環式化合物は、下記式(I)で表される。式(I)で表される複素環式化合物は、酸化還元酵素の存在下における電子受容体の酸化電位の正側へのシフトを抑制することができる。
炭化水素基は、鎖式、環式のいずれであってもよい。鎖式炭化水素基は、分岐していても、直鎖であってもよい。鎖式炭化水素基は、飽和炭化水素基、不飽和炭化水素基のいずれであってもよい。
電子受容体は、電子伝達物質またはメディエータと言い換えられてもよい。電子受容体は、可逆的に酸化体及び還元体となることができる。電子受容体は、直接、または別の電子受容体と協働して、物質間における電子の移動を媒介することができる。電子受容体は一種でも二種以上でもよい。
また、キノン誘導体における付加官能基(置換基)の一例として、親水性官能基が挙げられる。親水性官能基としては、スルホ基(-SO3H)、カルボキシル基(-COOH)、リン酸基(-PO4H2)等が挙げられる。なお、スルホ基、カルボキシル基、及びリン酸基には、これらの塩(ナトリウム塩、カリウム塩、カルシウム塩等)も含まれる。
キノンは従来、医薬、農薬、工業の分野で使用されている。キノンは、例えば芳香族炭化水素から製造可能である。具体的には、アントラキノンはアントラセンの酸化により容易に製造される。
また、親水性官能基を有するキノン類化合物の製造方法は、キノンに親水性官能基を導入する工程を含んでもよい。例えば、キノンに親水性官能基としてスルホ基を付加する方法としては、キノンと発煙硫酸とを反応させる方法などがある。
試薬組成物は、一種類以上の酵素を含有していてもよい。酵素としては、酸化還元酵素が用いられる。酸化還元酵素は、酸化酵素及び脱水素酵素を包含する。酸化還元酵素の例として、
-グルコースを基質とする酵素としては、グルコースオキシダーゼ、グルコースデヒドロゲナーゼが好ましく;
-乳酸を基質とする酵素としては、乳酸オキシダーゼ、又は乳酸デヒドロゲナーゼが好ましく、;
-コレステロールを基質とする酵素としては、コレステロールエステラーゼ、又はコレステロールオキシダーゼが好ましく;
-アルコールを基質とする酵素としては、アルコールオキシダーゼが好ましく;
-ビリルビンを基質とする酵素としては、ビリルビンオキシダーゼが好ましく;挙げられる。
酵素は、その補酵素依存性について、特に限定されるものではない。例えば、酵素は、NAD(nicotinamide adenine dinucleotide)、NADP(nicotinamide adenine dinucleotide phosphate)、PQQ(Pyrroloquinoline quinone)、又はFAD(flavin adenine dinucleotide)等の補酵素に対して依存性を有してもよい。
なお、前述した全ての複素環式化合物はそれぞれ、前述した電子受容体のそれぞれと組み合わせることによって、少なくとも前述の電子受容体のシフト抑制効果を得ることが可能である。本発明は、これらの組み合わせのうち、以下の第一及び第二の要件のいずれかの要件を満足する。第一の要件では、酸化還元酵素と式(1)の化合物は特に限定されない。第二の要件では、酸化還元酵素と電子受容体は特に限定されない。
(第一の要件)
前記電子受容体が、ナフトキノン、アントラキノン、フェナントレンキノン、フェナントロリンキノン並びにこれらのキノン誘導体からなるキノン類化合物の群から選択される一以上である。
(第二の要件)
前記複素環式化合物がヒスチジンを含まず、
式(I)中のA1~A5のうちの2個が窒素原子であるときは、R1~R5のうち、少なくとも1個の基が水素原子以外の置換基である。
試薬組成物は、本発明の効果が得られる範囲において、複素環式化合物、酸化還元酵素、及び電子受容体以外の他の成分を含んでいてもよい。このような他の成分としては、例えば試薬組成物がセンサに適用されたときに、
-酵素又は電子受容体の保存性を高める、
-酵素と標的物質との反応性を高める、
-標的物質に対する応答性を高める、又は
-標的物質の濃度に対する応答電流値の直線性を高める、といった効果を示す物質が好ましく用いられる。
試薬組成物は、液体であってもよいし、固体であってもよい。液体である場合、試薬組成物が含有する媒体としては、例えば、水(緩衝液を含む)、アルコール(エタノール、メタノール、プロパノール等を含む)、有機溶媒(ベンゼン、トルエン、キシレン等を含む)等が挙げられる。液状の試薬組成物を、「試薬液」と称することがある。前記媒体は水であることが、生体試料への適合性の観点から好ましい。
試薬液における複素環式化合物の濃度は、0.001mM以上であることが好ましく、0.01mM以上であることがより好ましく、0.1mM以上であることがさらに好ましく、1mM以上であることがさらに好ましい。また、試薬液における複素環式化合物の濃度は、10mM以下、5mM以下、又は4mM以下に設定可能である。
本発明のセンサは、液体試料が入るように形成された試料室と、前記試料室内に配置された少なくとも一対の電極と、前記試料室内において、少なくとも前記一対の電極の両方に接するように配置された試薬層と、を有する。前記試薬層は、前述した本発明の試薬組成物から形成される。本発明のセンサは、前記試薬層を本発明の試薬組成物で形成する以外は、液体試料中の標的物質を電気化学的に検出する公知のセンサと同様に構成することができる。
(a)基板上に、少なくとも一対の電極を設けること、
(b)基板上に、前述した本発明の試薬組成物を、前記一対の電極の両方に接触するように塗布すること、及び
(c)前記(b)で塗布された試薬組成物を乾燥させること、を含む方法によって製造することができる。
図1に示すセンサ1は、液体試料中の標的物質を検出すること及び/又は定量するセンサの一例である。センサ1は、図1に示すように、基板2、導電層3、試薬層4、スペーサ5、カバー6を有する。
図1に示すように、基板2は板状の部材である。基板2は絶縁性を有する。基板2を構成する材料としては、例えば、
-ポリエチレンテレフタレート、ビニルポリマー、ポリイミド、ポリエステル、及びスチレニクス等の樹脂;
-ガラス;並びに
-セラミックス;等が挙げられる。
図1に示すように、導電層3は、基板2上に略均一な厚みに形成されている。導電層3は、3つの電極31~33を含む。電極31は作用電極、電極32は対電極、電極33は検知電極と称されることがある。なお、検知電極33は省略可能である。
また、導電層3は、上記3電極の他に、ヘマトクリット値を測定するためのHct電極(図示せず)を設けた4つの電極から構成される場合もある。
-導電性材料を用いた印刷等;又は
-基板2を導電性材料で覆った後、レーザアブレーション等で非導電トラックを形成すること;で形成されてもよい。例えば、基板2にパラジウムをスパッタリングすることによって導電層3を形成し、レーザアブレーションにより、非導電トラックを形成することができる。非導電トラックは、好ましくは0.01~0.5mm、より好ましくは0.05mm~0.3mmの幅を有する。
-金属、金属混合物、合金、金属酸化物、及び金属化合物に代表される無機導電性物質等;
-炭化水素系導電性ポリマー及びヘテロ原子含有系導電性ポリマー等の有機導電性物質;又は
-これらの物質の組み合わせ;が挙げられる。導電層3の構成材料としては、パラジウム、金、白金、炭素などが好ましく、パラジウムが特に好ましい。
図1に示すように、試薬層4は、電極31~33に接するように配されている。試薬層4は、電極31及び32と共に、センサ1の活性部として機能する。活性部とは、電気化学的に活性な領域であって、液体試料中の特定の物質に反応し、電気信号を生じる部分である。具体的には、試薬層4は、酵素及び電子受容体を含む。
図1に示すように、スペーサ5は、カバー6と基板2上に形成された導電層3との間に空隙を設けるための部材である。
図1に示すように、カバー6はスペーサ5全体を覆う板状の部材である。カバー6は、表面から裏面まで貫通する孔を備える。この孔は、キャピラリ51から外部に通じる通気口61として機能する。通気口61は、液体試料がキャピラリ51に吸引されるとき、キャピラリ51内の空気をキャピラリ外へ排出するための排気孔である。このように空気が排出されることで、液体試料がキャピラリ51内に容易に吸引されやすい。
本発明のセンサシステムは、前述した本発明のセンサと、前記少なくとも一対の電極間の電流値を測定する測定部と、前記測定部による測定結果に基づいて、前記液体試料中の対象物質の濃度を算出する算出部と、を有する。本発明のセンサシステムは、本発明のセンサを用いる以外は、液体試料中の標的物質を電気化学的に検出する公知のセンサシステムと同様に構成することができる。
以下、本発明のセンサシステムを、前述したセンサ1を含む一例に基づいて説明する。
A/D変換回路110は、電流/電圧変換回路109からの出力である電圧値(アナログ値)をデジタル値に変換する。
本発明のセンサシステムは、標的物質の濃度測定方法に好適に用いることができる。この濃度測定方法は、(a)少なくとも電子受容体及び酵素を含む試薬組成物と、液体試料と、を接触させること、(b)上記(a)によって生じた電流を検出すること、及び、(c)上記(b)の検出結果に基づいて、液体試料中の標的物質の濃度を測定すること、を含む。そして前記試薬組成物には、前述した本発明の試薬組成物を用いる。
(a)液体試料と、電子受容体と、酵素と、を接触させること、
(b)上記(a)によって生じた電流を検出すること、及び
(c)上記(b)の検出結果に基づいて、標的物質の濃度を測定すること、を含む濃度測定方法が実行される。
(i)上記液体試料に、上記標的物質を基質とし、電子受容体と、上記電子受容体に電子を供与する酵素と、を溶解させること、
(ii)上記(i)により得られた溶液において生じた電流を検出すること、及び
(iii)上記(ii)の検出結果に基づいて、上記標的物質の濃度を測定すること、を含む濃度測定方法が実行される。
親水性官能基を有するキノン類化合物は、試薬組成物が、水を媒体とする試料(例えば血液)を検知対象とするセンサに適用される場合に、特に好ましく用いられる。
電子受容体が親水性官能基を有するキノン類化合物である場合、電子受容体の分子と酵素分子とが、試料中で衝突する機会が増大する。その結果、反応の速度が増大し、標的物質に由来する電流量が増大すると共に、測定に要する時間も短縮され得る。
センサ1による標的物質の検出では、センサ1による標的物質の正確な検出を妨害する妨害物質が試料中に含有されることがある。妨害物質は干渉物質と称されることもある。妨害物質としては、アスコルビン酸、尿酸、及びアセトアミノフェン等が挙げられる。測定の対象が非生体試料(血液及び尿等の生体試料以外の試料)である場合、妨害物質とは、その非生体試料に含まれる易酸化性物質である。
補酵素の具体的な酸化還元電位は以下の通りである。補酵素であるFAD及びPQQは、酵素タンパク質に結合した状態で、酵素タンパク質と協働して典型的に機能する。これらの補酵素の酸化還元電位は、それぞれ約-300及び約-200mVである。また、NADは、酵素蛋白に結合せずに機能する。NADの酸化還元電位は、約-520mVである。
電子受容体の例である、9,10-フェナントレンキノン、9,10-フェナントレンキノン-2-スルホン酸、1,2-ナフトキノン-4-スルホン酸、2,5-ジメチル-1,4-ベンゾキノンの酸化還元電位は、それぞれ順に、-180mV、-140mV、-16mV、-5mVである。これら酸化還元電位は0mVよりも負であり、NADの電位よりも正、さらにはFAD及びPQQの電位よりも正である。特に、9,10-フェナントレンキノン、9,10-フェナントレンキノン-2-スルホン酸の酸化還元電位は、アスコルビン酸の酸化電位(約-140mV)よりも負である。すなわち、これらの電子受容体は、PQQ依存性又はFAD依存性酵素を有するセンサに適用可能である。また、これらの電子受容体は、妨害物質が検出結果に与える影響を低減することもできる。
以下に示すように、複素環式化合物は、保存期間の前後での電子受容体の酸化電位の変動を抑制すると共に、電子受容体の電位を負側にシフトさせるという効果を示す。以下では特に、電子受容体としてキノン類化合物を例に挙げて実験を行った結果を示す。
下記式(i)で表される9,10-フェナントレンキノン-2-スルホン酸ナトリウム(PQSA)を、次の操作によって得た。
下記組成を有する試薬液A及びBを調製した。
添加剤:イミダゾール(下記式に示す) 7.5mM
電子受容体:PQSA 7.5mM
酵素:FAD依存性グルコースデヒドロゲナーゼ(FAD-GDH) 3.5MU/L(リットル)
緩衝液:100mMリン酸ナトリウム緩衝液(pH7.0)
イミダゾールを含まない以外は組成Aと同様の組成である。
試薬液A及びBの特性を測定するためのセンサ電極を作製した。この電極は、試薬層4が含まれていないこと以外は図1に示す構成と同様である。詳細は次の通りである。
得られた試薬液について、上記センサ電極を用いてサイクリックボルタンメトリーを行った。参照電極として、銀/塩化銀(飽和塩化カリウム)電極(以下Ag|AgClと記載する)を用いた。参照電極は、塩橋を介してセンサ電極の通気口61に連結された。測定にはポテンショスタットを用いた。各種電極及びポテンショスタットは、電気化学で一般的に用いられるものを使用した。これらの設備は、例えばビー・エー・エス社などから入手することが可能である。
図1に示す構成を有するセンサを作製した。詳細は次の通りである。
まず、長さが30mm、幅が7mm、厚みが0.2mmのポリエチレンテレフタレートを主成分として含む基板2に、パラジウムをスパッタリングすることにより、厚みが8nmの導電層3を形成した。その後、レーザアブレーションにより、幅が0.1mmの非導電トラックを形成することで、電極31~33を形成した。電極31は作用電極、電極32は対電極、電極33は検知電極として機能するよう設計した。
添加剤:イミダゾール 7.5mM
酵素:FAD-GDH 4U/センサ
電子受容体:PQSA 0.46wt%(15mM)
高分子:カルボキシメチルセルロース 0.25wt%
緩衝液:リン酸バッファー(濃度:0.2wt%,pH 6.5)
NaH2PO4 0.11wt%(9mM)
KH2PO4 0.04t%(3mM)
K2HPO4 0.05wt%(3mM)
イミダゾールを含有しない以外は組成Cと同様の組成である。
-調製した直後の試薬液を用いた場合、及び
-調製してから25℃、湿度5%の環境下で21時間経過した後の試薬液を用いた場合の2種類のセンサを作製した。
所定の濃度を有するグルコース溶液を用いて、各センサの応答電流値を測定した。
調製直後の試薬液Cを用いて作製されたセンサの応答電流値からの、21時間後の試薬液Cを用いて作製されたセンサの応答電流値の乖離度を、図6に示す。
調製直後の試薬液Dを用いて作製されたセンサの応答電流値からの、21時間後の試薬液Dを用いて作製されたセンサの応答電流値の乖離度を、図7に示す。乖離度は、調製直後の試薬液を用いて作製されたセンサの応答電流値を基準に(つまり0%としたときの)、21時間後の試薬液を用いて作製されたセンサの応答電流値の変化率(%)で示している。
[サイクリックボルタンメトリー]
図5に示すように、試薬液B(イミダゾールを含まない)において、PQSAの酸化電位は、初期測定時から21時間経過したときには、正側にシフトした。このような電位の変化は、電子受容体と酵素とが水溶液中で共存することによって生じると考えられる。
他の複数種類の複素環式化合物についても同様の効果が得られることを、発明者らは確認した。
図6と図7とを比較すると、試薬液が複素環化合物を含有することで、初期の応答電流値からの、21時間経過後の応答電流値の乖離が抑制され、複素環化合物を含まない場合と比較して、改善していることが分かる。
[2-1]試薬液の調製
添加剤として、イミダゾール、ヒスタミン、ヒスチジン、2-アミノイミダゾール、4,5-ビス(ヒドロキシメチル)イミダゾール、1,2,4-トリアゾール、3-アミノ-1,2,4-トリアゾール、4-アミノ-1,2,4-トリアゾール、3,5-ジアミノ-1,2,4-トリアゾール、2-メチルイミダゾール、又は1,2-ジメチルイミダゾールを添加することで、添加剤の種類及び濃度以外は試薬液Cと同様の組成を有する試薬液をそれぞれ調製した。各添加剤の濃度は、後述の図及び表に示すとおりである。
調製された試薬液を用いて、[1-5]と同様の操作により、センサを作製した。また、調製後に25℃、湿度5%で24時間保存した試薬液を用いてセンサを作製した。
調製された直後の試薬液を用いて、[1-5]と同様の操作により、センサを作製した。作製されたセンサを、高温多湿環境下(30℃80%RH,24時間)で暴露放置した。
暴露前のセンサと暴露後のセンサとを用いて、所定の濃度を有するグルコース溶液に対する応答電流値を測定した。
表3に示すように、他の複素環式化合物も、電子受容体の酸化電位の正側へのシフトを防止する効果、すなわち試薬液の安定性を高める効果、を示した。また、いくつかのジアミン系化合物は、試薬液の安定性を高める効果を示した。
異なる濃度(0.01~6mM)の3-アミノ-1,2,4-トリアゾールを含有する試薬液をそれぞれ調製した。また3-アミノ-1,2,4-トリアゾールを含有しない以外は同じ組成の試薬液も調製した。調製直後の各試薬液を用いてセンサを作製し、一方で、調製後25℃、湿度5%で24時間保存した試薬液でセンサを作製した。それぞれのセンサを用いて、所定の濃度のグルコース溶液についての応答電流値を測定した。
下記組成を有する試薬液E、Fについて、サイクリックボルタンメトリーを行った。用いた電極は以下の通りであった。
-作用極:グラッシーカーボン電極、
-対極:白金ワイヤー、
-参照電極:Ag|AgCl
添加剤:3-アミノ-1,2,4-トリアゾール 5mM
電子受容体:PQSA 2mM
緩衝液:100mMリン酸ナトリウム緩衝液(pH7.0)
電子受容体として2,6-ジメチルベンゾキノンを用いた以外は試薬液Eと同様の組成である。
<試薬液G>
電子受容体として、フェリシアン化カリウムを用いた以外は試薬液Eと同様の組である。
2 基板
3 導電層
31 作用電極
32 対電極
33 検知電極
4 試薬層
5 スペーサ
51 キャピラリ
52 導入口
6 カバー
61 通気口
100 センサシステム
101 測定器
102 表示部
103 装着部
104~106 コネクタ
107 切替回路
108 基準電圧源
109 電流/電圧変換回路
110 A/D変換回路
111 演算部
112 電源部
113 操作部
Claims (23)
- 酸化還元酵素と
電子受容体と、
下記一般式(I)で表される複素環式化合物と、を含有し、下記第一の要件又は第二の要件を満足する、試薬組成物。
前記炭化水素基は、アミノ基、ヒドロキシル基及びカルボキシル基からなる群より選択される少なくとも一種の置換基を有していてもよく、
A1~A5のうちの2個又は3個が窒素原子であって、他は炭素原子であり、
式(I)中のA1~A5のうちの2個が窒素原子であるときは、A1が窒素原子であり、A2及びA5が炭素原子である。)
(第一の要件)
前記電子受容体が、ナフトキノン、アントラキノン、フェナントレンキノン、フェナントロリンキノン並びにこれらのキノン誘導体からなるキノン類化合物の群から選択される一以上である。
(第二の要件)
前記複素環式化合物がヒスチジンを含まず、
式(I)中のA1~A5のうちの2個が窒素原子であるときは、R1~R5のうち、少なくとも1個の基が水素原子以外の置換基である。 - 前記複素環式化合物が窒素原子を3個以上有する、請求項1に記載の試薬組成物。
- 前記一般式(I)において、R1~R5の少なくとも1つの基が、CnHm-(a+b+c)(R6)a(R7)b(R8)cで表される鎖式炭化水素基であり、
nは2以下の自然数を表し、
mはn+1以上2n+1以下の自然数を表し、
a、b及びcはそれぞれ独立してn以下の自然数を表し、
R6~R8は、それぞれ独立して、ヒドロキシル基、カルボキシル基、又はアミノ基を表す、請求項1に記載の試薬組成物。 - 前記複素環式化合物は、アミノ基を含有する置換基を有する、請求項1に記載の試薬組成物。
- 前記複素環式化合物の五員複素環がトリアゾールである、請求項1に記載の試薬組成物。
- 前記複素環式化合物として、イミダゾール、ヒスタミン、ヒスチジン、2-アミノ-イミダゾール、4,5-ビス(ヒドロキシメチル)イミダゾール、2-メチルイミダゾール、1,2-ジメチルイミダゾール、1,2,4-トリアゾール、3-アミノ-1,2,4-トリアゾール、4-アミノ-1,2,4-トリアゾール及び3,5-ジアミノ-1,2,4-トリアゾールからなる群より選択される少なくとも一種の化合物(ただし第二の要件を満たす場合では、イミダゾール及びヒスチジンを除く)を含有する、請求項1に記載の試薬組成物。
- 前記複素環式化合物として、ヒスタミン、ヒスチジン、2-アミノ-イミダゾール、4,5-ビス(ヒドロキシメチル)イミダゾール、2-メチルイミダゾール、1,2-ジメチルイミダゾール、1,2,4-トリアゾール、3-アミノ-1,2,4-トリアゾール、4-アミノ-1,2,4-トリアゾール及び3,5-ジアミノ-1,2,4-トリアゾールから成る群より選択される少なくとも一種の化合物(ただし第二の要件を満たす場合では、ヒスチジンを除く)を含有する、請求項1に記載の試薬組成物。
- 前記第二の要件を満足する場合において、前記電子受容体として鉄シアノ錯体を含有する、請求項1に記載の試薬組成物。
- 前記第二の要件を満足する場合において、前記電子受容体としてキノン類化合物を含有する、請求項1に記載の試薬組成物。
- 前記キノン類化合物として、フェナントレンキノン及びフェナントレンキノンの誘導体の一方又は両方を含有する、請求項1に記載の試薬組成物。
- 前記キノン類化合物として、9,10-フェナントレンキノン及び9,10-フェナントレンキノンの誘導体の一方又は両方を含有する、請求項10に記載の試薬組成物。
- 前記キノン類化合物は、親水性官能基を有する、請求項1に記載の試薬組成物。
- 前記キノン類化合物は、キノンと置換基とを有し、
前記置換基は、置換されていてもよいベンゼン環と、前記ベンゼン環に付加された前記親水性官能基とを有する、請求項12に記載の試薬組成物。 - 前記キノン類化合物は、前記親水性官能基として、スルホ基、カルボキシル基、及びリン酸基からなる群より選択される少なくとも一種の官能基を有する、請求項12に記載の試薬組成物。
- 前記キノン類化合物は、下記(a)~(c):
(a)前記スルホ基は、1-スルホン酸、2-スルホン酸、3-スルホン酸、4-スルホン酸、及び2,7-ジスルホン酸である、
(b)前記カルボキシル基は、2-カルボン酸である、及び
(c)前記リン酸基は、2-リン酸である、の少なくとも一項目を満たす請求項14に記載の試薬組成物。 - 前記酸化還元酵素として、グルコース脱水素酵素を含有する、請求項1に記載の試薬組成物。
- 前記酸化還元酵素に合う補酵素をさらに含有する、請求項16に記載の試薬組成物。
- 前記酸化還元酵素は、PQQ依存性酵素又はFAD依存性を有する、請求項17に記載の試薬組成物。
- 媒体として水を含有する液体をさらに含有する、請求項1に記載の試薬組成物。
- 液体試料が入るように形成された試料室と、
前記試料室内に配置された少なくとも一対の電極と、
前記試料室内において、少なくとも前記一対の電極の両方に接するように配置された請求項1に記載の試薬組成物から形成される試薬層と、を有するセンサ。 - 請求項20に記載のセンサと、
前記少なくとも一対の電極間の電流値を測定する測定部と、
前記測定部による測定結果に基づいて、前記液体試料中の対象物質の濃度を算出する算出部と、を有するセンサシステム。 - 下記(a)~(c):
(a)基板上に、少なくとも一対の電極を設けること、
(b)基板上に、請求項1に記載の試薬組成物を、前記一対の電極の両方に接触するように塗布すること、及び
(c)前記(b)で塗布された試薬組成物を乾燥させること、を含むセンサの製造方法。 - (a)少なくとも電子受容体及び酵素を含む試薬組成物と、液体試料と、を接触させること、
(b)上記(a)によって生じた電流を検出すること、及び
(c)上記(b)の検出結果に基づいて、液体試料中の標的物質の濃度を測定すること、を含み、
前記試薬組成物に、請求項1に記載の試薬組成物を用いる、標的物質の濃度測定方法。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/821,365 US9594044B2 (en) | 2010-09-30 | 2011-09-30 | Reagent composition, sensor, sensor system, and sensor manufacture process |
CN201180046816.2A CN103154717B (zh) | 2010-09-30 | 2011-09-30 | 感测器及感测器系统 |
JP2012536223A JPWO2012042903A1 (ja) | 2010-09-30 | 2011-09-30 | 試薬組成物、センサ、センサシステム及びセンサの製造方法 |
EP11828468.6A EP2623974B1 (en) | 2010-09-30 | 2011-09-30 | Sensor, sensor system, and sensor manufacture process |
US15/251,418 US10571424B2 (en) | 2010-09-30 | 2016-08-30 | Sensor, sensor system, method of manufacturing sensor, and method of measuring concentration of target substance |
US16/682,655 US10761045B2 (en) | 2010-09-30 | 2019-11-13 | Sensor, sensor system, method of manufacturing sensor, and method of measuring concentration of target substance |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010-222142 | 2010-09-30 | ||
JP2010222142 | 2010-09-30 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/821,365 A-371-Of-International US9594044B2 (en) | 2010-09-30 | 2011-09-30 | Reagent composition, sensor, sensor system, and sensor manufacture process |
US15/251,418 Continuation US10571424B2 (en) | 2010-09-30 | 2016-08-30 | Sensor, sensor system, method of manufacturing sensor, and method of measuring concentration of target substance |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012042903A1 true WO2012042903A1 (ja) | 2012-04-05 |
Family
ID=45892391
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/005544 WO2012042903A1 (ja) | 2010-09-30 | 2011-09-30 | 試薬組成物、センサ、センサシステム及びセンサの製造方法 |
Country Status (5)
Country | Link |
---|---|
US (3) | US9594044B2 (ja) |
EP (1) | EP2623974B1 (ja) |
JP (3) | JPWO2012042903A1 (ja) |
CN (1) | CN103154717B (ja) |
WO (1) | WO2012042903A1 (ja) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014098153A1 (ja) * | 2012-12-19 | 2014-06-26 | トヨタ自動車株式会社 | 固定化酵素を備えるバイオリアクター、固定化酵素の活性向上方法及びバイオ燃料電池 |
JP2015527593A (ja) * | 2012-09-07 | 2015-09-17 | シラグ・ゲーエムベーハー・インターナショナルCilag GMBH International | 電気化学センサ及びそれらの製造のための方法 |
JPWO2014192550A1 (ja) * | 2013-05-29 | 2017-02-23 | 東洋紡株式会社 | 無機薄膜積層フィルム |
US9742020B2 (en) | 2012-12-20 | 2017-08-22 | Toyota Jidosha Kabushiki Kaisha | Fuel cell |
US20170323551A1 (en) * | 2014-08-06 | 2017-11-09 | Coke M. Tilley | Leak detection device |
JP2019078638A (ja) * | 2017-10-25 | 2019-05-23 | アークレイ株式会社 | アスコルビン酸測定用電極およびバイオセンサ |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2012042903A1 (ja) * | 2010-09-30 | 2014-02-06 | パナソニック株式会社 | 試薬組成物、センサ、センサシステム及びセンサの製造方法 |
JP6158133B2 (ja) * | 2013-05-02 | 2017-07-05 | アークレイ株式会社 | 測定装置、及び測定方法 |
JP6577402B2 (ja) * | 2015-04-06 | 2019-09-18 | アークレイ株式会社 | ヘマトクリット値測定用電極を備えたバイオセンサ |
JP6577403B2 (ja) * | 2015-04-06 | 2019-09-18 | アークレイ株式会社 | ヘマトクリット値測定用電極を備えたバイオセンサ |
CN104792832A (zh) * | 2015-04-16 | 2015-07-22 | 三诺生物传感股份有限公司 | 一种胆红素电化学传感器及其制备方法 |
JP6708388B2 (ja) * | 2015-10-07 | 2020-06-10 | デクセリアルズ株式会社 | 液濡れセンサー、スイッチ素子、バッテリシステム |
CN105388200B (zh) * | 2015-10-16 | 2018-02-09 | 上海纳米技术及应用国家工程研究中心有限公司 | 一种用于有机磷农药检测的传感器制备方法 |
CN106124595A (zh) * | 2016-06-17 | 2016-11-16 | 浙江亿联健医疗器械有限公司 | 一种生物传感器及其制备方法和反应试剂 |
ES2903296T3 (es) * | 2017-07-14 | 2022-03-31 | Terumo Corp | Chip de medición del nivel de glucemia y conjunto de dispositivo de medición del nivel de glucemia |
WO2019187575A1 (ja) * | 2018-03-26 | 2019-10-03 | Phcホールディングス株式会社 | 生体物質検出用センサ |
TWI768560B (zh) * | 2020-11-25 | 2022-06-21 | 五鼎生物技術股份有限公司 | 生化試片 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000171428A (ja) | 1998-09-29 | 2000-06-23 | Matsushita Electric Ind Co Ltd | グルコ―スセンサ |
JP2001343350A (ja) | 2000-03-29 | 2001-12-14 | Matsushita Electric Ind Co Ltd | バイオセンサ |
WO2005043146A1 (ja) * | 2003-10-30 | 2005-05-12 | Arkray, Inc. | バイオセンサおよびその製造方法 |
JP2009247289A (ja) | 2008-04-08 | 2009-10-29 | Toyobo Co Ltd | グルコースの定量方法ならびに定量組成物 |
WO2010007833A1 (ja) * | 2008-07-14 | 2010-01-21 | ソニー株式会社 | 燃料電池およびその製造方法ならびに電子機器ならびに酵素固定化電極およびその製造方法ならびに撥水剤ならびに酵素固定化材 |
JP2010222142A (ja) | 2009-03-24 | 2010-10-07 | Sapporo Kogyo Design Kk | 粉粒体供給機 |
Family Cites Families (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4325936A (en) * | 1979-06-20 | 1982-04-20 | Union Oil Company Of California | Method for removing hydrogen sulfide from gas streams |
CO5040209A1 (es) * | 1997-10-16 | 2001-05-29 | Abbott Lab | Electrodos biosensores mediadores de la regeneracion de cofactores |
JP2001021527A (ja) * | 1999-07-02 | 2001-01-26 | Akebono Brake Res & Dev Center Ltd | 使い捨て型バイオセンサ |
WO2001025776A1 (fr) * | 1999-10-05 | 2001-04-12 | Matsushita Electric Industrial Co., Ltd. | Glucometre |
CN1268920C (zh) | 2000-03-29 | 2006-08-09 | 松下电器产业株式会社 | 生物传感器 |
US6676816B2 (en) | 2001-05-11 | 2004-01-13 | Therasense, Inc. | Transition metal complexes with (pyridyl)imidazole ligands and sensors using said complexes |
CN1204398C (zh) * | 2001-05-15 | 2005-06-01 | 松下电器产业株式会社 | 生物传感器 |
US7163616B2 (en) * | 2001-09-14 | 2007-01-16 | Bayer Corporation | Reagents and methods for detecting analytes, and devices comprising reagents for detecting analytes |
JP2004233302A (ja) * | 2003-01-31 | 2004-08-19 | Tanita Corp | センサ保存液、センサ較正液およびセンサ |
US20050067277A1 (en) * | 2003-09-30 | 2005-03-31 | Pierce Robin D. | Low volume electrochemical biosensor |
WO2005085825A1 (en) | 2004-03-04 | 2005-09-15 | Isis Innovation Ltd | Electrochemical sensors |
JP2006058289A (ja) * | 2004-07-23 | 2006-03-02 | Canon Inc | 酵素電極、センサ、燃料電池、電気化学反応装置 |
US20090065356A1 (en) | 2006-04-19 | 2009-03-12 | Junko Nakayama | Biosensor |
EP1964927A1 (de) | 2007-02-27 | 2008-09-03 | F. Hoffmann-La Roche AG | Chinone als Mediatoren für photometrische Teste |
JP2008243380A (ja) | 2007-03-23 | 2008-10-09 | Sony Corp | 酵素固定化電極、燃料電池、電子機器、酵素反応利用装置および酵素固定化基体 |
US20090047567A1 (en) | 2007-08-16 | 2009-02-19 | Sony Corporation | Biofuel cell, method for producing the same, electronic apparatus, enzyme-immobilized electrode, and method for producing the same |
JP5439757B2 (ja) | 2007-12-07 | 2014-03-12 | ソニー株式会社 | 燃料電池および電子機器 |
JP2009245930A (ja) * | 2008-03-12 | 2009-10-22 | Sony Corp | 燃料電池およびその製造方法ならびに酵素固定化電極およびその製造方法ならびに電子機器 |
US8262874B2 (en) * | 2008-04-14 | 2012-09-11 | Abbott Diabetes Care Inc. | Biosensor coating composition and methods thereof |
JP5405916B2 (ja) * | 2008-06-24 | 2014-02-05 | パナソニック株式会社 | バイオセンサ、その製造方法、及びそれを備える検出システム |
US8636884B2 (en) * | 2008-09-15 | 2014-01-28 | Abbott Diabetes Care Inc. | Cationic polymer based wired enzyme formulations for use in analyte sensors |
CN102498391B (zh) * | 2009-08-31 | 2014-03-19 | 松下电器产业株式会社 | 传感器及浓度测定方法 |
CN102812348B (zh) * | 2009-12-22 | 2016-02-03 | 新加坡科技研究局 | 基于sers的分析物检测 |
WO2011115809A2 (en) * | 2010-03-16 | 2011-09-22 | Edwards Lifesciences Corporation | High energy radiation insensitive analyte sensors |
JPWO2012042903A1 (ja) * | 2010-09-30 | 2014-02-06 | パナソニック株式会社 | 試薬組成物、センサ、センサシステム及びセンサの製造方法 |
JP5930810B2 (ja) * | 2011-04-26 | 2016-06-08 | アークレイ株式会社 | 分析用具 |
-
2011
- 2011-09-30 JP JP2012536223A patent/JPWO2012042903A1/ja active Pending
- 2011-09-30 WO PCT/JP2011/005544 patent/WO2012042903A1/ja active Application Filing
- 2011-09-30 EP EP11828468.6A patent/EP2623974B1/en active Active
- 2011-09-30 CN CN201180046816.2A patent/CN103154717B/zh active Active
- 2011-09-30 US US13/821,365 patent/US9594044B2/en active Active
-
2016
- 2016-02-03 JP JP2016019074A patent/JP6194377B2/ja active Active
- 2016-08-30 US US15/251,418 patent/US10571424B2/en active Active
-
2017
- 2017-08-10 JP JP2017155513A patent/JP6450426B2/ja active Active
-
2019
- 2019-11-13 US US16/682,655 patent/US10761045B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000171428A (ja) | 1998-09-29 | 2000-06-23 | Matsushita Electric Ind Co Ltd | グルコ―スセンサ |
JP2001343350A (ja) | 2000-03-29 | 2001-12-14 | Matsushita Electric Ind Co Ltd | バイオセンサ |
WO2005043146A1 (ja) * | 2003-10-30 | 2005-05-12 | Arkray, Inc. | バイオセンサおよびその製造方法 |
JP2009247289A (ja) | 2008-04-08 | 2009-10-29 | Toyobo Co Ltd | グルコースの定量方法ならびに定量組成物 |
WO2010007833A1 (ja) * | 2008-07-14 | 2010-01-21 | ソニー株式会社 | 燃料電池およびその製造方法ならびに電子機器ならびに酵素固定化電極およびその製造方法ならびに撥水剤ならびに酵素固定化材 |
JP2010222142A (ja) | 2009-03-24 | 2010-10-07 | Sapporo Kogyo Design Kk | 粉粒体供給機 |
Non-Patent Citations (1)
Title |
---|
BIOELECTROCHEMISTRY, vol. 64, 2004, pages 7 - 13 |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015527593A (ja) * | 2012-09-07 | 2015-09-17 | シラグ・ゲーエムベーハー・インターナショナルCilag GMBH International | 電気化学センサ及びそれらの製造のための方法 |
US9810657B2 (en) | 2012-09-07 | 2017-11-07 | Cilag Gmbh International | Electrochemical sensors and a method for their manufacture |
WO2014098153A1 (ja) * | 2012-12-19 | 2014-06-26 | トヨタ自動車株式会社 | 固定化酵素を備えるバイオリアクター、固定化酵素の活性向上方法及びバイオ燃料電池 |
CN104870630A (zh) * | 2012-12-19 | 2015-08-26 | 丰田自动车株式会社 | 具备固定化酶的生物反应器、固定化酶的活性提高方法和生物燃料电池 |
JPWO2014098153A1 (ja) * | 2012-12-19 | 2017-01-12 | トヨタ自動車株式会社 | 固定化酵素を備えるバイオリアクター、固定化酵素の活性向上方法及びバイオ燃料電池 |
CN104870630B (zh) * | 2012-12-19 | 2019-11-19 | 丰田自动车株式会社 | 具备固定化酶的生物反应器、固定化酶的活性提高方法和生物燃料电池 |
US10490837B2 (en) | 2012-12-19 | 2019-11-26 | Toyota Jidosha Kabushiki Kaisha | Bioreactor comprising immobilized enzyme, method for improving activity of immobilized enzyme, and biofuel cell |
US9742020B2 (en) | 2012-12-20 | 2017-08-22 | Toyota Jidosha Kabushiki Kaisha | Fuel cell |
JPWO2014192550A1 (ja) * | 2013-05-29 | 2017-02-23 | 東洋紡株式会社 | 無機薄膜積層フィルム |
US20170323551A1 (en) * | 2014-08-06 | 2017-11-09 | Coke M. Tilley | Leak detection device |
US10032355B2 (en) * | 2014-08-06 | 2018-07-24 | Coke M. Tilley | Leak detection device |
JP2019078638A (ja) * | 2017-10-25 | 2019-05-23 | アークレイ株式会社 | アスコルビン酸測定用電極およびバイオセンサ |
Also Published As
Publication number | Publication date |
---|---|
JP2018009997A (ja) | 2018-01-18 |
CN103154717B (zh) | 2017-02-08 |
JP6450426B2 (ja) | 2019-01-09 |
US10761045B2 (en) | 2020-09-01 |
EP2623974A1 (en) | 2013-08-07 |
JPWO2012042903A1 (ja) | 2014-02-06 |
US20160376626A1 (en) | 2016-12-29 |
JP2016105106A (ja) | 2016-06-09 |
JP6194377B2 (ja) | 2017-09-06 |
US20130161204A1 (en) | 2013-06-27 |
US20200080956A1 (en) | 2020-03-12 |
EP2623974A4 (en) | 2015-01-07 |
EP2623974B1 (en) | 2022-02-16 |
CN103154717A (zh) | 2013-06-12 |
US9594044B2 (en) | 2017-03-14 |
US10571424B2 (en) | 2020-02-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6450426B2 (ja) | センサ及びセンサシステム | |
JP6338748B2 (ja) | センサ | |
JP3672099B2 (ja) | バイオセンサ | |
JP2007509355A (ja) | 酵素的電気化学的バイオセンサ | |
KR20130009848A (ko) | 샘플 내 분석물의 농도를 측정하기 위한 전기화학 시스템 및 전기화학 센서 스트립 및 이를 이용하는 방법 | |
JP2016500447A (ja) | 電気化学分析用検査装置 | |
JP5453314B2 (ja) | 電気化学的検出に用いる改良型試薬組成物 | |
EP3242129B1 (en) | Electrochemical biosensor | |
JP4913355B2 (ja) | バイオセンサ | |
KR102596519B1 (ko) | 산화 환원 반응용 시약 조성물 및 이를 포함하는 바이오센서 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201180046816.2 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11828468 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012536223 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13821365 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011828468 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |